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1.  Introduction
The observational science of seismology developed with the classification of earthquakes as either foreshocks, 
mainshocks, or aftershocks. Foreshocks precede mainshocks, which themselves trigger aftershocks obeying the 
Omori law. Time-independent forecasting methods do not take advantage of these widely observed dynamics 
to issue statements about future seismicity. However, time-dependent forecasts use these features but rely on 
different fundamental hypotheses about their genetic origin. A first class of methods appear quite agnostic on this 
topics (such as the M8 algorithm of Keilis-Borok and Kossobokov (1990); the Region-Time-Length algorithm of 
Sobolev and Tyupkin (1997); the Relative Intensity of Holliday et al. (2005); and the Proportional Hazard Model 
of Faenza and Marzocchi (2010)). Some other approaches consider that small earthquakes are mainly passive 
markers of the stress field in space and time, so their influence on future seismicity is negligible. This is the under-
lying concept of many earthquake precursor models such as the characteristic earthquake (D. Schwartz, 1981; 
D. P. Schwartz & Coppersmith, 1984; Reid, 1910), the Mogi donut and precursory quiescence (Mogi, 1969; Wyss 
et al., 1996; Yamashita & Knopoff, 1989), b-value mapping (Imoto et al., 1990), the load-unload response ratio 
(LURR; Yin et al., 1995), or the pattern informatics method (PI; Rundle et al., 2002). The accelerated moment 
release (AMR) pattern may also belong to this category as the increase of seismic activity before a large event 
may simply be due to the increase of the size of the spatial domain where stress is sufficiently large to produce a 
constant background rate of events per unit area and time (King & Bowman, 2003); see also (Mignan, 2011) for 
a review and the non-critical precursory accelerating seismicity theory). At the other end of the spectrum, some 
proposed methods consider that all earthquakes play a role in triggering future events, whatever their respec-
tive sizes. Those triggering models include the short-term non-Poissonian earthquake clustering model (Ebel 
et al., 2007), the short-term earthquake precursor model (Gerstenberger et al., 2005), as well as the Every Earth-
quake a Precursor According to Scale model, an epidemic-type model where small events do not trigger larger 
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ones (Evison & Rhoades, 2001). Note that the AMR model may also belong to this class if the large earthquake is 
considered as a critical point so that all previous events are indeed building bricks of the stress field intensity and 
spatial correlations (Bowman et al., 1998). However, a more parsimonious physics-based concept has emerged 
in the last two decades that undistinguishable earthquakes trigger other earthquakes. In this understanding, a 
mainshock may just be an “aftershock” of a previous earthquake (then called a foreshock), which happens to be 
larger, and the above classification is nothing but an artificial ex-post construction. This new paradigm has been 
bolstered up by being the driving concept behind the most successful statistical forecasting models of the general 
class of epidemic type aftershock sequence (ETAS) models, in which relatively rare background events, powered 
by plate tectonics, cascade into multitudes of triggered events sharing the same physical properties and the same 
space-time-magnitude distribution laws, encapsulated in the so-called triggering kernels.

ETAS models belong to the class of self-excited Hawkes conditional point processes widely adopted in recent 
years to model bursty behavior in many systems (Bacry et al., 2015; Crane & Sornette, 2008; Hawkes, 1971; 
Kobayashi & Lambiotte, 2016; Ogata, 1988) and describe the conditional seismicity rate as a linear superposition 
of a stationary background rate, thought to be mainly controlled by the far-field loading dynamics, and a set of 
transient clusters that are triggered by all past events. In its standard form, the ETAS model describes the condi-
tional seismicity rate of magnitude m events, 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝑡𝑡) , at any location (x, y) and time t as follows:

𝜆𝜆 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝑡𝑡) =

[

𝜇𝜇 +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

𝑔𝑔 (𝑡𝑡 − 𝑡𝑡𝑖𝑖,𝑥𝑥  − 𝑥𝑥𝑖𝑖,𝑦𝑦  − 𝑦𝑦𝑖𝑖,𝑚𝑚 𝑖𝑖)

]

× 𝛽𝛽𝛽𝛽−𝛽𝛽(𝑚𝑚−𝑀𝑀0)� (1)

where μ is the background intensity function, assumed to be independent of time, while 𝐴𝐴 𝑡𝑡 = {(𝑡𝑡𝑖𝑖, 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) ∶ 𝑡𝑡𝑖𝑖 < 𝑡𝑡} 
stands for the history of the process up to time t. The variables 𝐴𝐴 (𝑡𝑡𝑖𝑖, 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) correspond to the time, x-coordinate, 
y-coordinate, and magnitude of the ithearthquake in the catalog, respectively, while 𝐴𝐴 𝐴𝐴 (𝑡𝑡 − 𝑡𝑡𝑖𝑖, 𝑥𝑥 − 𝑥𝑥𝑖𝑖, 𝑦𝑦 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) is 
the triggering kernel, defined in Equation 2, quantifying the temporal and spatial influence of past events onto 
future events:

𝑔𝑔 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 − 𝑡𝑡𝑖𝑖, 𝑥𝑥 − 𝑥𝑥𝑖𝑖,𝑦𝑦  − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) = 𝐾𝐾𝐾𝐾𝑎𝑎(𝑚𝑚𝑖𝑖−𝑀𝑀0) 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏

{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐0}
𝑝𝑝0

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

{

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)
2
+ (𝑦𝑦 − 𝑦𝑦𝑖𝑖)

2
+ 𝑑𝑑𝑑𝑑𝛾𝛾(𝑚𝑚𝑖𝑖−𝑀𝑀0)

}1+𝜌𝜌� (2)

M0 is the magnitude of the smallest event able to trigger some other ones, while Tnorm and Snorm ensure normal-
ization of the temporal and spatial components of the triggering kernel, respectively. Equation 2 combines, in 
a standard way, the fertility law 𝐴𝐴 𝐴𝐴𝐴𝐴𝑎𝑎(𝑚𝑚𝑖𝑖−𝑀𝑀0) giving the number of events directly triggered by an earthquake 
of magnitude mi, a time kernel based on the exponentially tapered Omori-Utsu law (Omori,  1894; Utsu & 
Ogata, 1995) for aftershocks and a spatial kernel.

The ubiquitous decreasing exponential Gutenberg-Richter (GR) law (Gutenberg & Richter, 1944), which quanti-
fies the distribution of earthquake magnitudes with exponent β, is factored out in Equation 1. This factoring out 
makes the following two assumptions: (a) the magnitudes of background and triggered earthquakes are distrib-
uted according to the same GR law 𝐴𝐴 𝐴𝐴−𝛽𝛽(𝑚𝑚−𝑀𝑀0) such that both spontaneous and triggered events differ only in their 
space and time rates, not in their respective physical origins; (b) the magnitude distribution of the triggered 
earthquakes does not depend on the magnitude of the earthquake that triggered them such that the sole memory 
of the size of past events is conveyed by their total productivity function. Thus, if the space-time rate of imme-
diate future events can be forecasted, their magnitudes cannot be forecasted better than by a purely stochastic 
sampling of the GR law (Helmstetter & Sornette, 2003). In most of the literature on the ETAS model, the above 
two assumptions are tacitly or explicitly accepted. An interesting consequence of the standard ETAS formulation 
concerns the collective properties of triggering: if a − β < 0, most earthquakes are triggered by previous small 
events, and this has been the dominant paradigm until now in statistical models of earthquake occurrences, based 
on calibrations of the ETAS model and on other indirect approaches (Helmstetter, 2003; Helmstetter et al., 2005). 
Small earthquakes contribute little to regional seismic moment release or seismic slip along major faults but 
give a strong contribution to the redistribution of elastic stresses (Nandan et al., 2016) and, according to existing 
statistical models, to the triggering of subsequent earthquakes. In the context of the ETAS model, this requires 
the introduction of a UV cut-off to regularize the theory, in the form of a minimum magnitude M0 below in which 
no triggering occurs (Sornette & Werner, 2005).
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This study builds mainly upon the empirical evidences presented in Nandan, Ouillon, and Sornette (2019), which 
have called into question the validity of both the aforementioned assumptions about the magnitude distribution 
of background and triggered earthquakes. Inspired from Vere-Jones  (2005) and Saichev and Sornette  (2005), 
Nandan, Ouillon, & Sornette (2019) proposed the following modification to the ETAS model:

𝜆𝜆 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝑡𝑡) = 𝜇𝜇𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏 (𝑚𝑚) +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

𝑔𝑔 (𝑡𝑡 − 𝑡𝑡𝑖𝑖,𝑥𝑥  − 𝑥𝑥𝑖𝑖,𝑦𝑦  − 𝑦𝑦𝑖𝑖,𝑚𝑚 𝑖𝑖) 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖)� (3)

where the background intensity function μ and the triggering function 𝐴𝐴 𝐴𝐴 (𝑡𝑡 − 𝑡𝑡𝑖𝑖, 𝑥𝑥 − 𝑥𝑥𝑖𝑖, 𝑦𝑦 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) are defined by 
Equation 2. Thus, the modified model differs from the standard model by replacing Equation 1 with Equation 3, 
which involves a new form of the GR law, which is not more factored out in order to express the existence of 
magnitude correlations. This new form is made of several parts: (i) fbkg(m) quantifies the magnitude distribution 
of the background earthquakes, given by

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 (𝑚𝑚) = 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒
−𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚−𝑀𝑀0)� (4)

(ii) faft(m|mi) generalizes the standard GR law and quantifies the conditional distribution of events of magnitude 
m directly triggered by an earthquake of magnitude mi, according to (Nandan, Ouillon, & Sornette, 2019; Saichev 
& Sornette, 2005; Vere-Jones, 2005):

���� (�|��) =

⎧

⎪

⎨

⎪

⎩

�1�−�1(�−�0) ∀ � < ��

�2�−�2(�−�0) ∀ � ≥ ��

� (5)

The constants C1 and C2 are derived from the constraints that 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖) is a probability density function (PDF) 
so that 𝐴𝐴 ∫

∞

𝑀𝑀0
𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖) 𝑑𝑑𝑑𝑑 = 1 , and 𝐴𝐴 𝐴𝐴2𝑒𝑒

−𝛽𝛽2(𝑚𝑚𝑖𝑖−𝑀𝑀0) = 𝐶𝐶2𝑒𝑒
−𝛽𝛽1(𝑚𝑚𝑖𝑖−𝑀𝑀0) , a condition that ensures the continuity of the 

PDF for m = mi.

Equation 5 implies that 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖) describes triggered earthquake magnitudes as clustered around that of their 
parent earthquake. Using the nested likelihood tests, Nandan, Ouillon, and Sornette (2019) established the supe-
riority of this model compared to the standard ETAS model presented in Equation 1 and speculated that these 
correlations between magnitudes of the mainshocks and aftershocks can significantly improve the forecasting 
performance of the ETAS models.

In this paper, we have set forth the goal of comparing the forecasting performance of the ETAS model described 
in Equation 3 to the standard ETAS model (Equation 1), as it is by forecasting that one can best establish the 
worthiness of these modifications. We also build in part on the pseudo-prospective testing framework established 
by Nandan, Kamer et  al.  (2021), who showed the superiority of an ETAS model with magnitude-dependent 
Omori kernel over the ETAS model, which ignored the magnitude dependence. The magnitude dependence 
comes in the form of the linear dependence of the exponent of the Omori kernel and the exponential depend-
ence of the regularizer on the mainshock magnitude. Thus, we also build on the findings of Nandan, Kamer 
et al. (2021) and conduct a horse race between four ETAS models. Using the best of the four models from the 
pseudo-prospective experiments, we investigate which magnitude range (small vs. large) dominates the triggering 
of large earthquakes.

This paper is organized as follows: We first describe the data used in this study in Section  2. The detailed 
description of the four competing models is presented in Section 3.1. In Section 3.2, we briefly describe the 
expectation maximization (EM) algorithm and its modifications for the parameter inversion of the competing 
models. Section 3.3 describes the settings used for the pseudo-prospective testing and the metrics used for model 
evaluation. Section 4 presents the results of the pseudo-prospective experiments and scrutinizes the collective 
properties of triggering within the best model in Section 5. Finally, Section 6 presents the conclusion of the anal-
ysis undertaken in this study.
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2.  Description of the Data Set
We use ≈1.2 million reported earthquakes (with M ≥ 1) within 1975–2020 in the study region (co-ordinates of 
the spatial polygon in Table S1 of Supporting Information S1) surrounding California in the Advanced National 
Seismic System (ANSS) earthquake catalog. Nandan, Ram et al. (2021) (see their Figure S2 and section Text S2 
in Supporting Information S1) have shown using several proxies that the catalog within this region and time can 
be considered to be reasonably complete above M = 3. Thus, we set the magnitude of completeness Mc = 3 in 
this study as well. We also bin the magnitude reported in the catalogs at 0.1 units. All earthquakes above Mc will 
be used to invert the parameters of the models, as well as to simulate future data sets. We shall also assume that 
Mc coincides with M0. However, only events above a specified magnitude threshold Mt will be used to check the 
forecasts (see Section 3.3).

An important consideration when calibrating the ETAS model is the choice of the auxiliary and primary periods 
(Wang et al., 2010). The earthquakes in the auxiliary period only serve as sources. In contrast, the earthquakes 
in the primary period can act as both sources and targets during the ETAS model's calibration. Without this 
consideration, the calibration process would yield a disproportionate fraction of background earthquakes at the 
beginning of the catalog, as there are no or very few events to act as potential triggers. For the catalog used in 
this study, the earthquakes between 1975 and 1981 are taken as part of the auxiliary catalog. All earthquakes 
following 1981 are taken as part of the primary catalog.

3.  Method
3.1.  Description of the Models

Based on recent empirical evidences (Nandan, Kamer et al., 2021; Nandan, Ouillon, & Sornette, 2019; Nandan, 
Ram et  al.,  2021; Nichols & Schoenberg,  2014; Ouillon & Sornette,  2005; Ouillon et  al.,  2009; Sornette & 
Ouillon, 2005; Spassiani & Sebastiani, 2016; Tsai et al., 2012), we propose a suite of four models that generalize 
ETAS and are tested against it.

•	 �Model 1 uses the conditional seismicity rate given by Equation 1 but extends the standard ETAS model with 
a space-varying background intensity function (Nandan, Ram et  al.,  2021; Zhuang et  al.,  2002) given by 
Equation 6, with the guiding idea that the future background earthquakes occur mostly in regions where the 
intensity of past background earthquakes has been high.

𝜇𝜇 (𝑥𝑥𝑥 𝑥𝑥) = 𝑇𝑇 −1

𝑁𝑁∑

𝑖𝑖=1

𝐼𝐼𝐼𝐼𝑖𝑖𝜋𝜋
−1𝑄𝑄𝑄𝑄2𝑄𝑄

(
(𝑥𝑥 − 𝑥𝑥𝑖𝑖)

2
+ (𝑦𝑦 − 𝑦𝑦𝑖𝑖)

2
+𝐷𝐷2

)−1−𝑄𝑄
� (6)

where IPi is the independence probability of the earthquake. It is not known a priori but estimated iteratively using 
the EM algorithm used to invert the parameters (see Section 3.2). The proposed parameterization in Equation 6 
should not be confused with the triggering part (Equation 2) of the ETAS model, which also involves a summa-
tion over previous earthquakes.

Model 1 uses a tapering of the Omori law, a minor but useful extension that has been shown to provide more 
stable and reliable estimations of the Omori exponent. Physically, the tapering part is supported by the long-time 
Maxwell type viscous relaxation of the visco-plasto-elastic Earth crust. It is predicted by physically based 
models, such as the multifractal stress activation model (Ouillon & Sornette, 2005; Ouillon et al., 2009; Sornette 
& Ouillon, 2005; Tsai et al., 2012) and the state-and-rate friction model (Dieterich, 1994).

•	 �Model 2 is the same as Model 1, but with a modified time kernel

�𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐 (𝑚𝑚𝑖𝑖)}
−𝑝𝑝(𝑚𝑚𝑖𝑖)𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  , where 𝐴𝐴 𝐴𝐴 (𝑚𝑚𝑖𝑖) = 𝑐𝑐010

𝑐𝑐1𝑚𝑚𝑖𝑖 (Davidsen et al., 2015; Dieterich, 1994; Hainzl, 2016a; 
Narteau et al., 2005; Scholz, 1968; Shcherbakov et al., 2004) and p = p0 + p1mi (Nandan, Kamer et al., 2021; 
Ouillon & Sornette, 2005; Ouillon et al., 2009; Sornette & Ouillon, 2005; Tsai et al., 2012). Thus, the regu-
larizer and the exponent of the time kernel feature exponential and linear dependence on the magnitude of the 
mainshock, respectively.

•	 �Model 3 is defined by the following equation for the conditional seismicity rate of events of magnitude m:

𝜆𝜆 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡|𝑡𝑡) = 𝜇𝜇 (𝑥𝑥𝑥𝑥𝑥 ) 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 (𝑚𝑚) +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡

𝑔𝑔 (𝑡𝑡 − 𝑡𝑡𝑖𝑖,𝑥𝑥  − 𝑥𝑥𝑖𝑖,𝑦𝑦  − 𝑦𝑦𝑖𝑖,𝑚𝑚 𝑖𝑖) 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖)� (7)
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where the background intensity function 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑥 𝑥𝑥) is given by Equation  6 and the triggering function 
𝐴𝐴 𝐴𝐴 (𝑡𝑡 − 𝑡𝑡𝑖𝑖, 𝑥𝑥 − 𝑥𝑥𝑖𝑖, 𝑦𝑦 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) is defined by Equation  2; fbkg and faft are defined by Equation  4 and Equation  5, 

respectively.

•	 �Model 4 combines all previous novel ingredients of Models 2 and 3, that is, it uses different magnitude distri-
butions for triggered events and their triggers as in Model 3 and a time kernel dependent on the magnitude of 
the triggers as in Model 2.

3.2.  Calibration of the Models

All four models are calibrated using the EM algorithm proposed by Veen and Schoenberg (2008), with some neces-
sary modifications allowing for the inversion of the optimal space varying background rate for all models (Nandan, 
Ram et al., 2021), magnitude-dependent parameters of the time kernel (Nandan, Kamer et al., 2021) (Models 2 and 
4), and trigger-dependent magnitude distribution (Nandan, Ouillon, & Sornette, 2019) (Models 3 and 4). In the 
following, we briefly describe the modifications brought to the EM process of inversion of Models 1–4:

1.	 �We start with an initial guess of the independence probabilities, IPi, for all the earthquakes in the primary 
catalog. This initial guess can be created by drawing a uniform random number between 0 and 1 correspond-
ing to each earthquake. We also make an initial guess for the parameters of the triggering kernel as well as the 
smoothing parameters (D, Q) for the background kernel (Equation 6). The initial values of these parameters 
are chosen randomly within a prespecified range.

2.	 �E-step: Using the current value of the parameters and the independence probabilities, we define the probabil-
ity that the ith earthquake triggered the jth earthquake as follows:

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑔𝑔 (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖)

𝜇𝜇 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡𝑗𝑗
𝑔𝑔 (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖)

� (8)

where 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) = 𝑇𝑇 −1
∑

𝑖𝑖≠𝑗𝑗
𝐼𝐼𝐼𝐼𝑖𝑖𝜋𝜋

−1𝑄𝑄𝑄𝑄2𝑄𝑄
(
(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)

2
+ (𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)

2
+𝐷𝐷2

)1+𝑄𝑄 . The reason for the choice of the 
summation ∑i≠j will become apparent in the following steps. The new estimates of the independence probabil-
ities can be obtained as IPj = 1 − ∑iPij. We update the current estimates of independence probabilities with the 
new estimates.

�3.	� M-step 1: Using the current estimates of all IPi values, we define the PDF of the location of background earth-
quakes at the location of jth background earthquake as follows:

𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) =

∑
𝑖𝑖≠𝑗𝑗

𝐼𝐼𝐼𝐼𝑖𝑖𝜋𝜋
−1𝑄𝑄𝑄𝑄2𝑄𝑄

(
(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)

2
+ (𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)

2
+𝐷𝐷2

)1+𝑄𝑄

∑
𝑖𝑖≠𝑗𝑗

𝐼𝐼𝐼𝐼𝑖𝑖

� (9)

Using 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) and IPj, we can define the complete data log-likelihood for the spatial distribution of the 
background earthquakes as follows:

𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 =

𝑁𝑁∑

𝑗𝑗=1

𝐼𝐼𝐼𝐼𝑗𝑗 × ln𝜇𝜇𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)� (10)

LLbkg can be optimized for the parameters D and Q to obtain their new estimates. Several caveats are important 
to consider:

�a.	� The minimum value of D is set to the location error.
�b.	� To obtain 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) , the summation in the right-hand side of Equation 9 is done for i ≠ j. Otherwise, the 

optimization of LLbkg leads to D being very close to 0 and Q assuming very large values, which creates a Dirac 
function at the location of the jth earthquake, thus leading to the maximal possible value of LLbkg. This artifi-
cial situation can be avoided if one uses all earthquakes except the jth earthquake to explain the background 
rate at its location, which amounts to a leave-one-out strategy.

�4.	� M-step 2: Maximize LLtrig, defined in Equation 11, for the parameters (θ) of the triggering kernel.
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𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
∑

𝑖𝑖

{−log (Γ (𝜓𝜓𝑖𝑖 + 1)) − 𝐺𝐺𝑖𝑖 (𝜃𝜃) + 𝜓𝜓𝑖𝑖log (𝐺𝐺𝑖𝑖 (𝜃𝜃))} +

∑

𝑖𝑖𝑖𝑖

𝑃𝑃 𝑘𝑘
𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 {𝑔𝑔 (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖)}

� (11)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 =
∑

𝑗𝑗∀𝑡𝑡𝑖𝑖<𝑡𝑡𝑗𝑗
𝑃𝑃𝑖𝑖𝑖𝑖 is the number of direct aftershocks of the ith earthquake and Gi(θ) is the expected number 

of offsprings triggered by an earthquake (ti, xi, yi, mi) within the study region S and the primary time period [T1, 
T2] and is given by.

𝐴𝐴 ∫
𝑇𝑇2

max(𝑡𝑡𝑖𝑖 ,𝑇𝑇1)
∫ ∫

𝑆𝑆
𝑔𝑔 (𝑡𝑡 − 𝑡𝑡𝑖𝑖, 𝑥𝑥 − 𝑥𝑥𝑖𝑖, 𝑦𝑦 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .

�5.	� Update the current estimates of all the parameters to the new estimates obtained in steps 3 and 4.
�6.	� Repeat steps 2–5 until convergence.

The parameter β for models 1 and 2 is obtained independently of the remaining parameters of the models, as the 
GR distribution can be factored out due to assumptions underlying these models (Section 1). We use the formula 
for binned magnitude (Tinti & Mulargia, 1987), magnitude bin (Δm) equal to 0.1 and all the magnitudes above 
Mc = 3 to obtain β.

For Models 3 and 4, we follow the same algorithm as above with the modification that the triggering probabilities 
are now defined as follows:

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑔𝑔 (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑗𝑗|𝑚𝑚𝑖𝑖)

𝜇𝜇 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗) 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 (𝑚𝑚𝑗𝑗) +
∑

𝑖𝑖∶𝑡𝑡𝑖𝑖<𝑡𝑡𝑗𝑗
𝑔𝑔 (𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖, 𝑚𝑚𝑖𝑖) 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑚𝑚𝑗𝑗|𝑚𝑚𝑖𝑖)

� (12)

For these two models, the parameters of fbkg and faft defined in Equations 4 and 5 are jointly maximized on the 
M step 2 of the algorithm prescribed above. For the optimization of parameters of fbkg and faft, an additional 
log-likelihood term, LL+, is added to LLtrig defined in Equation 11:

𝐿𝐿𝐿𝐿+ = log (𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏)
∑

𝑗𝑗

𝐼𝐼𝐼𝐼𝑗𝑗 − 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏
∑

𝑗𝑗

𝐼𝐼𝐼𝐼𝑗𝑗 (𝑚𝑚𝑗𝑗 −𝑀𝑀0) +
∑

𝑖𝑖𝑖𝑖

𝑃𝑃𝑖𝑖𝑖𝑖 log 𝑓𝑓𝑎𝑎 (𝑚𝑚𝑗𝑗|𝑚𝑚𝑖𝑖, 𝛽𝛽1, 𝛽𝛽2)� (13)

where

log 𝑓𝑓𝑎𝑎 (𝑚𝑚|𝑚𝑚𝑖𝑖, 𝛽𝛽0, 𝛿𝛿) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−log

[

2𝛿𝛿

𝛽𝛽2

0
− 𝛿𝛿2

{(
𝛽𝛽0 + 𝛿𝛿

2𝛿𝛿

)

𝑒𝑒−(𝛽𝛽0−𝛿𝛿)𝑀𝑀0 − 𝑒𝑒−(𝛽𝛽0−𝛿𝛿)𝑚𝑚𝑖𝑖

}]

− (𝛽𝛽0 − 𝛿𝛿)𝑚𝑚 ∀ 𝑚𝑚 ≤ 𝑚𝑚𝑖𝑖

−log

[

2𝛿𝛿

𝛽𝛽2

0
− 𝛿𝛿2

{(
𝛽𝛽0 + 𝛿𝛿

2𝛿𝛿

)

𝑒𝑒−(𝛽𝛽0−𝛿𝛿)𝑀𝑀0 − 𝑒𝑒−(𝛽𝛽0−𝛿𝛿)𝑚𝑚𝑖𝑖

}]

+ 2𝛿𝛿𝛿𝛿𝑖𝑖 − (𝛽𝛽0 + 𝛿𝛿)𝑚𝑚 ∀ 𝑚𝑚 𝑚 𝑚𝑚𝑖𝑖

� (14)

with 𝐴𝐴 𝐴𝐴0 =
𝛽𝛽1+𝛽𝛽2

2
 and 2δ = β2 − β1.

3.3.  Testing Protocols

Following the norm of scientific epistemology, we propose to identify the best model for understanding seismic 
processes as the one that provides the best predictive ability. For this, we set up pseudo-prospective forecasting 
experiments using earthquakes reported in the ANSS catalog around the state of California, for which we esti-
mated the completeness magnitude Mc = 3 (Section 2). In these experiments, we use the early part of the data to 
calibrate the models and leave the future data unseen to compare with the forecasts constructed using the first part 
of the data. Starting on 1 January 1990, we perform 380 pseudo prospective experiments. Testing periods have a 
fixed duration of 30 days, and all the testing periods are nonoverlapping.

The four competing models issue forecasts as simulated stochastic catalogs (location, occurrence time and 
magnitude of future events). Each model simulates 1 million catalogs for each of the testing periods to obtain 
high-precision distributions of forecasts, following the recommendation of (Nandan, Ouillon, Sornette, & 
Wiemer, 2019a, 2019b). We perform 380 million simulations to create the forecasts of a given model for all 
the 380 testing periods and each of the four models. The stochastic catalogs are used to construct the models' 
forecasts at any spatial resolution and magnitude threshold during the testing periods. In this work, the models 
are evaluated at four different spatial resolutions whose corresponding areas are equivalent to those of circular 
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regions with radii (Rres): 11, 22, 45, and 89 km, and four different target magnitude thresholds (Mt): 3.5, 4, 4.5, 
and 5. During a given testing period, competing models forecast the distribution of the number of earthquakes 
(of magnitude ≥ Mt) in the triangular pixels of an equal area, which are used to divide the study region. Lower 
magnitude events are used in the calibration and simulations but are not part of the test sets. We then count the 
actual number of observed earthquakes  ≥  Mt within each pixel during the time window defining the testing 
period. With these two pieces of information, the log-likelihood 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖

𝐴𝐴
 of Model A during the ith testing period is 

defined using the equation:

𝐿𝐿𝐿𝐿𝑖𝑖

𝐴𝐴
=

𝑁𝑁∑

𝑗𝑗=1

ln
[
𝑃𝑃𝑃𝑃𝑖𝑖

𝐴𝐴𝐴𝐴𝐴

(
𝑛𝑛𝑖𝑖𝑗𝑗

)]
� (15)

where 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖
𝐴𝐴𝐴𝐴𝐴

 is the PDF of the number of earthquakes ≥ Mt forecasted by Model A in pixel j during the ith testing 
period, while 𝐴𝐴 𝐴𝐴𝑖𝑖

𝑗𝑗
 is the observed number of such earthquakes in the same pixel and time period. Using the like-

lihoods 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖

𝐴𝐴
 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖

𝐵𝐵
 of two competing models, A and B, we can then define the information gain 𝐴𝐴

(
𝐼𝐼𝐼𝐼𝑖𝑖

𝐴𝐴𝐴𝐴

)
 of 

Model A over Model B during the ith testing period as

𝐼𝐼𝐼𝐼𝑖𝑖

𝐴𝐴𝐴𝐴
= 𝐿𝐿𝐿𝐿𝑖𝑖

𝐴𝐴
− 𝐿𝐿𝐿𝐿𝑖𝑖

𝐵𝐵
.� (16)

To quantify the robustness of model performance, such information gains are computed for different combina-
tions of spatial resolution and magnitude threshold Mt. We then rank the models by computing the cumulative 

information gain (CIG) and mean information gain 𝐴𝐴

(

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑

𝑖𝑖 𝐼𝐼𝐼𝐼𝑖𝑖

380

)

 that they obtain in all the testing periods 
relative to each other. To assess the significance of the model performance, we test the null hypothesis that 
the mean information gains are equal to 0 against the alternative that they are significantly larger than 0 using 
the paired T-test. Additionally, we also quantify the significance of the model performance by testing the null 
hypothesis that the median information gains (Median IGs) are equal to 0 against the alternative that they are 
significantly larger than 0 using the paired Ranksum-test.

Finally, we use the consistency tests (N-, M-, and S-test) proposed by Savran et al. (2020) to quantify the consist-
ency of the models with observed earthquakes during the testing periods. Note that these consistency tests are 
designed to judge how well a given model forecasts the numbers, magnitude, and spatial distribution of earth-
quakes during testing periods. Following Savran et al. (2020), we estimate the quantities γN, γM and γS correspond-
ing to the N-, M-, and S-test, respectively, for each model for all the testing periods. We then check whether these 
quantities estimated from all the testing periods for a given model are uniformly distributed, as would be the case 
if the model is the data generating process.

4.  Identification of the Best Model
4.1.  Model Fits

We first quantify how well the competing models fit the data set. To quantify the goodness of fit, we use all 
earthquakes with M ≥ 3 in the ANSS catalog between 1975 and 2020 for the calibration of the model, with the 
definition of the study region, auxiliary, and primary period specified in Section 2. Since the models differ in 
their specification of the magnitude distributions of the background and triggered earthquakes as well as the rate 
of decay of the triggered earthquakes, we focus on how well the competing models capture the distributions of 
the relevant random variables.

Figure  1; Figures S1 and S2 in Supporting Information  S1 show the magnitude distributions of background 
and triggered earthquakes inferred using models 1–4. Figures 1a and 1d; Figures S1a and S2a in Supporting 
Information S1 show the empirical distributions of background earthquakes Mbkg using black markers. For each 
model, these empirical distributions are obtained using the magnitudes of the earthquakes in the catalog and 
the independence probabilities (IP's) assigned to them as a result of calibration of the competing models on the 
catalog. The solid black lines in these figures show the best-fit GR distribution, and the corresponding parame-
ters are indicated in the relevant panels. We find that all models show the desirable self-consistency between the 
empirical and the underlying theoretical distributions, albeit with a slight variation of the exponent of the GR 
distribution.
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Figures 1b and 1e; Figures S1b and S2b in Supporting Information S1 show the empirical distributions of trig-
gered earthquakes Maft using black markers. The empirical distributions are obtained using the magnitudes of all 
earthquakes in the catalog weighted by 1 − IPj, where IPj is the independence probability of the jth earthquake. 
For models 1 and 2, the black lines show the best-fit GR distribution with parameter β. On the other hand, for 
models 3 and 4, the black lines show the renormalized best-fit conditional magnitude distribution specified in 
Equation 5. We again find that all the models show the desirable consistency between the empirical and under-
lying theoretical distributions. It is worth noticing that even though magnitude distributions of triggered earth-
quakes in models 3 and 4 feature a substantial kink (with β2 ≈ 1.7β1), the renormalization considering the relative 
contributions of triggering earthquakes in the entire magnitude range leads to a distribution with a shape very 
similar to a standard GR distribution.

Figures 1c and 1f; Figures S1c and S2c in Supporting Information S1 show the empirical distributions of triggered 
earthquakes Maft for different mainshock magnitude bins. We notice that the empirical distributions for all the 
models show a systematic dependence on the mainshock magnitude. While this behavior is expected for models 
3 and 4, it points to the hidden inconsistency in the magnitude distribution of triggered earthquakes for  models 1 
and 2, which only becomes apparent upon conditioning on the mainshock magnitude. Figure 2; Figures S3 and 
S4 in Supporting Information S1 illustrate this effect more clearly with separate panels for different mainshock 
magnitude bins. For models 1 and 2 (Figures 2a–2j; Figure S3 in Supporting Information S1, respectively), the 

Figure 1.  Magnitude distributions of background and triggered earthquakes inferred using Model 1 (a–c) and Model 4 
(d–f). (a, d) Empirical distributions of the magnitudes of background earthquakes (Mbkg) are shown as black circles; solid 
line shows the best fit Gutenberg-Richter (GR) distribution with exponent β = 2.41 for Model 1 and βbkg = 2.37 for Model 4. 
(b, e) Empirical distributions of the magnitudes of triggered earthquakes (Maft) are shown as black circles. Solid lines in (b 
and e) show the best fitted GR distribution with exponent β = 2.41 and the renormalized best fitted conditional magnitude 
distribution specified in Equation 5 with parameters β1 = 1.73 and β2 = 3.05, respectively. (c, f) Empirical distributions (Maft) 
for different mainshock magnitude bins specified on the top of panel c. The error bar sizes correspond to the bin sizes used 
for estimating the empirical probability density functions (PDFs).
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underlying unconditional GR distribution produces a biased fit to the conditional empirical magnitude distribu-
tions of the triggered earthquakes. On the other hand, for models 3 and 4 (Figures 2k–2t; Figure S4 in Supporting 
Information S1, respectively), the conditional empirical distributions for the different mainshock magnitude bins 
exhibit clear kinks, precisely at the corresponding mainshock magnitude bins. The renormalized kinked GR 
distribution (Equation 5) captures this effect. As expected, both branches of the kinked GR distribution are visible 
for the intermediate mainshock magnitude bins. In contrast, the smaller and larger mainshock magnitude bins 
exhibit only the upper and lower branches of the kinked GR distribution.

Figure 2.  Empirical and best fitted magnitude distributions of triggered earthquakes, inferred using Model 1 (a–j) and Model 4 (k–t), in 10 mainshock magnitude 
bins indicated on the top of each panel. Solid lines in (a–j) show the best fit Gutenberg-Richter distribution with exponent β = 2.41. Solid lines in (k–t) show the 
renormalized best fitted kinked GR distribution (Equation 5) with parameters β1 = 1.73 and β2 = 3.05 for the corresponding mainshock magnitude bins. The width of 
the error bars corresponds to the bin size used for estimating the empirical probability density functions (PDFs).
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Figures 3a and 3c; Figures S5a and S6a in Supporting Information S1 show the empirical distributions of (Δt), 
obtained using Δtij(= ti − tj) between all causal pairs of earthquakes weighted by the corresponding triggering 
probability (Pij). For models 1 and 2, the black lines show the best fit of the exponentially tapered Omori-Utsu 

kernel, 𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐0)}
−𝑝𝑝0𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  . On the other hand, for models 3 and 4, the black lines show the renormalized 

modified time kernel.

𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐 (𝑚𝑚𝑖𝑖)}
−𝑝𝑝(𝑚𝑚𝑖𝑖)𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  , where 𝐴𝐴 𝐴𝐴 (𝑚𝑚𝑖𝑖) = 𝑐𝑐010

𝑐𝑐1𝑚𝑚𝑖𝑖 and p = p0 + p1mi. All the theoretical distributions under-
lying all the models are in agreement with the empirical distributions. Furthermore, despite a clear magnitude 
dependence of the regularizer and the exponent of the time kernel for models 2 and 4, the renormalization 
accounting for relative contributions of triggering earthquakes in the entire magnitude range leads to a distribu-
tion with the shape very similar to that of the exponentially tapered Omori-Utsu distribution.

Figure 3.  Distribution of the times of the triggered earthquakes since their triggers (Δt) inferred using Model 1 (a–b) and Model 4 (c–d). (a, c) Empirical distributions 
of (Δt) are shown as black circles. Solid lines in panels a and c, respectively, show the best fitted exponentially tapered Omori-Utsu kernel, 𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐0)}

−𝑝𝑝0𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  , 

and the renormalized modified time kernel 𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐 (𝑚𝑚𝑖𝑖)}
−𝑝𝑝(𝑚𝑚𝑖𝑖)𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  , where 𝐴𝐴 𝐴𝐴 (𝑚𝑚𝑖𝑖) = 𝑐𝑐010

𝑐𝑐1𝑚𝑚𝑖𝑖 and p = p0 + p1mi. (b, d) Empirical distributions of (Δt) for different 
mainshock magnitude bins specified in panel b.
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Figures 3b and 3d; Figures S5b and S6b in Supporting Information S1 show that the empirical distributions of 
(Δt) show a systematic dependence on the mainshock magnitude. While this mainshock dependence is expected 
for models 2 and 4, it points to the hidden inconsistency in the time distribution of the triggered earthquakes in 
models 1 and 3. This inconsistency is only revealed upon conditioning on the mainshock magnitude. Figure 4; 
Figures S7 and S8 in Supporting Information S1 illustrate this effect more clearly with separate panels for differ-
ent mainshock magnitude bins, where we clearly see that the underlying mainshock-magnitude-independent time 
kernel for models 1 and 3 produce a biased fit to the conditional empirical distributions of Δt of the triggered 
earthquakes. On the other hand, the mainshock-magnitude-dependent time kernel for models 2 and 4 explains the 
magnitude dependence of the empirical distributions well.

As the models differ in complexity, better fits to the data alone cannot ensure the superiority of the models in terms 
of forecasting performance, which can be better distinguished by pseudo-prospective experiments (Sections 3.3 
and 4.4.2). However, they do highlight the self-consistency or inconsistencies of the models.

Figure 4.  Empirical and the best fitted distribution of times of the triggered earthquakes since their triggers (Δt), inferred 
using Model 1 (a–j) and Model 4 (k–t), in 10 mainshock magnitude bins indicated on the top of each panel. Solid lines in 
(a–j) show the best fitted exponentially tapered Omori-Utsu kernel, 𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐0)}

−𝑝𝑝0𝑒𝑒
−

𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  . Solid lines in (k–t) show the 

renormalized best fitted modified time kernel 𝐴𝐴 𝐴𝐴norm{𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑐𝑐 (𝑚𝑚𝑖𝑖)}
−𝑝𝑝(𝑚𝑚𝑖𝑖)𝑒𝑒

−
𝑡𝑡−𝑡𝑡𝑖𝑖
𝜏𝜏  , where 𝐴𝐴 𝐴𝐴 (𝑚𝑚𝑖𝑖) = 𝑐𝑐010

𝑐𝑐1𝑚𝑚𝑖𝑖 and p = p0 + p1mi, in a 
given mainshock magnitude bin.
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4.2.  Time-Dependence of the Estimated Parameters for the Four Models

Figure 5 presents the time series obtained from the calibration of the four models on the training sets associated 
with each of the 380 successive testing periods. The size of these training sets is progressively increasing as more 
and more earthquakes are added to the training earthquake catalog.

Both the regularizer and the exponent of the time kernel show a strong dependence on the magnitude m of the 
trigger in Models 2 and 4. For instance, the regularizer increases as 10 −3.94+0.34m and 10 −3.91+0.33m for Models 
2 and 4, respectively. It increases more slowly than the rupture length, suggesting that this characteristic time 
does not scale with rupture duration. For the final training period, the exponent of the Omori law increases as 
0.46 + 0.15 m for both models, that is, in a manner very similar to previous results (Nandan, Kamer et al., 2021; 
Ouillon & Sornette, 2005; Ouillon et al., 2009; Sornette & Ouillon, 2005; Tsai et al., 2012) reported for many 
regional and global catalogs.

Models 3 and 4 infer a substantial kink in the magnitude distribution of triggered events, with the kink appearing 
at the magnitude of the trigger (Equation 5). Below that magnitude, the magnitudes of the triggered earthquakes 
follow an exponential distribution with an exponent (≈1.75 and 1.73 for models 3 and 4, respectively, for the final 
training period) that is much smaller than that of the background earthquakes (≈2.52 and 2.37 for models 3 and 
4, respectively, over the same period). The magnitudes of triggered events larger than their trigger also follow 

Figure 5.  Time series of parameters of the four models represented using four colors. The parameters c1 and p1 are only present in Models 2 and 4, and the parameters 
β1 and β2 are only present in Models 3 and 4.
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an exponential distribution but with an exponent (≈3.03 and 3.05 for models 3 and 4, respectively, for the final 
training period) comparatively much larger than that of the background earthquakes. For models 1 and 2, we show 
the time series of β (defined in the standard GR law 𝐴𝐴 𝐴𝐴𝐴𝐴−𝛽𝛽(𝑚𝑚−𝑀𝑀0) in Equation 1), which characterizes the magnitude 
distribution of both the background and triggered earthquakes. As all models use the same training catalog, these 
estimates of β are also valid for Models 3 and 4. For the final training period, β = 2.39 is quite close to the average 
estimate of βbkg for Model 4 and only marginally smaller than the estimate of βbkg for Model 3.

Despite the substantial kink in the magnitude distribution of the triggered earthquakes, it can be shown that the 
frequency-magnitude distribution of all earthquakes simulated using these models shows no discernible differ-
ence from the standard Gutenberg Richter (GR) law. For this purpose, we simulate the catalogs using the param-
eters inferred for Model 4. The time series of the parameters can be found in Figure 5. We select the values of 
the parameters for the last testing period, that is, corresponding to the use of the entirety of the catalog. Figure 
S9 in Supporting Information S1 shows the frequency-magnitude distribution of all earthquakes simulated using 
Model 4 on a log-linear scale. For reference, we show a straight line depicting an exponential GR distribution. It 
is evident from the figure that the renormalized magnitude distribution of all earthquakes in the simulated catalog 
behaves like a standard GR law. This is in agreement with the rigorous and analytical derivation made in Saichev 
and Sornette (2005), which shows that the two branches of the kinked GR distribution (Equation 5) in addition to 
a GR distribution for background events (with a different b-value) still give by “renormalization over all triggered 
cascades” a pure GR distribution with b-value equal to the background b-value. Intuitively, summing kinked 
GR distributions over all earthquake generations that span a large set of magnitudes erases the observability of 
the kinked GR distributions conditional on the magnitude of the triggering earthquakes. Nandan, Ouillon, and 
Sornette (2019) have shown that the underlying hidden kinked GR distribution can be retrieved when using the 
EM (expectation maximization) algorithm and conditioning on the magnitude of the triggering earthquake.

We also note that the inclusion of magnitude dependence in the parameters of the ETAS model does not lead 
to a dramatic change in the criticality parameter (branching ratio), in contrast with the speculation in Zhuang 
et al. (2013).

All parameters show variations with time to some extent. A major source of this time variation is a progressive 
increase in the size of the training catalog, leading to a converging trend in some of the parameters such as μ, the 
βs, branching ratio, and p1. Note that the estimate of the branching ratio is obtained empirically as the fraction 
of earthquakes identified as triggered events. In the time series of some of the parameters such as K, a, c0, c1, p0 
and so on, one can also notice a tendency for sudden, yet small, jumps. These jumps are associated with some 
prominent events in the earthquake catalog, including the Landers, Hector Mine, El-Major earthquakes, etc.

4.3.  An Example Forecast

Before presenting the results of pseudo-prospective experiments, we illustrate how the forecasts of the models are 
specified during a 30-day long testing period. For example, we take the testing period following the 2019 M7.1 
Ridgecrest earthquake, that is, between 28 July 2019 and 27 August 2019. Figure 6a shows the map of the seis-
micity rate forecasted by Model 1 during this testing period and the location of M ≥ 3.5 earthquakes that occurred 
during this period (black stars). Although the seismicity rate map is a convenient way to illustrate the forecasts, 
the actual forecasts for all the models are specified by 1 million stochastic catalogs for a given testing period. 
These stochastic catalogs can then be used to create the distribution of the number of simulated earthquakes (Nsim) 
in a simulation for any space-magnitude bin combination. For instance, Figure 6b shows the distribution of Nsim in 
the entire testing region for four magnitude thresholds Mt at which the forecasts will be evaluated in Section 4.4. 
For comparison, we also show the distribution of Nsim forecasted by a Poisson distribution, with the mean rate 
being equal to the average number of earthquakes generated by the model in all the simulations (dashed lines). 
It is evident that the Poisson distribution fails to approximate the distribution of Nsim and decays much faster. So, 
even though the model assigns a much larger probability to the observed counts (circular markers) of earthquakes 
during the testing period, a much smaller probability will get assigned to the observations if the Poissonian 
approximation were used. Since the log of these probabilities (or log-likelihoods) is used for scoring, the model 
gets an improper scoring under the Poissonian approximation. Thus, in this study, we use the empirical “number 
distribution” for different combinations of spatial resolutions and magnitude thresholds to evaluate the models. 
These empirical distributions can be obtained from the stochastic catalogs and are processed as in Nandan, 
Ouillon, Sornette, and Wiemer (2019a) using adaptive kernel-density techniques to obtain a smooth distribution 
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of Nsim without “holes.” Figures 6c and 6d show the empirical distribution of Nsim forecasted for different magni-
tude bins with 0.1 unit bin size in the entire study region and the 10 polygons (0.5 × 0.5 deg 2) shown in panel 
6a, respectively.

Figure 6.  An illustration of seismicity forecasted by the competing epidemic type aftershock sequence models. (a) Seismicity rate forecasted by Model 1 after the M7.1 
Ridgecrest earthquake (28 July 2019–27 August 2019). Black stars show the location of M ≥ 3.5 earthquakes that occurred during the forecasted period. Black squares 
show the location of the 10 randomly chosen polygons (with areas 0.5 × 0.5 deg 2 each) for which the distribution of earthquake numbers (Nsim) forecasted by the model 
in 1 million simulations are shown in panel d. (b) Solid curves show the distribution of Nsim forecasted by the model in the entire study region for four magnitude 
thresholds (M ≥ 3.5, 4, 4.5, 5) of the target catalog. Dashed curves show the distribution of Nsim forecasted by a Poisson distribution, with the mean rate being equal 
to the average number of earthquakes generated by the model in all the simulations. (c) Distribution of Nsim forecasted in the entire study region in different magnitude 
bins with bin size 0.1. (d) Distribution of Nsim forecasted in the 10 polygons shown in panel a. Circular markers in panels b–d show the observed counts of earthquakes 
during the testing period for different magnitude thresholds (b), magnitude bins (c) and spatial polygons (d).



Journal of Geophysical Research: Solid Earth

NANDAN ET AL.

10.1029/2022JB024380

15 of 27

4.4.  Model Evaluations

4.4.1.  Performance of Model 1 Compared to a Spatially and Temporally Homogeneous Poisson Process 
(STHPP)

We first compare Model 1 to a spatially and temporally homogeneous Poisson process (STHPP) to establish it as a 
reliable benchmark against which all the other models will be evaluated. As the name suggests, the STHPP model 
forecasts the rate of future earthquakes as being homogeneous in space and uniform in time. The rate forecasted 
by the STHPP is estimated using the data in the training period and is given by

𝜆𝜆 =
𝑁𝑁 (≥ 𝑀𝑀𝑡𝑡)

𝐴𝐴 × 𝑇𝑇
� (17)

where λ is the average rate of earthquakes with magnitudes larger than Mt per day per km 2, A is the area of the 
study region, and T is the time duration of the training catalog. Mt is equal to the testing magnitude threshold. 
For the current study region, A = 961, 238 km 2. The value of T depends on the end time of the training data 
set (which is also the starting time of the testing period). For the first testing period, T = 3, 286 days (≈9 years, 
considering training data between 1 January 1981, and 1 January 1990), increasing by 30 days as the training 
period becomes larger and larger. Having obtained λ from a given training period, the forecast of the STHPP 
model for the following testing period (of a duration of 30 days) is prescribed as a mean rate in all the equal-area 
pixels as λpixel = λ × 30 × Apixel, where Apixel is the area of triangular pixels with which the study region is tiled. For 
the ith testing period, the performance of the model is estimated using the Poissonian log-likelihood as follows:

𝐿𝐿𝐿𝐿𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
=
∑

𝑗𝑗

𝑛𝑛𝑖𝑖
𝑗𝑗
ln 𝜆𝜆𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− 𝜆𝜆𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− ln 𝑛𝑛𝑖𝑖

𝑗𝑗
!� (18)

where index i stands for the testing period, while j stands for the pixel's index. The information gain of Model 1 
over STHPP in the ith testing period is simply 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1
− 𝐿𝐿𝐿𝐿𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 . We then obtain the information gain 

per earthquake (IGPE) that Model 1 obtains over STHPP as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑

𝑖𝑖 𝐼𝐼𝐼𝐼𝑖𝑖
∑

𝑖𝑖 𝑁𝑁𝑖𝑖(≥𝑀𝑀𝑡𝑡)
 , where Ni(≥Mt) is the observed 

number of earthquakes with magnitude larger than Mt during the ith testing period. Figure S10 in Supporting 
Information S1 shows the IGPE (colored bars) and its 95% confidence interval (orange error bars obtained using 
bootstrapping the IGs obtained from the 380 testing periods). Since the models are compared at four different 
spatial resolutions (indicated on the x-axis) and four testing magnitude thresholds (indicated by colors of the bars), 
we get four groups of four bars. Figure S10 in Supporting Information S1 leads to the following conclusions:

1.	 �At all spatial resolutions, Model 1 significantly outperforms the STHPP with IGPE ranging from 1.72 
(Rres = 89 km, Mt = 5) to 3.7 (Rres = 11 km, Mt = 3.5), with p-values resulting from pairwise T-tests being 
below the computer precision.

2.	 �With increasing spatial resolution (i.e., decreasing Rres), Model 1 obtains higher IGPE over the STHPP.
3.	 �At all spatial resolutions, although there is no general trend of a drop in performance with increasing Mt, 

Model 1 features a consistently lower IGPE at Mt = 5 compared to its IGPE for other Mt's. However, we cannot 
present evidence whether IGPE could continue decreasing at larger Mt values, as the number of simulated 
events would be too small to reliably estimate the performance of the forecasts. For that purpose, one would 
have to drastically increase the number of simulated catalogs.

The IGPEs of Model 1 over the STHPP translate into a probability gain per earthquake (=e IGPE) ranging between 
5.62 and 42.52. These numbers indicate how likely Model 1 is to explain an individual earthquake relative to 
the STHPP. These numbers show that Model 1 is a much superior model to STHPP and can thus act as a strong 
benchmark against which all other models can be evaluated.

4.4.2.  Relative Performance of Models in Pseudo-Prospective Forecasting Experiments

In this section, we compare the performance of the models relative to Model 1 and each other. Model 1 is used 
as the null model as it is a robust benchmark whose superiority against the standard ETAS model with a spatially 
homogeneous background rate has already been established in Nandan, Ram et al.  (2021) and recalled in the 
previous subsection. Figures 7a–7p show the time series of the CIG that models 2–4 obtain relative to Model 1. In 
total, we did the evaluations of the models relative to Model 1 at 16 settings (resulting from a combination of four 
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different Mt thresholds and four different spatial resolutions). We can observe from Figures 7a–7p that models 
2–4 outperform Model 1 in nearly all testing settings (see Section 4.4.3 for a discussion of the deterioration of the 
models' performance with larger Mt and larger spatial resolutions).

To quantify the significance of the model performance, we use two metrics (mean information gain (MeanIG) and 
median information gain (MedianIG)), which are computed from the 380 values of information gains obtained for 
each individual testing period for a given test setting. The statistical significance of MeanIG and MedianIG are 
evaluated using the T-test and Ranksum test, respectively. We can observe from Figures 8a–8h that models 2–4 
also significantly outperform Model 1 in nearly all testing settings. Furthermore, one can observe that Model 4 is 
the best, as it outperforms all the other three models in 15 out of 16 test settings (see Section 3.3, Figures 7 and 8).

One could object that the kinked GR law underlying models 3 and 4 is nothing but the manifestation of short-term 
aftershock incompleteness (STAI) (Hainzl,  2016b; Helmstetter et  al.,  2006) observed after relatively large 

Figure 7.  (a–p) Time series of cumulative information gain (CIG) that Models 2–4 obtain with respect to Model 1 for 16 different testing settings corresponding to 
different panels.
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earthquakes. Thus, by capturing the STAI in the form of kinked GR law, Model 4 outperforms all the competing 
models. The following pieces of evidence allow us to reject this objection:

1.	 �Although it could be argued that STAI could play a very dominant role as more and more small events have 
been detected after the template-matching techniques (MFT) has been applied to pick up small earthquakes 
(Ross et al., 2019), the matched filtering approaches seem to detect additional events mostly in magnitude 

Figure 8.  (a–d) Mean information gain (MeanIG) that Models 2–4 obtain with respect to Model 1 for 16 different testing settings. The four panels correspond to the 
spatial resolutions at which models were compared. The x-axis shows the four magnitude thresholds (Mt) of the target catalog at which the testing was performed. 
Error bars show the 95 confidence interval of MeanIG obtained using bootstrapping. The number above each bar is the log(p-value) of the test of the null hypothesis 
that each of the MeanIGs are equal to 0 against the alternative that they are significantly larger than 0, using the paired T-test. Green colored numbers indicate that the 
null hypothesis can be rejected (at a significance level of 0.05). Black and red colored numbers, respectively, indicate that the null hypothesis is not rejected, but the 
alternative model is more informative than the null model and vice-versa. (e–h) Same as panels (a–d) but using the Median information gain (MedianIG). The null 
hypothesis tested is that the MedianIGs are equal to 0 against the alternative that they are significantly larger than 0, using paired Ranksum test.
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ranges smaller than those used in this study. We demonstrate this by comparing the number of earthquakes 
reported in the ANSS earthquake catalog and the Ross-Trugman-Hauksson-Shearer (RTHS) catalog (Ross 
et al., 2019) reported for Southern California (region delineated using the green line) in Figure 9a. The RTHS 
catalog has been obtained using the template matching approach (Ross et al., 2019). Note that there are two 
catalog versions: qtm_final_9.5dev.hypo and qtm_final_12dev.hypo (see the acknowledgment section for the 
link to the data sets). We selected the latter because it contains the highest confidence events and corresponds 
to a detection threshold of 12.0 times the median absolute deviation. The qtm_final_12dev.hypo catalog is 
referred to as the RTHS catalog hereafter. The location of all earthquakes in the RTHS catalog are shown as 
orange squares in Figure 9a. As these earthquakes are only reported within the green zone (Figure 9a), we 
also restricted the ANSS catalog to the same zone for the following comparisons. Furthermore, the RTHS 
catalog is only reported for the period between 2008 and 2017, including 2008 and 2017, so the ANSS 
catalog was also restricted to the same period. In Figure 9b, we show the cumulative number of earthquakes 
(M ≥ 0 and M ≥ 3) for the RTHS and the restricted ANSS as dashed and solid lines, respectively. We find 
that the RTHS and the restricted ANSS catalogs report ≈505,000 and ≈220,000 M ≥ 0 earthquakes, that is, 
the RTHS catalog reports nearly ≈2.3 times more M ≥ 0 events than the ANSS catalog. However, for M ≥ 3, 
the restricted ANSS catalog reports ≈3,560 earthquakes while the RTHS catalog reports ≈3,150 earthquakes, 

Figure 9.  (a) Spatial distribution of all earthquakes in the Advanced National Seismic System (ANSS) catalog are shown as gray dots. Orange squares show the 
location of earthquakes reported in the Ross-Trugman-Hauksson-Shearer (RTHS) catalog between the years 2008 and 2017 in Southern California (region delineated 
using a green line). Violet circles show the location of earthquakes in the ANSS catalog between 2008 and 2017 in the green zone. (b) Dashed and solid lines show the 
cumulative number of earthquakes (M ≥ 0 and M ≥ 3, respectively) in the green zone in the RTHS (orange) and the ANSS (violet) catalog in the period 2008 to 2017. 
(c) Frequency magnitude distribution of earthquakes in the RTHS (orange) and ANSS (violet) catalog in the green zone from 2008 to 2017. (d) The ratio of the number 
of earthquakes ≥ M in the ANSS and the RTHS (black) catalog in the green zone between 2008 and 2017 as a function of magnitude (M). The Gray curve shows 
the same ratio but for the RTHS catalog, which features a lower detection threshold for event detection (qtm_final_9.5dev.hypo). The subscripts show the distinction 
between the two RTHS catalogs.
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with an RTHS to ANSS ratio of 0.88. This implies that using the sophisticated template matching approach 
(Ross et al., 2019), the RTHS catalog mainly adds below M = 3, which is the bulk magnitude of complete-
ness threshold considered in this study. In Figure 9c, we further show the frequency magnitude distribution 
(FMD) of the RTHS and the ANSS catalogs. The figure clearly shows that the FMDs obtained from the two 
catalogs overlap up to a magnitude threshold M = 1.2, below which the fraction of earthquakes reported in 
the RTHS catalog shows a systematic increase. Finally, Figure 9d conveys the same information as Figure 9c 
differently by showing the ratio of the number of earthquakes ≥ M in the ANSS and the RTHS (distinguished 
as RTHS_12 in Figure 9d) catalog as a function of magnitude (M). The ANSS catalog tends to report about 
11% more earthquakes than the RTHS catalog above magnitude 3. This could be attributed to our choice to 
use the higher confidence qtm_final_12dev.hypo catalog instead of lower confidence qtm_final_9.5dev.hypo 
catalog. We verify this using the lower confidence qtm_final_9.5dev.hypo catalog (RTHS_9.5) in Figure 9d. 
We find that, although the ratio of the numbers of earthquakes ≥M in the ANSS and the RTHS_9.5 catalog 
is lower than when considering the RTHS_12 catalog, the effect is mostly below M = 3. At M = 3, the ANSS 
catalog still reports about 9% more earthquakes than the RTHS_9.5 catalog. Despite the improvements offered 
by the template matching approach in identifying the missing earthquakes, the method remains susceptible to 
STAI, which would imply that both the ANSS and RTHS catalogs would have missing M ≥ 3 events. Thus, the 
ratio of the number of events in the two catalogs alone cannot indicate whether the ANSS catalog is complete 
above M = 3.

2.	 �To assess the severity of incompleteness at different magnitude thresholds, Mizrahi et al. (2021) use the exten-
sion of the EM algorithm to infer the self-consistent estimation of ETAS parameters and high-frequency time 
series of the magnitude of incompleteness. This method allows inferring the fraction of incomplete events at 
different magnitude thresholds Mt. This incompleteness fraction decreases from ≈6.2% for Mt = 2.5 to ≈1.3% 
for Mt = 3 to ≈0.3% for Mt = 3.5, in the case of the Californian catalog for almost the same time period. Thus, 
it is clear that STAI is not a significant factor if we consider a reasonably large enough bulk magnitude of 
completeness, such as Mc = 3, as done in this study.

3.	 �In Nandan, Ouillon, and Sornette (2019), it was shown using synthetic tests that STAI cannot result in a kinked 
GR law. The authors first simulated a perfect synthetic catalog using the ETAS model in these tests. These 
catalogs were subjected to incompleteness filters (Helmstetter et  al., 2006), leading to catalogs exhibiting 
STAI. Nandan, Ouillon, and Sornette  (2019) found that after inversion, these incomplete catalogs do not 
feature the kinked GR law distribution as in the case of real catalogs. Note that the study of Nandan, Ouillon, 
and Sornette (2019) pertained to the same study region, nearly identical duration of the catalog, as well as the 
same bulk magnitude of completeness as in this study.

4.	 �Model 4 not only outperforms Model 1 and Model 2 in forecasting M ≥ 3.5 earthquakes but also at higher 
magnitude thresholds such as 4.5 and 5. If the kinked GR law underlying Model 4 was indeed the manifesta-
tion of STAI, the model would have lost its edge over Model 1 and 2 when forecasting earthquakes M ≥ 4.5 
and M ≥ 5, which is not the case (see Figures 7 and 8).

We conclude that the outstanding performance of Model 4 is due to two crucial properties: a time Omori kernel 
dependent on the magnitude of the trigger and a kinked GR law conditional on the magnitude of the trigger. 
The first property has been predicted theoretically and later confirmed by various empirical tests. It is due to the 
interplay between long-range elastic stress transfer and effective thermal activation of rupture (Nandan, Kamer 
et al., 2021; Ouillon & Sornette, 2005; Ouillon et al., 2009; Sornette & Ouillon, 2005; Tsai et al., 2012). The 
second property is also a theoretical prediction when imposing a scale-invariant property generalizing the ETAS 
model so that the minimum cut-off magnitude M0 is pushed to −∞ (Nandan, Ouillon, & Sornette, 2019; Saichev 
& Sornette, 2005; Vere-Jones, 2005), that is, the minimum rupture scale is vanishing. The first empirical confir-
mation of the kinked GR law was reported by Nandan, Ouillon, and Sornette (2019), who proposed a mechanical 
interpretation using the fact that the symmetry of the deformation tensor at any scale tends to mimic the orthor-
hombic symmetry of the loading stress field. Thus, each time an event occurs on a fault and creates a monoclinic 
strain perturbation, another event of similar size tends to be induced on a conjugate fault to reestablish the orthor-
hombic symmetry.

4.4.3.  Remarks on the Relative Performance of Models

1.	 �Figures 7a–7p show that the performance of the models decreases with the increasing magnitude threshold of 
the target catalog. However, such a decrease is not surprising considering that the CIG reported in the figure 
are not normalized by the number of earthquakes above different Mt's. As the smaller earthquakes occur more 
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frequently than larger ones, a fairer comparison for models at different magnitude thresholds can be made 
if the gains are further normalized by the frequency of events in the testing period. Given the b-value of ≈1 
(Figure 1), M3.5+ earthquakes are ≈32 times more frequent than M5+ earthquakes, making the per-event 
information gains comparable for these two end-member settings. With the same heuristics, per-event gains 
are similar for all the testing magnitude settings.

2.	 �The sudden decrease in net CIG of these models at the highest spatial resolution is likely due to model assess-
ments based on empirical earthquake number distributions. As the spatial resolution increases, the empirical 
distributions become increasingly unrepresentative of the underlying distribution owing to the monotonically 
decreasing likelihood of simulated earthquakes sampling a given pixel (Saichev & Sornette, 2006). Increasing 
the magnitude threshold has a similar impact on the sampling. Thus, we see the strongest deterioration in the 
performance of the models in Figures 7l, 7o, and 7p. One possibility to avoid these artifacts resulting from 
under-sampling of the underlying distribution is to increase the number of simulations. However, since we 
have already performed nearly 1 million simulations, increasing the number of simulations to determine the 
true performance at higher resolutions and magnitude thresholds will be a major computational challenge. If 
the magnitude threshold is increased from 3.5 to 5, a similar sampling of a given pixel as with Mt = 3.5 would 
require a 32-fold increase in simulations (assuming a b-value of 1). Thus, if 1 million simulations were suffi-
cient for Mt = 3.5, 32 million simulations need to be performed for Mt = 5.

3.	 �Figures 7a–7p shows that the growth in the CIG of the models is punctuated as a result of the temporal clus-
tering of earthquakes.

4.4.4.  Consistency Tests

Figure  10 shows the cumulative distribution function (CDF) of quantities γN, γM and γS defined in Savran 
et al. (2020), which are used to measure the consistency of the models in the N-, M-, and S-test, respectively. 
These quantities are expected to follow a uniform distribution when evaluated over multiple testing periods if the 
observations are perfectly consistent with the models.

Using the N-test, we measure the consistency of the four models at the four Mt's. The number of earthquakes 
forecasted by the model for a given testing period can be deemed consistent at the 95% confidence level if 
0.025 < γN < 0.975. We find that the numbers of earthquakes forecasted by the models are consistent with the 
observations for most of the testing periods. Even for Model 1 and Mt = 3.5, which has the largest inconsistency, 
the fraction of testing periods in which 0.025 < γN < 0.975 is about 0.75. We also find that the fraction of testing 
periods for which the numbers forecasted by the models are consistent increases as the threshold Mt of the testing 
catalog is increased. Given the definition of γN in Savran et al. (2020), the shape of the CDF of γN from all the 
testing periods reveals that the models tend to over-forecast the overall number of earthquakes. Furthermore, this 
tendency to over-forecast progressively decreases with increasing Mt. We also note that models 3 and 4 have the 
least tendency to over-forecast as the corresponding CDFs of γN are closest to a uniform distribution.

γM and γS defined in Savran et al. (2020) are such that they become undefined when the observed or the simulated 
catalog has 0 events in some bins. As the occurrence of 0 events in some bins of the testing catalog as well as of 
the simulated catalogs becomes more prevalent with increasing Mt, the M and the S tests in their current formula-
tion in Savran et al. (2020) cannot be used to properly judge the consistency of the models, especially at large Mt 
values. Addressing these deficiencies is beyond the scope of this work and will be considered in a future study. 
In our present work, we have restricted ourselves to assessing the consistency of the models using the M and S 
tests only for Mt = 3.5, as it is in this case alone that we never encounter this issue of 0 earthquake occurrence in 
a testing period.

From the CDF of γM and γS, we can conclude that the forecasted magnitude and the spatial distributions of earth-
quakes by all four models have nearly the same level of (in)consistency with respect to the observed distributions. 
For both γM and γS, we find a significant departure from the perfect uniform distribution, although the deviation 
seems stronger for γM. In conclusion, the tests based on γN, γM and γS (Savran et al., 2020) lack the power to 
distinguish the different models, which justifies our emphasis on the tests based on pseudo-prospective forecasts, 
which turn out to be much more discriminative and also directly relevant for assessing the dynamical evolution 
of seismic hazards.



Journal of Geophysical Research: Solid Earth

NANDAN ET AL.

10.1029/2022JB024380

21 of 27

5.  What Magnitude Range Dominates Triggering?
5.1.  Relative Contributions of Events of Different Magnitudes to Triggering

As Model 4 provides the best available description of seismicity, we are now in position to reexamine from 
its vantage the claim that small earthquakes dominate the triggering of large earthquakes (Helmstetter, 2003; 
Helmstetter et al., 2005), which is deeply embedded in the structure of the standard ETAS model and its gener-
alization with a spatially heterogenous background rate in Model 1. We address this question by computing the 
relative contribution F(m|M) to the triggering of events of magnitude larger than M by events of magnitude m, for 

Figure 10.  (a–d) Cumulative distribution function (CDF) of quantities γN, γM, and γS defined in Savran et al. (2020) used to 
measure the consistency of the models in the N-, M-, and S-test, respectively. Each colored curve corresponds to a competing 
model. The solid and dashed black curves depict the CDF of perfect uniform distribution and its 95% confidence intervals, 
given 380 data points. The N-test is conducted for four magnitude thresholds (Mt = 3.5, 4, 4.5, 5), while the M- and S-test are 
conducted only at Mt = 3.5, for reasons explained in Section 4.4.4.
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various M's, that Model 4 predicts. For the application to California, we take the average values of the parameters 
inverted using Model 4 on the ANSS catalog: a = 1.1, β1 = 1.73, β2 = 3.05, βbkg = 2.4, and M0 = 3.

Denoting m (resp. M) as the magnitude of the triggering (resp. triggered) earthquake, for Model 4, the average 
number 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚

>𝑀𝑀
(𝑚𝑚) of events of magnitudes larger than M triggered by an event of magnitude m, with m > M, is 

given by

𝑁𝑁𝑚𝑚𝑚𝑚𝑚
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∀ 𝑚𝑚 𝑚 𝑚𝑚� (19)

which is Equation S6 in Text S1 of Supporting Information S1, with the correspondence of notations maft → M 
and mmain → m.

The number 𝐴𝐴 𝐴𝐴𝑚𝑚≤𝑀𝑀

>𝑀𝑀
(𝑚𝑚) of events of magnitudes larger than M triggered by an event of magnitude m, with m ≤ M, 

is given by

𝑁𝑁𝑚𝑚≤𝑀𝑀

>𝑀𝑀
(𝑚𝑚) = 𝐾𝐾𝐾𝐾1

𝑒𝑒(𝑎𝑎+𝛽𝛽2−𝛽𝛽1)(𝑚𝑚−𝑀𝑀0)
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)
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𝑒𝑒−𝛽𝛽2(𝑀𝑀−𝑀𝑀0) ∀ 𝑚𝑚 ≤ 𝑀𝑀� (20)

which is Equation S9 in Text S1 of Supporting Information S1, with the correspondence of notations maft → M 
and mmain → m.

Combining the GR distribution of the background events with these “renormalized” productivity laws for trig-
gered events of magnitudes larger than M, the expected contribution of the triggers of magnitudes falling in the 
interval [M0 + iΔm, M0 + (i + 1)Δm]) to the triggering of events with magnitude ≥ M is given by
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� (21)

Then, the fraction F(m|M) of events (of magnitudes ≥ M) triggered by events of magnitude in the interval (m, 
m + Δm) is obtained dividing Equation 21 by the total contribution of earthquakes of all the magnitudes, that 
is, by normalizing Equation 21 by its sum over all triggers' magnitude intervals. Figure 11a shows the resulting 
F(m|M) for different values of M. Except for M values close to the lower boundary M0, one can observe the 
existence of a secondary peak that becomes dominant for larger values of M: the main triggers of large events of 
magnitude ≥ M are events of magnitude M.

The larger the value of M, the more pronounced this phenomenon. This result for F(m|M) is fundamentally differ-
ent from the prediction of the standard ETAS model, which is recovered for M = M0 = 3 and represented by the 
blue curve: in this case, Equation 19 reduces to 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚

>𝑀𝑀
(𝑚𝑚) = 𝐾𝐾𝐾𝐾𝑎𝑎(𝑚𝑚−𝑀𝑀0) which, together with the first expression in 

Equation 21, recovers the standard ETAS dependence 𝐴𝐴 ∼ 𝐾𝐾𝐾𝐾(𝑎𝑎−𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏)(𝑚𝑚−𝑀𝑀0) . Thus, in contrast to the prediction of the 
standard ETAS model, earthquakes are mostly triggered by earthquakes of similar or larger magnitudes, implying 
a fundamental change of paradigm in earthquake forecasting. The previous paradigm that small earthquakes domi-
nate triggering only holds for triggered earthquakes of magnitudes close to the triggering threshold M0.

5.2.  Probability of an Event With Magnitude M to Be Triggered by a Previous Event of Magnitude m

The message of Figure 11a can be complemented by considering the probability 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) that a given event of 
magnitude M has been triggered by a previous event of magnitude m, which reads, using Bayes theorem:

𝑃𝑃 (𝑚𝑚|𝑀𝑀) =
𝑃𝑃 (𝑀𝑀|𝑚𝑚)𝑃𝑃 (𝑚𝑚)

∫
+∞

𝑀𝑀0
𝑃𝑃 (𝑀𝑀|𝑚𝑚)𝑃𝑃 (𝑚𝑚) 𝑑𝑑𝑑𝑑

� (22)
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where 𝐴𝐴 𝐴𝐴 (𝑀𝑀|𝑚𝑚) ∼ 𝐾𝐾𝐾𝐾𝑎𝑎(𝑚𝑚−𝑀𝑀0)𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀|𝑚𝑚) , 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀|𝑚𝑚) is a kinked GR law with parameters β1 and β2, defined 
using Equations S1 and S2 in Text S1 of Supporting Information S1, and 𝐴𝐴 𝐴𝐴 (𝑚𝑚) = 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 (𝑚𝑚) is a standard GR law 
(Equation 4 in Section 3.1) with parameter βbkg.

In the case where m < M, we have

� (�|�) ∼ �1�2�−�2(�−�0)
[

�(����−�−�2)(�−�0)�1�2
(

��1(�−�0) − 1
)]−1

� (23)

from which we get, neglecting positive pre-factors:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑃𝑃 (𝑚𝑚|𝑀𝑀) ∼ 𝛽𝛽2 (𝑎𝑎 + 𝛽𝛽2 − 𝛽𝛽1 − 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏) 𝑒𝑒

𝛽𝛽1(𝑚𝑚−𝑀𝑀0) − (𝛽𝛽2 − 𝛽𝛽1) (𝑎𝑎 + 𝛽𝛽2 − 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏)� (24)

For the parameters calibrated on the Californian catalog with Model 4, this gives 𝐴𝐴
𝑑𝑑

𝑑𝑑𝑑𝑑
𝑃𝑃 (𝑚𝑚|𝑀𝑀) ∼ 0.62𝑒𝑒1.6(𝑚𝑚−3) − 2.7 . 

Thus, 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) is an increasing function of m for m > 3.9, and a decreasing function for m < 3.9.

In the case where m > M, we have

� (�|�) ∼ �1�2�−�1(�−�0)
[

�1�(����−�−�1)(�−�0) + �2�(����−�)(�−�0)
(
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After a little algebra and omitting all positive pre-factors, we finally find that 
𝐴𝐴

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑃𝑃 (𝑚𝑚|𝑀𝑀) ∼ 𝛽𝛽2 (𝑎𝑎 − 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏) 𝑒𝑒

𝛽𝛽1(𝑚𝑚−𝑀𝑀0) − (𝛽𝛽2 − 𝛽𝛽1) (𝑎𝑎 + 𝛽𝛽1 − 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏) which takes the form 
𝐴𝐴

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑃𝑃 (𝑚𝑚|𝑀𝑀) ∼ −4𝑒𝑒1.6(𝑚𝑚−3) − 0.45 , and is always negative.

Putting these results together and assuming M0 = 3, 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) is first decreasing for 3 < m < 3.9, then increasing 
for 3.9 < m < M, and then decreasing again for m > M. For 3 < M < 3.9, 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) is monotonically decreasing 
with m for all m's. This implies that, apart from contributions at magnitudes close to M0, the most likely triggering 
event of an earthquake of magnitude M has itself a magnitude M.

Figure 11c shows the behavior of 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) , which progressively delocalizes toward large magnitude m as M 
increases. For comparison, the pdf corresponding to the ETAS model (Model 1), which does not depend on M, 
is plotted using a black dashed line.

Figure 11.  (a) Fraction F(m|M) (obtained from Equation 21 by normalization) of events (of magnitudes ≥ M) triggered by 
events of magnitude in the interval (m, m+ Δm); Different colors correspond to different values of M, indicated in the legend; 
The curves are obtained for the parameters of Model 4 given by K = 0.45, a = 1.1, β1 = 1.73, β2 = 3.05, β = 2.4, M0 = 3 
and Δm = 0.2, which best fit the Advanced National Seismic System (ANSS) Californian catalog. (b) Dependence of the 
ratio R(M) given in Equation 26 as a function of M − M0. (c) Conditional probability that an event of magnitude M has been 
triggered by an event of magnitude m, P(m|M). The black dashed line corresponds to Model 1. (d) Conditional probability that 
an event of magnitude M has been triggered by an event of magnitude m or larger, S(m|M). In both panels, different colors 
correspond to different values of magnitude of target (M), indicated in the legend; The curves are obtained for the parameters 
of Model 4 given by which best fit the ANSS Californian catalog.
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Integrating 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) with m, we can estimate S(m|M), the share of events with magnitude larger than m that trig-
ger an event of magnitude M (see Figure 11d). Consider for instance the median value S(m|M) = 0.50; then the 
corresponding triggering magnitude increases from m = 3.4 for M = 3, to m = 5.24 for M = 7. Thus, forecasting 
correctly half of the triggered events of magnitude M requires detecting properly only the largest events if M is 
large. However, it must be kept in mind that forecasting the background events of similar magnitude M requires 
additional ingredients or mechanisms beyond Model 4, which assumes them as Poissonian in time.

5.3.  Relative Propensity of an Event With Magnitude M to Trigger Another Event of Magnitude M

Using Equation 23, we obtain a further diagnostic

� (� = �|�)
� (� = �0|�)

=
�1�−(����−�−�2)(�−�0)

(

�1 + �2
(

��1(�−�0) − 1
)) ∶= �(�)� (26)

which quantifies the relative contributions of events of magnitude M to those of magnitude close to the lower 
threshold M0 in their propensity to trigger an event of magnitude M. Figure 11b plots the dependence of this ratio 
R(M) as a function of M. There is a cross-over magnitude M* such that R(M) < 1 for M < M* and R(M) > 1 
for M > M*. Thus, the triggering of earthquakes with M < M* is dominated by previous events with magnitude 
M0, while the triggering of earthquakes with M > M* is dominated by previous events with magnitude M. This 
provides another confirmation of the major difference of Model 4 compared with the conclusions drawn using 
the standard ETAS model, where the triggering of events of any magnitude range is dominated by events with 
magnitude M0, since a − βbkg < 0 holds true in general.

5.4.  Discussion

In our calibration of the models, we considered that M0 = Mc, that is, the minimum magnitude Mc above which all 
events are thought to have been detected is equal to the minimum magnitude M0 at which earthquakes can trigger 
other earthquakes. However, the true M0 is likely much smaller than Mc (Sornette & Werner, 2005). Since events 
with M < M* are either unpredictable background events or are mainly triggered by unobserved events, it follows 
that the performance of any statistical forecasting technique can be expected to be low for such a magnitude range. 
On the other hand, provided that M* > Mc, events of magnitude M > M* are either background events or triggered 
by observable events of similar magnitude. Our best Model 4 should thus perform better on that magnitude range. 
One should, however, keep in mind that the qualitative behavior of 𝐴𝐴 𝐴𝐴 (𝑚𝑚|𝑀𝑀) in other areas may be different, 
depending on the local set of exponents (a, β1, β2, and βbkg). For California, Figure 11b shows that M* ≃ M0 + 3.3.

The productivity exponent (a) defined in the first term 𝐴𝐴 𝐴𝐴𝐴𝐴𝑎𝑎(𝑚𝑚𝑖𝑖−𝑀𝑀0) of Equation 2 is underestimated when the 
anisotropy of the spatial organization of the seismicity is not considered during calibration of the parameters 
of the ETAS model (Guo et al., 2019; Hainzl et al., 2008; Zhuang et al., 2019). This underestimation of a then 
translates into a stronger apparent dominance of the smaller earthquakes in the overall triggering process. In 
contrast, if the anisotropy of the stress distribution due to an earthquake is accounted for during ETAS calibra-
tion, somewhat larger values of a are obtained. Thus, Helmstetter (2003) preferred to use the value of a estimated 
through nonparametric methods. The value of the productivity exponent reported in Helmstetter (2003) is 1.84 
(compared to ≈1.1 reported in the present study). This former exponent is in line with what is usually obtained 
when anisotropy is accounted for. As Helmstetter (2003) was published at a time when the community was still 
unaware of the intricacies of conditional magnitude distribution of the aftershocks (as considered here), the natu-
ral conclusion at the time was that small earthquakes dominate triggering. Even with a larger a value obtained by 
accounting for anisotropy, our present finding of secondary peaks shown in Figure 11a remains unchanged. This 
is because these peaks result from the nature of the conditional magnitude distribution of aftershocks, which have 
been hitherto not considered in the question about the dominance of small versus large earthquakes in triggering. 
If anything, accounting for anisotropy increases the fertility exponent and thus tends to decrease the contribution 
of small earthquakes relative to large earthquakes, strengthening the main findings of this study.
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6.  Conclusion
We have compared four different stochastic models of seismicity and found that, for California, the model with 
parameters dependent on the magnitude of the triggering shock for the Omori time kernel and the magnitude 
distribution of triggered events (Model 4) offers the best performance in forecasting future seismicity. The 
ingredients of the best model can be rationalized from the norm and symmetry of the fluctuations of the stress 
and  deformation tensors.

Model 4 predicts that earthquakes up to a cross-over magnitude M* are preferably triggered by the smallest possi-
ble triggering shocks; in contrast, earthquakes with magnitude M above M* are preferably triggered by events 
with a similar magnitude M. Thus, forecasting small events is inherently unfeasible due to a lack of observations 
of their (small magnitude) triggers. In contrast, a significant fraction of large events is triggered by large events. 
Being large, these triggering events are observed, and their catalog is close to complete for the global Earth 
seismicity. Thus, forecasting large events preceded by a set of seismic precursors (Mignan, 2011) would not be 
spoiled by the noise created by the myriad of small events whose recording is incomplete or whose parameters 
are highly uncertain. Given that only large events are relevant for risk assessment and protection, our results 
suggest that modeling the spatial anisotropy of sources of large spatial dimensions defines the next important 
step toward a successful operational earthquake forecasting system (as large earthquakes cannot be considered 
as point sources).

Our improved ability to forecast applies only to the subset of triggered earthquakes, while background events 
remain statistically unpredictable according to the investigated models. To improve, a better description of the 
background (non-triggered) part of the seismic catalogs is needed. This has been partially achieved in the present 
set of models by introducing a spatially heterogeneous structure for the set of background events. But there is no 
time dependence. A substantial increase of forecasting power should focus on modeling possible time variations 
of local or regional strain fields and other geophysical fields that could be correlated with seismicity (Freund 
et al., 2021).

Data Availability Statement
The data used for this analysis are available through the website https://earthquake.usgs.gov/earthquakes/
search/ (U.S. Geological Survey, Earthquake Hazards Program, 2017) and https://service.scedc.caltech.edu/ftp/
QTMcatalog/.
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