
ETH Library

Influence of tracking duration on
the privacy of individual mobility
graphs

Conference Paper

Author(s):
Martin, Henry ; Wiedemann, Nina; Suel, Esra ; Hong, Ye ; Xin, Yanan 

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000572753

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0456-8539
https://orcid.org/0000-0001-9246-3966
https://orcid.org/0000-0002-8996-3748
https://orcid.org/0000-0003-3866-821X
https://doi.org/10.3929/ethz-b-000572753
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Influence of tracking duration on the privacy of
individual mobility graphs

Henry Martin1,2,∗, Nina Wiedemann1,∗, Esra Suel1,3, Ye Hong1, Yanan Xin1

1 Institute of Cartography and Geoinformation, ETH Zurich, Switzerland
2 Institute of Advanced Research in Artificial Intelligence (IARAI), Austria
3 Center for Advanced Spatial Analysis, University College London, United Kingdom
∗ Authors contributed equally

Keywords: privacy, mobility graphs, time dependence

Summary: Location graphs are a compact representation of individual mobility that can be
used as a mobility profile to personalize location-based services. While location graphs are
more privacy-preserving than raw tracking data, it was shown that there is still a considerable
risk for users to be re-identified by their mobility graph topology. However, it is unclear
how this risk depends on the tracking duration. Here, we consider a scenario where the
attacker wants to match new tracking data of a user to a pool of previously recorded mobility
profiles, and we analyze the dependence of the re-identification performance on the tracking
duration. For our experiment, we use a one-year long tracking dataset of 137 users divided
into subsets of varying durations (4, 8, 16, 20, 24, and 28 weeks). We find that the re-
identification performance increases with growing pool- and test-user tracking duration, and
even the smallest tested duration allows to match users significantly better than random. The
provided evidence for a tracking duration dependency of user privacy has clear implications
for the data collection and storage strategies. It is advised for data collectors to limit the
tracking duration or to reset user IDs regularly when storing long-term tracking data.

1 Introduction and Background

Companies are increasingly gathering and using spatio-temporal location data from per-
sonal mobile devices. User location data have substantially improved location-based services
(LBS) and personalized offers [11]. However, detailed mobility traces collected from indi-
viduals may contain sensitive personal data that are associated with high privacy risks [18].
A particular concern is the increasing integration of user data from different sources [23],
enabling companies to build more detailed and complete user profiles [16]. Therefore, iden-
tifiability (and matching) of individuals from different datasets is a critical dimension of data
privacy risk [11].
Previous studies showed that the removal of basic identity information from mobility traces
is insufficient in this context, as users can be re-identified using the information on frequently
visited locations [2, 3, 7, 8, 22, 28]. One solution proposed in the literature is to obscure
the geographic coordinates in order to guarantee ε-differential privacy [4, 10, 25]. Another
promising possibility for privacy-preserving storage and processing of individual tracking
data is given with so-called location graphs or mobility networks [19, 21]. In these graphs,
nodes usually represent visited locations and edge weights correspond to the number of ob-
served movements between these locations. Graph representations offer several benefits: 1)
they can be enriched with node and edge features based on the application needs, 2) they
are compact and grow sub-linearly in size with increasing tracking duration, and 3) they can
be analyzed efficiently with graph neural networks for various applications such as activity
purpose imputation [13].
The privacy and unique identifiability properties of individual mobility graphs, however, are
not well understood. Recently Manousakas et al. [12] showed that the graph topology of per-
sonalized mobility graphs, even when all coordinate and time stamp information is removed
from its nodes, is often uniquely identifying. In this paper, we build upon their work and aim
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to understand the dependency of privacy-preservation on the tracking duration. Intuitively,
location graphs over short time periods are more diverse for one user and may reduce the
risk of deanonymization. To investigate this possibility, we divide a tracking dataset of 137
users into distinct time periods of different durations and analyze attack scenarios where a
new location graph is matched to a pool of location graphs of known users. Our experiments
indeed show that matching performance depends on the tracking duration of both pool data
and new data; however, there is a considerable re-identification risk even with just four weeks
of tracking duration.

2 Materials and Methods

2.1 Data and preprocessing

We analyze the time dependency of topology privacy on a high-quality tracking dataset, col-
lected through the SBB Green Class tracking study [14]. The study was conducted by the
Swiss Federal Railways (SBB) to evaluate the impact of a mobility-as-a-service offer on in-
dividuals’ travel behavior. Study participants are predominantly male with above average
income. All study participants were tracked over a full year using an application installed on
their phone1 that segments tracking data into stationary periods called staypoints and move-
ment behavior called triplegs. We summarize staypoints recorded at the same place to loca-
tions and aggregate all movement between two significant stays at locations with a duration
larger than 25 minutes to trips. All preprocessing is done in Python and PostgreSQL using the
Trackintel movement data processing library [15]. A detailed overview of the preprocessing
steps and parameters is given in Appendix A.
Based on the sequence of locations and trips of a user, we construct the individual location
graph (or mobility network) as described by Manousakas et al. [12]: In the graph G(V,E),
each location is one node, and each trip between two locations increases the weight of the
directed edge by 1. The edge weight w(e) thus corresponds to the number of transitions dur-
ing the observation period. To analyze the impact of different tracking periods, we build the
graphs on subsets of the dataset that are created by binning the dataset into non-overlapping
time periods of 4, 8, 16, 20, 24, and 28 weeks (see Figure 1).

2.2 Feature based graph matching

Graph matching describes the problem of either identifying if two graphs are isomorphic
(exact graph matching) or identifying the best match from a set of candidate graphs (inexact
graph matching problem) [20]. The exact solutions for both problems are computationally in-
tractable, and we therefore rely on heuristics to accomplish inexact graph matching. Related
works have proposed so-called R-convolution graph kernels [9] that measure the difference
between two graphs in terms of the counts of certain substructures, such as paths. Similarly,
we compare the distributions of selected graph features to approximate the graph similar-
ity. We represent each graph in a fixed-size vector v(G) that expresses graph characteristics,
e.g.,the distribution of node in-degrees. Two graphs G1 and G2 are compared in terms of
the distance between their vector representations, d(v(G1),v(G2)). As distance metrics d,
we test a simple Mean Squared Error (MSE), Kullback-Leibler divergence, and Wasserstein
distance.
We experiment with five vector-based graph representations v(G):

• vindegree: Distribution of (unweighted) node in-degrees, i.e., the number of connections
of one location to other locations. The distribution of in-degrees over the 20 most
popular locations is used.

• voutdegree: Similar to the in-degree, the distribution of out-degrees over the 20 locations
with the highest out-degree is computed.

1https://play.google.com/store/apps/details?id=ch.sbb.myway
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• vtransition: The distribution of transition weights over the 20 most popular trips. Intu-
itively, some users commute between very few locations more frequently than other
locations, whereas some users transit more evenly among locations [17].

• vshortest_path: The distribution of shortest-path lengths in the graph. All-pairs shortest
paths were computed with the Floyd-Warshall algorithm [5, 26] and the ratio of shortest
paths with length x is reported in vshortest_path for x ≤ 10.

• vcentrality: The betweenness centrality [6] of a node denotes its centrality (in terms of
network hops) with respect to other nodes, which is bounded between 0 and 1. Since
many nodes have low centrality in mobility graphs, we construct 10 bins from 0 to 1 in
log space and report the number of nodes per centrality bin.

Finally, we concatenate all five graph descriptors into one combined vector vcomb.

2.3 Experiment design

We analyze the following privacy attack scenario: The adversary is a data broker who has
access to a pool of users and their tracking data. The attacker then gets access to additional
tracking data of a test user which she wants to match to the correct user in the pool to create a
combined user profile. All tracking data are represented in the form of weighted and directed
individual location graphs without any node or edge features such as coordinates. In the
following, we define upool

i , i ∈ [1..n] as the i-th user in a pool of n users, and utest
j , j ∈ [1..m] as

a user of the test dataset, Dtest = {utest
j }. Let Gpool

i and Gtest
j further denote the corresponding

location graphs.
The adversary now aims to find the best match out of the pool users for each test user utest

j .
This is accomplished by computing the distance of the graph descriptors presented in Sec-
tion 2.2. The pairwise distances from the test user to all users of the pool are computed as
d
(
v(Gtest

j ),v(Gpool
i )

)
and the pool users are ranked according to their distance. As a result,

we obtain the rank that was assigned to the true match of a user in the pool. In other words,
we are only interested in the rank that was assigned to the user in the pool that corresponds
to the test user (upool

i = utest
j ) and the assigned rank r j = r(utest

j ) means that this user had the
r j-highest similarity to herself compared to all other users in the pool.
To obtain statistically robust results, we evaluate the scenario on all possible tracking period
combinations for the pool and the test user. Figure 1 shows an overview of the experimental
setup and also shows that the tracking period combinations are not unique. For example,
for our total tracking time of 56 weeks there are 14 distinct 4-week periods and 7 distinct
8-week periods. We do not evaluate all 98 possible combinations but restrict ourselves to
combinations where the test user is matched to the closest, directly preceding tracking period
in the pool. This choice of valid pool and test user pairs is exemplified by the black arrows in
Figure 1.
For every valid time bin combination for a given combination of tracking periods, we match
every available test user to the users from the pool and evaluate the matching success using
the metrics introduced below. All code for the experiments is publicly available2, however
we can not publish the tracking dataset to protect the privacy of the study participants.

2.4 Metrics for re-identification performance

To evaluate the success of the matching attack, we employ two metrics: the top-k match-
ing performance and the mean reciprocal rank (MRR) [24]. Both rely on the rank that was
assigned to the true match of a test user in the pool as introduced above, r(utest

j ).
We then report the top-k matching performance in one set of test users Dtest as

Acc(Dtest ,k) =
1

|Dtest | ∑
u j∈Dtest

1{r(utest
j )≤ k}.

2https://github.com/mie-lab/topology_privacy
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Full tracking period (56 weeks)

4 weeks 4 weeks 4 weeks 4 weeks 4 weeks 4 weeks 4 weeks 4 weeks

8 weeks 8 weeks 8 weeks 8 weeks

16 weeks 16 weeks

24 weeks 24 weeks

1

2

Figure 1: Experimental setup: The tracking data, comprising 56 weeks, are split into non-
overlapping bins of varying duration. In the attack scenario, new tracking data from one
period is matched to a pool of users at a previous time period. In example 1) the test data
of four weeks length can be compared to the pool in the preceding 4 weeks, 8 weeks, or the
preceding 16 weeks. In the second example (marked as 2) a test user with tracking data from
the second 24-weeks-period is matched to users from the preceding 4-, 8-, 16- or 24-weeks
pool.

This considers a match as successful if the true match of the test user is among the top-k
closest users in the pool.
Furthermore, we use the MRR as a second evaluation metric, which is defined as the average
of the inverse of the ranks in a test dataset. It is a common metric used in information retrieval
and re-identification tasks [1]. The MRR of a test set is

MRR(Dtest) =
1
m ∑

u j∈Dtest

1
r(utest

j )
.

The MRR can be interpreted as the harmonic mean of the ranks, with the property that good
matches (high rank) have much higher influence than bad matches (low rank).

3 Results and Discussion

We run the experiment described in Section 2.3 for all combinations of tracking periods and
consecutive start times, adding up to 167 combinations. For each of these combinations, we
attempt a matching for every user available in the dataset, which results in over 2’500’000
user-to-user comparisons. We find that the best matching performance is achieved with the
combined graph descriptor vcomb and the mean squared error (MSE) as the similarity metric d.
See Table 2 and Section 3.2 for more details on this choice.
In the following, we report the MRR and top-k matching accuracy for each combination
of pool- and test-user tracking duration. If several accuracy results for a tracking period
combination are obtained (due to multiple time bin combinations), we report the average
result and the standard deviation.

3.1 Effect of tracking period on re-identification performance

Figure 2 shows the average matching performance and the standard deviation for all duration
combinations of the pool and the test users. All metrics show a significant dependency on
both the duration of the pool and the duration of the test user data. This result shows that
privacy-friendly applications should be designed such that their tracking duration is as short
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Figure 2: Dependency of matching performance on tracking duration. Top-k accuracy and
MRR increase with both the tracking duration of the pool-users as well as the one of the test
user.

as possible. This is especially true because a privacy concerned person does not have control
over the duration of the pool in our scenario, as the pool represents data that were already
collected by a third party.
Furthermore, Figure 2 shows that even for the shortest tracking duration that was tested (i.e.,
four weeks combined with four weeks), the re-identification capability of our simple match-
ing strategy is significantly better than random. A random rank assignment would result in
a top-10 accuracy of 7.6%, compared to the accuracy of 32.6% from the shortest tracking
duration. This result shows that the graph representation, even without any additional context
or coordinate information, is not anonymous, which is in line with the conclusion reported
from [12].
We further analyzed the importance of the pool duration, the test user duration, and the differ-
ence of their durations, using linear regression with the duration as the independent variable
and the average performance as the dependent variable. The resulting coefficients in Table 1
show that while both duration-variables have a positive impact on the performance, the influ-
ence of pool duration is slightly higher. For every additional week of pool tracking duration,
the top-10 identification accuracy increases by 0.72%. As the pool is not under the control
of the user, a potential solution to minimize the privacy risk is to require data brokers to reset
user IDs after a specific tracking period. Notably, Table 1 also shows a major effect from
the absolute difference between pool and test tracking duration, corresponding to the strong
performance on the diagonals in Figure 2. This can be explained by the higher similarity of
graphs that are constructed from the same tracking duration, making it easier to match the
correct user.
For the interpretation of the results, it is important to note that the results with small bins are
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statistically more robust than the results with large bin combinations, because more bins are
available. For several combinations of large bins, only one trial was available and therefore no
standard deviation was reported, and no distinct time bins are available for the combination
of 28 weeks pool duration and 24 weeks test tracking duration.

pool duration test duration
absolute difference

between pool and test duration Intercept

1-Accuracy (in %) 0.40 0.29 -0.32 4.36

Table 1: Regression analysis of the effect of pool- and test-user tracking duration on the
matching performance. Both have a positive effect on the re-identification performance
(=negative impact on privacy); however, the effect of the pool duration is slightly higher.
The matching performance is higher if the absolute difference between pool and test user
duration is low. All results are significant (p-values « 0.01).

3.2 Features that enable re-identification

In Section 2.2, we proposed several graph descriptors to calculate a distance between graphs.
Table 2 shows the matching performance of different graph features and distance functions.
We note that the distance function does not have a strong effect on the matching performance.
In contrast, the features result in very different performances in re-identifying graphs. The
transition weight and in-degree-distribution are the most useful features, whereas node cen-
trality obtains low matching capability. Based on the results in Table 2, we chose the MSE
of all features combined, as this performs best on average according to three out of four
error metrics. While our focus is on the time-dependency of privacy preservation, future
work could analyze the limits of re-identification of location graphs by using more complex
matching methods such as deep graph kernels [27].

Recip. rank 1-Accuracy 5-Accuracy 10-Accuracy
Distance metric d v(G) Mean Max Mean Max Mean Max Mean Max

transition 0.13 0.19 5.49 9.60 17.48 28.46 28.18 40.80
in degree 0.12 0.20 4.47 10.40 15.65 24.80 26.37 41.60

KL- out degree 0.12 0.17 4.11 7.32 15.14 24.80 26.76 36.29
divergence shortest path 0.08 0.11 2.36 4.13 9.30 14.52 16.40 26.61

centrality 0.05 0.06 0.86 2.02 4.34 8.06 9.10 15.32
combined 0.22 0.35 12.00 23.33 30.34 51.20 42.71 62.40

transition 0.13 0.19 5.35 9.24 17.00 28.00 28.07 41.60
in degree 0.12 0.18 4.70 9.76 15.44 22.40 25.47 35.48
out degree 0.11 0.16 3.62 6.61 14.62 25.60 25.76 39.20

MSE shortest path 0.08 0.11 2.33 4.04 9.40 15.32 16.83 29.03
centrality 0.05 0.07 1.39 3.25 6.06 11.16 10.67 16.74
combined 0.22 0.34 12.31 20.97 30.61 46.40 43.25 64.00

transition 0.13 0.19 5.35 9.21 17.73 30.08 27.75 41.60
in degree 0.12 0.19 4.53 10.40 15.59 25.60 25.84 36.00

Wasserstein out degree 0.11 0.17 3.93 8.13 14.91 24.00 26.18 40.32
distance shortest path 0.07 0.11 2.10 4.20 7.72 16.00 13.82 24.00

centrality 0.05 0.09 1.38 4.13 5.71 11.38 10.88 16.53
combined 0.20 0.36 10.57 24.00 27.62 52.80 38.86 61.60

Sum all metrics combined 0.22 0.36 12.01 22.50 30.65 52.80 42.88 62.40

Table 2: Matching performance of different combinations of features, distance functions, and
evaluation metrics. The highest matching accuracy is achieved with an R-convolution kernel
that computes the MSE between all graph-features distributions combined.
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Figure 3: Evaluation of rank distribution and privacy loss as proposed by Manousakas et al.
[12].

3.3 Validation of matching methodology based on related work

We validate our method by comparing the results to the ones of Manousakas et al. [12]. In
their longitudinal study, Manousakas et al. [12] split the tracking data user-wise into two parts
at a random point in time, sampled uniformly between 30% and 70% of the whole period
(around one year). The most comparable experiment from our study is the one where both
the pool and the test duration is 28 weeks. In accordance with the evaluation by Manousakas
et al. [12], we show the distribution of ranks and the “privacy loss” in Figure 3. Although the
absolute ranks are not informative due to the different pool size (132 users3 for our dataset
versus 1500), the re-identification ability seems comparable. Specifically, the mean of the
true rank is shifted from 66 (random) to 17.1 (informed adversary) for our dataset, and from
750 to 140 in their experiment [12, p. 13]. This corresponds to a median privacy loss of 3.03
with our method, while [12] report a "considerable privacy loss with a median of 2.52 [which]
means that the informed adversary can achieve a median deanonymization probability 3.52
times higher than an uninformed adversary" [12, p. 14]. Overall, we reproduced the results
successfully and extended their results with additional analysis of the impact of the tracking
duration.

3.4 Intra user vs. inter user variability of re-identification performance

The main results of this study (Figure 2) are reported as average matching performance. We
now further analyze the sources of variance of the matching performance by analyzing the
variance of the rank assigned to users during the matching. In particular, we aim to answer
the following question: Is the variance due to strong differences between users (e.g., easy-to-
match vs. hard-to-match users), or do users have a strongly varying re-identification ability
over time? To answer this question, we calculate the standard deviation between different
users in the same timesteps (inter-user) and for the same user over several timesteps (intra-
user).
Figure 4 shows that the inter-user standard deviation is consistently higher than the intra-user
standard deviation. This indicates the existence of user groups that are consistently hard or
easy to match. Moreover, the intra-user standard deviation decreases as the tracking duration
increases, which can be explained by the higher stability of long-term location graphs. Fu-
ture work could analyze the factors that characterize hard-to-match or easy-to-match users,

3For long time bin durations, not all users matched the criteria set for tracking coverage. Details on the filtering
of users are given in Appendix A.
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Figure 4: Inter vs. intra person variability of matching performance. The variance over
users is higher than the variance over time bins. Intra-user variance decreases with growing
tracking duration.

leading to interesting advice for individuals that would like to keep their mobility data hard-
to-match.

4 Conclusion

In this work, we present a set of experiments to analyze how tracking duration influences
the re-identification ability of individual mobility graphs. The tracking data of a one-year
study is binned into time periods of varying size and transformed into location graphs to
represent individual mobility behavior. We run a re-identification experiment based on a
graph matching task for all pair-wise combinations of time periods.
We can confirm results from Manousakas et al. [12] that location graphs without additional
context information are sufficient to re-identify users with a success rate that is significantly
higher than random. Furthermore, we show that the re-identification ability increases with
increased tracking duration of the pool of candidate users as well as with increased tracking
duration of the test user. Therefore, privacy friendly applications should only require tracking
data over periods that are as short as possible, and data brokers should be required to reset
the user IDs of their data regularly to limit the pool duration.
Furthermore, we analyze the matching result of users for different time steps and showed that
users vary in their exposure to be re-identified. Characterization of these user groups should
be explored in future work. Another extension of this work would be to further investigate
the influence of other dataset properties, such as the tracking intensity (e.g., the number of
location points within a unit time), and to collect evidence from more diverse datasets. The
latter is straightforward with this method as the individual location graphs have very few
requirements (e.g., no specific features or labels needed). Finally, it is important to mention
that we only employed a simplistic matching strategy and a more sophisticated matching
approach could lead to even higher success rates for matching. The results should therefore be
considered as a lower bound of possible matching success. The presented analysis however
augments the understanding of the privacy risk of tracking data - even if it is reduced to
topology - and can improve the regulation of anonymization practices.
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A Preprocessing

The tracking data is provided from the MyWay app as staypoints, labeled with activities,
and triplegs, labeled with transport modes. The staypoints are clustered into locations with
the DBSCAN algorithm with the parameter ε = 30m and a minimum number of 1 point per
cluster, i.e. each staypoint is assigned to a location. The Trackintel library merges consecutive
staypoints and triplegs into trips as long as they are not interrupted by an activity (staypoints
with duration >25 min or labeled with a purpose other than wait, unknown) or by a temporal
gap (here 25 minutes). Finally, when constructing the graph, we filter out users with low
tracking coverage in the selected time period. The users are required to have a tracking
coverage of at least 70% in at least one third of the days. In our experiments, this leads to a
varying number of 132-137 users depending on the time periods used.
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