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Time-to-Green predictions for fully-actuated signal
control systems with supervised learning

Alexander Genser, Michail A. Makridis, Kaidi Yang, Lukas Ambühl, Monica Menendez and Anastasios Kouvelas

Abstract—Recently, efforts have been made to standardize
signal phase and timing (SPaT) messages. These messages contain
signal phase timings of all signalized intersection approaches.
This information can thus be used for efficient motion planning,
resulting in more homogeneous traffic flows and uniform speed
profiles. Despite efforts to provide robust predictions for semi-
actuated signal control systems, predicting signal phase timings
for fully-actuated controls remains challenging. This paper pro-
poses a time series prediction framework using aggregated traffic
signal and loop detector data. We utilize state-of-the-art machine
learning models to predict future signal phases’ duration. The
performance of a Linear Regression (LR), a Random Forest (RF),
and a Long-Short-Term-Memory (LSTM) neural network are
assessed against a naive baseline model. Results based on an
empirical data set from a fully-actuated signal control system
in Zurich, Switzerland, show that machine learning models
outperform conventional prediction methods. Furthermore, tree-
based decision models such as the RF perform best with an
accuracy that meets requirements for practical applications.

Index Terms—Signal Phase and Timing (SPaT), Time series
forecasting, Supervised learning, Actuated traffic signal control.

I. INTRODUCTION

Digitization has substantially transformed the transportation
sector over the past decade. The availability of several new
data sources (e.g., sensor and in-vehicle technologies) enables
data-driven methods to be integrated into established traffic
management systems. In addition, new developments such
as vehicle-to-infrastructure (V2I) communications open the
possibility for new methodologies that utilize infrastructure
data for motion planning, speed advisory systems, or route
choice [1]. Recent developments in traffic signal control at
urban intersections (e.g., fully-actuated signal control [2], self-
steering algorithms [3]) affect signal phasing and result in
different green, red, and cycle times. Therefore, it would
benefit speed advisory systems if the duration of a future
signal phase is known. Ideally, fewer vehicles have to stop
when crossing an intersection and uncertainty for other trans-
portation modes is reduced. Signal phasing and timing (SPaT)
messages provide the necessary information. Unfortunately,
determining the future phase duration of fully-actuated signal
control systems is not trivial reverse engineering as predictions
depend on Loop Detector (LD) detections that occur after
the forecast is applied. Also, such systems typically involve
complex optimization, which constitutes a barrier to applying
SPaT messages in practice. Therefore, a sophisticated mod-
eling approach using traffic signals and LD data for accurate
predictions is still a subject of research.

In this paper, we propose a methodology to forecast the
duration of the following red phase (i.e., when a traffic

stream is not allowed to cross the intersection and a stop is
required). By providing an accurate prediction for the next
red-phase (in this work denoted as the Time-to-Green (T2G))
with Machine Learning (ML) models, we can enhance SPaT
messages. We utilize empirical traffic signal and LD data
based on previous work [4], and compute domain-specific
features for time series forecasting. We first introduce a simple
reference model: “no-change”, a dummy model that utilizes
the duration of the last occurring red phase to justify the use
of ML. Then, a selection of complex models found to be strong
candidates for various ML problems are compared against the
dummy case. Finally, we implement a Linear Regression (LR),
a Random Forest (RF) regressor, and a Long-Short-Term-
Memory (LSTM) neural network. The proposed framework
allows for (a) the processing of empirical traffic signal and LD
data, (b) extensive feature engineering, and (c) the assessment
of supervised machine learning models’ phase predictions. A
numerical experiment in Zurich, Switzerland, is conducted to
prove the concept. A data set from a fully-actuated signal
control system, consisting of historical LD and traffic signal
data, is utilized. The area under investigation also includes
a priority for public transportation (i.e., signal priorities fre-
quently change the control behavior of the intersection), which
further demonstrates the complexity of the problem.

An accurate prediction of the T2G can not only help the
improvement of speed-advisory systems but consequently also
have an impact on the homogeneity of traffic flow in multi-
modal urban transportation networks. We address the opening
challenges for T2G predictions by providing the following
contributions:

1) The framework design allows for predicting the next
signal phase of multi-modal fully-actuated signal control
systems. The work is based on an empirical data set
allowing for real-time applications.

2) The prediction of the next red phase, modeled as a
supervised learning problem, captures the complex and
non-linear relation between a traffic signal and LD
detection data.

3) The framework requires no prior knowledge about the
implemented traffic signal control system. Hence, the
method also provides accurate predictions where the
signal control algorithm is proprietary.

4) A physics-informed feature engineering incorporates the
concepts of traffic flow theory. The approach enhances
the quality of a given prediction model and can be used
for multi-model systems with transit priority.

The remainder of this paper is organized as follows:
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Section II provides an overview of recent research on the
prediction of signal phasing and timing. Besides, due to the
limited contributions in this area utilizing ML techniques, we
provide an overview of publications applying such techniques
to similar transportation problems. In Section III the time
series problem is defined. Section IV describes the utilized
data sources and the feature engineering based on LD and
traffic signal data. Furthermore, the framework definition and
the theory of the selected models is introduced. Finally,
we introduce the performance metrics used to evaluate the
T2G predictions. Section V shows the applicability of all
models based on a case study with a detailed presentation of
prediction results and a final performance evaluation. Finally, a
discussion, conclusion, and proposal of future work are given
in Section VI and Section VII.

II. RELATED WORKS

Recently, efforts were made to standardize SPaT mes-
sages [5]. Such messages contain the current phase with a
prediction for the corresponding phase duration for all signal-
ized intersection approaches. Hence, SPaT information allows
a more efficient and environmentally friendly motion planning
of human-driven and/or autonomously operated individual or
public transport vehicles. Especially in urban areas, this would
lead to more homogeneous traffic flow, a smoother speed
profile (i.e., the absence of speeding and heavy breaking
between traffic lights) or an improvement in ride comfort [6].
In this section, we first present methods for obtaining SPAT
estimations/predictions (Section II-A) and continue with re-
lated works that specifically focus on transportation problems
with ML applications (Section II-B).

A. Prediction methods for SPaT information

Most of the existing methods to obtain SPaT information
for semi-actuated traffic signal control systems are based on
aggregated trajectory data. In such methods, signal timings
are unknown and can either be fixed or change slowly in time.
They use estimation approaches based on floating car data [7]–
[10] or travel time measurements collected with wireless traffic
sensors [11]. For example, [7] and [8] employed a queue
discharging model to estimate the start of green signals based
on aggregated low-frequency bus data and probe data. Yu
et al. [10] formulated the SPaT estimation problem into a
general approximate greatest common divisor problem, aiming
to obtain the cycle lengths, green times, and the phase schemes
based on historical sparse taxi trajectories. Protschky et al. [12]
used a Bayesian learning approach to reconstruct the cycle
length from historical trajectory data for traffic signals where
the cycle length is fixed within a certain period. These methods
typically rely on the underlying assumption that the cycle
length is fixed, although some of them (e.g., [8], [12]) are
able to identify the occasional changes in the traffic signal
timing plan. Moreover, these works are based on aggregating
historical vehicle trajectories, assuming that the historical
signal timings are unknown. They do not provide insights on
how the spatially-sparse LD data and the temporally-sparse
public transport data can be utilized to perform real-time

SPaT prediction within each signal cycle. Therefore, their
applicability to real-life problems is limited.

Some other studies propose probabilistic methods [13]–[15]
and ML techniques [4], [16], [17] that can be used to predict
the SPaT information for actuated and adaptive traffic signals.
Compared to the estimation problems above, here traffic signal
data (i.e., signal timings) are available based on a historical
data set. Protschky et al. [16] employed a Kalman Filter (KF)
to estimate the probability of phase switches at each time
step using historical traffic signal data. This work was further
enhanced to consider implementation factors such as latency
and data losses [13]. Based on historical signal data, [14]
estimated the conditional distribution of each signal phase
given the real-time signal phase measurements and predicted
the phase duration as the conditional expectation and the
confidence interval. These methods treat the SPaT informa-
tion as a time series and are expected to yield satisfactory
prediction accuracy if the variance of the signal phase duration
is small. However, in cases where the signal phase duration
changes drastically (i.e., with high variance), these works
may not yield the best results, as they cannot incorporate
relevant vehicle detection information. [15] took an initial
step to establish the relationship between real-time vehicle
information and traffic signal timings. Based on historical
floating car and bus trajectory data, it first calculated the joint
distribution of the driving speed and the distance to the stop
line, given a particular signal state (green or red). Afterward,
it predicted the phase duration using a maximum a posteriori
(MAP) estimation. This work only linked the signal state to
the information of an individual vehicle at a single time step.
However, in reality, many detectors can contribute to the signal
timings in a complex signalized intersection with multiple
approaches and movements. Hence, learning the relationship
between the signal states and the information sent by multiple
detectors is crucial as shown in [17]. Finally, previous work
from the authors in [4] shows a preliminary ML approach with
traffic signal and LD data. Nevertheless, the non-aggregated
raw data is utilized for predicting the T2G without extensive
feature engineering. Also, the set of ML models is tested on
a small data set, leading to an overoptimistic result for the
LSTM neural networks.

B. Machine learning based methods for similar problems in
transportation

Despite the lack of literature on ML-based SPaT prediction
for actuated and adaptive signals, ML-based methods have
been widely applied to many transportation research topics.
Here, we present a short literature review on ML applica-
tions on similar prediction problems. Interested readers can
refer to [18], [19] for comprehensive surveys. Two important
attributes characterize the SPaT prediction problem: First,
it is a prediction problem aiming to obtain a future traffic
signal state using historical data. Due to the uncertainty of
the future arrivals (thus the actuation of the detectors), there
is uncertainty in the future signal state. Second, it aims to
establish the relationship between the traffic signal state and
detector information. Therefore, in this subsection, we mainly
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look at two research problems, the short-term traffic prediction
that shares the first attribute and the prediction of driver
behaviors (e.g., acceleration rates, lane change decisions) that
shares the second.

Within the same family of problems, we can find the
short-term prediction of traffic variables, including traffic
states (e.g., flow, speed, occupancy), demand (e.g., origin-
destination matrix), and accident rates. Such problems are
typically formulated as a time-series prediction problem where
future variables are predicted from historical ones. Conven-
tional parametric methods, such as Auto-Regressive Integrated
Moving Average (ARIMA) and KF, can achieve good per-
formance when the traffic variations are regular. To handle
more general traffic scenarios, many ML models have been
adopted, such as k-Nearest Neighbor (k-NN) [20], multivariate
regression [21]–[23], Support Vector Regression (SVR) [24]–
[26], RF [27], artificial neural networks (ANN) [28]–[31], and
deep learning methods [32]–[35]. It is non-trivial to compare
the performance of the proposed methods as these methods
are developed and evaluated based on different data sets
with specific features. Nevertheless, results indicate that the
deep neural networks can outperform other ML methods with
sufficient training data [34], [36].

Another traffic problem that shares some similarities with
the SPaT prediction problem is the prediction of driver be-
haviors. This problem links the behaviors of the drivers (e.g.,
acceleration rates, lane change decisions) with the current
traffic scenarios (e.g., position and speed of the considered
vehicle and the vehicles around it). In addition to the tradi-
tional analytical car following and lane changing models [37]–
[39], many works attempt to employ data driven models to
capture driver behaviors based on methods such as Hidden
Markov Models [40], support vector machines (SVM) [41],
[42], Bayesian Filter [42], etc. Deep learning methods have
also attracted much attention within the context of this research
problem. For example, [43] employed a deep Convolutional
Neural Network (CNN) to perform lane change prediction
based on camera data; [44] predicted the actions of drivers
using deep Recurrent Neural Network (RNN) based on in-
vehicle sensors; [45] modeled car-following behaviors by deep
RNN with the Gated Recurrent Unit (GRU) using the position
and speed information over multiple time steps. However,
these methods typically rely on high-resolution and demanding
data sets (e.g., GPS data or in-vehicle sensors).

This paper focuses on machine learning methods that use
traffic signals and data from loop detectors, the most common
traffic data source in cities worldwide. Our work proposes
the first framework to provide a robust prediction of the
next signal phase in a multi-modal and fully-actuated control
system with public transportation priority. Furthermore, our
work captures complex non-linear relationships between a
traffic signal and detector data by applying physics-informed
feature engineering.

III. PROBLEM DEFINITION

Assume an intersection controlled by fully-actuated signal
control with installed traffic lights and LDs. There are A traffic

lights and B LDs, and historical states are available from all
devices (i.e, a traffic light operated in a red or green phase;
an LD occupied/not occupied). We denote every traffic light
with the index i ∈ S , where S = {1, 2, 3, . . . , A} and every
LD with the index j ∈ D, where D = {1, 2, 3, . . . , B}. As
fully-actuated signal controls allow for non-constant red and
green times, it is essential to distinguish traffic lights by the
index i. Hereafter, we define a signal cycle as ci,n. n denotes
the index of a specific cycle c of a traffic light i. Every ci,n
starts with a red phase for i and ends when the following
red phase starts. Because we consider a fully-actuated control,
our definition implies that different signals i from the same
intersection might have different cycles at the same time.

The signal states of all traffic lights and LDs during the
corresponding cycle ci,n are then utilized to compute a feature
set Xn. Aiming for the prediction of the T2G, denoted as
Ŷi(ci,n), the problem is formulated as Ŷi(ci,n) = f(Xn). The
function f(Xn) denotes the relationship between the set of
input features Xn and the target Ŷi(ci,n). Note that the T2G
prediction corresponds to the red time of the next cycle ci,n+1.

IV. METHODOLOGY

A. T2G framework

In the following, we introduce a T2G prediction framework
that allows a generic application to any intersection, providing
traffic signal and LD data. The architecture is depicted in
Figure 1. The blocks (1) and (3) denote a supervised ML
problem’s processing and implementation steps.

The raw data (i.e., LD and signal data from the traffic op-
erator) functions as an input to the data pre-processing (Block
(1)). The input signals are transformed into a structured format
within this step, and undefined signal states are eliminated.
Consequently, the quantities in the processed data set can be
defined as follows: Let si(k, ci,n) and dj(k, ci,n) be the signal
state of a traffic signal i ∈ S and an LD j ∈ D at discrete
time step k, respectively. Consequently, si(k, ci,n) is defined
as follows:

si(k, ci,n) =

{
0, if: i is red
1, else: i is green. (1)

Note that in (1) only the red and green signal phases are con-
sidered. Other common signal indications such as the start and
end of a green phase (yellow and red-yellow, respectively [46])
are considered as si(k, ci,n) = 0. Analogously, we define the
state dj(k, ci,n):

dj(k, ci,n) =

{
0, if: j is not occupied
1, else: j is occupied (2)

The final processed time series for all i and j are con-
catenated in the set R = {{si(k, ci,n)}Ai=1, {dj(k, ci,n)}Bj=1}n
which represents the non-aggregated data set (Figure 1). R
serves as an input to Block (2), where the data set is aggregated
and feature engineering is performed.

B. Feature engineering

We perform data aggregation and feature engineering based
on R. We aggregate the data by signal cycles. This approach
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Figure 1: T2G framework. The input data includes by LD and signal data from the traffic operator.

is selected as (a) the prediction target T2G is an aggregated
quantity by definition (a float value representing the duration
of the next red phase) and (b) aggregated quantities are
more easily accessible for traffic operators or other authorities
compared to data streams with a resolution of, e.g., 1 sec. Note
that this approach differs from previous works in [4], [47],
where the non-aggregated data set R is utilized without any
further feature engineering. We first utilize the traffic signal
data si(k, ci,n) to compute the red ri(ci,n) and green time
gi(ci,n) of a signal i operating in cycle ci,n. Consequently,
the duration of the individual signal phases can be defined as
follows:

ri(ci,n) =

K∑
k=1

(
1− si(k, ci,n)

)
, (3)

gi(ci,n) =

K∑
k=1

si(k, ci,n), (4)

Note that K defines the discrete time step of the last sample
of cycle ci,n. Figure 2 depicts an example of the introduced
quantities. The black pulse signals denote the raw traffic signal
data si(k, ci,n). The computation of the red and green time
for signal i = 1 by utilizing (3) and (4) give r1(c1,1) and
g1(c1,1). The summation r1(c1,1) + g1(c1,1) results in the
duration of cycle c1,1. The derivation is performed for all
traffic signals in S and serves as an input to forecast Yi(ci,n).
Note that in Figure 2 no prediction is shown for si(k, ci,n)
as the last signal phase shows a red phase. Since we only
predict the T2G, predictions of following green phases are
not considered. Nevertheless, the framework would allow for
such an application.

Per definition, every ci,n starts with a red phase. To also
utilize the temporal component of the set R, we compute the
day, hour, minute, and second of a cycle’s starting point as
separate features denoted as D, H , M , and S, respectively.

To enhance the prediction of the next red phase, data from
LDs are of great importance as the detections transmitted to
the signal control system are, in fact, key for determining
future red- and green phases. Consequently, we utilize all
signals dj(k, ci,n) ∀j, k, i, n of detectors j and compute a set
of features to infer the current traffic state at the signalized
intersection. Figure 3 depicts an example of the utilized signals
and visually supports the feature engineering in the following.
First, we compute the traffic flow when traffic signal i is
red or green, respectively. To determine the traffic flow based
on LD data, we assume that one signal peak corresponds to
one detected vehicle. This is a reasonable assumption based
on the time intervals used. Hence, the arrows in Figure 3

indicate when vehicles pass a given LD, which corresponds
to dj(k, ci,n) changing its state from 1 to 0. We denote these
traffic flows during a red or green phase as qi,R(ci,n) and
qi,G(ci,n). The quantities represent the summation of signal
changes in the corresponding traffic signal phase defined with
Iverson brackets (the function takes the value 1 if the statement
is true and 0 otherwise) as follows:

qi,R(ci,n) =

KR∑
kR=2

Jdj(kR − 1, ci,n)− dj(kR, ci,n) = 1K, (5)

and

qi,G(ci,n) =

KG∑
kG=2

Jdj(kG − 1, ci,n)− dj(kG, ci,n) = 1K, (6)

where KR = ri(ci,n) and KG = gi(ci,n), i.e., the duration of
the red and green phase, respectively.

Figure 2: Feature computation of red and green time based on
si(k, ci,n).

Figure 3: Feature computation based on traffic signal and
detector data si(k, ci,n) and dj(k, ci,n).
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Next, we compute the occupancy of a detector j during
a cycle ci,n. For that, we again utilize the corresponding
signal dj(k, ci,n) and compute the summation of time steps
the detector was occupied (indicated in Figure 3 by the blue
areas). The summation is then normalized by the cycle length
of ci,n which is computed by the summation of cycles’ red
and green time:

oj(ci,n) =

∑K
k=1 dj(k, ci,n)

ri(ci,n) + gi(ci,n)
(7)

The occupancy is defined within the interval [0, 1]; if a
detector is not occupied within a signal cycle, the occupancy
is 0; if a detector is fully occupied throughout a cycle,
oj(ci,n) = 1.

Further, we want to gain information about the last detection
of an LD in a signal cycle. This feature allows for inferring
information about the current traffic demand at a signal.
Especially for public transportation vehicles, this feature can
be utilized as a proxy to provide information about the
next arrival. For example, suppose a detector that only gives
detection information about a bus or tram has been activated
in the last cycle. In that case, the likelihood that no detections
occur in the next cycle might increase, and consequently, a
longer red phase might be expected. The orange areas highlight
the last detection of a detector in Figure 3. We compute the
time duration from the last detection to the end of a cycle lj
as follows:

lj(ci,n) =
(
ri(ci,n) + gi(ci,n)

)
− v(dj(k, ci,n)), (8)

where the function v(·) computes the time stamp of the last
detection in cycle ci,n of detector j based on the signal
dj(k, ci,n).

As last feature inputs, we compute a queue and congestion
indicator denoted as QIi(ci,n) and CIi(ci,n), when traffic light
i is red or green, respectively. The quantities’ definition is
based on a threshold of the time duration of a single detector
activation; i.e., if dj(k, ci,n) shows an activation lasting longer
than a threshold parameter p in seconds during a cycle ci,n,
dependent on the operated signal phase, QIi(ci,n) or CIi(ci,n)
is set to 1. Formally, this can be denoted as:

QIi(ci,n) = Ju(dj(k, ci,n)) > p ∧ si(k, ci,n) = 0K, (9)

and

CIi(ci,n) = Ju(dj(k, ci,n)) > p ∧ si(k, ci,n) = 1K, (10)

where function u determines the longest detection during
a cycle and computes the corresponding time duration in
seconds. The returned set of values from u is then thresholded
with p and conditional on the state of si(k, ci,n); if the long
occupation represents a queue during red light or congestion
during a green light. We utilize the queue and congestion
indicators to determine if a single vehicle or multiple vehicles
(with small headway) occupy a detector longer than p. The
latter does represent a traffic state where queues/congestion
is likely. However, theoretically, the occupation larger than

p caused by a single vehicle can also be caused by a ran-
dom phenomenon (e.g., a taxi loading/unloading passengers).
Therefore, this does not necessarily represent the same traffic
state as the occupation by multiple vehicles. Nevertheless, this
behavior can lead to queues/congestion, so we treat these two
cases identically.

Finally, we can derive the target variable Yi(ci,n). We
predict the next T2G based on an input sample from the current
cycle. As the T2G target value in the data constitutes the red
time of the next cycle ri(ci,n+1), the target feature is simply
denoted as:

Yi(ci,n) = ri(ci,n+1) (11)

The data set combined in Xn contains the red times ri(ci,n),
green times gi(ci,n), traffic flow during a red and green phase
qi,R(ci,n), qi,G(ci,n), the LD occupancy oj(ci,n), time since
last detections during a cycle lj(ci,n), and the queue and
congestion indicators QIi(ci,n), CIi(ci,n) for all traffic lights
i. Finally, the T2G values Yi(ci,n), serving as targets for the
regression problem, are added to Xn and utilized to implement
the supervised learning problem with a set of machine learning
models for tackling Ŷ (ci,n) = f(Xn).

C. Naive baseline and linear model

The naive model is introduced as a first baseline model,
where the prediction of the next T2G is simply set to the last
observed red time. Formally, this can be denoted as follows:

Ŷi(ci,n) = ri(ci,n). (12)

Such a simple forecasting approach is utilized in various
research domains and also transportation [48], [49] for per-
formance comparison of more robust forecasting models.
As stated by [50], naive models should not be treated as
forecasting models but rather as a benchmark to disqualify
proposed prediction models that perform worse on a problem
than a naive model.

Secondly, we introduce the LR, which can be defined as
follows:

Ŷi(ci,n) = βi,0 + βi,1x1(ci,n) + βi,2x2(ci,n) + ...

+βi,pxp(ci,n) + Ei(ci,n), ∀o = 1, .., T,
(13)

where Ŷi(ci,n) is the T2G (response variable) for signal i
and cycle ci,n, βi,0 represents the intercept term and βi,1
to βi,p are the regression coefficients for the p predictors
x1(ci,n) to xp(ci,n) (i.e., the members of the LD and signal
feature set Xn described above), respectively. The error term
is denoted by Ei(ci,n) and follows a Gaussian distribution
(i.e., Ei(ci,n) ∼ N (0, σEi(ci,n)); T denotes the prediction
horizon. The solution for Ŷi(ci,n) is found by applying the
Ordinary Least Square (OLS) method. The fitted model can
be used to determine a prediction of the T2G for a given
traffic signal by obtaining the conditional expected value of the
response. To obtain the LR model, the implementation from
scikit-learn [51] is utilized. Research that similarly introduces
LR models within this context can be found in e.g., [52].
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Algorithm 1 RF pseudo code

1: procedure DORANDOMFOREST
2: B ← Bootstrap samples from the

training data set randomly
3: T ← Grow and fit a decision tree ∀s ∈ B,

where s is a bootstrap sample from B
4: O ← Exclude out-of-bag data
5: C ← Calculate the average prediction ∀t ∈ T ,

where t is a decision tree for one bootstrap sample
6: P ← Calculate average prediction error using O

D. Supervised learning model candidates

We introduce the RF, a supervised learning technique based
on ensemble learning utilizing decision trees based on the
work from [53]. RFs are applied in various research do-
mains for classification and regression tasks. In this work,
we utilize the RF implementation from scikit-learn [51] to
predict the T2G by solving a supervised regression problem.
The implemented procedure is described with the pseudo-code
in Algorithm 1. First, samples are randomly selected with
replacements from the training data set to create a bootstrap
sample, which is a member of B; i.e., one sample can be
selected more than once. Next, for all bootstrap samples, a
decision tree is fit. This procedure results in a collection of
decision trees that are denoted as an RF. Before the average
prediction error from all decision trees is calculated, the Out-
of-Bag (OOB) data set is collected. None of the data samples
belonging to the OOB are selected during the computation of
the randomized process in Step 2. Finally, the prediction error
on the OOB data is calculated for all trees and averaged.

For a detailed mathematical background on RF and corre-
sponding theorems and proofs, the interested reader is referred
to [53].

The last ML model incorporated into the T2G framework is
an LSTM network, a particular type of RNN. To address the
drawbacks of standard memory-less RNNs (vanishing gradient
or exploding), extensions regarding the network architecture
with a memory block were proposed by [54]. Along with
other neural network designs, an LSTM is constructed with an
input, hidden, and output layer. In addition, the hidden layer is
designed with a memory block containing memory cells. The
state of these cells is influenced by memorizing the temporal
state and gating units that control the information flow in one
memory cell. In addition, input and output gates are imple-
mented to control the input and output activation, respectively.
When the information state of a memory cell is outdated, a
forget gate allows an automatic reset to forget information that
loses importance while evolving over time [55]. The model
formulation is denoted with an input x = (xi,1, xi,2, ..., xi,K)
and the output y = (yi,1, yi,2, ...yi,K). yk is the predicted
response, and K is the prediction horizon. To compute the
model response for the next time step, the following equations
are introduced. For simplicity, note that the index for signal i
and cycle ci,n are omitted; also the variables introduced here
are internal model variables and should not be mistaken with

the feature variables above:

ik = sig
(
Wixxk +Wimmk−1 +Wicck−1 + bi

)
, (14)

fk = sig
(
Wfxxk +Wfmmk−1 +Wfcck−1 + bf

)
, (15)

ck = fk � ck−1 + ik � g
(
Wcxxk +Wcmmk−1 + bc

)
, (16)

ok = sig
(
Woxxk +Wommk−1 +Wocck + bo

)
, (17)

mk = ok � h(ck), (18)

yk =Wymmk + by, (19)

where ik, fk, ck, ok and mk are the states of the input
gate, forget gate, cell state, output gate and memory gate,
respectively. The variables W and b denote the weight matrices
and bias vectors, respectively, and are utilized to connect
input, hidden, and output layers. Note that sig(·) defines the
logistic function (i.e., sigmoid function); g(·) and h(·) denoted
activation functions, respectively, where commonly tanh is
utilized [55]. The work in [54] introduces similar mathematical
descriptions of LSTM networks. The implementation in our
framework is performed with TensorFlow [56] and Keras [57].

E. Hyperparameter tuning

Hyperparameter tuning (block (3) in Figure 1) is an essential
step in a machine learning pipeline to improve the model accu-
racy. Therefore, we utilize two libraries to finalize the RF and
LSTM models in this work. To train the hyperparameters of the
RF models, we utilize the open-source library Hyperopt [58].
The framework allows defining a hyperparameter search space.
Then one of the implemented optimization algorithms is
utilized to sample values from the pre-specified distributions
and evaluate the model for several trail runs. Every trail model
is then evaluated with the specified loss function during k-
fold cross-validation. In this work, we choose to optimize
the following hyperparameters of the RF models: the number
of estimators, max depth, min samples split, and min weight
fraction leaf. As an optimization algorithm, the adaptive Tree-
structured Parzen Estimator (TPE) is utilized [58].

For the hyperparameter tuning of the LSTM neural network
models, we utilize KerasTuner [59], built in the deep learning
API Keras. KerasTuner is an optimization framework for the
tuning of hyperparameters with state-of-the-art algorithms.
The framework allows to define ranges for non-conditional and
conditional hyperparameters, from which values are sampled
during a trial run. To find the best model performance for
all LSTM neural networks, we optimize the following hyper-
parameters: number of units for the LSTM input and output
layer, number of hidden LSTM layers with the corresponding
number of units, dropout rate, and number of units for dense
layer. Note that we fix the activation function of the dense
layer and utilize the ReLU function [60]. As an optimization
algorithm, the Hyperband Tuner proposed by [61] is applied.
Note that in both tuning procedures the MAE and Mean
Squared Error (MSE) are utilized as a loss function, and the
models with the best results are selected.
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F. Performance metrics

We evaluate the models on the test data set Xn,test with
performance metrics in block (4). First, the Mean Absolute
Error (MAE) and the Root Mean Square Error (RMSE) are
utilized. The performance metrics are introduced by (20) and
(21):

MAE =
1

Ktest

Ktest∑
k=1

∣∣∣Ŷi(ci,n+k)− Yi(ci,n+k)
∣∣∣, (20)

RMSE =

√√√√ 1

Ktest

Ktest∑
k=1

∣∣∣Ŷi(ci,n+k)− Yi(ci,n+k)
∣∣∣2. (21)

Ŷi(ci,n+k) again represents the predicted T2G for a future
cycle ci,n+k of signal i. Yi(ci,n+k) is the T2G from the test
data set. k is here utilized to sum the errors over all samples
from the test data set, i.e., Ktest. Besides the evaluation con-
cerning the MAE and RMSE, we introduce two additional and
strict error metrics. As we want to evaluate if the prediction
meets the requirements of practical applications (e.g., speed-
advisory systems), we introduce the Exact Hit (EH) and the
Near-Misses (NM) ratio as follows:

EH =

(Ktest∑
k=1

r∣∣∣Ŷi(ci,n+k)− Yi(ci,n+k)
∣∣∣ = 0

z

Ktest

)
· 100, (22)

NM =

(Ktest∑
k=1

r∣∣∣Ŷi(ci,n+k)− Yi(ci,n+k)
∣∣∣ ≤ 2

z

Ktest

)
·100. (23)

An EH is defined when the prediction model forecasts the
T2G with an error of 0 seconds and an NM when the error is
lower or equal to two seconds. The threshold value is chosen
based on studies such as e.g., [62], [63], that find the response
time for action of Connected Automated Vehicles (CAV) is
ranging from one to two seconds (and higher under certain
circumstances). Consequently, predictions that are classified
as EH or NM can serve as an input to, e.g., motion planning
algorithms without forcing a vehicle to stop at an intersection.
Note that the T2G values of the test data set are given as
integer values; therefore, we also round the prediction values
to integers.

V. NUMERICAL EXPERIMENTS

The numerical experiment is based on a historical data set
from an intersection in the city center of Zurich, Switzerland.
The intersection depicted in Figure 4 is regulated by a fully-
actuated signal control system with 12 traffic signals (indicated
with circled numbers). Signals 1, 2, 4, 5, and 6 control
vehicular traffic streams. Traffic signal 3 is implemented for
cyclists who can travel straight ahead and is co-regulated with
signal 2. Signals 7 – 10 regulate pedestrian flows. From north
to south and vice versa, tram lines are potentially prioritized by
the signal control. Tram tracks are indicated with dashed lines
and overlap with car lanes southbound of the intersection. The
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Figure 4: Test intersection in the city center of Zurich, Switzer-
land.

corresponding signals 11 and 12 are specifically implemented
for trams. These signals only operate in a green phase when
a public transportation vehicle arrives at the intersection. The
case study does not focus on predicting the T2G for these
signals, i.e., only results for signal 1 – 10 are presented. A
discussion with numerical insights for signals 11 and 12 is
then presented in Section VI.

Figure 4 also depicts the five associated LDs (indicated
as rectangles with the corresponding numbering at the in-
tersection approaches). Note that no separate detector data is
implemented for traffic signals 1 and 3. Hence, no information
on arriving vehicles/cyclists is available.

The data set contains event-based data from every device
installed at the test site (i.e., LD and signal data). With a
resolution of 1 second, a telegram is generated every time a
device changes its state. A telegram contains the timestamp,
device id, and the new state. In other words, we know when
an LD is activated/not activated, or a signal operates in a red
or green phase. Besides, LD or signal failures can be detected.

A raw data set of 2 months of consecutive telegram data
from January and February 2019 is available. Note that the
time axis of the data set is unevenly spaced as telegrams are
only reported when an event occurs. In the following analysis,
we take data from all weekdays from 7:00 to 22:00 hours into
account as public transportation operates on a regular schedule
within this time frame.

A. Data aggregation and descriptive analysis

First, we process the telegram data set for 2 months to
eliminate telegrams containing devices or values not defined
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for the case study intersection. Also, the raw data set contains
clock telegrams (the device state is reported every full minute,
regardless of a state change) that are not relevant for this study.
Finally, the data is processed to a tabular format, required for
machine learning purposes; i.e., we compute the data set R
containing all si(k, ci,n) and dj(k, ci,n).

Afterward, we proceed to aggregate the data set to cycles.
As cycles diverge for every traffic signal i, we create a separate
data set for every traffic signal. Every feature in such a data set
is grouped by the corresponding cycles of ci,n. This approach
allows determining the features of all remaining traffic signals
and LDs during the cycles of i. Consequently, we determine 10
data sets with the proposed feature set: red time, green time,
traffic flow during red and green, occupancy, last detection of
an LD, and the queue and congestion indicator. These features
are concatenated to the vector Xn and serve as an input to
the model training/testing procedure. Last, we determine the
T2G Yi(ci,n) which serve as the target value for the regression
problem.

In Figure 5, feature distributions for the red and green times
of all traffic signals are presented.

The violin plots present the red and green time feature distri-
butions for all considered traffic signals. The data distributions
highlight that the signal control system is fully-actuated.
For example, the red time of signal 4 (shown separately in
Figure 5) operates with an average red time of 38.46 seconds.
Nevertheless, the minimum and maximum values in the data
set show red times of 29 sec and 104 sec, respectively.
Note that signal 4’s red time distribution shows a long tail
due to red times higher than 70 seconds. Nevertheless, these
samples are not outliers, as the maximum allowed red time
for this signal control strategy is fixed to 180 sec. Hence, the
prediction models must be capable of learning and predicting
this behavior. The threshold values +SD/2 (41.63 sec) and -
SD/2 (35.30 sec) highlight the range around the mean value of
38.46 sec. 28207 from 53031 available samples occur within
the specified range. Consequently, 24824 samples of signal
4’s red time are outside +SD/2 or -SD/2 and not close to the
mean value. This underlines the full actuation of the system
and that not just a few samples show a high variance. Similar
characteristics can be shown for the green and cycle time
distribution of signal 4. The range around the mean green
time of 12.01 sec are computed with 12.75 and 11.44 sec.
From 53031 samples, 24306 samples are within, and 28725
samples are outside the range between +SD/2 and -SD/2. For
the cycle time with a mean value of 50.56 sec, 33323 samples
are close to the mean and 19708 samples are outside the
range. The descriptive analysis underlines that (a) the system is
fully-actuated and (b) a substantial amount of data is different
from the mean. Note that signal 4 is presented here as it
regulates a traffic stream conflicting with public transportation
(controlled by signal 12). Hence, for both traffic lights, the
signalization is influenced by the arrival of trams. Additionally,
LD 3, upstream from signal 4, might be utilized for green time
extensions when high traffic demand is present.

A complete compilation of the computed descriptive statis-
tics of the data sets for all traffic signals is given in Table I.
The red and green times of signals 1 – 10 all show maximum

values greater or equal than 80 sec. Contrary, the maximum
values of green times are below 56 seconds, except for signal
9 (87 sec.). The high green time of signal 9 occurs because
this pedestrian traffic signal can remain green together with
signals 11/12.

B. T2G prediction results

This section applies our set of models to the training and
testing procedure. We assess the model qualities by utilizing
the processed data set and split it into 70% train and 30% test
data, respectively. First, the naive baseline model is applied to
the train data sets of traffic lights i = [1, 10]. As discussed, the
naive baseline model is a benchmark to assess the ML models
applied in the following. As the model utilizes the last red
time of a signal cycle, no training or hyperparameter training
procedure is performed.

For traffic lights 1 – 10, the results of the naive baseline
show MAE and RMSE errors from 1.54/2.78 sec (i = 9) to
8.42/13.48 sec (i = 10). Also, the EH ratio is below 37.16%
for all traffic lights except signals 5 and 9 (ratio of 46.42% and
54.68%, respectively). The NM ratios are below 60%, except
for traffic signals 5 and 9, where 67.41% and 74.26% are
computed, respectively. See Table II for all results. The highest
NM ratio is computed for traffic light 9 which also shows the
highest EH ratio of 54.68%. The difference in performance
can be explained by the variation of the T2G values: If the
signal control assigns the identical green phase multiple times
throughout a certain time frame (such a system behavior can
correspond to a standard program; i.e., no high traffic demand
detected or arriving public transportation), the naive model
predicts an exact hit with an error of 0.00 sec. Contrary, the
absence of a standard control program or high variations in the
T2G lead to an obvious worse performance of the naive model.
A subset of the prediction results (50 cycles) assessed with
the corresponding test data subset are depicted in Figure 6.
Results show (a) low variability of the T2G for traffic light 4
and (b) high variability in the T2G for traffic signal 6. Note
that the prediction values of the T2G derived by utilizing the
naive model constitute a shift by one cycle. The presented
time frames of prediction results are utilized throughout this
section to ensure comparability.

In particular, Figure 6 (a) shows time frames where the T2G
stays constant throughout multiple cycles. In these cases, the
naive model performs with high accuracy, whereas in Figure 6
(b), high variations with fluctuations of the T2G between 37
sec and 68 sec are present. In these cases, the time lag of one
cycle produces high error rates.

We now present the results of the LR models for all
traffic lights, respectively, which serve as a supervised learning
baseline in this study. Before all models are trained, the
Recursive Feature Elimination (RFE) method is applied to the
traffic signal data sets. The method assigns a weight to an input
feature which functions as a proxy for feature importance.
The features with minor importance are then eliminated from
the data set. In our case, the feature space is reduced from
70 features to 35 features. For example, two traffic signals
that regulate non-conflicting pedestrian flows within the same



9

Figure 5: Distributions of red and green times for all signals 1–10. Additionally, the distributions for red, green, and cycle
time of signal 4 are shown with corresponding standard deviation thresholds +SD/2 and -SD/2.

Table I: Descriptive statistics of input features for traffic signals i = [1, 10] represented as mean values. The dash indicates
that no detector is available and features are not computed. The values within parentheses indicate the (min, max) of the
corresponding feature.

i
# ci,n
[-] r̄i [s] ḡi [s] q̄i,R [veh] q̄i,G [veh] ōj [-] l̄det,j [s] C̄Ii [-] Q̄Ii [-]

1 64807 36.64 (29, 102) 13.57 (8, 19) - - - - - - - - - - - -
2 67242 42.38 (33, 102) 7.62 (7, 28) 0.73 (0, 8) 0.17 (0, 6) 0.06 (0, 1) 107.53 (0, 2115) 0.07 (0, 1) 0.03 (0, 1)
3 67916 39.22 (30, 100) 10.79 (9, 31) 0.68 (0, 7) 0.22 (0, 6) 0.06 (0, 1) 107.39 (0, 2115) 0.06 (0, 1) 0.06 (0, 1)
4 53031 38.46 (29, 104) 12.01 (8, 17) 1.70 (0, 9) 0.61 (0, 6) 0.07 (0, 1) 63.38 (0, 4014) 0.02 (0, 1) 0.12 (0, 1)
5 50937 38.00 (31, 105) 12.89 (8, 19) 1.71 (0, 8) 0.62 (0, 7) 0.07 (0, 1) 63.57 (0, 4010) 0.06 (0, 1) 0.11 (0, 1)
6 63712 43.40 (33, 94) 6.70 (6, 27) 0.18 (0, 2) 0.02 (0, 1) 0.04 (0, 1) 196.87 (0, 4815) 0.06 (0, 1) 0.07 (0, 1)
7 67909 32.28 (18, 80) 17.74 (12, 56) - - - - - - - - - - - -
8 67902 28.79 (18, 99) 21.23 (5, 32) - - - - - - - - - - - -
9 67913 28.48 (18, 79) 21.53 (12, 87) - - - - - - - - - - - -
10 67902 24.21 (16, 101) 25.80 (8, 38) - - - - - - - - - - - -
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Figure 6: Prediction results of the naive baseline model.
Results assessed on the T2G test data set for (a) traffic signal
4 and (b) traffic signal 6.

Table II: Model performance on the test data set with MAE,
RMSE, EH, and NM for the naive baseline model.

Naive Baseline
i MAE [s] RMSE [s] EH [%] NM [%]

1 5.22 9.20 35.49 58.43
2 4.59 7.89 36.53 55.93
3 4.59 7.93 37.16 56.07
4 5.48 9.29 33.37 56.30
5 4.30 8.37 46.42 67.41
6 4.87 8.24 33.73 54.92
7 4.21 7.20 36.06 55.59
8 7.32 11.75 33.33 48.51
9 1.54 2.78 54.68 74.26
10 8.42 13.48 36.81 49.35

signal stage show a high correlation, and RFE will eliminate
one of the features.

All LR models are derived by the application of the OLS
method and the prediction performance of the T2G samples of
the test data set are assessed with the introduced performance
metrics. The performance results are compiled in Table III and
prediction results for the same test data subset are presented
in Figure 7.

The LR models reduce the MAE and RMSE errors in all test
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Table III: Model performance on the test data set with MAE, RMSE, EH, and NM for the LR model. Also, the improvemenst
over the naive baseline are presented with the given performance metrics.

LR model Improvement over naive baseline

Signal MAE [s] RMSE [s] EH [%] NM [%] ∆MAE [%] ∆RMSE [%] ∆EH [%] ∆NM [%]

1 3.20 5.42 8.20 68.56 -38.70 -41.09 -27.29 10.13
2 2.56 4.68 32.24 72.42 -44.23 -40.68 -4.29 16.49
3 2.50 4.70 35.91 72.86 -45.53 -40.73 -1.25 16.79
4 3.21 5.42 8.69 68.24 -41.42 -41.66 -24.68 11.94
5 2.75 4.95 9.87 76.17 -36.05 -40.86 -36.55 8.76
6 2.63 4.77 33.87 70.55 -46.00 -42.11 0.14 15.63
7 2.59 4.60 24.96 70.93 -38.48 -36.11 -11.10 15.34
8 4.60 7.06 3.76 40.02 -37.16 -39.91 -29.57 -8.49
9 1.24 1.86 35.16 86.16 -19.48 -33.09 -19.52 11.90

10 4.94 7.68 4.31 36.81 -41.33 -43.03 -32.50 -12.54

cases. For traffic lights, 1 – 10, the MAE decreases between
1.24 and 3.20 sec. Only for traffic light 9 the improvement is
lower with 19.48%. Nevertheless, the MAE error of the naive
model for this test case (1.24 sec) is already low compared
to the other test cases. However, the error metrics still show
high deviations from the test data set. The high variation of the
T2G due to non-linear dependencies on the arrival of public
transportation can not be captured by the LR models. Also,
the results of the EH- and NM-ratio stresses the importance
of this assessment: The EH-ratios decrease significantly for all
traffic signals, except traffic signal 6. However, for that signal
no substantial improvements can be observed (an increase in
EH-ratio of 0.14%). For the NM-ratios, the ratios improve
between 8.76% and 16.79%. However, for traffic signal 8 and
10, the performance in NMs decreases by 8.49% and 12.54%,
respectively. Note that only evaluating the LR models by the
MAE would lead to an acceptable performance improvement
compared to the naive model. Nevertheless, the EH- and NM
ratios draw a different picture and stress the importance of
these metrics.

Figure 7 (a) shows the test data with lower variation in
the T2G test samples again. The LR model for traffic signal
4 can represent the general trend of the time series but can
not predict high peaks of the T2G. In addition, the results
underline the EH and NM ratios shown in Table III. For the
time frames where the T2G remains constant, the LR model
overestimates the T2G consistently. Figure 7 (b) shows that
the LR model for traffic signal 6 fails to reproduce the T2G
pattern and also to predict high variations in the T2G (cycle 20
to 30). Nevertheless, the MAE and RMSE decrease for both
cases (Table III).

As third candidates, RF models are implemented for predict-
ing the T2G. Again, we utilize the data set after the application
of the RFE to guarantee a fair performance assessment.
RF models require the tuning of a set of hyperparameters.
In this work, we selected the following set of parameters
and corresponding distributions for parameter sampling: the
number of estimators, denoted as a uniformed distribution
U(50, 200); max depth denoted as U(3, 12); min samples split,
denoted as U(2, 6); and min weight fraction leaf as U(0, 0.5).
The defined distributions specify the parameter search space
for the TPE algorithm. Ten trail runs are executed, and the
best model performance is obtained with the mean absolute
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Figure 7: Prediction results of the LR model. Results assessed
on the T2G test data set for (a) traffic signal 4 and (b) traffic
signal 6.

error criterion. Note that the tuning procedure is applied to
every model separately to maximize performance. A further
increase of, e.g., the number of estimators or max depth of
trees improves the performance only slightly, whereas the
computational time to fit the model increases substantially.

Table IV shows the performance of the prediction models
on the test data set for every traffic signal at the intersection.
The MAE, RMSE, EH ratio, and NM ratio are again compared
to the Naive model results from Table II. An assessment of
the decision-tree-based method shows that all MAE values
decrease by 41.75% up to 61.16% for traffic lights 1 – 10.
Note that this constitutes a reduction of MAE between 14.96%
and 34.18% compared to the LR models.

The two samples of RF predictions for 50 cycles of the test
data set are shown in Figure 8. The RF model in Figure 8
shows a good fit when the signal control system is operating
in its standard phase, and the time series trend can be repli-
cated for traffic light 4 (overall MAE=2.27 sec; EH=59.71%;
NM=79.47%). Note that the LR model overestimates the T2G
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Table IV: Model performance on the test data set with MAE, RMSE, EH, and NM for the RF model. Also, the improvements
over the naive baseline are presented with the given performance metrics.

RF model Improvement over naive baseline

Signal MAE [s] RMSE [s] EH [%] NM [%] ∆MAE [%] ∆RMSE [%] ∆EH [%] ∆NM [%]

1 2.23 5.57 62.77 80.81 -57.38 -39.46 27.28 22.38
2 2.18 4.72 54.68 76.35 -52.57 -40.14 18.15 20.42
3 2.08 4.71 58.56 77.17 -54.64 -40.62 21.40 21.10
4 2.27 5.50 59.71 79.47 -58.59 -40.81 26.34 23.17
5 1.81 5.13 69.71 84.65 -57.91 -38.71 23.29 17.24
6 2.22 4.79 52.69 76.40 -54.41 -41.87 18.96 21.48
7 2.10 4.42 51.21 75.69 -50.02 -38.55 15.15 20.10
8 3.16 7.18 54.39 73.99 -56.83 -38.87 21.06 25.48
9 0.90 2.02 68.16 86.25 -41.75 -27.23 13.48 11.99

10 3.27 7.81 59.57 74.82 -61.16 -42.06 22.76 25.47
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Figure 8: Prediction results of the RF model. Results assessed
on the T2G test data set for (a) traffic signal 4 and (b) traffic
signal 6.

within such time frames. Also, high variations up to a T2G
of 50 sec can be predicted accurately. Nevertheless, higher
peaks in the T2G samples (Figure 8 (a) and (b)) can not be
captured by any of the two models. Potential reasons for this
failure are detections of public transportation that occur after
the prediction time stamp of the next T2G. More details are
discussed in Section VI.

Last, LSTM neural network models are implemented to
predict the T2G. Again the data set after the application
of the RFE is utilized. The application of the KerasTuner
finds the architectures of the LSTM models by sampling the
following parameters: the number of units for an LSTM layer,
specified as U(8, 256); the number of hidden layers speci-
fied as U(1, 2); the dropout rate for regularization purposes
specified as U(0, 0.5); the number of units for a dense layer
connected after the LSTM layers, specified as U(1, 50). The
activation function is fixed to ReLU. For the training of the
models, 100 epochs are computed with early stopping criteria
by monitoring the validation loss with a patience p = 5 is

specified to prevent overfitting to the training data set. The
batch size is set to 64, the validation split to 20% of the
training data set, and the MAE is utilized as a loss function.
The considered time lag for the LSTM models is chosen with
7 time steps, determined with a sensitivity analysis.

In Table V the compilation of performance metrics for
the LSTM models are shown. Overall, a reduction in MAE
and RMSE compared to the Naive model can be achieved
by deploying LSTM neural networks. Also, the EH and NM
ratios are increased significantly and outperform the Naive
models: The EH-ratio for the naive model ranges from 33.33%
to 54.68%, whereas the LSTM models achieve performance
metrics between 43.05% and 68.80%. The LSTM models for
traffic lights 1 – 10 perform with an MAE error below 5.00 sec,
and the EH-/NM-ratios are above 43% and 61%, respectively.

The LSTM neural networks can not outperform the decision
tree ensembles concerning all considered performance metrics
compared with the RF results. For example, the MAE and
RMSE errors when applying the LSTM models for traffic
lights 1 – 10 are between 12.60% sec and 52.91% higher.
In addition, the EH and NM ratio decrease by -2% up to -
19%. Only for the T2G predictions of traffic lights 7 and 9,
the EH ratio is improved by 1.47% and 0.64%, respectively.
This behavior can be explained by the low variability of the
T2G target values for these traffic lights.

Figure 9 shows that the predicted T2G series for traffic
lights 4 and 6 are converging towards the mean value of
the corresponding T2G. Hence, an LSTM model that predicts
the average T2G performs well on test data sets with low
variability of the target variable. The predictions in Figure 9
show in both cases that the LSTM models perform well in
predicting the T2G when no high variability of the T2G is
present. Nevertheless, none of the higher variations are not
captured with these models, although the RF model predicted
and approximated these samples with high accuracy.

Finally, we compare the results of all models in Figure 10.
The subplots show the MAE, RMSE, EH, and NM metrics for
signals 1 – 10. The RF models show the lowest error values
with an MAE of 2.22 sec (standard deviation: 0.66 sec), an
EH-ratio of 59.14% (standard deviation: 6.27%), and an NM-
ratio of 78.56% (standard deviation: 4.17%). Note that the
aggregated RMSE metrics of the LR and RF models show no
significant difference with 5.11 and 5.18 sec, respectively.
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Table V: Model performance on the test data set with MAE, RMSE, EH, and NM for the LSTM model. Also, the improvements
over the naive baseline are presented with the given performance metrics.

LSTM model Improvement over naive baseline

Signal MAE [s] RMSE [s] EH [%] NM [%] ∆MAE [%] ∆RMSE [%] ∆EH [%] ∆NM [%]

1 3.15 6.54 43.69 72.94 -39.66 -28.91 8.20 14.51
2 2.51 5.39 50.65 71.10 -45.32 -31.69 14.12 15.17
3 2.59 5.47 53.19 71.45 -43.57 -31.02 16.03 15.38
4 3.27 6.57 43.05 70.66 -40.33 -29.28 9.68 14.36
5 2.48 6.30 64.81 81.65 -42.33 -24.73 18.39 14.24
6 2.78 5.56 46.29 70.08 -42.92 -32.52 12.56 15.16
7 2.44 4.96 52.68 70.41 -42.04 -31.11 16.62 14.82
8 4.39 8.24 44.51 61.60 -40.03 -29.87 11.18 13.09
9 1.01 2.19 68.80 83.86 -34.42 -21.22 14.12 9.60

10 5.00 9.45 47.59 61.41 -40.62 -29.90 10.78 12.06
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Figure 9: Prediction results of the LSTM model. Results
assessed on the T2G test data set for (a) traffic signal 4 and
(b) traffic signal 6.

C. Feature importance of Random Forest models

One advantage of the best candidate in this study is that
RFs allow for a straightforward computation of the feature
importance. One decision tree in a random forest splits input
values based on the condition of impurity. When solving a
regression problem, impurity is defined as the variance. When
training the model, the weighted impurity should be mini-
mized. Each feature’s contribution allows for the calculation of
the feature importance to solve the initial problem definition
Ŷi(ci,n) = f(X); i.e., the approximation of a function that
maps the input feature vector to the T2G target values.

We compute the feature importance for the 10 most relevant
features for the models of traffic signals 4 and 6, respec-
tively. Note that other importance vectors can be computed
analogously. Figure 11 shows the 10 most important features
for the prediction of the T2G of traffic signals 4 and 6. In
the case of signal 4 o1 is the most important, and r10 is
the least important feature of the presented subset (Figure 11

(a)). Figure 11 also highlights the feature importance on the
intersection. The traffic stream in blue shows the signal for
which the T2G prediction is computed. In red, the relevant
devices (LDs or traffic signals) of conflicting traffic streams
are shown, and green highlights the devices of the compatible
traffic streams.

For the both signals, the most important feature appears to
be the occupancy of LD 1, i.e., o1 detecting arriving trams
from the north of the intersection area. This is expected
as the T2G is highly dependent on the priority of public
transportation. Additionally, for both models, the occupancy
o5 for arriving vehicles and trams from the south is listed in
the 10 most relevant features. For the T2G prediction of traffic
signal 4, the second most important feature is the green phase’s
duration of signal 1, g1 (non-conflicting traffic stream); for the
T2G of traffic signal 6, it is the red phase duration, r2. Finally,
note that in both cases, the feature representing the hour of
the day H is important and highlights that both models find
T2G patterns that depend on the time of the day.

Interesting all computed features introduced in Section IV
appear at least once in one or the other feature importance
subsets of the two presented models. On the other hand, the
congestion and queue indicator QIi(ci,n) and CIi(ci,n) do not
appear, and an analysis shows that the RFE procedure already
eliminated these features.

VI. DISCUSSION

A. Metrics for model evaluation

A model for T2G predictions has to meet strong accuracy
requirements. For example, motion planning algorithms of
automated vehicles can utilize such forecasts. Hence, a low
accuracy prediction of the following green can cause safety
issues that are not acceptable in practice. Consequently, a
judgment based on standard metrics such as the MAE or
RMSE can lead to a good performance on average, but indi-
vidual predictions might still not meet the initial requirements.
Therefore, in this study, we introduced the EH and NM to
evaluate models based on the forecast being identical to the
target, or an error smaller or equal to two sec, respectively.

For example, the performance concerning the MAE for the
LR models (Table III) shows errors that are close to the ones
for the RF models (Table IV). Nevertheless, the EH and NM
ratio in Table IV significantly improved compared to the naive
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Figure 10: Performance of all signals 1–10 with respect to MAE, RMSE, EH and NM ratio.
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Figure 11: Feature importance for RF model of (a) for traffic signal 4 and (b) traffic signal 6.

baseline. On the contrary, the performance ratios of the LR
models even decrease compared to the naive model. This
highlights the importance of EH and NM for this problem.

Although the hyperparameter tuning was carried out by
assessing different loss functions, the MAE function showed
the best performance concerning all presented performance
metrics. For example, utilizing the mean squared error as a
loss function did not improve the results. A more extensive
data set might help improve generalization and performance.
However, for the RF models, the loss function allows for the
most accurate results. In addition, RF models are easier to
fit and allow for interpretation of the model parameters (the
feature importance analysis described in Section V-C).

B. Vehicle detection after T2G prediction

As shown in Section V-C the LD data representing trams’
detection is of great importance for the RF models. However,
results also show that models sometimes fail to predict a T2G
peak (Figure 8 (b)). One potential explanation for this behavior
is detections of vehicles that occur after the prediction of the
T2G. In other words, we predict the duration of the next red
phase, and afterward, the corresponding phase starts. If a tram
arrives at an intersection approach within this phase, the signal
control system might react according to predefined conditions.
As a result, the red phase can be shortened or extended
(dependent on the traffic relation), and the T2G duration
also changes. However, this information is only available in

the next cycle. Therefore, the presented prediction models
potentially miss high peaks of the T2G.

A more extensive data set or additional feature engineering
could help eliminate this limitation. Additionally, works such
as [14] capture this system behavior as the predictions are
updated consistently during the red phase. Nevertheless, this
leads to fluctuations in the T2G that are problematic for control
systems (e.g., motion planning of automated vehicles). Ibrahim
et al. [14] also requires data aggregation per cycle length;
meaning knowledge of the cycle length must be present a
priori which is only possible for semi-actuated signal control
systems.

C. Prediction of T2G for dedicated public transportation
signals

As presented in Figure 4, traffic signals 11 and 12 are
dedicated to public transportation vehicles. These traffic lights
only operate in a green phase when a tram is detected and
needs to pass the intersection. Hence, the average red and
green times differ significantly from those of signals 1–10:
For signals 11 and 12, the average red/green time are 203.12
sec/13 sec, and 214.50 sec/17.65 sec, respectively. Also, the
minimum and maximum values range from 5 to 500 sec, 12 to
500 sec for the red times, and 6 to 353 sec, 4 to 320 sec for the
green times. Note that the maximum allowed duration of 180
sec does not apply to these signals. Besides, the green times
are significantly shorter, indicating that these traffic lights are
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Figure 12: Prediction results of the RF model for traffic signal
11 only utilized by public transportation.

Table VI: Model performance on the test data set with MAE,
RMSE, EH, and NM for the RF model on signal 11 and 12.

RF model

Signal MAE [s] RMSE [s] EH [%] NM [%]

11 61.56 92.40 3.21 8.12
12 54.08 78.61 3.87 8.33

only utilized when public transportation vehicles are detected.
Consequently, a significantly higher variance of the quantities
is given, which needs to be captured by the applied prediction
model. Also, the described limitation from Section VI-B that
vehicle detections after the T2G prediction, i.e., occurring
within the red phase we predicted the duration for, has a
substantial influence on model performance. As signals 11 and
12 only operate in a green phase when a vehicle is detected,
it is evident that many detections occur during a red phase.

In Figure 12 we shortly present the prediction results of the
RF model for 200 cycles of traffic signal 11.

The test data in black shows high fluctuations between 5
and 500 seconds that correspond to the min and max values
found in the descriptive analysis. The RF model captures the
time series pattern with most prediction samples. Nevertheless,
the prediction errors are high compared to the values shown
for signals 1–10. Table VI compiles the MAE, RMSE, EH,
and NM ratio for the RF models.

As expected, the performance metrics show a significantly
higher magnitude with an MAE of 85.88 and 64.02 sec,
respectively. This is because the RF models can not capture
the high T2G peaks that frequently occur for signals 11 and
12. Additionally, the EH and NM ratios underline the modest
performance with values below 2% for all metrics in Table VI.

A model design for designated traffic lights that satisfies
accuracy requirements, additional information such as GPS
signals that provide the location of trams, or additional LDs
that allow inferring location or speed is needed.

D. Utilization of T2G predictions for speed-advisory systems

T2G predictions can serve as an input to motion planning
algorithms leading to a smoother speed profile and more
homogeneous traffic flow as vehicles do not need to stop
at an intersection. Our proposed methodology considers the
complex relationship between traffic signals and LD detections

to determine the T2G. Nevertheless, when motion planning al-
gorithms consider the predictions of the T2G for determining,
e.g., the speed profile to cross an intersection, the timestamp of
an LD detection will also change. Consequently, the proposed
models in this work that learned this temporal relationship
via a historical data set (offline learning) can not dynamically
adapt to the new system behavior. As a solution, the authors
suggest researching the directions of (a) online learning, which
allows for learning new data patterns as they are available,
or (b) meta-learning allowing ML models to learn from T2G
prediction outputs and adapt to the new system behavior.

VII. CONCLUSION

This paper proposes a framework for Time-to-Green (T2G)
predictions at an urban intersection to enhance the quality of
Signal Phase and Timing (SPaT) messages. The problem was
constructed as a time series forecast to predict the next signal
phase of a fully-actuated signal control system. The framework
implementation is generic and can be applied to any inter-
section that provides Loop Detectors (LD) and signals data.
An extensive feature engineering methodology is proposed to
enhance the model quality by utilizing concepts from traffic
flow theory. To assess the performance of supervised learning
algorithms, a Linear Regression (LR), a Random Forest (RF),
and a Long-Short-Term-Memory (LSTM) neural network are
implemented and assessed with a set of performance metrics.

In the presented numerical experiment, the methodology
was tested on an intersection in Zurich operated by a fully-
actuated signal control and public transport priority. A con-
secutive data set of two months (traffic signal and LD data)
is processed, and prediction models are assessed on the
accuracy when predicting the T2G. Results show that RF
models are promising tools for predicting the next red phase
and outperform naive baseline, LR, and LSTM models with
Mean Absolute Errors (MAE) between 0.90 and 3.27 sec.
Nevertheless, the RF models show limitations in predicting the
T2G of traffic lights designated for public transportation due
to the high variance of the target values and vehicle detections
after prediction. Future work will extend the present research
with the possibility of updating T2G predictions throughout
the next signal phase that can serve as an input to various
control systems. We will also look at the parameter tuning
of the models concerning computational time. This paves the
way for real-time applications. Another promising direction
is to develop an algorithm that can be quickly adapted to
new environments (e.g., other intersections or scenarios with
different transit operations) within a few shots via meta-
learning (e.g., [64]).
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[4] A. Genser, L. Ambühl, K. Yang, M. Menendez, and A. Kouvelas,
“Time-to-green predictions: A framework to enhance spat messages
using machine learning,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.

[5] CAR 2 CAR Communication Consortium, “Automotive requirements
for spat and map - car 2 car.” [Online]. Available: https://www.
car-2-car.org/fileadmin/documents/Basic System Profile/Release 1.5.1/
C2CCC RS 2077 SPATMAP AutomotiveRequirements.pdf

[6] A. Genser, R. Spielhofer, P. Nitsche, and A. Kouvelas, “Ride comfort
assessment for automated vehicles utilizing a road surface model and
monte carlo simulations,” Computer-Aided Civil and Infrastructure
Engineering, 2021.

[7] S. A. Fayazi, A. Vahidi, G. Mahler, and A. Winckler, “Traffic signal
phase and timing estimation from low-frequency transit bus data,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp.
19–28, 2015.

[8] S. A. Fayazi and A. Vahidi, “Crowdsourcing phase and timing of pre-
timed traffic signals in the presence of queues: Algorithms and back-end
system architecture,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 3, pp. 870–881, 2016.

[9] C. Wang and S. Jiang, “Traffic signal phases’ estimation by floating car
data,” in 2012 12th International Conference on ITS Telecommunica-
tions, 2012, pp. 568–573.

[10] Juan Yu and Pei-zhong Lu, “Learning traffic signal phase and timing
information from low-sampling rate taxi gps trajectories,” Knowl.-Based
Syst., vol. 110, pp. 275–292, 2016.

[11] X. J. Ban, R. Herring, P. Hao, and A. M. Bayen, “Delay pattern
estimation for signalized intersections using sampled travel times,”
Transportation Research Record, vol. 2130, no. 1, pp. 109–119, 2009.

[12] V. Protschky, C. Ruhhammer, and S. Feit, “Learning traffic light
parameters with floating car data,” in 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, 2015, pp. 2438–2443.

[13] V. Protschky, S. Feit, and C. Linnhoff-Popien, “Extensive traffic light
prediction under real-world conditions,” in 2014 IEEE 80th Vehicular
Technology Conference (VTC2014-Fall), 2014, pp. 1–5.

[14] S. Ibrahim, D. Kalathil, R. O. Sanchez, and P. Varaiya, “Estimating
phase duration for spat messages,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 7, pp. 2668–2676, 2019.

[15] Y. Zhu, X. Liu, M. Li, and Q. Zhang, “Pova: Traffic light sensing with
probe vehicles,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 7, pp. 1390–1400, 2013.

[16] V. Protschky, K. Wiesner, and S. Feit, “Adaptive traffic light prediction
via kalman filtering,” in 2014 IEEE Intelligent Vehicles Symposium
Proceedings, 2014, pp. 151–157.

[17] Z. Islam, M. Abdel-Aty, and N. Mahmoud, “Using cnn-lstm to predict
signal phasing and timing aided by high-resolution detector data,”
Transportation Research Part C: Emerging Technologies, vol. 141, p.
103742, 2022.

[18] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: A survey,” Transportation
Research Part C: Emerging Technologies, vol. 99, pp. 144 – 163, 2019.

[19] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639,
2011.

[20] C. H., L. Y., Y. B, and B. S., “Dynamic near-term traffic flow prediction:
system-oriented approach based on past experiences,” IET Intelligent
Transport Systems, vol. 6, no. 3, pp. 292–305, 2012.

[21] H. Sun, H. X. Liu, H. Xiao, R. R. He, and B. Ran, “Use of local lin-
ear regression model for short-term traffic forecasting,” Transportation
Research Record, vol. 1836, no. 1, pp. 143–150, 2003.

[22] S. Clark, “Traffic prediction using multivariate nonparametric regres-
sion,” Journal of Transportation Engineering, vol. 129, no. 2, pp. 161–
168, 2003.

[23] A. Genser, N. Hautle, M. Makridis, and A. Kouvelas, “An experimental
urban case study with various data sources and a model for traffic
estimation,” Sensors, vol. 22, no. 1, p. 144, Dec 2021.

[24] W.-C. Hong, “Traffic flow forecasting by seasonal svr with chaotic
simulated annealing algorithm,” Neurocomputing, vol. 74, no. 12–13,
2011.

[25] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-svr
for short-term traffic flow prediction under typical and atypical traffic
conditions,” Expert Systems with Applications, vol. 36, no. 3, Part 2, pp.
6164–6173, 2009.

[26] Y.-S. Jeong, Y.-J. Byon, M. M. Castro-Neto, and S. M. Easa, “Supervised
weighting-online learning algorithm for short-term traffic flow predic-
tion,” IEEE Transactions on Intelligent Transportation Systems, vol. 14,
no. 4, pp. 1700–1707, 2013.

[27] Y. Zhang and A. Haghani, “A gradient boosting method to improve
travel time prediction,” Transportation Research Part C: Emerging
Technologies, vol. 58, pp. 308–324, 2015, big Data in Transportation
and Traffic Engineering.

[28] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Optimized and
meta-optimized neural networks for short-term traffic flow prediction:
A genetic approach,” Transportation Research Part C: Emerging Tech-
nologies, vol. 13, no. 3, pp. 211–234, 2005.

[29] K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, “Neural-network-based
models for short-term traffic flow forecasting using a hybrid exponential
smoothing and levenberg–marquardt algorithm,” IEEE Transactions on
Intelligent Transportation Systems, vol. 13, no. 2, pp. 644–654, 2012.

[30] K. Kumar, M. Parida, and V. Katiyar, “Short term traffic flow prediction
for a non urban highway using artificial neural network,” Procedia
- Social and Behavioral Sciences, vol. 104, pp. 755–764, 2013, 2nd
Conference of Transportation Research Group of India (2nd CTRG).

[31] J. Tang, F. Liu, Y. Zou, W. Zhang, and Y. Wang, “An improved
fuzzy neural network for traffic speed prediction considering periodic
characteristic,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 9, pp. 2340–2350, 2017.

[32] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: A deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[33] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp.
2191–2201, 2014.

[34] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, Deep Learning:
A Generic Approach for Extreme Condition Traffic Forecasting, 2017,
pp. 777–785.

[35] F. Qian, G. Hu, and J. Xie, “A recurrent neural network approach to
traffic matrix tracking using partial measurements,” in 2008 3rd IEEE
Conference on Industrial Electronics and Applications, 2008, pp. 1640–
1643.

[36] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow pre-
diction with weather information in connected cars: A deep learning
approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12,
pp. 9508–9517, 2016.

[37] S. Panwai and H. Dia, “Comparative evaluation of microscopic car-
following behavior,” IEEE Transactions on Intelligent Transportation
Systems, vol. 6, no. 3, pp. 314–325, 2005.

[38] B. Ciuffo, V. Punzo, and M. Montanino, “Thirty years of gipps’
car-following model: Applications, developments, and new features,”
Transportation Research Record, vol. 2315, no. 1, pp. 89–99, 2012.

[39] A. Kesting, M. Treiber, M. Schönhof, and D. Helbing, “Adaptive cruise
control design for active congestion avoidance,” Transportation Research
Part C: Emerging Technologies, vol. 16, no. 6, pp. 668–683, 2008.

[40] D. Tran, W. Sheng, L. Liu, and M. Liu, “A hidden markov model
based driver intention prediction system,” in 2015 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2015, pp. 115–120.

[41] P. J. Kim IH, Bong JH and P. S., “Prediction of driver’s intention of
lane change by augmenting sensor information using machine learning
techniques,” Sensors, vol. 17(6):1350, 2017.

[42] P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier, “Learning-based
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