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Abstract

Temporal knowledge graphs store the dynam-
ics of entities and relations during a time pe-
riod. However, typical temporal knowledge
graphs often suffer from incomplete dynam-
ics with missing facts in real-world scenar-
ios. Hence, modeling temporal knowledge
graphs to complete the missing facts is im-
portant. In this paper, we tackle the temporal
knowledge graph completion task by propos-
ing TempCaps, which is a Capsule network-
based embedding model for Temporal knowl-
edge graph completion. TempCaps models tem-
poral knowledge graphs by introducing a novel
dynamic routing aggregator inspired by Cap-
sule Networks. Specifically, TempCaps builds
entity embeddings by dynamically routing re-
trieved temporal relation and neighbor infor-
mation. Experimental results demonstrate that
TempCaps reaches state-of-the-art performance
for temporal knowledge graph completion. Ad-
ditional analysis also shows that TempCaps is
efficient1.

1 Introduction

Knowledge graphs (KGs) organize and integrate in-
formation in a structured manner, which is human-
readable and suitable for computer processing.
This advantage of knowledge graphs is helping
to bridge the gap between humans and computers.
Numerous real-world applications have benefited
from KGs. In particular, recent advances in artifi-
cial intelligence have motivated researchers to use
knowledge graphs to boost performance in down-
stream applications, including natural language pro-
cessing (IV et al., 2019; Bosselut et al., 2019) and
computer vision (Yu et al., 2021; Marino et al.,
2017).

Despite the usefulness of knowledge graphs,
existing knowledge graphs are often incomplete,

∗The first three authors contributed equally to this work.
1Our code is available at https://github.com/

fuguigui/tempcaps

which means important facts might be missing.
To tackle this problem, researchers have devel-
oped various methods for the task of knowledge
graph completion (Nickel et al., 2011; Bordes et al.,
2013), aiming to recover missing facts for exist-
ing knowledge graphs. In particular, Nguyen
et al. (2019) explored the Capsule Network (Cap-
sNet) (Sabour et al., 2017) for modeling knowledge
graphs. CapsE(Nguyen et al., 2019) demonstrate
that each dimension of the entity, as well as rela-
tion, embeddings also have diverse variations in
different contexts. Thus, they used capsules to en-
code many characteristics in the embedding triple
and represent the entries at the corresponding di-
mension, showing superior performance to other
KG models.

Existing studies, including CapsE, focus on com-
pleting static knowledge graphs. In reality, how-
ever, multi-relational data is often time-dependent.
Moreover, static knowledge graphs fail to ade-
quately describe the changing essence of the world,
indicating that knowledge or facts being true in
the past might not always stay true. For instance,
social networks constantly change. Static knowl-
edge graphs fail to model these changes. To this
end, temporal knowledge graphs (tKGs) are intro-
duced to grasp these dynamic changes. Specifically,
temporal facts are represented as a quadruple by
extending the static triplet with a timestamp de-
scribing when these facts occurred, i.e. (Barack
Obama, inaugurated, president of the US, 2009).
Similar to static KG, tKGs also suffer from the
problem of incompleteness, making the task of tem-
poral knowledge graph completion eminent (Bor-
des et al., 2013; Lin et al., 2015).

In this paper, we take advantage of the Capsule
Network paradigm and generalize it for modeling
tKGs. We introduce TempCaps, which is a Capsule
network-based embedding model for Temporal
knowledge graph completion. As shown in Fig-
ure 1, TempCaps consists of a neighbor selector, an
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entity embedding layer, a dynamic routing aggre-
gator and a multi-layer perceptron (MLP) decoder.
Unlike CapsE, we incorporate the temporal infor-
mation of tKGs into our model: First, we pose
temporal constraints on neighbor selection by in-
troducing a time window. At a given time step, we
only take the neighbors that interact with the source
entity within the time window into account for cap-
turing the entity features. Second, we propose a
time-dependent dynamic routing mechanism that
incorporates time information into routing weight
matrix. Third, we exploit the temporal weight-
ing vectors generated during the dynamic routing
to calculate the output probability, which reflects
how tightly lower capsules connect with higher
capsules.

Our contributions are in the following: (i) We
propose TempCaps, which leverages Capsule Net-
works by dynamically routing retrieved temporal
relations and neighboring entities. An advantage
of our model is that different capsules can capture
different aspects of the same entity. Such advan-
tage is important for modeling temporal knowledge
graphs, which are dynamic, and often involve one
entity in multiple timestamps. (ii) Our TempCaps
improves the performance of temporal knowledge
graph completion. Experimental results show that
our model achieves state-of-the-art performance on
the GDELT and ICEWS datasets. Furthermore, our
model is light-weighted and efficient compared to
previous methods for modeling tKGs. (iii) As far as
we know, we are the first to use Capsule Networks
for tKGs. Our experiments show that by leveraging
dynamic routing, TempCaps is suitable for both dis-
crete and continuous timestamps and can be easily
generalized to unseen timestamps. (iv) We conduct
additional ablation studies to understand how each
part of TempCaps contributes to the model perfor-
mance. We also show that TempCaps is efficient
by analyzing time and space complexity.

2 Related Work

2.1 Knowledge Graph Embedding

Knowledge Graph Embedding (KGE) maps enti-
ties and relations into low-dimensional continuous
vectors. Two types of KGEs, including static KGE
and temporal KGE, have attracted attention from
the community. In the rest of this subsection, we
give an overview of static and temporal KGE.

Static Knowledge Graph Embedding. Embed-
ding approaches for static KGs can generally be cat-
egorized into bilinear models and transition-based
models. TransE (Bordes et al., 2013) leverages
the transition-based approach, which measures the
plausibility of a triple as the distance between the
object entity’s embedding and the embedding of
the subject after the relational transition. Simi-
larly, by using additional projection vectors, Wang
et al. (2014) extend TransE to translate entity em-
beddings into the vector space of relations. Other
works including RESCAL (Nickel et al., 2011),
DisMult (Yang et al., 2015), and SimplE (Kazemi
and Poole, 2018) use a bilinear score function,
which represents predicates as linear transforma-
tions of entity embeddings. However, these KGE
methods are not suitable for tKGs as they cannot
capture the temporal dynamics of tKGs.

Temporal Knowledge Graph Embedding.
Temporal KGE approaches aim to capture both
temporal and relational information to improve
the performance of the completion task. Han
et al. (2021b) assessed well-known temporal
embeddings of tKGE models via an extensive
experimental study and released the first open
unified open-source framework for temporal
KG completion models with full composability.
HyTE (Dasgupta et al., 2018) embeds time infor-
mation in the entity-relation space by arranging
a temporal hyperplane to each timestamp and
uses TransE as interaction model to compute the
plausibility score of facts. DE-SimplE (Goel
et al., 2020) extends SimplE by exploring the
diachronic function to model entity embeddings at
different timestamps. TA-DistMult (García-Durán
et al., 2018) utilizes recurrent neural networks to
learn time-aware representations of relations and
adopt DistMult as the score function. Moreover,
Han et al. (2020a) introduced a non-Euclidean
embedding approach that learns evolving entity
representations in a product of Riemannian
manifolds. Besides, Han et al. (2022) enhanced
temporal knowledge embedding using contex-
tualized language representations and achived
state-of-the-art results. Besides the completion
task, researchers have also paid attention to use
temporal KGE for forecasting on tKGs (Trivedi
et al., 2017; Jin et al., 2020; Han et al., 2020b,c,
2021a; Sun et al., 2021). Forecasting tasks predict
future links based on past observations, while
the completion tasks interpolate missing links at
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observed timestamps. In this work, we focus on
the tKG completion task.

2.2 Capsule Network
Sabour et al. (2017) propose Capsule Networks to
capture different entities in images by leveraging
dynamic routing between different layers of Cap-
sule Networks. As a result, capsule Networks reach
comparable or even better performance when com-
pared to convolutional neural networks, while at
the same time being more efficient and more robust
to affine transformation. Following Sabour et al.
(2017), researchers have proposed various methods
to improve the performance of Capsule Networks.
Hahn et al. (2019) boost the performance of Cap-
sule Networks by using a novel self-routing mech-
anism. Tsai et al. (2020) propose to use inverted
dot-product attention routing to improve Capsule
Networks. We give more details on the basics of
Capsule Networks in Section 3.2.2.

Apart from the vision domain, previous work has
shown that Capsule Networks are also useful for
modeling static knowledge graphs. (Nguyen et al.,
2019) propose CapsE, which represents each triplet
fact (subject, relation, object) in a knowledge graph
as a 3-column matrix, each of which corresponds
to an entity in a fact. CapsE reaches state-of-the-art
performance on static knowledge graph completion
tasks.

This paper proposes TempCaps, which uses Cap-
sule Networks to model tKGs. Despite all previous
works on Capsule Networks, we are the first to
model tKGs with Capsule Networks to the best
of our knowledge. Experimental results show that
TempCaps achieves competitive performance on
the temporal knowledge graph completion task. We
present the details of TempCaps in Section 3.2.

3 Methodology

3.1 Task Formulation
A temporal knowledge graph (tKG) is a collection
of valid facts with temporal information. A fact
in tKG is a quadruple of (s, r, o, t), which consists
of subject s, relation r, object o, and timestamp t.
We use E, R, and T to denote the sets of entities,
relations, and timestamps involved in at least one
fact in a given tKG. |E|, |R| and |T | are the number
of elements in each set, respectively. A tKG can
be viewed as the union of KG snapshots at each
timestamp. Formally, we have:

G = G(t1) ∪G(t2) ∪ · · ·G(ti) · · · ∪G(tmax),

where G(ti) = {(s, r, o, ti)|ti ∈ T} is a snapshot
of G at timestamp ti, and tmax = max(ti|ti ∈ T ).

Temporal Knowledge Graph Completion
(TKGC) aims to predict unobserved missing
facts from incomplete tKGs. In TKGC, both
unobserved and observed facts share the same
period of time. Let O be the observed true facts
from a complete tKG G (G contains both observed
true facts and to-be-predicted facts), we denote the
set of missing facts as Ō = G \ O which should
be predicted in the context of TKGC. In our work,
we only consider predicting the missing subject
or the missing object of the missing facts. For
every missing fact (s, r, o, t) ∈ Ō, two prediction
queries (s, r, ?, t) and (?, r, o, t) are generated, and
our model aims to rank the ground-truth subject
entity s from (?, r, o, t), as well as the ground-truth
object entity o from (s, r, ?, t), as high as possible
among all candidate entities. For simplicity, we
present the equations and illustrate our method
with only object prediction. During training and
evaluation of our experiments, we include both
subject prediction and object prediction.

3.2 Model Architecture

3.2.1 Overview

We propose TempCaps, a Capsule network-based
embedding model for Temporal knowledge graph
completion. TempCaps first selects two types of
neighboring entities, i.e., local entities and global
relational entities, for each entity of the tKG. Then
it learns the embeddings of entities based on the
retrieved neighbors using a dynamic routing mod-
ule (see Section 3.2.5). Finally, TempCaps ranks
the entities from the candidate set by feeding the
embeddings of the entities to a scoring module.
Figure 1 gives an illustration of TempCaps.

3.2.2 Capsule Network

Capsule networks are built with two critical com-
ponents: capsules and the dynamic routing mecha-
nism.

A capsule is a set of neurons processing different
information about an entity, and the activities of
the neurons within an active capsule represent the
various properties of a particular entity (Sabour
et al., 2017). We use a squash function proposed
by Sabour et al. to guarantee that the length of the
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observed TKG facts

(Biden, 
Make statement,

?,
2021-05-03)

Russia

China

India

Iran

......

Dynamic
Routing

Aggregator

Inference: Iran

MLP
Decoder

Neighbor 
Selector

(2021-03-29, Russia)
(2021-04-29, China)
(2021-05-01, North Korea)

local neighbor:

(2021-05-02, Nayib Bukele)
(2021-05-02, Malaysia)
(2021-05-02, India)

global relational neighbor:

Entity
Embedding

Layer

...

Biden

Figure 1: Overview of TempCaps. Assume we want to predict the ground truth object of a prediction query
(Biden,Make statement, ?, 2021-05-03), given all the observed facts. TempCaps first selects different types of
neighboring entities of the query subject Biden, and embeds these neighbors with capsules. Then it utilizes the
dynamic routing aggregator to learn Biden’s contextualized embedding. A multi-layer perceptron (MLP) decoder
takes the learned embedding and performs a multi-class classification over all candidates, producing scores for every
entity in the candidate set. The entity with the highest score (Iran in this example) is the predicted object.

vector stays between 0 and 1:

vj =
∥sj∥2

1 + ∥sj∥2
sj
∥sj∥

, (1)

where sj is the input of a capsule and vj is its
squashed output.

Routing by agreements regulates how capsules
communicate between layers. The dynamic routing
mechanism (Sabour et al., 2017) works as follows.
All output vectors ui of capsules in the lower layer
are first multiplied by a weight matrix Wij . Then,
the weighted sum of newly obtained vectors are
input into a capsule sj in the next layer:

ûj|i = Wijui, sj =
∑

i

cij ûj|i, (2)

where cij is the coupling coefficient between cap-
sule i and capsule j. In our work, we initialize each
entity’s embedding with a capsule in the first cap-
sule layer. By performing routing by agreements,
we achieve information aggregation between an
entity and its selected neighbors.

3.2.3 Neighbor Selector
Similar to static KGs, in tKGs, we can still treat
entities as nodes (relations as edges). Inspired by
previous works in graph neural network (Kipf and

Welling, 2017; Velickovic et al., 2018; Xu et al.,
2019), where the embeddings of nodes are derived
by the n-hop neighbors of the nodes, TempCaps
computes the embedding of each node, i.e., entity
in the context of tKGs, by leveraging information
from the temporal neighbors of that node in the
tKG. Given a prediction query (s, r, ?, t), Temp-
Caps selects two types of neighbors, namely, local
entities and global relational entities, for the query
subject s.

A local entity is an object entity o′ which orig-
inates from an observed fact (s, r, o′, t′), where t′

can be any timestamp within a fixed range around
the query timestamp. We denote the set of all local
entities at all timestamps as El(s, r):

El(s, r) = {o′|(s, r, o′, t′),
max(t−∆te, t1) ≤ t′ ≤ min(t+∆te, tmax)}}.

To avoid including excessive entities into El, Tem-
pCaps samples local entities from all observed facts
within a pre-defined time window ∆te.

A global relational entity is an object entity o′

which originates from an observed fact (s′, r, o′, t′),
where s′ can be any entity and t′ can be any times-
tamp within a fixed range around the query times-
tamp. We denote the set of all local entities at all
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timestamps as Eg:

Eg(r) = {o′|(s′, r, o′, t′),
max(t−∆tr, t1) ≤ t′ ≤ min(t+∆tr, tmax)}.

Similarly, global relational entities are selected
within a time window ∆tr.

We further define the set of all selected neigh-
bors as En = {El, Eg}. By restricting neighbors
within time windows around the query timestamp,
TempCaps selects entities that have greater influ-
ence on the query subject s. We employ different
time windows to select local entities, and global
relational entities as different types of neighbors
have different influence on the query subject s. We
treat the time windows, i.e., ∆te and ∆tr, as hy-
perparameters during finetuning.

3.2.4 Temporal Weighting Function
In CapsNet (Sabour et al., 2017), the log prior prob-
ability bij between two capsules i and j are learned
depending on the locations and the types of both
capsules. It is used to compute the coupling coef-
ficient stated in Equation 2: cij =

exp(bij)∑
k exp(bik)

. In-
spired by CapsNet, we initialize the log prior prob-
ability between the query subject s and its selected
neighbor o′ with a temporal weighting function, as
we consider the time difference between these two
entities as the difference of capsule locations. The
intuition is that, for a prediction query (s, r, ?, t),
a neighbor that connects with s near to t should
have more influence on s than a temporally-farther
neighbor. Hence, we assign a higher probability to
nearer neighbors than farther neighbors. Formally,
given a prediction query (s, r, ?, t) and a selected
neighbor o′ (derived from an observed fact at t′),
bo′ is initialized as:

bo′ =
γ + 1

γ + |t′ − t|+ 1
, (3)

where γ is a hyperparameter. Figure 2 illustrates
the temporal weighting function with different γ.
The temporal weighting function with a lower γ
leads to higher differences in the values of coupling
coefficients regarding various neighboring entities.

3.2.5 Dynamic Routing Aggregator
Based on the selected neighboring entities from the
neighbor selector, TempCaps then learns the repre-
sentation of an entity by leveraging a dynamic rout-
ing aggregator. Inspired by CapsE (Nguyen et al.,

Figure 2: Temporal weighting function with different γ.
The horizontal axis is t and the vertical axis is the value
of weight(t).

2019) that uses Capsule Networks to model static
KGs, we design two layers of capsules for Temp-
Caps, and then apply a modified dynamic routing
algorithm. The first capsule layer consists of N
capsules, where N is the number of the selected
neighboring entities from the neighbor selector. As-
sume we have a prediction query (s, r, ?, t), and for
the query subject s, we have the selected neighbors
En. For every neighboring entity e ∈ En, a cap-
sule maps its embedding u(0) with a multi-layer
perceptron to obtain u(1). Then in the second cap-
sule layer, we use the dynamic routing algorithm
to compute the contextualized representation es of
the query subject s. Let σ(·) be an activation func-
tion, we use the following functions to compute
contextualized representations:

u(1)
i = σ(Wu(0)

i + ϵ), (4)

e = DynamicRouting(u(1)
1 , · · · ,u(1)

N ), (5)

where W is the weighting matrix, ϵ is a bias, and N
is the number of selected neighbors. Algorithm 1
shows the details of the dynamic routing module.

3.2.6 MLP Decoder

The multi-layer perceptron (MLP) decoder takes
the representation e from the dynamic routing mod-
ule as the input and estimates the probabilities of
all candidates being the predicted answer by lever-
aging a softmax function:

PMLP(o|s, r, t) =
exp(σ(WMLPeo + ϵMLP))∑

o′∈E exp(σ(WMLPeo′ + ϵMLP))
,

(6)
where WMLP is a weight matrix, ϵMLP ∈ R|E| is a
bias vector, and σ(·) is the activation function.
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Algorithm 1: Modified dynamic routing
algorithm

input :{u(0)
i }, number of iteration m

output :e, c
for all capsule i ∈ first capsule layer do

bi ← weight(ti)
end
for m iterations do

for all capsule i ∈ first capsule layer do
ci ← exp(bi)∑

k exp(bk)
;

end
for all capsule i ∈ second capsule layer

do
s←∑

i ciu
(0)
i ;

end
for all capsule i ∈ second capsule layer

do
e← squash(s);

end
for all capsule i ∈ first capsule layer do

bi ← bi + u(0)
i

⊺
· e

end
end

3.2.7 Parameter Estimation and Inference
Following previous works about tKG reason-
ing (Jin et al., 2020; Zhu et al., 2021), we treat
temporal knowledge graph completion as a multi-
class classification task, where each class corre-
sponds to a candidate entity. The learning objective
is to minimize the negative log-likelihood L on all
observed facts with the object (or subject) masked
during training:

L = −
∑

(s,r,o,t)∈G
log[P (o|s, r, t)], (7)

where P (o|s, r, t) = (1 − α) · PMLP(o|s, r, t) +
α · PDyR(o|s, r, t) is the probability of the en-
tity o being the ground truth missing object
given (s, r, ?, t). This probability consists of two
parts: PMLP(o|s, r, t) and PDyR(o|s, r, t), where
PMLP(o|s, r, t) is defined by Equation 6 and
PDyR(o|s, r, t) is the softmax output c from the last
iteration of Algorithm 1. For the entities not se-
lected into the set of neighbors, we force the value
of their PDyR to 0. α ∈ [0, 1] is the balancing pa-
rameter that controls the importance of each proba-
bility term.

During inference time, for a prediction query

(s, r, ?, t), we follow the training process and re-
trieve the combined probabilities of all entities. The
candidate entity with the highest combined proba-
bility is selected as the model prediction:

opred = argmax
o′∈E

P (o|s, r, t). (8)

The learning objective for subject prediction is sim-
ilar. We omit it in the paper for simplicity.

4 Experimental Results

4.1 Experimental Setup

Datasets We use three datasets for evaluation in
our experiments: Global Database of Events, Lan-
guage, and Tone (GDELT) (Leetaru and Schrodt,
2013), two subsets of Integrated Crisis Early Warn-
ing System (ICEWS) (Boschee et al., 2015), i.e,
ICEWS05-15 and ICEWS14. GDELT collects
human societal-scale behaviors and events occur-
ring from April 1, 2015, to March 31, 2016 in
news media. The ICEWS dataset records political
events with timestamps. ICEWS14 and ICEWS05-
15 are two subsets from ICEWS, which contains
events in 2014, and from 2005 to 2015, respec-
tively. For all our experiments, we split the dataset
by 80%/10%/10% for train/validation/test. Table 2
gives the statistics of the datasets.
Metrics For each fact (s, r, o, t) in the dataset,
we create two sub-tasks: (1) predicting the object
(s, r, ?, t) and (2) predicting the subject (?, r, o, t).
We report four metrics for the two tasks separately
and take the average between the two sub-tasks.
The metrics we used are MRR and Hits@1/3/10.
Let |Q| denote the number of queries. MRR, de-
fined as 1

|Q|
∑

i
1

ranki
, is the average of reciprocal

ranks. Hits@K = 1
|Q|

∑
i 1[ranki ≤ K] shows the

ratio of the cases where the ground-truth entities
are ranked within the top K. We filter the candidate
object set during evaluation in the same manner
as (Goel et al., 2020) do. During the evaluation, in
one timestamp, a subject may be connected with
multiple objects under the same relation. Hence,
objects except the groundtruth o are not necessar-
ily wrong. We therefore filter the candidate set E
during evaluation. In other words, instead of con-
sidering all the entities E, the model gives the rank
of the actual missing object among entities in o∪Ēt,
where Ēt are entities not connected to s under r at
time t. To be specific, Ēt = {o′|(s, r, o′, t) /∈ Gt}.
Baselines We compare the performance of our
model with both static and temporal state-of-the-art
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Model GDELT ICEWS05-15 ICEWS14

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 11.3 0.0 - 15.8 29.4 9.0 - 66.3 28.0 9.4 - 63.7

DistMult 19.6 11.7 20.8 34.8 45.6 33.7 - 69.1 43.9 32.3 - 67.2
SimplE 20.6 12.4 22.0 36.6 47.8 35.9 53.9 70.8 45.8 34.1 51.6 68.7

HyTE 11.8 0.0 16.5 32.6 31.6 11.6 44.5 68.1 29.7 10.8 41.6 65.5
TA-DistMult 20.6 12.4 21.9 36.5 47.4 34.6 - 72.8 47.7 36.3 - 68.6
DE-SimplE 23.0 14.1 24.8 40.3 51.3 39.2 57.8 74.8 52.6 41.8 59.2 72.5

TempCaps 25.8 18.0 27.7 40.4 52.1 42.3 57.6 70.5 48.9 38.8 54.4 67.9

Table 1: Model performance on GDELT, ICEWS05-15 and ICEWS14. We use MRR and Hits@1/3/10 as our
evaluation metric. Results of the baseline models are directly adapted from the original papers. "-" indicates the
number is not available.

Dataset #Ent # Rel #Train #Valid #Test Gap #Gaps

ICEWS14 7,128 230 72,826 8,941 8,963 24H 365
ICEWS05-15 10,488 251 368,962 46,275 46,092 24H 4,017

GDELT 500 20 2,735,685 341,961 341,961 24H 366

Table 2: Statistics on datasets. The columns are the
name of the dataset, the number of all entities, the num-
ber of all relation types, the number of facts in the
train/validation/test sets, the time gap, and total time
gaps. In the column Gap, "H" indicates hours. For
example, "24H" means that the difference between two
consecutive timestamps is 24 hours.

KG embedding models. The static models include
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015) and SimplE (Kazemi and Poole, 2018) while
temporal models are HyTE (Dasgupta et al., 2018),
TA-DistMult (García-Durán et al., 2018), and DE-
SimplE (Goel et al., 2020).
Implementations Details All our experiments are
conducted on a single Titan Xp GPU. We use the
ADAM optimizer with a weight decay rate of 1e-5.
In addition, we set the learning rate to 1e-3, batch
size to 300, the initial entity embedding size to 100,
the size of the linear transformation in dynamic
routing aggregator to 200 × 100, the routing iter-
ation times as 1, the temporal weighting decay γ
to 4, the loss balancing factor α to 0.1 and dropout
rate to 0.3. The neighborhood candidate numbers
are 80 for local entities and 40 for global relational
entities.

4.2 Results
Table 1 gives the results of our model performance.
We can observe that our model reaches state-of-the-
art performance on the GDELT and ICEWS05-15
datasets. On GDELT, our model outperforms the
baseline models on all four metrics. For MRR,
our model outperforms the second-best model by
2.8%, and leads Hits@1 by 3.9%. On ICEWS05-
15, our model is state-of-the-art on two of the most

important metrics, MRR and Hits@1. Additionally,
our model leads the second-best model by 3.1% for
Hits@1, indicating that our model can retrieve the
ground-truth entity with high accuracy.

On ICEWS14, our model is not the best but is
still comparable to the state-of-the-art model. For
example, our model reaches an MRR of 48.9% on
ICEWS14, while the best-performed model DE-
SimplE reaches an MRR of 52.6%.

4.3 Ablation Studies

We study the following hyperparameters or design
choices on ICEWS14: (1) the number of candidate
entities (local/global relational);(2) the length of
visible time window (tr, te, ta); (3) the number
of routing iterations; (4) the temporal weighting
decay rate γ; (5) whether or not we use an MLP
decoder in the final layer of the model; (6) the loss
balancing factor α. Table 3 details the results of
the ablation studies.

From model variants on the number of candidate
numbers, we can see that mixing different types of
neighbors is helping. The local entities are particu-
larly helpful, and adding global relational entities
further improves the performance.

For the length of visible time window, the opti-
mal number is 6 days (tr = ta = 3 days) accord-
ing to the results in Figure 3(a). We argue that a
too-short window results in insufficient informa-
tion, while a too-long window would contain too
much noise, which might harm the model perfor-
mance.

From Figure 4, we can see how the number of
routing iterations affects model performance and
that the dynamic routing aggregator outperforms
the mean aggregator on MRR. Finally, figure 3(b)
illustrates the model performance when using dif-
ferent weight decay rates γ, where we can observe
that the optimal value of γ is 4. Additionally, we

28



(a) Time window size (days). (b) Temporal weighting decay γ. (c) Balancing factor α.

Figure 3: Ablation studies. The configuration in our final model is marked in orange.

Figure 4: Ablation studies. Effects of the number of
iterations. 0 indicates the model uses a mean aggregator,
otherwise the model uses the dynamic routing aggrega-
tor.

notice that dropping the final MLP decoder results
decreases model performance (see Table 3). In
Figure 3(c), we show that a loss balance factor
α = 0.1 leads to better performance than when set-
ting α = 0. This indicates that our model benefits
from both PMLP and PDyR.

4.4 Analysis

We analyze the space and time complexity of our
model from the empirical and theoretical points
of view. As is shown in Figure 1, the trainable
parameters of our model consists of three parts:
(1) E1 ∈ R|E|×D1 in the entity embedding layer,
(2) W1 ∈ RD2×D1 and e1 ∈ RD2 in the dynamic
routing aggregator and (3) W2 ∈ R|E|×D2 and
e2 ∈ R|E|×D2 in the final MLP decoder. In sum-
mary, our model has O(|E|) parameters, which
is optimal for representing a knowledge graph
with |E| entities. In our experiments, taking the
ICEWS14 dataset as an example, each training
epoch costs only 54 seconds on average, and the
total evaluation process for the testing dataset costs
21 seconds. This indicates our model is efficient
both in training and inference and saves consider-
able time and memory compared to previous works
for temporal knowledge graph completion.

Variants MRR Hits@1 Hits@3 Hits@10

Candidates

(120,0) 47.7 37.4 53.2 67.0
(0,120) 16.7 8.3 18.0 34.8
(60,60) 48.3 38.1 54.0 67.4

(80,40)* 48.9 38.8 54.4 67.9
(90,30) 48.6 38.4 54.1 67.7

(100,20) 48.2 38.0 53.6 67.4

Neighbor length

1 47.8 37.8 53.2 66.2
2 48.7 38.5 54.4 67.6
3* 48.9 38.8 54.4 67.9
4 48.5 38.2 54.2 67.8
5 48.6 38.3 54.1 68.0
7 48.3 38.1 53.9 67.9
10 47.9 37.5 53.5 67.4

Iterations

0 (mean) 46.8 36.3 52.1 67.3
1* 48.9 38.8 54.4 67.9
2 48.5 38.6 53.7 67.0
4 47.4 38.0 51.9 65.1
7 46.3 37.5 50.1 63.0
10 45.6 37.2 49.1 62.0

Weight decay γ

0 48.4 38.2 54.0 67.6
1 48.7 38.5 54.3 67.8
4* 48.9 38.8 54.4 67.9
7 48.8 38.7 54.3 67.8
9 48.7 38.5 54.2 67.8
14 48.6 38.4 54.2 67.8
19 48.5 38.3 54.0 67.7

Final MLP decoder No 48.6 38.6 53.8 67.1
Yes* 48.9 38.8 54.4 67.9

Loss weight α

0 48.3 38.3 53.3 67.3
0.05 48.7 38.4 54.3 67.9
0.1* 48.9 38.8 54.4 67.9
0.15 48.8 38.7 54.3 67.8
0.2 48.7 38.5 54.2 67.8
0.4 47.9 37.9 53.2 66.7
0.8 47.8 37.7 53.0 67.4
1.0 0.017 0.017 0.017 0.017

Table 3: The complete results of our ablation studies. *
indicates configurations used in our final model.

The space complexity of the embedding compu-
tation before aggregation is O(|B|D1D2) where
|B| is the batch size and Di is the embedding
size defined in the model. Then, the space com-
plexity of going through the dynamic routing ag-
gregator (Algorithm 1) is O(r|B||C|D2

2), where
|C| is the candidate number. At last, the MLP
decoder takes another O(|B||E|D2), where |E|
is the total number of entities. Thus, for each
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epoch of training or testing, the space complexity
is O(|Q|(D1D2+ |C|D2

2+ |E|D2)), which can be
simplified as O(c · |Q||E|). Here c is a constant
related to pre-defined parameters, and |Q| is the
training/testing dataset size.

5 Conclusion

In this paper, we propose TempCaps, which is a
light-weighted Capsule Network-based embedding
model for temporal knowledge graph completion.
TempCaps consists of a neighbor selector, a dy-
namic routing aggregator, and an MLP decoder.
Experimental results show that TempCaps reaches
state-of-the-art performance on the GDELT and
ICEWS05-15 dataset. We conduct additional abla-
tion studies to understand how each part of Temp-
Caps and hyperparameter choices contribute to the
model performance. Our analysis also shows that
TempCaps is efficient both in time and space. In the
future, we plan to extend TempCaps to forecasting
in temporal knowledge graphs.
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