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Locking-free DGFEM for elasticity problems in polygons

THOMAS P. WIHLER†
Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland

[Received on xx Month 2003; revised on xx Month 2003]

Theh-version of the discontinuous Galerkin finite element method (h-DGFEM) for nearly
incompressible linear elasticity problems in polygons is analysed. It is proved that the
scheme is robust (locking-free) with respect to volume locking, even in the absence ofH2-
regularity of the solution. Furthermore, it is shown that an appropriate choice of the finite
element meshes leads to robust and optimal algebraic convergence rates of the DGFEM
even if the exact solutions do not belong toH2.

Keywords: DGFEM; locking; elasticity problems; singular solutions; graded meshes;
discontinuous Galerkin methods.

1. Introduction

In mechanical engineering, partial differential equations are often solved by low-order
finite element methods (FEMs). In many applications, the convergence of these schemes
may strongly depend on various problem parameters. Unfortunately, this can result in non-
robustness of the convergence: i.e. the asymptotic convergence regime of the method is
reached only at such high numbers of degrees of freedom that the scheme is practically not
feasible. In computational mechanics, this non-robustness of the FEM is termedlocking.
An additional problem is caused by the fact that many practical examples are based on non-
smooth domains, and therefore boundary singularities may arise. In this paper, however, it
will be shown that locking effects may be circumvented by using a discontinuous Galerkin
finite element method (DGFEM) and that singular solution behaviour can be resolved by
applying an appropriate mesh refinement strategy.

There exist different kinds of locking:shear locking typically appears if the
corresponding domains are very thin and plate and shell theories, which include shear
deformation, are used. In addition, in shell theories and their finite element models,
there arisesmembrane lockingwhich is caused by the interaction between bending and
membrane energies. Finally, problems dealing with nearly incompressible materials are
often accompanied by the so-calledvolume locking; this type of locking is very typical for
elasticity problems in biology and will be explored in this paper.

In order to overcome volume locking, a variety of approaches have been suggested.
For example, low-order mixed FEMs, where an extra variable for the divergence term
is introduced, yield adequate numerical results (Brezzi & Fortin, 1991). These methods
are closely related to under-integration schemes. A further possibility is the use of non-
conforming methods, where the global continuity of the numerical solutions is not any
more enforced (see Kouhia & Stenberg, 1995, for example).
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In 1983, M. Vogelius proved the absence of volume locking for thep-version of the
FEM on smooth domains (Vogelius, 1983). Moreover, in 1992 Babuška & Suri showed
that, on polygonal domains, theh-FEM is locking-free on regular triangular elements with
p � 4. In addition, they proved that, for conforming methods, locking cannot be avoided
on quadrilateral meshes for anyp � 1. Recently, Hansbo & Larson (2002) suggested the
use of a discontinuous FEM (DGFEM). Assuming at leastH2 regularity, they showed that
theh-version of the DGFEM does not lock for allp � 1.

Following the classical approach of Wheeler (1978) and Riviere & Wheeler (2000), this
paper is devoted to the exploration of the non-symmetric interior penalty Galerkin (NIPG)
version of the DGFEM for linear elasticity problems (with mixed boundary conditions) in
convex and non-convex polygons. Based on a recent regularity result by Guo & Schwab
(2000) it will be proved here that, even if the exact solutions of the elasticity problems are
singular (i.e. notH2 any more), theh-version of the NIPG is free of volume locking.
Additionally, the use of so-called ‘γ -graded meshes’ leads this method to converge at
an optimal algebraic rate (independently of the compressibility of the material). On non-
graded (uniform) meshes, the DGFEM (NIPG withp = 1) is still free of locking. However,
due to the occurrence of singularities, the algebraic convergence rates may be suboptimal.

The DGFEM above is closely related to non-conforming methods of Crouzeix–Raviart
type. Brenner & Sung (1992) showed that these schemes are locking-free even forp = 1.
However, their results are based on the assumption that the displacements areH2 regular,
and therefore the case of non-convex polygons is in general not covered by that work.
Nevertheless, applying the regularity results and the mesh refinement strategies presented
in this paper (Theorems 3.4 and 5.10), it may be proved that the convergence statements in
Brenner & Sung (1992) are extensible to the case where the exact solutions of the elasticity
problems exhibit corner singularities.

The outline of the paper is as follows. In Sections 2 and 3, the linear elasticity
problem and its regularity on polygons are presented. In Section 4, the DGFEM (NIPG) is
introduced. Section 5 contains the error analysis of the DGFEM and the proof of the main
result (optimal, robust convergence of the NIPG). In Section 6, the theoretical results are
confirmed with some numerical examples.

2. Problem Formulation

Let Ω be a polygon inR2. Its boundaryΓ := ∂Ω is assumed to consist of a Dirichlet part
ΓD with |ΓD| > 0 and of a Neumann partΓN:

Γ = ΓD ∪ ΓN.

The linear elasticity problem reads as follows:

−∇ · σ(u) = f in Ω
u = g

D
onΓD

σ(u) · nΩ = g
N

onΓN.
(2.1)

Here, u = (u1, u2) is the displacementand σ = {σi j }2
i, j=1 is the stress tensorfor

homogeneous isotropic material given by

σ(u) = 2µε(u) + λ∇ · u 1
2×2

, (2.2)
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whereε(u) = {εi j (u)}2
i, j=1 with

εi j (u) = 1
2(∂xi u j + ∂x j ui ) (2.3)

the symmetric gradientof u. Furthermore,µ andλ are the so-calledLamé coefficients
satisfying

0 < min{µ, µ + λ},

andnΩ is the unit outward vector ofΩ onΓ .

3. Regularity

3.1 Weighted Sobolev spaces

The regularity of (2.1) will be measured in terms of certain weighted Sobolev spaces. In
order to do so, set

S P(Ω ,ΓD,ΓN) := {Ai : i = 1, 2, . . . , M},

where Ai , i = 1, . . . , M , denote the ‘singular points’, e.g. corners and vertices of
changing boundary condition type ofΩ . Moreover, introduce a weight vectorβ =
(β1, . . . , βM ) with 0 � βi < 1, and for any numberk ∈ R setβ+k := (β1+k, . . . , βM +
k). Then, letΦβ be aweight functiononΩ given by

Φβ(x) =
M∏

i=1

r∗
i (x)βi , r∗

i (x) = |x − Ai |.

Furthermore, for any integersm � l � 0, denote byHm,l
β (Ω)2 the so-calledweighted

Sobolev spaceson Ω (Babǔska & Guo, 1988, 1989; Guo & Babuška, 1993) which are
understood to be the completions ofC∞(Ω)2 with respect to the norms

‖u‖2
Hm,l

β (Ω)
= ‖u‖2

Hl−1(Ω)
+

m∑
k=l

‖|Dku|Φβ+k−l‖2
L2(Ω)

, l � 1,

‖u‖2
Hm

β (Ω) =
m∑

k=0

‖|Dku|Φβ+k‖2
L2(Ω)

, l = 0.

CONVENTION 3.1 Since the weight functionΦβ controls the local behaviour of the
solution in the vicinity of a (singular) vertex, it is obvious to work locally with the weight
functionΦβ = rβ with

β := βi and r(x) := |x − Ai |,

whereAi denotes the corresponding vertex of the polygon.
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REMARK 3.2 In this paper, the spacesH2,2
β (Ω)2 will play a main role and it may be

proved easily that for allε > 0 and for each functionu ∈ H2,2
β (Ω)2, there holdsu|Ω̃ε

∈
H2(Ω̃ε)

2, where

Ω̃ε := Ω \
M⋃

i=1

{x ∈ R
2 : |x − Ai | < ε}.

Moreover,H2,2
0 (Ω) = H2(Ω).

Finally, the spacesH
k− 1

2 ,l− 1
2

β (γ )2, l = 1, 2, are defined as the trace spaces ofHk,l
β (Ω)

onγ ⊂ Γ and

‖g‖
H

k− 1
2 ,l− 1

2
β (γ )

:= inf
G∈Hk,l

β
(Ω)2

G|γ =g

‖G‖Hk,l
β (Ω)

.

3.2 Regularity of generalized Stokes problems

In order to obtain a regularity result for the elasticity problem (2.1), the following
generalized Stokes problemin the polygonΩ is considered:

−∇ · σ(u, p) = f in Ω
−∇ · u = h in Ω

u = g
D

onΓD

σ(u, p) · nΩ = g
N

onΓN.

(3.1)

Here,u is the velocity field,p a Lagrange multiplier corresponding to the (hydrostatic)
pressure in the incompressible limit andσ(u, p) the hydrostatic stress tensor ofu defined
by

σ(u, p) = −p 1 + 2νε(u),

whereε(u) is given as in (2.3) andν > 0 is the (kinematic) viscosity. IfΓN = ∅, the
following compatibility condition is supposed to be fulfilled:∫

Ω
h dx +

∫
∂Ω

g
D

· nΩ ds = 0. (3.2)

In Guo & Schwab (2000) the following regularity result was proved:

THEOREM 3.3 Letk � 0 and|ΓD| > 0. In addition, ifΓN = ∅, let (3.2) be satisfied. Then
there exists a weight vectorβ = (β1, . . . , βM ) with 0 � βi < 1, i = 1, . . . , M , such

that for f ∈ Hk,0
β (Ω)2, h ∈ Hk+1,1

β (Ω), g
D

∈ H
k+ 3

2 ,
3
2

β (ΓD)2 andg
N

∈ H
k+ 1

2 ,
1
2

β (ΓN)2

the generalized Stokes problem (3.1) admits a unique solution(u, p) ∈ Hk+2,2
β (Ω)2 ×
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Hk+1,1
β (Ω) and the a priori estimate

‖u‖Hk+2,2
β (Ω)

+ ‖p‖Hk+1,1
β (Ω)

� C
(
‖ f ‖Hk,0

β (Ω)
+ ‖h‖Hk+1,1

β (Ω)
+ ‖g

D
‖

H
k+ 3

2 ,
3
2

β (ΓD)

+ ‖g
N
‖

H
k+ 1

2 ,
1
2

β (ΓN)

)
(3.3)

holds true.

3.3 Regularity of linear elasticity problems

A regularity result for linear elasticity problems in polygons was proved in Guo & Babuška
(1993, Theorem 5.2). However, referring to the previous Theorem 3.3, a more specific
statement, which clarifies the regularity of the linear elasticity problem (2.1) in dependence
on the Laḿecoefficientλ, may be developed.

THEOREM 3.4 LetΩ be a polygon inR2 and|ΓD| > 0. Then there exists a weight vector
β = (β1, . . . , βM ) with 0 � βi < 1, i = 1, . . . , M , such that for f ∈ Hk,0

β (Ω)2,

g
D

∈ H
k+ 3

2 ,
3
2

β (ΓD)2 and g
N

∈ H
k+ 1

2 ,
1
2

β (ΓN)2 the linear elasticity problem (2.1) has a

unique solutionu ∈ Hk+2,2
β (Ω)2. In addition, there exists a constantC > 0 independent

of λ such that the ensuing estimate holds true:

‖u‖Hk+2,2
β (Ω)

+ |λ|‖∇ · u‖Hk+1,1
β (Ω)

� C
(
‖ f ‖Hk,0

β (Ω)
+ ‖g

D
‖

H
k+ 3

2 ,
3
2

β (ΓD)

+ ‖g
N
‖

H
k+ 1

2 ,
1
2

β (ΓN)

)
. (3.4)

Proof. As already mentioned above, the unique solutionuelast of the linear elasticity
problem (2.1) belongs toHk+2,2

β (Ω) (see Guo & Babǔska, 1993, Theorem 5.2). Therefore,

the choice

h := −∇ · uelast∈ Hk+1,1
β (Ω)

leads to the following solution(u, p) of the generalized Stokes problem (3.1):

p = −λ∇ · uelast

and

u = uelast.

Hence, using (3.3) implies that

‖u‖Hk+2,2
β (Ω)

+ |λ|‖∇ · u‖Hk+1,1
β (Ω)

� C
(
‖ f ‖Hk,0

β (Ω)
+ ‖∇ · u‖Hk+1,1

β (Ω)
(3.5)

+‖g
D
‖

H
k+ 3

2 ,
3
2

β (ΓD)

+ ‖g
N
‖

H
k+ 1

2 ,
1
2

β (ΓN)

)
.
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Thus, if |λ| < 2C , it follows that

‖u‖Hk+2,2
β (Ω)

+ |λ|‖∇ · u‖Hk+1,1
β (Ω)

� C̃‖u‖Hk+2,2
β (Ω)

� C̃
(
‖ f ‖Hk,0

β (Ω)
+ ‖g

D
‖

H
k+ 3

2 ,
3
2

β (ΓD)

+ ‖g
N
‖

H
k+ 1

2 ,
1
2

β (ΓN)

)

for a constantC̃ independent of|λ| ∈ (0, 2C). In the last step, Theorem 5.2 in Guo &
Babǔska (1993) was applied.

Alternatively, if |λ| � 2C , the termC‖∇ · u‖Hk+1,1
β (Ω)

in the right-hand side of (3.5)

may obviously be absorbed into the left-hand side. �

4. The DGFEM

4.1 Finite element meshes

Consider aregular† partition (FE mesh)T of Ω into open trianglesK :

T = {Ki }i ,
⋃

K∈T
K = Ω .

The elementsK ∈ T are images of the reference triangle

T̂ := {(x̂, ŷ) : −1 � ŷ � −x̂, x̂ ∈ (−1, 1)} (4.1)

under affine mapsF K , i.e. for eachK ∈ T there exists a constant matrixA
K

∈ R
2×2 and

aconstant vectorbK ∈ R
2 such that with

F K (x) = A
K

x + bK (4.2)

there holds

K = F K (T̂ ). (4.3)

Moreover, for eachK ∈ T , introduce

hK := diam(K )

and

ρK := sup{diam(B) : B is a ball contained inK }.
The so-calledmesh sizeof T is given by

hT := sup
K∈T

hK . (4.4)

†i.e. the intersection of any two elements is either empty, a vertex or an entire side.
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Finally, in order to account for the singular behaviour of solutions near the singular
points of the polygonΩ , the following set has to be defined:

K0 := {K ∈ T : ∂K ∩ S P(Ω ,ΓD,ΓN) �= ∅}.
Henceforth, the finite element meshes are assumed to satisfy the following property:

hK � CρK , ∀K ∈ T , (4.5)

for a constantC > 0 independent ofK ∈ T .

4.2 FE spaces

Let T be a regular finite element mesh consisting of trianglesK ∈ T . The discontinuous
finite element spaces that will be appropriate for the DGFEM are defined as follows:

S1,0(Ω , T ) := {u ∈ L2(Ω)2 : u|K ∈ P1(K )2, K ∈ T }. (4.6)

Here,

P1(K ) := {u(x, y) = ax + by + c : a, b, c ∈ R}
is the space of all linear functions onK .

4.3 Trace operators for the DGFEM

First of all, assume that there exists an index setI ⊂ N such that the elements in the
subdivisionT are numbered in a certain way:

T = {Ki }i∈I .

Furthermore, denote byE the set of all element edges associated with the meshT .
Additionally, letΓint be the union of all edgese ∈ E not lying on∂Ω :

Γint :=
⋃
e∈E:

e∩∂Ω=∅

e.

Moreover, define

Γint,D := Γint ∪ {e ∈ E : e ⊂ ΓD}.
Obviously, for eache ∈ Γint, there exist two indicesi and j with i > j such thatKi and
K j share the interfacee:

e = ∂Ki ∩ ∂K j .

Thus, the following mapping is well-defined:

ϕ : Γint −→ N
2

e �−→
(

ϕ1(e):=i
ϕ2(e):= j

)
.
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If e ∈ E \ Γint, i.e. if e is a boundary edge, there is a unique elementKi ∈ T such that

e = ∂Ki ∩ Γ .

Hence, the above definition may be expanded as follows:

ϕ : E \ Γint −→ N

e �−→ ϕ(e) := i .

On e ∈ Γint, let νe be the normal vector which points fromKϕ1(e) to Kϕ2(e); for
boundary edgese ⊂ Γ , setνe = nΩ .

Since the DGFEM is based on functions in

H1,1(Ω , T ) = {v ∈ L2(Ω) : v|K ∈ W 1,1(K ), K ∈ T } �⊂ C0(Ω),

the discontinuities over element boundaries have to be controlled in a certain way. Consider
thereforev ∈ H1,1(Ω , T )2. Then, fore ∈ Γint andx ∈ e, introduce the followingaverage
at x ∈ e:

〈
v
〉
e := v+ + v−

2
,

and the (numbering-dependent)jumpat x ∈ e,

[v]e := v+ − v−.

Here,v+, v− denote the traces ofv ontoe taken from within the interior of the elements
Kϕ1(e) andKϕ2(e), respectively. Fore ⊂ Γ , let

〈
v
〉
e := v and[v]e := v.

4.4 Variational formulation

There is a wide variety of DG methods for linear elliptic problems. Most of them are
examples of the so-calledflux formulation introduced by Cockburn & Shu (1998). In
this very general formulation, the normal derivatives are replaced bynumerical fluxes,
which may also be interpreted as Lagrange multipliers. Since there are many possibilities
to choose the numerical fluxes, a considerable number of different DG methods may be
obtained (see Arnoldet al., 2001 for details). In this paper, the so-called non-symmetric
interior penalty Galerkin method (NIPG) will be analysed. It was originally introduced in
Wheeler (1978) and extensively studied in Arnold (1982), Rivièreet al. (1999), Arnoldet
al. (2001), Wihler (2003) (and the references therein).

In order to define the NIPG for the linear elasticity problem (2.1), the following product
operator onL2(K )2×2 × L2(K )2×2, K ∈ T , is introduced:

α : β :=
2∑

i, j=1

αi jβi j ,

with the induced norm

‖α‖K :=
√∫

K
α : α dx .
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DEFINITION 4.1 (NIPG) Forτ = 1, define a bilinear formBDG by

BDG(u, v) :=
∑
K∈T

∫
K

σ(u) : ε(v) dx

−
∑

e∈Γint,D

∫
e
(
〈
σ(u) · νe

〉
e
· [v]e − τ [u]e ·

〈
σ(v) · νe

〉
e
) ds

+µ
∑

e∈Γint,D

1

|e|
∫

e
[u]e · [v]e ds,

and a corresponding linear functionalLDG by

LDG(v) :=
∑
K∈T

∫
K

f · v dx +
∫
ΓN

g
N

· v ds

+
∫
ΓD

(σ (v) · nΩ ) · g
D

ds + µ
∑
e∈E:

e⊂ΓD

1

|e|
∫

e
g

D
· v ds.

Then, the DGFEM for the linear elasticity problem (2.1) reads as follows:
Find uDG ∈ S1,0(Ω , T ) such that

BDG(uDG, v) = LDG(v) ∀v ∈ S1,0(Ω , T ). (4.7)

REMARK 4.2 The choiceτ = −1 in Definition 4.1 leads to the symmetric interior penalty
Galerkin method (SIPG) for the elasticity problem (2.1). However, to prove absence of
volume locking for this scheme, an additional stabilization term of the form

λ
∑

e∈Γint,D

1

|e|
∫

e
[u · νe]e[v · νe]e ds

must be added to the bilinear formBDG (Hansbo & Larson, 2002).

PROPOSITION 4.3 (Consistency) If the exact solutionuex of the linear elasticity problem
(2.1) belongs toH2,2

β (Ω)2 for any weight vectorβ = (β1, . . . , βM ) with βi ∈ [0, 1),

i = 1, . . . , M , then the DGFEM (4.7) is consistent:

BDG(uex − uDG, v) = 0 ∀v ∈ S1,0(Ω , T ). (4.8)

Proof. See Wihler (2003). �

REMARK 4.4 Proposition 4.3 shows that, in contrast to many other non-conforming finite
element methods, the consistency error of the DGFEM vanishes. This property results from
the fact that the discontinuities of the DG solutions over element boundaries are handled
with the aid of some extra inter-element terms in the bilinear formBDG. Nevertheless, the
analysis of the DGFEM is comparable to that of non-conforming, non-consistent methods,
since there, similar expressions occur in the corresponding residual terms.
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Finally, the following norm is associated to the DGFEM:

‖u‖2
DG :=

∑
K∈T

‖ε(u)‖2
K + µ

melast

∑
e∈Γint,D

|e|−1
∫

e
|[u]e|2 ds, (4.9)

wheremelast := 2min{µ, µ + λ}.
REMARK 4.5 The norm in (4.9) is equivalent to the element-wiseH1 norm. A
corresponding result may be found in Brenner (2002), where a discrete Korn inequality
was proved.

PROPOSITION 4.6 (Coercivity) The bilinear formBDG is coercive onS1,0(Ω , T ). More
precisely,

BDG(u, u) � melast‖u‖2
DG

for all u ∈ S1,0(Ω , T ).

Proof. Set

ε
0
(u) := ε(u) − 1

2∇ · u 1
2×2

.

Then, forK ∈ T , there holds that∫
K

σ(u) : ε(u) dx = 2µ

∫
K

ε(u) : ε(u) dx + λ

∫
K

|∇ · u|2 dx

= 2µ

∫
K
(ε

0
(u) + 1

2∇ · u 1
2×2

) : (ε
0
(u) + 1

2∇ · u 1
2×2

) dx

+λ

∫
K

|∇ · u|2 dx

= 2µ

∫
K
{ε

0
(u) : ε

0
(u) + 1

2|∇ · u|2} dx + λ

∫
K

|∇ · u|2 dx

= 2µ

∫
K

ε
0
(u) : ε

0
(u) dx + (µ + λ)

∫
K

|∇ · u|2 dx .

Moreover, since∫
K

ε(u) : ε(u) dx =
∫

K
(ε

0
(u) + 1

2∇ · u 1
2×2

) : (ε
0
(u) + 1

2∇ · u 1
2×2

) dx

=
∫

K
{ε

0
(u) : ε

0
(u) + 1

2|∇ · u|2} dx,

it follows that ∫
K

σ(u) : ε(u) dx � melast

∫
K

ε(u) : ε(u) dx .

Thus,

BDG(u, u) � melast

∑
K∈T

∫
K

ε(u) : ε(u) dx + µ
∑

e∈Γint,D

|e|−1
∫

e
|[u]|2 ds

� melast‖u‖2
DG.

�
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Note that the coercivity constant in Proposition 4.6 is independent ofλ asλ → ∞.
This remarkable property of the NIPG will be essential for the error analysis in this paper
and may not simply be generalized to other DG methods.

5. Error Analysis

5.1 The Crouzeix–Raviart interpolant

From the analysis of other non-conforming methods (see Brenner & Scott, 2002, for
example), it is well-known that the Crouzeix–Raviart element does not lock. This can be
shown by introducing the so-called Crouzeix–Raviart interpolant (Crouzeix & Raviart,
1973) which provides some essential properties for the circumvention of volume locking.
These properties are typically not available for continuous (low-order) elements.

Therefore, this interpolant will also be used for the error analysis of the DGFEM
considered in this paper. However here, the original definition must be extended to
weighted Sobolev spaces. This can be done straightforwardly.

PROPOSITION 5.1 Let K ∈ T be a triangle with verticesA1, A2, A3. Then, for each
β ∈ [0, 1) and forΦβ(x) = rβ = |x − A1|β , there exists an interpolant

πK : H2,2
β (K )2 −→ P1(K )2

such that the following properties are satisfied:

(a)
∫

e
(u − πK u) ds = 0, ∀e ∈ EK := {e ∈ E : e ⊂ ∂K };

(b)
∫

e
(u − πK u) · ne ds = 0, ∀e ∈ EK ;

(c)
∫

K
∇ · (u − πK u) dx = 0.

Here, fore ∈ EK , ne denotes the unit outward vector ofK on e.

Proof. For u ∈ H2,2
β (K )2 the interpolantπK u ∈ P1(K )2 is uniquely defined by

πK u(x M
e ) := 1

|e|
∫

e
u ds, ∀e ∈ EK ,

wherex M
e denotes the midpoint ofe ∈ EK . Then, (a) and (b) follow directly from this

definition. (c) results from (b) and from Green’s formula:∫
K

∇ · (u − πK u) dx =
∫

∂K
(u − πK u) · n∂K ds

=
∑

e∈EK

∫
e
(u − πK u) · ne ds

= 0.

�
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In order to study the approximation properties ofπK on H2,2
β (K ), K ∈ T , some new

(optimal) interpolation error estimates have to be established.

PROPOSITION 5.2 Foru ∈ H2,2
β (K )2, K ∈ T , the interpolantπK u from Proposition 5.1

satisfies the following estimates:

‖u − πK u‖L2(K ) + hK |u − πK u|H1(K ) � Ch2−β
K |u|H2,2

β (K )
(5.1)

|u − πK u|H2,2
β (K )

� |u|H2,2
β (K )

, (5.2)

and

‖∇ · (u − πK u)‖L2(K ) � Ch1−β
K |∇ · u|H1,1

β (K )
(5.3)

|∇ · (u − πK u)|H1,1
β (K )

� |∇ · u|H1,1
β (K )

. (5.4)

C > 0 is aconstant independent ofhK and ofu.

Proof. SetU := u − πK u. Then, sinceπK u ∈ P1(K )2, there holds

|U |H2,2
β (K )

= |u|H2,2
β (K )

and |∇ · U |H1,1
β (K )

= |∇ · u|H1,1
β (K )

.

Thus, applying Lemma A.2 toU and Lemma A.3 to∇ · U , completes the proof. �

5.2 A priori error estimates

In a polygonΩ consider a FE meshT satisfying the conditions from Section 4.1. Moreover,
let β = (β1, . . . , βM ) be a weight vector andΦβ the corresponding weight function

described in Section 3.1. Then, onS1,0(Ω , T ), define an interpolant

ΠT : H2,2
β (Ω)2 −→ S1,0(Ω , T ) (5.5)

by

ΠT |K u = πK u, ∀K ∈ T , (5.6)

whereπK , K ∈ T , is the interpolant from Proposition 5.1.
Then, the DG errore := uex − uDG, whereuex is the exact solution of the linear

elasticity problem (2.1) anduDG is the solution of the DGFEM (4.7), may be represented
as follows:

e = uex − ΠT uex︸ ︷︷ ︸
=: η

+ΠT u − uDG︸ ︷︷ ︸
=: ξ

. (5.7)

REMARK 5.3 SinceH2,2
β (Ω)2 ⊂ C0(Ω)2 (Babǔskaet al., 1979),uex ∈ H2,2

β (Ω) implies

that ∫
e
[η]e ds = 0 (5.8)

for all edgese ∈ Γint.
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In the following part, it will be proved that‖ξ‖DG is bounded in terms ofη, and thus,
due to the triangle inequality, the error‖e‖DG = ‖uex − uDG‖DG of the DGFEM can be
controlled byη only.

For standard (conforming) FEMs, such error estimates are usually obtained using
Galerkin orthogonality (consistency) as well as the coercivity and the continuity of the
corresponding bilinear forms. In the DG context however, the latter property is typically
not available on continuous spaces and alternative error estimation techniques have to be
applied. A possible approach is presented in the proof of the following proposition.

PROPOSITION 5.4 Let the exact solutionuex of the linear elasticity problem (2.1) be in
H2,2

β (Ω)2, whereΩ is a polygon inR
2. Then, withη andξ as in (5.7), there holds the

following stability inequality for the DGFEM (4.7):

‖ξ‖2
DG � C

{
µ2

[ ∑
K∈T

(h−2
K ‖η‖2

L2(K )
+ |η|2H1(K )

) +
∑

K∈T \K0

h2
K |η|2H2(K )

+
∑

K∈K0

h2−2β
K |η|2

H2,2
β (K )

]
+ λ2

[ ∑
K∈T

‖∇ · η‖2
L2(K )

+
∑

K∈T \K0

h2
K |∇ · η|2

H1,1
β (K )

+
∑

K∈K0

h2−2β
K |∇ · η|2

H1,1
β (K )

]}
,

(5.9)

whereC > 0 is aconstant independent ofµ, λ and of{hK : K ∈ T }.
The error bound in Proposition 5.4 is explicit with respect to the Lamé coefficientsµ

andλ. This fact will be essential in Section 5.3, where robust (λ-independent) convergence
rates for the DGFEM will be derived.

To make clear how this explicit form of the right hand-side of (5.9) is obtained, the
following auxiliary result, Lemma 5.5, is inserted prior to the proof of Proposition 5.4.

LEMMA 5.5 Letv = v1 + v2, wherev1 ∈ H2,2
β (Ω)2 andv2 ∈ S1,0(Ω , T ). Then, there

holds the bound

µ2
∑
K∈T

‖ε(v)‖2
K +

∑
K∈T

∑
e∈EK

e∈Γint,D

‖σ(v) · νe‖2
L1(e) + µ2

∑
e∈Γint,D

|e|−1‖[v]e‖2
L2(e)

� C
{
µ2

[ ∑
K∈T

(h−2
K ‖v‖2

L2(K )
+ |v|2H1(K )

) +
∑

K∈T \K0

h2
K |v|2H2(K )

+
∑

K∈K0

h2−2β
K |v|2

H2,2
β (K )

]
+ λ2

[ ∑
K∈T

‖∇ · v‖2
L2(K )

+
∑

K∈T \K0

h2
K |∇ · v|2H1(K )

+
∑

K∈K0

h2−2β
K |∇ · v|2

H1,1
β (K )

]}
.

Proof. Obviously, ∑
K∈T

‖ε(v)‖2
K � C

∑
K∈T

|v|2H1(K )
.
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Furthermore, Lemma A.4 and the fact thatv|K ∈ H2(K )2 for all K �∈ K0 (see Remark 3.2)
imply that

∑
K∈T

∑
e∈EK

e∈Γint,D

‖σ(v) · νe‖2
L1(e)

� C
[
µ2

∑
K∈T

∑
e∈EK

e∈Γint,D

‖ε(v · νe)‖2
L1(e) + λ2

∑
K∈T

∑
e∈EK

e∈Γint,D

‖∇ · v‖2
L1(e)

]

� Cµ2
[ ∑

K∈T
‖∇v‖2

L2(K )
+

∑
K∈T \K0

h2
K |v|2H2(K )

+
∑

K∈K0

h2−2β
K |v|2

H2,2
β (K )

]

+Cλ2
[ ∑

K∈T
‖∇ · v‖2

L2(K )
+

∑
K∈T \K0

h2
K |∇ · v|2H1(K )

+
∑

K∈K0

h2−2β
K |∇ · v|2

H1,1
β (K )

]
.

Additionally, by the standard trace theorem (see Schwab, 1998, Theorem A.11), there holds

∑
e∈Γint,D

|e|−1‖[v]e‖2
L2(e) � C

∑
K∈T

∑
e∈EK

e∈Γint,D

|e|−1‖v‖2
L2(e)

� C
∑

e∈Γint,D

(|e|−2‖v‖2
L2(K )

+ |∇v|2L2(K )
)

� C
∑

e∈Γint,D

(h−2
K ‖v‖2

L2(K )
+ |∇v|2L2(K )

).

�

Proof of Proposition 5.4. Due to the consistency of the DGFEM (see Proposition 4.3), it
holds that

BDG(ξ , ξ) = BDG(e − η, ξ) = −BDG(η, ξ).

Therefore, by Proposition 4.6,

2melast‖ξ‖2
DG � −BDG(η, ξ). (5.10)

Referring to the definition (2.2) of the stress tensorσ , and noting that
〈
σ(ξ) · νe

〉
e

is
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constant on each edgee ∈ E , leads to

BDG(η, ξ) =
∑
K∈T

∫
K

σ(η) : ε(ξ) dx

−
∑

e∈Γint,D

∫
e
(
〈
σ(η) · νe

〉
e
· [ξ ]e − [η]e ·

〈
σ(ξ) · νe

〉
e
) ds

+µ
∑

e∈Γint,D

|e|−1
∫

e
[η]e · [ξ ]e ds

= 2µ
∑
K∈T

∫
K

ε(η) : ε(ξ) dx + λ
∑
K∈T

∇ · ξ

∫
K

∇ · η dx

−
∑

e∈Γint,D

( ∫
e

〈
σ(η) · νe

〉
e
· [ξ ]e ds −

〈
σ(ξ) · νe

〉
e
·
∫

e
[η]e ds

)

+µ
∑

e∈Γint,D

|e|−1
∫

e
[η]e · [ξ ]e ds.

Using the properties of the interpolantΠT (Proposition 5.1) as well as the weak continuity
(5.8) ofη results in

BDG(η, ξ) = 2µ
∑
K∈T

∫
K

ε(η) : ε(ξ) dx −
∑

e∈Γint,D

∫
e

〈
σ(η) · νe

〉
e
· [ξ ]e ds

+µ
∑

e∈Γint,D

|e|−1
∫

e
[η]e · [ξ ]e ds

= I − I I + I I I .

In the remaining part of the proof, the sumsI , I I andI I I are estimated in terms ofη and
of ξ . First of all, by Ḧolder’s inequality, there holds that

|I | =
∣∣∣2µ

∑
K∈T

∫
K

ε(η) : ε(ξ) dx
∣∣∣

�
[
4µ2

∑
K∈T

‖ε(η)‖2
K

]1
2
[ ∑

K∈T
‖ε(ξ)‖2

K

]1
2 .

Secondly, a bound forI I will be established. To do so, the sum over all edgese ∈ Γint,D
(in I I ) is transformed into a sum over all elementsK ∈ T . Again, Hölder’s inequality is
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used:

|I I | �
∑

e∈Γint,D

∫
e
|
〈
σ(η) · νe

〉
e
||[ξ ]e| ds

�
∑

e∈Γint,D

‖[ξ ]e‖L∞(e)‖
〈
σ(η) · νe

〉
e
‖L1(e)

� 1
2

∑
K∈T

∑
e∈Γint
e⊂∂K

‖[ξ ]e‖L∞(e)‖σ(η) · νe‖L1(e)

+
∑
K∈T

∑
e∈EK
e∈ΓD

‖[ξ ]e‖L∞(e)‖σ(η) · νe‖L1(e)

� C
∑
K∈T

∑
e∈EK

e∈Γint,D

‖[ξ ]e‖L∞(e)‖σ(η) · νe‖L1(e).

Now, applying the inverse inequality from Lemma A.1 to the linear polynomial[ξ ]e, yields

|I I | � C
∑
K∈T

∑
e∈EK

e∈Γint,D

|e|− 1
2‖[ξ ]e‖L2(e)‖σ(η) · νe‖L1(e)

� C
[ ∑

K∈T

∑
e∈EK

e∈Γint,D

|e|−1‖[ξ ]e‖2
L2(e)

]1
2
[ ∑

K∈T

∑
e∈EK

e∈Γint,D

‖σ(η) · νe‖2
L1(e)

]1
2

= C

√
melast

µ

[ µ

melast

∑
e∈Γint,D

|e|−1‖[ξ ]e‖2
L2(e)

]1
2

×
[ ∑

K∈T

∑
e∈EK

e∈Γint,D

‖σ(η) · νe‖2
L1(e)

]1
2 .

Finally, I I I is estimated as follows:

|I I I | �
√

melast

µ

[
µ2

∑
e∈Γint,D

|e|−1‖[η]e‖2
L2(e)

]1
2
[ µ

melast

∑
e∈Γint,D

|e|−1‖[ξ ]e‖2
L2(e)

]1
2 .
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Summing up and using (5.10) results in

‖ξ‖2
DG � 1

2melast
|BDG(η, ξ)|

� 1

2melast
(|I | + |I I | + |I I I |)

� C max
{
1,

√
melast

µ

}
‖ξ‖DG ·

[
µ2

∑
K∈T

‖ε(η)‖2
K

+
∑
K∈T

∑
e∈EK

e∈Γint,D

‖σ(η) · νe‖2
L1(e) + µ2

∑
e∈Γint,D

|e|−1‖[η]e‖2
L2(e)

]1
2 .

(5.11)

Noting that

max
{
1,

√
melast

µ

}
�

√
2,

and inserting the bound from Lemma 5.5 withv = η into (5.11) completes the proof.�
A direct consequence of the above statement is the ensuing corollary.

COROLLARY 5.6 Let the assumptions of Proposition 5.4 be satisfied. Then, the following
apriori error estimate holds true:

‖uex − uDG‖2
DG � CCµ,λ

{
µ2

[ ∑
K∈T

(h−2
K ‖η‖2

L2(K )
+ |η|2H1(K )

) +
∑

K∈T \K0

h2
K |η|2H2(K )

+
∑

K∈K0

h2−2β
K |η|2

H2,2
β (K )

]
+ λ2

[ ∑
K∈T

‖∇ · η‖2
L2(K )

+
∑

K∈T \K0

h2
K |∇ · η|2

H1,1
β (K )

+
∑

K∈K0

h2−2β
K |∇ · η|2

H1,1
β (K )

]}
.

Here,uex is the exact solution of (2.1),uDG is the solution of the DGFEM (4.7) and

Cµ,λ = max{µ−2, µ−1m−1
elast, 1}.

REMARK 5.7 A few calculations show that the constantCµ,λ from Corollary 5.6 is
independent ofλ if λ � 0.

Proof of Corollary 5.6. From the error splitting (5.7) it follows that

‖e‖2
DG � C(‖η‖2

DG + ‖ξ‖2
DG)

� C
[ ∑

K∈T
‖ε(η)‖2

K + µ

melast

∑
e∈Γint,D

|e|−1
∫

e
|[η]|2 ds + ‖ξ‖2

DG

]

� C max{µ−2, µ−1m−1
elast}

[
µ2

∑
K∈T

‖ε(η)‖2
K + µ2

∑
e∈Γint,D

|e|−1
∫

e
|[η]|2 ds

]
+C‖ξ‖2

DG.

Thus, using Lemma 5.5 and inserting the bound from Proposition 5.4 completes the proof.
�
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5.3 Convergence rates

It is well-known that, ifuex ∈ H2(Ω)2, whereuex denotes the exact solution of (2.1), the
standard (conforming) FEM (and also the DGFEM) converges at an optimal algebraic rate,
i.e.

‖uex − uF E‖ � C N− 1
2 ,

where N is the number of degrees of freedom andT is a uniform mesh onΩ .
Unfortunately, this result is typically not anymore true if the assumptionuex ∈ H2(Ω)2 is
weakened, i.e.uex ∈ H2,2

β (Ω)2 with β � 0. Moreover, for conforming FEM,C depends

onλ, C ∼ √
λ asλ → ∞.

Although the convergence rate remains algebraic in this case, the optimal order

O(N− 1
2 ) is usually reduced toO(N−α

2 ) with α � 1. This effect is even more pronounced
at higher orders of approximation.

The aim of this section is to prove that the optimal convergence rate may be preserved
(independently ofλ for the DGFEM) even if the exact solution is singular, i.e.uex �∈
H2(Ω). The main idea is to replace the uniform meshes by so-called ‘γ -graded meshes’
which are able to approximate singularities at an optimal algebraic rate.

5.3.1 γ -Graded Meshes. Theγ -graded meshes are constructed in such a way that, for
all singularitiesAi ∈ S P(Ω ,ΓD,ΓN), the ratio

element diameter

(distance to singularity)γi

is kept bounded, whereγi � 0 is anappropriate real number (grading factor) corresponding
to the singular pointAi .

A more precise definition may be found in Babuškaet al. (1979).

DEFINITION 5.8 Let γ be a weight vector as defined in Section 3.1 andΦγ the
corresponding weight function onΩ . Then, a meshTγ on Ω is called aγ -graded mesh
with grading vectorγ if there exists a constantL > 0 such that the following properties
are satisfied:

(i) if K ∈ Tγ \ K0 then

L−1hTγ
Φγ (x) � hK � LhTγ

Φγ (x) ∀x ∈ K ;
(ii) if K ∈ K0 then

L−1hTγ
sup
x∈K

Φγ (x) � hK � LhTγ
sup
x∈K

Φγ (x).

Here,hTγ
is the mesh size (4.4) ofTγ .

Asymptotically, γ -graded meshes have the same number of degrees of freedom as
uniform meshes.
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LEMMA 5.9 LetTγ be aγ -graded mesh as in Definition 5.8. Then,

N := dim(S1,0(Ω , Tγ )) � Ch−2
Tγ

,

whereC > 0 is aconstant independent of{hK : K ∈ Tγ }.
Proof. See Babǔskaet al. (1979, Lemma 4.1). �

5.3.2 Main Result. Now, the main result of this paper is established. It is shown that
the DGFEM (NIPG) converges independently of the Lamé coefficientλ, and, moreover,
that the algebraic convergence rates are optimal onγ -graded meshes.

THEOREM 5.10(Robust Optimal Convergence) Let the assumptions of Theorem 3.4 be
satisfied. Moreover, letTγ with (1, 1, . . . , 1) � γ � β be aγ -graded mesh as introduced
in Definition 5.8. Then, for theh-DGFEM (4.7) the following optimal error estimate holds:

‖uex − uDG‖DG � CCµ,λN− 1
2 .

Here,uex ∈ H2,2
β (Ω)2 is the exact solution of the linear elasticity problem (2.1),uDG is the

solution of the DGFEM (4.7),N = dim(S1,0(Tγ ,Ω)), Cµ,λ is the constant from Corollary
5.6 (independent ofλ asλ → ∞) andC > 0 is aconstant independent ofN and the Laḿe
coefficientsµ andλ.

Proof. Let ΠTγ
be the global interpolant from Section 5.2, i.e.

ΠTγ
|K = πK , K ∈ Tγ ,

whereπK is the interpolant from Proposition 5.1. Referring to Corollary 5.6, the following
error bound for the DGFEM may be obtained:

‖uex − uDG‖2
DG

� CCµ,λ

{
µ2

[ ∑
K∈Tγ

(h−2
K ‖uex − πK uex‖2

L2(K )
+ |uex − πK uex|2H1(K )

)

+
∑

K∈Tγ \K0

h2
K |uex − πK uex|2H2(K )

+
∑

K∈K0

h2−2β
K |uex − πK uex|2H2,2

β(K )

]

+λ2
[ ∑

K∈Tγ

‖∇ · (uex − πK uex)‖2
L2(K )

+
∑

K∈Tγ \K0

h2
K |∇ · (uex − πK uex)|2H1(K )

+
∑

K∈K0

h2−2β
K |∇ · (uex − πK uex)|2H1,1

β(K )

]}
.

Moreover, inserting the interpolation error estimates from Proposition 5.2 into the above
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bound yields

‖uex − uDG‖2
DG

� CCµ,λ

{
µ2

[ ∑
K∈Tγ \K0

h2
K |uex|2H2(K )

+
∑

K∈K0

h2−2β
K |uex|2H2,2

β (K )

]

+λ2
[ ∑

K∈Tγ \K0

h2
K |∇ · uex|2H1(K )

+
∑

K∈K0

h2−2β
K |∇ · uex|2H1,1

β (K )

]}

= CCµ,λ

{ ∑
K∈Tγ \K0

h2
K (µ2|uex|2H2(K )

+ λ2|∇ · uex|2H1(K )
)

+
∑

K∈K0

h2−2β
K (µ2|uex|2H2,2

β (K )
+ λ2|∇ · uex|2H1,1

β (K )
)
}
. (5.12)

Furthermore, from the definition of theγ -graded meshes (Definition 5.8) it follows that

‖uex − uDG‖2
DG

� CCµ,λ

{
h2
Tγ

∑
K∈Tγ \K0

∫
K

r2γ (µ2|D2uex|2 + λ2|D1(∇ · uex)|2) dx

+
∑

K∈K0

h2−2β

Tγ
(sup

x∈K
rγ )2−2β(µ2|uex|2H2,2

β (K )
+ λ2|∇ · uex|2H1,1

β (K )
)
}
.

(5.13)

Clearly, for allK ∈ K0, there holdsr � hK . Hence,

hK � ChTγ
sup
x∈K

rγ � ChTγ
hγ

K ,

and therefore

hK � Ch
1

1−γ

Tγ
.

This implies that

sup
x∈K

rγ � Chγ

K � Ch
γ

1−γ

Tγ
� Ch

β
1−β

Tγ
.

Thus, (5.13) transforms to

‖uex − uDG‖2
DG

� CCµ,λh2
Tγ

{ ∑
K∈Tγ \K0

∫
K

r2γ (µ2|D2uex|2 + λ2|D1(∇ · uex)|2) dx

+
∑

K∈K0

(µ2|uex|2H2,2
β (K )

+ λ2|∇ · uex|2H1,1
β (K )

)
}
,
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and from the definition of the weight functionΦβ (Section 3.1), it follows that

‖uex − uDG‖2
DG

� CCµ,λh2
Tγ

{ ∑
K∈Tγ \K0

∫
K

Φ2
β(µ2|D2uex|2 + λ2|D1(∇ · uex)|2) dx

+
∑

K∈K0

(µ2|uex|2H2,2
β (K )

+ λ2|∇ · uex|2H1,1
β (K )

)
}

� CCµ,λh2
Tγ

{ ∫
Ω

Φ2
β(µ2|D2uex|2 + λ2|D1(∇ · uex)|2) dx

+
∑

K∈K0

(µ2|uex|2H2,2
β (K )

+ λ2|∇ · uex|2H1,1
β (K )

)
}

� CCµ,λh2
Tγ

(µ2|uex|2H2,2
β (Ω)

+ λ2|∇ · uex|2H1,1
β (Ω)

).

Finally, by Lemma 5.9, i.e.

hTγ
� C N− 1

2 ,

and with the aid of the regularity result, Theorem 3.4, the proof is complete. �

REMARK 5.11 On uniform meshesT0, it holds that

hT0 ∼ hK ∼ 1√
N

∀K ∈ T0.

Therefore, (5.12) directly implies that, even ifγ = 0, the DGFEM still converges

independently ofλ. However, due to the appearance of the termh2−2β
K , the rate of

convergence is no longer optimal forβ � 0.

6. Numerical results

The aim of this section is to confirm the previous theoretical results with some practical
examples. More precisely, it will be shown that, even if the exact solutions of the
corresponding problems are singular, the convergence rate of the DGFEM remains of order

O(N− 1
2 ) onγ -graded meshes, as expected. Moreover, the robustness of the method against

volume locking will be illustrated.

6.1 L-shaped domain

6.1.1 Model problem. Let Ω be the polygonal domain with vertices

A1 = (0, 0), A2 = (−1, −1), A3 = (1, −1), A4 = (1, 1), A5 = (−1, 1).
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x

y

Ω

FIG. 1. Polygonal domainΩ .

Note that the originO = (0, 0) is a re-entrant corner ofΩ (see Fig. 1). Then, consider the
following model problem:

−∇ · σ(u) = 0 in Ω
u = g

D
on ΓD = ∂Ω .

(6.1)

Here,g
D

:= uex|ΓD, whereuex is the exact solution of (6.1) given by its polar coordinates

ur (r, θ) = 1

2µ
rα(−(α + 1) cos((α + 1)θ) + (C2 − (α + 1))C1 cos((α − 1)θ))

uθ (r, θ) = 1

2µ
rα((α + 1) sin((α + 1)θ) + (C2 + α − 1)C1 sin((α − 1)θ)),

whereα ≈ 0·544 484 is the solution of the equation

α sin(2ω) + sin(2ωα) = 0

with ω = 3π
4 , and

C1 = −cos((α + 1)ω)

cos((α − 1)ω)
, C2 = 2(λ + 2µ)

λ + µ
.

6.1.2 Robust optimal convergence rates on γ -graded meshes. A fewcalculations show

that the exact solutionuex of the model problem (6.1) belongs toH2,2
β (Ω)2 with β =

(β1, 0, 0, 0, 0) for all 1 > β1 > 1 − α ≈ 0·455 516. Thus, in order to obtain the optimal
convergence rate, aγ -graded mesh with refinement towards the origin must be used for the
numerical simulations.

Figure 4 shows the errors of the DGFEM forλ ∈ {1, 100, 500, 1000, 5000} (µ = 1) in
the energy norm

‖u‖2
DG =

∑
K∈T

‖ε(u)‖2
K + 1

melast

∑
e∈Γint,D

|e|−1
∫

e
|[u]e|2 ds
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FIG. 2. γ -graded mesh with refinement towards the origin (γ = ( 1
2 , 0, 0, 0, 0)).
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FIG. 3. Uniform mesh (i.e.γ -graded mesh withγ = (0, 0, 0, 0, 0)).

on aγ -graded mesh with grading vectorγ = (1
2, 0, 0, 0, 0) (see Fig. 2). Obviously, the

convergence rate of the DGFEM is already almost optimal for approximately 5000 degrees
of freedom (∼800 elements). Moreover, the expected robustness of the DGFEM with
respect to the Laḿecoefficientλ is clearly visible.

In Fig. 5 the energy error of the DGFEM on a uniform mesh (i.e.γ = (0, 0, 0, 0, 0))
is presented. Although the DGFEM still converges robustly, the optimal convergence rate
is no longer achieved (see Remark 5.11) and the use ofγ -graded meshes is found to be
justified.

In addition, theL2 errors for the computations above are shown in Figs 6 and 7.
Again, the performance of the DGFEM on a uniform mesh is notably worse. However,
the convergence rate of theL2 error seems to be twice as high as of the energy error.
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FIG. 4. Performance of the DGFEM on the L-shaped domain withγ = ( 1
2 , 0, 0, 0, 0) (γ -graded mesh).
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FIG. 5. Performance of the DGFEM on the L-shaped domain withγ = 0 (uniform mesh).

6.1.3 Volume locking. Figures 8 and 9 show that the standard (i.e. conforming) FEM
does not converge independently ofλ. Although the asymptotic rate of convergence is
optimal onγ -graded meshes, the onset of the errors’ decay is remarkably retarded for
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FIG. 6. Performance of the DGFEM on the L-shaped domain withγ = ( 1
2 , 0, 0, 0, 0) (γ -graded mesh).
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FIG. 7. Performance of the DGFEM on the L-shaped domain withγ = 0 (uniform mesh).

λ → ∞. This non-robustness of the convergence rate with respect toλ is widely known as
‘volume locking’ which, in contrast to the DGFEM, seems to be unavoidable for low-order
standardh-FEMs in the primal variables. The initial ascent of the energy norm for largeλ
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FIG. 8. Performance of the conforming FEM on the L-shaped domain withγ = 0 (uniform mesh).
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FIG. 9. Performance of the conforming FEM on the L-shaped domain withγ = ( 1
2 , 0, 0, 0, 0) (γ -graded mesh).

results from the fact that the finite element spaces are not nested due to the structure of the
γ -graded meshes.
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FIG. 10. Computational mesh.
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FIG. 11. Standard FEM/DGFEM forλ = 100.

6.2 An example on the unit square

Consider the following problem onΩ = (0, 1)2:

−∇ · σ(u) = 0 in Ω

u = (g(1)
D
0

)
on ΓD = ∂Ω

(6.2)

with

g(1)
D (x, y) =

{
1 − 4(x − 1

2)2 if (x, y) ∈ (0, 1) × {1}
0 else.
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FIG. 12. Standard FEM/DGFEM forλ = 500.
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FIG. 13. Standard FEM/DGFEM forλ = 1000.

Due to Theorem 3.4, the exact solution of this problem belongs toH2(Ω)2. Therefore,
referring to the analysis above, no mesh refinement is required for the DGFEM to converge
optimally. The computational (uniform) mesh is shown in Fig. 10. Additionally, the results
for different choices ofλ are presented (Figs 11–14). In contrast to the DGFEM, the
standard FEM shows clear evidence of locking.
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Appendix A

LEMMA A.1 Let I = [a, b], a < b be an interval inR andhI = b − a. Then, for every
u ∈ P1(I ) it holds that

‖u‖L∞(I ) � 4
√

2h
− 1

2
I ‖u‖L2(I ).

Proof. See Quarteroni (1984). �

The proofs of the following lemmas may be found in Wihler (2003).

LEMMA A.2 Let K ⊂ R
2 be a triangle with verticesA1, A2, A3. Then, for eachu ∈

H2,2
β (K )2, whereβ ∈ [0, 1) andΦβ(x) = rβ = |x − A1|β , there holds

‖u‖2
H2,2

β (K )
� C

(
|u|2

H2,2
β (K )

+
∑

e∈EK

∣∣∣ ∫
e

u ds
∣∣∣2).

Here,C > 0 is aconstant (independent ofu) andEK = {e1, e2, e3} is the set of all edges
of K .

LEMMA A.3 Let the assumptions of Lemma A.2 be satisfied. In addition, let∫
K

u dx = 0.

http://e-collection.ethbib.ethz.ch/show?
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Then, there holds

‖u‖L2(K ) � C |u|H1,1
β (K )

,

whereC > 0 is aconstant independent ofu.

LEMMA A.4 Let the assumptions of Lemma A.2 be satisfied. Then, the following
inequalities hold true:

(a) |u|L1(∂K ) � C(‖u‖L2(K ) + h1−β
K |u|H1,1

β (K )
);

(b) |∇u|L1(∂K ) � C(|u|H1(K ) + h1−β
K |u|H2,2

β (K )
).


