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A B S T R A C T

One of the most important and ubiquitous building blocks of machine learn-
ing is gradient based optimization. While it has and continues to contribute
to the vast majority of recent successes of deep neural networks, it comes
both with some limitations and the potential for further improvements.

Catastrophic forgetting, which is the subject of the fist two parts of this
thesis, is one such limitation. It refers to the observation that when gradient
based learning algorithms are asked to learn different tasks sequentially,
they overwrite knowledge from earlier tasks. In the machine learning
community, several different ideas and formalisations of this problem are
being investigated. One of the most difficult versions is a setting in which
the use of data from earlier distributions is strictly forbidden. In this domain,
an important line of work are so-called regularisation based algorithms.
Our first contribution is to unify a large family of these algorithms by
showing that they all rely on the same theoretical idea to limit catastrophic
forgetting. This had not only been unknown, but we also show how this
is an accidental feature of at least some of the algorithms. To demonstrate
the practical impact of these insights, we also show how they can be used
to make some algorithms more robust and performant across a variety of
settings.

The second part of the thesis uses tools from the first part and tackles a
similar problem, but does so from a different angle. Namely it focusses on
the phenomenon of catastrophic forgetting – also known as the stability-
plasticity dilemma – from the viewpoint of neuroscience. It proposes and
analyses a simple synaptic learning rule, based on the stochasticty of synap-
tic signal transmission and shows how this learning rule can alleviate
catastrophic forgetting in model neural network. Moreover, the learning
rule’s effects on energy-efficient information processing are investigated
extending prior work which explores computational roles of the afore-
mentioned and somewhat mysterious stochastic nature of synaptic signal
transmission.

Finally, the third part of the thesis focuses on potential improvements of
standard first-order gradient based optimizers. One of the most successful
lines of work in this area are Kronecker-factored optimizers, whose influ-
ence has reached beyond optimization to areas like Bayesian machine learn-
ing, catastrophic forgetting or meta-learning. Kronecker-factored optimizers
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are motivated and thought of as approximations of natural gradient de-
scent, a well-known second-order optimization method. We will show that
a host of empirical results contradict this view of KFAC as a second-order
optimizer and propose an alternative, fundamentally different theoretical
explanation for its effectiveness. This does not only give important new
insights into one of the most powerful optimizers for neural networks, but
can also be used to derive a more efficient optimizer.
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Z U S A M M E N FA S S U N G

Einer der wichtigsten und allgegenwärtigen Bausteine des maschinellen Ler-
nens ist die gradientenbasierte Optimierung. Obwohl sie weiterhin zu den
meisten jüngsten Erfolgen von tiefen neuronalen Netzen beiträgt, weist sie
auch einige Einschränkungen und das Potenzial für weitere Verbesserungen
auf.

Eine solche Einschränkung ist das “katastrophale Vergessen”, das Ge-
genstand der ersten beiden Teile dieser Arbeit ist. Es bezeichnet die Beob-
achtung, dass gradientenbasierte Lernalgorithmen, wenn sie verschiedene
Aufgaben nacheinander lernen sollen, das Wissen aus früheren Aufgaben
überschreiben. In der Forschung zu maschinellem Lernen werden mehrere
verschiedene Ideen und Formalisierungen dieses Problems untersucht. Eine
der schwierigsten Varianten ist ein Rahmen, in dem die Verwendung von
Daten aus früheren Aufgaben streng verboten ist. In diesem Bereich sind die
so genannten regularisierungsbasierten Algorithmen ein zentraler Bestand-
teil des aktuellen Forschungsstandes. Der erste Beitrag dieser Arbeit besteht
darin, eine große Familie dieser regularierungsbasierten Algorithmen zu
vereinigen, indem wir zeigen, dass sie alle auf der gleichen theoretischen
Idee beruhen, um das katastrophale Vergessen zu begrenzen. Um prakti-
sche Anwendungen dieser Erkenntnisse zu demonstrieren, zeigen wir auch,
wie sie genutzt werden können, um einige Algorithmen in einer Vielzahl
von Situationen robuster und leistungsfähiger zu machen.

Der zweite Teil dieser Arbeit verwendet die Werkzeuge aus dem ersten
Teil und geht ein ähnliches Problem an, allerdings aus einem anderen Blick-
winkel. Er konzentriert sich nämlich auf das Phänomen des katastrophalen
Vergessens – auch bekannt als das Stabilitäts-Plastizitäts-Dilemma – aus der
Sicht der Neurowissenschaften. Es wird eine einfache synaptische Lernregel
vorgeschlagen und analysiert, die auf der Stochastizität der synaptischen
Signalübertragung beruht, und es wird gezeigt, wie diese Lernregel das
katastrophale Vergessen in einem neuronalen Modellnetzwerk abmildern
kann. Darüber hinaus werden die Auswirkungen der Lernregel auf die
Energieeffizienz von Informationsverarbeitung untersucht und damit frü-
here Arbeiten erweitert, die die rechnerische Rolle der oben erwähnten
und rätselhaften stochastischen Natur der synaptischen Signalübertragung
untersuchen.
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Schließlich konzentriert sich der dritte Teil der Arbeit auf mögliche
Verbesserungen von weitverbreiteten gradientenbasierten Optimierungs-
algorithmen erster Ordnung. Einer der erfolgreichsten Forschungszweige
in diesem Bereich sind Kronecker-faktorisierte Optimierungsalgorithmen,
deren Einfluss über die Optimierung hinaus in Bereiche wie Bayes’sches
maschinelles Lernen, katastrophales Vergessen oder Meta-Lernen reicht.
Kronecker-faktorisierte Optimierer sind als Annäherungen an das “natürli-
che Gradientenverfahren” motiviert, eine bekannte Optimierungsmethode
zweiter Ordnung. Wir werden zeigen, dass eine Vielzahl empirischer Er-
gebnisse dieser Sichtweise von KFAC als Optimierer zweiter Ordnung
widerspricht und schlagen eine alternative, grundlegend andere theore-
tische Erklärung für KFACs Effektivität vor. Dies gibt nicht nur wichtige
neue Einblicke in einen der leistungsstärksten Optimierungsalgorithmen
für neuronale Netze, sondern kann auch zur Herleitung eines effizienteren
Optimierungsverfahrens verwendet werden.
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1
I N T R O D U C T I O N

Many technological revolutions in the history of humanity can be traced
backed to a single, deceptively simple, idea. Take the agricultural or indus-
trial revolution as examples – the basic ideas underlying those are as simple
as "plant food" and "transform heat energy into mechanical energy". For a
more recent example, even the digital revolution was arguably sparked by
one simple (albeit not trivial) idea, namely that to formalise and automate
computation.

A new large wave of technological innovation that is about to happen is
that of machine learning. Of course, it is hard to predict if its impact will be
anywhere near that of the revolutions described above. Nevertheless, it has
become difficult to imagine a future in which deep learning techniques will
not become ubiquitous in one way or the other1. And even without knowing
the future impact of deep learning, nothing stops us from wondering what
the key ideas underlying its recent successes are. Of course, most researchers
would not enjoy answering this questions, as it comes with the need to
ignore and simplify all too many things. Nevertheless, if pressed to do the
impossible, many answers would likely be along the lines of "Gradient-
based learning in (large) neural networks on (large) datasets gives useful
representations of the world".

This answer, like most short answers to difficult questions, is not only the
ruthless simplification we asked for but also a bit of a cheat, as it includes
at least two ideas that would deserve a great deal more of elaboration – that
of neural networks and that of gradient-based learning. The reason for this
simplification is of course to set the stage for the present thesis, which will
be concerned with some properties and potential weaknesses of gradient
based learning, undoubtedly one of the key ingredients of deep learning.

Before we move on to focussing on gradient based learning, a few things
are worth making explicit: By calling ideas simple, we do not intend to
diminish their importance or ingenuity. Neither do we want to give the
impression that the initial idea is all you need – recognising its potential,
getting its details right, developing, popularising and scaling it are all
indispensable components that underlie all revolutions mentioned above.

1 To the extent to which they aren’t already.
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2 introduction

Without them, we would not have gotten from planting food to genetically
modifying crops, from steam-powered train engines to space travel, or from
Leibniz’ calculating machine to a global server infrastructure that answers
billions of search queries each day. Similarly, all these steps have contributed
to the journey from plain perceptrons to capable vision-, language- or rein-
forcement learning models trained with large amount of data on specialised
and ever more efficient hardware.

1.1 gradient based learning

The first step of learning in neural networks is defining a suitable objective
function that the network has to optimize. Especially in self-supervised
learning this has been an important area of research and key to learning
useful representations across different modalities and also in multi-modal
settings [1–3]; here we will skip over this important step and assume we
are given a reasonable and useful objective function.

Once an objective is defined, the next step is to optimize it. From a
theoretical perspective, this can easily seem like a hopeless endeavour:
Due to the (indispensable) non-linearities of neural networks, their loss-
landscape is non-convex and optimizing them is NP-hard [4]. Even worse,
already for moderately sized networks any kind of global- / brute-force
search in parameter space is infeasible, and will remain infeasible as long
as computing devices obey the known laws of physics.

At this point theoreticians might shrug their shoulders and turn their
back on neural networks. Luckily, practitioners have long known gradient-
based learning as a simple heuristic for optimization [5]. Even though
gradient-based learning is a simple answer to a complex problem, this time
the idea really is almost as simple as it sounds: Compute the gradient of the
objective with respect to the parameters and update the paremter in gradient
direction. Empirically, only two adaptions to vanilla gradient descent seem
to be necessary to obtain a very strong, competitive optimizer: Computing
gradients on mini-batches, i.e. performing stochastic gradient descent2 and
adding momentum [7]. For example, evidence from [8] suggests that SGD
with Momentum comes within a very close margin of more sophisticated
optimizers in both vision and language tasks.

While SGD (or a variant thereof) is a the key component of almost every
success of deep learning, it does come with a few potential shortcomings.
The next two sections will each describe one such shortcoming, a line of

2 This may not be strictly necessary, but almost certainly makes generalisation easier, see e.g. [6]



1.2 sgd forgets (catastrophically) 3

work trying to overcome that shortcoming and how the work presented in
this thesis contributes to these lines of work.

1.2 sgd forgets (catastrophically)

SGD is a strictly local search algorithm and as hinted at previously, any
global understanding or evaluation of the loss landscape remains computa-
tionally infeasible. One consequence of this is that even if we have success-
fully optimized a loss function, our knowledge about the loss landscape
remains very limited. For example, if we are given a new set of parameters,
we typically cannot infer how this set of parameters will perform unless we
explicitly evaluate the loss again.

To see why this can be problematic, imagine a situation in which we
have a network which has already learned some task (i.e. it achieves low
loss on some distribution) and which should learn an additional task. To
learn the new task and integrate new knowledge, the network’s parameters
have to be updated, but as soon as we walk away from our prior solution,
we have no idea if the new parameter values will retain a low loss on the
previous objective. Thus, if we are not allowed to evaluate the previous loss
function again, learning the new task is prone to gradually overwrite prior
knowledge.

This phenomenon is often referred to as “Catastrophic Forgetting” or
“Continual Learning” and has long been known, e.g. [9]. Recently, due to
works like [10–12] the problem has gained more attention and inspired a
by now considerable body of literature. Typically, a network is trained on
different data distributions sequentially, and when learning new datasets
the access to old ones is limited. Then after training, the network is tested on
data from both recent and old distributions. There is a number of different
formalisations of this setting and correspondingly different experimental
test beds for algorithms attempting to overcome this problem. One particu-
larly important difference between settings and algorithms is how strictly
they limit access to data from prior distributions – the strictest version of the
problem, that arguably remains an open, difficult and important research
question, forbids storing examples from prior distributions altogether.

An important line of work in this difficult domain pioneered by [11]
proposes using a local approximation of each distribution’s loss as a proxy
for the actual loss. Then, when a new task arrives, the network is jointly
trained on the new task’s loss and the approximation of prior losses.
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After [11] a large number of variations of this idea have been published
[e.g. [13–22]] and – at first sight – it appears that each of these variations
provides new insights into the loss landscape of neural networks, as each
variation suggest a different view on which local properties of the loss are
important and help to limit forgetting. In Chapter 3 we will take a closer look
at some popular algorithms from this domain and argue both theoretically
and empirically that these algorithms [13, 14] (and consequently their
follow up work) use the same idea, first proposed in [11], and rely on a
simple second-order taylor approximation of the loss. Equivalently, using
the bayesian framing from [11], they all rely on a Laplace approximation of
posterior likelihoods.

Theoretically, this insight has the benefit of giving a unified, simplified
view of a large family of algorithms and it brings more clarity to the
question which local properties of the loss landscape matter. From a more
applied perspective, we also demonstrate empirically in Chapter 3 how
these contributions can be used to make one of the algorithms more robust
and performant across different settings.

1.2.1 Catastrophic Forgetting and Biological Neural Networks

Above we have focussed on artificial neural networks in the context of deep
learning and described the tension between adapting network parameters
to integrate new knowledge and keeping parameters fixed to preserve old
knowledge. The very same tension is present in biological neural networks,
and in neuroscience the corresponding problem is known as the stability-
plasticity dilemma.

It is clear from observation that biological neural networks (at least in
many situations) can handle this trade off rather well: For example, once
a human learns to ride a bike, they will hardly unlearn it, even if they do
not cycle for years and integrate large amounts of new knowledge into
their motor-cortex by acquiring new motions patterns. While the fact that
biological neural networks can trade of stability and plasticity effectively is
hardly disputable, the question how they achieve this feat is an open and
important one in the neuroscience community.

In Chapter 4, we will turn towards the context of biological neural
networks and investigate a simple learning rule that could alleviate the
tension between stability and plasticity in model neural networks. While
several experiments and additional contributions in Chapter 4 are explicitly
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tailored towards neuroscience, we will also use tools from machine learning
and rely on insights from Chapter 3 to analyse the proposed learning rule.

More context on how this work is situated with respect to other studies in
neuroscience and which additional contributions will be made are deferred
to Chapter 4.

1.3 sgd may be inefficient in ill-conditioned loss land-
scapes

A key component of scaling and improving neural networks is increasing
their depth. But with great depth come optimization difficulties, as the
loss landscape of neural networks becomes “less smooth” and more poorly
conditioned. Overcoming the trainability issues of deep neural network has
inspired several papers and techniques that have proven hugely influential
for the entire field of deep learning [23–28]. Roughly speaking, three key
ideas have emerged to make deep neural networks trainable with SGD: (1)
Careful weight-initialisation schemes [24, 25] (2) Skip-connections [23, 28]
(3) Normalisation Layers [26, 27].34

Careful initialisation is generally motivated by preserving signal propa-
gation across the entire depth of the network and by avoiding exploding
or vanishing gradients [24, 30, 31]. Skip connections have similar effects,
and additionally, like normalisation, they are thought to lead to smoother,
better conditioned loss landscapes, see e.g. [32, 33].

Going back to the viewpoint presented at the beginning that machine
learning relies on two key ideas – neural networks and gradient-based
learning – it becomes clear that the solution to training deep neural net-
works described above focusses purely on tuning the first idea: All three
components – weight initialisation, skip-connections and normalisation5 –
change the structure of the neural network. The second idea, gradient-based
learning, remains untouched and untuned.

This view directly suggests a different approach to training deep neural
networks: We could try to leave the neural network part untouched and

3 In this context it is also interesting that a key component of Batch-Normalisation is that it
effectively changes the initialisation scheme in architectures with skip connections, as clearly
explained in [29].

4 This list is not complete and omits for example pretraining early layers, but it represents
current best-practices, which seem to be sufficient.

5 Whether normalisation layers are an architectural- or optimization-technique is somewhat
debatable. Normalisation can usually be viewed as a change in parametrisation, which is often
equivalent as a change in optimizer.
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instead improve upon SGD by using a different, better gradient-based
optimization algorithm, that can handle the complexities of deep loss
landscapes.

This line of work has indeed been pursued and recent results [34, 35]
suggest that using better optimizers, together with careful weight initiali-
sation, may be equally effective and fast at training deep networks as the
alternative described at the beginning of this section.

1.3.1 Why does improving SGD matter?

If we can already train deep networks with SGD by modifying the neural
network architecture, why should we care about finding an alternative way
to do so by improving optimization? Below, we will exemplify three an-
swers to this question whose motivations range from that of a fundamental
researcher to that of a large company employing models at scale.
(1) Given the immense importance of training deep neural networks, it
almost has to be an intrinsic interest of a research community to find a few
different ways to do so.
(2) Finding a new solution has the potential of solving some of the short-
comings of the old one – for example, batch norm, a key architectural
component in deep vision networks, is sometimes argued to hamper trans-
fer learning [36], and when we find a new way to train deep networks,
we might be able to solve this problem. Along a similar line of thought, it
might even be that we are not aware of the present solution’s limitations
before comparing it to the new solution.
(3) An optimizer that works well in complex loss landscapes, may very well
lead to training speed-ups in simpler loss landscapes. Given that essentially
every deep learning paper uses gradient-based optimization, speeding up
training meaningfully would allow considerably faster, and thus more ex-
perimentation, and would likely have a huge impact on the entire field.
Moreover, at the enormous scale at which current models operate, training
a single model can take months, cost tens of millions of dollars and emit
hundreds of tons of CO2 (see e.g. [37]). Some recent, informally published
results [38] indicate that employing better optimizers at a large scale could
speed up training significantly, and thus could lead to notable financial and
environmental savings.
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1.3.2 How can SGD be improved?

As emphasised previously, obtaining a global understanding of the loss
landscape of neural networks is prohibitively difficult. From this viewpoint,
it is then clear that one way to improve optimizers is gaining a better
understanding of local properties of the loss landscape. Based on a better
local understanding, we might be able to find update directions which
allow for faster progress during optimization.

One well-known way to view SGD is that it approximates the loss func-
tion by its first-order Taylor expansion and then optimizes this first-order
approximation subject to staying within a certain "trust region" around the
previous parameter point, in which the first-order approximation is reliable.
The size of this trust region then directly corresponds to the step-size of
SGD.

From this perspective, a well known and natural way to improve upon
SGD, which dates back already to Gauss, who adapted an idea of Newton, is
to use a higher-order Taylor expansion of the loss function, which will then
be optimized. Unfortunately, already for the second-order Taylor expansion
this approach quickly faces some serious problems: Storing the second-
derivative requires n2 numbers, where n is the number of parameters
of the neural network. Moreover, to minimize the second-order Taylor
expansion, we need to invert the second-derivative, which naively takes
time n3. Neither the space nor the time requirement of this algorithm is in
any way feasible for modern neural networks, which typically have millions
to hundreds of billions of parameters6.

Thus, to use second-order optimization it is necessary to either not
compute and invert the hessian explicitly (e.g. [39, 40]) or to approximate
it further (e.g. [41, 42]). The second approach of approximating second-
derivatives further has lead to a particularly successful line of work [41, 42],
namely that of Kronecker-factor optimizers. This line of work is also what
underlies the success of training deep networks without the usual tricks of
normalisation and skip-connections mentioned above [34, 35].

In Chapter 5, we will take a close look at those optimizers. We will de-
scribe the surprising, paradoxical discovery that the approximations made
by Kronecker-factored optimizers make them perform considerably better
than their exact second-order counterpart, which does not use these approx-
imations. This strongly suggests that Kronecker-factored optimizers do not
actually exploit the second-order Taylor expansion to improve optimization,

6 at the time of writing
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but – due to their approximations – pick up on a different, meaningful
local property of the loss landscape. In Chapter 5 we will also develop a
theoretical hypothesis for what this local property could be and present
empirical evidence that this hypothesis explains large parts of the behaviour
of Kronecker-factored optimizers.

From a theoretical perspective, these results are interesting as they suggest
that the standard second-order Taylor approximation, despite being the
theoretically most natural approach, is not necessarily the most useful
local model of neural networks’ loss landscapes. This is also a crucial
insight to inform future work, as it suggests strongly that developing
better approximations of the second-order Taylor approximation will not
be useful, and that instead, different properties of the loss landscape have
to be explored. From a more practical perspective, we will also show how
our insights lead to a computationally cheaper and often more effective
optimizer and note that similar optimizers had already been explored in
the literature [42, 43].

1.3.3 Link to Catastrophic Forgetting

At this point, it is worth making explicit that Chapters 3 and 5 share a key
idea. In both settings, the idea is to use a good, local approximation of the
loss landscape – once to avoid forgetting and once to improve optimization.
Entertainingly, Chapter 3 will argue that a set of algorithms relies on
using the second-order Taylor approximation, despite not explicitly being
designed to do so, while Chapter 5 will argue that a set of algorithms does
not use the second-order Taylor approximation, despite being explicitly
designed to do so.

1.4 methodology

The exposition above should explain why the title of this thesis features
the "loss landscape of neural networks" and in how far understanding it
motivates the contributions of this thesis. In addition to being linked in
terms of motivation and topic, Chapters 3, 5 and also Chapter 4 share a
large part of their methodology. The contributions of these chapters are
at the intersection of theoretical and practical insights and a key feature
will be developing better theoretical explanation for empirically observed
behaviours of neural network algorithms. Therefore, we will put significant
emphasis on designing experiments to explicitly test theoretical hypothesis.
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This is what explains why the words “empirically guided” also feature
in the title of this thesis and is a somewhat under-represented approach7

in a benchmark driven community. We will not ignore the communities
thirst for benchmark results and explain and exemplify how our theoretical
insights can be used to improve the algorithms investigated. At the same
time, we also argue that understanding algorithms has intrinsic value as
part of the scientific endeavour and should receive more attention in the
deep learning community.

1.5 overview of remaining chapters

Above, we have introduced the topics of this thesis from one particular angle
and explained how both continual learning and optimization are closely
linked to obtaining a better understanding of local properties of the loss
landscape of neural networks. As a consequence, we have at least partially
neglected to present each contribution fully within the scope of its related
work. Therefore, Chapters 3, 4 and 5 will have a separate introduction,
related work section and discussion section to fill this gap.

Before we move on to our contributions to Continual learning within ma-
chine learning (Chapter 3), continual learning within neuroscience (Chapter
4) and neural network optimization (Chapter 5), we will present some
background on the Fisher Information (Chapter 2) as a key tool for local
loss approximations that is used in all following chapters.

7 but of course not unique





2
B A C K G R O U N D

Some parts of this chapter are taken and adapted from Benzing [44]. Note that none
of the insights presented here are new and they should be attributed to the sources
cited in the text.

All following chapters will in one way or another be concerned with
approximations of the second-order Taylor expansion of the loss of neural
networks, and here we will provide some brief background to make pre-
cise what these approximations are, why they appear and how they are
motivated.

We first need some notation and definitions: We will use w to denote the
parameters of the neural network. For a pair of input and label (X, y)1 we
will denote by ℓ(y | X, w) the loss that the network has on this pair. In our
case, the loss will always be the negative log-likelihood.

We will use the shorthand g(X, y) for the "gradient", i.e. g(X, y) =
dℓ(y|X,w)

dw and we will write H = d2ℓ(y|X,w)
dw2 for the Hessian.

Then, the second-order Taylor expansion of the loss is of course given by

ℓ(y | X, w0 + w) ≈ ℓ(y | X, w0) + g(X, y)Tw +
1
2

wTHw (2.1)

If we want to use this approximation for continual learning or optimization
there is an immediate problem: The Hessian might have negative eigen-
values and this is undesirable both in the context of continual learning
and optimization. For optimization, negative eigenvalues imply that there
is no minimizer of the second-order expansion and that the optimizer
would want to take infinitely large update steps in the direction of eigen-
vectors with negative eigenvalues. In practice, this would lead to unstable
behaviour. For continual learning the problem is rather similar: If we re-
peatedly optimize the second-order approximation of the loss by taking
gradient steps, we will get pushed further and further away from w0 in
directions of negative curvature and thus the network would again forget
catastrophically.

1 While this is not necessary, we will only treat classification problems here.

11
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One solution to this problem is to approximate the Hessian by a positive
(semi-)definite matrix. One popular choice of such a matrix is the Fisher
Information, which is positive semi-definite by design. This can be seen
from its definition, which is given by

F = EX∼XEy∼p(·|X,w)

[
g(X, y)g(X, y)T

]
(2.2)

where X ∼ X is a sample from the input distribution and y ∼ p(· | X, w)
is a sample from the model’s output distribution. Notably, this is different
from taking the label assigned to X in the dataset. If we do the latter, we
obtain a biased approximation of the Fisher Information, known as the
“Empirical Fisher” within the machine learning community. See [45, 46] for
discussions of this approximation, and [46] for a discussion of differences
in naming conventions between statistics and machine learning community.
The Empirical Fisher will appear in Chapter 3 and very briefly at the end
of Chapter 5.

It is worth noting that the Fisher Information was originally not intro-
duced to machine learning in order to approximate the Hessian, but rather
from an information geometric perspective (see e.g. [47]). However, as
shown in [45, 48, 49], it often coincides with the Generalised-Gauss-Newton
matrix and as such is strongly linked to the Hessian. More precisely, in
cases where the network’s output distribution over labels y matches the
real distribution over labels, the Fisher is equal to the Hessian. Note that
in this case the Empirical Fisher also coincides with the Hessian, which
perhaps explains partly why the Empirical Fisher can be useful, despite its
limitations discussed in [46].

2.1 fisher for continual learning

As briefly hinted at in the introduction, the key idea of [11] for continual
learning is to replace the loss of a task that has already been learned by
the network by its second-order Taylor approximation. This way, we can
hope to maintain parameter values w which have low loss on the old task,
even without accessing data from the old task (we only need to access our
second-order approximation of the loss).

Thus, to perform continual learning with this idea, we need to repeatedly
evaluate the term wFwT as a proxy for the loss on an old task. Note that the
first-order term wTg is usually omitted, since one assumes that the Taylor
expansion is taken at (or at least very close to) a local minimum, where
g ≈ 0.
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For completeness note that [11] motivate and derive their algorithm from
a Bayesian perspective, so that what we referred to as a second-order Taylor
expansion is called the Laplace posterior; but the difference here is only
words.

2.2 fisher for optimization

If we use the Fisher for optimization, we need to minimize the expression
(2.1) with respect to w. A brief calculation shows that this leads to the
update

w∗ = F−1g

In practice, this is not quite the update formula that is used. Rather, one
employs

w∗ = (λI + F)−1g

where λ is called a damping term. This can be seen as establishing a
trust-region and limiting update size, especially in directions of low or
zero curvature (note that the Fisher typically does not have full rank for
sufficiently overparametrised networks, as can be seen from (2.2).)

Finally, we point out that this optimization algorithm is known as Natural
Gradient Descent (see e.g. [50]). Due to the close link of the Fisher to
the Hessian, Natural Gradient Descent is often seen as a second-order
optimization algorithm.

2.3 approximations of the fisher information

As stated previously and as can be seen from the definitions, the Fisher
(and Hessian) has size n× n, where n is the number of parameters. It is
therefore prohibitively expensive to compute and store the entire Fisher
matrix for even moderately sized neural networks.

In principle, there are two approaches to circumvent this problem:
(1) In many cases, we are not actually interested in knowing the Fisher.

Rather it is an intermediate quantity that is required to compute the final
expression of interest. This is true both in continual learning, where we are
interested in computing wTFw and optimization, where we are interested
in computing (λI + F)−1g. In some situations one can evaluate these ex-
pressions precisely, without explicitly computing the Fisher Information.
We will give two examples for this and point out that both examples only
work efficiently under certain additional assumptions, which we will omit
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for the sake of brevity and clarity.
The first example is Hessian-Free optimization [39], which exploits that
Hessian- (or Fisher)-vector products can be evaluated efficiently in neural
networks (without evaluating the Hessian explicitly) and that in conjunction
with conjugate gradient descent this is enough to approximate (λI + F)−1g
reasonably efficiently and precisely.
For the second example, one can exploit the intrinsic low-rank structure
of the Fisher Information to compute (λI + F)−1g efficiently as was first
described in [40]. Since this will be a key tool for Chapter 5, we will outline
its main ideas below in Section 2.3.2

(2) As an alternative to not evaluating the Full Fisher explicitly, one can
try to approximate it in forms that allow for more memory efficient storage
and more efficient evaluation of the desired quantities.
A simple and commonly employed approximation is taking the diagonal
entries of the Fisher. This is precisely the approach taken by [11] for contin-
ual learning. In optimization, it is interesting that the resulting optimizer
is loosely linked to the popular Adam optimizer [51] (but see also [52] for
how this link can be made much less handwavy).
Another approximation of the Fisher, which has gained popularity due to its
empirical successes in different domains (optimization, continual learning,
meta-learning, posterior-approximations), is a block-diagonal, Kronecker-
factored approximation, due to [41, 42]. Since this approximation is at the
core of Chapter 5, we will explain it in more detail below.

2.3.1 Block-diagonal, Kronecker-factored Approximation of the Fisher

The first step of this approximation is to only compute the block-diagonal of
the Fisher, where each block corresponds to one layer of the neural network.
To make this more precise, we will only care about the (i, j)-th entry of F
when the parameters wi, wj come from the same layer of the network.

To derive the Kronecker-factorisation of each block (due to [41, 42]), first
interpret the expectation in (2.2) as a sum and then consider each summand
individually. Each summand has the form ggT2. Now, it is well known that
for a single layer (for simplicity we assume fully-connected layers only),
the gradient g has “low-rank” structure. To be more precise, if we take
the matrix-shaped version of the gradient gmat (rather than its vectorised
variant), it can be written as a rank 1 matrix gmat = aeT , where a is a
column vector containing the input activations of the layer (computed in

2 The weight given to each summand by the expectation can be absorbed into g by rescaling it.
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a typical forward pass) and where e is a column vector containing the
derivative of the loss with respect to the output activations of the layer
(these derivatives are computed in a typical backward pass). This property
is a straightforward consequence of the chain rule.

Luckily, this low rank structure of g translates to a useful low-rank
structure of ggT . More precisely, each diagonal block of ggT is given by
aaT ⊗ eeT , where ⊗ denotes the Kronecker-product and where the equality
follows directly from the definition of the Kronecker-product.

Thus, each diagonal block of the Fisher is a sum (or expectation) over
Kronecker-products

FBlock = ∑
i

a(i)a(i)T ⊗ e(i)e(i)T

where the summation index i simply subsumes the two expectations from
(2.2).

To arrive at the final Kronecker-factored approximation of the Fisher, one
more trick is performed and we approximate

FBlock = ∑i a(i)a(i)T ⊗ e(i)e(i)T (2.3)

∝∼
(

∑i a(i)a(i)T
)
⊗
(

∑i e(i)e(i)T
)

(2.4)

This last approximation is usually justified by an independence assumption,
which is typically violated as discussed briefly in Benzing [44]. It is (in
a sense that can be made precise without too much trouble) a rank 1
approximation of the block-diagonal of the Fisher.

The resulting approximation of the Fisher has a few very important
properties. (1) It is space efficient: Storing the Kronecker-factors typically
requires only about as much space as storing the layers themselves. (2)
The required computations can be implemented in a time efficient manner:
The desired quantities a, e are standard quantities computed during a for-
and backward pass, and the summation can be vectorised efficiently. (3)
Many downstream quantities, like wTFw for continual learning or (λI +
F)−1g for optimization, can be evaluated efficiently. We briefly mention
that for performing the inversion (λI + F)−1 there is typically another
approximation involved. Since this is not directly related to the Fisher, we
defer the unexpectedly important details to Chapter 5.

With the advantages of the Kronecker-factorisation being pointed out, we
re-emphasise that evidence presented in Chapter 5 will raise doubt whether
using these approximation really preserve the final quantity, i.e. the natural
gradient (λI + F)−1g faithfully or whether the approximations in fact (and
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somewhat accidentally) pick up on other relevant local properties of the
loss landscape.

2.3.2 Low Rank Fisher and Efficient Subsampled Natural Gradients

As pointed out above, in some situations we can evaluate the natural
gradient

(λI + F)−1g

efficiently and exactly.
The fairly simple ideas to do so were first described in [40, 53] and later

rediscovered by us. Here, we provide a sketch of these ideas, full details
can be found in Appendix I of Benzing [44], which makes some modest
improvements over [40].

To see how the natural gradient can be evaluated efficiently in some
situations, we briefly restate the definition of the Fisher

F = EX∼XEy∼p(·|X,w)

[
g(X, y)g(X, y)T

]
(2.5)

and note that (again, viewing the expectation as a sum), the Fisher is
explicitly given as a sum over rank-1 matrices. In particular, if not many
summands appear, the Fisher has low rank and we can use the matrix
inversion lemma to invert (λI + F).

To make this concrete, write F = GGT , where G is an n× r matrix. Then
by the matrix inversion lemma

(λI + F)−1 = (λI + GGT)−1 = λ−1I− λ−2G
(

I +
1
λ

GTG
).−1

GT (2.6)

Thus, we have solved the first problem, namely we do not need to invert a
large n× n matrix, but only the r× r matrix GTG. Luckily, this matrix can
be evaluated efficiently3.

The next problem, which is that we cannot evaluate the expression (2.6)
explicitly (due to its prohibitively large size), can also be overcome. We are
only interested in computing the matrix-vector product (λI + F)−1g, and
to do so we can use the RHS of (2.6) and first evaluate GTg, then evaluate
v = (I + 1

λ GTG)−1(GTg) and finally compute Gv. To see that steps one
and three in this procedure can be done efficiently, note that GTg = (gTG)T

3 Each entry of GTG is a gradient-gradient dot-product, which can be computed efficiently
using the low rank strucutre of gradients mentioned above, and allows for vectorisation of
computing all entries of GTG, see e.g. Benzing [44].
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is a vector-jacobian-product and that Gv is a jacobian-vector-product and
both can be done efficiently.
To summarise, we can evaluate natural gradients efficiently, provided that
r, the number of rank-1 summands forming the Fisher, is not too large.

For classification problems with c class labels and d input vectors, the
Fisher has rank cd. Thus, since cd is usually large for standard machine
learning datasets, it typically is still infeasible to perform the above compu-
tations. Nevertheless, there are two advantages to the described procedure,
which will both be exploited in Chapter 5: (1) On small datasets, we can
evaluate natural gradients exactly. (2) On large dataset, we can compute the
Fisher on a subset of images (known as the subsampled Fisher) and perform
exact computations for the subset. While this is of course not the same as
exact natural gradients, it can be used in control settings to compare to
other natural gradient algorithms.





3
U N I F Y I N G R E G U L A R I S AT I O N M E T H O D S F O R
C O N T I N UA L L E A R N I N G

This chapter is taken and partially adapted from Benzing [54], which was presented
as a long oral talk at AISTATS 2022.

3.1 introduction

As explained in Chapter 1, one key limitation of gradient based learning is
that it overwrites previously acquired knowledge when different tasks are
learned sequentially. We will soon provide a formal definition of the exact
setup.

By now a lot (if not the majority) of new work on continual learning
relies fairly heavily on replay. Roughly speaking, this means that a subset
of data from previous task is stored and replayed when learning new tasks.
The predominance of these methods is perhaps explained by their empirical
success and the community’s focus on benchmark numbers: Algorithms
that do not use replay buffers, or only do so in a very limited way, struggle
competing with replay methods, as has been noted early on and many
times (e.g. [55, 56]).

There is certainly a case to be made for investigating replay methods
as they might be feasible solutions in real-world engineering settings and
enhance our understanding of which parts or examples of a distribution
are particularly informative. Nevertheless, investigating and improving
methods which do not use replay remains an important question, both
from a scientific point of view and in some applications, where storing
old examples might be strictly disallowed (for example due to privacy
constraints). This holds true even if, or perhaps especially when, algorithms
in the no-replay domain struggle to compete with replay methods. As we
have also mentioned in Chapter 1 progress on this problem may improve
our understanding of the loss landscape of neural networks, which in
turn could have implications across a range of areas, like bayesian ML,
optimization or transfer/meta-learning.

With this in mind, this chapter will focus on regularisation methods
for continual learning which are an important line of work for contin-

19
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ual learning without replay. The first regularisation-based method was
introduced by Kirkpatrick et al. [11], who proposed the Elastic Weight Con-
solidation (EWC) algorithm. After training a given task, EWC measures the
importance of each parameter for this task and introduces an auxiliary loss
penalising large changes in important parameters. Naturally, this raises the
question of how to measure ‘importance’. While EWC uses the diagonal
Fisher Information, two main alternatives have been proposed: Synaptic
Intelligence (SI, [13]) aims to attribute the decrease in loss during training to
individual parameters and Memory Aware Synapses (MAS, [14]) introduces
a heuristic measure of output sensitivity. Together, these three approaches
have inspired many further regularisation-based approaches, including
combinations of them [17], refinements [15–18], extensions [19–22] and
applications in different continual learning settings [57] as well as different
domains of machine learning [58]. Almost every new continual learning
method compares to at least one of the algorithms EWC, SI and MAS.

Despite their influence, basic practical and theoretical questions regard-
ing these algorithms had previously been unanswered. Notably, it was
unknown how similar these importance measures are. Additionally, for SI
and MAS as well as their follow-ups there was no solid theoretical under-
standing of their effectiveness. Here, we close both these gaps through a
theoretical analysis confirmed by a series of carefully designed experiments
on standard continual learning benchmarks. Our main findings in this
chapter can be summarised as follows:

(a) We show that SI’s importance approximation is biased and that the
bias rather than SI’s original motivation is responsible for its perfor-
mance. Further, also due to the bias, SI is approximately equal to the
square root of the Fisher Information.

(b) We show that MAS, like SI, approximately equals the square root of
the Fisher Information.

(c) Together, (a) and (b) unify the three main regularisation approaches
and their follow ups by explicitly linking all of them to the same
theoretically justified quantity – the Fisher Information. For SI- and
MAS-based algorithms this has the additional benefit of giving a more
plausible theoretical explanation for their effectiveness.

(d) Based on our precise understanding of SI, we propose an improved
algorithm, Second-Order Synapses (SOS). We demonstrate that SOS
outperforms SI in various regimes.
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3.2 review of regularisation methods and related work

Here, we review importance based regularisation approaches (but see
also [59] for non importance based regularisation). Additional related work
is discussed in Supplementary 3.7.2.

Formal Description of Continual Learning.
In continual learning we are given K datasets D1, . . . ,DK sequentially. When
training a neural net with N parameters w ∈ RN on dataset Dk, we have
no access to the previously seen datasets D1:k−1. However, at test time the
algorithms is tested on all K tasks and the average accuracy is taken as
measure of the performance.

Common Framework for Regularisation Methods.
Regularisation based approaches introduced in [11] (with some slight adap-
tations proposed in [15]) protect previous memories by modifying the loss
function Lk related to dataset Dk. Let us denote the parameters obtained af-
ter finishing training on task k by w(k) and let λλλ(k) ∈ RN be the parameters’
importances. When training on task k, regularisation methods use the loss

L̃k = Lk + c ·
N

∑
i=1

λ
(k−1)
i

(
wi − w(k−1)

i

)2

where c > 0 is a hyperparameter. The first term Lk is the standard (e.g.
cross-entropy) loss of task k. The second term ensures that the parameters
do not move away too far from their previous values. In some cases, the
auxiliary loss can be interpreted directly as modelling the previous tasks’
losses L1 + . . . + Lk−1 by their second-order Taylor expansion.

Usually, λ
(k)
i = λ

(k−1)
i + λi, where λi is the importance for the most

recently learned task k, and this is also the update prescribed by the second-
order approximation view mentioned above.

Elastic Weight Consolidation
[11] uses the diagonal of the Fisher Information as importance measure
and in this case the auxiliary regularisation loss can be interpreted as an
approximation of the second-order Taylor expansion of the loss of previous
tasks as mentioned above. For an equivalent bayesian motivation, see [11,
15].
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We briefly restate and slightly rewrite the definition of the Fisher for later
purposes

F = EX∼XEy∼pX

[
g(X, y)g(X, y)T

]
(3.1)

= EX∼X ∑
y∈L

pX(y) · g(X, y)g(X, y)T . (3.2)

Note that the Fisher is evaluated at the end of each task, to obtain a taylor
expansion around the final point of the optimization trajectory.
To make things concrete, taking only the diagonal Fisher means λi(EWC) =
EX∼XEy∼pX

[
gi(X, y)2] .

Variational Continual Learning
[60] shares its Bayesian motivation with EWC, but uses principled varia-
tional inference in Bayesian neural networks. Its similarity to EWC and
the fact that it uses ‘a smoothed version of the Fisher’ is already discussed
in [60] and further formalised in [61]. We will therefore focus on the two
algorithms below.

Memory Aware Synapses
[14] heuristically argues that the sensitivity of the function output with
respect to a parameter should be used as the parameter’s importance. This
sensitivity is evaluated after training a given task. It can be measured with
respect to either the logits or the probabilities. Here, we choose the latter
option and describe the precise importance this leads to. In Appendix H
of Benzing [54] we show that the resulting version of MAS has the same
performance as the one described here, and, crucially, is also related to the
Fisher Information.
Denoting, as before, the final layer of learned probabilities by pX , the MAS
importance is

λi(MAS) = EX∼X

[∣∣∣∣
∂∥pX∥2

∂wi

∣∣∣∣
]

,

MAS suggests using validation data to measure this importance. For a fair
comparison, we measure importances on training data for all methods. We
also confirmed that this choice does not affect our results.

Synaptic Intelligence
[13] approximates the contribution of each parameter to the decrease in loss
and uses this contribution as importance. To formalise the ‘contribution of
a parameter’, let us denote the parameters at time t by w(t) and the loss by
L(t). If the parameters follow a smooth trajectory in parameter space, we
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write w′ for the temporal derivative of the parameters, and we can rewrite
the decrease in loss from time 0 to T as

L(0)− L(T) = −
∫ w(T)

w(0)

∂L(t)
∂w

w′(t)dt (3.3)

= −
N

∑
i=1

∫ wi(T)

wi(0)

∂L(t)
∂wi

w′i(t)dt. (3.4)

The i-th summand in (3.4) can be interpreted as the contribution of parame-
ter wi to the decrease in loss. While we cannot evaluate the integral exactly,
we can use a first-order approximation to obtain the importances. To do so,
we write ∆i(t) = (wi(t + 1)− wi(t)) for an approximation of w′i(t)dt and
get

λ̃i(SI) =
T−1

∑
t=0

∂L(t)
∂wi

· ∆i(t). (3.5)

Thus, we have ∑i λ̃λλi(SI) ≈ L(0)− L(T). In addition, SI rescales its impor-
tances as follows1

λi(SI) =
max

{
0, λ̃i(SI)

}

(wi(T)− wi(0))2 + ξ
. (3.6)

Zenke, Poole & Ganguli [13] use additional assumptions to justify this
importance. One of the them – using full batch gradient descent – is violated
in practice and we will show that this has an important consequence.

Additional regularisation approaches.
EWC, SI and MAS have inspired several follow ups. We presented a version
of EWC due to [15] and tested in [17, 19]. It is theoretically more sound
and was shown to perform better. [17] combine EWC with a ‘KL-rescaled’-
SI. [16] use a block-diagonal (rather than diagonal) approximation of the
Fisher; [18] use the full Hessian matrix for small networks. [20] rotate the
network to diagonalise the most recent Fisher Matrix, [21] modify the loss
of SI and [22] aim to account for batch-normalisation.

Overview over algorithms
Below we will design and introduce a few variants of the algorithms
described above to test a set of different hypothesis. For reference and read-
ability a tabular overview over these variants is provided in Supplementary
Table 3.3.

1 Note that the max(0, ·) is not part of the description in [13]. However, we needed to include it
to reproduce their results. A similar mechanism can be found in the official SI code.
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3.3 synaptic intelligence , its bias and the fisher

Here, we explain why SI is approximately equal to the square root of
the Fisher, despite the apparent contrast between the latter and SI’s path
integral. First, we identify the bias of SI when approximating the path
integral. We then show that the bias, rather than the path integral, explains
similarity to the Fisher as well as performance. We carefully validate each
assumption of our analysis empirically.

3.3.1 Bias of Synaptic Intelligence

To calculate λ(SI) (3.5), we need to calculate the product

p =
∂L(t)

∂w
· ∆(t)

for each t. Evaluating the full gradient ∂L
∂w is too expensive, so SI uses a

stochastic minibatch gradient. The estimate of p is biased since the same
minibatch is used for the update ∆ and the estimate of ∂L/∂w.

We now give the calculations detailing this argument. For ease of ex-
position, let us assume vanilla SGD with learning rate 1 is used. Given a
minibatch, we slightly change notation and denote its stochastic gradient
estimate by g + σ, where g = ∂L/∂w denotes the full gradient and σ the
noise. The update is ∆ = g + σ. Thus, p should be

p = g · (g + σ).

However, using g+ σ, which was used for the parameter update, to estimate
g results in

pbias = (g + σ)2.

Thus, the gradient noise introduces a bias of

E[σ2 + σg] = E[σ2].

Unbiased SI (SIU)
Having understood the bias, we can design an unbiased estimate by using
two independent minibatches to calculate ∆ and estimate g. We get ∆ =
g + σ and an estimate g + σ′ for g with independent noise σ′. We obtain

pno_bias = (g + σ′) · (g + σ)
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which in expectation equals p = g · (g + σ). Based on this we define an
unbiased importance measure

λ̃i(SIU) =
T−1

∑
t=0

(gt + σ′t) · ∆(t).

Bias-Only version of SI (SIB)
To isolate the bias, we can take the difference between biased and unbiased
estimate. Concretely, this gives an importance which only measures the bias
of SI

λ̃i(SIB) =
T−1

∑
t=0

((g + σ)− (g + σ′t)) · ∆(t).

Observe that this estimate multiplies the parameter update ∆(t) with noth-
ing but stochastic gradient noise. From the perspective of the SI path-
integral, this should be meaningless and perform poorly. Our theory, de-
tailed below, predicts differently.

3.3.2 Relation of SI’s Bias to Fisher

The bias of SI depends on the optimizer used. The original SI-paper (and
we) uses Adam [51] and we now analyse the influence of this choice in
detail; for other choices see Supplementary 3.7.1.

Recall that λ̃(SI) is a sum over terms ∂L(t)
∂w · ∆(t),

where ∆(t) = w(t + 1) − w(t) is the parameter update at time t. Both
terms, ∂L(t)

∂w as well as ∆(t), are computed using the same minibatch. Given
a stochastic gradient gt + σt, Adam keeps an exponential average of the
gradient

mt = (1− β1)(gt + σt) + β1mt−1

as well as the gradient

vt = (1− β2)(gt + σt)
2 + β2vt−1.

Ignoring minor normalisations, the parameter update is

∆(t) = ηtmt/
√

vt,
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with learning rate ηt = 0.001, β1 = 0.9 and β2 = 0.999. Thus,

∂L(t)
∂w

∆(t) = ηt(1− β1)
(gt + σt)2
√

vt
+ ηtβ1

(gt + σt)mt−1√
vt

(A1)≈ ηt(1− β1)
(gt + σt)2
√

vt
(3.7)

Here, we made Assumption (A1) that the gradient noise is larger than the
gradient, or more precisely:

(1− β1)σ
2
t ≫ β1mt−1gt

(we ignore σtmt−1 since E[σtmt−1] = 0 and since we average SI over many
time steps). (A1) is equivalent to the bias of SI being larger than its unbiased
part as detailed in Supplementary 3.7.5. Experiments in Section 3.3.3 and
Supplementary 3.7.4 provide strong support for this assumption. Next, we
rewrite

λ̃(SI)
(A1)≈ (1− β1) ∑

t≤T

ηt(gt + σt)2
√

vt
(3.8)

=
1− β1√

vT
∑
t≤T

ηt

√
vT
vt

(gt + σt)
2 (3.9)

Now consider vt. It is a decaying average of (gt + σt)2. When stochastic
gradients become smaller during learning, vt will decay so that

∑
√

vT/vt · (g + σt)
2

will be a (unnormalised, not necessarily exponentially) decaying average of
the squared gradient. Therefore, we make Hypothesis (A2)

∑
t≤T

√
vT
vt
· (g + σt)

2 (A2)
∝∼ vT ,

since both LHS & RHS are decaying averages of the squared gradient. We
will validate (A2) in Section 3.3.3. Altogether, we obtain

λ̃λλ(SI) ≈ 1− β1√
vT

∑
t≤T

ηt

√
vT
vt

(gt + σt)
2 (3.10)

(A2)
∝∼

vT√
vT

=
√

vT .
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No. Algo. P-MNIST CIFAR

(1)

SI 97.2±0.1 74.4±0.2

SI Bias-Only 97.2±0.1 75.1±0.1

SI Unbiased 96.3±0.1 72.5±0.3

SOS 97.3±0.1 74.1±0.2

(2)
SI(2048) 96.2±0.1 70.0±0.3

SOS(2048) 97.1± 0.1 74.4± 0.1

(3)

MAS 97.3±0.1 73.7±0.2

AF 97.4±0.1 73.4±0.1√
Fisher 97.1±0.2 73.5±0.2

Fisher (EWC) 97.1±0.2 73.1±0.2

Table 3.1: Test Accuracies on Permuted-MNIST and Split CIFAR (Mean and std-
err of average accuracy over 3 resp. 10 runs for MNIST resp. CIFAR).
Experiments No. (1) & (3) explain SI’s and MAS’ performance. Exp (2)
shows improvements of our SOS for large batch training and confirms
our theoretical prediction.

To avoid confusion, we note that it may seem at first that a similar
argument implies that SI is proportional to vt rather than

√
vt. Appendix D

in Benzing [54] explains why this is not the case.

Relation of SI to Fisher (EWC).
Recall that the exact form of the importance of SI depends on the optimizer
used. Here, we used Adam following [13]. The effect of SGD (+momentum)
is very similar as discussed in Supplementary 3.7.1.
With Adam, the importance of SI is (due to its bias) roughly equal to

√
vt.

Note that vt is closely related to the Empirical Fisher, especially when the
batch size is not too big (see Supplementary 3.7.3). Thus, other than using
different approximations of the Fisher, the only difference between EWC
and SI is the square root of the latter.
Even though we are not aware of a theoretical justification of the square root
in this setting, this result explicitly links the bias and importance measure
of SI to second order information of the Fisher. On a related note, we show
in Appendix G of Benzing [54] that in a different regime the square root of
the Hessian can be a theoretically justified importance measure.
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Influence of Regularisation.
Note that gradients, second moment estimates and the update direction
∆(t) of Adam will be influenced by the auxiliary regularisation loss. In
contrast, the approximation of ∂L/∂w in (3.7) only relies on current task
gradients (without regularisation). Thus, the relation between SI and

√
vT

(which in this context is decaying average of task-only gradients), will be
more noisy in the presence of large regularisation. This will be confirmed
empirically in Section 3.3.3.

Practical Implications.
A benefit of our derivation is that it makes the dependence of SI on the
optimisation process explicit. Consider for example the influence of batch
size. A priori one would not expect it to affect SI more than other methods.
Given our derivation, however, one can see that a larger batch size reduces
noise and thus bias, making (A1) less valid. Moreover, vt will be a worse
approximation of the Fisher (see Supplementary 3.7.3 or e.g. [62]). Thus, if
SI relies on its relation to second order information of the Fisher, then we
expect it to suffer disproportionately from large batch sizes – a prediction
we will confirm empirically below. Additionally, learning rate decay, choice
of optimizer and trainingset size and difficulty could harm SI as discussed
in more detail in Supplementary 3.7.1.

Improving SI: Second-Order Synapses (SOS)
Given our derivation, we propose to adapt SI to explicitly measure sec-
ond order information contained in the Fisher. To this end, we propose
the algorithm Second-Order Synapses (SOS). In its simplest form it uses
λλλ(SOS) =

√
vT as importance, where vt is evaluated as described in the

beginning of Section 3.3.2. Note that vt can be measured independently of
which optimizer is used. The value of vt at the end of tranining a given task
is taken as the algorithms importance. Importances from different tasks are
summed, analogously to the other regularisation methods.

Moreover, for larger batch sizes we introduce a similar, but provably
better approximation of the Fisher detailed in Supplementary 3.7.3. We
will confirm some benefits of SOS over SI empirically below and discuss
additional advantages in Supplementary 3.7.1. Note also that SOS is com-
putationally more efficient than MAS and EWC as it does not need a pass
through the data after training a given task.
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Model SI SOS EWC* MAS*

Small 25.1± 4.6 44.3± 0.1 45.1 40.6

Base 46.0± 0.1 43.3± 0.3 42.4 46.9

Wide 40.0± 0.2 46.0± 0.1 31.1 45.1

Deep 21.6± 0.7 30.0± 0.1 29.1 33.6

Table 3.2: Test Accuracies on TinyImagenet. Algorithms SI and SOS are evalu-
ated on a version of ImageNet on different VGG architectures; results
averaged across 3 seeds. Framework, hyperparameter selection and
code directly taken from [63] and only modified to support SOS. Re-
sults for EWC, MAS marked with an asterisk “*” are reported directly
from [63] without independent replication. Our replication of SI per-
forms better than reported in [63], despite using the original code.
SOS has substantial performance gains over SI.

3.3.3 Empirical Investigation of SI, its Bias and Fisher

Bias dominates SI
According to the motivation of SI the sum of importances over parameters
∑i λ̃i(SI) should track the decrease in loss L(0)− L(T), see (3.4). Therefore,
we investigated how well the summed importances of SI and its unbiased
version SIU approximate the decrease in loss. We also include an approxi-
mation of the path integral which uses the full training set gradient ∂L/∂w.
The results in Figure 3.1 (left) show: (1) Using an unbiased gradient estimate
and the full gradient gives almost identical sums, supporting the validity
of the unbiased estimator.2 (2) The bias of SI is 5-6 times larger than its
unbiased component so that SIU yields a considerably better approximation
of the path integral.

Checking (A1)
We point out that the bias, i.e. the difference between SI and SIU, in Figure
3.1 (left) is due to the term (1 − β1)σ

2
t . Thus, the fact that the bias is

considerably larger then the unbiased part is direct, strong evidence of
Assumption (A1) (see Supplementary 3.7.5 for full calculation). Results on
CIFAR are analogous, see Benzing [54].

2 Note that even the unbiased first order approximation of the path integral overestimates the
decrease in loss. This is consistent with findings that the loss has positive curvature [58, 64].
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Checking (A2): SI is almost equal to the Square Root of Approximate
Fisher vt.
To check (A2), we compared λ(SI) and λ(SOS) =

√
vt, see Figure 3.1 (mid,

right). Correlations are almost equal to 1 on MNIST. The same holds on
CIFAR Task 1, where the slight drop in correlation from around 0.99 to 0.9
is only due to the division in equation (3.6) (c.f. Appendix L of Benzing
[54]). In summary, this shows that

√
vt is a very good approximation of SI.

Correlations of SI to SOS on CIFAR Task 2-6 decrease due to regularisation,
see below.

Effect of Regularisation
The drop of correlations on CIFAR tasks 2-6 is due to large regularisation as
explained theoretically in Section 3.3.2 and confirmed by two controls of SI
with less strong regularisation: The first control simply sets regularisation
strength to c = 0. The second control refrains from re-initialising the
network weights after each task (exactly as in original SI, albeit with slightly
worse validation performance than the version with re-initialisation). In the
second setting the current parameters w never move too far from their old
value w(k−1), implying smaller gradients from the quadratic regularisation
loss, and also meaning that a smaller value of c = 0.5 is optimal. We see
that for both controls with weaker regularisation the correlation of SI to
SOS is again close to one, supporting our theory.

Bias explains SI’s performance
We saw that SI’s bias is much larger than its unbiased part. But how does it
influence SI’s performance? To quantify this, we compared SI to its unbi-
ased version SIU and the bias-only version SIB. Note that SIB is completely
independent of the path integral motivating SI, only measures gradient
noise and therefore should perform poorly according to SI’s original moti-
vation. However, the results in Table 3.1(1) reveal the opposite: Removing
the bias reduces performance of SI (SIU is worse), whereas isolating the bias
does not affect or slightly improve performance. This demonstrates that SI
relies on its bias, and not on the path integral, for its continual learning
performance.

Bias explains Second-Order Information.
We have seen that the bias, not the path integral, is responsible for SI’s
performance. Our theory offers an explanation for this surprising finding,
namely that the bias is responsible for SI’s relation to the Fisher. But does
this explanation hold up in practice? To check this, we compare SI, its
unbiased variant SIU and its bias-only variant SIB to the second order
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Figure 3.1: SI, Bias and Square Root of Approximate Fisher vt (SOS).
Top Left: Summed Importances for SI and its unbiased version, show-
ing that the bias dominates SI and that Assumption (A1) holds.
Top Center: Pearson correlations of SI, its bias (SIB), and unbiased
version (SIU) with SOS, showing that relation between SI and SOS is
strong and due to bias; confirming (A2). The same is shown by the
scatter plots.
Top Right: Same as Mid but on CIFAR; additionally, relation between
SOS and two SI-controls is shown: ‘no init’ does not re-initialise net-
work weights after each task; ‘c = 0’ has regularisation strength 0.
This shows that strong regularisation weakens the tie between SI and
SOS on Tasks 2-6 as explained by our theory.
Bottom: Scatter plots of SOS (

√
vt) with SI (left), its bias-only SIB

(middle) and its unbiased version SIU (right); showing 105 randomly
sampled weights. A straight line through the origin corresponds to
two importance measures being multiples of each other as was sug-
gested by our derivation for SI and SOS, but not for SIU and SOS.
Note that SIU has negative importances before rescaling in (3.6).

information λ(SOS) =
√

vT . The results in Figure 3.1 (top middle&right;
bottom) show that SI, SIB are more similar to

√
vT than SIU, directly

supporting our theoretical explanation.
Together the two previous paragraphs are very strong evidence that SI

relies on the second order information contained in its bias rather than on
the path integral.
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SOS improves SI
We predicted that SI would suffer disproportionately from training with
large batch sizes. To test this prediction, we ran SI and SOS with larger
batch sizes of 2048, Table 3.1 (2). We found that, indeed, SI’s performance
degrades by roughly 1% on MNIST and more drastically by 4% on CIFAR.
In contrast, SOS’ performance remains stable.3 This validates our prediction
and demonstrates that our improved understanding of SI leads to notable
performance gains.

In addition, we carried out experiments on a version of ImageNet, fol-
lowing the protocol of a recent large-scale comparison of continual learning
algorithms [63]. The results are shown in Table 3.2. There is one setting
(Base), where SI is slightly better than SOS and we are unsure why. Overall
SOS clearly outperforms SI. This further supports the view that explicitly
relying on the second-order information of the Fisher provides a more
reliable, better performing algorithm.

Figure 3.2: Empirical Relation between MAS and Square Root of Fisher.
Left: Summary of Pearson Correlations (top: CIFAR, bottom: MNIST),
supporting Assumptions (B1)-(B3)).
Mid & Right: Scatter plots of importance measures. Each point in
the scatter plot corresponds to one weight of the net, showing 105

randomly sampled weights. A straight line through the origin corre-
sponds to two importance measures being multiples of each other as
was suggested by our theoretical analysis.

3.4 memory aware synapses (mas) and fisher

Here, we explain why – despite its different motivation and like SI – MAS
is approximately equal to the square root of the Fisher Information. We
do so by first relating MAS to AF := E[|g + σ|] and then theoretically

3 We emphasise that the difference of SI and SOS is not explained by a change in ‘training
regime’ [65], since both algorithms use equally large minibatches.
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showing how this is related to the Fisher F = E[|g + σ|2] under additional
assumptions. As before, we check our theoretical derivations empirically.

3.4.1 Theoretical Relation of MAS and Fisher

We take a closer look at the definition of the importance of MAS. Recall that
we use the predicted probability distribution of the network to measure
sensitivity rather than logits. With linearity of derivatives, the chain rule
and writing y0 = argmaxpX , we see (omitting expectation over X ∼ X )

∣∣∣∣
∂∥p∥2

∂w

∣∣∣∣ = 2

∣∣∣∣∣∑y∈Y
p(y)

∂p(y)
∂w

∣∣∣∣∣
(B1)≈ 2

∣∣∣∣p(y0)
∂p(y0)

∂w

∣∣∣∣

= 2p2(y0)

∣∣∣∣
∂ log p(y0)

∂w

∣∣∣∣ (3.11)

Here, we made Assumption (B1) that the sum is dominated by its maximum-
likelihood label y0, which should be the case if the network classifies its
images confidently, i.e. p(y0)≫ p(y) for y ̸= y0. Recall that the importance
is measured at the end of training, so that this assumption is justified if the
task has been learned successfully. Using the same assumption (B1) we get

Ey∼pX [|g + σ|] (B1)≈ p(y0)|g + σ| = p(y0)

∣∣∣∣
∂ log p(y0)

∂w

∣∣∣∣ .

showing that the only difference between λ(MAS) and E[|g + σ|] is a factor
of 2pX(y0). It is reasonable to make Assumption (B2) that this factor is
approximately constant, since the model learned to classify training images
confidently. This leads to (B2): λλλ(MAS) ∝∼ AF = E[|g|]. Note that even with
a pessimistic guess that pX(y0) is in a range of 0.5 (rather inconfident) and
1.0 (absolutely confident), the two measures would be highly correlated.

Now, it remains to explore how E[|g + σ|] is related to the Fisher F =
E[|g + σ|2]. The precise relationship between the two will depend on the
distribution of g + σ. If, for example, gradients are distributed normally
(g + σ) ∼ N (µ, Σ) with Σi,i ≫ µi (corresponding to the observation that
the noise is much bigger than the gradients, which we have seen to be true
above), then we obtain Fi ≈ Σi,i and, since |g + σ| follows a folded normal
distribution, we also have E[|g + σ|] ≈ c

√
Σii with c =

√
2/π. Thus, in the

case of a normal distribution with large noise, we have AF = E[|g|] ∝∼
√

F.
Note that the same conclusion arises in under different assumptions, too, e.g.
assuming that gradients follow a Laplace distribution with scale≫ mean.
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Relation of Fisher and MAS
The above analysis leads to Hypothesis (B3): λλλ(MAS) ∝∼

√
Fisher.

3.4.2 Empirical Relation of MAS and Fisher

First, to assess (B1) in (3.11) we compare LHS (MAS) and RHS (referred to
as MASX) at the end of each task. We consistently find that the pearson
correlations are almost equal to 1 strongly supporting (B1), see Figure 3.2.

The correlations between λ(MAS) and AF = E[|g + σ|] are similarly
high, confirming (B2).

The correlations between λλλ(MAS) and the square root of the Fisher
√

F
are around 0.9 for Permuted MNIST and approximately 1 for all CIFAR task.
This confirms our theoretical hypothesis (B3) that MAS is approximately
equal to the square root of the Fisher.

In addition, to check whether similarity to the square root of the Fisher
can serve as an explanation for performance of MAS, we ran continual learn-
ing algorithms based on MAS, AF and

√
F. The fact that these algorithms

perform similarly, Table 3.1 (3), is in line with the claim that similarity to√
F provides a theoretically plausible explanation for MAS’ effectiveness.

3.5 experimental setup

We outline the experimental setup, see Appendix F of Benzing [54] for
full details. It closely follows SI’s setting [13]: In domain-incremental
Permuted MNIST [10] each of 10 tasks consists of a random (but fixed)
pixel-permutation of MNIST and a fully connected ReLU network is
used. The task-incremental Split CIFAR 10/100 [13] consists of six 10-way
classification tasks, the first is CIFAR 10, and the other ones are extracted
from CIFAR 100. The keras default CIFAR 10 convolutional architecture
(with dropout and max-pooling) is used [66].

The only difference to the setup [13] is that like [67], we usually re-
initialise network weights after each task, observing better performance.
Concretely, we run each method with and without re-initialisation (tuning
the regularisation strength independently) and report the better results.
On MNIST the improvements with this trick typically below o.5% and on
CIFAR vary between 0% and around 2%.

A known limitation of regularisation methods is that they are not ap-
plicable to class-incremental scenarios [55, 56], and we do not include
experiments in this setting.
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Code is available on github4. For the TinyImageNet experiments in
Table 3.2, we follow [63], see also Appendix F.8 of Benzing [54].

3.6 discussion

We have investigated regularisation approaches for continual learning,
which are the method of choice for continual learning without replaying
old data or expanding the model. We have provided strong theoretical and
experimental evidence that both MAS and SI approximate the square root
of the Fisher Information. While the square root of the Fisher has no clear
theoretical interpretation itself, our analysis makes explicit how MAS and
SI are related to second-order information contained in the Fisher. This
provides a more plausible explanation of the effectiveness for MAS- and SI
based algorithms. In addition, it shows how the three main regularisation
methods are related to the same theoretically justified quantity, providing a
unified view of these algorithms and their follow ups.

Moreover, our algorithm SIU to approximate SI’s path integral can be
used for the (non continual learning) algorithm LCA [58], which relies
on an expensive approximation of the same integral. This opens up new
opportunities to apply LCA to larger models and datasets.

For SI, our analysis included uncovering its bias. We found that the
bias explains performance better than the path integral motivating SI. Our
theory offers a sound, empirically confirmed explanation for this otherwise
surprising finding. Beyond this theoretical contribution, by proposing the
algorithm SOS we gave a concrete example how understanding the inner
workings of SI leads to substantial performance improvements.

4 https://github.com/freedbee/continual_regularisation
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3.7 supplementary material

We provide some supplementary discussion and details related to the main
results presented above. We will omit many details and refer to Benzing
[54] for more complete information.

We start with a tabluar overview of the different algorithms discussed
above, see Table 3.3.
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Name Paramater Importance λλλ(·)

SI ∑
t
(gt + σt)∆(t)

SIU (SI-Unbiased) ∑
t
(gt + σ′t)∆(t)

SIB (SI Bias-only) ∑
t
(σt − σ′t)∆(t)

SOS (simple)
1− β2

1− βT+1
2

∑
t≤T

βT−t
2 (gt + σt)

2

SOS (2048, unbiased) 1−β2
1−βT+1

2
∑
t≤T

βT−t
2
(
(gt + σt)− α(gt + σ′t)

)2

Fisher (EWC)
1
N ∑

X
Ey∼pX

[
g(X, y)2

]

AF
1
N ∑

X
Ey∼pX [|g(X, y)|]

MAS
1
N ∑

X

∣∣∣∣
∂||pX ||2

∂w

∣∣∣∣

Table 3.3: Summary of Regularisation Methods and Related Baselines.
Notation and Details: Algorithms on the top calculate importance ‘on-
line’ along the parameter trajectory during training. Algorithms on
the bottom calculate importance at the end of training a task by going
through (part of) the training set again. Thus, the sum is over timesteps
t (top) or datapoints X (bottom). N is the number of images over which
is summed. For a datapoint X, qX denotes the predicted label distribu-
tion and g(X, y) refers to the gradient of the negative log-likelihood
of (X, y). ∆(t) = θ(t + 1)− θ(t) refers to the parameter update at time
t, which depends on both the current task’s loss and the auxiliary
regularisation loss. Moreover, (gt + σt) refers to the stochastic gradient
estimate of the current task’s loss (where gt is the full gradient and
σt the noise) given to the optimizer to update parameters. In contrast,
(gt + σ′t ) refers to an independent stochastic gradient estimate.
Algorithms SI, SIU, SIB rescale their final importances as in equation
(3.6) for fair comparison. For description, justification and choice of α

in SOS, see Supplementary 3.7.3.
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3.7.1 Potential Advantages of SOS vs SI

Here, we discuss some problems that SI may have and for which SOS offers
a remedy due to its more principled nature. We also explain how the points
discussed here could explain findings of a large scale empirical comparison
of regularisation methods [63] and leave testing these hypotheses to future
work. We note that it seems difficult/impossible to even generate hypothesis
for some of the findings in [63] without our contribution. Further, if these
hypotheses are true, the described shortcomings are addressed by SOS.

1. Trainingset Size and Difficulty: Recall that SI is similar to an un-
normalised decaying average of (g + σ)2. Since the average is unnor-
malised, the constant of proportionality between λλλ(SI) and

√
vt will

depend: (1) On the number of summands in the importance of SI, i.e.
the number of training iterations and (2) On the speed of gradient
decay, which may well depend on the training set difficulty. Thus, SI
may underestimate the importance of small datasets (for which fewer
updates are performed if the number of epochs is kept constant as
e.g. in [13, 63]) and also for easy datasets with fast gradient decay.
How would we expect this to affect performance? If easy datasets are
presented first, then SI will undervalue their importance and thus
forget them later on. If hard tasks are presented first, SI will overvalue
their importance and make the network less plastic – as latter tasks
are easy, this is not too big of a problem. So if easy tasks are presented
first, we expect SI to perform worse on average and forget more than
when hard tasks are presented first. Strikingly, both lower average
accuracy as well as higher forgetting are exactly what [63] (Table 4)
observe for SI when easy tasks are presented first (but not for other
methods).

2. Learning Rate Decay: In our derivation in Section 3.3.2 we assumed
a constant learning rate ηt = η0. If, however, learning rate decay is
used, then this will counteract the importance of SI being a decaying
average of (g + σ)2; for a deacying leanring rate more weight will
be put on earlier gradients, which will likely make the estimate of
the Fisher less similar to the Fisher at the end of training. This may
explain why SI sometimes has worse performance than EWC, MAS
in experiments of [63]

3. Choice of Optimizer: Note that the bias and thus importance of SI
depend on the optimizer. For example if we use SGD with learning



3.7 supplementary material 39

rate ηt (with or without momentum), following the same calculations
as before shows that λλλ(SI) ≈ ∑t ηt(gt + σt)2. On the one hand, this is
related to the Fisher so it may give good results, on the other hand it
may overvalue gradients early in training, especially when combined
with learning rate decay. [63] use SGD with learning rate decay, which
again may be why SI sometimes performs worse than competitors.
In an extreme case, when we approximate natural gradient descent by
preconditioning with the squared gradient, the SI importance will be
constant across parameters, showcasing another, probably undesired,
dependence of SI on the choice of optimizer.

4. Effect of Regularisation: We already discussed in the main part how
strong regularisation influences SI’s importance measure. In fact, on
CIFAR tasks 2-6 many weights have negative importances, since the
regularistation gradient points in the opposite direction of the task
gradients and is larger, compare e.g. Figure 3.1. Negative importances
seem counterproductive in any theoretical framework.

5. Batch Size: We already predicted and confirmed that large batchsizes
hurt SI and proposed a remedy to this issue, see also Supplementary
3.7.3.

3.7.2 Related Work

The problem of catastrophic forgetting in neural networks has been studied
for many decades [9, 68, 69]. In the context of deep learning, it received
more attention again [10, 70].

We now review the broad body of continual learning algorithms. Fol-
lowing [71], they are often categorised into regularisation-, replay- and
architectural approaches.

Regularisation methods have been reviewed in the main part of this chapter
above. We note that [59] is often also called a regularisation method, while
being conceptually different from the ones described previously.

Replay methods refer to algorithms which either store a small sample or
generate data of old distributions and use this data while training on new
methods [12, 72–74]. These approaches can – but certaintly do not have to
– be seen as investigating how far standard i.i.d.-training can be relaxed
towards the (highly non-i.i.d.) continual learning setting without losing
too much performance. They are interesting, but usually circumvent the
original motivation of continual learning to maintain knowledge without



40 unifying regularisation methods for continual learning

accessing old distributions. Intriguingly, the most effective way to use old
data appears to be simply replaying it, i.e. mimicking training with i.i.d.
batches sampled from all tasks simultaneously [75].

Architectural methods extend the network as new tasks arrive [19, 76–
79]. This can be seen as a study of how old parts of the network can be
effectively used to solve new tasks and touches upon transfer learning.
Typically, it avoids the challenge of integrating new knowledge into an
existing networks. Finally, [55, 56, 80] point out that different continual
learning scenarios and assumptions with varying difficulty were used across
the literature.5

3.7.3 Second Moment of Gradients, Hessian, Fisher and SOS

As pointed out in the main part of this chapter, the second moment vt of
the gradient is a common approximation of the Hessian. Here, we briefly
review why this is the case, why the approximation becomes worse for large
batch sizes and show how to get a better estimate. We note that the relations
between Fisher, Hessian, and squared gradients, which are recapitulated
here, are discussed in several places in the literature, e.g. [45, 46, 81].

One way to relate the squared gradients to the Hessian is through the
Fisher6: The Fisher Information is an approximation of the Hessian, which
becomes exact when the learned label distribution coincides with the real
label distribution. The Fisher takes an expectation over the model’s label
distribution. A common approximation is to replace this expectation by
the (deterministic) labels of the dataset. This is called the Empirical Fisher
and it is a good approximation of the FIsher if the model classifies most
(training) images correctly and confidently. To summarise, the Fisher is a
good approximation of the Hessian under the assumption that the model’s
predicted distribution coincides with the real distribution and - under the
same assumption - the empirical Fisher is a good approximation of the
Hessian. In fact, taking a closer look at the derivations, it seems plausible
that the empirical Fisher is a better approximation of the Hessian than the
real Fisher, since - like the Hessian - it uses the real label distribution rather
than the model’s label distribution.

5 We critically review and question some of their experimental results below.
6 Alternatively, one can directly apply the derivation, which is used to relate Fisher and Hessian,

to the squared gradient ( Empirical Fisher).
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To avoid confusion and as pointed out by [45], we also note that the
Empirical Fisher is not generally equal to the Generalised Gauss Newton
matrix.

Note that the connection between squared gradients and the Hessian
assumes that gradients are squares gradients before averaging. Here, and
in many other places e.g. [52, 62], this is approximated by squaring after
averaging over a mini-batch since this is easier to implement and requires
less computation. We describe below why this approximation is valid for
small batch sizes and introduce an improved and easy to compute estimate
for large batch sizes. We have not seen this improved estimate elsewhere in
the literature.

For this subsection, let us slightly change notation and denote the images
by X1, . . . , XD and the gradients (with respect to their labels and the cross
entropy loss) by g + σ1, . . . g + σD. Here, again g is the overall training set
gradient and σi is the noise (i.e. ∑D

i=1 σi = 0) of individual images (rather
than mini-batches). Then the Empirical Fisher is given by

EF =
1
D

D

∑
i=1

(g + σi)
2 = g2 + E[σ2

k ],

where k is uniformly drawn from {1, . . . , D}
Second Moment Estimate of Fisher. We want to compare EF to evalu-

ating the squared gradient of a minibatch. Let i1, . . . , ib denote uniformly
random, independent indices from {1, . . . , D}, so that Xi1 , . . . , Xib is a ran-
dom minibatch of size b drawn with replacement. Let g + σ be the gradient
on this mini-batch. We then have, taking expectations over the random
indices,

E[(g + σ)2] = E

[
1
b2

b

∑
r,s=1

(g + σir )(g + σis)

]

=
b(b− 1)

b2 E[(g + σi1)(g + σi2)] +
b
b2 E[(g + σi1)

2]

=
b− 1

b
g2 +

1
b

EF

≈ 1
b

EF

The last approximation is biased, but it is still a decent approximation as
long as E[σ2

k ]≫ bg2. This explains why the second moment estimate of the
Fisher gets worse for large batch sizes. Note that here σk refers to the noise
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of the gradient with batch size 1 (whereas σ is the noise of a mini-batch,
which is b times smaller).
For an analysis assuming that the mini-batch is drawn without replacement,
see e.g. [62]. Note that for a minibatch size of 2048 and a trainingset size of
60000, the difference between drawing with or without replacement is small,
as on average there are only 35 duplicates in a batch with replacement, i.e.
less than 2% of the batch.

3.7.3.1 Improved Estimate of Fisher for SOS.

We use the same notation as above, in particular σk refers to the gradient
noise of a single randomly sampled image (not an entire minibatch). Let
us denote by g + σ and g + σ′ the gradient estimates obtained from two
independent minibatches of size b (each sampled with replacement as
above). Then for any α ∈ R, following the same calculations as above and
slightly rearranging gives

E
[(
(g + σ)− α(g + σ′)

)2
]

= (1− α)2g2 +
1 + α2

b
E[σ2

k ],

where we used that each minibatch element is drawn independently and
that E[σk] = 0. Now, if (1 − α)2 = 1+α2

b , then the above expression is
proportional to the Empirical Fisher EF = g2 + E[σ2

k ]. Since we rescale the
regularisation loss with a hyperparameter, proportionality is all we need to
get a strictly better (i.e. unbiased) approximation of the Empirical Fisher.

The above condition for α and b is satisfied when α = b+
√

2b−1
b−1 . In

practice, we used α = 0 for the experiments with batchsize 256 and α =
1 for the experiments with batchsize 2048. Note that α = 1 is always
a good approximation when E[σ2

k ] ≫ g2 (which we’ve seen to be the
case). In our implementation SOS required calculating gradients on two
minibatches, thus doubling the number of forward and backward passes
during training. However, one could simply split the existing batch in two
halves to keep the number of forward and backward passes constant. For
large batch experiments we found introducing α necessary to obtain as
good performance as with smaller batch sizes. This also supports our claim
that SI’s and SOS’s importance measures rely on second order information
contained in the Fisher.
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3.7.4 Gradient Noise

Here, we quantitatively assess the noise magnitude outside the continual
learning context. Recall that Figure 3.1 (left) already show that the noise
dominates the SI importance measure, which indicates that the noise is
considerably larger than the gradient itself.

To obtain an assessment independent of the SI continual learning im-
portance measure, we trained our network on MNIST as described before,
i.e. a ReLu network with 2 hidden layers of 2000 units each, trained for 20
epochs with batch size 256 and default Adam settings. At each training
iteration, on top of calculating the stochastic mini-batch gradient used for
optimization, we also computed the full gradient on the entire training set
and computed the noise – which refers to the squared ℓ2 distance between
the stochastic mini-batch gradient and the full gradient – as well as the ratio
between noise and gradient, measured as the ratio of squared ℓ2 norms.
The results are shown in Figure 3.3 (top). In addition, we computed the
fraction of iterations in which the ratio between noise and squared gradient
norm is above a certain threshold, see Figure 3.3 (bottom).

3.7.5 Exact Computation of Bias of SI with Adam

We claimed that the difference between SI and SIU (green and blue line)
seen in Figure 3.1 is due to the term (1− β1)σ

2
t . To see this, recall that for

SI, we approximate ∂L(t)
∂w by gt + σt, which is the same gradient estimate

given to Adam. So we get

SI:
∂L(t)
∂w

∆(t) =
(1− β1)(gt + σt)2

√
vt + ϵ

+
β1(gt + σt)mt−1√

vt + ϵ
.

For SIU, we use an independent mini-batch estimate gt + σ′t for ∂L(t)
∂w and

therefore obtain

SIU:
∂L(t)
∂w

∆(t) =
(1− β1)(gt + σ′t)(gt + σt)√

vt + ϵ
+

β1(gt + σ′t)mt−1√
vt + ϵ

.

Taking the difference between these two and ignoring all terms which have
expectation zero (note that E[σt] = E[σ′t ] = 0 and that σt, σ′t are independent
of mt−1 and gt) gives

SI− SIU: (1− β1)
σ2

t√
vt + ϵ
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Figure 3.3: Top: Gradient noise, measured as squared ℓ2 distance between full
training set gradient and the stochastic mini-batch gradient with
a batch size of 256. ‘Full gradient’ magnitude is also measured as
squared ℓ2 norm.
Data obtained by training a ReLu network with 2 hidden layers of
2000 hidden units for 20 epochs with default Adam settings. Only
every 20-th datapoint shown for better visualisation.
Bottom: Same data. y-value shows fraction of training iterations in
which the ratio between mini-batch noise and full training set gradient
was at least x-value. In particular the batch-size was 256. ‘Ratio’ refers
to the ratio of squared ℓ2 norms of the respective values.

as claimed.
Note also that in expectation SIU equals (1 − β1)

g2
t√

vt+ϵ
+ β1

gtmt−1√
vt+ϵ

so

that a large difference between SI and SIU really means (1 − β1)σ
2
t ≫

(1− β1)g2
t + β1mt−1gt ≈ β1mt−1gt. The last approximation here is valid

because β1mt−1 ≫ (1− β1)gt which holds since (1) β1 ≫ (1− β1) and (2)
E[|mt−1|] ≥ gt since E[|mt−1|] ≥ E[mt−1] ≈ E[|gt|].
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P R E S Y N A P T I C S T O C H A S T I C I T Y I M P R O V E S
E N G E RY- E F F I C I E N C Y A N D H E L P S A L L E V I AT E
S TA B I L I T Y- P L A S T I C I T Y D I L E M M A

This chapter is mostly taken and partially adapted from Schug, Benzing & Steger
[82], which appeared in eLife in 2021 and is joint work with Simon Schug and An-
gelika Steger. Simon Schug and Frederik Benzing contributed equally and Frederik
Benzing was main responsible for the theoretical justification of the learning rule.

4.1 context

This chapter applies some of the insights gained in Chapter 3 in the context
of biological neural networks, but also has additional contributions. Here,
to provide context for several other parts of the motivation for this study,
we present it within the context of neuroscience.

4.2 introduction

It has long been known that synaptic signal transmission is stochastic [83].
When an action potential arrives at the presynapse, there is a high probabil-
ity that no neurotransmitter is released – a phenomenon observed across
species and brain regions [84]. From a computational perspective, synaptic
stochasticity seems to place unnecessary burdens on information processing.
Large amounts of noise hinder reliable and efficient computation [85, 86]
and synaptic failures appear to contradict the fundamental evolutionary
principle of energy-efficient processing [87]. The brain, and specifically
action potential propagation consume a disproportionately large fraction
of energy [88, 89] – so why propagate action potentials all the way to the
synapse only to ignore the incoming signal there?

To answer this neurocomputational enigma various theories have been
put forward, see Llera-Montero, Sacramento & Costa [90] for a review.
One important line of work proposes that individual synapses do not
merely maximise information transmission, but rather take into account
metabolic costs, maximising the information transmitted per unit of energy
[91]. This approach has proven fruitful to explain synaptic failures [89, 92],

45
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low average firing rates [91] as well as excitation-inhibition balance [93]
and is supported by fascinating experimental evidence suggesting that both
presynaptic glutamate release [94] and postsynaptic channel properties [95,
96] are tuned to maximise information transmission per energy.

However, so far information-theoretic approaches have been limited to
signal transmission at single synapses, ignoring the context and goals in
which the larger network operates. As soon as context and goals guide net-
work computation certain pieces of information become more relevant than
others. For instance, when reading a news article the textual information is
more important than the colourful ad blinking next to it – even when the
latter contains more information in a purely information-theoretic sense.

Here, we study presynaptic stochasticity on the network level rather
than on the level of single synapses. We investigate its effect on (1) energy
efficiency and (2) the stability-plasticity dilemma in model neural networks
that learn to selectively extract information from complex inputs.

We find that presynaptic stochasticity in combination with presynaptic
plasticity allows networks to extract information at lower metabolic cost by
sparsely allocating energy to synapses that are important for processing
the given stimulus. As a result, presynaptic release probabilities encode
synaptic importance. We show that this notion of importance is related to
the Fisher Information, a theoretical measure for the network’s sensitivity
to synaptic changes.

Building on this finding and previous work [11] we explore a potential
role of presynaptic stochasticity in the stability-plasticity dilemma. In line
with experimental evidence [97, 98], we demonstrate that selectively stabil-
ising important synapses improves lifelong learning. Furthermore, these
experiments link presynaptically induced sparsity to improved memory.

4.3 model

Our goal is to understand how information processing and energy consump-
tion are affected by stochasticity in synaptic signal transmission. While there
are various sources of stochasticity in synapses, here, we focus on modelling
synaptic failures where action potentials at the presynapse fail to trigger any
postsynaptic depolarisation. The probability of such failures is substantial
[84, 99, 100] and, arguably, due to its all-or-nothing-characteristic has the
largest effect on both energy consumption and information transmission.

As a growing body of literature suggests, Artifical Neural Networks
(ANNs) match several aspects of biological neuronal networks in various
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goal-driven situations [101–106]. Crucially, they are the only known model
to solve complex vision and reinforcement learning tasks comparably well
as humans. We therefore choose to extend this class of models by explicitly
incorporating synaptic failures and study their properties in a number of
complex visual tasks.

4.3.1 Model Details

The basic building blocks of ANNs are neurons that combine their inputs
a1, . . . , an through a weighted sum w1a1 + . . . wnan and apply a nonlinear
activation function σ(·). The weights wi naturally correspond to synaptic
strengths between presynaptic neuron i and the postsynaptic neuron. Al-
though synaptic transmission is classically described as a binomial process
[83] most previous modelling studies assume the synaptic strengths to be
deterministic. This neglects a key characteristic of synaptic transmission:
the possibility of synaptic failures where no communication between pre-
and postsynapse occurs at all.

In the present study, we explicitly model presynaptic stochasticity by
introducing a random variable ri ∼ Bernoulli(pi), whose outcome cor-
responds to whether or not neurotransmitter is released. Formally, each
synapse wi is activated stochastically according to

wi = ri ·mi, where ri ∼ Bernoulli(pi) (4.1)

so that it has expected synaptic strength w̄i = pimi. The postsynaptic
neuron calculates a stochastic weighted sum of its inputs with a nonlinear
activation

apost = σ

(
n

∑
i=1

wiapre

)
. (4.2)

During learning, synapses are updated and both synaptic strength and
release probability are changed. We resort to standard learning rules to
change the expected synaptic strength. For the multilayer perceptron, this
update is based on stochastic gradient descent with respect to a loss function
L(w̄, p), which in our case is the standard cross-entropy loss. Concretely,
we have

w̄(t+1)
i = w̄(t)

i − ηgi, where gi =
∂L(w̄(t), p)

∂w̄(t)
i

(4.3)
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where the superscript corresponds to time steps. Note that this update
is applied to the expected synaptic strength w̄i, requiring communication
between pre- and postsynape, see also Discussion. For the explicit update
rule of the synaptic strength mi see Materials and Methods, equation (4.8).
For the standard perceptron model, gi is given by its standard learning rule
[107]. Based on the intuition that synapses which receive larger updates are
more important for solving a given task, we update pi using the update
direction gi according to the following simple scheme

p(t+1)
i =





p(t)i + pup, if |gi| > glim,

p(t)i − pdown, if |gi| ≤ glim.
(4.4)

Here, pup, pdown, glim are three metaplasticity parameters shared between
all synapses.1 To prevent overfitting and to test robustness, we tune them
using one learning scenario and keep them fixed for all other scenarios,
see Materials and Methods. To avoid inactivated synapses with release
probability pi = 0 we clamp pi to stay above 0.25, which we also use as the
initial value of pi before learning.

On top of the above intuitive motivation, we give a theoretical justification
for this learning rule in Materials and Methods, showing that synapses
with larger Fisher Information obtain high release probabilities, also see
Figure 4.2d.

4.3.2 Measuring Energy Consumption

For our experiments, we would like to quantify the energy consumption
of the neural network. Harris, Jolivet & Attwell [89] find that the main
constituent of neural energy demand is synaptic signal transmission and
that the cost of synaptic signal transmission is dominated by the energy
needed to reverse postsynaptic ion fluxes. In our model, the component
most closely matching the size of the postsynaptic current is the expected
synaptic strength, which we therefore take as measure for the model’s
energy consumption. In the Supplementary, we also measure the metabolic
cost incurred by the activity of neurons by calculating their average rate of
activity.

1 We point out that in a noisy learning setting the gradient g does not decay to 0, so that the
learning rule in (4.4) will maintain network function by keeping certain release probabilities
high. See also Material and Methods for a theoretical analysis.
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Box 4.1: Mutual Information

The Mutual Information I(Y; Z) of two jointly distributed random
variables Y, Z is a common measure of their dependence [85].
Intuitively, mutual information captures how much information
about Y can be obtained from Z, or vice versa. Formally, it is
defined as

I(Y; Z) ≡ H(Y)− H(Y|Z) = H(Z)− H(Z|Y)

where H(Y) is the entropy of Y and H(Y|Z) is the conditional
entropy of Y given Z.
In our case, we want to measure how much task-relevant informa-
tion Y is contained in the neural network output Z. For example,
the neural network might receive as input a picture of a digit with
the goal of predicting the identity of the digit. Both the ground-
truth digit identity Y and the network’s prediction Z are random
variables depending on the random image X. The measure I(Y; Z)
quantifies how much of the behaviourally relevant information
Y is contained in the network’s prediction Z ignoring irrelevant
information also present in the complex, high-entropy image X.

4.3.3 Measuring Information Transmission

We would like to measure how well the neural network transmits informa-
tion relevant to its behavioural goal. In particular, we are interested in the
setting where the complexity of the stimulus is high relative to the amount
of information that is relevant for the behavioural goal. To this end, we
present complex visual inputs with high information content to the network
and teach it to recognise the object present in the image. We then measure
the mutual information between network output and object identity, see
Box 4.1.
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4.4 results

4.4.1 Presynaptic Stochasticity Enables Energy-Efficient Information Processing

We now investigate the energy efficiency of a network that learns to classify
digits from the MNIST handwritten digit dataset [108]. The inputs are high-
dimensional with high entropy, but the relevant information is simply the
identity of the digit. We compare the model with plastic, stochastic release
to two controls. A standard ANN with deterministic synapses is included
to investigate the combined effect of presynaptic stochasticity and plasticity.
In addition, to isolate the effect of presynaptic plasticity, we introduce a
control which has stochastic release, but with a fixed probability. In this
control, the release probability is identical across synapses and chosen to
match the average release probability of the model with plastic release after
it has learned the task.

All models are encouraged to find low-energy solutions by penalis-
ing large synaptic weights through standard ℓ2-regularisation. Figure 4.1a
shows that different magnitudes of ℓ2-regularisation induce different information-
energy trade-offs for all models, and that the model with plastic, stochastic
release finds considerably more energy-efficient solutions than both con-
trols, while the model with non-plastic release requires more energy then
the deterministic model. Together, this supports the view that a combina-
tion of presynaptic stochasticity and plasticity promotes energy-efficient
information extraction.

In addition, we investigate how stochastic release helps the network to
lower metabolic costs. Intuitively, a natural way to save energy is to assign
high release probabilities to synapses that are important to extract relevant
information and to keep remaining synapses at a low release probability.
Figure 4.2a shows that after learning, there are indeed few synapses with
high release probabilities, while most release probabilities are kept low. We
confirm that this sparsity develops independently of the initial value of
release probabilities before learning, see Supplementary Figure 4.6d. To test
whether the synapses with high release probabilities are most relevant for
solving the task we perform a lesion experiment. We successively remove
synapses with low release probability and measure how well the lesioned
network still solves the given task, see Figure 4.2b. As a control, we remove
synapses in a random order independent of their release probability. We
find that maintaining synapses with high release probabilities is signifi-
cantly more important to network function than maintaining random ones.
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Figure 4.1: Energy Efficiency of Model with Stochastic and Plastic Release.
(a) Different trade-offs between mutual information and energy are
achievable in all network models. Generally, stochastic synapses with
learned release probabilities are more energy-efficient than determin-
istic synapses or stochastic synapses with fixed release probability.
The fixed release probabilities model was chosen to have the same av-
erage release probability as the model with learned probabilities. (b)
Best achievable ratio of information per energy for the three models
from (a). Error bars in (a) and (b) denote the standard error for three
repetitions of the experiment.

Moreover, we find, as expected, that synapses with high release probabil-
ities consume considerably more energy than synapses with low release
probability, see Figure 4.2c. This supports the hypothesis that the model
identifies important synapses for the task at hand and spends more energy
on these synapses while saving energy on irrelevant ones.

We have seen that the network relies on a sparse subset of synapses
to solve the task efficiently. However, sparsity is usually thought of on
a neuronal level, with few neurons rather than few synapses encoding a
given stimulus. Therefore, we quantify sparsity of our model on a neuronal
level. For each neuron we count the number of ‘important’ input- and
output synapses, where we define ‘important’ to correspond to a release
probability of at least p = 0.9. Note that the findings are robust with respect
to the precise value of p, see Figure 4.2a. We find that the distribution
of important synapses per neuron is inhomogeneous and significantly
different from a randomly shuffled baseline with a uniform distribution
of active synapses (Kolmogorov-Smirnoff test, D = 0.505, p < 0.01), see
Figure 4.3a. Thus, some neurons have disproportionately many important
inputs, while others have very few, suggesting sparsity on a neuronal level.
As additional quantification of this effect, we count the number of highly
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Figure 4.2: Importance of Synapses with High Release Probability for Net-
work Function. (a) Histogram of release probabilities before and
after learning, showing that the network relies on a sparse subset of
synapses to find an energy-efficient solution. Dashed line at p = 0.9
indicates our boundary for defining a release probability as ‘low’ or
‘high’. We confirmed that results are independent of initial value of
release probabilities before learning (see Supplementary, Figure 4.6d).
(b) Accuracy after performing the lesion experiment either removing
synapses with low release probabilities first or removing weights
randomly, suggesting that synapses with high release probability
are most important for solving the task. (c) Distribution of synap-
tic energy demand for high and low release probability synapses.
(d) Distribution of the Fisher information for high and low release
probability synapses. It confirms the theoretical prediction that high
release probability corresponds to high Fisher Information. All pan-
els show accumulated data for three repetitions of the experiment.
Shaded regions in (b) show standard error.

important neurons, where we define a neuron to be highly important if
its number of active inputs is two standard deviations below or above the
mean (mean and standard deviation from shuffled baseline). We find that
our model network with presynaptic stochasticity has disproportionate
numbers of highly important and unimportant neurons, see Figure 4.3b.
Moreover, we check whether neurons with many important inputs tend to
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Figure 4.3: Neuron-Level Sparsity of Network after Learning. (a) Histogram of
the fraction of important input synapses per neuron for second layer
neurons after learning for true and randomly shuffled connectivity
(see Supplementary, Figure 4.7a for other layers). (b) Same data as (a),
showing number of low/medium/high importance neurons, where
high/low importance neurons have at least two standard deviations
more/less important inputs than the mean of random connectivity.
(c) Scatter plot of first layer neurons showing the number of impor-
tant input and output synapses after learning on MNIST, Pearson
correlation is r = 0.9390 (see Supplementary, Figure 4.7b for other
layers). Data in (a) and (c) are from one representative run, error bars
in (b) show standard error over three repetitions.

have many important outputs, indeed finding a correlation of r = 0.93, see
Figure 4.3c. These analyses all support the claim that the network is sparse
not only on a synaptic but also on a neuronal level.

Finally, we investigate how release probabilities evolve from a theoretical
viewpoint under the proposed learning rule. Note that the evolution of
release probabilities is a random process, since it depends on the random
input to the network. Under mild assumptions, we show (Materials and
Methods) that release probabilities are more likely to increase for synapses
with large Fisher Information2. Thus, synapses with large release probabili-
ties will tend to have high Fisher Information. We validate this theoretical
prediction empirically, see Figure 4.2d.

2 In this context, the Fisher Information is a measure of sensitivity of the network to changes in
synapses, measuring how important preserving a given synapse is for network function.
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4.4.2 Presynaptically Driven Consolidation Helps Alleviate the Stability-Plasticity
Dilemma

While the biological mechanisms addressing the stability-plasticity dilemma
are diverse and not fully understood, it has been demonstrated experimen-
tally that preserving memories requires maintaining the synapses which
encode these memories [97, 98, 109]. In this context, theoretical work sug-
gests that the Fisher Information is a useful way to quantify which synapses
should be maintained [11]. Inspired by these insights, we hypothesise that
the synaptic importance encoded in release probabilities can be used to im-
prove the network’s memory retention by selectively stabilising important
synapses.

We formalise this hypothesis in our model by lowering the learning rate
(plasticity) of synapses according to their importance (release probability).
Concretely, the learning rate η = η(pi) used in (4.3) is scaled as follows

η(pi) = η0 · (1− pi). (4.5)

such that the learning rate is smallest for important synapses with high
release probability. η0 denotes a base learning rate that is shared by all
synapses. We complement this consolidation mechanism by freezing the
presynaptic release probabilities pi once they have surpassed a predefined
threshold pfreeze. This ensures that a synapse whose presynaptic release
probability was high for a previous task retains its release probability
even when unused during consecutive tasks. In other words, the effects of
presynaptic LTD are assumed to act on a slower timescale than learning
single tasks. Note that the freezing mechanism ensures that all synaptic
strengths w̄i retain a small degree of plasticity, since the learning rate
modulation factor (1− pi) remains greater than 0.

To test our hypothesis that presynaptically driven consolidation allows
the network to make improved stability-plasticity trade-offs, we sequen-
tially present a number of tasks and investigate the networks behaviour.
We mainly focus our analysis on a variation of the MNIST handwritten
digit dataset, in which the network has to successively learn the parity of
pairs of digits, see Figure 4.4a. Additional experiments are reported in the
Supplementary Material, see Table 4.1.

First, we investigate whether presynaptic consolidation improves the
model’s ability to remember old tasks. To this end, we track the accuracy
on the first task over the course of learning, see Figure 4.4b. As a control,
we include a model without consolidation and with deterministic synapses.
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While both models learn the first task, the model without consolidation for-
gets more quickly, suggesting that the presynaptic consolidation mechanism
does indeed improve memory.

Next, we ask how increased stability interacts with the network’s ability
to remain plastic and learn new tasks. To assess the overall trade-off between
stability and plasticity we report the average accuracy over all five tasks,
see Figure 4.4c.

We find that the presynaptic consolidation model performs better than a
standard model with deterministic synapses and without consolidation. In
addition, we compare performance to two state-of-the art machine learning
algorithms: The well-known algorithm EWC [11] explicitly relies on the
Fisher Information and performs a separate consolidation phase after each
task. BGD [110] is a Bayesian approach that models synapses as distribu-
tions, but does not capture the discrete nature of synaptic transmission.
The presynaptic consolidation mechanism performs better than both these
state-of-the-art machine learning algorithms, see Figure 4.4c. Additional
experiments in the Supplementary suggest overall similar performance of
Presynaptic Consolidation to BGD and similar or better performance than
EWC.

To determine which components of our model contribute to its lifelong
learning capabilities, we perform an ablation study, see Figure 4.5a. We aim
to separate the effect of (1) consolidation mechanisms and (2) presynaptic
plasticity.

First, we remove the two consolidation mechanisms, learning rate mod-
ulation and freezing release probabilities, from the model with stochastic
synapses. This yields a noticeable decrease in performance during lifelong
learning, thus supporting the view that stabilising important synapses
contributes to addressing the stability-plasticity dilemma.

Second, we aim to disentangle the effect of presynaptic plasticity from
the consolidation mechanisms. We therefore introduce a control in which
presynaptic plasticity but not consolidation is blocked. Concretely, the con-
trol has ‘ghost release probabilities’ p̃i evolving according to equation (4.4)
and modulating plasticity according to equation (4.5); but the synaptic
release probability is fixed at 0.5. We see that this control performs worse
than the original model with a drop in accuracy of 1.4% on Split MNIST
(t = 3.44, p < 0.05) and a drop of accuracy of 5.6% on Permuted MNIST
(t = 6.72, p < 0.01). This suggests that presynaptic plasticity, on top of
consolidation, helps to stabilise the network. We believe that this can be
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Figure 4.4: Lifelong Learning in a Model with Presynaptically Driven Consoli-
dation. (a) Schematic of the lifelong learning task Split MNIST. In the
first task the model network is presented 0s and 1s, in the second task
it is presented 2s and 3s, etc. For each task the model has to classify
the inputs as even or odd. At the end of learning, it should be able
to correctly classify the parity of all digits, even if a digit has been
learned in an early task. (b) Accuracy of the first task when learning
new tasks. Consolidation leads to improved memory preservation.
(c) Average accuracies of all learned tasks. The presynaptic consol-
idation model is compared to a model without consolidation and
two state-of-the-art machine learning algorithms. Differences to these
models are significant in independent t-tests with either p < 0.05
(marked with *) or with p < 0.01 (marked with **). Dashed line
indicates an upper bound for the network’s performance, obtained
by training on all tasks simultaneously. Panels (b) and (c) show accu-
mulated data for three repetitions of the experiment. Shaded regions
in (b) and error bars in (c) show standard error.

attributed to the sparsity induced by the presynaptic plasticity which de-
creases overlap between different tasks.

The above experiments rely on a gradient-based learning rule for mul-
tilayer perceptrons. To test whether presynaptic consolidation can also
alleviate stability-plasticity trade-offs in other settings, we study its effects
on learning in a standard perceptron [107]. We train the perceptron sequen-
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Figure 4.5: Model Ablation and Lifelong Learning in a Standard Perceptron.
(a) Ablation of the Presynaptic Consolidation model on two different
lifelong learning tasks, see full text for detailed description. Both
presynaptic plasticity and synaptic stabilisation significantly improve
memory. (b)+(c) Lifelong Learning in a Standard Perceptron akin to
Figure 4.4b, 4.4c, showing the accuracy of the first task when learning
consecutive tasks in (b) as well as the average over all five tasks after
learning all tasks in (c). Error bars and shaded regions show standard
error of three respectively ten repetitions, in (a) respectively (b+c).
All pair-wise comparisons are significant, independent t-tests with
p < 0.01 (denoted by **) or with p < 0.05 (denoted by *).

tially on five pattern memorisation tasks, see Materials and Methods for full
details. We find that the presynaptically consolidated perceptron maintains
a more stable memory of the first task, see Figure 4.5b. In addition, this
leads to an overall improved stability-plasticity trade-off, see Figure 4.5c
and shows that the effects of presynaptic consolidation in our model extend
beyond gradient-based learning.

4.5 discussion

4.5.1 Main Contribution

Information transmission in synapses is stochastic. While previous work has
suggested that stochasticity allows to maximise the amount of information
transmitted per unit of energy spent, this analysis has been restricted to
single synapses. We argue that the relevant quantity to be considered is
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task-dependent information transmitted by entire networks. Introducing
a simple model of the all-or-nothing nature of synaptic transmission, we
show that presynaptic stochasticity enables networks to allocate energy
more efficiently. We find theoretically as well as empirically that learned
release probabilities encode the importance of weights for network function
according to the Fisher Information. Based on this finding, we suggest a
novel computational role for presynaptic stochasticity in lifelong learning.
Our experiments provide evidence that coupling information encoded in
the release probabilities with modulated plasticity can help alleviate the
stability-plasticity dilemma.

4.5.2 Modelling Assumptions and Biological Plausibility

4.5.2.1 Stochastic Synaptic Transmission

Our model captures the occurrence of synaptic failures by introducing a
Bernoulli random variable governing whether or not neurotransmitter is re-
leased. Compared to classical models assuming deterministic transmission,
this is one step closer to experimentally observed binomial transmission pat-
terns, which are caused by multiple, rather than one, release sites between
a given neuron and dendritic branch. Importantly, our simplified model
accounts for the event that there is no postsynaptic depolarisation at all.
Even in the presence of multiple release sites, this event has non negligible
probability: Data from cultured hippocampal neurons [111, Figure 2D] and
the neocortex [99, Figure 7C] shows that the probability (1− p)N that none
of N release sites with release probability p is active, is around 0.3-0.4 even
for N as large as 10. More recent evidence suggests an even wider range of
values depending on the extracellular calcium concentration [100].

4.5.2.2 Presynaptic Long-Term Plasticity

A central property of our model builds on the observation that the locus of
expression for long-term plasticity can both be presynaptic and postsynap-
tic [112–117]. The mechanisms to change either are distinct and synapse-
specific [118, 119], but how exactly pre- and postsynaptic forms of LTP and
LTD interact is not yet fully understood [120]. The induction of long-term
plasticity is thought to be triggered postsynaptically for both presynaptic
and postsynaptic changes [118, 121] and several forms of presynaptic plas-
ticity are known to require retrograde signalling [120], for example through
nitric oxide or endocannabinoids [117, 122, 123]. This interaction between
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pre- and postsynaptic sites is reflected by our learning rule, in which both
pre- and postsynaptic changes are governed by postsynaptic updates and
require communication between pre- and postsynapse. The proposed presy-
naptic updates rely on both presynaptic LTP and presynaptic LTD. At least
one form of presynaptic long-term plasticity is known to be bidirectional
switching from potentiation to depression depending on endocannabinoid
transients [124, 125].

4.5.2.3 Link between Presynaptic Release and Synaptic Stability

Our model suggests that increasing the stability of synapses with large
release probability improves memory. Qualitatively, this is in line with ob-
servations that presynaptic boutons, which contain stationary mitochondria
[126, 127], are more stable than those which do not, both on short [128] and
long timescales of at least weeks [129]. Quantitatively, we find evidence for
such a link by re-analysing data3 from Sjöström, Turrigiano & Nelson [130]
for a spike-timing-dependent plasticity protocol in the rat primary visual
cortex: Figure 4.9 of the supplementary material shows that synapses with
higher initial release probability are more stable than those with low release
probabilities for both LTP and LTD.

4.5.2.4 Credit Assignment

In our multilayer perceptron model, updates are computed using back-
propagated gradients. Whether credit assignment in the brain relies on
backpropagation – or more generally gradients – remains an active area
of research, but several alternatives aiming to increase biological plausibil-
ity exist and are compatible with our model [131–133]. To check that the
proposed mechanism can also operate without gradient information, we
include an experiment with a standard perceptron and its gradient-free
learning rule [107], see Figure 4.5b and 4.5c.

4.5.2.5 Correspondence to Biological Networks

We study general rate-based neural networks raising the question in which
biological networks or contexts one might expect the proposed mechanisms
to be at work. Our experiments suggest that improved energy efficiency
can at least partly be attributed to the sparsification induced by presynaptic

3 Data was made publicly available in Costa et al. [117].
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stochasticity [cf. 134]. Networks which are known to rely on sparse repre-
sentations are thus natural candidates for the dynamics investigated here.
This includes a wide range of sensory networks [135–138] as well as areas
in the hippocampus [139, 140].

In the context of lifelong learning, our learning rule provides a potential
mechanism that helps to slowly incorporate new knowledge into a network
with preexisting memories. Generally, the introduced consolidation mecha-
nism could benefit the slow part of a complementary learning system as
proposed by [141, 142]. Sensory networks in particular might utilize such a
mechanism as they require to learn new stimuli while retaining the ability
to recognise previous ones [143–145]. Indeed, in line with the hypothesis
that synapses with larger release probability are more stable, it has been
observed that larger spines in the mouse barrel cortex are more stable.
Moreover, novel experiences lead to the formation of new, stable spines,
similar to our findings reported in Figure 4.8b.

4.5.3 Related Synapse Models

4.5.3.1 Probabilistic Synapse Models

The goal of incorporating and interpreting noise in models of neural com-
putation is shared by many computational studies. Inspired by a Bayesian
perspective, neural variability is often interpreted as representing uncer-
tainty [146–149], or as a means to prevent overfitting [150]. The Bayesian
paradigm has been applied directly to variability of individual synapses in
neuroscience [151–153] and machine learning [110]. It prescribes decreasing
the plasticity of synapses with low posterior variance. A similiar relation-
ship can be shown to hold for our model as described in the Material and
Methods. In contrast to common Bayesian interpretations [110, 148, 152]
which model release statistics as Gaussians and optimize complex objectives
[see also 90] our simple proposal represents the inherently discrete nature
of synaptic transmission more faithfully.

4.5.3.2 Complex Synapse Models

In the context of lifelong learning, our model’s consolidation mechanism
is similar to EWC [11], which explicitly relies on the Fisher Information to
consolidate synapses. Unlike EWC, our learning rule does not require a task
switch signal and does not need a separate consolidation phase. Moreover,
our model can be interpreted as using distinct states of plasticity to protect
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memories. This general idea is formalised and analysed thoroughly by
theoretical work on cascade models of plasticity [154–156]. The resulting
model [156] has also been shown to be effective in lifelong learning settings
[157].

4.5.4 Synaptic Importance May Govern Energy-Information Trade-offs

Energy constraints are widely believed to be a main driver of evolution
[87]. From brain size [158, 159], to wiring cost [160], down to ion channel
properties [161, 162], presynaptic transmitter release [94] and postsynaptic
conductance [95, 96], various components of the nervous system have been
shown to be optimal in terms of their total metabolic cost or their metabolic
cost per bit of information transmitted.

Crucially, there is evidence that the central nervous system operates
in varying regimes, making different trade-offs between synaptic energy
demand and information transmission: Perge et al. [163], Carter & Bean
[164], and Hu & Jonas [165] all find properties of the axon (thickness,
sodium channel properties), which are suboptimal in terms of energy per
bit of information. They suggest that these inefficiencies occur to ensure
fast transmission of highly relevant information.

We propose that a similar energy/information trade-off could govern
network dynamics preferentially allocating more energy to the most relevant
synapses for a given task. Our model relies on a simple, theoretically
justified learning rule to achieve this goal and leads to overall energy
savings. Neither the trade-off nor the overall savings can be accounted for
by previous frameworks for energy-efficient information transmission at
synapses [89, 92].

This view of release probabilities and related metabolic cost provides
a way to make the informal notion of “synaptic importance” concrete by
measuring how much energy is spent on a synapse. Interestingly, our model
suggests that this notion is helpful beyond purely energetic considerations
and can in fact help to maintain memories during lifelong learning.

4.6 materials and methods

4.6.1 Summary of Learning Rule

Our learning rule has two components, an update for the presynaptic
release probability pi and an update for the postsynaptic strength mi. The
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update of the synaptic strength mi is defined implicitly through updating
the expected synaptic strength w̄

w̄(t+1)
i = w̄(t)

i − ηgi, where gi =
∂L(w̄(t), p(t))

∂w̄(t)
i

(4.6)

and the presynaptic update is given by

p(t+1)
i =





p(t)i + pup, if |gi| > glim,

p(t)i − pdown, if |gi| ≤ glim.
(4.7)

This leads to the following explicit update rule for the synaptic strength
mi =

w̄i
pi

m(t+1)
i =

1

p(t+1)
i

(
p(t)i m(t)

i − ηgi

)
(4.8)

=
p(t)i

p(t+1)
i

m(t)
i −

η

p(t+1)
i p(t)i

∂L(m(t), p(t))

∂m(t)
i

(4.9)

where we used the chain rule to rewrite gi =
∂L
∂w̄i

= ∂L
∂mi
· ∂mi

∂w̄i
= ∂L

∂mi
· 1

pi
.

For the lifelong learning experiment, we additionally stabilise high release
probability synapses by multiplying the learning rate by (1− pi) for each
synapse and by freezing release probabilities (but not strengths) when they
surpass a predefined threshold pfreeze.

4.6.2 Theoretical Analysis of Presynaptic Learning Rule

As indicated in the results section the release probability pi is more likely to
be large when the Fisher Information of the synaptic strength wi is large as
well. This provides a theoretical explanation to the intuitive correspondence
between release probability and synaptic importance. Here, we formalise
this link starting with a brief review of the Fisher Information.

4.6.2.1 Link between Release Probabilities and Fisher Information

We now explain how our learning rule for the release probability is related
to the Fisher Information. For simplicity of exposition, we focus our analysis
on a particular sampled subnetwork with deterministic synaptic strengths.
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Recall that update rule (4.4) for release probabilities increases the release
probability, if the gradient magnitude |gi| is above a certain threshold, gi >
|glim|, and decreases them otherwise. Let us denote by p+i the probability
that the i-th release probability is increased. Then

p+i := Pr[|gi| > glim] = Pr[g2
i > g2

lim], (4.10)

where the probability space corresponds to sampling training examples.
Note that E[g2

i ] = EFi by definition of the Empirical Fisher Information EFi.
So if we assume that Pr[g2

i > g2
lim] depends monotonically on E[g2

i ] , then
we already see that p+i depends monotonically on Fi. This in turn implies
that synapses with a larger Fisher Information are more likely to have a
large release probability, which is what we claimed. We now discuss the
assumption made above.

assumption : Pr [g2
i > g2

lim ] depends monotonically on E [g2
i ] .

While this assumption is not true for arbitrary distributions of g, it holds
for many commonly studied parametric families and seems likely to hold
(approximately) for realistic, non-adversarially chosen distributions. For
example, if each gi follows a normal distribution gi ∼ N (µi, σ2

i ) with
varying σi and σi ≫ µi, then

Fi = E[g2
i ] ≈ σ2

i

and

p+i = Pr[g2
i > g2

lim] ≈ erfc
(

glim

σi
√

2

)

so that p+i is indeed monotonically increasing in Fi. Similar arguments
can be made for example for a Laplace distribution, with scale larger than
mean.

link between learning rate modulation and bayesian updat-
ing Recall that we multiply the learning rate of each synapse by (1− pi),
see equation (4.5). This learning rate modulation can be related to the up-
date prescribed by Bayesian modelling. As shown before, synapses with
large Fisher Information tend to have large release probability, which results
in a decrease of the plasticity of synapses with large Fisher Information.
We can treat the (diagonal) Fisher Information as an approximation of
the posterior precision based on a Laplace approximation of the posterior
likelihood [11] which exploits that the Fisher Information approaches the
Hessian of the loss as the task gets learned [166]. Using this relationship,
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our learning rate modulation tends to lower the learning rate of synapses
with low posterior variance as prescribed by Bayesian modelling.

practical approximation The derivation above assumes that each
gradient g is computed using a single input, so that E[g2] equals the Fisher
Information. While this may be the biologically more plausible setting,
in standard ANN training the gradient is averaged across several inputs
(mini-batches). Despite this modification, g2 remains a good, and commonly
used, approximation of the Fisher, see e.g. Supplementary 3.7.3.

4.6.3 Perceptron for Lifelong Learning

To demonstrate that our findings on presynaptic stochasticity and plasticity
are applicable to other models and learning rules, we include experiments
for the standard perceptron [107] in a lifelong learning setting.

4.6.3.1 Model

The perceptron is a classical model for a neuron with multiple inputs and
threshold activation function. It is used to memorise the binary labels of
a number of input patterns where input patterns are sampled uniformly
from {−1, 1}N and their labels are sampled uniformly from {−1, 1}. Like
in ANNs, the output neuron of a perceptron computes a weighted sum of
its inputs followed by nonlinear activation σ(·):

apost = σ

(
n

∑
i=1

wia
pre
i

)
. (4.11)

The only difference to the ANN model is that the nonlinearity is the sign
function and that there is only one layer. We model each synapse wi as a
Bernoulli variable ri with synaptic strength mi and release probability pi
just as before, see equation (4.1). The expected strengths w̄i are learned
according to the standard perceptron learning rule [107]. The only modifi-
cation we make is averaging weight updates across 5 inputs, rather than
applying an update after each input. Without this modification, the update
size gi for each weight wi would be constant according to the perceptron
learning rule. Consequently, our update rule for pi would not be applicable.
However, after averaging across 5 patterns we can apply the same update
rule for pi as previously, see equation (4.4), and also use the same learning
rate modification, see equation (4.5). We clarify that gi now refers to the
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update of expected strength w̄i. In the case of ANNs this is proportional to
the gradient, while in the case of the non-differentiable perceptron it has
no additional interpretation.

4.6.3.2 Experiments

For the lifelong learning experiments, we used 5 tasks, each consisting
of 100 randomly sampled and labelled patterns of size N = 1000. We
compared the perceptron with learned stochastic weights to a standard
perceptron. For the standard perceptron, we also averaged updates across 5
patterns. Both models were sequentially trained on 5 tasks, using 25 passes
through the data for each task.

We note that for more patterns, when the perceptron gets closer to its
maximum capacity of 2N, the average accuracies of the stochastic and
standard perceptron become more similar, suggesting that the benefits of
stochastic synapses occur when model capacity is not fully used.

As metaplasticity parameters we used glim = 0.1, pup = pdown = 0.2
and pmin = 0.25, pfreeze = 0.9. These were coarsely tuned on an analogous
experiment with only two tasks instead of five.

4.6.4 Experimental Setup

4.6.4.1 Code Availability

Code for all experiments is publicly available at
github.com/smonsays/presynaptic-stochasticity.

4.6.4.2 Metaplasticity Parameters

Our method has a number of metaplasticity parameters, namely pup, pdown,
glim and the learning rate η. For the lifelong learning experiments, there is
an additional parameter pfreeze.
For the energy experiments we fix pup = pdown = 0.07, glim = 0.001 and
choose η = 0.05 based on coarse, manual tuning. For the lifelong learn-
ing experiments we choose η0 ∈ {0.01, 0.001} and optimise the remaining
metaplasticity parameters through a random search on one task, namely Per-
muted MNIST, resulting in pup = 0.0516, pdown = 0.0520 and glim = 0.001.
We use the same fixed parametrisation for all other tasks, namely Permuted
Fashion MNIST, Split MNIST and Split Fashion MNIST (see below for
detailed task descriptions).
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For the ablation experiment in Figure 4.5a, metaplasticity parameters were
re-optimised for each ablation in a random search to ensure a fair, mean-
ingful comparison.

4.6.4.3 Model Robustness

We confirmed that the model is robust with respect to the exact choice of
parameters. For the energy experiments, de- or increasing pup, pdown by
25% does not qualitatively change results.
For the lifelong learning experiment, the chosen tuning method is a strong
indicator of robustness: The metaplasticitiy parameters are tuned on one
setup (Permuted MNIST) and then transferred to others (Split MNIST,
Permuted & Split Fashion MNIST). The results presented in Table 4.1 show
that the parameters found in one scenario are robust and carry over to
several other settings. We emphasise that the differences between these
scenarios are considerable. For example, for permuted MNIST consecutive
input distributions are essentially uncorrelated by design, while for Split
(Fashion) MNIST input distributions are strongly correlated. In addition,
from MNIST to Fashion MNIST the number of "informative" pixels changes
drastically.

4.6.4.4 Lifelong Learning Tasks

For the lifelong learning experiments we tested our method as well as
baselines in several scenarios on top of the Split MNIST protocol described
in the main text.

permuted mnist In the Permuted MNIST benchmark, each task con-
sists of a random but fixed permutation of the input pixels of all MNIST
images [10]. We generate 10 tasks using this procedure and present them
sequentially without any indication of task boundaries during training. A
main reason to consider the Permuted MNIST protocol is that it generates
tasks of equal difficulty.

permuted & split fashion mnist Both the Split and Permuted
protocol can be applied to other datasets. We use them on the Fashion
MNIST dataset [167] consisting of 60, 000 greyscale images of 10 different
fashion items with 28× 28 pixels.
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continuous permuted mnist We carry out an additional experi-
ment on the continuous Permuted MNIST dataset [110]. This is a modified
version of the Permuted MNIST dataset which introduces a smooth transi-
tion period between individual tasks where data from both distributions
is mixed. It removes the abrupt change between tasks and allows us to
investigate if our method depends on such an implicit task switch signal.
We observe a mean accuracy over all tasks of 0.8539± 0.006 comparable
to the non-continuous case suggesting that our method does not require
abrupt changes from one task to another.

4.6.4.5 Neural Network Training

Our neural network architecture consists of two fully connected hidden
layers of 200 neurons without biases with rectified linear unit activation
functions σ(x). The final layer uses a softmax and cross-entropy loss. Net-
work weights were initialised according to the PyTorch default for fully
connected layers, which is similar to Kaiming uniform initialisation [168,
169] but divides weights by an additional factor of

√
6. We use standard

stochastic gradient descent to update the average weight w̄i only altered
by the learning rate modulation described for the lifelong learning experi-
ments. We use a batch size of 100 and train each task for 10 epochs in the
lifelong learning setting. In the energy-information experiments we train
the model for 50 epochs.
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4.7 supplementary figures and tables

Split MNIST Split Fashion Perm. MNIST Perm. Fashion

Pre. Cons. 82.90±0.01 91.98±0.12 86.14±0.67 75.92±0.37

No Cons. 77.68±0.31 88.76±0.45 79.60±0.43 72.13±0.75

BGD 80.44±0.45 89.54±0.88 89.73±0.52 78.45±0.15

EWC 70.41±4.20 76.89±1.05 89.58±0.53 77.44±0.41

Joint 98.55±0.10 97.67±0.09 97.33±0.08 87.33±0.07

Table 4.1: Lifelong Learning Comparison on Additional Datasets. Average test
accuracies (%, higher is better, average over all sequentially presented
tasks) and standard errors for three repetitions of each experiment on
four different lifelong learning tasks for the Presynaptic Consolidation
mechanism, BGD [110] and EWC [11]. For the control “Joint Training”
the network is trained on all tasks simultaneously serving as an upper
bound of practically achievable performance.
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Figure 4.6: Additional Results on Energy Efficiency of Model with Stochastic
and Plastic Release. (a) Mutual information per energy analogous to
Figure 4.1b, but showing results for different regularisation strengths
rather than the best result for each model. As described in the main
part, energy is measured via its synaptic contribution. (b) Same
experiment as in (a) but energy is measured as the metabolic cost
incurred by the activity of neurons by calculating their average rate of
activity. (c) Maximum mutual information per energy for a multilayer
perceptron with fixed release probability and constant regularisation
strength of 0.01. This is the same model as "Stochastic Release (Fixed)"
in (a), but for a range of different values for the release probability.
This is in line with the single synapse analysis in Harris, Jolivet &
Attwell [89]. For each model, we searched over different learning rates
and report the best result. (d) Analogous to Figure 4.2a, but release
probabilities were initialised independently, uniformly at random
in the interval [0.25, 1] rather than with a fixed value of 0.25. Error
bars in (a) and (b) denote the standard error for three repetitions
of the experiment. (c) shows the best performing model for each
release probability after a grid search over the learning rate. (d)
shows aggregated data over three repetitions of the experiment.
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Figure 4.7: Additional Results on Neuron-Level Sparsity of Network after
Learning. (a) Number of important synapses per neuron for all layers
after learning on MNIST. The i-th row shows data from the i-th weight
matrix of the network and we compare true connectivity to random
connectivity. Two-sample Kolmogorov-Smirnov tests comparing the
distribution of important synapses in the shuffled and unaltered
condition are significant for all layers (p < 0.01) except for the output
neurons in the last layer (lower-left panel) (p = 0.41). This is to be
expected as all 10 output neurons in the last layer should be equally
active and thus receive similar numbers of active inputs. (b) Scatter
plot showing the number of important input and output synapses per
neuron for both hidden layers after learning on MNIST. First hidden
layer (left) has a Pearson correlation coefficient of r = 0.9390. Second
hidden layer (right) has a Pearson correlation coefficient of r = 0.7999.
Data is from one run of the experiment.



4.7 supplementary figures and tables 71

1 2 3 4 5 All Tasks

Task

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
Ac
cu
ra
cy

Presynaptic Consolidation
Bayesian Gradient Descent

No Consolidation
Elastic Weight Consolidation

(a)

1 2 3 4 5 6 7 8 9 10

Task

0.0

0.2

0.4

0.6

0.8

1.0

Mean Release Probability
Ratio of Frozen Release Probabilities

(b)

Figure 4.8: Additional Results on Lifelong Learning in a Model with Presynap-
tically Driven Consolidation. (a) Detailed lifelong-learning results
of various methods on Split MNIST, same underlying experiment as
in Figure 4.4c. We report the test accuracy on each task of the final
model (after learning all tasks). Error bars denote the standard error
for three repetitions of the experiment. (b) Mean release probability
and percentage of frozen weights over the course of learning ten
permuted MNIST tasks. Error bars in (a) and shaded regions in (b)
show standard error over three repetitions of the experiment.
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Figure 4.9: Biological Evidence for Stability of Synapses with High Release
Probability.
To test whether synapses with high release probability are more
stable than synapses with low release probability as prescribed
by our model, we re-analysed data of [130] from a set of spike-
timing-dependent plasticity protocols. The protocols induce both LTP
and LTD depending on their precise timing. The figure shows that
synapses with higher release probabilities undergo smaller relative
changes in expected strength (Pearson Corr. r = −0.4416, p < 0.01) .
This suggests that synapses with high release probability are more
stable than synapses with low release probability, matching our learn-
ing rule.
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G R A D I E N T D E S C E N T O N N E U R O N S A N D I T S L I N K T O
A P P R O X I M AT E S E C O N D - O R D E R O P T I M I Z AT I O N

This chapter is taken and partially adapted from Benzing [44], which will have been
appeared at ICML 2022.

5.1 introduction

As we’ve described in Chapters 1 and 2 a natural tool to get a better
understanding of the local properties of loss landscapes is the second-order
Taylor approximation and one way to deal with the prohibitive memory
cost of computing the Fisher (or Hessian) is to approximate it.

A family of approximations that has been particularly successful are
Kronecker-factored, block diagonal approximations of the curvature, as
introduced in Chapter 2. They were originally proposed in the context of op-
timization as KFAC [41] and concurrently as Natural Neural Networks [42].
Below, for simplicity, we will mostly refer to and compare to the former
variant, KFAC, and our findings apply similarly Natural Neural Networks.
In fact, Section 5.4 can almost be seen as re-deriving the update of Natural
Neural Networks from a different perspective.

Within the optimization community Kronecker-factored optimizers have
lead to many further developments [170–177], and they have also proven
influential in various other contexts like Bayesian inference, meta learning
and continual learning [178–183].

In this chapter, we describe a surprising discovery: Despite its motivation,
the KFAC optimizer does not rely on second-order information; in particular
it significantly outperforms exact second-order optimizers. We establish
these claims through a series of careful ablations and control experiments
and build on prior work, which shows that exact second-order updates
can be computed efficiently and exactly, if the dataset is small or when the
curvature matrix is subsampled [40, 53].

Our finding that KFAC does not rely on second-order information im-
mediately raises the question why it is nevertheless so effective. To answer
this question, we present evidence that KFAC approximates a different,
first-order optimizer, which performs gradient descent in neuron- rather

73
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than weight space. We also show that this optimizer itself often improves
upon KFAC, both in terms of computational cost as well as progress per
parameter update.

5.2 notation and terminology

In this chapter, we typically focus on one layer of a neural network. For
simplicity of notation, we consider fully-connected layers, but results can
easily be extended to architectures with parameter sharing, like CNNs or
RNNs.

We denote the layer’s weight matrix by W ∈ Rn×m and its input-
activations (after the previous’ layer nonlinearity) by A ∈ Rm×D, where
D is the number of datapoints. The layer’s output activations (before the
nonlinearity) are equal to B = WA ∈ Rn×D and we denote the partial
derivates of the loss L with respect to these outputs (usually computed
by backpropagation) by E = ∂L

∂B . If the label is sampled from the model’s
output distribution, as is the case for the Fisher (2.5), we will use EF rather
than E.

We use the term “datapoint” for a pair of input and label (X, y). In the
context of the Fisher information, the label will always be sampled from the
model’s output distribution. Note that with this definition, the total number
of datapoints is the product of the number of inputs and the number of
labels.

Following Martens & Grosse [41], the Fisher will usually be approximated
by sampling one label for each input. For some controls, we will distinguish
whether one label is sampled or whether the full Fisher is computed, and
we will refer to the former as MC Fisher and the latter as Full Fisher.

As is common in the ML context, we will use the term “second-order
method” for algorithms that use (approximate) second derivatives. The
term “first-order method” will refer to algorithms which only use first
derivatives or quantities that are independent of the loss, i.e. “zero-th”
order terms.

5.3 exact natural gradients and kfac

In this section, we will show that KFAC is not strongly related to second-
order information. We start with a brief review of KFAC and then proceed
with experiments.
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5.3.1 Review of KFAC

KFAC makes two approximations to the Fisher as also detailed in Chapter
2. Firstly, it only considers diagonal blocks of the Fisher, where each block
corresponds to one layer of the network. Secondly, each block is approxi-
mated as a Kronecker product (AAT)⊗ (EFET

F ). This approximation of the
Fisher leads to the following approximate natural gradient update.

(∆W)T =
(

AAT + λAI
)−1 (

AET
) (

EFET
F + λEI

)−1
(5.1)

where λA, λE are damping terms satisfying λA · λE = λ for a hyperparame-

ter λ and λA
λE

= n·Tr(AAT)

m·Tr(EFET
F )

.

Heurisitc Damping
We emphasise that the damping performed here is heuristic: Every Kro-
necker factor is damped individually. This deviates from the theoretically
“correct” form of damping, which consists of adding a multiple of the iden-
tity to the approximate curvature. To make this concrete, the two strategies
use the following damped curvature matrices

standard:
(

AAT ⊗ EFET
F

)
+ λI (5.2)

heuristic:
(

AAT + λAI
)
⊗
(

EFET
F + λEI

)
(5.3)

Heuristic damping adds undesired cross-terms λEAAT ⊗ I and λAI⊗ EFET
F

to the curvature, and we point out that these cross terms are typically much
larger than the desired damping λI. While the difference in damping may
nevertheless seem innocuous, Martens & Grosse [41], Ba, Grosse & Martens
[171], and George et al. [173] all explicitly state that heuristic damping
performs better than standard damping. From a theoretical perspective, this
is a rather mysterious observation.

In practice, the Kronecker factors AAT and EFET
F are updated as expo-

nential moving averages, so that they incorporate data from several recent
mini-batches.

Subsampled Natural Gradients vs KFAC
There are two high level differences between KFAC and subsampled natural
gradients. (1) KFAC can use more data to estimate the Fisher, due to its
exponential moving averages. (2) For a given mini-batch, natural gradients
are exact, while KFAC makes additional approximations.
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A priori, it seems that (1) is a disadvantage for subsampled natural
gradients, while (2) is an advantage. However, we will see that this is not
the case.
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Figure 5.1: Paradoxically, KFAC – an approximate second-order method – out-
performs exact second-order udpates in standard as well as impor-
tant control settings. (A) Comparison between Subsampled Natural
Gradients and KFAC. KFAC performs significantly better. Theoreti-
cally, its only advantage over the subsampled method is using more
data to estimate the curvature. All methods use a batchsize of 100 and
are trained for 10 epochs, with hyperparameters tuned individually
for each method (here and in all other experiments). (B) Comparison
between Subsampled Natural Gradients and Subsampled KFAC. Both
algorithms use exactly the same amount of data to estimate the curva-
ture. From a theoretical viewpoint, KFAC should be a strictly worse
approximation of second-order updates than the exact subsampled
method; nevertheless, it performs significantly better. (C) Additional
control in which the subsampled Fisher is approximated on larger
mini-batches. (D) Full control setting, in which the training set is
restricted to 1000 images and gradients and curvature are computed
on the entire batch (in addition, for a clean comparison KFAC does
not use an exponential average to estimate the curvature). The dashed
green line corresponds to exact natural gradients without any approx-
imations. Consistent with prior literature, full second-order updates
do outperform standard first-order updates (dashed green vs. black
line). More importantly, and very surprisingly, KFAC significantly
outperforms exact second-order updates. This is very strong evidence
that KFAC is not closely related to Natural Gradients.
(A-D) We repeat several key experiments with other datasets and
architectures and results are consistent with the ones seen here, see
main text and Supplementary Material. (A-D) Solid lines show mean
across three seeds; shaded regions (here and in remaining main chap-
ter figures) show mean±std, but for most experiments are visually
hard to distinguish from the mean.
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5.3.2 Experiments

The first set of experiments is carried out on a fully connected network on
Fashion MNIST [184] and followed by results on a Wide ResNet [28] on
CIFAR10 [185]. We run several additional experiments, which are presented
fully in the Supplementary Material, and will be refered to in the main
text. These include repeating the first set of experiments on MNIST; results
on CIFAR100; a VGG network [186] trained on SVHN [187] and more
traditional autoencoder experiments [188].

We emphasise that, while our results are surprising, they are certainly not
caused by insufficient hyperparameter tuning or incorrect computations of
second-order updates. In particular, we perform independent grid searches
for each method and ablation and make sure that the grids are sufficiently
wide and fine. Details are given in Appendix A and D of Benzing [44]
and part of the software validation in Appendix B of Benzing [44]. Code
to validate and run the software is provided on github. Moreover, as will
be pointed out throughout the text, our results are consistent with many
experiments from prior work.
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Figure 5.2: Advantage of KFAC over exact, subsampled Natural Gradients is
not due to block-diagonal structure. (A) A one layer network (i.e.
we perform logistic regression) is trained on 1000 images and full
batch gradients are used. In particular, KFAC and the subsampled
method use the same amount of data to estimate the curvature. In
a one layer network the block-diagonal Fisher coincides with the
full Fisher, but KFAC still clearly outperforms natural gradients.
(B) Comparison between KFAC and layerwise (i.e. block-diagonal)
subsampled Natural Gradients on full dataset with a three layer
network. (C) Same as (B), but training set is restricted to a subset
of 1000 images and full-batch gradient descent is performed. (A-
C)Experiments on Fashion MNIST, results on MNIST are analogous,
see Supplementary Material.

To obtain easily interpretable results without unnecessary confounders,
we choose a constant step size for all methods, and a constant damping term.
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This matches the setup of prior work [42, 173, 177, 189]. We re-emphasise
that these hyperparameters are optimized carefully and indepently for each
method and experiment individually.

Following the default choice in the KFAC literature [41], we usually use a
Monte Carlo estimate of the Fisher, based on sampling one label per input.
We will also carry out controls with the Full Fisher.

Performance
We first investigate the performance of KFAC and subsampled natural
gradients, see Figure 5.1A. Surprisingly, natural gradients significantly
underperform KFAC, which reaches an approximately 10-20x lower loss on
both Fashion MNIST and MNIST. This is a concerning finding, requiring
further investigation: After all, the exact natural gradient method should in
theory perform at least as good as any approximation of it. Theoretically,
the only potential advantage of KFAC over subsampled natural gradients is
that it uses more information to estimate the curvature.

Controlling for Amount of Data used for the Curvature
The above directly leads to the hypothesis that KFAC’s advantage over sub-
sampled natural gradients is due to using more data for its approximation
of the Fisher. To test this hypothesis, we perform three experiments. (1) We
explicitly restrict KFAC to use the same amount of data to estimate the
curvature as the subsampled method. (2) We allow the subsampled method
to use larger mini-batches to estimate the Fisher. (3) We restrict the training
set to 1000 (randomly chosen) images and perform full batch gradient
descent, again with both KFAC and subsampled natural gradients using
the same amount of data to estimate the Fisher. Here, we also include the
Full Fisher information as computed on the 1000 training samples, rather
than simply sampling one label per datapoint (MC Fisher). In particular,
we evaluate exact natural gradients (without any approximations: The gra-
dient is exact, the Fisher is exact and the inversion is exact). The results
are shown in Figure 5.1 and all lead to the same conclusion: The fact that
KFAC uses more data than subsampled natural gradients does not explain
its better performance. In particular, subsampled KFAC outperforms ex-
act natural gradients, also when the latter can be computed without any
approximations.

This first finding is very surprising. Nevertheless, we point out that it is
consistent with experimental results from prior work as well as commonly
held beliefs. Firstly, it is widely believed that subsampling natural gradients
leads to poor performance. This belief is partially evidenced by claims
from Martens et al. [39] and often mentioned in informal discussions and
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reviews. It matches our findings and in particular Figure 5.1D, which shows
that benefits of Natural Gradients over SGD only become notable when
computing the Fisher fully.1 Secondly, we have shown that KFAC performs
well even when it is subsampled in the same way as we subsampled natural
gradients. While this does seem to contradict the belief that natural gradient
methods should not be subsampled, it is confirmed by experiments from
Botev, Ritter & Barber [172] and Bernacchia, Lengyel & Hennequin [176]: See
Figure 2 "per iteration curvature" in Botev, Ritter & Barber [172] and note
that in Bernacchia, Lengyel & Hennequin [176] the curvature is evaluated
on individual minibatches.

Additional Experiments
We repeat the key experiments from Figure 5.1A,B in several additional
settings: On a MLP on MNIST, on a ResNet with and without batch norm
on CIFAR10 and for traditional autoencoder experiments. The findings are
in line with the ones above, and solidify concerns whether KFAC is related
to second-order information.

Controlling for Block-Diagonal Structure
This begs further investigation into why KFAC outperforms natural gradi-
ents. KFAC approximates the Fisher as block-diagonal. To test whether this
explains KFAC’s advantage, we conduct two experiments. First, we train
a one layer network on a subset of 1000 images with full-batch gradient
descent (i.e. we perform logistic regression). In this case, the block-diagonal
Fisher coincides with the Fisher. So, if the block-diagonal approximation
were responsible for KFAC’s performance, then for the logistic regression
case, natural gradients should perform as well as KFAC or better. However,
this is not the case as shown in Figure 5.2A. As an additional experiment,
we consider a three layer network and approximate the Fisher by its block-
diagonal (but without approximating blocks as Kronecker products). The
resulting computations and inversions can be carried out efficiently akin
to the subsampled natural gradient method. We run the block-diagonal
natural gradient algorithm in two settings: In a minibatch setting, identical
to the one shown in Figure 5.1 and in a full-batch setting, by restricting
to a subset of 1000 training images. The results in Figure 5.2B,C confirm
our previous findings: (1) KFAC significantly outperforms even exact block-
diagonal natural gradients (with full Fisher and full gradients). (2) It is not
the block-diagonal structure that explains KFAC’s performance.

1 It also evidences the correctness of our implementation of natural gradients.
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Figure 5.3: Heuristic Damping increases KFAC’s performance as well as its
similarity to first-order method FOOF. (A) Heuristic damping is
strictly needed for performance of KFAC; with standard damping,
KFAC performs similar to SGD. (B) Heuristic damping significantly
increases similarity of KFAC to FOOF. For the inner product space,
we use the “curvature” matrix of FOOF. (C+D) Performance of KFAC
and FOOF across different damping strengths using heuristic damp-
ing for KFAC. For a clean and fair comparison, this version of FOOF
uses λA from KFAC, see Appendix D.9 of Benzing [44] for full de-
tails. Notably, FOOF already works well for lower damping terms
than KFAC, suggesting that KFAC requires larger damping mainly
to guarantee similarity to FOOF and limit the effect of its second
Kronecker factor. (A-D) and our theoretical analysis suggest that
KFAC owes its performance to similarity to the first-order method
FOOF. Experiments are on Fashion-MNIST, results on MNIST are
analogous, see Supplementary Material. We also re-run experiment
(A) in several other settings and confirm that heuristic damping is
crucial for performance, see Appendix. This is in line with reports
from [41, 171, 173].

Heuristic Damping
KFAC also deviates from exact second-order updates through its heuristic
damping. To test whether this difference explains KFAC’s performance,
we implemented a version of KFAC with standard damping.2 Figure 5.3A
shows that KFAC owes essentially all of its performance to the damping
heuristic. This finding is confirmed by experiments on CIFAR10 with a
ResNet and on autoencoder experiments. We re-emphasise that KFAC
outperforms exact natural gradients, and therefore the damping heuristic
cannot be seen as giving a better approximation of second-order updates.
Rather, heuristic damping causes performance benefits through some other
effect.

2 This can be done with ideas from [173].
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Summary
We have seen that KFAC, despite its motivation as an approximate natural
gradient method, behaves very differently from true natural gradients. In
particular, and surprisingly, KFAC drastically outperforms natural gradients.
Through a set of careful controls, we established that KFAC’s advantage
relies on a seemingly innocuous damping heuristic, which is unrelated to
second-order information. We now turn to why this is the case.
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Figure 5.4: FOOF outperforms KFAC in terms of both per-update progress and
computation cost. (A) Wall-clock time comparison between FOOF,
KFAC and SGD. T denotes how frequently matrix inversions (see
eq (5.5)) are performed. Implemented with PyTorch and run on a
GPU. Increasing T above 100 does not notably improve runtime.
FOOF is approximately 1.5x faster than KFAC. (B) Training loss on
Fashion MNIST. FOOF is more data efficient and stable than KFAC.
(C) Comparison of KFAC and a version of KFAC which drops the
second Kronecker factor (equivalently, this corresponds to FOOF with
damping term λA from KFAC). We follow the trajectory of KFAC, and
at each point we compute the relative improvement of the loss on the
current mini-batch that is achieved by the update of KFAC and FOOF,
respectively. We use the learning rate and damping that is optimal
for KFAC, and scale the FOOF update to have the same norm as the
KFAC update at each layer. FOOF performs better, further suggesting
that similarity to FOOF is responsible for KFAC’s performance. (B+C)
See also Supplementary Material Fig 5.17 for an instance, where FOOF
makes more progress per update, but the overall KFAC trajectory
performs better.
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5.4 first-order descent on neurons

We will first describe the optimizer "Fast First-Order Optimizer" or "FOOF"3

and then explain KFAC’s link to it.
FOOF’s update rule is similar to some prior work [42, 43, 190] and

is also related to the idea of optimizing modules of a nested function
independently [191–194] . The view on optimization which underlies FOOF
is principled and new, and, among other differences, our insights and
experiments linking KFAC to FOOF are new. For a more detailed discussion
see Supplementary Material 5.7.2.5.

Recall our notation for one layer of a neural network from Section 5.2,
namely A, W for input activation and weight matrix as well as B = WA
and E = ∂L

∂B .
Typically, for first-order optimizers, we compute the weights’ gradients

for each datapoint and average the results. Changing perspective, we can
try to find an update of the weight matrix that explicitly changes the
layer’s outputs B into their gradient direction E = ∂L

∂B . In other words, we
want to find a weight update ∆W to the parameters W, so that the layer’s
output changes in the gradient direction, i.e. (W + ∆W)A = B + η ∂L

∂B or
equivalently (∆W)A = ηE for a learning rate η. Formally, we optimize

min
∆W∈Rn×m

∥(∆W)A− ηE∥2 +
λ

2
∥∆W∥2 (5.4)

where the second summand λ
2 ∥∆W∥2 is a proximity constraint limiting

the update size. (5.4) is a linear regression problem (for each row of ∆W)
solved by

(∆W)T = η
(

λI + AAT
)−1

AET (5.5)

Pseudocode for the resulting optimizer FOOF is presented in Supplemen-
tary Material 5.7.3.6. Figures 5.4,5.5 show the empirical results of FOOF,
which outperforms not only SGD and Adam, but often also KFAC. An
intuition for why "gradient descent on neurons" performs considerably
better than "gradient descent on weights" is that it trades off conflicting
gradients from different data points more effectively than the simple aver-
aging scheme of SGD. See Appendix F of Benzing [44] for an illustrative
toy example for this intuition.

3 F2O2 is a chemical also referred to as “FOOF”.
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The FOOF udpate can be seen as preconditioning by
(
(λI + AAT)⊗ I

)−1

and we emphasise that this matrix contains no dependence on the loss, or
first/second derivatives of it, so that it cannot be seen as a "second-order"
optimizer according to common ML terminology.

5.4.1 Stochastic Version of FOOF and Amortisation

The above formulation is implicitly based on full-batch gradients. To apply
it in a stochastic setting, we need to take some care to limit the bias of our
updates. In particular, for the updates to be completely unbiased one would
need to compute AAT for the entire dataset and invert the corresponding
matrix at each iteration. This is of course too costly and instead we keep
an exponentially moving average of mini-batch estimates of AAT , which
are computed during the standard forward pass. To amortise the cost of
inverting this matrix, we only perform the inversion every T iterations. This
leads to slightly stale values of the inverse, but in practice the algorithm is
remarkably robust and allows choosing large values of T as also shown in
Figure 5.4.

FOOF can be straightforwardly combined with momentum and (decou-
pled) weight decay.

5.4.2 KFAC as First-Order Descent on Neurons

Recall that the KFAC update is given by

(∆W)T =
(

AAT + λAI
)−1 (

AET
) (

EFET
F + λEI

)−1
.

Similarity of KFAC to FOOF and Damping
The update of KFAC differs from the FOOF update (eq (5.5)) only through
the second factor

(
EFET

F + λEI
)−1. We emphasise that this similarity is

induced mainly through the heuristic damping strategy. In particular, with
standard damping, or without damping, the second Kronecker factor of
KFAC could lead to updates that are essentially uncorrelated with FOOF.
However, as we use heuristic damping and increase the damping strength
λE, the second factor will be closer to (a multiple of) the identity and
KFAC’s update will become more and more aligned with FOOF.
Based on this derivation, we now test empirically whether heuristic damp-
ing indeed makes KFAC similar to FOOF and how it affects performance.
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Figure 5.5: FOOF outperforms KFAC in a Wide ResNet18 on CIFAR 10. (A)
Wall-clock time comparison between SGD and amortised versions of
FOOF, KFAC. In convolutional architectures, FOOF and KFAC can
be effectively amortised wihtout sacrificing performance. (B, C, D)
Training loss in different settings. (A-D) Results on CIFAR100 and
SVHN are analogous.

Figure 5.3B confirms our theoretical argument that heuristic damping drasti-
cally increases similarity of KFAC to FOOF and stronger heuristic damping
leads to even stronger similarity. This similarity is directly linked to perfor-
mance of KFAC as shown in Figure 5.3C. These findings, in particular the
necessity to use heuristic damping, already strongly suggest that similarity
to FOOF is required for KFAC to perform well. Moreover, as shown in
Figure 5.3D, FOOF requires lower damping than KFAC to perform well.
This further suggests that damping in KFAC is strictly required to limit
the effect of EFET

F on the update, thus increasing similarity to FOOF. All in
all, these results directly support the claim that KFAC, rather than being a
natural gradient method, owes its performance to approximating FOOF.

Performance
If the above view of KFAC is correct, and it owes its performance to
similarity to FOOF, then one would expect FOOF to perform better than or
similarly to KFAC. We carry out two different tests of this hypothesis. First,
we train a network using KFAC and at each iteration, we record the progress
KFAC makes on the given mini-batch, measured as the relative decrease in
loss. We compare this to the progress that KFAC would have made without
its second Kronecker factor. We use learning rate and damping that are
optimal for KFAC and, when dropping the second factor, we rescale the
update to have the same norm as the original KFAC update for each layer.
The results are shown in Figure 5.4C and show that without the second
factor, KFAC makes equal or more progress, which supports our hypothesis.
This observation is consistent across all different experimental setups we
investigated, see Supplementary Material.
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As a second test, we check whether FOOF outperforms KFAC, when both
algorithms follow their own trajectory. This is indeed the case as shown in
Figure 5.4B. The only case where the advantage described in Figure 5.4C
does not translate to an overall better performance is the autoencoder
setting, as analysed in the Supplementary Material, e.g. Figure 5.17, Sec
5.7.3.2. Results on a Wide ResNet18 demonstrate that our findings carry
over to more complex settings and that FOOF often outperforms KFAC, see
Figure 5.5.

Computational Cost
We also note that, on top of making more progress per parameter update,
FOOF requires strictly less computation than KFAC: It does not require an
additional backward pass to estimate the Fisher; it only requires keeping
track of, inverting as well as multiplying the gradients by one matrix rather
than two (only AAT and not EFET

F ). These savings lead to a 1.5x speed-up in
wall-clock time per-update for the amortised versions of KFAC and FOOF
as shown in Figure 5.4A.

Cost in Convolutional Architectures
The only overhead of KFAC and FOOF which cannot be amortised is per-
forming the matrix multiplications in eqs (5.5),(5.1). These are standard
matrix-matrix multiplications and are considerably cheaper than convolu-
tions, so that we found that KFAC and FOOF can be amortised to have
almost the same wall-clock time per update as SGD for this experiment
(∼10% increase for FOOF, ∼15% increase for KFAC) without sacrificing
performance, see Appendix D of Benzing [44] for full details. We note that
these results are significantly better than wall-clock times from Desjardins
et al. [42] and Ba, Grosse & Martens [171], which require approximately
twice as much time per update as SGD.4

Summary
We had already seen that KFAC does not rely on second-order information.
In addition, these results suggest that KFAC owes its strong performance to
its similarity to FOOF, a principled, well-performing first-order optimizer.

5.5 limitations

In our experiments, we report training losses and tune hyperparameters
with respect to them. While this is the correct way to test our hypotheses

4 Information reconstructed from Figure 3 in Ba, Grosse & Martens [171] and Figure 4 in
Desjardins et al. [42].
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and common for developing and testing optimizers [7], it will be important
to test how well the optimizers investigated here generalise. A meaningful
investigation of generalisation requires a different experimental setup (as
demonstrated in Zhang et al. [189]) and is left to future work. With this
in mind, we note that in our setting the advantage of FOOF and KFAC
in training loss typically translates to an advantage in validation accuracy
(and that FOOF and KFAC behave similarly).

We have restricted our investigation to the context of optimization and
more specifically KFAC. While we strongly believe that our findings carry
over to other Kronecker-factored optimizers [42, 172–175, 177], we have not
explicitly tested this.

While, in all our experiments, the newly proposed view that KFAC is
closely related to FOOF captures considerably more characteristics of KFAC
than the standard view of KFAC as a natural gradient method, we highlight
again that there are some limitations to this explanation and, in particular,
one setting where KFAC performs slightly better than FOOF, see Section
5.7.3.2.

5.6 discussion

The purpose of this discussion is twofold. On the one hand, we will show
that, while being surprising and contradicting common, strongly held
beliefs, much of our results are consistent with data from prior work. On
the other hand, we will summarise in how far our fundamentally new
explanation for KFAC’s effectiveness improves upon prior knowledge and
resolves several puzzling observations.

Natural Gradients vs KFAC
Our first key result is that KFAC outperforms exact natural gradients,
despite being motivated as an approximate natural gradient method. We
perform several controls and a particularly important set of experiments is
comparing exact, subsampled natural gradients to subsampled KFAC in
a range of settings. In these experiments, we find: (1) Subsampled natural
gradients often do not perform much better than SGD with momentum. (2)
Subsampled KFAC works very well. Finding (1) is consistent with rather
common beliefs that subsampling the curvature is harmful. These beliefs
are often uttered in informal discussions and are partially evidenced by
claims from Martens et al. [39]. Moreover, in some controls (e.g. Fig 5.1D),
we show that full (non-subsampled) natural gradients do outperform SGD
with momentum, consistent for example with Martens et al. [39]. Thus,
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finding (1) is in line with prior knowledge and results. Moreoever, finding
(2) matches experiments from Botev, Ritter & Barber [172] and Bernacchia,
Lengyel & Hennequin [176] as described in Section 5.3 and thus also is in
line with prior work.

Also independently of our results, it is worth noting that the performance
of subsampled KFAC reported in Botev, Ritter & Barber [172] and Bernac-
chia, Lengyel & Hennequin [176] is hard to reconcile with the simultaneous
convictions that (1) KFAC is a natural gradient method and (2) subsampling
the Fisher has detrimental effects.

Our newly suggested explanation of KFACs performance resolves this
contradiction. Even if one were to disagree with our explanation for KFAC’s
effectiveness, the above is an important insight, strengthened by our careful
control experiments, and deserves further attention.

It is also worth noting that another natural way to check if our finding that
KFAC outperforms Natural Gradients agrees with prior work would be to
look for a direct comparison of KFAC with Hessian-Free optimization (HF).
Perhaps surprisingly, to the best of our knowledge, there is no meaningful
comparison between these two algorithms in the literature.5 It will be
interesting to see a thoroughly controlled, well tuned comparison between
HF and KFAC.

Damping
A second cornerstone of our study is the effect of damping on KFAC. We
found that employing a heuristic, rather than standard damping strategy
is essential for performance. The result that heuristic damping improves
KFAC’s performance has been noted several times (qualitatively, rather
than quantitatively), see the original KFAC paper [41], its large-scale follow
up [171], and even E-KFAC [173].

While choice of damping strategy may seem like a negligible detail at
first, it is important to bear in mind that without heuristic damping KFAC
performs like standard first-order optimizers like SGD or Adam. Thus, if
we want to understand KFAC’s effectiveness, we have to account for its
damping strategy. This is achieved by our new explanation and even if
one were to disagree with it, this finding deserves further attention and an
explanation.

Ignoring the second Kronecker factor EFET
F of the approximate Fisher

A third important finding is that KFAC performs well, and often better,

5 We are aware of only one comparison, which unfortunately has serious limitations, see
Supplementary Material 5.7.2.2.
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without its second Kronecker factor. The fact that algorithms that are
similar to KFAC without the second factor perform exceptionally well is
consistent with prior work [42, 43, 190]. Moreover, Desjardins et al. [42]
explicitly state that their algorithm performs more stably without the second
Kronecker factor, which further confirms our findings. We emphasise that,
without the second Kronecker factor, the preconditioning matrix of KFAC
is independent of the loss (or derivatives of it), and thus cannot be seen as
a classical second-order method. From a second-order viewpoint, dropping
dependence on the loss should have detrimental effects, inconsistent with
results from the studies above as well as ours.

Architectures with Parameter Sharing
Finally, we point to another intriguing finding from Grosse & Martens [170].
For architectures with parameter sharing, like CNNs or RNNs, approxi-
mating the Fisher by a Kronecker product requires additional, sometimes
complex assumptions, which are not always satisfied. Grosse & Martens
[170] explicitly investigate one such assumption for CNNs, pointing out
that it is violated in architectures with average- rather than max-pooling.
Nevertheless, KFAC performs very well in such architectures [171, 173, 175,
189]. This suggests that KFAC works well independently of how closely
it is related to the Fisher, which is a puzzling observation when viewing
KFAC as a natural gradient method. Again, our new explanation resolves
this issue, since KFAC still performs gradient descent on neurons.6

In summary, we have shown that viewing KFAC as a second-order,
natural gradient method is irreconcilable with a host of experimental results,
from our as well as other studies. We then proposed a new, considerably
improved explanation for KFAC’s effectiveness. We also showed that the
algorithm FOOF, which results from our explanation, can give further
performance improvements compared to the state-of-the art optimizer
KFAC.

5.7 supplementary material

5.7.1 Kronecker-Factored Curvature Approximations for Laplace Posteriors

A Kronecker factored approximation of the curvature has also been used in
the context of Laplace posteriors [179] and this has been applied to continual
learning [178]. In both context, empirical results are very encouraging.

6 In eq (5.4), we now impose one constraint per datapoint and per “location” at which the
parameters are applied.
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Our finding that, in the context of optimization, the effectiveness of KFAC
does not rely on its similarity to the Fisher raises the question whether these
other applications [178, 179] of Kronecker-factorisations of the curvature
rely on proximity to the curvature matrix.

We point out that the applications from [178, 179] do not seem to rely
on heuristic damping. Also in light of our findings, it remains plausible
that without heuristic damping, KFAC is very similar to the Fisher. In other
words, the below is a hypothesis, not a certainty. To evaluate it, it would be
interesting to compare the performances of KFAC to Full Laplace as well as
to the algorithm suggested below.

For simplicity of notation, we assume that the network has only one
layer, but the analysis straightforwardly generalises to more layers. Suppose
W0 is a local minimum of the negative log-likelihood of the parameters.
Further denote the approximation to the posterior covariance by Σ. For an
approximate posterior to be effective, we require that parameters which are
assigned high likelihood by the posterior actually do have high likelihood
according to the data distribution. In other words, when a weight pertuba-
tion V satisfies that vec (V)T Σ vec (V) is small (high likelihood according
according to the approximate posterior), then the parameter W0 + V should
have low loss (i.e. high likelihood according to the data).

For the Kronecker-factorisation, the first factor again is given by AAT .
Let us assume again that the second factor is dominated by a damping
term (a very similar argument works if the second factor is predominantly
diagonal), so that the posterior covariance is approximately Σ ≈ AAT ⊗ I.
Then, some easily verified calculations give

vec (V)T Σ vec (V) ≈ vec (V)T (AAT ⊗ I) vec (V) = ∑
i

vT
i (AAT)vi (5.6)

where vi is the i-th row of V, i.e. the set of weights connected to the i-
th output neuron.7 This expression being small means that each row of
the pertubation V is near orthogonal to the input activations A (or more
formally, it aligns with singular vectors of A which correspond to small
singular values). This means that the layer’s output, and consequently the
networks output, get perturbed very little. This in turn means, that W0 + V
has high-likelihood.

A simple test of this hypothesis would be to keep only the first kronecker-
factor AAT , replace the second one by the identity and check if the method

7 If the second kronecker-factor is not the identity, then there are additional cross terms of the
form bijvT

i (AAT)vj, where bij is the i, j-th entry of the second kronecker-factor.
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performs equally well or better. Further, it would be interesting to compare
the performance of kronecker-factored posterior to a full-laplace posterior
(controlling for the amount of data given to both) and check if – analogous to
our results for optimization – the kronecker-factored posterior outperforms
the exact laplace posterior.

In fact, a very similar algorithm has already been developed indepen-
dently [195]. It shows strong performance, indirectly supporting our hy-
pothesis.

5.7.2 Related Work

We review generally related work as well as more specifically algorithms
with similar updates rules to FOOF.

5.7.2.1 Generally Related Work

Natural gradients were proposed by Amari and colleagues, see e.g. [50] and
its original motivation stems from information geometry [47]. It is closely
linked to classical second-order optimization through the link of the Fisher
to the Hessian and the Generalised Gauss Newton matrix [45, 49]. Moreover,
natural gradients can be seen as a special case of Kalman filtering [196].
Interestingly, different filtering equations can be used to justify Adam’s [51]
update rule [52], see also [62].

There is a long history of approximating natural gradients and second
order methods. For example, HF [39] exploits that Hessian-vector prod-
ucts are efficiently computable and uses the conjugate-gradient method to
approximate products of the inverse Hessian and vectors. In this case, simi-
larly to our application, the Hessian is usually subsampled, i.e. evaluated
on a mini-batch. Other approximations of natural gradients include [39, 42,
197–201].

The intrinsic low rank structure of the (empirical) Fisher has been ex-
ploited in a number of setups by a number of papers including [53, 177,
202, 203].

Kronecker-factored approximations [41, 200] have become the basis of
several optimization algorithms [172, 173, 176, 177]. Our contribution may
shed light on why this is the case.

Moreover, Kronecker-factored approximation of the curvature can be
used in the context of Laplace Posteriors [179], which can also be applied
to continual learning [178]. A more detailed discussion of how this relates
to our findings can be found in Section 5.7.1.
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KFAC faces the problem of approximating a sum of kronecker-products
by a single kronecker-product. This problem also occurs when approxi-
mating real time recurrent learning of recurrent networks [204–207] and
in this context Benzing et al. [207] show how to obtain optimal biased and
unbiased approximations. Our results suggest that it is not promising to
apply these techniques to approximate natural gradients more accurately.

As briefly mentioned, FOOF is related to the idea of optimizing modules
of a nested function independently, e.g. [191–194].

It may also be worth noting that FOOF is evocative of target propa-
gation [208, 209], but we are not aware of a formal link between these
methods.

5.7.2.2 Comparison between HF and KFAC

The subsampled natural gradient method upon which many of our results
rely was first described in [40]. On top of their useful, important theoretical
results, they also provide an empirical evaluation of their method, and – to
the best of our knowledge – the only published comparison of KFAC and
HF.

Unfortunately, there is very strong evidence that all methods considered
there are heavily undertuned or that there is another issue. To see this,
note that in [40] a network trained on MNIST with one hidden layer of 500
neurons achieves a training loss of around 0.3 and a test accuracy of less
than 95% for all considered optimizers. This is much worse than standard
results and clearly not representative of normal neural network training.
We quickly verified that in exactly the same setting, with KFAC we are able
to obtain a loss which is more than 100x smaller and a test accuracy of
98%.8

5.7.2.3 Theoretical Work

There also is a large body of work on theoretical convergence properties
of Natural Gradients. We give a brief, incomplete overview here and refer
to [210] for a more thorough discussion.

[176] analyse the convergence of natural gradients in linear networks.
Interestingly, they show that for linear networks applied to regression

8 We used the same network, same activation function and same number of epochs. Weight
initialisation scheme, batch size and preprocessing were not described in the original experi-
ments, so we used batch size 100 and the same initialisation and preprocessing as in our other
MNIST experiments (which has no data augmentation).
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problems (with homoscedastic noise), inverting a block-diagonal, Kronecker-
Factored approximation of the curvature results in exact natural gradients.
We point out that the empirical results in non-linear networks from [176]
essentially amount to a re-discovery of KFAC, as such they do not contradict
our results. In particular, they are also based on heuristic damping.

For non-linear, strongly overparametrised two-layer networks in which
only the first layer is trained, [210] recently gave a convergence analysis
of both natural gradients and KFAC. Note that [210] do not establish simi-
larity between KFAC and Natural Gradients but rather give two separate
convergence proofs.

Both these theoretical results [176, 181] do not account for any form
of damping, so they have to be seen as independent of the empirically
well-performing version of KFAC and our investigation.

A set of interesting theoretical results by [211] shows that the Fisher
Information in deep neural networks has a pathological spectrum – in
particular, they show that the Fisher is flat in most directions. This view
may well give a theoretical intuition for why Subsampled Natural Gradients
do often not notably outperform SGD.

5.7.2.4 Related Work from Bayesian ML

Similar to our new view on optimization is [195], which is a Bayesian
Posterior approximation and can (roughly) be viewed as considering dis-
tributions over neuron activations rather than in weight space directly,
similarly to how FOOF performs optimization steps on neuron activations
rather than on weights directly.

5.7.2.5 Algorithms with similar update rules

While it is not immediately visible due to a re-parametrisation employed
in [42], Natural Neural Networks [42] (NNN) propose a mathematically
very similar update rule to FOOF (and KFAC). Unlike FOOF, NNN centers
layer inputs by subtracting the mean activation (or an estimate thereof), but
like FOOF they ignore the second kronecker factor of KFAC.

Like KFAC, NNN is derived as a block-diagonal, kronecker-factored ap-
proximation of the Fisher. As we already pointed out, this is very puzzling,
since NNN approximates the Fisher by a zero-th order matrix, ignoring
all first- and second-order information. In this sense, and bearing in mind
our previous experiments, NNN should not be seen as a natural gradi-
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ent method and our results offer an explanation why it is nevertheless so
effective.

From an implementational viewpoint, FOOF is preferable to NNN mainly
because it requires inverting matrices rather than computing SVDs. In
practice computing inverses is both considerably faster (a factor of 10 or so
as found in some quick experiments) and more stable then computing the
SVD, as NNN does (SVD algorithms don’t always converge).

With yet another context and motivation, [43] also proposes a similar
update rule focussing on full-batch descent. The motivation can be roughly
rephrased as imposing proximity constraints on neuron activations. Very
recently, their motivation and algorithm seems to have been re-described
in [190] without noting this link. In particular, the derivation of [43] gives
an alternative perspective on the update equation of FOOF.

Among other differences, [43, 190] (1) seem not to discuss unbiased
stochastic versions of their algorithms, (2) seem less computationally effi-
cient: results in [43] fall short of adam in terms of wall-clock time and [190]
does not provide direct wall-clock time comparisons with standard first-
order optimizers, (3) only discuss fully-connected architectures (4) do not
perform investigations into the connection of KFAC to natural gradients or
first-order methods.

Note also that the framework from [196] can be applied to interpret FOOF
as applying Kalman filtering to each layer individually. Thus, in some vague
sense, FOOF is bayes-optimal and some may find this to be an enticing
explanation for FOOF’s strong empirical performance.

5.7.3 Additional Experiments

Here we present additional experiments, lines correspond to the average
across three seeds.

In Section 5.7.3.2, there are experiments analogous to Figures 5.1-5.4 from
the main chapter, but on MNIST rather than Fashion-MNIST. Results are
in line with the ones on Fashion-MNIST, but effects are usually smaller,
presumably due to MNIST-classification being a very simple task for MLPs.

In Section 5.7.3.3, there are comparisons of subsampled natural gradi-
ents to subsampled KFAC for a ResNet on CIFAR10 and for autoencoder
experiments. The fact that KFAC performs considerably better than natural
gradients strongly suggests that also in these settings KFAC cannot be seen
as a natural gradient method.
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In Section 5.7.3.4, we show that heuristic damping is crucial for perfor-
mance of KFAC for a ResNet on CIFAR10 and for autoencoder experiments.
This further supports the claim that KFAC should not be seen as a natural
gradient method and suggests that similarity to FOOF is important for
KFAC.

In Section 5.7.3.5, we show performance comparisons between KFAC
and FOOF for different benchmarks and architectures. Figure 5.14 contains
performance of a Wide ResNet18 on CIFAR 100 (rather than CIFAR 10 in
the main chapter). Figures 5.15, 5.16 contain training data for a VGG11
network on SVHN and additionally show how different algortihms are
affected by different batch sizes.

5.7.3.1 Limitations of our Explanation in Auto-Encoder Settings

Figures 5.17-5.19 contain autoencoder experiments on MNIST, Curves and
Faces. Here, we make a somewhat puzzling observation: When we follow
the KFAC training trajectory, FOOF makes more progress per parameter
udpate than KFAC. Nevertheless, when we use FOOF for training (and
follow the FOOF trajectory), we obtain slightly worse results than for KFAC.
This may suggest that in the autoencoder experiments KFAC chooses a
different trajectory that is easier to optimize than FOOF.
This suggests that our explanation of KFACs performance, while capturing
many key-characteristics of KFAC, has some limitations.
We re-emphasise that similarity to FOOF remains a significantly better
explanation for KFAC’s performance than similarity to natural gradients,
also in the autoencoder setting (recall Figure 5.11).
As an additional experiment we run KFAC with the empirical Fisher, rather
than an MC approximation. Despite its name, the empirical Fisher is usually
argued to be a poor approximation of the Fisher [45, 46]. Nevertheless we
find that KFAC works equally well with the empirical Fisher, see Figure 5.20,
supporting the view that KFAC’s effectiveness is not directly linked to the
Fisher and hinting at the fact that a full, principled explanation of KFAC’s
slight advantage over FOOF in the autoencoder setting may be difficult to
come by.
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5.7.3.2 Experiments anaologous to main chapter but on MNIST rather than
Fashion MNIST
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Figure 5.6: Paradoxically, KFAC – an approximate second-order method – out-
performs exact second-order udpates in standard as well as impor-
tant control settings. Same as Figure 5.1 but on MNIST rather than
Fashion MNIST.
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Figure 5.7: Advantage of KFAC over exact, subsampled Natural Gradients
is not due to block-diagonal structure. Same as Figure 5.2 but on
MNIST rather than Fashion MNIST.
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5.7.3.3 Subsampled Natural Gradients vs Subsampled KFAC
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Figure 5.10: KFAC outperforms Subsampled Natural Gradients, also when KFAC
is subsampled and uses exactly the same amount of data as Natural
gradients to estimate the curvature. This is analogous to Figure 5.1B,
but on ConvNets and with a more complicated dataset. It confirms
our claim that KFAC does not rely on second-order information.
Note that with large damping, natural gradients becomes approx-
imately equal to SGD – thus the difference seen between SGD+M
and natural gradients is due to momentum.
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Figure 5.11: KFAC outperforms Subsampled Natural Gradients, also when KFAC
is subsampled and uses exactly the same amount of data as Natural
gradients to estimate the curvature. Autoencoder Experiments. We
confirmed that Natural Gradients do not perform worse than SGD
without momentum. In other words the advantage of SGD+M vs
Natural Gradients on MNIST and Curves is due to using momentum.
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5.7.3.4 Effect of Heuristic Damping on KFAC
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Figure 5.12: Effect of Heuristic damping on KFAC on CIFAR10 with a ResNet.
Analogously to Figure 5.3A, we find that heuristic damping is essen-
tial for KFAC’s performance.
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Figure 5.13: Effect of Heuristic damping on KFAC in autoencoder experiments.
Analogously to Figure 5.3A, we find that heuristic damping is essen-
tial for KFAC’s performance.
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5.7.3.5 Performance Comparisons
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Figure 5.14: Performance comparison on CIFAR 100 with a Wide ResNet18.
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Figure 5.15: Performance comparison on SVHN with a VGG11 network and
different batch sizes. See also Figure 5.16 for same data portrayed
differently.
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Figure 5.16: Performance on SVHN with a VGG11 network across different batch
sizes for different algorithms. See also Figure 5.15 for same data
portrayed differently. Note that colour coding differs from remaining
plots in this chapter.

5.7.3.6 Pseudocode, Implementation, Hyperparameters

Pseudocode for FOOF (including amortisation techniques) is given in Algo-
rithm 1. Notation is anaologous to Section 5.2.

Initialisation: One detail omitted in the pseudocode is initialisation of Σ

and P. There is different ways to do this. We decided to perform Line 17
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Figure 5.17: Performance for FACES autoencoder experiment. KFAC slightly out-
performs FOOF, but when FOOF is on KFAC trajectory it typically
makes more progress per udpate. This may suggest that the advan-
tage of KFAC is due to choosing a different optimization trajectory.
(B) shows same data as (C) with a different axes zoom.
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Figure 5.18: Performance for MNIST autoencoder experiment. KFAC slightly out-
performs FOOF, but when FOOF is on KFAC trajectory it typically
makes more progress per udpate. This may suggest that the advan-
tage of KFAC is due to choosing a different optimization trajectory.
(B) shows same data as (C) with a different axes zoom.

of Algorithm 1 for a number of minibatches (50) before training and then
executing line Line 10 once. In addition, we make sure the exponentially
moving average is normalised.

Amortisation Choices: Amortising the overhead of FOOF is achieved
by choosing S, T suitably (large T and small S give the best runtimes). For
fully connected layers updating Σ is cheap and we choose S = T (i.e. Σ

is updated at every step), we reported results for T = 1 and T = 100. For
the ResNet, computing AAT is more expensive and we chose T = 500
(one inversion per epoch) and S = 10. Additional experiments (not shown)
suggest that Σ can be estimated robustly on few datapoints and that it
changes slowly during training.

Hyperparameter Choices: Note that a discussion of hyperparameter
robustness is also provided in Appendix D of Benzing [44]. We chose
m = 0.95 following [41], brief experiments with m = 0.999 seemed to give
very similar results. For damping λ and learning rate η, we performed
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Figure 5.19: Performance for Curves autoencoder experiment. KFAC slightly out-
performs FOOF, but when FOOF is on KFAC trajectory it typically
makes more progress per udpate. This may suggest that the advan-
tage of KFAC is due to choosing a different optimization trajectory.
(B) shows same data as (C) with a different axes zoom.
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Figure 5.20: Performance of standard KFAC (using an MC sample to estimate
the Fisher) and a version of KFAC using the empirical Fisher. Solid
an dashed cyan lines show different hyperparametrisations of the
same algorithm. The advantage fo the empirical Fisher on MNIST
seems to be due to allowing different hyperparametrisations to be
stable.

grid searches. It may be interesting that a bayesian interpretation of FOOF
(details omitted) suggests choosing λ as the precision used for standard
weight initialisation schemes (e.g. Kaiming Normal initialisation) and seems
to work well. If we choose this λ, we only need to tune the learning rate of
FOOF, so that the required tuning is analogous to that of SGD. Alternatively,
we typically fount λ = 100 to work well, but the exact magnitude may
depend on implementation details (in particular, how factors are scaled and
how they depend on the batch size).

Implementation and Convolutional Layers: A PyTorch implementation
of FOOF using for- and backward hooks is simple. The implementation,
in particular computing AAT , is most straightforward for fully connected
layers, but can be extended to layers with parameter sharing. For example in
CNNs, we can interpret the convolution as a standard matrix multiplication
by “extracting/unfolding” individual patches (see e.g. [170]) and then
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proceed as before. This is what our implementation does. A more efficient
technique avoiding explicitly extracting patches (at the cost of making small
approximations) is presented in [195].

Algorithm 1 Gradient Descent on Neurons (FOOF)
1: Hyperparameters: learning rate η, damping strength λ, exponential

decay factor m, inversion period T, number of updates for input covari-
ance S ≤ T

2: Initialise: t = 0; For each layer ℓ: Weights Wℓ (e.g. Kaiming-He init), ex-
ponential average Σℓ of AℓAT

ℓ and its damped inverse Pℓ = (Σℓ + λI)−1

(see Supplementary Material 5.7.3.6 for details)

3: while train do
4: Perform Standard Forward and Backward Pass
5: For Current Mini-Batch With Loss L
6: for each layer ℓ do
7: Wℓ ← Wℓ − ηPℓ∇Wℓ

L ▷ Update Parameters as in Eq. 5.5
8: if (t mod T) == 0 then
9: Pℓ ← (Σℓ + λI)−1 ▷ Update Damped Inverse of Moving

10: of Average AℓAT
ℓ every T steps

11: end if
12: if ((t + S) mod T) ∈ {0, . . . , S− 1} then
13: Σ← m · Σℓ + (1−m) ·AℓAT

ℓ ▷ Update Moving Average of
14: AℓAT

ℓ beginning S steps
15: before inversion in line 10.
16: Aℓ is defined as in
17: Section 5.2.
18: end if
19: end for
20: t← t + 1
21: end while
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