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Abstract

As a continuation of uncovering threats posed in aviation that are due to ADS-B not being secure,
we looked into how a non-commercial aircraft user's privacy can be compromised in real-time with
publicly available data. Since there are many ways to predict the destination of an airplane whilst
in the air we investigated this matter using a long short-term memory and a gradient booster model.
With the gradient booster model, depending on the planes operator, we successfully achieved an
accuracy of 0.70 to 0.89, 30 minutes before the aircraft lands.
In addition, with adversarial machine learning attacks, we deluded the gradient booster model, while
keeping the attacker's capabilities as omnipotent but still achievable as possible. We managed to
misdirect the model with a naive based and targeted based poisoning attack. The most e�ective
attack on the model seemed to be the targeted one, it had the greatest dissimulation with the least
data manipulation.
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Chapter 1

Introduction

Figure 1.1: Info-graphic of 
ight paths recorded over Europe by OpenSky from 2022

1.1 Motivation

Nowadays we can track aircraft in real-time all over the world thanks to dedicated websites such
as Opensky & Flightradar24 [7, 1]. This already opened new privacy issues that lead to sensitive
information being exposed. Governmental activities have been uncovered thanks to open-source
intelligence [13]. It is a recurring theme, that aircraft owners are concerned that their privacy is
being violated by having their location disclosed e.g: In January 2022, Elon Musk asked the owner
of the elonjet Twitter account [15], a bot that sends out a tweet every-time Elon Musk's Gulfstream
G650 lands at an airport: \Can you take this down? It is a security risk.". This Twitter bot uses
the OpenSky database, just as we did. This paper is a continuation of the issues that have been
shown on the lack of privacy and security in aviation [10].

1



1.2. RESEARCH QUESTIONS & CONTRIBUTIONS 2

1.2 Research Questions & Contributions

We can now ask ourselves

- How extensive is the threat of an uncovering of the destination of a plane while it is still in
the air?

- Is there a way for aircraft owners to defend themselves against this attack on their privacy
considering automatic dependent surveillance{broadcast & open-source intelligence as they
exist today?

This Thesis's primary contributions are

- Successfully predicting the destination of non-commercial planes using a gradient booster
model.

- The creation of a live interactive map that predicts aircraft destinations in real-time using
the classi�er.

- Exposing methods to delude the predictions using adversarial machine learning attacks, suited
for an injection.

1.3 Methodology

Machine learning is ubiquitous and not always suitable. We could question the methodology as
to why someone would use such models and not just make a simple educated guess, by putting
rules oneself as to where and when a plane could land. To put it in another way, one rule could
be: if a plane starts descending, we could directly try to predict where the plane may land, based
on the heading as soon as the altitude starts decreasing. This alternative would be a tedious task
as airspace regulations vary from country to country. Furthermore, di�erent planes have di�erent
behaviours, which would complicate it even more. Ultimately, it would be rather challenging to
perform as e�ciently as a machine learning solution.

1.4 Outline

This Thesis will discuss how the data was acquired, the models that were considered and then
how they were implemented. Thereafter, we will consider di�erent attacks on the model. In the
results and discussion section we will verify how well the predictions turned out and discuss the
discrepancies which occurred. We will also analyse how much the model can be mislead with
adversarial machine learning and why some attacks performed better than others. We conclude
with additional work that has been done to demonstrate the capabilities of the model and future
ideas.



Chapter 2

Background and Related Work

2.1 Aircraft Tracking System

Automatic Dependent Surveillance{Broadcast (ADS-B) is a system that enables tracking planes
thanks to transmitters that send out information about the aircraft by themselves and receivers
which can be in the air or on the ground. This technology is, among other things, meant to enhance
situational awareness for users in the air and for ground receivers such as air tra�c control (ATC).
The data that is sent out by the aircraft transmitters includes: a unique identi�er (ICAO24), the
longitude, the latitude et al. [12]

2.2 Lack of Privacy & Security in Aviation

The lack of privacy and security in the aviation industry has been extensively researched.
The security of ADS-B is not assured because the data-links are not encrypted and there is no
con�dentiality. The paper on uncovering the possibility of utilizing air tra�c communications for
open-source intelligence [14] exposed a security risk that involves making use of an open-source
database such as OpenSky. Moreover, the risk of spoo�ng an aircraft has been proven to be
possible, which allows us to assume access to online databases for our adversarial attacks [10, 4].
The privacy of users is not assured either: there are numerous reports of incidents that already
occurred such as the leak of military operations and the tracking of assets belonging to governments
and businesses [11].

2.3 Prediction Models

In order to predict where an aircraft will land, we needed a model. A few options were considered
in our research. We are assuming the reader's knowledge about recurrent neural networks and
decision tree models, more speci�cally, long short-term memory and gradient boosting [9, 3].
Since the data on 
ight trajectories is sequential, the idea of utilizing a recurrent neural network
seemed natural. Long short-term memory is a deep learning model that has been used mainly for
natural language processing, but has its a�nities when it comes to time-series regression and clas-
si�cation. LSTM models have been proven to be an e�ective method to predict the trajectory that
a plane will take in form of a regression [18]. LSTM models used to be the state of the art when
it came to natural language processing models until 2017, when transformers were introduced with
a recognized paper in machine learning: "All you need is attention" [16]. Due to this paper, we
considered using a transformer for solving our time series classi�cation problem. After a reasonable

3
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amount of research, this paper on using them on time-series [17] convinced us otherwise. We did
not look further into it.
As an alternative to the LSTM model, since decision trees have proven their e�ectiveness on clas-
si�cation countless times, even more so in 
ight destination prediction [5] where a random forest
algorithm was used, we opted for a gradient boosting model. It is a popular choice when it comes
to classi�cation and usually said to outperform the classic random forest technique.

2.4 Adversarial Machine Learning

Adversarial machine learning is a great solution to evaluate the stability and to verify the resistance
of a model against a potential attacker that is actively trying to misdirect the predictions. It is
known to be an underrepresented technique to legitimize the use of machine learning to solve tasks,
while making sure we are providing honest and accurate results [8].
To get feasible ideas as to how to attack our model, we looked into possible adversarial attacks on
machine learning models with this survey [2] and noted, that an evasion and poisoning attack were
both possible approaches. Our goal had become the creation of a naive-based and targeted-based
attack on our model.

So far, predicting trajectories with an LSTM and predicting destinations have been worked on
with a random forest algorithm. Instead, we made predictions in real-time using a gradient booster
algorithm and then trying to defy those capabilities using adversarial machine learning.



Chapter 3

Data Acquisition and Preprocessing

3.1 Sources of Data

We used several sources of data that could a�ect the behaviour of our models and are therefore
clari�ed explicitly in this section.

3.1.1 Aircraft Database

To gather trajectories that are bene�cial to train our models on, the �rst step was to choose the
aircraft of interest. There are countless planes that all have di�erent purposes of 
ying. We needed
to keep them in separate categories whilst ignoring the aircraft that are pointless to predict: it
was necessary to �lter out planes that we are not interested in. For us this meant that we had to
ignore all the planes that disclose information on where they are planned to land such as commercial

ights.Their scheduled 
ights are publicly made available by various websites such as OpenSky [7] &
Flightradar24 [1]. Therefore, commercial 
ights were the ones were �ltered out �rst. Furthermore,
to enhance individual performances of each classi�er on di�erent aircraft types, we heuristically
clustered the non-commercial planes into four categories: Private, Business, Government/State
and Military. This was done thanks to the OpenSky aircraft database, that gave away information
on aircraft models and the kind of operator. To better understand the distribution of the aircraft
owners in each category, we provide a table below 3.1 and a plot in the Appendix A.2.

Owner Type Number Of Planes

Military 11882
Private 66366

Business 32687
State/Government 2180

Table 3.1: Aircraft's to Owner Types

The decision of clustering aircraft owner's into di�erent categories was made, based on an
attempt to distinguish the di�erent plane behaviors: The 
ight path, the airports where the planes
land on, their general 
ying altitude and their climbing rates seemed to di�er depending on the the
owner type. e.g business planes will not land on the same airports than military planes. Therefore
we also clustered the airports based on the 
ights that were made by the di�erent plane owners,
according to who landed where. How the aircraft are clustered has an immense impact on how
accurate the prediction will be. To justify our claim about the 
ight paths di�ering according

5
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to the owner type we looked extensively at their behavior: a large mount of private planes will
circle around their starting position and land at their departure airport. This was noticed while
gazing over multiple 
ight paths and then was con�rmed by polar plots like these ones 3.1. We can
observe that private planes often orbit around the airport, while the business plane 
ies head on
their destination, until it is close to it's desired airport, where it will engage in a landing maneuver.
To further support this case, we added 2 
ights that were categorised as private in the Appendix.
A.4a A.4b

(a) Business 
ight (b) Private Flight

Figure 3.1: Polar plots on 2 plane's heading with the time in seconds

3.1.2 Aircraft State Vectors Database

Once we knew which planes and their respective owner we want to track, we gathered their state-
vectors from the OpenSky historical database, which included the following features: timestamp,
longitude, latitude, heading, altitude and the estimated arrival airport. To get more insight on the
the state vectors, some feature extrapolation was performed and since the data from the database
was noisy, it had to be cleaned up and re-sampled to further improve performance. We added a
table 3.2 and the matching �gure to get an idea of the distribution of the 
ights that were recorded
from the beginning of the year 2022, to June 2022. A.3.

Owner Type Number Of Flights

Military 40180
Private 50268

Business 459746
State/Government 24601

Table 3.2: Number of Flights to Owner Types

3.1.3 Airport Database

To help us with the clustering, we downloaded the airports names, latitude, longitude from the
"ourairports" website [6]. The airport database also includes runway lengths and heading for some,
but not for all air�elds. Unfortunately, not enough airports had all of those speci�cations which
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refrained us from using the speci�cations as features. We ended up solely using the longitude and
latitude. The code to show how we clustered them with the sklearn module is in the appendix
C.1. In the paper [5], the authors used 150 clusters, which ended up being e�ective for us too, as
you can observe with the elbow curve that we added in the AppendixA.1. Technically we predict
a narrower location since we are working with a di�erent clustering for each owner type, compared
to one for all. For a visualisation of those clusters, we added a �gure below 3.2 to get a proper
impression of the granularity. More speci�cally, these are the clusters that were created for the
private 
ights that landed in Europe.

Figure 3.2: The clustering of the airports used by private 
ights in Europe

3.2 Data Cleaning

After acquiring the data, analysing it and trying to create a �tting model, we determined that
several cleaning processes were necessary. We came back on this matter several times because some
issues were discovered only later on.

3.2.1 Excluding Outliers

We noticed that some of the 
ight trajectories contained data points that were clearly noise. An
example is provided in the appendix A.5a. The question then came up, as to how to take care of
those outliers. We looked at several options on how to treat them, and chose to heuristically �lter
out the state vectors, that had a speed that did not seem within reason. More speci�cally, the speed
that we calculated in the feature extrapolation helped us to �lter out unrealistic distances that could
not have been performed in a short amount of time: any two coordinates that were recorded some
time apart that resulted in a speed over 300m/s were discarded. Even if the algorithm discarded
one too many data-points, with our re-sampling and interpolation, we ended up getting a data-set,
that was more uniform than before.

3.2.2 Re-sampling and Interpolation

Originally, some 
ights contained a data-point every second, other 
ights had signi�cant gaps that
could be interpolated. To reduce the variability of the granularity of the state vectors, we �rst tried
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to re-sample the data to get a data-point every 15 seconds and interpolate gaps up to 5 minutes.
The initial choice of a sample rate of 15 seconds was made based on the OpenSky [7] live API's
reliability: When trying to get the live state vectors from the OpenSky database, we managed to
get a response approximately every 15 seconds. This granularity turned out to be too much data
for not enough entropy. We ended up choosing a sample rate of 1 minute, which fairly reduced the
data-set's size and the time of training. It was a necessary reduction to perform the adversarial
attacks later on. The data size was reduced from originally 50GB to 7GB. The re-sampling and
interpolation results of one 
ight can be found in the appendix. A.5

3.2.3 Feature Extrapolation

To ease the process of classi�cation for the models, we chose to extrapolate new features. We ended
up not keeping all of the features, because some did not make a signi�cant di�erence. Moreover,
they were clogging the pipeline for our adversarial attacks instead of giving us better predictions.
We tried adding features such as

- mapping the seconds/minutes/hours onto sinusoidal functions to use the temporality of the
landing of aircraft's, thanks to the timestamps of the data-points

- the distance between a data-point and the previous one thanks to the longitude, latitude and
the haversine distance equation 3.1

- the ground speed of the aircraft, thanks to the distances between the points and the times-
tamps

- the GPS heading of the aircraft, thanks to longitude and latitude of 2 data-points and this
formula 3.2

d = 2R arcsin

r

sin2 � '
2

+ cos ' 1 cos' 2 sin2 � �
2

(3.1)

� = atan2(cos� 2 � sin � �; cos� 1 � sin � 2 � sin � 1 � cos� 2 � cos � � ) (3.2)

with:

- R being the earths radius, which was chosen to be 6,371 km

- � being the latitude

- � being the longitude

After looking through feature importance plots, we ended up keeping these features 3.3. In
other words, these features ended showing to be the most valuable ones.

Longitude Latitude Heading Altitude Ground Speed Vertical Rate

Table 3.3: Features used for the prediction



Chapter 4

Implementation

4.1 Models

The paper on 
ight destination deanonymization by an online attacker [5] suggested the idea of
using a deep-learning model, more speci�cally a recurrent neural network. A popular choice of RNN
is the long short-term memory model. We invested non-negligible time and e�ort designing and
training the deep learning model with various parameters, but we ended up choosing the gradient
booster model to perform the adversarial machine learning attacks.

4.1.1 Long Short Term Memory

Knowing that LSTM models perform well when it comes to time series modeling and classi�ca-
tion, we tried tweaking di�erent parameters to solve our problem. We originally chose a di�erent
prediction domain to make our �rst evaluations on the models. Our �rst approach implemented a
prediction on the top 10, 100 and 1000 most 
own to airports with all owner types for one classi�er
without clustering them. For the features, we chose to use the ones mentioned prior 3.3 and for the
length of the sequence, we chose 3 data-points 15 seconds apart. For the sizes of the hidden layers,
when trying to predict 
ights to the top 100 
own to airports, we tried a few di�erent dimensions
from 32 to 512. To predict the top 1000 airports we tried hidden layers of sizes 512 to 2048. Con-
nected to the last hidden layer, we added 1 more dense layer of the same size as the airports, to
give it another possibility to diversify its prediction. To make sure our prediction was as accurate
as possible, we also tried designing the LSTM network with 2 connected dense layers at the end
but noticed, that one was enough and a second one just slowed down the learning capabilities of
the model. In other words, the depth of the network inferred enough information to predict the
�nal airport. We added a snippet of the implementation in the appendix C.3.

4.1.2 Gradient Booster

Since gradient boosting is one of the most popular methods for classi�cation, we thought it would
be a great opportunity for us to work with it. Indeed, it worked as expected, it turned out to be a
viable option to test our adversarial machine learning attacks. For the features, we 
attened three
data-points that followed each-other, to simulate a realistic opportunity to predict the destination:
with just one we would have less information, with more than 3 we would have to wait longer to
get results in a live prediction scenario. The gradient boosting was performed on the data-set that
was re-sampled to be one state vector per minute. For the de�nite implementation, we used the
python XGBoost library and tried a few learning rates and max depths. We came to the conclusion

9
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that a learning rate of 1e-5 was necessary and for the maximal depth, the default of 6 ful�lled the
requirements. Although, after examining the business 
ights, we noticed that a greater depth was
a necessary because of the discrepancies in data-set sizes. We opted for a maximal depth of 10 for
the business 
ights. Fortunately, when saving the classi�ers, their size were reasonable.

4.2 Experimental Setup for the Models

4.2.1 Data Streams

We will examine how the training and testing data was fed to the models, to be sure that no
confusion arises: We opted for an 80/20 split.

Training Data

The 
ights did not contain the right amount of state vectors to get n following data-points, which is
why we had to omit a few. For each 
ight path X 0, containing k state vectors with each containing
m features, we ignored the �rst state vector(s) i of each 
ight, to be able to reshape them into a
k� i

n � n � m matrix 4.1. In other words if n - k, we ignored as many state vectorsi as necessary,
with their timestamps being as early as possible. For the target vector y, we gave up as many rows
as the reshaped matrix X has:bk

n c. Meaning that one 
ight path gives us multiple predictions to
train our model on, since we have multiple points in time as to when to make our prediction. The
python code is in the appendix C.2.

X 0
k� m =

2

6
4

x1;1 : : : x1;m
...

. . .
xk;1 xk;m

3

7
5

reshaping
������! X bk

n c� m�n =

2

6
4

x i; 1 : : : x i;m �n
...

. . .
xbk

n c;1 xbk
n c;m�n

3

7
5 (4.1)

Test data

To evaluate our model, we tested the accuracyn minutes before the landing. If there was no data-
point to evaluate the model n minutes before, we allowed the prediction to be made on data-points
up to 5 minutes before the time we originally wanted to assess the accuracy on. We are assuming
that the prediction did not change drastically. if we did not proceed in that way, we would not have
had enough data-points to evaluate our model and fully assess its capabilities. To dissimulate any
confusion, we have included a graphical representation to show the minimal and maximal ranges
from where we sampled the state vectors from.

4.2.2 Classi�er Experiments

After having set up the data streams, we proceeded with designing the experiments. Our �rst goal
was to prove that we can build an accurate model to predict the destinations of the planes early
enough.
We �rst set up tests to compare the LSTM and GB model to choose with which one of them we
would proceed with our Adversarial Attacks. Those tests included testing the accuracy on the 100
and 1000 most 
own to airports 30 minutes before landing. We also based our analysis on their
confusion matrices to understand the limitations of each model.
Subsequently, we chose the best performing model and to further prove its capabilities, we tested its
accuracy on all planes every 10 minutes 2 hours prior landing which then can give us the legitimacy
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to attack the model.
Following this, we then investigated how the best classi�er judges the importance of each feature,
to forge the most e�ective dissimulation using adversarial attacks.

Figure 4.1: testing data timeline graphics



Chapter 5

Adversarial Attacks

We now know that it should be possible to predict where a plane is going to land before it actually
does. There are numerous ways to deceive machine learning models to let them wrongfully predict
data. We will here take a look at two types of adversarial attacks that could potentially be made
on our model. Each time we set an adversarial attack scenario, the attackers capabilities will be
mentioned.

5.1 Evasion Attack

An evasion attack is the concept of trying to throw o� a model, after it was trained, as if it was
already deployed. It is about checking if we can miss-direct its predictions by changing the inputs.
In our case it we would be altering our path as much as possible to get a wrong prediction. We
could pose this threat as a white- and black-box attack. If we know exactly how the model works we
can more easily throw o� the prediction. More speci�cally, if we have information on the airports
or clusters that are used, We can try to perfectly retrace a path that would typically 
y to one
cluster and change direction only at the very end. For the most e�ective attack and to not lose
too much time altering our path to imposture another 
ight, we can choose to head towards one
destination that is close to actual destination.Even if we do not know how the clusters were built
or which 
ights were chosen for the training data, we can make educated guesses by looking on
websites that are publicly accessible such as the "ourairports" website[6] where over 70,000 airports
are referenced including their coordinates.
We did not perform evasion attacks on our model because we concluded that solely delaying the
prediction, would not outweigh the cost in energy and time that would be induced by this attempt.

5.2 Poisoning Attack

A more viable option would be altering the database with a poisoning attack which assumes that
we can inject new 
ights, which does not seem too out of reach, as we have discussed in the related
work section. Subsequently, there were a few ways to misdirect the model. A poisoning attack can
be done as a white box or black box attack. Just as we mentioned in the evasion attack section,
it would not make much of a di�erence, since the data on where airports are located, is publicly
available. Although, if you know how the clusters have been set-up, this would give you more
insight, as to how to falsify the data as e�ectively as possible. We created two data-sets to test our
model: a naive poisoned and a targeted poisoned training data-set and then compared how both
attacks would a�ect the prediction on the test data.

12
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5.3 Experimental Setup for the Adversarial Attacks

5.3.1 Naive Poisoning Attack on our Model

To test the stability of the model against such attacks, we created a naive poisoned training data-set
and then monitored how the model's performance changed. Naively injected, in our case, is the idea
of multiplying all the 
ights that went to one random destination yi , without the attacker having
a speci�c target in mind. We solely wanted to test how the model's accuracy changed on the test
set, after a portion of the training data-set had been fabricated. We actively chose to sample 
ights
from only one cluster: if we randomly duplicated all the possible 
ights, we would have obtained
the same accuracy and the model would not have been a�ected. The naive poisoning algorithm is
given as a pseudo code here 1 and in the appendix in python C.4. The algorithm randomly chooses
a target destination yi and samples n times from the 
ights 2 X that are supposed to land at yi .
To make the relationship between the added 
ights and the original size of the data-set clearer, we
will test for the amount of poisoned 
ights jP j

jP j+ jX j %,
We now can vary the amount of poisoned 
ights by changingn and compare the new scores with
the baseline scores and determine the stability of our classi�cation.

- X being the training data, y the true destination

- f (X ) = y, y being the destinations of each 
ight X

- n being the number of poisoned 
ights

- jP j = n a bag of the the fabricated 
ights

- X new the new bag of 
ights with duplicated and original 
ights

Algorithm 1 Pseudo-code Naive Poisoning

yi 2 y . random destination yi

while n 6= 0 do
X k ; f (X k ) = yi . X k sampled 
ight from 
ights that land at yi

P  X k

n  n � 1
end while
X new  X [ P

5.3.2 Targeted Poisoning Attack

When using the word targeted, we are referring to the desired destination of the attacker. Supposed
that an attacker wants to 
y to a destination yi , in an attempt to miss-direct the model, he will
inject an amount n of 
ights, that landed to the k closest clusters toyi .
To achieve the most promising results, we found thek closest possible destinationsyj , in a radius
� and yj 2 D; j 6= i . Then, we randomly sampledn 
ights that 
ew to any of the destinations in
D . This implies that we will sample the data-points from all the 
ights that landed close enough
to yi . Finally, we looked at how many 
ights were then wrongfully labeled and how many n 
ights
it took to achieve this. This attack should be more e�ective, since the confusion of the destination
could happen rather quickly if a noticeable amount of 
ights land close to the desired destination.
The classi�er may over-�t on the destinations D around yi .



5.3. EXPERIMENTAL SETUP FOR THE ADVERSARIAL ATTACKS 14

Algorithm 2 Pseudo-code Targeted Poisoning

yi 2 y . y i being the attackers desired ending location
yj 2 y; j 6= i do

while k � 0 do
if jjyj � yi jj � � then . � smallest radius that still includes k clusters

k  k � 1
D  yj . jD j = k, k possible destinations

end if
end while

end
while n � 0 do

X j  X
if f (X j ) 2 D then

P  X j

n  n � 1
end if

end while
X new  X [ P



Chapter 6

Results & Discussion

6.1 Classi�ers

We found hints on how to work with an LSTM to predict the destination. We also tested how the
gradient booster model performs, depending on how early we try to predict the �nal cluster. The
GB classi�er performed better than the LSTM which led us to further investigate its capabilities
on predicting the destination as early as possible. We will go over the �rst results of the LSTM to
justify our choice to move forward with the GB model.

6.1.1 LSTM

After thoroughly testing di�erent hidden state sizes with various number of airports, we deduced
that an LSTM could be a good approach. Nonetheless, considering that we are not working
with enough data-points that follow each-other, defeats the purpose of an LSTM. For the top 100
airports, our best score was 0.51, 30 minutes before landing, obtained with 128 hidden layers. To
further analyse the performance of our model, a confusion matrix will be provided in the appendix
that includes the results with 128 B.1b and 32 hidden states B.1a. The logarithmic function was
applied to the values, to expose the miss-classi�cations better.
We can observe that the wrong predictions are coherent, since the airports in the square are all
in the vicinity of each other geographically. More speci�cally, the visible square represents a few
airports in England, their names can be read on the x axis.
While using the same data-set, we made our �rst tests with a gradient booster model, which gave
us an accuracy of 0.73 which explains our choice to move forward with this classi�er, rather than
the LSTM.

6.1.2 Gradient Booster

Performance Analysis

As mentioned in the implementation of the gradient booster classi�er 4.1.2, we went into a more
detailed analysis of its performance, since the �rst results seemed more promising than the LSTM.
For each type of 
ight, we analysed how early we could predict where it would land, in steps of 10
minutes 6.1. For completion of data, we also added the matching table 6.1. The confusion matrix
to each owner is also provided in the Appendix for reference B.2.
As you can observe, we achieved a high accuracy on the predictions of the 
ights, which therefore
gave us a great opportunity to misdirect the classi�ers in the adversarial machine learning section.

15
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Figure 6.1: Gradient booster performances

We can note that some planes, that were 
own by di�erent owner types, had better predictions than
others at di�erent times. We think that there are a few reasons for that: The state/government

ights might have been easier to predict because of the size of the aircraft subset. We are not
referring to the number of 
ights that were conducted by the owner type, but the number of planes
that 
ew those 
ights. Having less planes to predict, means less discrepancies in behavior of all
kinds: more consistencies in speeds, position, climbing rates. This would also explain why business
and private planes are the least accurate 30 minutes and more before landing. We can see in the
table 3.1 that both of those categories have more planes to classify than military and government
aircraft's.
To explain why the prediction of private 
ights is the least accurate right before landing, we
suggested that it is due to them including more trajectories that simply circle around the airport
and then land where they departed from. We have two 
ights in the Appendix that underline this
matter A.4b, A.4a. This makes them di�cult to predict, especially when the private 
ights also
have trajectories that simply go from one cluster to another. Therefore, solely assuming that a
plane would land where it started from was not enough either to classify the private 
ights.

Feature Importance

The feature importance of each variable, given by the XGBoost module's function, can be seen in
this �gure 6.2. The order of the recorded data-points is de�ned by the number in the feature names:
From 0 to 2, with 2 being the last data-point of the 3. As you can observe, the last data-points
are the most important ones, more speci�cally the heading, longitude and latitude. Nevertheless,
the other features are also necessary: The combination of the �rst and last data-points, that are



6.1. CLASSIFIERS 17

minutes before GOV BIZ MIL PRV
10 0.95 0.98 0.95 0.94
20 0.92 0.94 0.9 0.82
30 0.89 0.86 0.85 0.7
40 0.86 0.74 0.81 0.63
50 0.83 0.66 0.77 0.6
60 0.83 0.58 0.75 0.56
70 0.78 0.53 0.72 0.53
80 0.75 0.49 0.67 0.49
90 0.69 0.45 0.62 0.46
100 0.66 0.42 0.56 0.46
110 0.62 0.4 0.51 0.46
120 0.63 0.38 0.5 0.46

Table 6.1: f1 scores by aircraft owner type n minutes before landing

here 2 minutes apart, can apparently give us the biggest insight as to where the plane is going to
land. This makes sense, since they can give one the greatest insight about the 
ight's changes. The
altitude's feature importance might not be higher, because it only matters towards the end of the

ight: Typically, a plane is at a constant altitude and only at the very end will it descend to it's
destined airport. The landing phase is only a short period of the full 
ight which explains the lack
of relevance of the altitude for the prediction.

Figure 6.2: feature importance of State/Government 
ights
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6.2 Adversarial Attacks

After having veri�ed that our model performs well, we now are going to analyse the stability of the
gradient booster classi�er, thanks to the adversarial machine learning attacks discussed prior. We
did not proceed with the attacks on all owner types because we are con�dent that the results will
be consistent across the board. Especially since we chose to attack the most stable classi�er of all
four: The Government/State 
ights 6.1.

6.2.1 Naive Poisoning

Here we have the results for a progressively poisoned data-set for Government/State owned Air-
craft's 6.3. The matching table has been added to the appendix B.1. As expected, we can observe
that the more duplicated 
ights we inject in the training data-set, the worse the model performs.
The declining accuracy on the graph of the test data-set's performance can be explained through
the increasing amount of fake 
ights. When we have more than 90% of 
ights that are bogus, the
overall accuracy remains surprisingly high. It is due to how the gradient booster classi�er is built:
it creates trees that will only miss-classify 
ights in a speci�c region, more speci�cally: around the
randomly chosen cluster. We need a substantial amount of 
ights to mask the real destinations.
Moreover, the perturbation is not signi�cant compared to the amount of 
ights that were added
to get this result. It is unachievable to inject that many 
ights in the database without getting
detected.
In the Appendix, we can observe the confusion matrices that showcase how the poisoning a�ects
the miss-classi�cations 30 minutes before landing B.4. On the most poisoned databases we can
observe which cluster was sampled: n°136. We can tell because of the horizontal line that suggest
an over-�tting on one speci�c cluster.

Figure 6.3: Naive poisoning on GOV 
ights
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6.2.2 Targeted Poisoning

For our targeted poisoning attack, we chosek = 5 closest clusters to cluster 36,D = 93; 88; 65; 132; 119
to get the results in 6.4. As a visual aid to understand how the clusters were set-up, we provided
a �gure in the Appendix B.5. We chose to poison this cluster speci�cally, because of its high accu-
racy when it is not poisoned. This can be con�rmed when looking at the curve when 0 duplicated

ights were added. We also made sure to have enough clusters around target cluster 36, to have
the opportunity to duplicate 
ights that landed at clusters D . There are exactly 625 
ights that
landed in cluster 36 in the training data-set, which can help one understand how many 
ights were
added compared to how many 
ew to the cluster.
We can observe in the plot 6.4 that the targeted attack is much more e�ective than the naive
poisoning attack. When too many 
ights that landed close to n°36 were duplicated, the gradient
booster classi�er cannot separate the trajectories anymore. In our case, with 2000 added 
ights,
the classi�er's accuracy already dropped to half of its original value. We can clearly attack this
model to misguide its prediction with a more reasonable amounts of injected 
ights compared to
the naive poisoning method. The abrupt changes between the curves can be explained by the miss-
classi�cation of multiple 
ights at once: the trajectories of the 
ights that resemble each-other will
trivially be predicted erroneously at once.

Figure 6.4: Targeted poisoning on cluster 36 in GOV 
ights
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Conclusion

7.1 Models

The LSTM model was not as e�ective as we hoped right away. This might be explained by the
network not being deep enough to learn the 
ight paths. We were using three data-points following
each-other, which meant we could only have 3 LSTM cells attached to one-other. We did not take
more because we thought that if we did, it would defeat the purpose of a rapid prediction, meaning
shorter than 2 minutes. Thankfully the gradient booster model gave us the necessary results to
predict the aircraft's �nal destination without needing the departure airports location.
We can say that we successfully created a model that accurately predicts where a plane will land
in the near future.

7.2 Adversarial Attacks

Although our model performs well predicting the destination of a plane before landing, we have
showed that it can be miss-directed with a reasonable amount of 
ights that were premeditatedly
selected and injected in an open-access, crowd-sourced database. Fortunately, it is impossible to
mislead the model on all of its cluster with a naive poisoning because of how the decision trees in
a gradient boosting model are built.
We have successfully found an approach as to how to attack the models predictions.

7.3 Live Destination Prediction

As a proof of concept, a live interactive map was created that allows one to identify where planes
are forecast to land. From the 100,000 planes that we selected and trained our model on, about
600 of them are typically live in the sky at the same time, depending on the time of the day. The
variability is quite high, which is due to 
ights mainly being held daytime in central Europe and
America. Here is a �gure of what the maps looks like 7.1. A demonstration is available on youtube
here to showcase the predictions that the classi�er has made. As you can observe, the model is
predicting single airports and not the clusters because it was created before grouping them. The
accuracy of the live predictions is then a�ected, because it is more di�cult to predict an airport
directly compared to a set of them, thankfully it still displays sensible results. The classi�er that
was used, gave us an accuracy of 0.6 on our test data-set, 30 minutes before landing on the top
1000 most 
own to airports which is remarkable considering some airports are only a few kilometers

20
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away from each-other.
We can say that we successfully created a live interactive map to predict aircraft destinations.

Figure 7.1: Landing Prediction

7.4 Future Work

To conclude the Thesis, we will go over future work that can be done to further improve the
prediction and in the matter of adversarial attacks, we will propose extensions, to elaborate the
threats.

7.4.1 Future work on the Model

In future studies, we could address the idea of clustering sets of plane identi�ers having similar

ight paths. As a result, we could create a classi�er for each of the plane identi�ers clusters,
which could lift the accuracy signi�cantly. This is an attempt to better the heuristic approach
of clustering the 
ights into the four categories that we originally chose. From what we could
observe in the �gure 6.1, the clustering has a big impact: there is a visible discrepancy between
the owner-type's accuracy's. This might also limit the transponders that deteriorate the data-set:
With a bit of luck, the miss-behaving plane's ADS-B Out transponders would end up in a separate
cluster, which would make the learning of accurate routes easier. We did observe that some 
ights
had altitudes that were clearly noise and instead of ignoring them, we now may be able to cluster
them together and still make sense of the data.
To further prove and extend the capabilities of the predictions, we could forecast the destination
of speci�c planes: To build on of the idea of the ElonJet account [15], that merely posts the 
ights
that were taken, after the plane lands, we could try to predict where a plane is going to land
before it does and when the model is con�dent enough with its prediction, tweet about it, before
the Twitter bot does. This could be achieved using transfer learning, which would help with the
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speci�city of non-commercial planes often landing at the same airports, while at the same time,
�ght against the lack of data that comes with using the trajectories of only one plane.

7.4.2 Future Work on Adversarial Attacks

As with any attack and defense scenario, we can raise the attackers capabilities to be as white-box
as possible or we can try to make the attacks more complex and precise. If the database operator
can easily spot and reject 
ights that seem to have been duplicated, or simply lightly altered,
we could assemble a generative adversarial model and create new 
ights that resemble as much
as possible to the ones that we can already get from the database. In other words: Supposed
duplicated 
ights may be detected by the database operator too easily, even if we induce some
noise, or minor di�erences to make them seem di�erent, one attack could be to create GAN, that
creates 
ights that simulate trajectories by using already existing 
ights as training data. It could
be insightful to see how well we can tell them apart afterwards, that is with how much con�dence
can the network tell if a generated 
ight is not real. We could use this as a metric to tell if the
database curator could spot if a 
ight created by the GAN has been fabricated.
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Data Appendix

Figure A.1: Elbow curves for all owner types
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Figure A.2: Proportion of aircraft for each owner type
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Figure A.3: Proportion of 
ights recorded for each owner type
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(a) Cessna 
ight

(b) Antonov Flight

Figure A.4: two private 
ights
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(a) noisy data

(b) de-noised, re-sampled, interpolated Flight

Figure A.5: data cleaning
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Results Appendix

(a) 32 hidden weights (b) 128 hidden weights

Figure B.1: LSTM confusion matrices 30 minutes before landing
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30

minutes before amount of poisoned 
ights
0.0 0.01 0.048 0.091 0.231 0.333 0.5 0.75 0.833 0.909

10 0.92 0.92 0.91 0.91 0.9 0.91 0.92 0.9 0.85 0.83
20 0.9 0.89 0.9 0.89 0.87 0.89 0.89 0.88 0.83 0.81
30 0.87 0.86 0.86 0.86 0.83 0.85 0.86 0.85 0.8 0.79
40 0.83 0.83 0.83 0.82 0.81 0.82 0.83 0.81 0.78 0.77
50 0.81 0.81 0.81 0.8 0.79 0.8 0.82 0.81 0.77 0.76
60 0.8 0.8 0.8 0.78 0.78 0.78 0.8 0.79 0.76 0.75
70 0.76 0.75 0.76 0.74 0.75 0.75 0.76 0.75 0.73 0.71
80 0.72 0.72 0.73 0.7 0.71 0.72 0.72 0.71 0.7 0.68
90 0.67 0.68 0.67 0.66 0.67 0.67 0.68 0.66 0.64 0.64
100 0.65 0.65 0.64 0.63 0.64 0.64 0.65 0.64 0.6 0.6
110 0.61 0.61 0.61 0.59 0.6 0.6 0.61 0.61 0.56 0.55
120 0.61 0.61 0.61 0.61 0.61 0.6 0.61 0.59 0.57 0.56

Table B.1: f1 scores by aircraft owner type n minutes before landing

minutes before 
ights added
0 1000 2000 5000 10000 50000 100000

10 0.98 0.99 0.5 0.5 0.43 0.17 0.0
20 0.91 0.92 0.5 0.49 0.36 0.06 0.0
30 0.85 0.84 0.57 0.56 0.38 0.07 0.0
40 0.83 0.83 0.45 0.47 0.3 0.05 0.0
50 0.82 0.81 0.43 0.44 0.31 0.07 0.0
60 0.77 0.77 0.46 0.51 0.33 0.09 0.0
70 0.69 0.66 0.38 0.41 0.28 0.03 0.0
80 0.62 0.56 0.5 0.5 0.38 0.06 0.0
90 0.4 0.4 0.3 0.3 0.2 0.0 0.0
100 0.4 0.4 0.4 0.4 0.4 0.2 0.0
110 0.0 0.0 0.0 0.0 0.0 0.0 0.0
120 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B.2: f1 scores by amount of duplicated 
ights added n minutes before landing on cluster 36
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(a) Private Flights 
ights confusion matrix (b) State/Government 
ights confusion matrix

(c) Business 
ights confusion matrix (d) Military 
ights confusion matrix

Figure B.2: gradient booster confusion matrices 30 minutes before landing



32

(a) feature importance of business 
ights

(b) feature importance of private 
ights

(c) feature importance of military 
ights
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(a) Naive Poisoning Confusion Matrix (b) Naive Poisoning Confusion Matrix

(c) Naive Poisoning Confusion Matrix (d) Naive Poisoning Confusion Matrix

(e) Naive Poisoning Confusion Matrix (f) Naive Poisoning Confusion Matrix
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(g) Naive Poisoning Confusion Matrix (h) Naive Poisoning Confusion Matrix

(i) Naive Poisoning Confusion Matrix (j) Naive Poisoning Confusion Matrix

Figure B.4: confusion matrices naive poisoning 30 minutes before landing
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Figure B.5: cluster locations around our target cluster 36



Appendix C

Code Snippets Appendix

1 from sklearn . cluster import KMeans
2 n_clusters = 150
3

4 for OT in owner_types :
5 f l ights = pd. read_csv ( f 'data / f l ights / f l ights_ {OT }. csv ')
6 kmeans = KMeans ( n_clusters = n_clusters , init = 'k - means ++ ')
7

8 airport_counts = fl ights [ ' estarr ivalairport ' ]. value_counts ()
9 airport_counts . sort_index ()

10 df = X[X[ ' ident ' ]. isin ( airport_counts . keys () ) ] #keep airport info only for
f l ights we fly to

11 df . sort_values ([ ' ident ' ])
12

13 kmeans . fit (df [[ ' lat i tude ' , ' longitude ' ]]) # Compute k- means cluster ing .
14 df [ ' c luster_label ' ] = kmeans . f i t_predict (df [[ ' lat i tude ' , ' longitude ' ]])
15 centers = kmeans . cluster_centers_ # Coordinates of cluster centers .
16 # mapping for the airports to the clusters
17 mapping = pd. Series (df . c luster_label . values , index =df . ident ) . to_dict ()
18 #save mapping
19 pd. Series (df . c luster_label . values , index =df . ident ) . to_csv ( f 'data / airport /

c luster_mappings / cluster_mapping_ {OT }. csv ')
20

21 # create fi le for cluster information : posit ion of center
22 cluster_id = np. array ([ i for i in range (150) ])
23 cluster_info = pd. DataFrame ([ cluster_id , centers [: , 1] , centers [: , 0]]) .T
24 cluster_info . columns = [ ' c luster_id ' , ' longitude ' , ' lat i tude ']
25

26 #map the cluster id 's to the fl ights
27 f l ights [ ' a i rport_cluster ' ] = f l ights [ ' estarr ivalairport ' ]. map( mapping )
28

29 #save
30 cluster_info . to_csv ( f 'data / airport / c luster_infos / cluster_info_ {OT }. csv ' , index

= False )
31 f l ights . to_csv ( f 'data / f l ights / f l ights_ {OT }. csv ' , index = False )

Listing C.1: clustering of the airports

1 svs = pd. read_csv ( f 'data / state_vectors / train / svs_ { owner_type }. csv ')
2 f l ights = pd. read_csv ( f 'data / f l ights / f l ights_ { owner_type }. csv ')
3 # only keep n_of_dp_fl ight , ( ignore i f irst )
4 n_of_dp_f l ight = (svs . groupby ( ' f l ight_id ') . size () / n_of_data_points ) . apply ( f loor )*

n_of_data_points

36
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5 modif ied_groups = []
6 for name , group in svs . groupby ( ' f l ight_id ') :
7 group = group . tai l ( n_of_dp_f l ight [ name ]) #only keep last dp of each fl ight
8 modif ied_groups . append ( group )
9 svs = pd. concat ( modif ied_groups , axis = 0)

10 # reshaping to k/m x m*n
11 reshaped_f l ights = pd. DataFrame (svs [ features_to_predict ]. to_numpy () . reshape ( -1 ,

n_of_data_points * n_of_features ))
12 X = pd. concat ([ reshaped_f l ights ] , axis = 1)
13 # create y according to X and return both

Listing C.2: training data in
ux

1 class LSTM_network (nn . Module ) :
2 def __init__ (self , input_size , hidden_size , output_size ) :
3 super ( LSTM_network , self ) . __ini t__ ()
4 self . input_size = input_size
5 self . hidden_size = hidden_size
6 self . output_size = output_size
7

8 self . lstm_layer = nn.LSTM( input_size , hidden_size , num_layers =n_layers ,
batch_f irst =True )

9 self . l inear_layer_1 = nn. Linear ( hidden_size , output_size )
10 #self . l inear_layer_2 = nn. Linear ( output_size , output_size )
11

12 def forward (self , x , hidden ):
13 output , (hn ,cn) = self . lstm_layer (x , hidden )
14 output = self . l inear_layer_1 ( output )
15 # output = self . l inear_layer_2 ( output )
16 return output , (hn ,cn)
17

18 n_layers =1
19 hidden_dim = 128
20 n_features = len ( features )
21 top_n_airports = 100
22 model = LSTM_network ( n_features , hidden_dim , top_n_airports ) . double ()
23

24 epochs = 100
25 loss_funct ion = nn. CrossEntropyLoss ()
26 optimizer = torch . optim .Adam( model . parameters () , lr =1e -5)

Listing C.3: LSTM network

1 # naively poison the dataset by dupl icat ing n fl ights m times to a random
dest inat ion

2 class naive_poisoned_train ing_dataset ( Dataset ) :
3 def __init__ (self , owner_type , n_f l ights ) :
4 svs = pd. read_csv ( f 'data / state_vectors / train / svs_ { owner_type }. csv ')
5 f l ights = pd. read_csv ( f 'data / f l ights / f l ights_ { owner_type }. csv ') .

drop_dupl icates ()
6

7 # poisoning
8 random_cluster = np. random . choice ( f l ights [ ' a i rport_cluster ' ]. unique () ) #

return a random cluster number of on of the f l ights
9 dupl icable_f l ights_ids = fl ights [ f l ights [ ' a i rport_cluster ' ] ==

random_cluster ]. f l ight_id
10

11 # sample direct ly from svs from dupl icable f l ights
12 dup_f l ight_ids = np. random . choice ( dupl icable_f l ights_ids , size =( n_f l ights )

, replace =True )
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13 poisoned_svs_l ist = []
14 for f_id in tqdm( dup_f l ight_ids ) :
15 poisoned_svs_l ist . append (svs [svs [ ' f l ight_id '] == f_id ])
16

17 poisoned_svs = pd. concat ( poisoned_svs_l ist , ignore_index =True )
18 #add poisoned fl ights
19 svs = pd. concat ([ svs , poisoned_svs ] , axis =0) . reset_index ()

Listing C.4: naive poisoning

1 from sklearn . neighbors import DistanceMetr ic
2 # return closest clusters to target cluster
3 def get_n_closest_cluster ( owner_type , cluster = 0, n_of_clusters = 1) :
4 clusters = pd. read_csv ( f 'data / airport / c luster_infos / cluster_info_ { owner_type }.

csv ')
5 clusters [ ' c luster_id '] = clusters [ ' c luster_id ' ]. astype ( int )
6

7 dist = DistanceMetr ic . get_metr ic ( ' haversine ')
8 clusters [ ' d istances_to_cluster ' ] = (dist . pairwise ( clusters [[ ' lat i tude ' , '

longitude ' ]]. to_numpy () )* earths_radius ) [ cluster ]
9 clusters = clusters .drop ( labels = cluster ) # exclude the cluster i tself

10 return clusters . nsmallest (n = n_of_clusters , columns = [ ' d istances_to_cluster '
]) [ ' c luster_id ' ]. to_l ist ()

11

12

13 class targeted_poisoned_train ing_dataset ( Dataset ) :
14 def __init__ (self , owner_type , cluster_to_jam , n_clusters_to_fake , n_f l ights ) :
15 svs = pd. read_csv ( f 'data / state_vectors / train / svs_ { owner_type }. csv ')
16 f l ights = pd. read_csv ( f 'data / f l ights / f l ights_ { owner_type }. csv ')
17

18 # poisoning
19 clusters_ids = get_n_closest_cluster ( owner_type , cluster_to_jam ,

n_clusters_to_fake )
20 dupl icable_f l ights_ids = fl ights [ f l ights [ ' a i rport_cluster ' ]. isin (

clusters_ids ) ]. f l ight_id
21

22 dup_f l ight_ids = np. random . choice ( dupl icable_f l ights_ids , size =( n_f l ights )
, replace =True )

23

24 poisoned_svs_l ist = []
25 for f_id in dup_f l ight_ids :
26 poisoned_svs_l ist . append (svs [svs [ ' f l ight_id '] == f_id ])
27

28 poisoned_svs = pd. concat ( poisoned_svs_l ist , ignore_index =True )
29 #add poisoned fl ights
30 svs = pd. concat ([ svs , poisoned_svs ] , axis =0) . reset_index ()

Listing C.5: targeted poisoning


