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Coercive combined � eld integral equations

R. HIPTMAIR¤

Received 24 March, 2003

Abstract — Many boundary integral equations for exterior Dirichlet and Neumann boundary value
problems for the Helmholtz equation suffer from a motorious instability for wave numbers related to
interior resonances. The so-called combined � eld integral equations are not affected.

This article presents combined � eld integral equations on two-dimensional closed surfaces that
possess coercivity in canonical trace spaces. For the exterior Dirichlet problem the main idea is to use
suitable regularizing operators in the framework of an indirect method. This permits us to apply the
classical convergence theory of conforming Galerkin methods.

Keywords: acoustic scattering, indirect boundary integral equations, combined � eld integral equa-
tions (CFIE), coercivity, boundary element methods, Galerkin schemes

1. INTRODUCTION

The propagation of time-harmonic sound waves in a homogeneous isotropic medium
that occupies the domain W » R3 is governed by the Helmholtz equation, which, in
non-dimensional form, reads

¡ DU ¡ { 2U = 0: (1.1)

Here, U designates the complex amplitude of either the density or of a velocity po-
tential (see Section 2.1 of [5]) and { > 0 stands for a � xed wave number. In acoustic
scattering W is the complement of a bounded scatterer W¡ and will be denoted by
W+ := R3 n W̄ ¡ . In this case Sommerfeld radiation conditions (see De� nition 9.5 of
[11]):

¶U
¶ r

(x) ¡ i{U (x) = o(r ¡ 1) uniformly as r := jxj ! ¥ (1.2)

have to be imposed ‘at ¥’, whereas on G := ¶W¡ we prescribe either Dirichlet
boundary conditions

U = g on G for some g 2 H1=2(G) (1.3)
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116 R. Hiptmair

or Neumann boundary condition

gradU ¢ n = j on G for some j 2 H ¡ 1=2(G): (1.4)

We take for granted that the boundary G is Lipschitz continuous. Thus, it will pos-
sess an exterior unit normal vector� eld n 2 L¥(G) pointing from W¡ into W+ . Nu-
merical approximation in mind, we will even assume that G is a curvilinear Lipschitz
polyhedron in the parlance of [7]. This will cover most geometric arrangements that
occur in practical simulations. We emphasize that non-smooth geometries are the
main focus of this paper.

It is well known that the above exterior boundary value problems possess unique
solutions (see Theorem 9.10 of [11]):

Theorem 1.1. The exterior Dirichlet problem (1.1) and (1.3), and the exterior
Neumann problem (1.1) and (1.4), respectively, for the Helmholtz equation have at
most one solution satisfying the Sommerfeld radiation conditions (1.2).

Integral equation methods are particularly suited for the numerical treatment
of exterior scattering problems, because they reduce the problem to equations on
the bounded surface G. A variety of schemes is conceivable, among them direct
and indirect methods. However, those that can be derived from an integral repre-
sentation formula for Helmholtz solutions in a straightforward fashion display a
worrisome instability: if {2 agrees with a Dirichlet or Neumann eigenvalue (reso-
nant frequency) of the Laplacian in W¡ , then the integral equations fail to possess
a unique solution. In light of Theorem 1.1 this may be called a spurious resonance
phenomenon.

Spurious resonances are particularly distressing for numerical procedures based
on the integral equations, because whenever {2 is close to an interior resonant fre-
quency the resulting linear systems of equations will be extremely ill-conditioned.
A wonderful remedy is offered by the Combined Field Integral Equations (CFIE),
which owe their name to the presence of both single layer and double layer potential
in the trial expression for the Helmholtz solution. This trick was independently be
discovered by Brakhage and Werner [1], Leis [10], and Panich [12] in 1965. Since
then, it has become the foundation for numerous numerical methods in direct and
inverse acoustic and electromagnetic scattering (see Chapters 3 and 6 of [5]).

In terms of mathematical analysis many combined � eld integral equations are
challenging. This is particularly true for non-smooth surfaces, for which the double
layer integral operator is no longer a compact perturbation of the identity in L2(G).
Thus, in the case of the exterior Dirichlet problem, Fredholm theory can no longer
be used to settle the issue of existence and uniqueness of solutions of the traditional
CFIE. Hence, modi� ed CFIE involving a regularizing operator have been suggested
for theoretical purposes [5,12].

Many options are available for the discretization of combined � eld integral
equations. We will only consider Galerkin schemes, because they seem to be the
only approach amenable to a rigorous theoretical treatment so far. However, the
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very lack of coercivity of combined � eld integral equations mentioned above turns
out to be a major obstacle to obtaining convergence results for Galerkin methods.

Hence, in this paper we also take the cue from the idea to introduce regulariz-
ing operators. We derive variational formulations that are coercive in natural trace
spaces, which guarantees asymptotically quasi-optimal convergence of Galerkin
boundary element solutions.

2. COERCIVITY

In this section we brie� y review the abstract theory of coercive bilinear forms and
its implications for Galerkin discretization. In general these results are well known
(cf. Chapter 2 of [11]), but they will be supplied for the sake of completeness. Below
V stands for a re� exive Banach space over the � eld C . This space has to support an
involutory, anti-linear mapping ¯ : V 7! V (related to complex conjugation). By V0

we denote the dual space, and by h¢; ¢iV 0£V the duality pairing.
Let d : V £V 7! C be a bilinear form, which is supposed to feature

° continuity, that is 9C > 0 : jd(u;v)j 6 CkukV kvkV 8u;v 2 V ; (2.1)

° V-ellipticity, that is 9c > 0 : jd(u; ū)j > ckuk2
V 8u 2 V: (2.2)

Therefore, we can associate a bounded operator D : V 7! V0 to d(¢; ¢) by

hDu;viV 0£V := d(u;v) 8u;v 2 V:

Lemma 2.1. If there is a continuous and V-elliptic bilinear form d on V , then
kvkV = kv̄kV for all v 2 V.

Proof. As ‘complex conjugation’ is an involution, we have ¯̄u = u. Thus

ckūk2
V 6 jd(ū; ¯̄u)j = jd(ū;u)j 6 C kūkV kukV :

This means kūkV 6 C=ckukV , which implies kvkV = kv̄kV .

Theorem 2.1. Given the above properties (2.1) and (2.2) of d(¢; ¢), the operator
D is an isomorphism.

Proof. By the de� nition of the norm in V0 we have

kDukV 0 = sup
v 6=0

jd(u;v)j
kvkV

> jd(u; ū)j
kūkV

> ckukV 8u 2 V:

This implies that D is injective and has closed range. Assume that D(V ) 6= V0. Since
D(V ) »V 0 is closed, the Hahn-Banach theorem con� rms the existence of v¤ 2V 00 =
V , v¤ 6= 0, such that hDu;v¤iV 0£V = 0 for all u 2 V . In particular d(v̄¤;v¤) = 0, which
yields a contradiction. Altogether, D has to be surjective.
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De� nition 2.1. A bilinear form a : V £V 7! C is called coercive, if it satis� es a
Gƒarding-type inequality

9c > 0 : ja(u; ū) + hKu; ūiV 0£V j > ckuk2
V 8u 2 V

with a compact operator K : V 7! V 0.

Theorem 2.2. The operator A : V 7! V 0 associated with a continuous bilinear
form a : V £V 7! C through hAu;viV 0£V = a(u;v), u;v 2 V , is Fredholm of index
zero.

Proof. Set

d(u;v) := a(u;v) + hKu;viV 0£V ; u;v 2 V:

It is clear that the bilinear form d is continuous. By Theorem 2.1 and (1.1) its asso-
ciated operator D : V 7! V 0 is an isomorphism. By de� nition of d we have

D = A + K () A = D ¡ K:

Hence, A is a compact perturbation of an isomorphism. According to Theorem 2.26
of [11] This implies that A is Fredholm of index 0.

Lemma 2.2. If a : V £V 7! C is a continuous coercive bilinear form for which
a(u;v) = 0 for all v 2 V implies u = 0, then there is cs > 0 such that

sup
v2V

ja(u;v)j
kvkV

> cs kukV ; sup
v2V

ja(v;u)j
kvkV

> cs kukV 8u 2 V:

Proof. The assumption of the theorem means that the operator A :V 7!V related
to a(¢; ¢) is injective. By Theorem 2.2 A is bijective and the inf-sup conditions are
a consequence of the open mapping theorem and of the fact that the norms of an
operator and of its adjoint agree (see Theorem 4.15 of [13]).

Next, we consider a sequence of closed subspaces Vn » V , n 2 N . The Vn must
be stable under conjugation. We assume that there is an associated sequence of
bounded linear operators Pn : V 7! Vn that converges to zero strongly, i.e.,

8u 2 V : lim
n!¥

ku ¡ PnukV = 0: (2.3)

If V is a Hilbert space and fVngn2N is a family of nested � nite-dimensional sub-
spaces such that

S
nVn » V is dense, then Pn can be chosen as orthogonal projection

onto Vn.
Now, we consider the variational problem

u 2 V : a(u;v) = hj;viV 0£V 8v 2 V (2.4)
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with j 2 V 0. For the remainder of this section, u will always stand for its solution.
The following theorem is the main tool in proving convergence for conform-

ing Galerkin approximations of coercive variational problems. A � rst version was
discovered by A. Schatz [14] (see also [16]).

Theorem 2.3. If the bilinear form a : V £V 7! C is coercive, continuous, and
injective (i.e. a(u;v) = 0 for all v 2 V implies u = 0), then there is an N 2 N such
that the variational problems

uh 2 Vn : a(uh;vh) = hj;vhiV 0£V 8vh 2 Vn

have unique solutions uh 2Vn for all n > N. Those are asymptotically quasi-optimal
in the sense that there is a constant C > 0 such that

ku ¡ uhkV 6 C inf
vh2Vn

ku ¡ vhkV :

Proof. We de� ne the operator S : V 7! V by

a(v;Sw̄) = hKw; v̄iV 0£V 8v 2 V:

Please note that Lemma 2.2 guarantees the existence of A¡ 1. Also by Lemma 2.2
S is continuous and we � nd S = (A¤) ¡ 1K̄. Hence, S inherits compactness from K.
Remember that compact operators convert strong convergence into uniform conver-
gence (see Corollary 10.4 of [9]), which means

lim
n!¥

k(Pn ¡ I)SkV = 0: (2.5)

Pick some uh 2 Vn and estimate

ja(uh; (Id + PnS)ūh)j > ja(uh; (Id + S)ūh)j ¡ ja(uh; (Pn ¡ Id)Sūh)j
> ja(uh; ūh) + hKuh; ūhiV 0£V j ¡ kakk(Pn ¡ Id)SkV kuhk2

V

> (cG ¡ kakk(Pn ¡ Id)SkV ) kuhk2
V :

Thanks to (2.5) it is possible to choose N 2 N such that kakk(Pn ¡ Id)SkV < cG=2
for all n > N. Then, with vh := (Id + PnS)ūh 2 Vn,

ja(uh;vh)j > 1
2cG kuhk2

V :

Making use of the (uniform) continuity of Pn and S, this yields the inf-sup condition

sup
vh2Vn

ja(uh;vh)j
kvhkV

> cd kuhkV 8uh 2 Vn; n > N : (2.6)
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Using (2.6) and Galerkin orthogonality we get for any vh 2 Vn, n > N,

ku ¡ uhkV 6 ku ¡ vhkV + kvh ¡ uhkV

6 ku ¡ vhkV +
1
cd

sup
wh2Vn

ja(vh ¡ uh;wh)j
kvhkV

6
µ

1 +
kak
cd

¶
ku ¡ vhkV :

This is the asserted asymptotic quasi-optimality with C := 1 + kak=cd .

3. BOUNDARY INTEGRAL OPERATORS

In this section we review important properties of boundary integral operators related
to Helmholtz’ equation. The main reference is the textbook [11] and the pioneering
work by M. Costabel [6].

Without further explanation we will use Sobolev spaces Hs, s 2 R , on domains
and boundaries, in particular H1(W), H1=2(G), and H ¡ 1=2(G) (cf. Chapter 2 of [11]).
Here, we merely recall the de� nition of the Sobolev–Slobodeckij norm

kuk2
H1=2(G) := kuk2

L2(G) + juj2H1=2(G) ; juj2H1=2(G) :=
Z

G

Z

G

(u(x) ¡ u(y))2

jx ¡ yj2 dS(x;y):

The corresponding Frechet spaces on unbounded domains will be tagged by a sub-
script loc, e.g. H1

loc(W). Their associated dual spaces will carry the subscript ‘comp’
to illustrate that they contain compactly supported distributions.

Writing

H(D;W) := fU 2 H1
loc(W); DU 2 L2

loc(W)g

for the domain of the Laplacian, we have continuous and surjective trace operators
(cf. Lemma 3.2 of [6]):

Dirichlet trace gD : H1
loc(W) 7! H1=2(G)

Neumann trace gN : H(D;W) 7! H ¡ 1=2(G)

that generalize the restrictions for smooth U 2 C¥(W̄)

(gDU)(x) = U(x); (gNU)(x) = gradU(x) ¢ n(x); x 2 G

respectively.
So far W » R3 has been a generic domain. Returning to our particular setting,

superscripts ‘+’ and ‘-’ will tag traces from W¡ /W+. Jumps are de� ned as

[gDU]G = g+
D U ¡ g ¡

DU; [gNU]G = g+
N U ¡ g ¡

N U:
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Averages are denoted by

fgDUgG = 1
2 (g+

D U + g ¡
DU); fgNUgG = 1

2 (g+
N U + g ¡

N U):

We recall that the bilinear symmetric pairing

­
j ;v

®
G :=

Z

G

uv dS; j ;v 2 L2(G)

can be extended to the duality pairing on H¡ 1=2(G) £ H1=2(G). Thanks to the de� -
nition of the Neumann trace we have the integration by parts formulas

Z

W¡

gradU ¢ gradV + DU V dx =
­
g ¡
N U;g ¡

DV
®

G (3.1)

¡
Z

W+

gradU ¢ gradV + DU V dx =
­
g+
N U;g+

DV
®

G (3.2)

for U 2 Hloc(D;W§), V 2 H1
loc(W§). We will also need spaces with ‘vanishing aver-

age’

H1=2
¤ (G) := fu 2 H1=2(G);

­
1;u

®
G = 0g

H ¡ 1=2
¤ (G) := fj 2 H ¡ 1=2(G);

­
j;1

®
G = 0g

where 1 2 H1=2(G) means the constant function ² 1 on G, whereas 1 2 H¡ 1=2(G)
refers to the functional v 7!

R
G vdS.

Lemma 3.1. The spaces H1=2
¤ (G) and H ¡ 1=2

¤ (G) are dual to each other with
respect to the pairing

­
¢; ¢

®
G .

Proof. For w 2 H1=2(G) denote by w¤ the average w¤ :=
R

G wdS ¢ 1. We point
out that

kw ¡ w¤k2
H1=2(G) = kwk2

L2(G) ¡ kw¤k2
L2(G) + jwj2H1=2(G) 6 kwk2

H1=2(G) :

Therefore, for j 2 H ¡ 1=2
¤ (G)

kjkH ¡ 1=2(G) = sup
w2H1=2(G)

j
­
j ;w

®
Gj

kwkH1=2(G)

6 sup
w2H1=2(G)

j
­
j ;w ¡ w¤®

Gj
kw ¡ w¤kH1=2(G)

= sup
w2H1=2

¤ (G)

j
­
j ;w

®
Gj

kwkH1=2(G)

:

This amounts to the assertion of the theorem.
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For � xed wavenumber { > 0 a distribution U is called a radiating Helmholtz
solution, if

DU + { 2U = 0 in W ¡ [ W+

¶U
¶ r

(x) ¡ i{U (x) = o(r ¡ 1) uniformly as r := jxj ! ¥:
(3.3)

Based on the Helmholtz kernel

F{(x;y) :=
exp(i{jx ¡ yj)

4pjx ¡ yj

we can state the transmission formula for radiating Helmholtz solution U (see The-
orem 6.10 of [11]):

U = ¡ Y{
SL([gNU ]G) + Y{

DL([gDU]G) (3.4)

with potentials

single layer potential: Y{
SL(l )(x) =

Z

G

F{(x;y)l(y)dS(y)

double layer potential: Y{
DL(u)(x) =

Z

G

¶F{(x;y)

¶n(y)
u(y)dS(y):

The potentials themselves provide radiating Helmholtz solutions, that is

(D + { 2)Y{
SL = 0; (D + { 2)Y{

DL = 0 in W ¡ [ W+: (3.5)

Moreover, they describe continuous mappings (see Theorem 6.12 of [11]):

Y{
SL : H ¡ 1=2(G) 7! H1

loc(R3 ) \ Hloc(D;W¡ [ W+)

Y{
DL : H1=2(G) 7! Hloc(D;W ¡ [ W+):

This means that we can apply the trace operators to the potentials. This will yield
the following four continuous boundary integral operators (cf. Theorem 7.1 of [11]
and [8]):

V{ : H s(G) 7! Hs+1(G); ¡ 1 6 s 6 0; V{ :=
©

gDY{
SL

ª
GK{ : H s(G) 7! Hs(G); 0 6 s 6 1; K{ := fgDY{

DLgG
K¤

{ : H s(G) 7! Hs(G); ¡ 1 6 s 6 0; K¤
{ :=

©
gNY{

SL

ª
G

D{ : H s(G) 7! Hs ¡ 1(G); 0 6 s 6 1; D{ := ¡ fgNY{
DLgG :

By the jump relations (see Theorem 6.11 of [11]):
£
gDY{

SL(l)
¤
G = 0;

£
gNY{

SL(l)
¤

G = ¡ l 8l 2 H ¡ 1=2(G)

[gDY{
DL(u)]G = u; [gNY{

DL(u)]G = 0 8u 2 H1=2(G)
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we � nd

g ¡
D Y{

DL = K{ ¡ 1
2 Id; g+

D Y{
DL = K{ + 1

2 Id

g ¡
N Y{

SL = K¤
{ + 1

2 Id; g+
N Y{

SL = K¤
{ ¡ 1

2 Id:
(3.6)

Besides, the Newton potential

(N{ f )(x) =

Z

R3

j{(x;y) f (y) dy; N{ : H ¡ 1
comp(R3) 7! H1

loc(R3 )

can be used to get the concise representations

V{ = gD ¯ N{ ¯ g¤
D (3.7)

K{ = fgDgG ¯ N{ ¯ g¤
N (3.8)

K¤
{ = fgNgG ¯ N{ ¯ g¤

D (3.9)
D{ = gN ¯ N{ ¯ g¤

N : (3.10)

Here, an ‘¤’ labels the dual adjoint operator. These expressions immediately show
the symmetries (see Theorems 6.15 and 6.17 of [11]):

­
y;V{j

®
G =

­
j ;V{y

®
G 8j;y 2 H ¡ 1=2(G) (3.11)

­
j;K{u

®
G =

­K¤
{j;u

®
G 8j 2 H ¡ 1=2(G); u 2 H1=2(G) (3.12)

­D{u;v
®

G =
­D{v;u

®
G 8u;v 2 H1=2(G): (3.13)

Crucial will be the ellipticity of boundary integral operators in the natural trace
norms (see Corollary 8.13 and Theorem 8.21 of [11]):

­
j̄;V0j

®
G > cV kjk2

H ¡ 1=2(G) 8j 2 H ¡ 1=2(G) (3.14)
­D

0v; v̄
®

G > cD kvk2
H1=2(G) 8v 2 H1=2

¤ (G): (3.15)

Therefore, V
0 : H ¡ 1=2(G) 7! H1=2(G) and D

0 : H1=2
¤ (G) 7! H ¡ 1=2

¤ (G) are isomor-
phisms and we conclude that for all j 2 H¡ 1=2(G), v 2 H1=2(G)

kV0jkH1=2(G) º kjkH ¡ 1=2(G) 8j 2 H ¡ 1=2(G) (3.16)
­V ¡ 1

0 v;v
®

G > ecV kvk2
H1=2 (G) 8v 2 H1=2(G) (3.17)

kD
0vk

H ¡ 1=2
¤ (G)

º kvkH1=2 (G) 8v 2 H1=2
¤ (G) (3.18)

­
j ;D ¡ 1

0 j
®

G > ecD kjk2
H ¡ 1=2(G) 8j 2 H ¡ 1=2

¤ (G): (3.19)

Here, º designates equality up to constants that only depend on G.
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From Theorem 9.15 of [11] we learn that for u;v 2 H1(G)

­D{u;v
®

G =
­V{curlGu;curlGv

®
G ¡ { 2

­V{(u ¢ n);v ¢ n
®

G (3.20)

where V{ has to be read as vectorial single layer potential, and curlG : H1(G) 7!
Lt(G) is the surface rotation, which agrees with rotated surface gradient. It can be
extended to a mapping curlG : H1=2(G) 7! (H ¡ 1=2(G))3 (see [3]).

Lemma 3.2. The operators V{ ¡ V
0 : H ¡ 1=2(G) 7! H1=2(G), K{ ¡ K

0 : H1=2(G)
7! H1=2(G), and D{ ¡ D0 : H1=2(G) 7! H ¡ 1=2(G) are compact.

Proof. Note that eF(r) := exp(i{r) ¡ 1=4pr is an analytic function on R. There-
fore the integral operator

(eN{ f )(x) :=
Z

R3

eF(jx ¡ yj) f (y)dy

has a continuous kernel with bounded derivatives and weakly singular second

derivatives. This means that eN{ is an operator of order +4, continuous eN : H ¡ 2
comp(R3 )

7! H2
loc(R3). Therefore we conclude the continuity of

V{ ¡ V
0 = gD ¯ eN{ ¯ gD : H ¡ 1=2(G) 7! H1(G):

The compact embedding H1(G) ,! H1=2(G) ,! H ¡ 1=2(G) � nishes the proof of the
� rst assertion.

To con� rm the second, we point out that

g¤
N : H1=2(G) 7! H ¡ 2

comp(W ¡ [ W+)

is continuous due to the continuous embedding H2
loc(W

¡ [W+) » Hloc(D;W ¡ [ W+).
Then, the identity

K{ ¡ K
0 = fgDgG ¯ eN{ ¯ g¤

N

combined with the compact embedding H2
loc(W

¡ [ W+) » H1
loc(W

¡ [ W+) gives the
result.

To con� rm the assertion for the hypersingular operator, we appeal to the formula
(3.20) and the compactness of V{ ¡ V

0 that carries over to the vectorial single layer
potential operator. Further the multiplication with n is an isometry L2(G) 7! L2(G)
such that the second term in (3.20) is readily seen to be a compact perturbation.
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4. CLASSICAL CFIE

We recall that indirect methods start from a potential representation for (exterior)
radiating Helmholtz solutions in W+. By virtue of (3.5) we may set

U = Y{
SL(j); j 2 H ¡ 1=2(G) or U = Y{

DL(u); u 2 H1=2(G): (4.1)

Applying g+
D to (3.6) we obtain the following integral equations for the exterior

Dirichlet problem:

V{(j) = g or (K{ + 1
2 Id)u = g:

Similarly, the resulting boundary integral equations for the Neumann problem are

(K¤
{ ¡ 1

2 Id)j = j or ¡ D{j = j :

However, these boundary integral equations are haunted by the problem of ‘reso-
nant frequencies’ (see Section 7.7 of [4]): if {2 is a Dirichlet eigenvalue of ¡ D in
W ¡ , then the Neumann traces of the corresponding eigenfunctions will belong to
the kernel of V{ and K¤

{ ¡ 1
2 Id. Conversely, if { 2 is a Neumann eigenvalue, the

Dirichlet traces of the eigenfunctions form the kernel of D{ and K{ + 1
2 Id. This fact

destroys injectivity of the operators in the boundary integral equations and bars us
from applying the powerful Fredholm theory outlined in Section 2.

As pointed out in the introduction, this awkward situation led to the development
of the classical combined � eld integral equations (cf. Section 3.2 of [5]). They can
be obtained from an indirect approach starting from the trial expression

U = Y{
DL(u) + ihY{

SL(u) (4.2)

with real h 6= 0. Applying the exterior Dirichlet trace results in the boundary integral
equation

g =
¡

1
2 Id + K{

¢
u + ihV{u (4.3)

whereas the exterior Neumann problem leads to

j = ¡ D{u + ih
¡K¤

{ ¡ 1
2 Id

¢
u: (4.4)

To begin with, we discuss (4.4) and set

C{ := ¡ D{ + ih
¡K¤

{ ¡ 1
2 Id

¢
:

Lemma 4.1. The operator C{ : H1=2(G) 7! H ¡ 1=2(G) is injective.
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Proof. Let u 2 H1=2(G) be a solution of C{u = 0. Then U given by (4.2) is
a Helmholtz solution that satis� es g+

N U = 0. Thus, the unique solvability of the
exterior Neumann problem according to Theorem 1.1 enforces U = 0 in W+.

By the jump conditions we conclude

g ¡
DU = ¡ u; g ¡

N U = ihu:

As a consequence of the integration by parts formula

ih
Z

G

juj2 dS =
­
g ¡

N U ;g ¡
D Ū

®
G =

Z

W ¡

jgradU j2 ¡ { 2jU j2 dx:

Since h 2 R n f0g, this involves u = 0.

The equation (4.4) is set in the space H¡ 1=2(G). Hence, the natural test space
is H1=2(G), which perfectly matches the space for the unknown u. We arrive at the
variational problem: � nd u 2 H1=2(g) with

­C{u;v
®

G =
­
j ;v

®
G 8v 2 H1=2(G): (4.5)

The next result shows that the assumptions of the abstract theory of Section 2 is
satis� ed for (4.5).

Lemma 4.2. The bilinear form
­C{¢; ¢

®
G : H1=2(G) £ H1=2(G) 7! C is coercive.

Proof. We can split
­C{u;v

®
G = ¡

­D
0u;v

®
G +

­
(D0 ¡ D{)u;v

®
G + ih

­¡K¤
{ ¡ 1

2 Id
¢
u;v

®
G:

The last term is compact since K¤
{ ¡ 1

2 Id : L2(G) 7! L2(G) is continuous and the
embedding H1=2(G) ,! L2(G) is compact. The second term is compact by Lemma

3.2. The H1=2
¤ (G)-ellipticity of the � rst term according to (3.15) completes the proof.

Summing up, we conclude existence and uniqueness of solutions of (4.4). In
addition we get asymptotic quasi-optimality for any conforming Galerkin boundary
element discretization. The discussion of actual convergence will be postponed until
Section 6.

The situation is much worse in the case of the exterior Dirichlet problem and
the associated CFIE (4.3). Actually, the equation is set in H1=2(G) and the density
u should be sought in H ¡ 1=2(G). For obvious reasons, this is not possible, unless
we use a pairing in H ¡ 1=2(G) to convert the equation into weak form. Yet, this will
introduce products of non-local operators, which render the equations unsuitable



Coercive CFIE 127

for numerical purposes. The fundamental dif� culty is that, unlike in the case of the
exterior Neumann problem, we cannot use matching trial and test spaces, because
the potentials involved in (4.1) require arguments with different regularity. What
remains is to lift the equation (4.3) into L2(G) and seek the unknown density u in
L2(G), too.

A key argument in the theoretical treatment of (4.3) in L2(G) is the compact-
ness of the double layer potential operator K{ : L2(G) 7! L2(G) on smooth surfaces,
which renders the boundary integral operator associated with (4.3) a compact pertur-
bation of the identity. On non-smooth surfaces this argument is not available. This
prompted us to explore the regularized formulation presented in the next section.

5. REGULARIZED CFIE

The idea is to introduce a regularizing operator into the argument of the single layer
potential in the trial expression (4.2). However, this operator has to be chosen care-
fully in order to permit us to prove uniqueness of solutions along the lines of the
proof of Lemma 4.1. Crucial is the following result (cf. Section 5 of [15]):

Lemma 5.1. With a constant c1 > 0 we have

­D
0v; (1

2 Id + K
0)v̄

®
G > c1 kvk2

H1=2(G) 8v 2 H1=2
¤ (G):

Proof. Using integration by parts (3.2) and DY0
DL = 0 in W+, we get for v 2

H1=2
¤ (G)

­D
0v;( 1

2 Id + K
0)v̄

®
G = ¡

­
g+
N Y0

DL(v);g+
D Y0

DL(v)
®

G

=
°°gradY0

DL(v)
°°2

L2(W+)
> c

°°g+
N Y0

DL(v)
°°2

H ¡ 1=2
¤ (G)

> c kD
0(v)k2

H ¡ 1=2
¤ (G)

> ckvk2
H1=2(G) :

Here, we have also used the continuity of gN , the estimate (3.18), and the ellipticity
of D

0.

Setting v := D¡ 1
0 j , using (3.18) and the symmetry properties of the boundary

integral operators, we conclude from Lemma 5.1 that there is cN > 0 such that

­
j ;D ¡ 1

0 ( 1
2 Id + K¤

0)j
®

G > cN kjk2
H ¡ 1=2(G) 8j 2 H ¡ 1=2

¤ (G):

Note that (1
2 Id + K¤

0)j 2 H ¡ 1=2
¤ (G) for all j 2 H ¡ 1=2(G). Thus, owing to Theo-

rem 2.1 and Lemma 3.1, the operator

R := D ¡ 1
0 ( 1

2 Id + K¤
0) : H ¡ 1=2

¤ (G) 7! H1=2
¤ (G)
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is an isomorphism.
We still have to deal with the constant functions that are in the kernel of D

0.

Lemma 5.2. We have k1kH1=2(G) = jGj1=2 and k1kH ¡ 1=2 (G) = jGj1=2.

Proof. Using the de� nition of the Sobolev–Slobodeckij norm k¢kH1=2(G), the
statement about k1kH1=2 (G) is trivial. To compute k1kH ¡ 1=2(G) consider the variational
problem

inf

½
1
2 kvk2

H1=2(G) ;

Z

G
vdS = 1

¾

which gives rise to the saddle point problem: seek v 2 H1=2(G)

(v;q)H1=2(G) + l
Z

G
qdS = 0 8q 2 H1=2(G)

Z

G
vdS = 1:

Its unique solution is v ² jGj¡ 1. Then

k1kH ¡ 1=2(G) = sup
v2H1=2(G)

R
G vdS

kvkH1=2(G)

=

R
G 1dS

k1kH1=2(G)

= jGj1=2

where we have used the de� nition of the dual norm.

For n > 0 we de� ne

eRj := R(j ¡ j(1)1=jGj) + n
­
j ;1

®
G1 : H ¡ 1=2(G) 7! H1=2(G): (5.1)

Since R maps into H1=2
¤ (G), this implies that for all j 2 H ¡ 1=2(G)

­
j; eRj

®
G =

­
j;R(j ¡ j(1)1=jGj) + n

­
j;1

®
G1

®
G

=
­
j ¡ j(1)1=jGj;R(j ¡ j(1)1=jGj)

®
G + n j

­
j ;1

®
Gj2

> cN kj ¡ j(1)1=jGjk2
H ¡ 1=2(G) + n j

­
j ;1

®
Gj2

> cN

³
kjkH ¡ 1=2(G) ¡ jj(1)j=jGjk1kH ¡ 1=2(G)

´2
+ nj

­
j ;1

®
Gj2

> cN

³
kjkH ¡ 1=2(G) ¡ j

­
j;1

®
GjjGj¡ 1=2

´2
+ n j

­
j ;1

®
Gj2

> 1
2cN kjk2

H ¡ 1=2(G) + (n ¡ 2cN=jGj)j
­
j ;1

®
Gj2:
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In the sequel we assume n > 2cN=jGj. Then, eR turns out to be H ¡ 1=2(G)-elliptic.
Thus, according to Theorem 2.1, eR : H ¡ 1=2(G) 7! H1=2(G) is an isomorphism and
for some c̃ > 0

­eR ¡ 1v;v
®

G > c̃kvk2
H1=2(G) 8v 2 H1=2(G): (5.2)

The new combined � eld integral equation (CFIE) arises from an indirect bound-
ary integral approach to the exterior Dirichlet problem (1.1) and (1.3) using the
special trial expression

U = Y{
DL(u) + ihY0

SL(eR ¡ 1u) u 2 H1=2(G): (5.3)

By (3.5), this is a radiating Helmholtz solution in W¡ [W+. As before, applying the
Dirichlet trace to (5.3) yields the boundary integral equation

g = (1
2 Id + K{)u + ih(V{ ¯ eR¡ 1)(u) in H1=2(G): (5.4)

For the sake of brevity, we introduce the boundary integral operator

B{ := ( 1
2 Id + K{) + ihV{ ¯ eR¡ 1 : H1=2(G) 7! H1=2(G):

Lemma 5.3. The boundary integral operator B{ is injective.

Proof. We adapt the proof of Lemma 4.1. Let v 2 H1=2(G) be a solution of
B{u = 0. Set U := Y{

DL(u) + ihY0
SL(eR¡ 1u), whose restriction to W+ is a radiating

exterior Helmholtz solution with g+
DU = 0. From Theorem 1.1 we conclude U = 0

in W+. Thus, by the jump relations,

¡ g ¡
DU = [gDU ]G = u; g ¡

N U = ¡ [gNU ]G = ¡ iheR ¡ 1u

the integration by parts formula (3.1) yields

ih
­eR ¡ 1u;u

®
G =

­
g ¡ 1

N U ;g ¡ 1
D U

®
G = kgradUk2

L2(W ¡ ) ¡ { 2 kUk2
L2(W¡ ) :

Thanks to (5.2) and h > 0 the left hand side is purely imaginary, whereas the right
hand side is real. Necessarily,

­eRu;u
®

G = 0, which, by (5.2), implies u = 0.

A Galerkin discretization cannot deal with the products of boundary integral
operators occurring in the de� nition of B{ . The usual trick to avoid operator prod-
ucts is to switch to a mixed formulation. Here, this is done by introducing the new
unknown l := eR¡ 1u 2 H ¡ 1=2(G) and gives us

ihV{(l ) + (1
2 Id + K{)u = g in H1=2(G)

eRl ¡ u = 0 in H1=2(G):
(5.5)
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These equations are equivalent to (5.4), as eR is an isomorphism. However, a product
of integral operators is still concealed in the de� nition ofeR. Fortunately, it involves
the inverse of the boundary integral operator D

0, which suggests plain multiplication
of the second equation of (5.5) with D

0. Yet, D
0 is not an isomorphism and this

simple approach is not feasible, unless we take care of the kernel of D
0: for x > 0

de� ne

eD
0v := D

0(v ¡
­
1;v

®
G1=jGj) + x

­
1;v

®
G1; v 2 H1=2(G)

which, due to (3.15) and Lemma 5.2, satis� es

­eD
0v;v

®
G =

­D
0(v ¡

­
1;v

®
G1=jGj);v ¡

­
1;v

®
G1=jGj

®
G + x j

­
1;v

®
Gj2

> cD

°°v ¡
­
1;v

®
G1=jGj

°°2
H1=2 (G)

+ x j
­
1;v

®
Gj2

> 1
2 kvk2

H1=2(G) + (x ¡ 2cD=jGj)j
­
1;v

®
Gj2:

If x > 2cD=jGj, then eD
0 is H1=2(G)-elliptic and gives rise to an isomorphism eD

0 :
H1=2(G) 7! H ¡ 1=2(G). This choice of the parameter will be assumed, henceforth.

As illustrated by the following lemma, we can now get rid of all products of
integral operators by multiplying the second equation of (5.5) with eD

0.

Lemma 5.4. We have

eD
0
eRj = (1

2 Id + K¤
0)(j) + Tj

where

Tj := ¡
­
j;1

®
G=jGj(1

2 Id + K¤
0)(1) + nx jGj

­
j ;1

®
G1:

Proof. Obviously eD
01 = x jGj1 and eD

0v = D
0v, if v 2 H1=2

¤ (G). This means

eD
0
eRj = eD

0
R(j ¡ j(1)1=jGj) + nx jGj

­
j ;1

®
G1

= (1
2 Id + K¤

0)(j) ¡
­
j ;1

®
G=jGj(1

2 Id + K¤
0)(1) + nx jGj

­
j ;1

®
G1

where (5.1) has been employed.

Hence, applying the isomorphism eD
0 to the second line of (5.5) gives

ihV{l + ( 1
2 Id + K{)u = g

( 1
2 Id + K¤

0)l + Tl ¡ eD
0u = 0:

(5.6)

We remark that the u-component of any solution of (5.6) instantly yields a solution
of B{u = g. Therefore, Lemma 5.3 also asserts the uniqueness of solutions of (5.6).
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The � rst equation of (5.6) is set in H1=2(G), the second in H ¡ 1=2(G). Thus
the duality of these spaces gives rise to the natural weak form of (5.6): seek
l 2 H ¡ 1=2(G), u 2 H1=2(G) such that for all m 2 H ¡ 1=2(G), v 2 H1=2(G)

ih
­
m;V{(l)

®
G +

­
m; (1

2 Id + K{)u
®

G =
­
g; m

®
G

¡
­
( 1

2 Id + K¤
0)l ;v

®
G ¡

­Tl ;v
®

G +
­eD0u;v

®
G = 0:

(5.7)

The bilinear form a : (H ¡ 1=2(G) £ (H1=2(G)) £ (H ¡ 1=2(G) £ (H1=2(G)) 7! C ) asso-
ciated with (5.7) reads

a

µµ
l
u

¶
;

µ
m
v

¶¶
:= ih

­
m;V{l

®
G +

­
m; (1

2 Id + K{)u
®

G

¡
­
(1

2 Id + K¤
0)l ;v

®
G ¡

­Tl ;v
®

G +
­eD

0u;v
®

G :

Now, we alter this bilinear form by adding compact terms. First, we drop
­Tl ;v

®
G,

which is obviously compact since the range of T has dimension two. Next, we in-
voke Lemma 3.2 to replace V{ and K{ with V

0 and K
0, respectively. Ultimately, we

end up with the perturbed bilinear form

ea
µµ

l
u

¶
;

µ
m
v

¶¶
:= ih

­
m;V0l

®
G +

­
m;(1

2 Id + K
0)u

®
G

¡
­
(1

2 Id + K¤
0)l ;v

®
G +

­eD
0u;v

®
G:

The symmetry (3.12) permits us to cancel cross terms and con� rms H¡ 1=2(G) £
H1=2(G)-ellipticity

¯̄
¯̄a

µµ
l
u

¶
;

µ
l
u

¶¶¯̄
¯̄ =

¯̄
¯ ih

­
l ;V0l )

®
G +

­eD
0u;u

®
G

¯̄
¯

> 1p
2

³
hcV klk2

H ¡ 1=2(G) + cD kuk2
H1=2 (G)

´
:

This means that the bilinear form associated with (5.7) is coercive in H¡ 1=2(G) £
H1=2(G). In addition we have established uniqueness of solutions. Therefore, we
have veri� ed all assumptions of Lemma 2.2 and Theorem 2.3 and reap all the desir-
able consequences for Galerkin discretization discussed at the end of the previous
section.

Remark 5.1. The reader has to be aware that the choice of the regularizing
operator eR is tightly constrained by the essential cancellation of the cross terms of
ea. This forces us to incorporate 1

2 Id + K¤
0 into eR. In addition, eR has to be H ¡ 1=2(G)-

elliptic, see (5.2), and it is by no means obvious, how a choice different from (5.1)
can comply with both requirements.
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Remark 5.2. The product of the parameters nu and x will enter the � nal varia-
tional formulation (5.7). It is important to note that uniqueness of solutions will be
squandered, if nx is chosen too small. Conversely, a large value for nx might delay
the onset of asymptotic phase, that is, in terms of the statement of Thm. (2.6) N will
become very large. The necessity to pick parameters is de� nitely a drawback of this
regularized formulation.

6. GALERKIN DISCRETIZATION

Conforming boundary element spaces for the approximation of functions in H1=2(G)

and H ¡ 1=2(G), respectively, are standard. First, we equip G with a family fthgh of
triangulations comprising (curved) triangles and/or quadrilaterals. The meshes th
have to resolve the shape of the curvilinear polyhedron W¡ in the sense that none
of their elements may reach across an edge of W¡ . Then, the boundary element
spaces sh » H1=2(G) and q h » H ¡ 1=2(G) will contain piecewise polynomials of
total/maximal degree k, k 2 N0 . Further, functions in sh have to be continuous so
that k > 1 is required in this case.

Let h denote the meshwidth of th and assume uniform shape-regularity, which,
sloppily speaking, imposes a uniform bound on the distortion of the elements. Then
we can � nd constants Cs;Cq > 0 such that for all 0 6 t 6 k + 1 (see Section 4.4 of
[2]):

inf
jh2q h

kj ¡ jhkH ¡ 1=2(G) 6Cqht+1=2 kjkH t (G) 8j 2 H t(G); h (6.1)

inf
vh2sh

kv ¡ vhkH1=2(G) 6Csh
t ¡ 1=2 kvkH t (G) 8v 2 Ht(G); h: (6.2)

Thus, the quantitative investigation of convergence boils down to establishing the
Sobolev regularity of the continuous solutions. We will embark on this for the vari-
ational boundary integral equations (4.5) and (5.7).

It is useful to characterize the lifting properties of Neumann-to-Dirichlet maps
for the interior/exterior Helmholtz problem by means of two real numbers a+/a ¡ .
In particular, let a ¡ /a+ be the largest real number such that for an interior/exterior
Helmholtz solution g§

N U 2 H s ¡ 1=2(G) implies g §
D 2 Hs+1=2(G) for all s 6 a§. It is

known from Theorem 4.24 of [11] that for mere Lipschitz domains a¡ ;a+ > 1=2.
We � rst examine equation (4.5) and assume that the Neumann data j be-

long to H ¡ 1=2+s(G), s > 0. According to the de� nition of a+ this implies g+
D 2

H1=2+minfs ;a+g(G). Now, let u 2 H1=2(G) stand for the unique solution of (4.5) and
let the Helmholtz solution U be given by (4.2). By the jump relations

[gNU ]G = ¡ ihu; [gDU ]G = u (6.3)

we conclude that UjW¡ satis� es the inhomogeneous Robin-type boundary conditions

g ¡
N U ¡ ihg ¡

DU = j ¡ ihg+
DU: (6.4)
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This will endow the Neumann data with extra regularity and we can crank up the
machine of a bootstrap argument that con� rms higher and higher regularity for Neu-
mann and Dirichlet data in turns. A limit will be set by the lifting exponents a¡ ;a+:
the best we can get is

u 2 H1=2+minfs ;a ¡ ;a+g(G):

For piecewise linear continuous boundary elements on a sequence of shape regular
surface meshes this will mean O(hminfs ;a+;a ¡ g) convergence in H1=2(G).

The bad news is that in the case of the single layer regularization (5.7) of Sec-
tion 5 the lifting arguments will fail. Please note that for U from (5.3), where
u 2 H1=2(G) is the solution of (5.4), the following interior Robin-type boundary
conditions hold:

g ¡
N U ¡ iheR ¡ 1(g ¡

D U) = g ¡
N U ¡ iheR ¡ 1g: (6.5)

In contrast to (6.4), we cannot infer any enhanced regularity of either g¡N U or
g ¡
DU from (6.5). Hence, no quantitative rate of convergence can be obtained for

a Galerkin boundary element discretization of (5.7). Due to the density of the
boundary element spaces on in� nite sequences of ever � ner meshes in H1=2(G) and
H ¡ 1=2(G), respectively, the method will converge for h ! 0, but convergence could
be extremely slow.

7. CONCLUSION

We found that the classical combined � eld integral equation for the exterior Neu-
mann problem for Helmholtz’ equation leads to a H1=2(G)-coercive variational
problem. Satisfactory rates of convergence can be deduced for conforming Galerkin
BEM schemes. Conversely, the analysis of the CFIE for the exterior Dirichlet prob-
lem has to rely on a special regularizing operator. However, the use of this oper-
ator destroys lifting properties needed to conclude enhanced regularity of the un-
known density. Hence, quantitative estimates of convergence remain elusive for this
method.
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