
On Two Combinatorial
Reconfiguration Problems:

Reachability and Hamiltonicity

Phuc Hung Hoang

DISS. ETH NO. 28654

P
.
H
.
H
oa
ng

O
n
T
w
o
C
o
m
b
in
a
to
ri
a
l
R
ec
o
n
fi
g
u
ra
ti
o
n
P
ro
b
le
m
s

20
22

DISS. ETH NO. 28654

On Two Combinatorial Reconfiguration
Problems: Reachability and Hamiltonicity

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZÜRICH

(Dr. sc. ETH Zürich)

presented by

Phuc Hung Hoang
M.Sc. London School of Economics and Political Science

in Management Science (Operational Research)

born on 2 November 1989
citizen of Vietnam

accepted on the recommendation of

Prof. Dr. Bernd Gärtner, examiner
Prof. Dr. Jean Cardinal, co-examiner
Prof. Dr. Torsten Mütze, co-examiner
Prof. Dr. Emo Welzl, co-examiner

2022

Abstract

This thesis considers two problems under the reconfiguration frame-
work: ARRIVAL and exhaustive generation of combinatorial ob-
jects. Both problems can be viewed in terms of reconfiguration
graphs. In the first case, the state space of ARRIVAL is the ver-
tex set, and the transitions between states define the edges. The
ARRIVAL problem then asks a reachability question on this graph.
In the second case, the combinatorial objects to be generated are
the vertices, and two vertices are adjacent if they differ by a small
change. The task of exhaustive generation is then equivalent to find-
ing a Hamilton path on this graph.

More specifically, in ARRIVAL, a train performs a deterministic,
pseudorandom walk on a directed graph, and we need to determine
which sink the train will eventually reach. The problem has been
shown to be in NP ∩ coNP but is not known to be in P. In this
thesis, we provide the first subexponential algorithm for ARRIVAL,
derived from a new general framework for this problem. From this
framework, we also obtain a polynomial-time algorithm, if the graph
is almost acyclic. Additionally, we develop a different polynomial-
time algorithm for another class of graphs that corresponds to the
worst asymptotic runtime of many existing algorithms. All of the

i

ii

above algorithms rely on a generalization of ARRIVAL with mul-
tiple trains, called G-ARRIVAL, and can be extended to solve G-
ARRIVAL as well.

In the context of exhaustive generation, we present a general and
versatile algorithmic framework that can generate a wide range of
combinatorial objects, by encoding them as permutations. This
framework unifies many known classical Gray codes, such as the
Steinhaus-Johnson-Trotter algorithm for permutations, the binary
reflected Gray code for bitstrings, the Lucas-Roelants van Baronaigien-
Ruskey algorithm for binary trees, and the Gray code for set par-
titions by Kaye. Moreover, the framework also allows us to obtain
many new Gray codes.

This thesis presents two main applications of the framework above.
The first is the generation of many families of permutations avoid-
ing certain classical patterns, (bi)vincular patterns, barred patterns,
boxed patterns, Bruhat-restricted patterns, mesh patterns, mono-
tone and geometric grid classes, and many others. By the bijection
of these permutations with other combinatorial objects, we also ob-
tain new Gray codes for these objects. The second application per-
tains to the lattice congruences of the weak order of the symmetric
group Sn. These objects can be realized as polytopes, called quo-
tientopes, that take the hypercubes, associahedra, permutahedra,
as special cases. For each lattice congruence, our algorithm gener-
ates a Gray code for its equivalence classes, which translates to a
Hamilton path on the skeleton of the corresponding quotientope.

Zusammenfassung

Diese Arbeit betrachtet zwei Rekonfigurationsprobleme: ARRIVAL
und die vollständige Aufzählung von kombinatorischen Objekten.
Beide Probleme können mit Hilfe von Rekonfigurationsgraphen be-
trachtet werden. Im ersten Fall ist der Zustandsraum von ARRIVAL
die Knotenmenge, und die Übergänge zwischen den Zuständen
definieren die Kanten. Das ARRIVAL-Problem stellt dann eine
Erreichbarkeitsfrage für diesen Graphen. Im zweiten Fall sind die
zu erzeugenden kombinatorischen Objekte die Knoten, und zwei
Knoten sind benachbart, wenn sie sich in einer kleinen Änderung
unterscheiden. Die Aufgabe der vollständigen Aufzählung ist dann
gleichbedeutend mit der Suche nach einem Hamilton-Pfad in diesem
Graphen.

Genauer gesagt, führt ein Zug beim ARRIVAL-Problem eine deter-
ministische, pseudozufällige Irrfahrt auf einem gerichteten Graphen
durch, und es gilt zu entscheiden, welche Senke der Zug schliesslich
erreichen wird. Es wurde gezeigt, dass das Problem in NP ∩ coNP
liegt, aber es ist nicht bekannt, ob es in P liegt. In dieser Arbeit
stellen wir den ersten subexponentiellen Algorithmus für ARRIVAL
vor, der sich aus einem neuen allgemeinen Ansatz für dieses Problem
ableitet. Aus diesem Ansatz erhalten wir auch einen Polynomialzeit-
Algorithmus, für den Fall dass der Graph fast azyklisch ist. Zusätzlich

iii

iv

entwickeln wir einen anderen Polynomialzeit-Algorithmus für eine
andere Klasse von Graphen, die zur schlechtesten asymptotischen
Laufzeit vieler bekannter Algorithmen korrespondiert. Alle oben
genannten Algorithmen beruhen auf einer Verallgemeinerung des
ARRIVAL-Problems auf mehrere Zügen, genannt G-ARRIVAL und
können erweitert werden, um auch G-ARRIVAL zu lösen.

Bezüglich der vollständigen Aufzählung stellen wir einen allgemeinen
und vielseitigen algorithmischen Ansatz vor, der eine breite Vielfalt
von kombinatorischen Objekten erzeugen kann, indem er diese als
Permutationen kodiert. Dieser Ansatz vereinigt viele bekannte klas-
sische Gray-Codes, wie den Steinhaus-Johnson-Trotter-Algorithmus
für Permutationen, den binären reflektierten Gray-Code für Bitfol-
gen, den Lucas-Roelants van Baronaigien-Ruskey-Algorithmus für
binäre Bäume und den Gray-Code für Mengenpartitionen von Kaye.
Darüber hinaus ermöglicht uns der Ansatz auch, viele neue Gray-
Codes zu erhalten.

Diese Arbeit stellt zwei Hauptanwendungen des obigen Ansatzes
vor. Die erste ist die Erzeugung vieler Familien von Permutatio-
nen, die bestimmte klassische Muster, (bi)vinkuläre Muster, Git-
termuster, Kastenmuster, Bruhat-beschränkte Muster, Netzmuster,
monotone und geometrische Netzklassen und viele andere vermei-
den. Durch die Bijektion dieser Permutationen mit anderen kombi-
natorischen Objekten erhalten wir auch neue Gray-Codes für diese
Objekte. Die zweite Anwendung bezieht sich auf die Gitterkon-
gruenzen der schwachen Ordnung der symmetrischen Gruppe Sn.
Diese Objekte können als Polytope, sogenannte Quotientope, re-
alisiert werden, welche den Hyperwürfel, Assoziaeder und Permu-
taeder als Spezialfälle ergeben. Für jede Gitterkongruenz generiert
unser Algorithmus einen Gray-Code für ihre Äquivalenzklassen, der
sich in einen Hamilton-Pfad auf dem Skelett des entsprechenden
Quotientopes übersetzt.

Acknowledgments

I wish to express my sincere gratitude to Bernd Gärtner and Emo
Welzl for welcoming me to their research group. They have main-
tained an excellent research environment in the group and allowed
me many opportunities to grow in the past four years. Especially, I
was incredibly fortunate to have Bernd as my supervisor. He gave
me the freedom to explore different research directions and provided
continuous support in whatever endeavor I pursued. Moreover, he
always made time to discuss any aspect of my doctoral career.

I am immensely grateful to Torsten Mütze for inviting me to the
combinatorial generation project. Many structural insights that we
encountered have allowed me glimpses of the exceptional beauty of
mathematics. I also thank him for inviting me to Warwick and his
annual workshops and for coming to Zurich for my examination.

Special thanks to Jean Cardinal and Emo Welzl for reviewing my
thesis and serving as members of my committee, and to Bernd
Gärtner, Elizabeth Hartung, Sebastian Haslebacher, Torsten Mütze,
and Aaron Williams for our fruitful collaborations, which resulted
in the content of this thesis.

I am indebted to Gregory Sorkin, who welcomed me to mathematical
research through my master’s dissertation. He has encouraged me to

v

vi

pursue a PhD and also provided support and guidance afterwards.

Next, I would like to thank all my colleagues at ETH Zürich. Spe-
cial thanks to Michael Hoffmann for great advice and amazing work-
shops; to Malte Milatz, Ahad N. Zehmakan, Jerri Nummenpalo,
Patrick Schnider, and Manuel Wettstein for their help in navigat-
ing the various aspects of ETH life; to Saeed Ilchi for our semester
exploring the spectrahedra; to Luis Barba, Daniel Bertschinger,
Nicolas El Maalouly, Nicolas Grelier, Chih-Hung Liu, Meghana M.
Reddy, Tim Taubner, and Simon Weber for companionship in and
outside of the office; to Matilda Backendal, Tobias Grosser, Flo-
rian Meier, and Alexander Viand for the great time with the men-
tal strength initiative; and to Andrea Salow for Mi-Lu-Di/Mi/Dos,
German practice, and incredible help in administrative matters.

Thanks to the collaborators of my four other papers [3, 26, 40, 88]:
Oswin Aichholzer, Kristóf Bérczi, Sriram Bhyravarapu, Kenny Chiu,
Tim Hartmann, Michael Hoffmann, Subrahmanyam Kalyanasun-
daram, Stefan Lendl, Yannic Maus, I. Vinod Reddy, Lilla Tóth-
mérész, Birgit Vogtenhuber, Alexandra Weinberger, and Lasse Wulf.

Many of the papers above came from visits to other research institu-
tions. I want to thank Kristóf for the invitation to Budapest and to
Hausdorff Research Insititute of Mathematics for the invitation to
their trimester program on discrete optimization. I am also grate-
ful to Alexandra, Birgit, Lasse, Oswin, and Alexander Pilz for ar-
ranging desk spaces for me during my many visits to Graz. Special
thanks to Uwe Yacine Schwarze for being the reason of these visits.

Last but not least, I would like to thank my family and friends for
their support. Special thanks to Đỗ Công Lý for the amazing cover
art of this thesis and to Christoph Ribbe whose presence in the flat
helped keep me sane during the time of Corona.

Zürich, September 2022 Hung Hoang

Contents

1 Overview 1
1.1 ARRIVAL . 7
1.2 Combinatorial generation via permutation languages 10
1.3 Outline and summary of contributions 12
1.4 Notations . 14

I ARRIVAL 17

2 ARRIVAL and its generalization 19
2.1 ARRIVAL . 20
2.2 G-ARRIVAL . 22
2.3 Abelian networks . 26

2.3.1 Abelian networks 26
2.3.2 Switching systems are Abelian networks . . . 29
2.3.3 Other unary networks 30

2.4 Switching systems vs. rotor-routing 32
2.4.1 Abelian networks as reconfiguration graphs . 35

2.5 G-ARRIVAL is well-defined 38
2.5.1 Switching flows 38
2.5.2 Termination and unique run profile 39

vii

viii CONTENTS

2.6 Decision complexity of G-ARRIVAL 41
2.6.1 G-ARRIVAL is in NP ∩ coNP 41
2.6.2 G-ARRIVAL is in UP ∩ coUP 43

2.7 Search complexity of G-ARRIVAL 45
2.7.1 UEOPL . 46
2.7.2 Difficulties in adapting the proof for ARRIVAL 48
2.7.3 Partial switching flow 52
2.7.4 GS-ARRIVAL is in UEOPL 55

3 Subexponential algorithm for G-ARRIVAL 59
3.1 Näıve simulation of the train runs 60
3.2 Layer decomposition 62
3.3 Greedy simulations of the train runs 64
3.4 A general framework 69

3.4.1 The idea . 69
3.4.2 Candidate switching flows and guessing switch-

ing system . 70
3.4.3 Tarski fixed points 73

3.5 Subexponential algorithm for G-ARRIVAL 75
3.6 Feedback vertex sets 78
3.7 Discussion and open questions 79

4 G-ARRIVAL with two vertices per layer 83
4.1 Preliminaries . 84
4.2 Algorithm Overview 86
4.3 Hitting probabilities 87
4.4 Initial analysis . 91
4.5 2-ladder with a cross 93
4.6 Algorithm L . 98
4.7 Solving G-ARRIVAL with ladder 99
4.8 Discussions . 100

CONTENTS ix

II Combinatorial generation via permutations 105

5 A framework for combinatorial generation 107
5.1 Preliminaries . 109
5.2 The basic algorithm 110
5.3 Zigzag languages . 111

5.3.1 Characterization via the tree of permutations 112
5.3.2 Characterization via nuts 114
5.3.3 Proof of Theorem 5.1 114

5.4 Further properties of Algorithm J 117
5.5 A general recipe with classical examples 118

5.5.1 Permutations (Steinhaus-Johnson-Trotter) . . 119
5.5.2 Binary strings (BRGC) 119
5.5.3 Binary trees (Lucas-Roelants van Baronaigien-

Ruskey) . 121
5.5.4 Set partitions (Kaye) 122

5.6 Discussion . 124

6 Pattern-avoiding permutations 127
6.1 Classical patterns and other variants 128

6.1.1 Preliminaries 128
6.1.2 Tame patterns 131
6.1.3 Vincular patterns 132
6.1.4 Barred patterns 133
6.1.5 Boxed patterns 135
6.1.6 Patterns with Bruhat restrictions 135
6.1.7 Bivincular patterns 136
6.1.8 Mesh patterns 136
6.1.9 Proof of Lemmas 6.4–6.9 142

6.2 Patterns with multiplicities 143
6.3 Algebra with patterns 144

6.3.1 Elementary transformations 144
6.3.2 Partially ordered patterns 148
6.3.3 Barred patterns with multiple bars 150

x CONTENTS

6.3.4 Weak avoidance of barred patterns and dotted
patterns . 151

6.3.5 Monotone and geometric grid classes 155
6.4 Limitations of our approach 158

7 Lattice congruences of the weak order 161
7.1 Generating lattice congruences of the weak order . . 165

7.1.1 Modified zigzag languages 165
7.1.2 Preliminaries 166
7.1.3 Combinatorics of lattice congruences of the

weak order 168
7.1.4 Restrictions, rails, ladders, and projections . 172
7.1.5 Jumping through lattice congruences 179

7.2 Regular, vertex-transitive, and bipartite lattice quo-
tients . 185
7.2.1 Preliminaries 186
7.2.2 Exact counts for small dimensions 190
7.2.3 Counting quotient graphs 191
7.2.4 Regular quotient graphs 193
7.2.5 Maximum degree 208
7.2.6 Vertex-transitive quotient graphs 210
7.2.7 Bipartite quotient graphs 227

7.3 Pattern-avoiding permutations and lattice congruences234
7.4 Open questions . 238

Bibliography 241

Curriculum Vitae 263

About the cover art 264

. . . there ain’t no journey what don’t
change you some.

—David Mitchell,
Cloud Atlas

CHAPTER 1

Overview

In the depth of my childhood memory, there was a three-way junc-
tion. One road led to my home, while another to my schools. For the
third, I rarely took it, even when I was older and could go anywhere
on my own. To be precise, I took it only once, when I tagged along
my mother on her visit to an old friend. It must have been exciting
at the time to venture finally into the path. However, I remember
nothing about the trip, except for the destination. A house with
many curious objects: strange comics, thin furniture, and a colorful
cube. While the adults were occupied with their boring conversa-
tion, I examined the cube, and after a while, I figured that I could
rotate certain parts. Somehow, a natural thing to aim for is to make
every side uniform of one color. For the length of the visit, I did not
succeed, nor did I learn that it was called the Rubik’s cube.

1

2 Overview

The deceptive simplicity of the cube has captivated the interests of
many children and adults alike. The main task is intuitive: Given
a scrambled cube (a position), how can one make every face of the
same color? Still, there are many other questions we can ask about
the puzzle, such as the least number of moves required, the num-
ber of possible positions, an automation of the solving process, etc.
These types of questions have sparked the interests of many “speed-
cubers”, robotic engineers, and recreational mathematicians. For
example, Rokicki, Kociemba, Davidson, and Dethridge [148] stated
that the number of solvable positions is 43,252,003,274,489,856,000
or 164,604,041,664 up to certain notions of symmetry. Further, they
showed that it is enough to solve any position with at most 20 face
turns, i.e., 90- or 180-degree rotations of a face. In fact, they show
a stronger statement: With at most 20 face turns, we can turn a
position into any other position. Using graph theoretic notations,
many of the questions above can be phrased as questions on a spe-
cial graph. The vertices of this graph are the solvable positions (up
to symmetries), and an edge connects two positions that differ by a
face turn. Then we can view the result by Rokicki et al. as follows:
Although the graph has 164,604,041,664 vertices with the maximum
degree at most 18, its diameter, i.e. the maximum edge-distance be-
tween any two vertices, is at most (and in fact exactly) 20.

The discussion above shows a common template for reconfiguration
problems. Van den Heuvel [166] and Nishimura [126] wrote detailed
surveys about these problems. Here, we will give a brief overview.
Throughout the overview, we refer to two examples as illustrated in
Figure 1.1. On the left of the figure, we have the reconfiguration of
the triangulations of a convex polygon, i.e., different ways to parti-
tion the polygon into triangles. On the right of the figure, we have
the reconfiguration of the k-sized independent sets of a graph, i.e,
sets of k pairwise non-adjacent vertices in the graph. The details of
these reconfigurations will be explained below.

3

Figure 1.1: Two reconfiguration graphs: the flip graph of triangu-
lations of a convex 6-gon by edge flips (left) and the flip graph of
2-sized independent sets of the 5-cycle by token sliding (right); the
vertices in the independent sets are marked black

Generally speaking, a reconfiguration problem concerns with a state
space, where we repeatedly travel from a state to its neighbor, under
some notion of adjacency. More specifically, to define a reconfigu-
ration problem, we need three main ingredients: the feasible con-
figurations (i.e. the states), the transformations (i.e. the notion of
adjacency), and a question.

Firstly, we assume that the set of feasible configurations can be de-
scribed concisely, such as “the set of all triangulations of a given con-
vex polygon". Otherwise, if the full list of all possible configurations
are given as the input, most problems would trivially be solvable in
polynomial time. In fact, we usually assume that we can efficiently
determine the feasibility of a configuration (i.e., checking if a given
configuration is consistent with the concise description). When the
context is clear, we will assume that the concerned configurations
are feasible and drop the term “feasible". Sometimes, these config-
urations are associated with a source problem, and they are the fea-

4 Overview

sible solutions of an instance of this problem. For example, for the
k-sized independent sets as configurations, the source problem is the
well known independence set problem: given a graph G and a posi-
tive integer k, we need to find an independent set with size k of G.

Secondly, we also assume some concise description of the transfor-
mations, the allowable operations that change a configuration into
another. For example, we can transform a triangulation of a convex
polygon by an edge flip described as follows: In the triangulation,
we consider two triangles abc and dbc whose union forms a convex
quadrilateral; we remove the common edge bc and add the edge ad.
It is easy to see that the result is another triangulation. As an-
other example, we can view the elements of an independent set as
pairwise non-adjacent (unlabelled) tokens on the underlying graph,
and a transformation can be the operation of sliding a token along
an edge such that the resulting set of tokens is still pairwise non-
adjacent. We call this operation token sliding. An intuitive way to
formulate these settings is through the use of reconfiguration graphs,
which are often also referred to as flip graphs. Here, the vertex set
is the set of all configurations, and two vertices are connected if the
corresponding configuration of one can be transformed into that of
the other by one operation. The flip graphs for our two running ex-
amples are shown in Figure 1.1.

Finally, the question of the problem can be viewed as a question on
the reconfiguration graph. The common questions are as follows:

� Connectivity: Can any configuration be transformed into
another?

� Diameter: If the answer to the connectivity question is yes,
what is the maximum number of transformations required to
change a configuration to another?

� Reachability: If the answer to the connectivity question is
no, can a given configuration be transformed into another

5

given configuration?

� Shortest path: What is the smallest number of transforma-
tions required to change a given configuration to another?

These questions can be structural (e.g., what the diameter of a flip
graph is) or algorithmic (e.g., how to compute the diameter).

Let us consider some of these questions on our two examples. We
start with the flip graph of the triangulations of an n-gon. Firstly,
the flip graph is always connected, because it is the skeleton of the
(n− 3)-dimensional associahedron, assuming n ≥ 3 (e.g., see [114]).
In fact, this skeleton is the flip graphs of many objects, such as bi-
nary trees by tree rotations and Dyck paths by hill flips, and also
appears in many other contexts in geometry [44]. We will give yet
another of its realization in this thesis, when we discuss the quo-
tientopes in Chapter 7. Secondly, the diameter question is known:
Pournin [135] showed that the n-dimensional associahedron has the
diameter of 2n− 4 for n > 9. However, despite its connection with
many contexts, the complexity of computing the shortest path be-
tween two vertices of an associahedron is still open.

The situations are generally more difficult for the k-sized indepen-
dent sets of a graph G. The corresponding reconfiguration graph
is not always connected (see [14] for a summary of known results).
Even when G is a split graph, deciding the connectivity of the re-
configuration graph is coNP-hard [33]. Moreover, the shortest path
problem is NP-complete [101]. The reachability problem is even
harder to solve: it is PSPACE-complete, even when G is planar [86]
or bipartite [118].

We note that the above examples are only a small fraction of the
literature on reconfiguration problems. Even for independent sets,
we can study many different other settings, such as labelled tokens
and different transformations (e.g., see [29, 56]). For more examples,
see the aforementioned surveys [166, 126].

6 Overview

While combinatorial games and puzzles such as the Rubik’s cube
are a rich source of reconfiguration problems (see [87] for an exten-
sive survey), we can find reconfiguration problems in many other
contexts. For example, they naturally arise from the study of lo-
cal changes in combinatorial objects, such as rotations of binary
trees [120] and flipping of planar and plane graphs (e.g., see [123,
168]). Many other reconfiguration problems are derived from the
structural examinations of the solution space of many graph prob-
lems, such as independent set, vertex cover, dominating set, clique,
shortest path, maximum cut, etc.

These problems can have applications in many fundamental tasks.
For example, we can solve the sampling task by defining a suitable
Markov chain on a reconfiguration graph. If the chain satisfies cer-
tain property called rapid mixing, performing a random walk on the
graph for a reasonable number of steps can give an almost uniformly
random configuration. Further, being able to sample this way also
allows us to approximately count the configurations. See [98] for
full details on this method. In this thesis, we will discuss another
important task: exhaustive generation, which can also be defined as
a reconfiguration problem.

Reconfiguration also has connections with local search problems.
The general method is as follows: we assign values to the configura-
tions (or as discussed before, solutions to a source problem) typically
to measure their “quality”, and in each step, we apply a transforma-
tion to obtain a configuration with better value. This corresponds
to a walk on the reconfiguration graph with increasing values. Ex-
amples of such methods are the popular k-OPT heuristic for the
travelling salesperson problem (e.g., see [23]) and the simplex meth-
ods for linear programming [55].

In this thesis, we will explore two aspects under the framework of
the reconfiguration problems. The first part concerns about a prob-
lem called ARRIVAL, which decides whether a deterministic process

1.1. ARRIVAL 7

terminates. The problem can be phrased as a reachability ques-
tion on a state space. A special feature of the problem is that it
has a directed reconfiguration graph. Many examples above have
reversible transformations, such as face turns of the Rubik’s cube,
token sliding for independent sets, or edge flips of triangulations.
Hence, the reconfiguration graphs for these examples are naturally
undirected. In contrast, the transformation between two adjacent
configurations of ARRIVAL only works in one direction. (See the
connection with reconfiguration problems in Section 2.4.1.) The
main goal for this problem is to resolve its complexity status, that
is specifically, whether it is in P.

The second part is related to one of the aforementioned applications
of the reconfiguration problems: exhaustive generation. In partic-
ular, we consider the Gray codes of many sets of configurations,
which are essentially sets of combinatorial objects. Originally, the
term “Gray code” refers to the binary-reflected Gray code named af-
ter Frank Gray [81]. It is a cyclic sequence of all bitstrings of size n
such that two adjacent bitstrings differ only by one bit. Nowadays,
“Gray code” is a more general term for a listing of combinatorial ob-
jects, where two consecutive elements differ by small changes (see
surveys by Savage [151] and Mütze [125]). Naturally, if we consider
the reconfiguration graph where these small changes are the trans-
formations, then a Gray code translates to a Hamilton path or some-
times a Hamilton cycle, a path or a cycle that visits every vertex
exactly once. We will provide a general framework for generating
such a Gray code for many classes of combinatorial objects.

We will now introduce these two parts in more detail.

1.1 ARRIVAL

Dohrau, Gärtner, Kohler, Matoušek, and Welzl [62] describes the
ARRIVAL problem informally as follows:

8 Overview

Suppose that a train is running along a railway net-
work, starting from a designated origin, with the goal
of reaching a designated destination. The network, how-
ever, is of a special nature: every time the train traverses
a switch, the switch will change its position immediately
afterwards. Hence, the next time the train traverses the
same switch, the other direction will be taken, so that
directions alternate with each traversal of the switch.

Given a network with origin and destination, what
is the complexity of deciding whether the train, starting
at the origin, will eventually reach the destination?

Variants of this simple setting have been discovered and rediscov-
ered in many contexts. Most notable is the study of deterministic
simulations of a random walk under different names, such as Eule-
rian walkers [136], rotor-router walks [93], and Propp machines [53].
It also naturally arises from combinatorial games. The ARRIVAL
problem, for example, is inspired by an online game called Looping
Piggy developed by Gärtner for Kinderlabor, an initiative for com-
puter science education in kindergartens. The latest reporting of a
similar problem is in a blog post by Aaronson [1], also motivated
by a children’s game. As the author pointed out in the post, this in
turn is a rediscovery of a result back in 1994 [46].

In the first context, the main focus has been to examine the close
connection between this deterministic simulation and the correspond-
ing random walk. In the second context, the interests lie primarily
on the complexity of these games, which shares some flavor of the
automata theory: Can these simple models be used to solve complex
problems? Towards this end, the reachability question as quoted
above has an interesting complexity status. It is shown in [62] that
the problem is in NP ∩ coNP. Subsequent papers have shown more
specific results, such as the membership in UP ∩ coUP [76], NL-
hardness [71], and CC-hardness [122], but one key question remains

1.1. ARRIVAL 9

wide open: Is ARRIVAL in P?

Two common approaches to tackle this question are finding a faster
algorithm for a general instance and expanding the classes of graphs
where a polynomial-time algorithm for ARRIVAL exists. On the
first approach, the benchmark is the trivial algorithm of simply sim-
ulating the train run. On a graph with n vertices, Dohrau et al. [62]
showed an upper bound of O(n2n) steps and a lower bound of Ω(2n).
Since then, there have been other algorithms, but all of them have
exponential runtime. Before the main result in this thesis, the best
algorithm by Rote [149] runs in time O(p(n)2n/3), for some polyno-
mial p. On the second approach, Haslebacher [85] examined many
classes of graph on which the trivial simulation runs in polynomial
time. Recently, Auger, Coucheney, and Duhaze [10] considered the
multigraph and higher out-degree variant of the problem and de-
signed a nontrivial polynomial-time algorithm for the class of graphs
whose underlying undirected simple graphs are trees.

This thesis contributes towards both approaches. The main result is
a subexponential algorithm for general instances with the runtime
of 2O(

√
n logn). This is an instantiation of a general framework that

can be tailored to produce other algorithms for ARRIVAL. One such
algorithm achieves polynomial runtime for graphs that are close to
acyclic. The main idea of the framework is to guess an NP or coNP
certificate systematically. The approach of obtaining such a certfi-
cate also sets this framework apart from most of other algorithms
to-date.

Additionally, we can solve in polynomial time another subclass of
the ARRIVAL problem. This subclass captures a hard case of the
above subexponential algorithm and also the other deterministic
algorithms. We can exploit the structure of the instances in this
subclass to derive a recursive procedure, where at every iteration,
we can either decide the original problem or reduce the size of the
underlying graph.

10 Overview

All of the results above rely on a generalization of ARRIVAL, called
G-ARRIVAL. In this multi-run variant, we allow multiple trains,
multiple origins, and multiple destinations. This variant contains
ARRIVAL as a special case and has been discussed in a different
form in the original paper [77], on which this part of the thesis is
based on. Here, we expand the discussion about this generalized
problem and show that it shares the same decision and search com-
plexity with ARRIVAL. Moreover, it turns out that this general-
ization does not only allow us to design faster algorithms to solve
ARRIVAL but also even G-ARRIVAL itself.

1.2 Combinatorial generation via permuta-
tion languages

Combinatorial algorithms constitute an important part of computer
science. This is not least due to the ubiquity of the underlying com-
binatorial objects, such as graphs, binary strings, and permutations,
in the field. In his seminal series The Art of Computer Program-
ming, Knuth dedicated a volume to these algorithms and especially
devoted a significant portion to exhaustive generation, one of the
fundamental tasks on the combinatorial objects [108]. However, de-
spite the vast number of algorithms, the literature still lacks a uni-
fying theory for exhaustive generation.

As a contribution toward this goal, we present a general and versa-
tile algorithmic framework that can generate a wide range of combi-
natorial objects. The framework requires the objects to be encoded
by permutations and provides a simple greedy algorithm, called Al-
gorithm J, to generate these permutations. We characterize a clo-
sure property that serves as a sufficient condition for a set of permu-
tations to be successfully generated Algorithm J. As the condition
is very mild, the number of such sets are double-exponential in the
size of the permutations.

1.2. Combinatorial generation via permutation languages 11

We highlight two key features of our framework. The first one is
related to the complexity of the algorithm. The ultimate goal of
exhaustive generation, besides listing all objects of a set, is to take
little (ideally constant) time to produce each object. In order to do
so, consecutive objects should differ only by a small change, or in
other words, the listing should be a Gray code. In our framework,
the listing of permutations generated by Algorithm J translates to
a Gray code of the original objects, and the changes between two
consecutive objects are smallest in a provable sense.

The second feature of the framework is its wide variety of applica-
tions. As noted above, Algorithm J can generate a double-exponential
number of sets of permutations. Since many of these permutations
can be used to encode objects, this implies a large number of com-
binatorial objects that can be generated by the framework. In par-
ticular, we recover the following four classical Gray codes: (1) the
Steinhaus-Johnson-Trotter algorithm to generate all permutations
of [n] := {1, 2, . . . , n} by adjacent transpositions, also known as plain
change order [162, 99]; (2) the binary reflected Gray code (BRGC)
to generate all binary strings of length n by flipping a single bit
in each step [81]; (3) the Gray code for generating all n-vertex bi-
nary trees by rotations due to Lucas, Roelants van Baronaigien, and
Ruskey [121]; (4) the Gray code for generating all set partitions of [n]
by exchanging an element in each step due to Kaye [104]. Further-
more, the framework also allows us to generate many new classes of
objects. In this thesis, we present two main applications.

The first application pertains to pattern-avoiding permutations. The
framework can generate permutations avoiding certain classical pat-
terns, vincular and bivincular patterns [16, 36], barred patterns [170],
boxed patterns [12], Bruhat-restricted patterns [172], mesh pat-
terns [37], monotone and geometric grid classes [94, 5], and many
more. The new Gray codes for these permutations also translate to
Gray codes for all the combinatorial objects that can be encoded

12 Overview

by them, including the five different types of geometric rectangula-
tions [2, 144, 8, 43], also known as floorplans, which are tilings of a
square by a fixed number of rectangles.

The second application of our framework is the generation of the
lattice congruences of the weak order on permutations. These ob-
jects are found at the meeting point of combinatorics, discrete ge-
ometry, and algebra, and have been extensively studied in recent
years [143, 146, 147]. Lattice congruences define lattice quotients,
which take many well-known lattices as special cases, such as the
Boolean lattice, the Tamari lattice [157], and certain Cambrian lat-
tices [142, 47]. Moreover, the cover graphs of these lattice quotients
can be realized as the skeletons of certain polytopes, called quotien-
topes [134], which generalize hypercubes, associahedra, permutahe-
dra, etc. For each lattice congruence, our algorithm generates a list-
ing of its equivalence classes, which corresponds to a Hamilton path
on the cover graph of these corresponding lattice quotients and the
skeleton of the corresponding quotientope.

The above two applications form the first two installments of a pa-
per series [83, 89]. The other installments provide additional appli-
cations of the frameworks, such as elimination trees [42] and differ-
ent types of rectangulations (including the aforementioned geomet-
ric rectangulations) [124].

1.3 Outline and summary of contributions

The remainder of the thesis is divided into two parts, which cover
the two topics introduced above and can be read independently from
each other.

The first part addresses the ARRIVAL problem and is primarily
based on unpublished joint work with Bernd Gärtner and the fol-
lowing paper published in peer-reviewed proceedings:

1.3. Outline and summary of contributions 13

� A subexponential algorithm for ARRIVAL by Bernd Gärtner,
Sebastian Haslebacher, and Hung P. Hoang [77].

This part consists of three chapters. In Chapter 2, we formally define
ARRIVAL and its generalization, G-ARRIVAL and establish G-
ARRIVAL within the literature of Abelian networks, which provides
the foundation for many results on this problem. We also extend the
decision and search complexities of ARRIVAL to G-ARRIVAL in
this chapter. Next, Chapter 3 presents a general framework to solve
G-ARRIVAL and two applications of this framework, a subexponen-
tial algorithm for general instances and a polynomial-time algorithm
for a subclass of almost acyclic graphs. Finally, Chapter 4 discusses
another subclass that is hard for some existing algorithms and how
we can take advantage of its structure to design a polynomial-time
algorithm.

The second part of the thesis concerns with the exhaustive genera-
tion of combinatorial objects and is based on the following published
papers in peer-reviewed journals:

� Combinatorial generation via permutation languages: I. Fun-
damentals by Elizabeth Hartung, Hung P. Hoang, Torsten
Mütze, and Aaron Williams [83],

� Combinatorial generation via permutation languages: II. Lat-
tice congruences by Hung P. Hoang and Torsten Mütze [89].

An extended abstract of these two papers was published in the
proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms [84]. This part also consists of three chapters. Chapter 5
introduces the general framework for exhaustive generation and ex-
plains how four classical Gray codes arise as special cases. The last
two chapters, Chapters 6 and 7, are dedicated to the two applica-
tions in pattern-avoiding permutations and lattice congruences of
the weak order of permutations. In the latter chapter, we also dis-
cuss a few graph theoretical results for these lattice congruences.

14 Overview

1.4 Notations

In this section, we introduce a few common notations that are used
throughout this thesis. Other specific notations will be introduced
as they are required.

We denote by log the binary logarithm and by ln the natural log-
arithm. For any two real numbers a and b with a ≤ b we define
[a, b] := {⌈a⌉ , ⌈a⌉+1, . . . , ⌊b⌋} as the set of all integers between (and
including) ⌈a⌉ and ⌊b⌋. We denote]a, b[:= [a, b] \ {a, b} and intro-
duce the abbreviation [n] := [1, n]. We use ε to denote the empty
permutation or the empty string.

Next, we discuss a few terminologies for directed graphs. For a
directed edge (u, v) from a vertex u to a vertex v, u and v are called
the tail and the head of the edge, respectively. We say v is an out-
neighbor of u and u an in-neighbor of v. The edge (u, v) is then an
outgoing edge from u and an incoming edge to v. The out-degree
and in-degree of a vertex v are the numbers of outgoing edges from
and incoming edges to v, respectively. A vertex with in-degree 0 is
a source, and a vertex with out-degree 0 is a sink. Unless otherwise
stated, all directed graphs in this thesis are simple (i.e., there are
no loops and no multiple edges with the same head and tail).

For a vertex v and a set of edges E in a directed graph, we denote
the set of outgoing edges of v by E+(v). Analogously, we denote the
set of incoming edges of v by E−(v). Furthermore, for a function
x : E → R, we also use the notation xe instead of x(e) to denote the
value of x at some edge e ∈ E. Lastly, given some vertex v, edges E
and a function x : E → R, we use x+(v) :=

∑
e∈E+(v) xe to denote

the outflow of x at v and x−(v) :=
∑

e∈E−(v) xe to denote the inflow
of x at v. For two functions x, x′ : E → R, we write x ≤ x′ if this
holds componentwise, i.e. xe ≤ x′e for all e ∈ E.

1.4. Notations 15

For undirected graphs, we only discuss simple graphs (i.e., with no
loops and no multiple edges between two vertices), unless stated
otherwise. The degree of a vertex in an undirected graph is the
number of edges incident to the vertex. An undirected graph G is
regular, if all vertices have the same degree. It is vertex transitive, if
for any two vertices u, v of G, there is an automorphism f : G→ G,
such that f(u) = v. It is k-partite or k-colorable, for some k ≥ 2, if
the vertices of the graph can be partitioned into k disjoint subsets,
such that no two vertices are adjacent in each subset. When k = 2,
we call the graph bipartite.

Lastly, N0 denotes the set of all natural numbers (including 0), and
R the set of all real numbers.

16 Overview

Part I

ARRIVAL

17

“Men," said the little prince, “set
out on their way in express trains,
but they do not know what they are
looking for. Then they rush about,
and get excited, and turn round and
round . . . "

—Antoine de Saint-Exupéry,
The Little Prince

CHAPTER 2

ARRIVAL and its generalization

Except for Sections 2.3 and 2.7, which have not been published, this
chapter is based on [77], which is joint work with Bernd Gärtner
and Sebastian Haslebacher.

The ARRIVAL problem was introduced by Dohrau et al. [62] as
the problem of deciding whether the train arrives at a given desti-
nation or runs forever. Here, we work in a different but equivalent
setting (implicitly established by Dohrau et al. already) in which
the train always arrives at one of two destinations, and we have to
decide at which one. The definitions and results from Dohrau et
al. [62] easily adapt to this setting. We will first formally define the
ARRIVAL problem. We will then introduce a generalization called
G-ARRIVAL, where there are multiple trains, multiple origins, and
multiple destinations. This generalization will be the focus for the
rest of the chapter. Specifically, we place it in the broader frame-

19

20 ARRIVAL and its generalization

work of Abelian networks (Lemma 2.8) and hence, the problem in-
herits an important “Abelian property” (Corollary 2.16) that is use-
ful for later algorithmic results. We also extend the current upper
bounds in terms of decision and search complexities of ARRIVAL
to G-ARRIVAL (Theorems 2.21 and 2.33).

2.1 ARRIVAL

Given a finite set of vertices V , an origin o ∈ V , two destinations
d, d /∈ V and two functions seven, sodd : V → V ∪{d, d}, the 6-tuple
A = (V, o, d, d, seven, sodd) is an ARRIVAL instance. The vertices
seven(v) and sodd(v) are called the even and the odd successor of v.

An ARRIVAL instance A defines a directed graph, connecting each
vertex v ∈ V to its even and its odd successor. We call this the switch
graph of A and denote it by G(A). To avoid special treatment of the
origin in certain analysis, we introduce an artificial vertex Y /∈ V ∪
{d, d} (think of it as the “train yard”) that only connects to the origin
o. Formally, G(A) = (V (A), E(A)) where V (A) = V ∪{Y, d, d} and
E(A) = {(Y, o)} ∪ {(v, seven(v)) : v ∈ V } ∪ {(v, sodd(v)) : v ∈ V }.
We also refer to E(A) simply as the edges of A. An edge e ̸= (Y, o)
is called proper.

The run procedure is the following. For every vertex we maintain
a current and a next successor, initially the even and the odd one.
We put a token (usually referred to as the train) at o and move it
along switch graph edges until it reaches either d or d. Whenever
the train is at a vertex v, we move it to v’s current successor and
then swap the current and the next successor; see Algorithm 1 for
a formal description.

Algorithm 1 (Run procedure) may cycle, but we can avoid this by
assuming that from every vertex v ∈ V , one of d and d is reach-
able along a directed path in G(A). We call such an ARRIVAL in-

2.1. ARRIVAL 21

Algorithm 1 (Run procedure). Given an ARRIVAL instance
A = (V, o, d, d, seven, sodd), this algorithm decides if the desti-
nation of the train is d or d̄
1. [Initialize] Let scurr and snext be arrays indexed by the

vertices of V . For v ∈ V , set scurr[v] ← seven(v) and
snext[v]← sodd(v).

2. [Traverse the edge (Y, o)] Set v ← o.
3. [Route train by one step] While v ̸= d and v ̸= d,

3.1. Set w ← scurr[v];
3.2. Swap scurr[v] and snext[v];
3.3. Set v ← w.

4. [Output] Return v.

stance terminating, since it guarantees that either d or d is eventu-
ally reached, as shown later in Lemma 2.15 (for the generalization).

The ARRIVAL problem is to decide whether the train reaches d,
i.e., whether Algorithm 1 (Run procedure) returns d.

Related work on complexity. In the introductory paper on AR-
RIVAL, Dohrau et al. [62] showed an upper bound of NP ∩ coNP.
This bound could be strengthened in various ways. ARRIVAL is
in UP ∩ coUP, meaning that there are efficient verifiers that ac-
cept unique proofs [76]. A search version of ARRIVAL has been
introduced by Karthik C. S. and shown to be in PLS [103], then in
CLS [76], and finally in UEOPL [76, 73]. The latter complexity class,
established by Fearnley, Gordon, Mehta, and Savani [73], has an in-
triguing complete problem, but there is no evidence that ARRIVAL
is complete for UEOPL.

Concerning lower bounds, ARRIVAL was first shown to be NL-
hard [72]. This is not a very strong statement and means that every

22 ARRIVAL and its generalization

problem that can be solved by a nondeterministic log-space Turing
machine reduces (in log-space) to ARRIVAL. Recently, Manuell [122]
strengthened this result to CC-hardness. CC is a complexity class
between NL and P and contains a decision variant of stable mar-
riage problem as a complete problem. He also showed that it is a
hard problem for PL (probablistic log-space).

Observe that ARRIVAL is a zero player game, i.e., a process that
runs without a controller. Much more interesting complexity results
are for the natural one- and two-player variants of ARRIVAL that
have been introduced in the paper above by Fearnley et al. [72] and
later expanded by Ani, Demaine, Hendrickson, and Lynch [7]. The
one-player variants of ARRIVAL are NP-complete, and the two-
player variants are PSPACE-hard [7, 72].

We can contrast these results with three well-known graph games in
NP∩ coNP that are not known to be in P, namely simple stochastic
games, mean-payoff games and parity games [52, 176, 100]. These
are two-player games. Moreover, it is stated in (or easily seen from)
these papers that the one-player variants (the strategy of one con-
troller is fixed) have polynomial-time algorithms. This shows that
the p-player variant of ARRIVAL is probably strictly harder than
the p-player variants of these graph games, for p = 1, 2. This makes
it a bit less surprising that ARRIVAL itself (p = 0) could so far not
be shown to lie in P.

2.2 G-ARRIVAL

We now define a generalized version of the ARRIVAL problem,
where we allow multiple trains, multiple origins, and multiple des-
tinations. A formal definition is as follows, where we use similar
terminologies as for ARRIVAL.

2.2. G-ARRIVAL 23

Definition 2.1 (Switching system). A switching system is a 5-tuple
A = (V, D, s, seven, sodd), for

� a finite set of vertices V = {v1, . . . , vn},

� a finite set of destinations D = {d1, . . . , d|D|} with D∩V = ∅,

� a supply function s : V → N0 that indicates the number of
starting trains at each vertex, and

� two functions seven, sodd : V → V ∪D that indicate the even
and odd successors of each vertex in V , respectively.

Definition 2.2 (Switch graph). Given a switching system A =
(V, D, s, seven, sodd), the train yard of A is an artificial vertex Y =
Y (A) that is connected to all vertices in V . The switch graph of A
denoted by G(A) is (V (A), E(A)), where V (A) = {Y } ∪ V ∪D and
E(A) = {(Y, v) : v ∈ V } ∪ {(v, seven(v)) : v ∈ V } ∪ {(v, sodd(v)) :
v ∈ V }. The edges in E(A) are also called the edges of A. The
proper edges are those that are not incident to Y .

Definition 2.3 (Terminating switching system). A switching sys-
tem A = (V, D, s, seven, sodd) is terminating, if from every vertex
v ∈ V , one of the vertices in D is reachable along a directed path in
the switch graph of A.

Note that we can define a switching system without using the train
yard Y , and we indeed do not need this artificial vertex in most
arguments. However, the train yard does help to ease the techni-
calities in a few places, such as in the proof of Theorem 2.33 in this
chapter and as discussed in Section 3.7 in the next chapter.

Since every vertex in V has two outgoing edges, we can assume |D| ≤
2n, where n = |V |. Further, let S =

∑
v∈V s(v) indicate the total

number of starting trains. We assume S ≥ 1, because otherwise,
there is nothing to do. Moreover, we assume the encoding size of

24 ARRIVAL and its generalization

S to be in O(poly(n)), i.e., logS = O(poly(n)). In that way, when
we talk about a polynomial-time algorithm for a problem involving
a switching system, we mean that the runtime of the algorithm is
polynomial in n.

Analogous to the run procedure, we describe the multi-run proce-
dure, as follows. For each vertex v in V , we put s(v) trains at v. By
this, we mean that all S trains are at Y at the beginning, and we
send s(v) trains along the edge (Y, v). Note that after this step, no
trains are at Y , and since Y has no incoming edges, no train will
reach Y . Trains that are now on vertices in V are called waiting (to
move on). For every vertex, we initialize current and next successors
as before in Algorithm 1 (Run procedure). Then we (nondetermin-
istically) repeat the following until there are no more trains waiting.

We pick a vertex v ∈ V where some trains are waiting and call the
number of waiting trains t(v). We choose a number ρ ∈ {1, . . . , t(v)}
of trains to move on; we move ⌈ρ/2⌉ of them to the current suc-
cessor and ⌊ρ/2⌋ to the next successor. If ρ is odd, we afterwards
swap the current and the next successor at v. We call the above
operation routing of ρ trains from v. See Algorithm 2 for a formal
description. Note that the algorithm considers as input a terminat-
ing switching system to ensure its termination, which will be shown
subsequently in Lemma 2.15. However, the routing operation in
general can be applied to non-terminating switching systems.

The output of the procedure is a tuple (t[d1], . . . , t[d|D|]), where each
t[di] indicates the number of trains arriving at di, for i ∈ [|D|].

Definition 2.4 (G-ARRIVAL). An instance of the G-ARRIVAL
problem is (A, T), for a terminating switching system A = (V, D, s,
seven, sodd) and a tuple T = (t1, . . . , t|D|). The goal of the problem
is to decide if there is an execution of Algorithm 2 (Multi-run pro-
cedure) with input A and output T .

2.2. G-ARRIVAL 25

Algorithm 2 (Multi-run procedure). Given a terminating
G-ARRIVAL instance A = (V, D, s, seven, sodd) for D =
{d1, . . . , d|D|}, this algorithm outputs the number of trains arriv-
ing at each vertex in D.
1. [Initialize] Let scurr and snext be arrays indexed by the ver-

tices of V . For v ∈ V , set scurr[v]← seven(v) and snext[v]←
sodd(v). Moreover, let t be a zero-initialized array indexed
by the vertices of V ∪D.

2. [Traverse edges from Y] For v ← V , t[v]← sv.
3. [Select] Pick v ∈ V such that t[v] > 0 and choose ρ ∈ [t[v]].
4. [Route ρ trains from v] Do the following:

4.1. Set t[v]← t[v]− ρ;
4.2. Set t[scurr(v)]← t[scurr(v)] + ⌈ρ/2⌉;
4.3. Set t[snext(v)]← t[snext(v)] + ⌊ρ/2⌋;
4.4. If ρ is odd, swap scurr[v] and snext[v].

5. [Repeat] If ∃w ∈ V : t[w] > 0, go to 3.
6. [Output] Return (t[d1], . . . , t[d|D|]).

If
∑

i∈[|D|] ti ̸= S, then we know for certain that this is a NO in-
stance. Therefore, we always assume that

∑
i∈[|D|] ti = S.

Note that in Algorithm 2 (Multi-run procedure), the trains are gen-
erally considered as unlabelled. However, for convenience, we some-
times treat them as labelled trains, and we can identify which trains
we route from a vertex. That way, we can trace the sequence of ver-
tices that a train visits from its starting vertex until it reaches a
vertex in D.

Simple switch graph. Although we allow the switch graph of
A to be a multi-graph, we can assume WLOG. that it is a simple
graph, when A is terminating. We show this by considering the

26 ARRIVAL and its generalization

three following cases that make G(A) non-simple:

� If there exists v ∈ V such that seven(v) = sodd(v) = v, this
contradicts the assumption that the system is terminating.

� If there exists v ∈ V such that seven(v) = sodd(v) = u ̸= v,
a train after reaching v will always go to u. Hence, we can
contract v to u.

� If there exists v ∈ V such that {seven(v), sodd(v)} = {v, u}, u ̸=
v, the train after reaching and looping at v will always go to
u. Hence, we can contract v to u.

2.3 Abelian networks

Observe that Algorithm 1 (Run procedure) is completely determin-
istic, and hence, the ARRIVAL problem is well-defined. On the con-
trary, Algorithm 2 (Multi-run procedure) is nondeterministic. How-
ever, we proved in [77] that the output of this procedure is always
the same, regardless of the choices during the execution of the multi-
run procedure. It turns out that it was a rediscovery of a well-known
“Abelian property” of more general models called Abelian networks.
In this section, we introduce these models and show why the switch-
ing systems are one of them. We emphasize that this Abelian prop-
erty is a key ingredient in the algorithm design for switching sys-
tems, as it allows us to prescribe freely a routing order of trains.

2.3.1 Abelian networks

We use the definition of an Abelian network by Bond and Levine [34].
Such a network contains automata that live at the vertices of a di-
rected graph and communicate through the edges. It produces an
output uniquely determined by the input and independent from the
processing order of the automata. We note that these automata are

2.3. Abelian networks 27

not the common finite-state automata, which recognize formal lan-
guages. Here, each automaton receives a string as the input, pro-
cesses the letters of the string on a first-in-first-out basis, and pro-
duces many outputs. Each of the outputs, which is a string, is then
appended to the input string of another automaton. In this sense, it
is more related to a finite-state transducer. We call these automata
processors and describe them more formally as follows.

Processor. Given a directed graph G, we associate each vertex v
of G with a processor Pv, which has one output port for each out-
going edge from v and a single input port. We can view the input
port as containing a string, where any new string arriving at the
port will be concatenated on the right of the existing string to form
a new string. The processor then reads the letters in its input port
from left to right. Typically, it reads one letter at a time, but we
also allow it to read a substring, as this notion will be helpful in
Definition 2.5 below.

The processor Pv has an input alphabet Av and a state space Qv.
For each out-neighbor u of v, the output alphabet of Pv associated
to the edge (v, u) is Au. Let A∗

v be the free monoid of all finite words
in the alphabet Av. The processing of Pv is defined by two functions.
Firstly, a transition function Tv : A∗

v ×Qv → Qv computes the next
state of the processor. Secondly, message passing functions T(v,u) :
A∗

v × Qv → A∗
u computes the output sent to each out-neighbor u

of v. As the processor reads the input letters from left to right,
these two functions must satisfy the following: For a word w = aw′

in A∗
v, a state q in Qv, and an out-neighbor u of v, we have

Tv(w, q) = Tv(w
′, Tv(a, q)),

T(v,u)(w, q) = T(v,u)(a, q) · T(v,u)(w
′, Tv(a, q)),

(2.1)

where the multiplication here denotes concatenation of words.

28 ARRIVAL and its generalization

Definition 2.5 (Abelian processor [34]). The processor Pv is called
Abelian, if for any words w,w′ ∈ A∗

v such that w is a permutation
of w′, and for all q ∈ Qv and all out-neighbor u of v, we have

� Tv(w, q) = Tv(w
′, q), and

� T(v,u)(w, q) is a permutation of T(v,u)(w
′, q).

In words, permuting the letters inputted to Pv results in the same
final state and a permutation of the letters outputted to the proces-
sor Pu of each neighbor u (but otherwise, the letters received by Pu
are unchanged).

Definition 2.6 (Abelian network [34]). An Abelian network on the
directed graph G is a collection of Abelian processors, one on each
vertex of G.

Processing of the network. Note that in the definition of an
Abelian network above, we only have a local requirement about each
individual processor in the network. We now describe the global pro-
cessing of the network. The network processes sequentially, where
at each step, an arbitrary processor processes a substring in its in-
put port. The processing of the network stops when all processors
have processed all the letters in their input ports. Observe that the
order of processing of the network changes the order in which the
letters arrive at an individual processor. However, if the network is
Abelian, then we have the following “Abelian property”:

Theorem 2.7 (Abelian property of Abelian networks). [34, Theo-
rem 4.6] The following aspects of an Abelian network do not depend
on the order of processing of the network:

� The halting status (i.e., whether the processing eventually stops),

� The final states of the processors,

2.3. Abelian networks 29

� The runtime (i.e., the total number of letters processed by all
processors),

� The local runtimes (i.e., the number of letters processed by a
given processor), and

� The detailed local runtimes (i.e., the number of times a given
processor processes a given letter in its input alphabet).

2.3.2 Switching systems are Abelian networks

As noted in [34], a unary processor (i.e., a processor with input
alphabet of cardinality 1) is trivially Abelian. Therefore, a network
of unary processors is Abelian. We call such a network unary. In
this section, we show that switching systems are unary and hence
Abelian (Lemma 2.8).

Lemma 2.8. A switching system is a unary network and hence is
Abelian and has the Abelian property in Theorem 2.7.

Proof. Suppose A = (V, D, s, seven, sodd) is a switching system,
with V = {v1, . . . , vn}. Let S =

∑
v∈V s(v). We construct the

processors on the switch graph G(A) as follows. At each vertex v ∈
V (A), the processor Pv has an input alphabet consisting of a single
letter a. The state space Qv of Pv is {0, 1} for v ∈ V , and [0, S] for
v ∈ D ∪ {Y }. The starting states of all processors are 0.

We define the sequence (b0, b1, . . . , bn), such that b0 = 0 and bi =∑i
j=1 s(vj) for i ∈ [n]. Given a vertex v in V (A) and a state q ∈ Qv,

the transition function is

Tv(a, q) =

{
q + 1 (mod 2) if v ∈ V ,
min{q + 1, S} if v ∈ D ∪ {Y }.

Given a vertex v in V , a state q ∈ Qv, and an out-neighbor u of v,

30 ARRIVAL and its generalization

the message passing function is

T(v,u)(a, q) =


a if q = 0 and u = seven(v),
a if q = 1 and u = sodd(v),
ε otherwise.

Lastly, given vi ∈ V and a state q ∈ QY ,

T(Y,vi)(a, q) =

{
a if q < S and bi−1 ≤ q < bi,
ε otherwise.

Observe that for input words of more than one letter, the values of
the transition functions and message passing functions are defined
by (2.1). Since there are no outgoing edges from a vertex v in D,
there are no message passing functions associated with Pv, and we
can view the output of the processor to be always ε.

The states of 0 and 1 at a vertex v ∈ V correspond to whether the
current successor of v is the even and the odd successors, respec-
tively. The state at Y represents the number of trains we have sent
out from Y , where each time PY processes, a train is sent from Y
to a vertex v in V , and the sequence (b0, b1, . . . , bn) plays a role at
ensuring that at most s(v) trains are sent to v. It is easy to see
that we can simulate the routing of ρ trains from a vertex v ∈ V by
letting Pv process ρ times. The number of waiting trains at each
vertex v corresponds to the letters yet to be processed at the input
to Pv. Finally, the state at a destination in D counts the number
of trains that have reached that destination. Based on the above
correspondences, the theorem statement follows.

2.3.3 Other unary networks

Bond and Levine [34] also discuss two prominent unary networks
that have a similar flavor as the switching systems. These networks
are two simple combinatorial models that connect different branches

2.3. Abelian networks 31

of mathematics, such as Tutte polynomial, random walk, and divisor
theory in algebraic geometry. We introduce them briefly below and
refer the reader to [34] for the proofs for why they are unary. These
proofs are similar to that of Lemma 2.8 above.

Chip-firing. This is also called the Abelian sandpile model. An
instance of chip-firing consists of a directed graph (V,E) and a chip
configuration, a function V → N0 that can be viewed as an allocation
of tokens (commonly referred to as chips) to the vertices of the
graph. If the number of chips at a non-sink v is at least its out-
degree, the vertex can fire, transferring a chip along each incident
edge. In other words, the number of chips at v decreases by the out-
degree of v, while that at each out-neighbor of v increases by the
in-degree from v. A chip-firing game is a sequence of firing, where
at each step, we pick an arbitrary vertex that can fire and let it fire.
The game halts if we get to a chip configuration where no vertex
can fire.

Rotor-routing. On a high level, rotor-routing can be seen as a
refined version of chip-firing and a deterministic simulation of a
random walk on a directed graph. It has been studied under many
names, such as Eulerian walkers [136] and Propp machine [53]. An
instance of rotor-routing involves a ribbon graph and an initial chip-
and-rotor configuration. A ribbon graph is a directed graph G with a
fixed cyclic finite sequence of (not necessarily distinct) out-neighbors
of each non-sink v. We denote this sequence by (v0, . . . , vd(v)−1),
where d(v) is a positive integer indicating the length of the sequence.
A rotor configuration is a function r that maps each vertex v of G
to a number in [0, d(v) − 1]. A chip configuration c is defined the
same as for chip-firing. We can visualize that each vertex v has c(v)
chips and a rotor that points to vr(v). We call the pair (c, r) a chip-
and-rotor configuration. A chip at a vertex v moves on G according
to the rotor-router operation, defined as follows: if v has at least an

32 ARRIVAL and its generalization

out-neighbor, we route the chip from v to vr(v) and increase r(v) by
one (mod d(v)). In other words, given the current chip-and-rotor
configuration (c, r) and a vertex v where c(v) > 0, by performing the
rotor-router operation on v, we obtain a new configuration (c′, r′)
as follows:

c′(u) =


c(u) if u ̸= v, vr(v),

c(u)− 1 if u = v,

c(u) + 1 if u = vr(v).

r′(u) =

{
r(u) if u ̸= v,

r(u) + 1(mod d(v)) if u = v,

Note that in the literature on rotor-routing, the rotor-router opera-
tion changes the rotor before sending the chip to the out-neighbor
that the new rotor is pointing. However, to compare easily with
switching systems later, we define the rotor-router operation as
above, where the chip is sent before the rotor is changed. This dif-
ference does not affect the comparability of the results in this thesis
with other papers, as the two definitions of rotor-router operation
are equivalent, subject to a cyclic shift in the cyclic sequence of the
out-neighbors at every vertex.

Similar to a chip-firing game, at each step of a rotor-routing game,
we pick an arbitrary non-sink that has at least a chip and perform
the rotor-router operation on that vertex. The game halts if all non-
sinks have no chips.

Lemma 2.9. [34] Chip-firing and rotor-routing are unary net-
works and hence Abelian.

2.4 Switching systems vs. rotor-routing

The setting of rotor-routing is very similar to switching systems.
As mentioned earlier, rotor-routing have been studied under various

2.4. Switching systems vs. rotor-routing 33

names, and switching systems are another variant. It is easy to see
that switching systems are a special case of rotor-routing, since the
main differences between rotor-routing and switching systems are
as follows:

� A vertex in a switching system has at most two outgoing edges
with a simple alternation between these two edges, while a
vertex in a ribbon graph can have more outgoing edges and the
order of the out-neighbours can be much more complicated.

� For the setting of a switching system, we are interested in
graphs with at least a sink, whereas a ribbon graph can have
no sinks. Observe that in a rotor-routing game, unless a chip
reaches a sink, it will move forever.

However, the restrictions from the setting of switching systems can
be imposed on a ribbon graph without loss of generality. Just
like we can implement any Boolean functions with AND and NOT
gates [91], we can “implement” rotor-routing with switching systems.

Lemma 2.10. Given a rotor-routing instance, without loss of gen-
erality, we can assume that a ribbon graph has at least one sink,
each non-sink has out-degree two, and its two neighbors appear ex-
actly once in its cyclic sequence.

Proof. Firstly, we can easily add an artificial sink in the graph with-
out affecting the rotor-router operations on any vertex. More specif-
ically, given a ribbon graph with no sink, we can add a sink d and
a vertex w whose out-neighbors are d and an existing vertex in the
graph. We put no chips on d and w. Since w has no incoming edges
and is the only in-neighbor of d, no chips will come to and go from
either of these two vertices.

Secondly, if there is a non-sink v that does not meet the requirements
in the lemma statement, we can replace it with a few vertices that do.
More precisely, we replace v with a complete binary tree. Suppose

34 ARRIVAL and its generalization

the cyclic sequence at v has length d(v). Then the depth of the
binary tree is ⌈log d(v)⌉. In that way, there will be at least d(v) (not
necessarily distinct) leaves to serve d(v) consecutive tokens entering
the root. These leaves will correspond to the d(v) outgoing vertices
in the sequence of the original processor. For the remaining leaves,
we connect them back to the root. Note that for each sequence of
length d(v), we add O(d(v)) additional vertices and edges in the
switching system. Hence, the encoding size only blows up by a
linear factor. We can set the cyclic sequences of the new vertices
such that the order of chips leaving the tree is exactly the same as
the order in the original cyclic sequence at v. See Figure 2.1 for the
illustration.

c db

a

(c, c, d, b, c, b)

c db

a

(c, c, d, b, c, b, a, a)

Figure 2.1: A vertex a with its out-neighbors and its cyclic sequence
in a rotor-routing instance (left), and the corresponding replacement
binary tree with the cyclic order of the leaves that consecutive chips
leaving a will eventually visit (right). On the right, for each vertex,
the chip will be routed via the solid edge before the dashed edge.

2.4. Switching systems vs. rotor-routing 35

We remark that the technique of replacement by a binary tree above
is also employed by Zwick and Paterson [177, Section 6] for a similar
reduction for simple stochastic games. We also add that even though
we can simulate a rotor-routing instance by a switching system, the
resulting switching system is not necessarily terminating (i.e., there
may be a vertex that does not have any directed path to a sink).

2.4.1 Abelian networks as reconfiguration graphs

The Abelian networks discussed so far easily fits into the framework
of reconfiguration problems. We will look at some examples below.

G-ARRIVAL. To phrase G-ARRIVAL as a reconfiguration prob-
lem, we first need to define the configurations. Similar to a chip-
and-rotor configuration of a rotor-routing instance, we can define
analogously a train-and-switch configuration or simply a state of a
switching system, as follows.

Definition 2.11 (State of a switching system). Given switching
system A = (V, D, s, seven, sodd), a train-and-switch configuration
or a state of A is a tuple (τ, σ), where

� the function τ : V (A) → N0 called the train configuration
records the number of trains on each vertex of G(A) (including
the train yard) and satisfies

∑
v∈V (A) τ(v) =

∑
v∈V s(v) (i.e.,

the total number of trains is preserved), and

� the function σ : V → {0, 1} called the switch configuration
indicates whether the current successor of each vertex is the
even successor (correspoding to the value 0) or the odd succes-
sor (corresponding to the value 1).

We are now ready to define the reconfiguration graph. Suppose
we have a switching system A = (V, D, s, seven, sodd), with D =
{d1, . . . , d|D|}. The reconfiguration graph RA has all states of A as

36 ARRIVAL and its generalization

its vertices, and the routing operations define its edges. Observe that
the edges of RA are directed. Then, a G-ARRIVAL instance (A, T)
with T = (t1, . . . , t|D|) asks a reachability question on RA. Specifi-
cally, we are given the starting state (τ0, σ0), such that τ0(v) = s(v)
and σ0(v) = 0 for v ∈ V , and τ0(d) = 0 for d ∈ D. Further, we are
given a target set T = {(τ ′, σ′) | ∀i ∈ [|D|], τ ′(di) = ti}. The ques-
tion is then whether there exists a directed path in RA from (τ0, σ0)
to a state in T . Note that in general, RA can have directed cycles.
However, Lemma 2.15 and Corollary 2.16 in the next section imply
that if the switching graph is terminating (i.e., from every vertex
in V , there is a directed path in G(A) to a destination in D), then
RA is a union of directed rooted trees (i.e., in each tree, there is a
vertex to which every other vertex has a directed path).

Rotor-routing reachability We can also ask the reachability
question differently. For example, is there a directed path in RA

from the starting state (τ0, σ0) to a given state (τ ′, σ′)? If the
switching system is restricted to the setting of the ARRIVAL prob-
lem (i.e., there is only one train in the system), then a result by
Gärtner, Hansen, Hubáček, Král, Mosaad, and Slívová [76] implies
that this question can be answered in polynomial time, by solving a
system of linear equations and verifying whether the solution of the
system contains only natural numbers (see [76, Lemma 23]). Re-
cently, Tóthmérész [160] extended this complexity to a more general
problem: the rotor-routing reachability problem. In this problem,
the reconfiguration graph has all possible chip-and-rotor configura-
tions on a given ribbon graph as vertices and the rotor-router op-
erations define the edges. Given two chip-and-rotor configurations,
the problem asks to decide whether one can be reachable from the
other in this reconfiguration graph.

Theorem 2.12. [160, Theorem 3.1] The rotor-routing reachability
problem is in P.

2.4. Switching systems vs. rotor-routing 37

Note that this result does not settle the complexity status of G-
ARRIVAL or ARRIVAL. In the rotor-routing reachability problem,
the instance includes an initial chip-and-rotor configuration and a
target chip-and-rotor configuration. In the G-ARRIVAL and AR-
RIVAL problems, the instance includes an initial train-and-switch
configuration and a target train configuration. That is, the target
switch configuration is not part of the input. Hence, we have the set
T defined above. A näive approach is to try all switch configura-
tions (i.e., testing for every state in T), but there are exponentially
many of them.

Chip-firing reachability A similar problem has also been stud-
ied for chip-firing. The chip-firing reachability problem asks, given
a directed graph and an initial chip configuration, whether we can
reach another given chip configuration. The problem was shown to
be in coNP [95] and is not in P unless NP = coNP [160]. There are
some possible intuitive reasons for why this problem is harder (in
terms of complexity) than the rotor-routing reachability. For one,
rotor-routing is more constrained, in the sense that its configuration
involves also the rotor configuration in addition to the chip config-
uration. For another, the chips can move independently in rotor-
routing, while in chip-firing, they have to gather sufficiently many
at one place in order to move.

Does the result above on chip-firing reachability give some indica-
tion that there may be no polynomial algorithm for G-ARRIVAL or
maybe even for ARRIVAL? The answer is no, since the complexities
of the two problems are quite different. To show the result in [160],
Tóthmérész first showed that if there exists a polynomial-time for
the chip-firing reachability problem, then there is an efficient NO
certificate for the chip-firing halting problem, i.e., the problem of de-
ciding the halting status of a chip-firing game. In other words, the
chip-firing halting problem is then in coNP. However, this problem
is already known to be NP-complete, which implies NP = coNP. On

38 ARRIVAL and its generalization

the other hand, the halting variant of the ARRIVAL problem has
the same complexity as the reachability variant and is known to be
in NP∩coNP [62]. We will show later on that G-ARRIVAL also has
the same complexity. Therefore, the same argument for chip-firing
cannot be used for G-ARRIVAL.

2.5 G-ARRIVAL is well-defined

By Lemma 2.8, the order of applying the routing operations does not
affect the halting status of the switching system. However, this does
not mean that the halting status is YES (i.e., Algorithm 2 (Multi-
run procedure) terminates). In this section, we show that this must
be the case, if the switching system is terminating (i.e., from ev-
ery vertex in the switch graph, at least a destination is reachable);
see Lemma 2.15 below. Additionally, due to the Abelian property
(Lemma 2.8), the number of traversals on each edge is the same,
regardless of how the procedure is executed (Corollary 2.16 below).
Hence, G-ARRIVAL is well-defined. One important concept for
showing Lemma 2.15 and also for future discussions is the switching
flows, defined below.

2.5.1 Switching flows

Switching flows were defined for ARRIVAL in [62]. Here, the defi-
nition carries straighforwardly to G-ARRIVAL, as follows.

Definition 2.13 (Switching flow). Let A = (V, D, s, seven, sodd) be
a terminating switching system with edges E. A function x : E →
N0 is a switching flow for A if

x(Y,v) = s(v), v ∈ V

x+(v)− x−(v) = 0, v ∈ V (flow conservation)
x(v,seven(v)) − x(v,sodd(v)) ∈ {0, 1}, v ∈ V (switching behavior).

2.5. G-ARRIVAL is well-defined 39

Summing all the flow conservation constraints, we obtain the fol-
lowing simple observation.

Observation 2.14. Let A = (V, D, s, seven, sodd) be a terminating
switching system and x be a switching flow for A. Then,∑

d∈D
x−(d) =

∑
v∈V

s(v).

In other words, all flows emitted by the vertices in V are absorbed
by the destinations in D. If we set xe to the number of times the
edge e is traversed in Algorithm 2 (Multi-run procedure), we obtain
a switching flow where the inflows at the destinations correspond
to the output of the algorithm. Indeed, every time the train enters
v ∈ V , it also leaves it; this yields flow conservation. The alter-
nation between the successors (beginning with the even one) yields
switching behavior. We call this value of x a run profile of the cor-
responding switching system. (In the context of rotor-routing, this
is called the odometer in [34].) In principle, a switching system
may have many run profiles. However, due to the Abelian property
(Lemma 2.8), the run profile is unique; see Corollary 2.16 below.

2.5.2 Termination and unique run profile

We begin with the termination guarantee.

Lemma 2.15. Algorithm 2 (Multi-run procedure) terminates.

Proof. Let x : E → N0 record how many times each edge e ∈ E has
been traversed in total, at any given time of Algorithm 2 (Multi-
run procedure). For v ∈ V , we always have x+(v) = x−(v) − t(v),
where t(v) is the number of trains currently waiting at v. Sup-
pose for a contradiction that the Multi-run procedure cycles. Then
x−(v) is unbounded for at least one v ∈ V , which means that x+(v)

40 ARRIVAL and its generalization

is also unbounded, since t(v) is bounded. This in turn means that
x−(seven(v)) and x−(sodd(v)) are unbounded as well, since we dis-
tribute x+(v) evenly between the two successors. Repeating this
argument, we see that x−(w) is unbounded for all vertices w reach-
able from v. But as the inflows at the vertices in D are bounded
(by the number of trains that we started with), none of the these
vertices are reachable from v. This is a contradiction to A being
terminating.

Then the following lemma follows the Abelian property of switching
systems.

Corollary 2.16 (Abelian property of switching systems). Given a
terminating switching system A, the total number of edge traversals,
the run profile, and the output of the algorithm do not depend on
the choices in the execution of Algorithm 2 (Multi-run procedure).

Proof. Firstly, by Lemma 2.15, Algorithm 2 (Multi-run procedure)
always terminates. Let x and y be the run profiles with respect to
two arbitrary executions of the algorithm. By Lemma 2.8, the lo-
cal runtimes (i.e., the number of trains leaving each vertex) are the
same in both executions. This implies that the total number of edge
traversals in the two executions are the same. Due to the switch-
ing behavior at each vertex, we can conclude that the number of
traversals on each edge is the same in both executions. This implies
x = y, as claimed. Consequently, the inflow at each destination is
the same in both executions. In other words, the outputs of the al-
gorithm are the same.

Remark 2.19 below also sketches another proof, which uses the idea
for an analogous statement for ARRIVAL in [62].

2.6. Decision complexity of G-ARRIVAL 41

2.6 Decision complexity of G-ARRIVAL

In this section, we will extend the complexity of ARRIVAL to G-
ARRIVAL. The arguments in this section are analogous to those for
ARRIVAL in [62] and [76].

2.6.1 G-ARRIVAL is in NP ∩ coNP

By Lemma 2.16, the run profile is unique and from that, we can
deduce the unique output of Algorithm 2 (Multi-run procedure).
Therefore, the run profile can certify that a G-ARRIVAL instance
is a YES or a NO instance. It turns out that not only the run profile
but any switching flow can be used as a certificate for both cases
when the instance is either a YES or a NO instance. As a result,
G-ARRIVAL is in NP ∩ coNP.

Theorem 2.17 (Switching flows are certificates). Let A = (V, D, s,
seven, sodd) be a terminating switching system and let D = {d1, . . . , d|D|}.
Then for any switching flow x, (x−(d1), . . . , x−(d|D|)) is the output
of Algorithm 2 (Multi-run procedure).

In fact, we will prove the following stronger statement, which implies
the theorem above.

Theorem 2.18 (The run profile is the minimal switching flow). Let
A = (V, D, s, seven, sodd) be a terminating switching system with
edge set E. Let x̂ be the run profile of A. Then x̂ ≤ x for all
switching flows x. In particular, x̂ is the unique minimizer of the
total flow

∑
e∈E xe over all switching flows.

Proof. We prove this by the pebble argument [62]. Let x be any
switching flow. For every edge e, we initially put xe pebbles on e, and
whenever a train traverses e in Algorithm 2 (Multi-run procedure),
we let it collect a pebble. If we can show that we never run out of
pebbles, x̂ ≤ x follows. By “running out of pebbles”, we concretely

42 ARRIVAL and its generalization

mean that we are for the first time trying to collect a pebble from
an edge with no pebbles left.

We show that we cannot run out of pebbles while processing a picked
vertex v ∈ V . For this, we prove that we maintain the following
additional invariants (which hold immediately at the beginning).
Let p : E → N0 record for each edge e the remaining number of
pebbles on e. Then for all v ∈ V ,

(a) p+(v) = p−(v) + t(v), where t(v) is the number of trains
waiting at v;

(b) p((v, scurr(v)))− p((v, snext(v))) ∈ {0, 1}.

Suppose that these invariants hold when picking a vertex v ∈ V . As
we have not run out of pebbles before, p−(v) ≥ 0 and (a) guarantees
that we have q ≥ t(v) pebbles on the outgoing edges; by (b), ⌈q/2⌉ of
them are on (v, scurr(v)) and ⌊q/2⌋ on (v, snext(v)). From the former,
we collect ⌈ρ/2⌉, and from the latter ⌊ρ/2⌋ where ρ ≤ t(v) ≤ q, so we
do not run out of pebbles. We maintain (a) at v where both p+ and t
are reduced by ρ. We also maintain (a) at the successors; there, the
gain in t exactly compensates the loss in p−. Finally, we maintain
(b) at v: If ρ is even, both p((v, scurr(v))) and p((v, snext(v))) shrink
by ρ/2. If ρ is odd, we have p((v, scurr(v))) − p((v, snext(v))) ∈
{−1, 0} after collecting one more pebble from (v, scurr(v)) than from
(v, snext(v)), but then we reverse the sign by swapping scurr and
snext.

Remark 2.19. Observe that the proof above does not use the fact
that the run profile is unique. In fact, it can be used as another proof
of Corollary 2.16. Indeed, suppose the run profile is not unique.
Then let x̂ and x′ be two distinct run profiles, i.e., for some d ∈ D,
x̂(d) ̸= x′(d). WLOG, we assume x̂(d) > x′(d). Following the
argument as in the proof of Theorem 2.18 for the run profile x̂ and
the switching flow x′, we obtain that x̂ ≤ x′. This contradicts the

2.6. Decision complexity of G-ARRIVAL 43

assumption x̂(d) > x′(d). Note that this proof is similar to the proof
in [160, Lemma 3.6].

Proof of Theorem 2.17. Let x̂ be the run profile and x be any switch-
ing flow. By Observation 2.14, the sums of inflows at the vertices
in D w.r.t. x̂ and x are the same. By Theorem 2.18, x̂ ≤ x. There-
fore, the inflow at each vertex in D is the same in both x and x̂.
The theorem then follows.

2.6.2 G-ARRIVAL is in UP ∩ coUP

The result above can be tightened to a membership in UP ∩ coUP.
The complexity class UP is similar to NP, except that only at most
one certificate can be accepted (i.e., exactly one if the instance is a
YES instance and none if it is a NO instance). The class coUP is
similar to coNP in the same way.

For G-ARRIVAL, as discussed before, the run profile is a certficate
for both YES and NO instances, and it is also unique. The last
ingredient we need is that it can indeed be verified efficiently. We
establish this in the following lemma.

Lemma 2.20 (Efficient run profile verification). Let A = (V, D, s,
seven, sodd) be a terminating switching system with edge set E. Let
x : E → N0 be a function. Then we can verify whether x is the run
profile of A in polynomial time.

Proof. We adapt the proof for ARRIVAL in [76].

By Definition 2.13, we can verify in polynomial time whether x
is a switching flow. Now consider the following subgraph Gx =
(V ∪D,E′) of G(A), where

E′ ={(v, seven(v)) : x(v,seven(v)) = x(v,sodd(v)) + 1}∪
{(v, sodd(v)) : x(v,seven(v)) = x(v,sodd(v)) > 0}.

44 ARRIVAL and its generalization

Intuitively, Gx contains the edges to the next successors of the ver-
tices whose outflow is at least one.

We will show that x is the run profile if and only if Gx does not
have any directed cycle. Then, since we can compute Gx and check
if it has a directed cycle in polynomial time, we conclude that the
run profile can be verified in polynomial time.

Suppose x is the run profile and, for the sake of contradiction, as-
sume that Gx has a directed cycle. Then by the definition of E′,
there is a positive flow along the cycle. If we reduce the flow in the
edges along the cycle by 1, the flow conservation is still maintained,
since the inflow and outflow at every vertex along the cycle is re-
duced by 1. Further, by the definition of E′, the switching behavior
is also maintained. Hence, the resulting flow x′ is a switching flow,
and x′ ≤ x, where the inequality is strict for some components.
However, this contradicts Theorem 2.18.

For the other direction, suppose Gx does not have a directed cycle
and, for the sake of contradiction, assume that x is not the run
profile. Then another flow x∗ ≤ x is the run profile, where for some
edge e′, x∗e′ < xe′ . Consider the flow z = x − x∗ (componentwise).
Since flow conservation holds for both x and x∗, it also holds for
z. Further, by Theorem 2.17, ze = 0 for each incoming edge e to
a destination. For every edge e, we put ze pebbles on e. We start
at an arbitrary vertex, such that there is a pebble in one of its two
outgoing edges. (Such an edge exists, since ze′ > 0.) Whenever we
are at a vertex v, if there is a pebble on the outgoing edge from v in
Gx, we traverse that edge and take a pebble from there. Otherwise,
we stop. Since Gx is acyclic, we traverse each edge at most once.
Let u be the vertex where we stop, and let e1 ∈ E′ and e2 /∈ E′ be
the two outgoing edges of u in G(A). By the stopping condition, we
have ze1 = 0, or x∗e1 = xe1 . If u is the starting vertex, by the choice
of the starting vertex, there is a pebble in an outgoing edge from u
in G(A). Otherwise, we have taken a pebble from an incoming edge

2.7. Search complexity of G-ARRIVAL 45

to u; so by flow conservation of z, there must also be a pebble in an
outgoing edge from u in G(A). In either case, we can conclude that
ze2 > 0, or x∗e2 < xe2 .

If x(u,seven(u)) = x(u,sodd(u)) + 1, then e1 = (u, seven(u)). However,
that implies

x∗(u,seven(u)) − x∗(u,sodd(u)) = x∗e1 − x∗e2 > xe1 − xe2 = 1,

which violates the switching behavior constraint at u.

If x(u,seven(u)) = x(u,sodd(u)), then e1 = (u, sodd(u)). We then have

x∗(u,seven(u)) − x∗(u,sodd(u)) = x∗e2 − x∗e1 < xe2 − xe1 = 0,

which also violates the switching behavior constraint at u.

Hence, we obtain a contradiction and can conclude that x must be
a run profile, if Gx does not have a directed cycle. This completes
the proof.

We are now ready to prove the membership in UP ∩ coUP.

Theorem 2.21. G-ARRIVAL is in UP ∩ coUP.

Proof. By Corollary 2.16, the run profile is unique, and from the run
profile, we can recover the unique output of Algorithm 2 (Multi-run
procedure). From this output, we can certify in polynomial-time
whether a G-ARRIVAL instance is a YES or a NO instance (see
also Theorem 2.17). By Lemma 2.20, we can verify the run profile
efficiently. Hence, G-ARRIVAL is in UP ∩ coUP, as claimed.

2.7 Search complexity of G-ARRIVAL

So far, we have recovered the computational complexity of the de-
cision problem G-ARRIVAL. We now do the same for the search

46 ARRIVAL and its generalization

variant. The variant for ARRIVAL is called S-ARRIVAL, defined
by Karthik C.S. [103] as follows: (The switching flow for ARRIVAL
is defined analogously as for switching systems.)

Definition 2.22 (S-ARRIVAL). Given a terminating ARRIVAL
instance A, find a switching flow of A.

Similarly, we can define the search variant of G-ARRIVAL as fol-
lows:

Definition 2.23 (GS-ARRIVAL). Given a terminating switching
system A, find a switching flow of A.

By Corollary 2.16, for any input, either we can verify efficiently that
the input is not valid (i.e., it is not a terminating switching system),
or there exists a solution (i.e., a switching flow) that can be verified
efficiently, by Definition 2.13. This is exactly the description of
a problem in the complexity class TFNP. A common interest in
complexity theory is to pinpoint the complexity class for which a
problem is hard. S-ARRIVAL has been shown to be a member
of a subclass of TFNP called UEOPL [73], but so far, there is no
indication that it is hard for this class. In this section, we extend
this membership result to GS-ARRIVAL.

2.7.1 UEOPL

The complexity class UEOPL contains exactly all the problems that
can be reduced in polynomial time to a problem called UniqueEOPL
(i.e., Unique End of Potential Line). Informally, this problem pro-
vides a promise of a unique potential line, i.e., a graph of only a
directed path with a potential function increasing along the path.
For each vertex, we can query its successor and predecessor on the
directed path, as well as its potential. The goal is to output a sink
or a certificate that the promise is not satisfied, i.e., either (i) the
potential function is not increasing along the path or (ii) the graph

2.7. Search complexity of G-ARRIVAL 47

is not a path (or equivalently, there is more than one maximal path
in the graph). Note that by the way the problem is phrased, when
the output is a sink, there is no guarantee that the promise is ful-
filled. In other words, even when the promise is violated, any sink
in the graph is still a valid output.

The formal definition is stated below, followed by an explanation-
about how it fits the informal description above.

Definition 2.24 (UniqueEOPL [73]). Given Boolean circuits S, P :
{0, 1}n → {0, 1}n such that P (0n) = 0n ̸= S(0n) and a Boolean
circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0, find
one of the following:

(U1) A point x ∈ {0, 1}n such that P (S(x)) ̸= x.

(UV1) A point x ∈ {0, 1}n such that S(x) ̸= x, P (S(x)) = x, and
V (S(x))− V (x) ≤ 0.

(UV2) A point x ∈ {0, 1}n such that S(P (x)) ̸= x ̸= 0n.

(UV3) Two points x, y ∈ {0, 1}n, such that x ̸= y, x ̸= S(x), y ̸=
S(y), and either V (x) = V (y) or V (x) < V (y) < V (S(x)).

First, observe that for any vertex x of the n-dimensional hypercube,
if P (x) = S(x) = x, then it is not a solution of any type listed
above. Let X be the set of all other vertices of the hypercube, i.e.,
the vertices x such that either P (x) ̸= x or S(x) ̸= x. We consider
a directed graph G with the vertex set X and the edge set defined
by the predecessor circuit P and successor circuit S as follows: For
two distinct points x and y in X, if S(x) = y and P (y) = x, then
we add an edge (x, y) to the graph G. By definition, the sinks of
this graph are exactly those vertices x such that P (S(x)) ̸= x, i.e.,
solution of type (U1).

The other solution types encode violations of the promise. Firstly, a
solution of type (UV1) indicates that the potential is not increasing

48 ARRIVAL and its generalization

along the path. Secondly, a vertex x such that S(P (x)) ̸= x does
not have any incoming edges in G, and hence it is a source. Since
x = 0n satisfies S(P (0n)) ̸= 0n and is hence a source, if there is a
solution y of type (UV2), y is a source distinct from 0n. This is a
violation of the promise that there is only one path (which implies
that there can only be one source). Note that because each vertex
of the graph has out-degree and in-degree at most one, if there is
only one source then there can only one path. Therefore, the two
solution types above already cover all the violations of the promise.
However, as noted by the authors in [73], the last solution type
(UV3), which clearly encodes a violation, makes the problem easier
and distinct from another problem called EOPL, which defines a
different complexity class. For more details on UniqueEOPL and
EOPL, see [73].

Observe that there is always a solution of type (U1) or (UV1). If
there is no solution of the first type, as discussed above, the graph
has no sink. This implies the existence of a directed cycle. Since we
cannot maintain an increasing potential along a cycle, there must
be a solution of type (UV1).

2.7.2 Difficulties in adapting the proof for ARRIVAL

Although the decision complexity of ARRIVAL can be adapted eas-
ily to G-ARRIVAL, as we have seen in the previous section, the
proof of S-ARRIVAL in UEOPL cannot be straighforwardly carried
over to the setting of GS-ARRIVAL. To illustrate this point, we first
look at the proof sketch for S-ARRIVAL.

Before going to the proof, we explain a few notations. Given a
switching systemA = (V, D, s, seven, sodd), we extend the definition
of the routing operation also to describe the traversal of the edge
(Y, v) from the train yard Y to a vertex v ∈ V , as long as this edge
is not traversed more than s(v) times in total. Recall the definition
of a state of a switching system in Definition 2.11. We define further

2.7. Search complexity of G-ARRIVAL 49

terminologies related to states as follows:

Definition 2.25 (Initial state, final state, reachable state). Given
a switching system A = (V, D, s, seven, sodd), the initial state is the
state (τ0, σ0) at the very beginning, i.e.,

τ0(Y) = S,
τ0(v) = 0, v ∈ V ∪D
σ0(v) = 0, v ∈ V.

The final state is the state obtained after Algorithm 2 (Multi-run
procedure) terminates. We say a state z is reachable from a state z′,
if we can encounter z after a sequence of routing starting from z′. A
state z is reachable, if it is reachable from the initial state (τ0, σ0).

We are now ready to discuss the proof of S-ARRIVAL in UEOPL.

Theorem 2.26. [76, 73] S-ARRIVAL is in UEOPL.

Proof sketch. We reduce S-ARRIVAL to UniqueEOPL. Suppose A
is an ARRIVAL instance where the switch graph has n vertices.
Note that we can describe the instance by a switching system with
only one train. As such, we can extend the terminologies for switch-
ing systems to ARRIVAL.

For the UniqueEOPL instance, we define the directed path to be
the sequence of all states that we encounter during the execution of
Algorithm 1 (Run procedure). Since the run procedure is a deter-
ministic process, the path is well defined and contains all the reach-
able states from the initial state. Note that the sink of this path is
the final state, which corresponds to the run profile of A, which is
also a switching flow for A. (We explain in Corollary 2.31 later how
to obtain the run profile from the final state.)

Since there is only one train in the system, all states of A can be
encoded by M = O(n) bits. We now describe how to evaluate the

50 ARRIVAL and its generalization

successor, predecessor, and potential of a bitstring of length M in
polynomial time. We first can efficiently verify whether a bitstring
encodes a valid state. If it does not, we can set its successor and
predecessor to itself, and its potential to 0 (i.e., it is never a solu-
tion). Otherwise, Gärtner et al. [76] described a process to verify
in polynomial time whether the state is reachable (i.e., whether it
lies on the directed path above). Further, the process also gives the
number of edge traversals by the run procedure until we reach that
state. This number of edge traversals is the potential of the state.
Next, given the state, we know where the train is currently. In lin-
ear time, we can route the train and obtain the succeeding state.
Lastly, for the predecessor, since there is only a linear number of in-
neighbors of the current vertex of the train, we can calculate a linear
number of candidates for the predeeding states, and verify whether
each of them is on the path and whether its distance from the ini-
tial state is exactly one less than that of the current state. We can
do the verification by the same process above by Gärtner et al. [76].

Since we define a directed path with increasing potential and hence
fulfill the promise of UniqueEOPL, it is easy to see that there can
only be a solution of type (U1) which corresponds to the run profile
of A, as discussed above. Hence, the reduction is complete.

The proof sketch above relies on the fact that there is only one
way to execute Algorithm 1 (Run procedure). However, this does
not hold for Algorithm 2 (Multi-run procedure). Therefore, for the
reduction from GS-ARRIVAL, we should define a “canonical” path.
For example, we can define this as the path corresponding to the
execution where we pick a train from the vertex with the lowest
index and run this train until it reaches the destination; then we
continue by picking a remaining train from the vertex with lowest
index, and so on.

2.7. Search complexity of G-ARRIVAL 51

However, we are then faced with the issue of determining if a state
lies on this canonical path. Even though we can efficiently deter-
mine if a state is reachable (by Theorem 2.12), the task of checking
if a state is reachable via a specific execution of Algorithm 2 (Multi-
run procedure) is not straightforward. To circumvent this issue, we
utilize the two situations where we know with certainty that a state
is reachable via any execution. For one, if a state is the final state of
a switching system (i.e, the state obtained after the multi-run pro-
cedure terminates), then by the Abelian property (Lemma 2.8), any
execution of the multi-run procedure will end at this state. For the
other, if a switching system has only one train, then the multi-run
procedure is deterministic, and hence, there is only one way to ex-
ecute it (in fact, in this case, we recover the setting of ARRIVAL).
With this in mind, besides the current state, we also encode an in-
termediate state that serves as a checkpoint. We will show that ver-
ifying whether this checkpoint is on the canonical path is equivalent
to checking whether a state is the final state of a switching system.
Moreover, verifying whether the current state is reachable along the
canonical path from the checkpoint is equivalent to checking if a
state is reachable in a switching system with only one train.

Another issue is the evaluation of the predecessor circuit. We will
discuss in more detail in Remark 2.34 later how introducing the
checkpoint hinders the method of determining the preceeding state
in the proof for S-ARRIVAL. To circumvent this issue, instead of
reducing to UniqueEOPL, we reduce GS-ARRIVAL to the following
problem UniqueForwardEOPL, which is also in UEOPL [73].

Definition 2.27 (UniqueForwardEOPL [73]). Given a Boolean cir-
cuit S : {0, 1}n → {0, 1}n such that S(0n) ̸= 0n and a Boolean cir-
cuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V (0n) = 0, find one
of the following:

(UF1) A point x ∈ {0, 1}n such that S(x) ̸= x and either S(S(x)) =

52 ARRIVAL and its generalization

S(x) or V (S(x)) ≤ V (x).

(UFV1) Two points x, y ∈ {0, 1}n, such that x ̸= y, x ̸= S(x),
y ̸= S(y), and either V (x) = V (y) or V (x) < V (y) <
V (S(x)).

(UFV2) Two points x, y ∈ {0, 1}n, such that x is a solution of type
(UF1), y ̸= S(y), and V (x) < V (y).

The main differences from UniqueEOPL is that there is only a suc-
cessor circuit (hence “forward”). The first solution type (UF1) gives
either the end of the potential line or a certificate that the potential
does not increase along the line. The other solution types (UFV1)
and (UFV2) encodes a violation of the assumption that there is only
one line.

We note that there is always a solution of type (UF1). We define a
graph whose vertices are the points x ∈ {0, 1}n. If x ̸= S(x), we add
the edge (x, S(x)) to the graph. Since S(0n) ̸= 0n, the graph has
at least one edge. If there is a sink y with an in-neighbor x, then
x satisfies x ̸= S(x) = y and S(S(x)) = S(x). If there is no such
sink, then there must be a directed cycle. Since we cannot have an
increasing potential along the cycle, there must be a point x where
V (S(x)) ≤ V (x).

We also remark that we can reduce S-ARRIVAL to UniqueFor-
wardEOPL instead of UniqueEOPL.

2.7.3 Partial switching flow

The reduction will use Lemma 2.29 below on partial switching flow
defined in Definition 2.28 below. Recall the definition of a state z =
(τ, σ) of a switching system A = (V, D, s, seven, sodd) in Defini-
tion 2.11. Note that τ(Y) needs not be 0 for z to be a state of A.
To faciliate the reduction later on, we define a function y : V → N0

to be a train dispersal for the state z, if y(v) ≤ s(v) for v ∈ V , and

2.7. Search complexity of G-ARRIVAL 53

∑
v∈V y(v) =

∑
v∈V τ(v). We can interpret that some trains have

left Y and been routed within the system, and the train dispersal
records how many trains have traversed the edge (Y, v) for v ∈ V .
Note that unless all trains have left Y , this may not correspond to
a partial execution of Algorithm 2 (Multi-run procedure). We are
now ready to define the partial switching flow.

Definition 2.28 (Partial switching flow). Let z = (τ, σ) be a state
of a switching system A = (V, D, s, seven, sodd) with edge set E.
A partial switching flow (for A) with respect to z and y is a function
x : E → N0 that satisfies

x(Y,v) = y(v) v ∈ V

x−(v)− x+(v) = τ(v), v ∈ V
x(v,seven(v)) − x(v,sodd(v)) = σ(v), v ∈ V.

If y(v) = s(v) for v ∈ V (and hence τ(Y) = 0), then we simply call
x a partial switching flow with respect to z.

It is easy to see that for a reachable state z, if functions x : E → N0

and y : V → N0 record the numbers of times an edge e ∈ E and an
edge (Y, v) for v ∈ V , respectively, are traversed in some sequence of
routings until we encounter the state z, then x is a partial switching
flow with respect to z and y. Lemma 2.29 below implies that for
such z and y, there is only one partial switching flow, and hence, it
is exactly the function x described above.

Lemma 2.29 (Partial switching flow is nonexistant or unique).
Let z = (τ, σ) be a state of a switching system A = (V, D, s, seven, sodd)
with the edge set E. Let y be a train dispersal for z. Then there is
at most one partial switching flow with respect to z and y, and it
can be computed in polynomial time.

In order to prove Lemma 2.29, we use the following general lemma
on switch graphs.

54 ARRIVAL and its generalization

Lemma 2.30. Let G be a directed graph that has at least a sink.
Let V be the set of non-sinks in G. For any v in V , there exists a
directed path from v to a sink of G. Further, v has two out-neighbors,
denoted by seven(v) and sodd(v). Let τ, σ be two functions V → R.
Then there exists a unique function x : V → R such that:

x−(v)− x+(v) = τ(v), v ∈ V
x(v,seven(v)) − x(v,sodd(v)) = σ(v), v ∈ V.

Proof. We can write the above system in the corresponding matrix
form Qx = b, where we interpret x as a vector. Note that Q is a
2n-by-2n square matrix, where n := |V |. For a special case where
there are two sinks (i.e., G is the switch graph of a terminating
ARRIVAL instance), Gärtner et al. showed that for certain vector
b′, the system Qx = b′ has a unique real solution, and hence Q is
invertible ([76, Lemma 23]). However, the linear system above does
not have equalities corresponding to the sinks. Therefore, if there
are more than three sinks, we can contract all sinks but one in G
into a new sink d. If G has only one sink, we add d as an isolated
vertex, which is also a sink. The new graph then only has two sinks.
However, the matrix Q remains unchanged, except for a relabelling
of each edge (v, d′) for a contracted sink d′ into (v, d). Hence, Q is
invertible in the general case, and the lemma then follows.

We are now equipped to prove Lemma 2.29.

Proof of Lemma 2.29. Let V = [n] be the vertex set and E be the
edge set of the switch graph G(A). The linear system in Defini-
tion 2.28 can be rewritten as∑

e∈E−(v)\{(Y,v)}

xe − x+v = τ(v)− y(v), v ∈ V,

x(v,seven(v)) − x(v,sodd(v)) = σ(v), v ∈ V.

By Lemma 2.30, the above system has a unique solution over the re-
als. We can solve the system and obtain this solution in polynomial

2.7. Search complexity of G-ARRIVAL 55

time. If all the coordinates of the solution are natural numbers, then
this defines a (and in fact, the only) partial switching flow with re-
spect to z and y. Otherwise, there is no partial switching flow.

A consequence of the above lemma is that we can verify efficiently,
if a state is the final state of a switching system.

Corollary 2.31. Let z be a state of a terminating switching sys-
tem A. In polynomial time, we can verify whether z is the final state
of A and, if so, compute the run profile of A.

Proof. Let z = (τ, σ). It can easily be seen that if z is the final
state, then the run profile is a partial switching flow with respect
to z. By Lemma 2.29, in polynomial time, we can either compute
the unique partial switching flow with respect to z or conclude that
it is nonexistant. If the partial switching flow does not exist, then
we conclude that z is not the final state. Otherwise, by Lemma 2.20,
we can verify if it is the run profile of A and accordingly decide
whether z is the final state of A.

Remark 2.32. Corollary 2.31 above implies that the final state of A
is also an NP or coNP certificate for a switching system. Since it is
also unique, by Lemma 2.8, it is also a UP or coUP certificate.

2.7.4 GS-ARRIVAL is in UEOPL

This section is dedicated to a reduction from GS-ARRIVAL to Uniq-
ueForwardEOPL and hence prove the following theorem.

Theorem 2.33. GS-ARRIVAL is in UEOPL.

Proof. Suppose we are given a GS-ARRIVAL instance with the in-
put of a terminating switching system A = (V, D, s, seven, sodd)
with S =

∑
v∈V s(v).

56 ARRIVAL and its generalization

Assume V = [n]. We prescribe the following “canonical" proce-
dure C, which is a modification of Algorithm 2 (Multi-run proce-
dure). The procedure starts with S trains at the train yard Y and
no trains in other vertices of G(A). We route a train from Y to the
lowest vertex v ∈ V such that the edge (Y, v) has not been traversed
s(v) times. After that we route that train from vertices in V , until
it reaches a destination in D. We repeat the above steps until all
trains are at the destinations in D and output the number of trains
at each destination. Procedure C is almost the same as the multi-
run procedure, except that not all trains are sent out of Y at the
beginning and that we prescribe an order of vertices and the num-
ber of trains to be processed at each iteration. As the switching
system is Abelian (Lemma 2.8), the output of Procedure C is the
same as the output of the multi-run procedure. Note that Proce-
dure C is deterministic, and at any point in its execution, there is at
most one train among the vertices in V . The sequence of states that
we encounter along the execution of Procedure C defines uniquely
a directed path, whose sink corresponds to the final state of A.

We call a state of A legal, if and only if we encounter it during the
execution. A legal state (τ, σ) is a checkpoint, if there is no train in V
(i.e., τ(v) = 0 for all v ∈ V). Intuitively, the checkpoints separate
the directed path into many lines. Each line goes from a checkpoint
to the next and describes the trajectory of a train from Y to a
destination in D. In other words, it corresponds to an ARRIVAL
instance, although in a more relaxed sense, as there may be more
than two destinations. For each legal state z, we denote by p(z) the
last checkpoint of z that is either z, if z is a checkpoint, or otherwise
the checkpoint immediately preceeding z in the execution.

We label each node on the directed path by (z, p(z)) where z is the
corresponding legal state. Since a train configuration and a switch
configuration can be encoded by O(nS) and n bits, respectively,
and since S = O(poly(n)), all labels can be encoded with M =

2.7. Search complexity of G-ARRIVAL 57

O(poly(n)) bits. Note that we can easily check if a bitstring of
length M encodes a tuple (z, ẑ) where z and ẑ are (not necessarily
legal) states of A. If it does not, then we set its successor to itself
and its potential to 0 (and hence it is not a solution). From now on,
we assume we have such a tuple.

In order to determine if (z, ẑ) is a label of a node on the directed
path, we need to verify whether ẑ is a checkpoint and whether ẑ =
p(z) (which implies that z is legal). To verify the former, we observe
that a checkpoint is the state obtained after sending some k trains
from Y to the destinations. We can easily compute k from the
state, and by the description of Procedure C, we know exactly how
many trains have traversed the edge (Y, v) for each v ∈ V . In other
words, the checkpoint corresponds to the final state of a well-defined
switching system. Therefore, we can use Corollary 2.31 to verify if
ẑ is a checkpoint.

Next, we verify if ẑ is the last checkpoint of z. We first can verify
whether z is a checkpoint, and if it is, z must equal ẑ. If it is
not a checkpoint, then there must have exactly one train in V , and
when we remove this train and add it to Y , we should recover the
train reconfiguration of ẑ. If this is not the case, then we know
immediately that ẑ is not the last checkpoint for z. Now we suppose
that it is the case. Then as discussed before, the subsequence of
the directed line between ẑ and the next checkpoint corresponds to
the trajectory of one train from Y to a destination. Hence, we can
define another switching system with only this train, by making ẑ
the initial state (after removing all other trains) and finding the
appropriate vertex to route the train from Y . Since there is only
one train in the system, there is only one order in which we route
the train. We can then apply Theorem 2.12 to check if z is reachable
from ẑ. Only if it is, then ẑ is the last checkpoint of z.

When we have verified that (z, ẑ) is a label of a node of the directed
path, we now can find its potential, which is the number of edge

58 ARRIVAL and its generalization

traversal in the execution until we encounter the state z. In order
word, it is exactly

∑
e∈E(A) xe, where the function x : E(A) → N0

records the number of times we have traversed an edge until we
encounter z. Then x is a partial switching flow with respect to z
and a suitable train dispersal. By Lemma 2.29, there is only one
such partial switching flow, and we can compute it in polynomial
time. Therefore, we can compute the potential in polynomial time.

Lastly, we need to specify how to find the successor of a node on
the path. In the corresponding state of the node, if there is a train
at a vertex v ∈ V , we route that train by one step. If there is no
train in V , then we route a train from Y (if any) according to the
description of Procedure C. In either case, we obtain the successor,
and this can be done in polynomial time. Lastly, we define the sink
of the directed path to be its own successor.

By the definition of the successor and potential, it is easy to see that
the only solution in the UniqueForwardEOPL instance is the node
immediately before the sink in the path. We can then obtain the
sink, which corresponds to the final state of A. By Corollary 2.31,
from the final state, we can calculate the run profile of A, which is
also a switching flow for A. This completes the reduction and the
proof of the membership of GS-ARRIVAL in UEOPL.

Remark 2.34. Consider a checkpoint z that is not the initial state.
Then (z, z) is a label of a node in the directed path above. The
predecessor of this node is (z′, p(z′)), where z′ is the state preceed-
ing z and p(z′) is the checkpoint immediately before z in the execu-
tion of Procedure C. From z, we cannot compute p(z′), especially
its switch configuration (or rather we do not know how to). Be-
cause of this limitation, we reduce to UniqueForwardEOPL instead
of UniqueEOPL, to avoid the treatment for the predecessors.

A process cannot be understood by
stopping it. Understanding must
move with the flow of the process,
must join in and flow with it.

—Frank Herbert,
Dune

CHAPTER 3

Subexponential algorithm for G-ARRIVAL

This chapter is based on the results for ARRIVAL from [77], which
is joint work with Bernd Gärtner and Sebastian Haslebacher, and
adapted for G-ARRIVAL.

We now move on to the algorithmic aspects of G-ARRIVAL. For
ARRIVAL, as mentioned in Section 1.1, Dohrau et al. [62] showed
an upper bound of O(n2n) for the trivial algorithm of simulating
the train run. This upper bound was improved to O(p(n)2n/2) (in
expectation) for some polynomial p, by efficient sampling from the
run [76]. The same bound can be achieved deterministically in Sec-
tion 3.2 later. The same approach was also discovered independently
and refined to yield a runtime of O(p(n)2n/3) by Rote [149].

The main result of this chapter is a subexponential algorithm for G-
ARRIVAL that runs in time nO(

√
n) (Theorem 3.14). This algorithm

59

60 Subexponential algorithm for G-ARRIVAL

is an instantiation of a general framework to solve G-ARRIVAL
(Section 3.4). Notably, this framework produces a switching flow
and hence also solves GS-ARRIVAL. At the end of the chapter,
we will show another application of the framework, which yields a
polynomial-time algorithm, when the size of the feedback vertex set
is small (see Theorem 3.15 and the definition of feedback vertex set
in Section 3.6).

As a warm up, we will start by discussing variants of the trivial
algorithm of simply simulating Algorithm 2 (Multi-run procedure)
(Sections 3.1 and 3.3). In Section 3.2, we introduce the layer decom-
position, a useful tool to design many algorithms for G-ARRIVAL.

3.1 Näıve simulation of the train runs

In this section, we analyze the runtime of a näıve simulation of the
train runs. In this simulation, we run each of the starting trains in-
dividually and proceed with the next one only when the previous
one has reached a destination. In Algorithm 2 (Multi-run proce-
dure), this corresponds to always choosing ρ = 1 and the next ver-
tex v as the head of the previously traversed edge, for each of the
starting trains. Effectively, we perform Algorithm 1 (Run proce-
dure) for all the trains. By Corollary 2.16, every execution of Algo-
rithm 2 (Multi-run procedure) has the same number of edge traver-
sals. Since we route only one train at every iteration in the näıve
simulation, this simulation is the longest possible execution of the
algorithm in terms of iteration count.

Following the discussion above, we have a simple lemma below.

Lemma 3.1. Let A = (V, D, s, seven, sodd) be a terminating switch-
ing system. Suppose that in any execution of Algorithm 2 (Multi-
run procedure) with input A, each train traverses at most B edges
before it reaches its destination. Further suppose that at the begin-

3.1. Näıve simulation of the train runs 61

ning of some iteration in the algorithm, W trains are still waiting.
Then all subsequent iterations traverse at most WB edges in total.

Proof. By Corollary 2.16, the number of edge traversals is the same
in any execution, including the näıve simulation. In this simulation,
we sequentially route W trains, each of which takes at most B edge
traversals to reach a destination. Hence, there are at most WB
remaining edge traversals in total.

We will now find a bound B for the lemma above. For a switching
system A and a vertex v ∈ V (A), we denote by distA(v) the length
of the shortest path in G(A) from v to a destination in D. When
the switching system A is clear, we drop the subscript A.

Lemma 3.2. Let A = (V, D, s, seven, sodd) be a terminating switch-
ing system, |V | = n. For any train a and any vertex v ∈ V , a visits
v at most 2dist(v) times by Algorithm 2 (Multi-run procedure).

Proof. Suppose dist(v) = k. Let v = vk, vk−1, . . . , v0 ∈ D be the
sequence of vertices on a shortest path from v to D. Consider the
first 2k visits by a to v (if there are fewer, we are done). Once
every two consecutive visits, the train moves on to vk−1, so we can
consider the first 2k−1 visits to vk−1 and repeat the argument from
there to show that vi is visited at least 2i times for all i, before v
exceeds 2k visits. In particular, v0 ∈ D is visited, so the run indeed
terminates within at most 2k visits to v.

Lemma 3.3. Let A = (V, D, s, seven, sodd) be a terminating switch-
ing system, |V | = n. Let ℓ be the maximum length of the short-
est path from a vertex in V to a destination. In any execution
of Algorithm 2 (Multi-run procedure), each train traverses at most
(n− ℓ+ 2)2ℓ − 2 proper edges before it reaches a destination.

Proof. Fix a train. By Lemma 3.2, the total number of visits by
the train to vertices v ∈ V is bounded by

∑n
i=1 ni2

i, where ni is the

62 Subexponential algorithm for G-ARRIVAL

number of vertices with a shortest path of length i to a destination.
We have ni > 0 if and only if i ≤ ℓ, and hence the sum is maximized
if ni = 1 for all i < ℓ, and nℓ = n − ℓ + 1. In this case, the sum is
(n − ℓ + 2)2ℓ − 2. The number of edges being traversed (one after
every visit of v ∈ V) is the same.

By Lemmata 3.1 and 3.3, we obtain the following runtime for the
näıve simulation, which is also the upper bound of the runtime for
any execution of Algorithm 2 (Multi-run procedure).

Corollary 3.4. Let A = (V, D, s, seven, sodd) be a terminating
switching system, |V | = n, S =

∑
v∈V s(v). Further, let ℓ be the

maximum length of the shortest path from a vertex in V to a ver-
tex in D. Then any execution of Algorithm 2 (Multi-run procedure)
traverses at most S((n− ℓ+ 2)2ℓ − 2) proper edges in total.

A simple calculation shows that the function f(ℓ) = (n−ℓ+2)2ℓ−2
is increasing for ℓ ∈ [1, n]. Hence, the number of edge traversals in
the corollary above is O(S2n).

3.2 Layer decomposition

In this section, we present the layer decomposition of the switch
graph of a switching system A = (V, D, s, seven, sodd). The layer
decomposition will be used in many algorithms later in this and the
next chapter. The first of such algorithms is presented in this sec-
tion. It involves a contraction procedure such that the näıve algo-
rithm for G-ARRIVAL runs in the resulting graph in time O(S2n/2),
an improvement from the time bound of O(S2n) in the previous sec-
tion. Independently, this contraction procedure has also been dis-
covered by Rote for ARRIVAL (where S = 1), and was bootstrapped
to a O(2n/3)-time algorithm [149].

3.2. Layer decomposition 63

We decompose the graph into layers, subsets of vertices (excluding
the artificial vertex Y) with the same distance to the destinations.
More formally, the layers are defined as

Li := {v ∈ V ∪D : dist(v) = i} for i ≥ 0}.

Observe that L0 = D. The layer decomposition (L0, L1, . . .) can be
computed in O(n) time using breadth-first search.

Let k := min{i : |Li| = 1} and assume that such k exists. Let w be
the only vertex in layer Lk. Consider the näıve simulation. Suppose
at one iteration, a train visits a vertex u such that dist(u) > k.
Observe that (i) the train only terminates when it visits a vertex
in L0 (i.e., a vertex in D); and (ii) by the construction of the layer
decomposition, after visiting u, the train has to visit at least one
vertex in each of the layers between Ldist(u) and L0. This implies
that it has to visit w, before it can visit any layer Lj for j < k.
Further, before the first time it visits w (after this visit at u), the
train only traverses vertices in layers Lj for j > k. Hence, in the
sequence of the vertices that the train visits, we can remove the
substring from u to the first subsequent occurrence of w. Note that
we do not change the output of the multi-run procedure by doing
so, since for that only the last vertex that the train visits counts.
Effectively, we can redirect all edges whose head is u (including the
edge (Y, u)) to w. We can do this for all applicable u. In other
words, we can contract all vertices in layers Lj to w, for j > k.

Either after we have performed the contraction above or when there
is no such k at the beginning, we obtain a switch graph where each
layer has at least two vertices, except for the last layer, which may
have only one. We call a switching system with such a switch graph
reduced. In a reduced switching system, since the layers except for
the last have at least two vertices, using an analogous argument as
in Lemma 3.3, the bound for the number of proper edge traversals
by one train is maximized, when each of these layers has exactly

64 Subexponential algorithm for G-ARRIVAL

two vertices and the last layer has n − 2ℓ + 2 vertices, where ℓ =
max{i : |Li| > 0} is the maximum length of the shortest path from a
vertex in V to a destination. The number of proper edge traversals
by one train is then bounded by (n − 2ℓ + 3)2ℓ − 4. Coupled with
Lemma 3.1, we obtain the following:

Corollary 3.5. Let A = (V, D, s, seven, sodd) be a terminating re-
duced switching system, |V | = n, S =

∑
v∈V s(v). Further, let ℓ be

the maximum length of the shortest path from a vertex in V to a
vertex in D. Then any execution of Algorithm 2 (Multi-run proce-
dure) traverses at most S

(
(n− 2ℓ+ 3)2ℓ − 4

)
proper edges in total.

By a simple calculation, the function f(ℓ) = (n − 2ℓ + 3)2ℓ − 4 is
maximized when ℓ is roughly n/2. (Also note that as the switching
system is reduced, ℓ is at most n/2). Hence, the worst-case time
complexity for reduced switching system is O(S2n/2).

3.3 Greedy simulations of the train runs

One straightforward way to improve the runtime of the simulation
is to pick the maximal number of trains at each iteration instead of
only one train as in the näıve simulation. In other words, at every
iteration of the while loop in Algorithm 2 (Multi-run procedure),
after picking a vertex v ∈ V , we always choose ρ = t[v]. We call
such a simulation greedy.

The next question is how to choose a vertex at each iteration. The
greedy approach is to pick the vertex with the most waiting trains
at every iteration. (Note that the greediness defined in the preced-
ing paragraph is different from this greedy approach. The former
refers to the choice of the number of trains, while the latter refers
to the choice of a vertex. In fact, we can call this version the dou-
bly greedy simulation.) We showed in [77] that this takes at most
O((lnS + n)nB) iterations, where B = B(n) is an upper bound on

3.3. Greedy simulations of the train runs 65

the number of iteration for one train from any vertex to a destina-
tion. Compared this bound to the bounds of the näıve simulation
in the previous sections, we can see that this maximal simulation
takes fewer iterations when S = Ω(n2). However, we note that at
every iteration, the greedy approach requires an overhead of find-
ing the vertex with the most waiting train at every iteration. This
introduces an additional O(log(n)) factor to the runtime, by using
max heap. (It is unclear whether a more efficient implementation
of priority queue can have a better runtime.)

In this section, we present a round robin version that repeatedly
cycles through the vertices in some fixed order (v1, . . . , vn). We
use the order as discussed in the thesis of Ge [78]. This approach
does not introduce the O(log(n)) overhead per iteration and also
removes a factor n from the number of iterations. The order of the
vertices is obtained from the layer decomposition. In particular,
we process the vertices layer by layer, from those farthest to those
nearest to the destinations. The order of the vertices within a layer
is arbitrary. More formally, the only constraint for the order is that
for two vertices u ∈ Li and v ∈ Lj , if i > j, then u precedes v.

For convenience, let R be the round robin maximal simulation de-
scribed above. We now analyze the number of iterations. The idea
of the analysis is similar to that in [78]. However, we present a dif-
ferent argument that uses a charging scheme on a slower procedure,
which we call P and describe as follows.

We process the vertices in rounds, where each round corresponds to
one cycle over the vertices in the order (v1, . . . , vn) above. At the
beginning of each round, we mark all the waiting trains as active
and each train at a vertex v is charged with 1/2dist(v). (The trains
in D are marked as inactive.) At iteration k of a round, we process
vertex vk. Suppose there are a active trains at vk. We route ⌊a/2⌋
active trains to each successor of vk. At least one successor u of v
satisfies dist(u) = dist(v) − 1. For the ⌊a/2⌋ active trains routed

66 Subexponential algorithm for G-ARRIVAL

to u, we double their charges. For the other ⌊a/2⌋ active trains
to the other successor, we remove their charges, and mark them as
inactive. We also route all the inactive trains from v, and hence,
the number of remaining trains at v is 0, if a is even, and 1, if a is
odd. (The remaining train is then an active train.)

It is easy to see the following:

� At any point during the process, the charge of an active train
at a vertex v is 1/2dist(v).

� During each round, the total charge does not change.

� At the end of each round, each vertex v ∈ V has at most one
active train.

First, we observe that the procedure P above is slower than the
round robin maximal simulation R in the following sense.

Lemma 3.6. After the same number of rounds, the number of trains
routed from each vertex in P is at most that in R.

Proof. For i ≥ 1 and j ∈ [n], let p+ij and r+ij be the total number
of trains routed from vj up to the end of round i in P and in R,
respectively. Further, for those i, j and k ∈ [n], let pijk and rijk be
the total number of trains routed from vj to vk up to the end of
round i in P and in R, respectively. We define all numbers above
to be 0, for the round index i ≤ 0. By the switching behaviors at
the vertices, for all applicable i, j, k, if p+ij ≤ r+ij then pijk ≤ rijk.

Now, we prove p+ij ≤ r+ij by double induction on i ≥ 0 and j ∈ [n].
This is true for i = 0 and any j, i.e., before the simulations start.
In P , the total number p−ij of trains routed to vj up to the point
immediately before we process vj in round i is the sum of

� the number p(i−1)j′j of trains routed from vj′ to vj up to
round i− 1 for all j′ > j and

3.3. Greedy simulations of the train runs 67

� the number pij′′j of trains routed from vj′′ to vj up to round i
for all j′′ < j.

We analogously define r−ij and have

r−ij =
∑
j′>j

r(i−1)j′j +
∑
j′′<j

rij′′j .

Since the individual summand for p−ij is at most the correspond-
ing summand for r−ij by the inductive hypothesis, we conclude that
p−ij ≤ r−ij . Recall that s(vj) is the number of starting trains at vj .
We then have

r+ij = r−ij + s(vj) ≥ p−ij + s(vj) ≥ p+ij .

This completes the induction proof.

Now we analyze P . Let Wi be the total number of waiting trains
at the beginning of round i for i = 1, . . . , t, where t is the number
of iterations until the number of waiting trains is at most 2n. For
j = 1, . . . , ℓ, let Wij be the number of waiting trains in layer Lj

at the beginning of round i, and let Aij be the number of active
trains in layer Lj at the end of round i. Then the number of trains
reaching D in round i is precisely Wi−Wi+1. On the other hand, by
the observations above, the active trains at the destinations have a
charge of 1, and hence, the number of trains reaching D in round i is
at least the difference between the total charge at the beginning of
the round and the total charge in V at the end of the round, that is

ℓ∑
j=1

Wij

2j
−

ℓ∑
j=1

Aij

2j
.

Let Xi = Wi − n−
∑

j Ai−1,j/2
j . Assume that Xi > 0. Then

Xi −Xi+1 = (Wi −Wi+1) +
ℓ∑

j=1

−Ai−1,j +Ai,j

2j

68 Subexponential algorithm for G-ARRIVAL

≥
ℓ∑

j=1

Wij −Aij

2j
+

ℓ∑
j=1

−Ai−1,j +Ai,j

2j

=

ℓ∑
j=1

Wij −Ai−1,j

2j
≥

ℓ∑
i=1

Wij −Ai−1,j

2ℓ
(3.1)

=
1

2ℓ
Wi −

1

2ℓ

ℓ∑
j=1

Ai−1,j ≥
1

2ℓ
Wi −

1

2ℓ
n (3.2)

≥ 1

2ℓ
Xi.

The inequality (3.1) holds, because the numerator of each summand
Wij −Ai−1,j is the number of inactive trains in layer Lj at the end
of round i − 1, and hence nonnegative. The inequality (3.2) holds,
because at the end of each round, each vertex in V has at most 1
active train, and hence

∑
j Ai−1,j ≤ n.

Therefore, as long as Xi > 0, it is reduced by a factor of at least
(1− 1/2ℓ) after the round. If t ≥ 2ℓ lnS, we have

Xt+1 ≤
(
1− 1

2ℓ

)t

X1 ≤
(
1− 1

2ℓ

)2ℓ lnS

(S − n)

< e− lnS(S − n) < 1.

Consequently, after at most 2ℓ lnS rounds in P , the value ofXi must
be nonpositive. Since

∑
j Ai−1,j ≤ n, the number of waiting trains

is then at most 2n.

By Lemma 3.6, after the same number rounds, the number of trains
that have been routed to the destinations in the procedure P is at
most that in round robin maximal simulation R. Therefore, after
at most 2ℓ lnS rounds of R, we have at most 2n waiting trains.
As each round has n iterations, the corresponding number of itera-
tions up to this point is O

(
n2ℓ lnS

)
. By Lemmata 3.1 and 3.3, the

3.4. A general framework 69

number of remaining iterations is at most 2n ·
(
(n− ℓ+ 2)2ℓ − 2

)
=

O
(
(n− ℓ)n2ℓ

)
. Therefore, we obtain the following bound:

Lemma 3.7. Let A = (V, D, s, seven, sodd) be a terminating switch-
ing system, |V | = n, S =

∑
v∈V s(v). Further, let ℓ be the maxi-

mum length of the shortest path from a vertex in V to a vertex in D.
Then the round robin maximal simulation of of Algorithm 2 (Multi-
run procedure) requires O

(
(lnS + n− ℓ)n2ℓ

)
iterations.

3.4 A general framework

We now move slightly away from simulating Algorithm 2 (Multi-run
procedure) and consider an alternative approach. We can try to get
hold of a switching flow; via Theorem 2.17, this allows us to decide
G-ARRIVAL. By Definition 2.13, a switching flow can be obtained
by finding a feasible solution to an integer linear program (ILP).
This is a hard task in general, and it is unknown whether switching
flow ILPs can be solved more efficiently than general ILPs.

In this section, we develop a framework that allows us to reduce the
G-ARRIVAL problem to that of solving a number of G-ARRIVAL
instances. However, these new G-ARRIVAL instances take less time
to solve than the original G-ARRIVAL instance. Additionally, the
framework also produces a switching flow and solves the search vari-
ant GS-ARRIVAL.

3.4.1 The idea

Given a terminating G-ARRIVAL instance, we consider the switch-
ing flow conditions in Definition 2.13. Given an arbitrary fixed sub-
set R = {v1, . . . , vk} ⊆ V of k vertices, we drop the flow conserva-
tion constraints at the vertices in R, but at the same time prescribe
outflow values x+(v1), . . . , x

+(vk) that we can think of as guesses
for their values in a switching flow.

70 Subexponential algorithm for G-ARRIVAL

If we find a flow that satisfies the switching behavior and the modi-
fied flow conservation subject to these guesses, we obtain unique in-
flow values x−(v1), . . . , x−(vk) for the vertices in R (Lemma 3.10 (i)
below) . If we happen to stumble upon a fixed point of the mapping
x+(v1), . . . , x

+(vk)→ x−(v1), . . . , x
−(vk), we recover flow conserva-

tion also at R, which means that our guesses were correct and we
have obtained a switching flow.

The crucial property is that the previously described mapping is
monotone (Lemma 3.10 (ii) below), meaning that the theory of
Tarski fixed points applies that guarantees the existence of a fixed
point as well as efficient algorithms for finding it (Lemma 3.11).

Hence, we reduce the computation of a switching flow to a benign
search problem (for a Tarski fixed point), where every search step
requires us to find a solution of a “guessing” ILP. Instead of resorting
to general purpose ILP solvers, we can obtain such a solution, by
simply simulating Algorithm 2 (Multi-run procedure) on another
switching system. For appropriate choices of the set R, it will be
fast enough to bring the overall runtime down to subexponential
regime and even further for a suitable original switching system.

3.4.2 Candidate switching flows and guessing switch-
ing system

Based on the idea described previously, we would like to find a
candidate switching flow according to the following definition.

Definition 3.8 (Candidate switching flow). Let A = (V, D, s, seven,
sodd) be a terminating switching system with edges E, R = {v1, v2,
. . . , vk} ⊆ V , w = (w1, w2, . . . , wk) ∈ Nk

0.

A function x : E → N0 is a candidate switching flow for A (with
respect to R and w) if

3.4. A general framework 71

x(Y,v) = s(v), v ∈ V

x+(v)− x−(v) = 0, v ∈ V \R
x(v,seven(v)) − x(v,sodd(v)) ∈ {0, 1}, v ∈ V

x+(vi) = wi, i = 1, 2, . . . , k.

(3.3)

Note that the difference between the definition of a candidate switch-
ing flow from a switching flow (Definition 2.13) is that the flow con-
servation only holds for the vertices in V \ R instead of V and the
addition of the prescribed outflow w at R.

In order to find a candidate switching flow, we consider a guessing
switching system, defined as follows.

Definition 3.9 (Guessing switching system). Let A,R,w be as in
Definition 3.8. A guessing switching system (A,R,w) defines a
switching system (V \R, D ∪R, s′, s′even, s

′
odd), where

� s′ is a function V ∪D → N0, such that s′(v) = 0 for v ∈ D,
and for v ∈ V , the value of s′(v) is

1R(v)s(v)+
∑

i:seven(vi)=v

⌈
s(vi) + wi

2

⌉
+

∑
i:sodd(vi)=v

⌊
s(vi) + wi

2

⌋
,

where 1R(v) takes value 1 if v /∈ R and 0 otherwise.

� For v ∈ V \R, s′even(v) = seven(v) and s′odd(v) = sodd(v).

Put differently, a guessing switching system is obtained from the
original switching system as follows. For each vertex vi in R, we
route all s(vi) + wi starting trains from vi. After that, we consider
the vertices in R as destinations (i.e., we move them from V to D
and delete all outgoing edges from R while keeping the incoming
edges intact).

Note that in the formal definition above, we abuse the definition
of G-ARRIVAL a little by extending the domain of s′ from V \ R

72 Subexponential algorithm for G-ARRIVAL

to V ∪ D to account for the case where a vertex in R may have a
successor also in R. However, it is easy to see that this change only
means that some trains are sent directly from the train yard Y to
some destinations and does not invalidate any result that we have
for G-ARRIVAL up to this point.

Lemma 3.10 (The mapping of outflows to inflows is monotone).
Let A,R,w be as in Definition 3.8 and let x̂ be a candidate switching
flow for A with respect to R and w. For fixed A,R, define F (w) =
(x̂−(v1), . . . , x̂

−(vk)) ∈ Nk
0. Then the following statements hold.

(i) F (w) does not depend on the choice of x̂.

(ii) The function F : Nk
0 → Nk

0 is monotone, meaning that w ≤ w′

implies that F (w) ≤ F (w′).

Proof. For part (i), it is easy to see a one-to-one correspondence
between a switching flow for the guessing switching system (A,R,w)
and a candidate switching flow for A with respect to R and w. By
Theorem 2.17, it follows that for any candidate switching flow, the
inflows at R are the same. This is exactly the statement of part (i).

The proof of (ii) is now an easy consequence. By part (i), we can
choose x̂ to correspond to the run profile of (A,R,w), i.e., the
switching flow obtained from a simulation of Algorithm 2 (Multi
Run Procedure). F (w)i is the number of trains that arrive at vi. If
w ≤ w′, we run Algorithm 2 (Multi Run Procedure) with the guess-
ing switching system (A,R,w′) as input, such that it first simulates
a run with input (A,R,w); for this, we keep the extra trains corre-
sponding to w′ − w waiting at the successors in G(A) of vertices in
R, until all other trains have terminated. At this point, we have in-
flows f ≥ F (w) at R. We finally run the extra trains that are still
waiting, and as this can only further increase the inflows at R, we
get F (w′) ≥ f ≥ F (w).

3.4. A general framework 73

3.4.3 Tarski fixed points

Tarski fixed points arise in the study of order-preserving functions
on complete lattices [158]. For our application, it suffices to consider
finite sets of the form L = {0, 1, . . . , N}k for some N, k ∈ N+.
For such a set, Tarski’s fixed point theorem [158] states that any
monotone function D : L → L has a fixed point, some ŵ ∈ L such
that D(ŵ) = ŵ. Moreover, the problem of finding such a fixed point
has been studied: Dang, Qi and Ye [54] have shown that a fixed
point can be found using O(logk N) evaluations of D. Recently,
Fearnley, Pálvölgyi and Savani [74] improved this to O(log2⌈k/3⌉N).

Via Lemma 3.10, we have reduced the problem of deciding a ter-
minating G-ARRIVAL instance to the problem of finding a fixed
point of a monotone function F : Nk

0 → Nk
0, assuming that we can

efficiently evaluate F . Indeed, if we have such a fixed point, the
corresponding candidate switching flow is an actual switching flow
and hence decides the problem via Theorem 2.17.

The function F depends on a set R ⊆ V of size k that we can choose
freely (we will do so in the subsequent sections).

Here, we still need to argue that we can restrict F to a finite set
L = {0, 1, . . . , N}k so that the Tarski fixed point theorem ap-
plies. We already know that outflow (and hence inflow) values never
exceed N = S2n in some switching flow, namely the run profile
(Lemma 3.2), where we recall that S denotes the number of start-
ing trains. So we simply restrict F to this range and at the same
time cap the function values accordingly.

Lemma 3.11. Let A = (V, D, s, seven, sodd) be a terminating G-
ARRIVAL instance, R = {v1, . . . , vk} ⊆ V , |V | = n, S =

∑
v∈V s(v).

Let F be the function defined in Lemma 3.10, let N = S2n, and con-

74 Subexponential algorithm for G-ARRIVAL

sider the function g : {0, 1, . . . , N}k → {0, 1, . . . , N}k defined by

g(w) =


min(N,F (w)1)
min(N,F (w)2)
...
min(N,F (w)k)

 , w ∈ {0, 1, . . . , N}k.

Then g is monotone and has a fixed point ŵ that can be found with
O(log2⌈k/3⌉N) evaluations of g. Moreover, ŵ corresponds to also a
fixed point of F , and hence a candidate switching flow for A w.r.t.
R and ŵ) corresponds to a switching flow for A.

Proof. Monotonicity is clear: if w ≤ w′, then F (w) ≤ F (w′) by
monotonicity of F ; see Lemma 3.10 (ii). But then also g(w) ≤ g(w′)
for the capped values. Hence, the Tarski fixed point theorem [158]
yields a fixed point ŵ of g, and the algorithm of Fearnley, Pálvölgyi
and Savani [74] finds it using O(log2⌈k/3⌉N) = O((n + lnS)2⌈k/3⌉)
evaluations.

It remains to prove that ŵ is a fixed point of F . Suppose for a
contradiction that it is not a fixed point. Then g(ŵ) ≤ F (ŵ), i.e.
some values were actually capped, and so ŵj = g(ŵ)j = N < F (ŵ)j
for at least one j. As we also have ŵ = g(ŵ) ≤ F (ŵ), we get

k∑
i=1

ŵi <

k∑
i=1

F (ŵ)i. (3.4)

On the other hand, consider the candidate switching flow (3.3) with
w = ŵ. Since the total flow emitted is absorbed at either R or D,
(3.4) implies that the flow units arrive at D is less than S.

But this is a contradiction to ŵj = N = S2n: By the same argu-
ments as in the proof of Lemma 3.2, based on flow conservation (at
all v ̸= vj) and switching behavior, out of these S2n outflow units
from vj , S2n/2dist(v) ≥ S units are guaranteed to arrive at D.

3.5. Subexponential algorithm for G-ARRIVAL 75

Remark 3.12. Let A,R, ŵ be as defined in the theorem above. Ob-
serve that if we perform a simulation of Algorithm 2 (Multi-run
procedure) for (A,R, ŵ), we obtain a switching flow that is the run
profile of this guessing switching system, and therefore it is flow-
minimal for (A,R, ŵ) (Theorem 2.18). However, the corresponding
switching flow for A is not necessarily flow-minimal, so we cannot
argue that we obtain the run profile of A. The function g may have
several fixed points, each of them leading to a different switching
flow; to obtain the run profile, we would have to find a particu-
lar fixed point, the one that leads to the unique switching flow for
smallest total flow. In other words, we want the least Tarski fixed
point, which is an NP-hard problem even in one dimension [70]. The
known Tarski fixed point algorithms cannot do this, and we do not
know of any efficient method for computing the run profile from a
given switching flow.

3.5 Subexponential algorithm for G-ARRIVAL

In this section, we present our main application of the general frame-
work developed in the previous section.

Given a terminating G-ARRIVAL instance A with |V | = n, the plan
is to construct a set R ⊆ V of size O(

√
n) such that from any ver-

tex, the length of the shortest path in G(A) to a vertex in R ∪D is
also bounded by roughly O(

√
n). Since R is that small, we can find

a Tarski fixed point with a subexponential number of F -evaluations;
and since shortest paths are that short, each F -evaluation can also
be done in subexponential time using the round robin maximal sim-
ulation of Algorithm 2 (Multi-run procedure) (Lemma 3.7). An
overall subexponential algorithm ensues.

76 Subexponential algorithm for G-ARRIVAL

Lemma 3.13. Let A = (V, D, s, seven, sodd) be a terminating switch-
ing system with |V | = n. Let ϕ ∈ (0, 1) be a real number. In O(n)
time, we can construct a ϕ-set R, meaning a set R ⊆ V such that

(i) |R| ≤ ϕ · (n+ |D|) ≤ 3ϕn;

(ii) for all v ∈ V , the shortest path from v to R ∪D in G(A) has
length at most log(n+ |D|)/ϕ ≤ log(3n)/ϕ.

Proof. We adapt the ball-growing technique of Leighton and Rao [115],
as explained by Trevisan [161].

We first compute the layer decomposition (L0, . . . , Lℓ) of the switch
graph G(A) in O(1) time, as explained in Section 3.2.

Algorithm 3: Procedure to compute a ϕ-set
Input: ARRIVAL instance with layer decomposition

(L0, . . . , Lℓ), ϕ ∈ (0, 1)
Output: a ϕ-set R
R← ∅
U ← L0

for i = 1, . . . , ℓ do
if |Li| < ϕ|U | then

R← R ∪ Li

U ← ∅
U ← U ∪ Li

return R

Consider Algorithm 3 that computes a ϕ-set as a union of layers.
Intuitively, a “ball” is a union of consecutive layers. To grow a new
ball U , we first add a layer with the lowest index that is not in a
ball yet. Then we keep adding the succeeding layer into the ball, as
long as doing this grows the size of the current ball by a factor of at
least 1 + ϕ. The ϕ-set is then the union of the first layers added to
the balls.

3.5. Subexponential algorithm for G-ARRIVAL 77

It is clear that the procedure is done in O(n) time. To prove
(i), we observe that whenever we add a layer Li to R, we have
|Li| < ϕ|U |; moreover, the U ’s considered in these inequalities are
mutually disjoint subsets of V ∪D. Hence, |S| < ϕ · (n+ |D|).

For (ii), let v ∈ V . Then v ∈ Lb for some b ≥ 1. Let 0 ≤ a ≤ b
be the largest index such that La ⊆ R ∪D. Then the shortest path
from v to a vertex in R ∪D has length at most b− a. It remains to
bound j := b− a. The interesting case is j > 0.

Consider Algorithm 3. After the a-th iteration, |U | = |La| ≥ 1.
Moreover, |Li| ≥ ϕ|U | for i = a + 1, . . . , b, meaning that for each
iteration i in this range, the size of U has grown by a factor of at
least 1+ϕ. Hence, after the b-th iteration, (1+ϕ)j ≤ |U | ≤ n+ |D|.
This implies j ≤ log(n + |D|)/ log(1 + ϕ) < log(n + |D|)/ϕ, where
we use the inequality log(1 + ϕ) > ϕ for ϕ ∈ (0, 1).

The last inequalities in both (i) and (ii) follow the assumption that
|D| ≤ 2n.

Theorem 3.14. Let A = (V, D, s, seven, sodd) be a terminating G-
ARRIVAL instance with |V | = n. A can be decided in time nO(

√
n).

Proof. By Lemma 3.13, we can find a ϕ-set R in O(n) time, for
any ϕ ∈ (0, 1). As |S| ≤ ϕ · (3n), by Lemma 3.11, we can then
decide A with O

(
(n+ logS)2⌈ϕn⌉

)
evaluations of the function g.

Each evaluation in turn requires us to evaluate the function F in
Lemma 3.10 (ii) for a given w ∈ {0, 1, . . . , S2n}|R|. We can do this
by applying Algorithm 2 (Multi-run procedure). By Lemma 3.7 and
the definition of a ϕ-set in Lemma 3.13, running this algorithm in a
round robin maximal fashion requires at mostO

(
(lnW + n− ℓ)n2ℓ

)
iterations, where W = S +

∑|R|
i=1wi and ℓ = log(3n)/ϕ. Further,

from the choice of w, we have W ≤ S2n3ϕn + S. Therefore, the
number of iterations is O(q(n)nlog 3/ϕ) for some polynomial q. (Re-
call that we assume log(S) is polynomial in n.) Each iteration of

78 Subexponential algorithm for G-ARRIVAL

the procedure takes polynomial time.

In total, the runtime of the whole process is

O
(
(n+ logS)2⌈ϕn⌉ · p(n)nlog 3/ϕ

)
for some polynomial p. Choosing ϕ = Θ(1/

√
n) and noting that

logS is polynomial in n, the runtime becomes nO(
√
n).

3.6 Feedback vertex sets

In the previous section, we used our framework to obtain an im-
proved algorithm for G-ARRIVAL in general. In this section, we
will instantiate the framework differently to obtain a polynomial-
time algorithm for a certain subclass of G-ARRIVAL.

A subset R ⊆ V of vertices in a directed graph G = (V, E) is called
a feedback vertex set if and only if the subgraph induced by V \R is
acyclic (i.e. it contains no directed cycle). Karp [102] showed that
the problem of finding a smallest feedback vertex set is NP-hard.
However, there exists a parameterized algorithm by Chen et al. [48]
which can find a feedback vertex set of size k in time O(n44kk3k!)
in a directed graph on n vertices, or report that no such set exists.

It turns out that if the switch graph of a switching system is acyclic,
the maximal simulation of Algorithm 2 (Multi-run procedure) takes
polynomial time. This implies that we get a polynomial-time algo-
rithm for G-ARRIVAL if there is a feedback vertex set of constant
size k.

Theorem 3.15. Let A = (V, D, s, seven, sodd) be a terminating
switching system with switch graph G(A). If G(A) has a feedback
vertex set R ⊆ V of size k (assumed to be fixed as n = |V | → ∞),
then A can be decided in time O

(
n2⌈k/3⌉+1(n+ logS)

)
.

3.7. Discussion and open questions 79

Proof. Using the algorithm by Chen et al. [48], we can find a feed-
back vertex set S inO(n4) time if it exists. According to Lemma 3.11,
we can then decide A with O(n2⌈k/3⌉) evaluations of the function g.
Each evaluation in turn requires us to evaluate the function F in
Lemma 3.10 for a given w ∈ {0, 1, . . . , S2n}k. To do this, we apply
Algorithm 2 (Multi-Run Procedure) where we pick vertices v ∈ V \S
in topological order and choose ρ = t[v] always. As we never send
any trains back to vertices that have previously been picked, we ter-
minate within n − k iterations, each of which can be performed in
time O(n + logS) as it involves O(n + logS)-bit numbers. Hence,
F (w) can be computed in O (n(n+ logS)) time.

Overall, this gives a runtime of

O
(
n4 + n2⌈k/3⌉+1(n+ logS)

)
.

For k ≥ 1, the second term dominates the first term. For k = 0, we
can check if a graph is acyclic, for example, via topological sorting
in O(n) time and do not need to employ the algorithm by Chen et
al. [48]. The claimed runtime follows.

We remark that even if k is not constant, we can still beat the
subexponential algorithm in Section 3.5, as long as k = O(nα) for
some α < 1/2.

3.7 Discussion and open questions

Other applications of the framework We have presented a
general framework with three major steps: choosing a subset R,
searching for a fixed point in the function F (w) as defined in Lemma
3.10, and finding a candidate switching flow given a guessed w. In
both applications in this chapter, we use Tarski fixed points for the
second step and a form of maximal simulation for the third step.
Further, as discussed earlier, the third step is essentially solving

80 Subexponential algorithm for G-ARRIVAL

some constrained G-ARRIVAL instances. Therefore, if we find a
faster method to solve G-ARRIVAL or a suitable subclass of G-
ARRIVAL, we may bootstrap that method by using it for the third
step and choosing an appropriate subset R. Likewise, any improve-
ment on algorithms to find Tarski fixed points will give a better time
bound on any algorithms in this framework. However, we believe it
is unlikely that this framework will give rise to a polynomial-time
algorithm for a general G-ARRIVAL instance, as long as the query
complexity in the second step of the framework has an Ω(|R|) term
in the exponent.

The train yard The artificial vertex Y is used to avoid some
technical details in applying Tarski fixed point theory. Without
the train yard, the starting trains will be at the vertices in V at
the beginning, and the system (3.3) in the definition of a candidate
switching flow (3.8) becomes

x+(v)− x−(v) = s(v), v ∈ V \R
x(v,seven(v)) − x(v,sodd(v)) ∈ {0, 1}, v ∈ V

x+(vi) = wi, i = 1, 2, . . . , k.

Since the net inflow at every vertex in V is not necessarily 0, we
are no longer looking for a fixed point of function F as defined in
Lemma 3.10. In order to apply Tarski fixed point theory, we need
to define F differently to account for s. This makes the explanation
of the framework more complicated.

Open questions

� The question of whether G-ARRIVAL is in P is still wide open.
We would be interested to see any improvement on the upper
bound (i.e., a faster algorithm) or on the lower bound, such as
whether ARRIVAL is P-hard as conjectured in [7].

3.7. Discussion and open questions 81

� As mentioned in Remark 3.12, our subexponential algorithm
only produces a switching flow and not the run profile. This
gives rise to the complexity question for the problem of finding
the run profile (i.e., the flow-minimal switching flow), given a
switching flow. We comment that this is related to the com-
plexity of finding the rotor-routing action as defined by Hol-
royd, Levine, Mészáros, Peres, Propp, and Wilson [92].

� Tóthmérész [160] defined the following maximal r-bounded
rotor-routing game, whose complexity is still open. We are
given a rotor-routing game of a ribbon graph with edge set
E and an initial chip-and-rotor configuration and a function
r : E → N0. We can move the chips as per the rotor-router
rules, but each edge e can be traversed at most r(e) times.
The game ends when there is no further possible move. The
goal is to find the maximal odometer that records the num-
ber of times we have traversed each edge until the game ends.
This is analogous to finding the run profile of a switching sys-
tem in the uncapicitated setting of G-ARRIVAL.

82 Subexponential algorithm for G-ARRIVAL

Two roads diverged in a yellow wood,

—Robert Frost,
The Road Not Taken

CHAPTER 4

G-ARRIVAL with two vertices per layer

This chapter is based on unpublished joint work with Bernd Gärtner.

In the previous chapter, we present a subexponential algorithm for
a general instance of G-ARRIVAL and a polynomial time algorithm
for a subclass. Haslebacher [85] also identified some special subcases
of ARRIVAL, where the simulation of Algorithm 1 (Run Procedure)
runs in polynomial time. In particular, this happens when there are
O(log n) backward edges (that take the train further away from the
destinations with respect to the distance of shortest path) or when
maximum in-degree is two. Interestingly, he also showed that the
simulation takes exponential time on an instance where only one
vertex has in-degree three and the others at most two.

In this chapter, we discuss a different subclass where we can decide
G-ARRIVAL in polynomial time without simulating the train runs.

83

84 G-ARRIVAL with two vertices per layer

This subclass is motivated by a “hard” case of the algorithm in Sec-
tion 3.2. Observe that the worst possible case is when every layer
(except for the layer of the destinations) in the layer decomposition
has exactly two vertices. It is also easy to see that this is also one
of the worst cases for the subexponential algorithm as discussed in
Section 3.5. The method to solve this subclass is inspired by the
integer programming approach to solving G-ARRIVAL. However,
for this chapter, we present a different and more combinatorial ap-
proach for the analysis.

4.1 Preliminaries

Definition 4.1 (Ladder and 2-ladder). A ladder is a terminat-
ing switching system A, such that in the layer decomposition of the
switch graph G(A), every layer has exactly two vertices, except for
the layer furthest away from the destinations, which has at most
two vertices, and the layer that contains the destinations, which can
have any number of vertices. A 2-ladder is a ladder with exactly two
destinations.

For most of the remaining part of the chapter, we focus on solving
a G-ARRIVAL instance (A, T) where A = (V, D, s, seven, sodd) is a
2-ladder. We will discuss in Section 4.7 how to use the algorithm to
solve an instance where A is a ladder.

Firstly, we can assume that the last layer contains a single vertex.
If it does not, it must have two vertices. We then add a layer after
it with one vertex, whose out-neighbors are the vertices in the layer
above and whose s-value is 0. Denote by 0 the only vertex in the
last layer.

Secondly, to ease the notations in this chapter, we define n dif-
ferently than in the previous chapter. In particular, we denote
n := (|V |+1)/2. Therefore, there are n+1 layers in the layer decom-

4.1. Preliminaries 85

position, where layer L0 is the set of destinations D = {n,−n} and
the last layer Ln = {0}. For i ∈ [n− 1], we denote the two vertices
in layer Li by n− i and −(n− i). See Figure 4.1 for an illustration.

−n n
Layer
L0

L1

L2

. . .

0

−(n− 1) n− 1

−(n− 2) n− 2

−1 1 Ln−1

Ln

Figure 4.1: The layer decomposition of a 2-ladder

Thirdly, we can assume that there exist two vertex-disjoint directed
paths from 0 to n and −n respectively. Suppose there are no such
paths. This implies that at some layer Li, i ≥ 1, all the edges from
layer Li to layer Li−1 end at only one vertex v in layer Li−1. This
is because we can otherwise construct the two vertex-disjoint paths,
contradicting the hypothesis. We then observe that whenever the
train goes to a layer Lj , j ≥ i, it can only pass through v on its way
to Ln. By similar arguments in Section 3.2, we can contract all the
vertices in layer Lj , j ≥ i to v to obtain a smaller graph.

We assume that these two vertex-disjoint paths are (0, 1, 2, . . . , n)
and (0,−1,−2, . . . ,−n).

Lastly, we denote by Ê the set of proper edges of G(A) and define
[n]∗ := {−n, . . . , n}.

86 G-ARRIVAL with two vertices per layer

4.2 Algorithm Overview

Suppose we have a G-ARRIVAL instance (A, T) where A a 2-ladder
defined as above, and T = (tn, t−n). Recall that the goal is to decide
whether T is the output of Algorithm 2 (Multi-run procedure) on
input A.

Let x be a switching flow for A. In Section 4.4, we show that x−(n)
has to lie in a range [α, β], where β − α ≤ 1. If this range contains
exactly one integer, then we know exactly the value of x−(n) and
decide (A, T) immediately. (Observe that we assume tn + t−n =∑

v∈V s(v), and so if tn = x−(n), we must have t−n = x−(−n).)
Otherwise, the range contains two consecutive integers, and x−(n)
is either of them. Therefore, if we can decide on the parity of x−(n),
then coupled with the fact that x−(n) ∈ [α, β], we can decide (A, T).

Based on the above observation, we design Algorithm L that takes
as input the 2-ladder A and a binary number σ. The algorithm
outputs the (unique) value of x−(n) if x−(n) ≡ σ (mod 2) and NO
otherwise. Then we can call Algorithm L with the input A and the
parity of tn. It is easy to see that (A, T) is a YES instance, if and
only if the output of Algorithm L is tn.

Algorithm L is shown in Section 4.6. However, we will present the
step-by-step explanation of the algorithm in the next few sections.
We first calculate the hitting probabilities of the related Markov
chain, which will be discussed in more details in Section 4.3. Based
on these hitting probabilities, we can either output NO immediately
(Section 4.4) or conclude that there is a cross at some layer Lk,
defined below (see Figure 4.2 for illustration).

Definition 4.2 (Cross). If for i > 0, the outgoing neighbors of the
vertices of Li are the vertices of Li−1, we say that there is a cross
at Li.

4.3. Hitting probabilities 87

Li−1

Li

−(n− i+ 1) n− i+ 1

−(n− i) n− i

Figure 4.2: A cross at Li

In the latter case, we can remove a part of the switch graph, obtain
a smaller 2-ladder whose layer decomposition has one fewer cross,
and recurse (Section 4.5).

4.3 Hitting probabilities

Consider the Markov chain induced by the switch graphG(A), where
every vertex in V ∪ D is a state, and from any v ∈ V , there is an
equal probability that the next state is seven(v) or sodd(v). Here,
the destinations are the only absorbing states, i.e., a state that once
entered cannot be left. For i ∈ [n]∗, let hi be the probability that
a random walk starting from i will reach n. Therefore, h is the
minimal nonnegative solution to the following linear system [128,
Theorem 1.3.2]:

hi = 0.5hseven(i) + 0.5hsodd(i), ∀i ∈ [n− 1]∗

hn = 1, (4.1)
h−n = 0.

Here, minimality means that if x is another nonnegative solution to
the above system, then xi ≥ hi for all i. In this chapter, we do not
need the hi’s to be the minimal non-negative solution but only a
solution to the above system.

Lemma 4.3 and Corollary 4.4 capture two useful properties of the
hi’s for a 2-ladder.

88 G-ARRIVAL with two vertices per layer

Lemma 4.3. 0 = h−n ≤ h−(n−1) ≤ . . . ≤ h−1 ≤ h0 ≤ h1 ≤ . . . ≤
hn−1 ≤ hn = 1.

Proof. We first prove that the sequence (h−i, . . . , h−1, h0, h1, . . . , hi)
is monotone (i.e., it is either nonincreasing or nondecreasing), by
induction on i for i ∈ [n]. After that, we will show that the sequence
is nondecreasing.

Since 0 has two outgoing edges to 1 and −1, we have 2h0 = h1+h−1.
This implies h−1 ≥ h0 ≥ h1 or h−1 ≤ h0 ≤ h1, and hence the
monotonicity property is true for the base case i = 1.

Suppose that it is true for all hi, |i| ≤ j for some j ≥ 1, and for
simplicity, suppose this is nondecreasing as we go through the same
order as in the statement of the lemma. The proof in the case when
it is nonincreasing is analogous.

The vertex −j has two outgoing edges to −(j + 1) and another
vertex ℓ1, where |ℓ1| ≤ j + 1, ℓ1 ̸= −(j + 1). Similarly, j has two
outgoing neighbors j + 1 and ℓ2, where |ℓ2| ≤ j + 1, ℓ2 ̸= j + 1.

Suppose ℓ1 ̸= j + 1. As ℓ1 ̸= j + 1 and ℓ1 ̸= −(j + 1), from the
inductive hypothesis, h−j ≤ hℓ1 . Since 2h−j = h−j−1+hℓ1 , we have
h−j−1 ≤ h−j . As ℓ2 ∈ {−j − 1, . . . , j − 1}, we have hℓ2 ≤ hj . Since
2hj = hj+1 + hℓ2 , we then must have hj ≤ hj+1.

Similarly, we can also extend monotonicity in the case where ℓ2 ̸=
−(j + 1).

Suppose now we have ℓ1 = j + 1 and ℓ2 = −(j + 1). In that case,
we have a cross and 2h−j = h−j−1 + hj+1 = 2hj . In other words,
h−j = hj . Due to the monotonicity established in the inductive
hypothesis, we have all hi’s are equal to each other for all−j ≤ i ≤ j.
In that case, we can have the monotonicity property: h−(j+1) ≤
h−j = . . . = h−1 = h0 = h1 = . . . = hj ≤ hj+1 or h−j−1 ≥ h−j =
. . . = h−1 = h0 = h1 = . . . = hj ≥ hj+1.

4.3. Hitting probabilities 89

We have completed the inductive proof for monotonicity. As hn = 1
and h−n = 0, the sequence must be non-decreasing.

For a vertex v ∈ V , by (4.1), hv−hseven(v) = hsodd(v)−hv. We define
gv := hv − hseven(v) = −

(
hv − hsodd(v)

)
to be the gap of v (with the

even successor in terms of hitting probabilities). The following is a
consequence of Lemma 4.3 above.

Corollary 4.4. ∑
v∈V
|gv| = 1− |g0| ≤ 1.

Proof. By (4.1), we have hn = 1 and h−n = 0.Hence,

1 = hn − h−n =

n∑
i=−n+1

(hi − hi−1) =

n∑
i=−n+1

|hi − hi−1| (4.2)

=

n∑
i=2

|hi − hi−1|+ |h1 − h0|+
0∑

i=−n+1

|hi − hi−1|

=

n∑
i=2

|gi−1|+ |g0|+
0∑

i=−n+1

|gi| (4.3)

=
∑

i∈[n−1]∗

|gi|+ |g0|,

where the last equality in (4.2) follows Lemma 4.3 and the equality
in (4.3) follows the facts that for i is a successor of i−1 for i ∈ [2, n]
and i− 1 is a successor of i for i ∈ [−n+ 1, 0].

From the equality above, together with the facts that V = [n− 1]∗,
the corollary then follows.

Now, we consider the case when the inequality in Corollary 4.4 above
holds as equality. In that case, we can show the existence of a cross.

90 G-ARRIVAL with two vertices per layer

Lemma 4.5. There exists a cross as defined in Definition 4.2, if and
only if g0 = 0 (i.e., h0 = h1). Further, if k is the smallest number
such that there is a cross at Lk, then gv ̸= 0 for v ∈ Lj, j ≤ k.

Proof. We prove the first statement.

“⇒′′: From the proof of Lemma 4.3, it is easy to see that if there is
a cross at Lk then all the hi’s where |i| ≤ n−k have the same value.
In particular, h0 = h1 and hence g0 = 0.

“⇐′′: Consider the maximal contiguous subsequence of equalities
in the sequence in Lemma 4.3, such that h0 is in this subsequence.
Suppose the leftmost and rightmost terms are hℓ and hr respectively.
Since, h0 = h1, ℓ < 0 and r > 0. Further, we should have either
|ℓ| ≥ |r| or |ℓ| ≤ |r|. WLOG, suppose it is the former. Let s be the
other outgoing neighbor of r besides r + 1. Then s < r. We have
2hr = hr+1+hs. As the subsequence is maximal, hr ̸= hr+1. Hence,
hr ̸= hs. For all i ∈ {ℓ, ℓ+1, . . . , r−1}, we have hi = hr. Therefore,
s < ℓ < 0. However, as |ℓ| ≥ |r| and we have (r, s) ∈ E, we must
have |s| = |r+1|, or s = −(r+1) and |ℓ| = |r| (i.e, ℓ and r are in the
same layer). By similar argument, we have the outgoing neighbors
of ℓ are ℓ− 1 and r + 1. In other words, there is a cross at Ln−r.

We follow the same arguments above for the second lemma state-
ment. As mentioned in the “⇒′′ direction, if there is a cross at Lk′

for some k′ < n − r, then (h−(n−k′), . . . , hn−k′) is a subsequence of
equal hitting probabilities that is longer than the subsequence above,
a contradiction to its maximality. Hence, k := n− r is the smallest
number such that there is a cross at Lk. Further, by the maximal-
ity of the subsequence, gr and gℓ (or equivalently gk and g−k) are
nonzero.

Lastly, we show that for j < k, gv ̸= 0 for v ∈ Lj . For the sake of
contradiction, suppose the contrary. Let j be the highest number
such that gv = 0 for some v ∈ Lj . WLOG, we can assume v = n−j.
By construction, either seven(v) < v or sodd(v) < v. Since g(v) = 0,

4.4. Initial analysis 91

we have hseven(v) = hv = hsodd(v). Couple with Lemma 4.3, this
implies that hv−1 = hv, or equivalently gv−1 = 0. Since v−1 ∈ Lj+1

and gk ̸= 0, this leads to a contradiction to the maximality of j. The
lemma then follows.

4.4 Initial analysis

In this section, we show that for any switching flow of A, the inflow
at a destination n falls into a range [α, β] for some α and β that
satisfy β−α ≤ 1 (see Lemma 4.6 below). If the above range contains
only one integer, then we know immediately the inflow at n.

Let x be a switching flow for A. Consider the following sum over
the set Ê of proper edges of G(A)

M :=
∑

(i,j)∈Ê

x(i,j)(hi − hj).

On one hand, we can sum over the vertices and obtain

M =
∑
i∈[n]∗

hi

 ∑
e∈Ê+(i)

xe −
∑

e∈Ê−(i)

xe


=

∑
i∈[n]∗

hi

 ∑
e∈E(A)+(i)

xe − x(Y,i) −
∑

e∈E(A)−(i)

xe


= −x−(n)−

∑
i∈[n−1]∗

his(i). (4.4)

In the last equality, we use the equalities in the definition of a switch-
ing flow (Definition 2.13) and the facts that hn = 1 and h−n = 0.

On the other hand, we can pair up the outgoing edges of each vertex
in M and obtain

M =
∑

i∈[n−1]∗

(
x(i,seven(i))

(
hi − hseven(i)

)
+ x(i,sodd(i))

(
hi − hsodd(i)

))

92 G-ARRIVAL with two vertices per layer

=
∑

i∈[n−1]∗

(
x(i,seven(i))gi − x(i,sodd(i))gi

)
=

∑
x(i,seven(i)) −x(i,sodd(i))

=1

gi (4.5)

In the second equality above, we use the definition of the gap gi as
defined in Section 4.3. In the third equality, we use the fact that
x(i,seven(i)) − x(i,sodd(i)) ∈ {0, 1} by definition of a switching flow.

Let Qx := {i : x(i,seven(i)) − x(i,sodd(i)) = 1}, P := {i : gi > 0}, and
N := {i : gi < 0}. Observe that the gi’s are completely determined
by the switch graph and do not depend on the starting trains or the
switching flows. Hence, (4.5) is maximized, when the set Qx ⊇ P
and Qx ∩ N = ∅. Likewise, it is minimized, when Qx ⊇ N and
Qx ∩ P = ∅. Therefore, we have

M ∈

∑
gi<0

gi ,
∑
gi>0

gi

 . (4.6)

Combining (4.4) and (4.6), we obtain x−(n) ∈ [α, β], where

α := −
∑

i∈[n−1]∗

his(i)−
∑
gi>0

gi,

β := −
∑

i∈[n−1]∗

his(i)−
∑
gi<0

gi.
(4.7)

By Corollary 4.4, we have

β − α =
∑
gi>0

gi −
∑
gi<0

gi =
∑

i∈[n−1]∗

|gi| = 1− |g0| ≤ 1. (4.8)

Combining with Lemma 4.5, we have the following lemma.

4.5. 2-ladder with a cross 93

Lemma 4.6. Let A be a 2-ladder with n being one of the destina-
tions. Then there exist α = α(G(A)) and β = β(G(A)) such that
β − α ≤ 1 and for any switching flow x for A, x−(n) ∈ [α, β]. Fur-
ther, β−α = 1, if and only if there is a cross in the layer decompo-
sition of G(A).

Lemma 4.6 above immediately implies the following.

Corollary 4.7. Let (A, T) be a G-ARRIVAL instance, where A is
a 2-ladder as defined in Section 4.1 and T = (tn, t−n). Let α, β as
guaranteed by Lemma 4.6. Suppose β−α contains exactly one inte-
ger; in particular, this holds when the layer decomposition of G(A)
does not contain a cross (equivalently, β − α < 1). Then (A, T) is
a YES instance, if and only if tn ∈ [α, β].

4.5 2-ladder with a cross

In this section, we consider the case where the range [α, β] contains
more than one integer, where α, β are defined in the previous sec-
tion. From (4.8), when this happens, the range contains exactly two
integers α and β. Further, as stated in Lemma 4.6, the layer decom-
position of G(A) has a cross. From now on, we focus on deciding
whether the inflow at n is α. If this is not true, then this inflow
must be β. We first have the following lemma.

Lemma 4.8. Let A be a 2-ladder as defined in Section 4.1, x be a
switching flow for A, and α and β as defined in (4.7). Suppose that
α and β are integers. Let k be the smallest number such that there
is a cross at Lk in the layer decomposition of G(A). If x−(n) = α,
then for j ≤ k and i ∈ Lj, we have the gap gi ̸= 0 and

x(i,seven(i)) − x(i,sodd(i)) = γ(i) :=

{
0 if gi < 0,

1 if gi > 0.

94 G-ARRIVAL with two vertices per layer

The lemma above implies that if the inflow at n is α, then for any
switching flow and for any vertex in the layers L0, . . . , Lk, the differ-
ence in flows between its even and odd outgoing edges is the same
for any switching flow.

Proof. As discussed above, when α and β are integers, by (4.8), we
must have g0 = 0. Then by Lemma 4.5, there exists a cross, and
hence k exists.

Recall the definitions of M,Qx, P, and N in the Section 4.4. Fol-
lowing the analysis in that section, when x−(n) = α = min[α, β],
M achieves the maximum value of the range in (4.6). That implies
that Qx ⊇ P and Qx∪N = ∅. Equivalently, for i ∈ V , if gi ̸= 0 then

x(i,seven(i)) − x(i,sodd(i)) =

{
0 if gi < 0,

1 if gi > 0.

By Lemma 4.5, gi ̸= 0 for i ∈ Lj , j ≤ k. The lemma follows.

From the above lemma, we can deduce something stronger: if the
inflow at n is α, then the value of xi is the same for any switching
flow x and i ∈ Lj , j < k. Even more, we can compute this value
efficiently.

Lemma 4.9 (Fixed flow values above highest cross). Let A,α, β, γ
be as in Lemma 4.8. Let x be a switching flow for A. If α and β are
integers and x−(n) = α, then in polynomial time, we can compute
xe for all outgoing edges e from vertices in Lj, j < k.

Proof. Let Ŵ := Lk ∪ · · · ∪ Ln. Suppose we contract the vertices
in Lk ∪ · · · ∪ Ln of the switch graph G(A) into the vertex 0 and
remove the train yard Y . Let G′ = (V ′, E′) be the resulting graph,
where V ′ = L0 ∪ · · · ∪ Lk−1 ∪ {w}. Since the edges going out of Ŵ
in G(A) are the edges from (n− k) and −(n− k) to n− k + 1 and

4.5. 2-ladder with a cross 95

−(n− k + 1), the outgoing edges of w in (V ′, E′) are (w, n− k + 1)
and (w,−(n− k + 1)).

By Lemma 4.8, for i ∈ [n− k, n− 1], we have

x(i,seven(i)) − x(i,sodd(i)) = γ(i),

x(−i,seven(−i)) − x(−i,sodd(−i)) = γ(−i).

Define

γ′ =
(
x(n−k,n−k+1) − x(n−k,−(n−k+1)

)
+(

x(−(n−k),n−k+1) − x(−(n−k),−(n−k+1)

)
.

Note that γ′ ∈ {±γ(k)± γ(−k)} is a fixed number in [−2, 2].

Consider the function y : E′ → N0 defined as follows:

ye := xe, e /∈ E′+(w) ∪ E′−(w)
y(v,w) := x(v,u), (v, w) ∈ E′−(w), u ∈W, (v, u) ∈ E

y(w,v) :=
∑
u∈Lk

x(u,v), v ∈ Lk−1.

Note that y(w,n−k+1) − y(w,−(n−k+1)) = γ′.

Observe that for every vertex of G′ has out-degree either 0 or 2 with
at least one sink, and from every vertex, there is a directed path to a
sink. Further, for every vertex, we prescribe the net inflow (which is
governed by s) and the difference of flows between the two outgoing
edges (which is governed by γ and γ′). Hence, by Lemma 2.30, y
is unique and can be computed in polynomial time. Since x and y
agree for all the edges going out from each vertex in L1, . . . , Lk−1,
the lemma then follows.

Reducing the switch graph. Again, suppose x is a switching
flow x for A such that x−(n) = α, we consider the x-values for
four disjoint sets of edges. Set (a) contains the edges incident to
Y . Set (b) contains the edges going out from vertices in L<k :=

96 G-ARRIVAL with two vertices per layer

−n n L0

Lk−1

. . .

0

−(n− k + 1) n− k + 1

−1 1 Ln−1

Ln

. . .

Lk−(n− k) n− k

(b)

(c)

(d)

Figure 4.3: Four sets of edges for analysis of x grouped by their
tails: Set (a) of edges whose tails are Y is not shown here. Set (b)
contains edges whose tails are in L<k; the corresponding x-values
are fixed by Lemma 4.9. Set (c) contains edges whose tails are in
L>k; together with Y , it induces another switching system A′. Set
(d) contains the edges going from Lk to Lk−1.

L1 ∪ · · · ∪Lk−1. Set (c) contains the remaining edges, i.e., the edges
going out from vertices in L>k := Lk+1 ∪ · · · ∪ Ln. The last set (d)
contains the edges that form the cross at layer Lk, i.e., the edges
from n−k and −(n−k) to n−k+1 and −(n−k+1). See Figure 4.3
for an illustration.

The values in set (a) are fixed by the definition of switching flow.
The values in set (b) are the same for any switching flow and can be
computed easily by Lemma 4.9; hence we can consider them as fixed.

For set (c), consider a switching system A′ whose switch graph is
the induced subgraph on {Y } ∪ Lk ∪ L>k. The destinations of A′

are the vertices in Lk. We can consider the combined fixed x-values

4.5. 2-ladder with a cross 97

of the edges in the first two sets coming into L>k as the starting
trains for A′. It is easy to see that A′ is a 2-ladder and that there
is a one-to-one correspondence between a switching flow for A′ and
the x-values for the edges in the third set.

For set (d), because of the Abelian property of switching system
(Lemma 2.8), for any switching flow for A′, the inflow to n−k in A′

is always the same. Given that the x-values in the first two sets are
also fixed, we conclude that the total inflow at n− k is fixed (i.e., it
is the same for any switching flow for A). By flow conservation, the
total outflow equals the total inflow at n − k. By Lemma 4.8, we
know that the difference between the flows for its outgoing edges,
which is γ(n− k). As we know the sum and the difference, we can
compute the flows for each outgoing edge from n − k. The same
analysis can be done for −(n− k).

So far, it seems that there is nothing in the way of constructing a
switching flow x for A such that x−(n) = α. However, the catch
is in the integrality condition. While the switching flow for A′ is
integral by definition, the other values may not be. For one, the
values computed in Lemma 4.9 may not be integral. Further, in
the last step, although we can compute the flows for the outgoing
edges of n − k, these values may not be integers. In fact, they are
only integers when the total inflow at n− k has the same parity as
γ(n−k). Since the inflow from Y and from L<k to n−k are known,
this means that we can prescribe the parity for the inflow from L>k

to n− k. In order to verify if this inflow indeed has the prescribed
parity, we can use Algorithm L on A′ which is a smaller 2-ladder
than A (in terms of number of vertices). This suggests a recursive
structure of the algorithm.

Note that if the outflows at the vertices in Lk−1 and the flows from
n − k to each of these vertices are integral, by flow conservation,
the flows from −(n− k) to each of the two vertices in Lk−1 are also
integral. Therefore, we do not need to check for −(n− k).

98 G-ARRIVAL with two vertices per layer

4.6 Algorithm L

Putting the above analyses together, we can devise Algorithm L
that, given a 2-ladder A and a binary number σ, outputs the inflow
to the destination n or outputs NO if the parity of this inflow is
not σ.

We first compute hi by solving the linear system (4.1). We can then
easily compute the gaps gi. Next, we compute α and β as in (4.7).
If [α, β] contains only one number c, then we output c, if c ≡ 2
(mod 2), and NO otherwise.

If [α, β] contains two integers, then we try to contruct a switching
flow x for A, where x−(n) = α. We first find the smallest value k
such that there is a cross at layer Lk. We then compute the values
of γi for i ∈ Lj , j < k, as defined in Lemma 4.8. Next, we compute
xe for every outgoing edge e from a vertex in Lj for j < k, using
Lemma 4.9. If any of the computed values are not integral, we know
immediately that x−(n) must be β.

Otherwise, based on these values, we can construct the 2-ladder A′ =
(V ′, D′, s′, s′even, s

′
odd) as follows:

V ′ := L>k = [n− k − 1]∗,
D′ := Lk = {n− k,−(n− k)},

s′(v) := s(v) +
∑

u∈L<k:(u,v)∈E

x(u,v), v ∈ V ′

s′even(v) := seven(v), v ∈ V ′

s′odd(v) := sodd(v), v ∈ V ′.

Further we define a binary number σ′ ∈ {0, 1}, such that

σ′ ≡ γ(k)− s(k)−
∑

u∈L<k:(u,k)∈E

x(u,k).

Then we make a recursive call on Algorithm L with input A′ and
σ′. If the output of this call is NO, then we know the inflow at n

4.7. Solving G-ARRIVAL with ladder 99

for A is β (i.e., there is no switching flow x such that x−(n) = α).
Otherwise, the inflow at n is α.

In any case, once we determine whether the inflow at n is α or β,
we can compute output the original Algorithm L appropriately.

In the recursive call, we remove vertices from layer Ln to Lk+1. As
k < n, we remove at least two vertices. And hence, there are O(n)
recursive calls. The running time of each iteration is dominated by
solving two linear systems for hi and in Lemma 4.9. These runs in
time O(nω), where ω is the matrix multiplication exponent. There-
fore, in total, the algorithm runs in time O(nω+1).

4.7 Solving G-ARRIVAL with ladder

Now consider a G-ARRIVAL instance (A, T) where A is a ladder,
(i.e., there may be more than two destinations). Note that since
there are only two vertices at L1, we can assume that there are at
most four destinations. Now assume that there are exactly four des-
tinations d1, d2, d3, d4, and the corresponding guessed inflows in T
are t1, t2, t3, t4. (The case where there are three destinations is anal-
ogous.) Then we can verify each guessed inflow separately. Sup-
pose we start with d1. We consider another G-ARRIVAL instance
(A′′, T ′′) where A′′ is obtained by A by contracting d2, d3, d4 in G(A)
into a new destination d. For T ′, the guessed inflow for d1 is t1 and
that for d is t2 + t3 + t4. It is easy to see that A′′ is a 2-ladder, and
the inflow at d1 in a switching flow for A′′ is the same as the inflow
at d1 in a switching flow for A. Therefore, we can verify if t1 is the
correct inflow, by checking if (A′′, T ′′) is a YES instance. We then
continue for the other destinations of A. Overall, we can solve this
in polynomial time.

Theorem 4.10. Let (A, T) be a G-ARRIVAL instance such that A
is a ladder. Then we can decide (A, T) in polynomial time.

100 G-ARRIVAL with two vertices per layer

4.8 Discussions

Computation of a switching flow In the analysis, we try to
construct a switching flow for the switching system. However, in the
method above, we always determine the inflow at n before finishing
computing the switching flow. The only edges for which we can
compute the flow values are those above certain cross (Lemma 4.9).
However, if we follow through the recursion, we will reach a switch
graph with no cross. In that case, we cannot compute the γ’s in
Lemma 4.8, because this lemma only holds when both α and β are
integers, and this does not hold when there is no cross.

Towards a characterization of applicable graphs Ladders
only impose sufficient conditions for the above method to work. It
is still open what the necessary conditions are, i.e., which other
graphs can the above method apply to. In the rest of this section,
we provide some sufficient conditions.

We first extend the notion of reduction discussed in Section 3.2.
Suppose we have a switching system A = (V, D, s, seven, sodd). If
there is a subset R of V (A) such that among the out-neighbors of
the vertices in R, there is only one out-neighbor v /∈ R. In other
words, if a train in R visits a vertex outside R, it has to visit v first.
Then following the same analysis as in Section 3.2, we can redirect
all edges whose heads in R to v. We called a graph reduced, if there
is no such subset R. Note that we can identify such a subset via
the layer decomposition of G(A). Also observe that the reduction
above preserves the terminating property of the switching system.

Next, we give a characterization for switching systems with two
destinations, where the initial analysis in Section 4.4 can apply.

Lemma 4.11. Let A = (V, D, s, seven, sodd) be a reduced terminat-
ing switching system with D = {n,−n}. Let h be a solution of the

4.8. Discussions 101

system (4.1). For v ∈ V , define the gap gv := hv − hseven(v). Then
the following are equivalent:

(a)
∑

v∈V |gv| < 1, and

(b) There are two directed paths (v0, v1, . . . , vp = n) and (v0, v−1, . . . ,
v−q = −n), such that for any vertex v ∈ V , v is on at least
one path, and

0 = hv−q < · · · < hv−1 < hv0 < hv1 < · · · < hvp = 1.

Proof. (b)⇒(a): This follows the same argument in the proof of
Corollary 4.4 and the observation that gv0 ̸= 0.

(a)⇒(b): Let u be a vertex that has the smallest nonzero absolute
gap among all vertices in V , that is |gu| = min{|gv| : gv ̸= 0}. From
u, we take a maximal directed path such that the h-value along the
path is nondecreasing. As A is terminating and hu > 0, the end of
the path must be n. Denote the path by (u = v0, v1, . . . , vp = n).
Similarly, there exists a directed path (u = v0, v−1, . . . , v−q = −n),
such that the h-value is nonincreasing along the path. Since v1 and
v−1 are the two out-neighbors of u with distinct h-values, all vertices
in the two paths, except for u, are distinct.

We have hn = 1 and h−n = 0. Therefore,

1 = hn − h−n =

p−1∑
i=0

gvi +

0∑
i=1−q

gvi =

p−1∑
i=1−q

gvi + gv0 . (4.9)

If there is a vertex w with nonzero gap other than the vertices in
the two paths above, then we have

∑
v∈V

gv ≥
p−1∑

i=1−q

gvi + gw ≥
p−1∑

i=1−q

gvi + gv0 = 1. (4.10)

102 G-ARRIVAL with two vertices per layer

Therefore, this cannot happen if
∑

v∈V gv < 1.

Next, we argue that there is no vertex with zero gap. We first ob-
serve that for any vertex whose h-value is 0, all directed paths from
that vertex have the same h-value and end with −n. Therefore, we
can contract these vertices to −n, which contradicts the assumption
that A is reduced. Hence, there is no vertex in V with h-value 0,
and analogously, no vertex in V with h-value 1. Now for the sake
of another contradiction, suppose there exists a vertex a, such that
0 < ha < 1 and ga = 0. Consider a directed path from a to a desti-
nation. Let b be the first vertex on this path with nonzero gap, i.e.,
all vertices between a and b on the path have the same h-value. As
argued before, there is no other vertex with nonzero gap whose h-
value is hb (and ha). Therefore, all the directed paths from a to a
destination has to contain b, and so do all the vertices with zero gap
along any path between a and b. Hence, we can contract all these
vertices to b, contradicting the assumption that A is reduced.

The lemma then follows.

When we have
∑

v∈V |gv| < 1, we can use the same analysis as
in Section 4.4 and obtain β − α < 1, for α, β defined as in (4.7).
It then follows that we can decide G-ARRIVAL immediately, as
there can be only one integer value in the range [α, β]. Note that
the characterization in Lemma 4.11 is not combinatorial, and it
is interesting to understand what the condition (b) in the lemma
means in graph theoretic terms.

Next, we can extend the characterization to the case
∑

v∈V |gv| = 1.

Lemma 4.12. Let A, h, g be defined as in Lemma 4.11. If
∑

v∈V |gv| =
1, then there are two directed paths (v0, v1, . . . , vp = n) and (v0, v−1, . . . ,
v−q = −n), such that

0 = hv−q < · · · < hv−1 < hv0 < hv1 < · · · < hvp = 1.

4.8. Discussions 103

Other than the vertices in the two paths above, there is a vertex w
with nonzero gap, and for such w, gw = gv0. Further, if hw = hvi
for some i ∈]−q, p[, then for any vertex with zero gap, any directed
path from that vertex to a destination contains either w or vi.

Proof. We follow the construction of the two paths as in the proof of
Lemma 4.11. Further, suppose w is a vertex that is not on any path
and has nonzero gap, from the two expressions (4.9) and (4.10), we
obtain gw = gv0 and there are no other vertices with nonzero gap.

Moreover, for a vertex a with zero gap, it is easy to see that it has
to have the same h-value as a vertex with nonzero gap. If there is
exactly one vertex b with that value and nonzero gap, then by the
same argument in the proof of Lemma 4.11, we can contract a and
some other vertices to b, a contradiction to the assumption that A is
reduced. Otherwise, by construction, no vertices with nonzero gap
on the two paths can have the same h-value. Hence, only w can
share the same h-value with a vertex vi on the paths. Since a shares
the same h-value with more than one vertex with nonzero gap, we
then have ha = hw = hvi . Therefore, on any directed path from a to
a destination, the first vertex with nonzero gap can only be either
w or vi. The lemma then follows.

Observe that if there are no vertices with zero gaps, then we can use
the arguments in the proofs of Lemmata 4.8 and 4.9 and compute
the switching flow for the switching system. Otherwise, Lemma 4.12
states that there are two vertices w and vi with the same h-value.
Then we can again use Lemma 4.9 to fix the values of the switching
flow for the vertices going out of vertices with nonzero gap. After
that, following the analysis for Algorithm L, we can remove all these
vertices from the switch graph, except for w and hi, which serve as
new destinations. In order to recurse, we require the new switch
graph to exhibit the same structure (i.e., the sum of the absolute
gaps is at most 1).

104 G-ARRIVAL with two vertices per layer

Overall, the above discussion outlines certain sufficient characteris-
tics of graphs for which Algorithm L works. However, as mentioned
earlier, it would be interesting to have a combinatorial description
of these graphs.

Part II

Combinatorial generation
via permutations

105

When we hit our lowest point, we are
open to the greatest change.

—Avatar Aang,
from The Legend of Korra

CHAPTER 5

A framework for combinatorial generation

This chapter is based on [83], which is joint work with Elizabeth
Hartung, Torsten Mütze, and Aaron Williams.

In this chapter, we present a simple greedy algorithm, Algorithm J,
for exhaustively generating a given set Ln ⊆ Sn, where Sn denotes
the set of all permutations of [n], and we show that the algorithm
works successfully under very mild assumptions on the set Ln (Theo-
rem 5.1). Further, in Section 5.5, we illustrate how the algorithm re-
covers four classical Gray codes to generate all permutations, binary
strings, binary trees, and set partitions, as mentioned in Chapter 1.

Before going to our framework, we briefly mention some other exist-
ing frameworks on exhaustive generation of combinatorial objects.

107

108 A framework for combinatorial generation

Related work Avis and Fukuda [13] introduced reverse-search as
a general technique for exhaustive generation. Their idea is to con-
sider the set of objects to be generated as the nodes of a graph,
and to connect them by edges that model local modification opera-
tions (for instance, adjacent transpositions for permutations). The
resulting flip graph is equipped with an objective function, and the
directed tree formed by the movements of a local search algorithm
that optimizes this function is traversed backwards from the opti-
mum node, using an adjacency oracle. The authors applied this
technique successfully to derive efficient generation algorithms for a
number of different objects; for instance, triangulations of a point
set, spanning trees of a graph, etc. Reverse-search is complementary
to our permutation based approach, as both techniques use funda-
mentally different encodings of the objects. The permutation en-
coding seems to allow for more fine-grained control (optimal Gray
codes) and even faster generation algorithms.

Another method for combinatorial counting and exhaustive genera-
tion is the ECO framework introduced by Barcucci, Del Lungo, Per-
gola, and Pinzani [18]. The main tool is an infinite tree with integer
node labels, and a set of production rules for creating the children
of a node based on its label. Bacchelli, Barcucci, Grazzini, and Per-
gola [17] also used ECO for exhaustive generation, deriving an effi-
cient algorithm for generating the corresponding root-to-node label
sequences in the ECO tree in lexicographic order, which was later
turned into a Gray code [24]. Dukes, Flanagan, Mansour, and Va-
jnovszki [64], Baril [20], and Do, Tran and Vajnovszki [61] used ECO
for deriving Gray codes for different classes of pattern-avoiding per-
mutations, which works under certain regularity assumptions on the
production rules. Vajnovszki [164] also applied ECO for efficiently
generating other classes of permutations, such as involutions and de-
rangements. The main difference between ECO and our framework
is that the change operations on the label sequences of the ECO
tree do not necessarily correspond to Gray-code like changes on the

5.1. Preliminaries 109

corresponding combinatorial objects. Minimal jumps in a permuta-
tion, on the other hand, always correspond to minimal changes on
the combinatorial objects in a provable sense, even though they may
involve several entries of the permutation.

Li and Sawada [116] considered another tree-based approach for
generating so-called reflectable languages, yielding Gray codes for k-
ary strings and trees, restricted growth strings, and open meandric
systems (see also [173]). Ruskey, Sawada, and Williams [150, 152]
proposed a generation framework based on binary strings with a
fixed numbers of 1s, called bubble languages, which can generate
e.g. combinations, necklaces, Dyck words, and Lyndon words. In
the resulting cool-lex Gray codes, any two consecutive words differ
by cyclic rotation of some prefix.

5.1 Preliminaries

We write a permutation π ∈ Sn in one-line notation as π = π(1)π(2)
· · ·π(n) = a1a2 · · · an. We use idn = 12 · · ·n to denote the identity
permutation. For any π ∈ Sn−1 and any 1 ≤ i ≤ n, we write
ci(π) ∈ Sn for the permutation obtained from π by inserting the
new largest value n at position i of π, i.e., if π = a1 · · · an−1 then
ci(π) = a1 · · · ai−1 nai · · · an−1. Moreover, for π ∈ Sn, we write
p(π) ∈ Sn−1 for the permutation obtained from π by removing the
largest entry n. Here, ci and p stand for the child and parent of a
node in the tree of permutations discussed shortly.

Given a permutation π = a1 · · · an with a substring ai · · · aj with
ai > ai+1, . . . , aj , a right jump of the value ai by j − i steps is a
cyclic left rotation of this substring by one position to ai+1 · · · ajai.
Similarly, given a substring ai · · · aj with aj > ai, . . . , aj−1, a left
jump of the value aj by j − i steps is a cyclic right rotation of this
substring to ajai · · · aj−1. For example, a right jump of the value 5
in the permutation 265134 by 2 steps yields 261354.

110 A framework for combinatorial generation

5.2 The basic algorithm

Our approach starts with the following simple greedy algorithm to
generate a set of permutations Ln ⊆ Sn. We say that a jump is
minimal (w.r.t. Ln), if every jump of the same value in the same
direction by fewer steps creates a permutation that is not in Ln.
Note that each entry of the permutation admits at most one minimal
left jump and at most one minimal right jump.

Algorithm J (Greedy minimal jumps). This algorithm attempts
to greedily generate a set of permutations Ln ⊆ Sn using minimal
jumps starting from an initial permutation π0 ∈ Ln.

J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by per-

forming a minimal jump of the largest possible value in the
most recently visited permutation. If no such jump exists,
or the jump direction is ambiguous, then terminate. Other-
wise visit this permutation and repeat J2.

Put differently, in step J2, we consider the entries n, n− 1, . . . , 2 of
the current permutation in decreasing order, and for each of them
we check whether it allows a minimal left or right jump that creates
a previously unvisited permutation, and we perform the first such
jump we find, unless the same entry also allows a jump in the op-
posite direction, in which case we terminate. If no minimal jump
creates an unvisited permutation, we also terminate the algorithm.
For example, consider L4 = {1243, 1423, 4123, 4213, 2134}. Start-
ing with π0 = 1243, the algorithm generates π1 = 1423 (obtained
from π0 by a left jump of the value 4 by 1 step), then π2 = 4123,
then π3 = 4213 (in π2, 4 cannot jump, as π0 and π1 have been visited
before; 3 cannot jump either to create any permutation from L4, so
2 jumps left by 1 step), then π4 = 2134, successfully generating L4.
If instead we initialize with π0 = 4213, then the algorithm gener-

5.3. Zigzag languages 111

ates π1 = 2134 and then stops, as no further jump is possible. If
we choose π0 = 1423, then we may jump 4 to the left or right (by
1 step), but as the direction is ambiguous, the algorithm stops imme-
diately. As mentioned before, the algorithm may stop before having
visited the entire set Ln either because no minimal jump leading to
a new permutation from Ln is possible, or because the direction of
jump is ambiguous in some step. By the definition of step J2, the
algorithm will never visit any permutation twice.

5.3 Zigzag languages

The following main result of this chapter provides a sufficient con-
dition on the set Ln to guarantee that Algorithm J is successful
(cf. Section 6.4). This condition is captured by the following closure
property of the set Ln. A set of permutations Ln ⊆ Sn is called
a zigzag language, if either n = 0 and L0 = {ε}, or if n ≥ 1 and
Ln−1 := {p(π) | π ∈ Ln} is a zigzag language satisfying the follow-
ing condition:

(z) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.

Theorem 5.1. Given any zigzag language of permutations Ln and
initial permutation π0 = idn, Algorithm J visits every permutation
from Ln exactly once.

Remark 5.2. It is easy to see that the number of zigzag languages
is at least 2(n−1)!(n−2) = 22

Θ(n logn)
, i.e., it is more than double-

exponential in n. We will see that many of these languages do in fact
encode interesting combinatorial objects. Moreover, minimal jumps
as performed by Algorithm J always translate to small changes on
those objects in a provable sense, i.e., our algorithm defines Gray
codes for a large variety of combinatorial objects, and Hamilton
paths/cycles on the corresponding flip graphs and polytopes.

112 A framework for combinatorial generation

Before we present the proof of Theorem 5.1, we give two equivalent
characterizations of zigzag languages.

5.3.1 Characterization via the tree of permutations

There is an intuitive characterization of zigzag languages via the
tree of permutations. This is an infinite (unordered) rooted tree
which has as nodes all permutations from Sn at distance n from
the root; see Figure 5.1. Specifically, the empty permutation ε is
at the root, and the children of any node π ∈ Sn−1 are exactly the
permutations ci(π), 1 ≤ i ≤ n, i.e., the permutations obtained by
inserting the new largest value n in all possible positions. Conse-
quently, the parent of any node π′ ∈ Sn is exactly the permuta-
tion p(π′) obtained by removing the largest value n. In the figure,
for any node π ∈ Sn−1, the nodes representing the children c1(π)
and cn(π) are drawn black, whereas the other children are drawn
white. Any zigzag language of permutations can be obtained from
this full tree by pruning subtrees, where by condition (z) a subtree
may be pruned only if its root π′ ∈ Sn is neither the child c1(π) nor
the child cn(π) of its parent π = p(π′) ∈ Sn−1, i.e., only subtrees
rooted at white nodes may be pruned. For any subtree obtained
by pruning according to this rule and for any n ≥ 1, the remaining
permutations of size n form a zigzag language Ln; see Figure 5.2.

Consider all nodes in the tree for which the entire path to the root
consists only of black nodes. Those nodes never get pruned and
are therefore contained in any zigzag language. These are exactly
all permutations without peaks. A peak in a permutation a1 · · · an
is a triple ai−1aiai+1 with ai−1 < ai > ai+1, and the language of
permutations without peaks is generated by the recurrence P0 :=
{ε} and Pn := {c1(π), cn(π) | π ∈ Pn−1} for n ≥ 1. It follows that
we have |Pn| = 2n−1 and Pn ⊆ Ln ⊆ Sn for any zigzag language Ln,
i.e., Ln is sandwiched between the language of permutations without
peaks and the language of all permutations.

5.3. Zigzag languages 113

1

2112

. . .

ε

π

c1(π) c4(π)

. . .

123 132 312 213 231 321

Figure 5.1: Tree of permutations, where the children c1(π) and cn(π)
of any node π ∈ Sn−1 are drawn black, all others white.

1

2112

ε

123 312 321231

#„c (123) #„c (312) #„c (321)#„c (213)

1
2
3
4

4
1
2
3

4
3
1
2

3
1
4
2

3
1
2
4

3
2
1
4

3
2
4
1

3
4
2
1

4
3
2
1

4
2
3
1

2
3
1
4

1

2112

ε

123 312 321 213132

#„c (123) #„c (321)#„c (312)#„c (132) #„c (231)

1
2
3
4

1
2
4
3

1
4
2
3

4
1
2
3

4
3
1
2

3
1
4
2

3
1
2
4

3
2
1
4

3
2
4
1

3
4
2
1

4
3
2
1

4
1
3
2

1
3
2
4

2
1
3
4

2
4
1
3

4
2
1
3

J(L3)

J(L4)

J(L2)

J(L1)
J(L0)

#„c (213)

213

2
1
3
4

4
2
1
3

L4 (S4 M4 (L4

J(M3)

J(M4)

J(M2)

J(M1)
J(M0)

Figure 5.2: Ordered tree representation of two zigzag languages of
permutations L4 (left) and M4 (right) with M4 ⊊ L4 ⊊ S4. Both
trees contain the same sets of permutations in the subtrees rooted
at 312 and 321 (highlighted in gray), but in the corresponding se-
quences J(L4) and J(M4), those permutations appear in different
relative order due to the node 132, which was pruned from the right
tree.

114 A framework for combinatorial generation

5.3.2 Characterization via nuts

Given a permutation π, we may repeatedly remove the largest value
from it as long as it is in the leftmost or rightmost position, and ob-
tain what is called the nut of π. For example, given π = 965214378,
we can remove 9, 8, 7, 6, 5, yielding 2143 as the nut of π. A left or
right jump of some value in a permutation is maximum if there is
no left jump or right jump of the same value with more steps. For
example, in π = 965214378 a maximum right jump of the value 6
gives π′ = 952143678. By unrolling the recursive definition of zigzag
languages from before, we obtain that Ln ⊆ Sn is a zigzag language
if and only if for all π ∈ Ln both the maximum left jump and the
maximum right jump of the value i yield another permutation in Ln

for all k ≤ i ≤ n, where k is the largest value in π’s nut (with k = 2
if the nut is empty).

5.3.3 Proof of Theorem 5.1

Given a zigzag language Ln, we define a sequence J(Ln) of all per-
mutations from Ln, and we prove that Algorithm J generates the
permutations of Ln exactly in this order. For any π ∈ Ln−1 we let
#„c (π) be the sequence of all ci(π) ∈ Ln for i = 1, 2, . . . , n, starting
with c1(π) and ending with cn(π), and we let #„c (π) denote the re-
verse sequence, i.e., it starts with cn(π) and ends with c1(π). In
words, those sequences are obtained by inserting into π the new
largest value n from left to right, or from right to left, respectively,
in all possible positions that yield a permutation from Ln, skipping
the positions that yield a permutation that is not in Ln. The se-
quence J(Ln) is defined recursively as follows: If n = 0 then we
define J(L0) := ε, and if n ≥ 1 then we consider the finite sequence
J(Ln−1) =: π1, π2, . . . and define

J(Ln) :=
#„c (π1),

#„c (π2),
#„c (π3),

#„c (π4), . . . , (5.1)

5.3. Zigzag languages 115

i.e., this sequence is obtained from the previous sequence by insert-
ing the new largest value n in all possible positions alternatingly
from right to left, or from left to right; see Figure 5.2.

Remark 5.3. Algorithm J thus defines a left-to-right ordering of
the nodes at distance n of the root in the tree representation of the
zigzag language Ln described before, and this ordering is captured
by the sequence J(Ln); see Figure 5.2. Clearly, the same is true
for all the zigzag languages L0, L1, . . . , Ln−1 that are induced by Ln

through the rule Lk−1 := {p(π) | π ∈ Lk} for k = n, n−1, . . . , 1. The
unordered tree is thus turned into an ordered tree, and it is important
to realize that pruning operations change the ordering. Specifically,
given two zigzag languages Ln and Mn with Mn ⊆ Ln, the tree
for Mn is obtained from the tree for Ln by pruning, but in general
J(Mn) is not a subsequence of J(Ln), as shown by the example in
Figure 5.2. This shows that our approach is quite different from the
one presented by Vajnovszki and Vernay [165], which considers only
subsequences of the Steinhaus-Johnson-Trotter order J(Sn).

Proof of Theorem 5.1. For any π ∈ Ln, we let J(Ln)π denote the
subsequence of J(Ln) that contains all permutations up to and in-
cluding π. An immediate consequence of the definition of zigzag lan-
guage is that Ln contains the identity permutation idn = cn(idn−1).
Moreover, the definition (5.1) implies that idn is the very first per-
mutation in the sequence J(Ln).

We now argue by double induction over n and the length of J(Ln)
that Algorithm J generates all permutations from Ln exactly in the
order described by the sequence J(Ln), and that when we perform a
minimal jump with the largest possible value to create a previously
unvisited permutation, then there is only one direction (left or right)
to which it can jump. The induction basis n = 0 is clear. Now
suppose the claim holds for the zigzag language Ln−1 := {p(π) | π ∈
Ln}. We proceed to show that it also holds for Ln.

116 A framework for combinatorial generation

As argued before, the identity permutation idn is the first permu-
tation in the sequence J(Ln), and this is indeed the first permu-
tation visited by Algorithm J in step J1. Now let π ∈ Ln be the
permutation currently visited by the algorithm in step J2, and let
π′ := p(π) ∈ Ln−1. If π′ appears at an odd position in J(Ln−1), then
we define c̄ := #„c (π′) and otherwise we define c̄ := #„c (π′). By (5.1),
we know that π appears in the subsequence c̄ within J(Ln). We first
consider the case that π is not the last permutation in c̄. In this
case, the permutation ρ succeeding π in J(Ln) is obtained from π
by a minimal jump (w.r.t. Ln) of the largest value n in some direc-
tion d, which is left if c̄ = #„c (π′) and right if c̄ = #„c (π′). Now observe
that by the definition of c̄, all permutations in Ln obtained from π
by jumping n in the direction opposite to d precede π in J(Ln)
and have been visited by Algorithm J before by induction. Conse-
quently, to generate a previously unvisited permutation, the value n
can only jump in direction d in step J2 of the algorithm. Again by
the definition of c̄, the permutation ρ is obtained from π by a min-
imal jump (w.r.t. Ln), so the next permutation generated by the
algorithm will indeed be ρ.

It remains to consider the case that π is the last permutation in the
subsequence c̄ within J(Ln). Let ρ′ be the permutation succeeding π′

in J(Ln−1). By induction, we have the following property (*): ρ′

is obtained from π′ by a minimal jump (w.r.t. Ln−1) of the largest
possible value a by k steps in some direction d (left or right), and a
can jump only into one direction. As π is the last permutation
in c̄, the largest value n of π is at the boundary, which is the left
boundary if c̄ = #„c (π′) or the right boundary if c̄ = #„c (π′). By (5.1),
the permutation ρ succeeding π in J(Ln) also has n at the same
boundary, i.e., ρ differs from π by a jump of the value a by k steps
in direction d. Suppose for the sake of contradiction that when
transforming the currently visited permutation π in step J2, the
algorithm does not perform this jump operation, but another one.
This could be a jump of a larger value b > a to transform π into

5.4. Further properties of Algorithm J 117

some permutation τ ∈ Ln that is different from ρ and not in J(Ln)π,
or a jump of the value a in the direction opposite to d, or a jump
of the value a in direction d by fewer than k steps. But in all those
cases the permutation τ ′ := p(τ) ∈ Ln−1 is different from ρ′ and not
in J(Ln−1)π′ , and it is obtained from π′ by a jump of the value b > a,
or a jump of the value a in the direction opposite to d, or a jump
of the value a in direction d by fewer than k steps, respectively, a
contradiction to property (*). This completes the proof.

5.4 Further properties of Algorithm J

The next lemma captures when Algorithm J generates a cyclic list-
ing of permutations.

Lemma 5.4. In the ordering of permutations J(Ln) generated by
Algorithm J, the first and last permutation are related by a minimal
jump if and only if |Li| is even for all 2 ≤ i ≤ n− 1.

For example, the conditions described by Lemma 5.4 are satisfied for
the zigzag languages Ln = Sn (all permutations) and Ln = Pn (per-
mutations without peaks), and the resulting cyclic orderings J(Ln)
are shown in Figures 5.3 and 5.4, respectively. Another cyclic Gray
code is shown in Figure 6.2. In contrast to that, the Gray codes
shown in Figures 5.5 and 5.6 violate the conditions of the lemma
and are therefore not cyclic.

Proof. Let πi be the last permutation in the ordering J(Li) for all
i = 0, 1, . . . , n. For i ≥ 1, we see from (5.1) that πi = ci(πi−1) if
|Li−1| is even and πi = c1(πi−1) if |Li−1| is odd. As |L1| = 1 is
odd, we know that 1 and 2 are reversed in πn, and so all numbers
|Li|, 2 ≤ i ≤ n− 1, must be even for idn and πn to be related by a
minimal jump.

118 A framework for combinatorial generation

Remark 5.5. It follows from the proof of Theorem 5.1 that instead
of initializing the algorithm with the identity permutation π0 = idn,
we may use any permutation without peaks as a seed π0.

Let us make it very clear that in its stated form, Algorithm J is not
an efficient algorithm to actually generate a particular zigzag lan-
guage of permutations. The reason is that it requires storing the list
of all previously visited permutations in order to decide which one
to generate next. However, by introducing a few additional arrays,
the algorithm can be made memoryless, so that such lookup opera-
tions are not needed anymore, and hence no permutations need to
be stored at all. The efficiency of the resulting algorithm is then
only determined by the efficiency with which we are able to com-
pute minimal jumps with respect to the input zigzag language Ln

for a given entry of the permutation. This leads to an algorithm that
computes the next permutation to be visited in polynomial time. In
many cases, this can be improved to a loopless algorithm that gen-
erates each new permutation in constant worst-case time. The key
insight here is that any jump changes the inversion table of a per-
mutation only in a single entry. By maintaining only the inversion
table, jumps can thus be performed efficiently, even if the number
of steps is big.

5.5 A general recipe with classical examples

Here is a step-by-step approach to apply our framework to the gen-
eration of a given family Xn of combinatorial objects. The first step
is to establish a bijection f that encodes the objects from Xn as
permutations Ln ⊆ Sn. If Ln is a zigzag language, which can be
checked by verifying the closure property, then we may run Algo-
rithm J with input Ln, and interpret the resulting ordering J(Ln)
in terms of the combinatorial objects, by applying f−1 to each per-
mutation in J(Ln), yielding an ordering on Xn. We may also ap-

5.5. A general recipe with classical examples 119

ply f−1 to Algorithm J directly, which will yield a simple greedy
algorithm for generating Xn. The final step is to make these algo-
rithms efficient, by introducing additional data structures that allow
the change operations on Xn (which are the preimages of minimal
jumps under f) as efficiently as possible.

We now amply illustrate this approach by four examples of classical
Gray codes.

5.5.1 Permutations (Steinhaus-Johnson-Trotter)

Consider the set Xn = Ln = Sn of all permutations of [n]. The
bijection f between Xn and Ln here is simply the identity, i.e.,
f = id. In this case, each jump is a jump by 1 step, i.e., it is
an adjacent transposition. Algorithm J thus yields an ordering of
permutations by adjacent transpositions, which coincides with the
well-known Steinhaus-Johnson-Trotter order, also known as plain
change order [162, 99], which can be implemented efficiently [108].
This ordering is shown in Figure 5.3. Algorithm J translates into the
following simple greedy algorithm to describe this order (see [171]):
J1. Visit the identity permutation. J2. Perform a transposition of
the largest possible value with an adjacent smaller entry that yields
a previously unvisited permutation; then visit this permutation and
repeat J2.

5.5.2 Binary strings (BRGC)

Consider the set Xn of binary strings of length n− 1. We map any
binary string x = x2 · · ·xn to a permutation f(x) ∈ Sn by setting
f(ε) := 1 and

f(x2 · · ·xn) :=

{
cn
(
f(x2 · · ·xn−1)

)
if xn = 0,

c1
(
f(x2 · · ·xn−1)

)
if xn = 1,

120 A framework for combinatorial generation

12
„

34 31
„

24 23
„

14

1
„

243 3
„

142 2
„

341
„

1423
„

3412
„

2431

41
„

23 43
„

12 42
„
31

„
4132

„
4321

„
4213

1
„
432 3

„
421 2

„
413

13
„
42 32

„
41 21

„
43

„
1324

„
3214

„
2134

Figure 5.3: All permutations of size n = 4 generated by Algorithm J,
coinciding with the Steinhaus-Johnson-Trotter ordering. Read the
figure column by column, from left to right. Each arrows indicates
an adjacent transposition (jump by 1 step) that creates the next
permutation. The ordering is cyclic, so the last transposition creates
the first permutation.

x2 x3 x4
„

1234 0 0 0
4

„
123 0 0 1

„
4312 0 1 1
3

„
124 0 1 0

„
3214 1 1 0
4

„
321 1 1 1

„
4213 1 0 1
„
2134 1 0 0

Figure 5.4: Permutations without peaks of size n = 4 generated
by Algorithm J, and the resulting Gray code for binary strings,
coinciding with the BRGC. In this and subsequent figures, an arrow
above a permutation indicates a jump, where the value below the
tail of the arrow is the value that jumps, and the head of the arrow
shows the position of the value after the jump.

5.5. A general recipe with classical examples 121

i.e., we build the permutation f(x) by inserting the values i =
2, . . . , n one by one, either at the leftmost or rightmost position,
depending on the bit xi; see Figure 5.4 for examples. Observe that
f(Xn) is exactly the set of permutations without peaks Pn ⊆ Sn dis-
cussed previously in Section 5.3.1, and a jump of the value i in the
permutation translates to flipping the bit xi. Moreover, f−1(J(Pn))
is exactly the well-known reflected Gray code (BRGC) for binary
strings of length n−1 [81], which can be implemented efficiently [30].
This ordering is shown in Figure 5.4. Applying f−1 to Algorithm J
yields the following simple greedy algorithm to describe the BRGC
(see [171]): J1. Visit the all-zero string. J2. Flip the rightmost bit
that yields a previously unvisited string; then visit this string and
repeat J2.

5.5.3 Binary trees (Lucas-Roelants van Baronaigien-
Ruskey)

Consider the set Xn of binary trees with n nodes, labelled with n
distinct integers from [n], that have the search tree property, i.e.,
for every node, all nodes in the left subtree are smaller than all
nodes in the right subtree. We recursively map any such tree x with
root node i, left subtree xL, and right subtree xR to a permuta-
tion f(x) ∈ Sn by setting f(x) := (i, f(xL), f(xR)) and f(∅) := ε
if x = ∅ has no nodes; see Figure 5.5 for examples. By the search
tree property, f(Xn) is exactly the set of permutations that avoid
the pattern 231 (i.e., f(Xn) = Sn(231)), which we will prove to be a
zigzag language. A jump of the value i in the permutation translates
to a tree rotation involving the node i. Specifically, a right jump
of the value i in the permutation corresponds to a right rotation at
node i, and a left jump corresponds to a left rotation at the parent of
node i, where node i is the right child of this parent, and these two
operations are inverse to each other. Moreover, f−1(J(Sn(231))) is
exactly the ordering of binary trees described by Lucas, Roelants
van Baronaigien, and Ruskey [121], which they showed can be im-

122 A framework for combinatorial generation

plemented efficiently. This ordering is shown in Figure 5.5. Apply-
ing f−1 to Algorithm J yields the following simple greedy algorithm
to describe this order (see [171]): J1. Visit the all-right tree, i.e., ev-
ery node has exactly one child, namely a right child. J2. Perform a
rotation involving the largest possible node that yields a previously
unvisited tree; then visit this tree and repeat J2.

Via standard bijections, binary trees are equivalent to many other
Catalan families (such as triangulations, Dyck paths, etc.), so we
also obtain Gray codes for all these other objects; see Figure 5.5.

5.5.4 Set partitions (Kaye)

Consider the set Xn of partitions of the set [n] into nonempty sub-
sets. We can represent any such partition x = {x1, . . . , xk}, xi ⊆ [n],
in a canonic way, by sorting all subsets in decreasing order of their
minimum element, and the elements of each subset in increasing or-
der. Then x is mapped to a permutation f(x) ∈ Sn by writing out
the elements from left to right in this canonic representation of x.
For instance, the set partition x = {{9}, {6}, {3, 4, 7}, {1, 2, 5, 8}}
is encoded as the permutation f(x) = 963471258. Observe that
f(Xn) is the set of permutations with the property that for every
descent aiai+1, ai > ai+1, in the permutation, no value left of ai
is smaller than ai+1. This notion of pattern-avoidance can be de-
scribed concisely by the vincular permutation pattern 132, i.e., we
have f(Xn) = Sn(132) (the formal definition of vincular patterns is
given in the next section), which we will prove to be a zigzag lan-
guage. A jump of the value i in the permutation corresponds to
moving the element i from its subset to the previous or next subset
in the canonic representation, possibly creating a singleton set {i}.
Moreover, f−1(J(Sn(132))) is exactly the ordering of set partitions
described by Kaye [104], which he showed can be implemented effi-
ciently. This ordering is shown in Figure 5.6. Applying f−1 to Al-
gorithm J yields the following simple greedy algorithm to describe

5.5. A general recipe with classical examples 123

12
„

34
„

3124

1
„

243 43
„

12

„
1423

„
4321

41
„

23
„
3214

„
4132 21

„
34

1
„
432

„
2143

„
1324 4213

Figure 5.5: 231-avoiding permutations of size n = 4 generated by
Algorithm J and the resulting Gray codes for Catalan families (bi-
nary trees, triangulations, Dyck paths), coinciding with the ordering
described by Lucas, Roelants van Baronaigien, and Ruskey.

this order (see [171]): J1. Visit the set partition {{1, . . . , n}}. J2.
Move the largest possible element from its subset to the previous
or next subset so as to obtain a previously unvisited partition; then
visit this partition and repeat J2.

124 A framework for combinatorial generation

„
1234 1234 4

„
321 4|3|2|1

4
„

123 4|123 # „
4231 4|23|1

„
4312 4|3|12 23

„
41 234|1

3
„
412 34|12 2

„
314 23|14

3
„

124 3|124 2
„

134 2|134
32

„
14 3|2|14 # „

2413 24|13
3

„
241 3|24|1 4213 4|2|13

„
3421 34|2|1

Figure 5.6: 132-avoiding permutations of size n = 4 generated by
Algorithm J and resulting Gray code for set partitions, coinciding
with Kaye’s Gray code. Set partitions are denoted compactly, omit-
ting curly brackets and commas in the canonic representation, and
using vertical bars to separate subsets.

5.6 Discussion

Theorem 5.1 asserts that if Ln is a zigzag language, then Algorithm J
successfully visits every permutation from Ln. This condition is
not necessary, however. For instance, the set L4 ⊆ S4 discussed
in Section 5.2 is not a zigzag language, and still Algorithm J is
successful when initialized suitably. From the proof of Theorem 5.1
we immediately see that condition (z) in the definition of zigzag
language could be weakened as follows, and the same proof would
still go through:

(z’) Given the sequence J(Ln−1), then for every permutation π in
this sequence there is a direction χ(π) ∈ {←,→} satisfying
the following: For every π from J(Ln−1) we define I(π) :=
{i ∈ [n] | ci(π) ∈ Ln}, and we also define ı̌(π) := max I(π)
and ı̂(π) := min I(π) if χ(π) = ←, and ı̌(π) := min I(π) and
ı̂(π) := max I(π) if χ(π) = →. Then for any two permutations
π, ρ that appear consecutively in J(Ln−1) and that differ in a

5.6. Discussion 125

jump from position i1 to position i2, we have ı̂(π) = ı̌(ρ) and
this number is not in the interval] min{i1, i2},max{i1, i2}].

Note that condition (z) implies (z’), as for a zigzag language we have
1, n ∈ I(π) for all π ∈ Ln−1, so min I(π) = 1 and max I(π) = n, and
the sequence χ alternates between ← and → in every step. This
shows that Algorithm J succeeds to generate a much larger class of
languages Ln ⊆ Sn. However, condition (z’) is considerably more
complicated, in particular as it depends on the ordering J(Ln−1)
generated for Ln−1. More importantly, in the context of permuta-
tion patterns, which we will discuss shortly in the next chapter, we
do not see any interesting languages Ln that would satisfy condi-
tion (z’) but not condition (z), which is why we think condition (z)
is the “correct” one.

126 A framework for combinatorial generation

CHAPTER 6

Pattern-avoiding permutations

This chapter is based on [83], which is joint work with Elizabeth
Hartung, Torsten Mütze, and Aaron Williams.

The first main application of our framework is the generation of
pattern-avoiding permutations. Pattern avoidance in permutations
is a central topic in combinatorics, as illustrated by the books [106,
32], and by the conference “Permutation Patterns”, held annually
since 2003. It is well known that many fundamental classes of com-
binatorial objects are in bijection with pattern-avoiding permuta-
tions (see Tables 6.1 and 6.5 and [159]). For instance, Knuth [107]
first proved that all 123-avoiding and 132-avoiding permutations are
counted by the Catalan numbers (see also [50]). With regards to
counting and exhaustive generation, a few tree-based algorithms for
pattern-avoiding permutations have been proposed [68, 64, 19, 20].

127

128 Pattern-avoiding permutations

Our main results in this chapter are summarized in Theorem 6.3,
Theorem 6.10 (and its corollaries Lemmata 6.4–6.9), and in Ta-
ble 6.1. We emphasize that all our results can be generalized to
bounding the number of appearances of patterns, where the special
case with a bound of 0 appearances is pattern-avoidance; see Sec-
tion 6.2 below. From these results, in Section 6.3, we further extend
the classes of pattern-avoiding permutations that can be generated
by our framework, by applying transformations and combinations
to the patterns discussed in Section 6.1.

6.1 Classical patterns and other variants

6.1.1 Preliminaries

The following simple but powerful lemma follows immediately from
the definition of zigzag languages given in Section 5.3. For any
set Ln ⊆ Sn we define p(Ln) := {p(π) | π ∈ Ln}.

Lemma 6.1. Let Ln,Mn ⊆ Sn, n ≥ 1, be two zigzag languages of
permutations. Then Ln∪Mn and Ln∩Mn are also zigzag languages
of permutations, and we have p(Ln ∪ Mn) = p(Ln) ∪ p(Mn) and
p(Ln ∩Mn) = p(Ln) ∩ p(Mn).

We say that two sequences of integers σ and τ are order-isomorphic,
if their elements appear in the same relative order in both sequences.
For instance, 2576 and 1243 are order-isomorphic. Given two per-
mutations π ∈ Sn and τ ∈ Sk, we say that π contains the pattern
τ , if and only if π = a1 . . . an contains a subpermutation ai1 . . . aik ,
i1 < · · · < ik, that is order-isomorphic to τ . We refer to such a sub-
permutation as amatch of τ in π. If π does not contain the pattern τ ,
then we say that π avoids τ . For example, π = 635412 contains
the pattern τ = 231, as the highlighted entries form a match of τ
in π. On the other hand, π = 654123 avoids τ = 231. We let Sn(τ)
denote all permutations from Sn avoiding a given pattern τ .

6.1. Classical patterns and other variants 129

Table 6.1: Tame permutation patterns and corresponding combina-
torial objects and orderings generated by Algorithm J. Some pat-
terns are interesting in their own right and have no ‘natural’ asso-
ciated combinatorial objects, in which case the first two columns
are merged. The patterns with underscores, bars, boxes, and those
drawn as grids with some shaded cells, are defined and explained in
Sections 6.1.3–6.1.8. See Table 6.5 for more patterns.

Tame patterns Combinatorial objects and
ordering

References/
OEIS [129]

none permutations by adjacent [99, 162],
A000142

transpositions � plain change
order

231 = 231 Catalan families A000108
� binary trees by rotations �
Lucas-Roelants van
Baronaigien-Ruskey order

[121]

� triangulations by edge flips
� Dyck paths by hill flips

132 Bell families A000110
� set partitions by element [104, 171]

exchanges � Kaye’s order
132∧231 = 132∧231: binary strings by bitflips [81], A011782
permutations
without peaks

� reflected Gray code order
(BRGC)

1342 forests of β(0, 1)-trees [31, 11], A022558
2143: vexillary permutations [112], A005802
conjunction of vk tame patterns with v2 = 35, v3 = 91,
v4 = 2346 (see [27]): k-vexillary permutations (k ≥ 1)

[28], A224318,
A223034,
A223905

2143 ∧ 3412: skew-merged permutations [155, 9], A029759
2143 ∧ 2413 ∧ 3142 [58, 154],

A033321
2143 ∧ 2413 ∧ 3142 ∧ 3412: X-shaped permutations [169, 69],

A006012

130 Pattern-avoiding permutations

Tame patterns Combinatorial objects and
ordering

References/
OEIS [129]

2413 ∧ 3142: Schröder families A006318
separable
permutations

� slicing floorplans (=guillotine
partitions)

[15, 35, 2]

� topological drawings of K2,n [41]
2413 ∧ 3142: Baxter mosaic floorplans (=diagonal [174, 2, 113, 43],
2413 ∧ 3412: twisted
Baxter

rectangulations=R-equivalent
rectangulations)

A001181

2143 ∧ 3142

2143 ∧ 3412 S-equivalent rectangulations [8], A214358
2143 ∧ 3412 ∧ 2413 ∧
3142

S-equivalent guillotine
rectangulations

[8], A078482

35124 ∧ 35142 ∧
24513 ∧ 42513:
2-clumped
permutations

generic rectangulations
(=rectangular drawings)

[144]

conjunction of ck tame patterns with
ck = 2(k/2)!(k/2 + 1)! for k even and
ck = 2((k+1)/2)!2 for k odd: k-clumped permutations

[144]

12543∧13254∧13524∧13542∧21543∧125364∧
125634∧215364∧215634 ∧ 315264 ∧ 315624 ∧ 315642:
permutations with 0-1 Schubert polynomial

[75]

2143∧2413∧3412∧314562∧412563∧415632∧431562∧
512364 ∧512643∧516432∧541263∧541632∧543162:
widdershins permutations

[38]

2431 (A051295), 25314 (A117106), 35241 (A137534),
42513 (A137535), 42513 (A110447), 42153
(A137536), 25134 (A137538), 41523 (A137539),
41253 (A137540), 35241 (A137542)

[138] (OEIS
shown on the
left)

31524 = 3142 ∧ 2413 [137, 36],
A098569

2143 , 3142 [12]

∧ :
permutations that characterize
Schubert varieties which are Goren-
stein

[172], A097483

(2+ 2)-free posets [130, 36] A022493

6.1. Classical patterns and other variants 131

For propositional formulas F and G consisting of logical ANDs ∧,
ORs ∨, and patterns as variables, we define

Sn(F ∧G) := Sn(F) ∩ Sn(G),

Sn(F ∨G) := Sn(F) ∪ Sn(G).
(6.1)

For instance, Sn(τ1 ∧ · · · ∧ τℓ) is the set of permutations avoiding
each of the patterns τ1, . . . , τℓ, and Sn(τ1 ∨ · · · ∨ τℓ) is the set of
permutations avoiding at least one of the patterns τ1, . . . , τℓ.

Remark 6.2. From the point of view of counting, we clearly have
|Ln ∪Mn| = |Ln| + |Mn| − |Ln ∩Mn|, so the problem of counting
the union of two zigzag languages can be reduced to counting the
individual languages and the intersection. However, from the point
of view of exhaustive generation, we clearly do not want to take this
approach, namely generate all permutations in Ln, all permutations
in Mn, all permutations in Ln ∩Mn, and then combine and reduce
those lists. This shows that the problem of generating languages like
Sn(τ1 ∨ · · · ∨ τℓ) or Sn(F) for more general formulas F is genuinely
interesting in our context. We will see a few applications of this
general setting below, and we feel that this direction of generalization
deserves further investigation by the pattern-avoidance community.

6.1.2 Tame patterns

We say that an infinite sequence of sets L0, L1, . . . is hereditary,
if Li−1 = p(Li) holds for all i ≥ 1. We say that a permutation
pattern τ is tame, if Sn(τ), n ≥ 0, is a hereditary sequence of zigzag
languages. The hereditary property ensures that for a given set
Sn(τ) =: Ln, we can check whether a permutation π is in the sets
Li−1 := p(Li) for i = n, n− 1, . . . , 1 simply by checking for matches
of the pattern τ in π. See also the discussion in Section 6.4.

The following theorem is an immediate consequence of Lemma 6.1
and the definition (6.1).

132 Pattern-avoiding permutations

Theorem 6.3. Let F be an arbitrary propositional formula consist-
ing of logical ANDs ∧, ORs ∨, and tame patterns as variables, then
Sn(F), n ≥ 0, is a hereditary sequence of zigzag languages. Conse-
quently, all of these languages can be generated by Algorithm J.

In the following we provide simple sufficient conditions guaranteeing
that a pattern is tame (cf. Section 6.4).

Lemma 6.4. If a pattern τ ∈ Sk, k ≥ 3, does not have the largest
value k at the leftmost or rightmost position, then it is tame.

We prove Lemma 6.4 in Section 6.1.9.

Table 6.1 lists several tame patterns and the combinatorial objects
encoded by the corresponding zigzag languages. The bijections be-
tween those permutations and the combinatorial objects are well-
known and are described in the listed papers (recall also Section ??).
The ordering of 231-avoiding permutations of size n = 4 generated
by Algorithm J, and the corresponding Gray codes for three different
Catalan objects are shown in Figure 5.5. We refer to the permuta-
tion patterns discussed so far as classical patterns. In the following
we discuss some other important variants of permutation patterns
appearing in the literature.

6.1.3 Vincular patterns

Vincular patterns were introduced by Babson and Steingrímsson [16].
In a vincular pattern τ , there is exactly one underlined pair of con-
secutive entries, with the interpretation that a match of τ in π re-
quires that the underlined entries match adjacent positions in π. For
instance, the permutation π = 314 2 contains the pattern τ = 231,
but it avoids the vincular pattern τ = 231.

Lemma 6.5. If a vincular pattern τ ∈ Sk, k ≥ 3, does not have the
largest value k at the leftmost or rightmost position, and the largest

6.1. Classical patterns and other variants 133

value k is part of the vincular pair, then it is tame.

We prove Lemma 6.5 in Section 6.1.9.

Table 6.1 also lists several tame vincular patterns and the com-
binatorial objects encoded by the corresponding zigzag languages,
namely set partitions and different kinds of rectangulations. The
ordering of 132-avoiding permutations of size n = 4 generated by
Algorithm J, and the resulting Gray code for set partitions, is shown
in Figure 5.6. The generated ordering of twisted Baxter permuta-
tions of size n = 4, and the resulting Gray code for diagonal rectan-
gulations, is shown in Figure 6.2.

6.1.4 Barred patterns

Barred permutation patterns were first considered by West [170].
A barred pattern is a pattern τ with a number of overlined entries,
e.g., τ = 25341. Let τ ′ be the permutation obtained by removing the
bars in τ , and let τ− be the permutation that is order-isomorphic
to the non-barred entries in τ . In our example, we have τ ′ = 25341
and τ− = 2431. A permutation π contains a barred pattern τ if
and only if it contains a match of τ− that cannot be extended to
a match of τ ′ by adding entries of π at the positions specified by
the barred entries. For instance, π = 35241 contains τ = 25341, as
the highlighted entries form a match of τ− = 2431 that cannot be
extended to a match of τ ′ = 25341. We clearly have Sn(τ

−) ⊆ Sn(τ).

The following lemma gives a sufficient condition for a single-barred
pattern to be tame.

Lemma 6.6. If for a single-barred pattern τ ∈ Sk, k ≥ 4, the
permutation τ− ∈ Sk−1 does not have the largest value k − 1 at the
leftmost or rightmost position, and the barred entry in τ is smaller
than k or at a position next to the entry k − 1, then τ is tame.

We prove Lemma 6.6 in Section 6.1.9. See Table 6.1 for several
examples of tame single-barred patterns that were studied by Pud-

134 Pattern-avoiding permutations

12
„

34 31
„

24 23
„

14

1
„

243
„

3142 2
„

341

„
1423 43

„
12

„
2431

41
„

23
„
4321 42

„
31

„
4132 3

„
421

„
4213

1
„
432 32

„
41 21

„
43

13
„
42

„
3214

„
2134

„
1324

Figure 6.2: Twisted Baxter permutations (2413∧3412-avoiding) for
n = 4 generated by Algorithm J and resulting Gray code for diagonal
rectangulations.

6.1. Classical patterns and other variants 135

well [138]. As we will show in Section 6.3.3 below, in many cases pat-
terns with multiple bars can be reduced to single-barred patterns.

6.1.5 Boxed patterns

Boxed patterns were introduced in the paper by Avgustinovich, Ki-
taev, and Valyuzhenich [12]. A permutation π contains the boxed
pattern τ if and only if it contains a match of τ such that no entry
of π at a position between the matched ones has a value between the
smallest and largest value of the match. For example, the permuta-
tion π = 431792865 contains the boxed pattern 2143 , as the high-
lighted entries of π form a match of 2143, and the entries 1, 9, 2, 8
are either smaller than 3 or larger than 7. On the other hand, the
permutation π′ = 351624 avoids 2143 , as the only possible match
of 2143 is at the highlighted positions in π′, but the entries 5 and 2
are both between 1 and 6.

Lemma 6.7. Given a boxed pattern τ with τ ∈ Sk and k ≥ 3,
if τ does not have the largest value k at the leftmost or rightmost
position, then it is tame.

We prove Lemma 6.7 in Section 6.1.9. Table 6.1 shows two tame
boxed patterns studied in [12].

6.1.6 Patterns with Bruhat restrictions

Patterns with Bruhat restrictions were introduced byWoo and Yong [172].
Such a pattern is a pair (τ,B), where τ ∈ Sk and B ⊆ [k]2 is a set
of pairs of indices (a, b) with a < b and τ(a) < τ(b) such that for all
i ∈ {a+1, . . . , b−1} we either have τ(i) < τ(a) or τ(i) > τ(b). A per-
mutation π contains this pattern if and only if it contains a match
of τ , and for any pair of entries π(ia) and π(ib) that are matched
by a corresponding pair of entries τ(a) and τ(b) with (a, b) ∈ B, we
have that π(i) < π(ia) or π(i) > π(ib) for all i ∈ {ia +1, . . . , ib− 1}.

136 Pattern-avoiding permutations

Lemma 6.8. Given a pattern with Bruhat restrictions (τ,B) with
τ ∈ Sk and k ≥ 3, if τ does not have the largest value k at the
leftmost or rightmost position, then it is tame.

We prove Lemma 6.8 in Section 6.1.9. Note that Lemma 6.8 does not
impose any restrictions on the set B, and that it hence generalizes
Lemma 6.4, which corresponds to the case B = ∅. Table 6.1 shows
two patterns with Bruhat restriction studied in [172].

6.1.7 Bivincular patterns

Bivincular patterns were introduced by Bousquet-Mélou, Claesson,
Dukes, and Kitaev [36]. Such a pattern is a pair (τ,B), where τ ∈ Sk

is a vincular pattern and B ⊆ [k−1]. A permutation π contains this
pattern if and only if it contains a match of the vincular pattern τ
(respecting the adjacency condition for the vincular pair), and in this
match, the entries at positions τ−1(i) and τ−1(i+1) are consecutive
values in π for all i ∈ B.

Lemma 6.9. Given a bivincular pattern (τ,B) with τ ∈ Sk and
k ≥ 3, if the vincular pattern τ satisfies the conditions in Lemma 6.5
and if k − 1 /∈ B, then it is tame.

We prove Lemma 6.9 in Section 6.1.9. Note that Lemma 6.9 general-
izes Lemma 6.5, which corresponds to the case B = ∅. In Table 6.1,
(2+ 2)-free posets are mentioned as an example of a combinatorial
class that is in bijection to permutations avoiding a tame bivincular
pattern.

6.1.8 Mesh patterns

In the following we take a geometric viewpoint on permutations. For
any pair of real numbers P = (a, b), we define Px := a and Py := b.
Moreover, for any mapping α : [n] → B and any subset I ⊆ [n]

6.1. Classical patterns and other variants 137

with |I| = k we write α|I : [k] → B for the function defined by
α|I(i) := α(j), where j is the ith smallest element in I, for all i ∈ [k].

cα(0, 0) cα(5, 0)

cα(0, 5) cα(5, 5)

α(1)

α(2)

α(3)

α(4)

α(5)

The grid representation of a permu-
tation π ∈ Sn is a mapping α :
[n] → Z2 such that the sequence
α(1)x, . . . , α(n)x is strictly increasing,
and the sequence α(1)y, . . . , α(n)y is
order-isomorphic to π. This represen-
tation is unique up to shifts that pre-
serve the relative order of the values α(1)y, . . . , α(n)y. We can think
of the grid representation of π as a graphical representation of the
permutation matrix. For instance, the permutation π = 14352 has
the grid representation shown on the right. A cell in the grid rep-
resentation α is a connected region from R2 \

(
α([n])x × R ∪ R ×

α([n])y
)
, and we denote these cells by cα(i, j), i, j ∈ {0, . . . , n},

where the first index i increases with x, and the second index j in-
creases with y, as shown in the figure on the right. By definition,
every cell is a Cartesian product of two open intervals. For in-
stance, we have cα(1, 0) =]α(1)x, α(2)x[×]−∞, α(1)y[. If the grid
representation α is clear from the context, we sometimes refer to a
cell cα(i, j) simply by its index (i, j).

σ = (τ, C)
τ = 14352
C = {(0, 1), (4, 3)}

Mesh patterns were introduced by Brändén
and Claesson [37], and they generalize all the
aforementioned types of patterns.

A mesh pattern is a pair σ = (τ, C), τ ∈ Sk,
with C ⊆ {0, . . . , k}2. Each pair (a, b) ∈ C
encodes the cell with index (a, b) in the grid
representation of τ , and in our figures we
visualize σ by drawing the grid representation of τ and by shad-
ing exactly the cells indexed by C. For instance, the mesh pattern
σ = (τ, C) = (14352, {(0, 1), (4, 3)}) has the graphical representa-
tion shown above.

138 Pattern-avoiding permutations

A permutation π ∈ Sn contains the mesh pattern σ = (τ, C), τ ∈ Sk,
if the grid representation α of π admits a subset I ⊆ [n], |I| = k,
such that β := α|I is the grid representation of τ , and the cell cβ(i, j)
contains no points from α([n]) for all (i, j) ∈ C. In this case, we
refer to β as a match of the mesh pattern σ in the grid representa-
tion α of π. Note that the first condition in the definition of mesh
pattern containment is equivalent to requiring that the subpermu-
tation of π on the indices in I is order-isomorphic to τ , while the
second condition requires that the cells of C in the grid representa-
tion of τ in π contain no points from π.

π = 14352

π′ = 153642

For example, consider the grid representation α of
each of the two permutations π = 14352 and π′ =
153642 shown on the right. While π clearly con-
tains the mesh pattern σ from before, the permu-
tation π′ avoids it, as the only choice for I ⊆ [5]
such that β := α|I is the grid representation of τ
is I = {1, 2, 3, 4, 6} (marked points in the figure),
but then the cell cβ(4, 3) (shaded gray) contains
the point α(5) (non-marked).

The following main theorem of this section implies
all the lemmas about classical, vincular, barred
patterns, etc. stated in the previous sections.

Theorem 6.10. Let σ = (τ, C), τ ∈ Sk, k ≥ 3, be a mesh pattern,
and let i be the position of the largest value k in τ . If the pattern
satisfies each of the following four conditions, then it is tame:

(i) i is different from 1 and k.
(ii) For all a ∈ {0, . . . , k} \ {i− 1, i}, we have (a, k) /∈ C.
(iii) If (i − 1, k) ∈ C, then for all a ∈ {0, . . . , k} \ {i − 1} we have

(a, k − 1) /∈ C and for all b ∈ {0, . . . , k − 2} we have that
(i, b) ∈ C implies (i− 1, b) ∈ C.

6.1. Classical patterns and other variants 139

(iv) If (i, k) ∈ C, then for all a ∈ {0, . . . , k}\{i} we have (a, k−1) /∈
C and for all b ∈ {0, . . . , k − 2} we have that (i − 1, b) ∈ C
implies (i, b) ∈ C.

The conditions in Theorem 6.10 can be understood in the grid rep-
resentation of (τ, C) as follows; see the left hand side of Figure 6.3:
Condition (i) asserts that the highest point of τ must not be the
leftmost or rightmost point (the two crossed out grid points in the
figure are forbidden). Condition (ii) asserts that none of the cells in
the topmost row (above the points) must be shaded, with the possi-
ble exception of the cells next to the highest point (solid crossed out
cells in the figure). Condition (iii) asserts that if the cell (i − 1, k)
to the top left of the highest point is shaded (dark gray cell in
the figure), then none of the cells in the row below except possi-
bly (i − 1, k − 1) must be shaded (dotted crossed out cells), and if
one of the cells strictly below (i, k−1) is shaded (dark gray questions
marks), then the cell to the left of it must also be shaded (indicated
by an arrow to the left). Symmetrically, condition (iv) asserts that
if the cell (i, k) to the top right of the highest point is shaded (light
gray cell in the figure), then none of the cells in the row below ex-
cept possibly (i, k − 1) must be shaded (dashed crossed out cells),
and if one of the cells strictly below (i − 1, k − 1) is shaded (light
gray questions marks), then the cell to the right of it must also be
shaded (indicated by an arrow to the right).

To illustrate the conditions in Theorem 6.10 further, consider the
following mesh patterns σk = (3241, Ck), k = 1, . . . , 7, with different
sets Ck:

σ1 σ2 σ3 σ4

140 Pattern-avoiding permutations

σ5 σ6 σ7

All of these mesh patterns satisfy condition (i). The pattern σ1 vi-
olates condition (ii) due to the cell (1, 4) ∈ C1 (crossed in the fig-
ure), while all other patterns satisfy this condition. The pattern σ2
satisfies conditions (iii) and (iv) trivially, as the premises of each
of the two conditions are not satisfied. The pattern σ3 violates the
first part of condition (iii) due to the cell (1, 3) ∈ C3 (crossed).
The pattern σ4 satisfies the first part of condition (iii), but violates
the second part due to the cells (3, 0) ∈ C4 and (2, 0) /∈ C4 (con-
nected by an arrow in the figure). The pattern σ5 satisfies condi-
tions (iii) and (iv). The pattern σ6 violates condition (iv) due to
the cells (2, 1) ∈ C6 and (3, 1) /∈ C6 (arrow). Finally, the pattern σ7
satisfies conditions (iii) and (iv).

Proof. We show that if σ = (τ, C) satisfies the four conditions of the
theorem, then Sn(σ), n ≥ 0, is a hereditary sequence of zigzag lan-
guages. We argue by induction on n. Note that S0(σ) = S0 = {ε} is
a zigzag language by definition, so the induction basis is clear. For
the induction step let n ≥ 1. We first show that if π ∈ Sn−1(σ), then
c1(π), cn(π) ∈ Sn(σ). As c1(π) and cn(π) are obtained from π by
inserting the new largest value n at the leftmost or rightmost posi-
tion, respectively, the grid representation of these two permutations
differs from the grid representation of π by adding a new highest
point at the leftmost or rightmost position. However, as π avoids σ
by assumption, condition (i) guarantees that both c1(π) and cn(π)
also avoid σ, which is what we wanted to show.

To complete the induction step, we now show that if π ∈ Sn(σ), then
p(π) ∈ Sn−1(σ). Recall that p(π) is obtained from π by removing

6.1. Classical patterns and other variants 141

1 ki

(i
, k
)

(i−
1, k)

(i
−
1,
k
−
1)

(i, k −
1)

P

Q
?

?

?

?

?

?

?

?

?

?

?

?

?

?

Figure 6.3: Illustration of the four conditions in Theorem 6.10 (left)
and how they are used in the proof of the theorem (right).

the largest value n, so in the grid representation, we remove the
highest point P . Our assumption is that π avoids the pattern σ, and
we need to show that removing the highest point does not create
a match of the pattern σ. For the sake of contradiction, suppose
that removing P creates a match of the pattern σ in p(π). Let Q
be the highest point in this match of the pattern σ in p(π). By
condition (ii), we are in exactly one of the following two symmetric
cases: (a) the cell (i − 1, k) is in C and P lies inside this cell of σ
in this match of the pattern; (b) the cell (i, k) is in C and P lies
inside this cell of σ in this match of the pattern. We first consider
case (a), which is illustrated on the right hand side of Figure 6.3:
We claim that we can exchange the point Q for the point P in
the match of the pattern σ, and obtain another match of σ in π,
which would contradict the assumption that π avoids σ. Indeed, this
exchange operation strictly enlarges only the cells (a, k − 1) for all
a ∈ {0, . . . , k} \ {i− 1} and the cells (i, b) for all b ∈ {0, . . . , k − 2}.
The first set of cells are not in C by the first part of condition (iii).
The second set of cells are either not in C, or if they are, then

142 Pattern-avoiding permutations

the corresponding cells to the left of it are also in C by the second
part of condition (iii). Moreover, after the exchange the cell (i, k)
contains no point from π, as P is the highest point (this is of course
only relevant if (i, k) ∈ C). Furthermore, after the exchange the
cell (i − 1, k − 1) contains at most those points from π that were
in the same cell before the exchange (clearly P is the only point
inside the cell (i− 1, k)). So we indeed obtain a match of σ in π, a
contradiction.

In the symmetric case (b), we apply the same exchange argument,
using condition (iv) instead of (iii). This completes the proof.

6.1.9 Proof of Lemmas 6.4–6.9

With Theorem 6.10 in hand, the proofs of Lemmas 6.4–6.9 are
straightforward. As noted before, Lemma 6.8 generalizes Lemma 6.4,
and Lemma 6.9 generalizes Lemma 6.5, so we only need to prove
Lemmas 6.6–6.9.

Proof of Lemma 6.6. Note that a barred pattern τ ∈ Sk with a sin-
gle barred entry b at position a corresponds to the mesh pattern
σ = (τ−, {(a− 1, b− 1)}), i.e., in the grid representation of σ a sin-
gle cell is shaded. It follows that conditions (iii) and (iv) of Theo-
rem 6.10 are trivially satisfied, and conditions (i) and (ii) translate
into the conditions in the lemma.

Proof of Lemma 6.7. A boxed pattern τ , τ ∈ Sk, corresponds to
the mesh pattern σ = (τ, C) with C := {(i, j) | 1 ≤ i, j ≤ k − 1},
i.e., in the grid representation of σ, all cells inside the bounding box
of the points from τ are shaded. It follows that conditions (ii)–(iv)
of Theorem 6.10 are trivially satisfied, and condition (i) corresponds
exactly to the condition in the lemma.

Proof of Lemma 6.8. A pattern with Bruhat restrictions (τ,B) cor-
responds to the mesh pattern σ = (τ, C) where C is the union of

6.2. Patterns with multiplicities 143

all the sets R(a, b) := {(i, j) | a ≤ i < b ∧ τ(a) ≤ j < τ(b)} for
(a, b) ∈ B, i.e., in the grid representation of σ, certain rectangles of
cells inside the bounding box of the points from τ are shaded. It
follows that conditions (ii)–(iv) of Theorem 6.10 are trivially satis-
fied, and condition (i) corresponds exactly to the condition in the
lemma.

Proof of Lemma 6.9. A vincular pattern τ ∈ Sk where the entries
at positions a and a + 1 are underlined corresponds to the mesh
pattern σ = (τ, C) with C := {a} × {0, . . . , k}, i.e., in the grid
representation of σ, an entire column of cells is shaded. For the
bivincular pattern (τ,B) we also have to add the sets {0, . . . , k}×{b}
for all b ∈ B to the set of cells C, i.e., in the grid representation we
also have to shade the corresponding rows of cells. By the conditions
stated in Lemma 6.5, conditions (i) and (ii) of Theorem 6.10 are
satisfied. By the condition k − 1 /∈ B, conditions (iii) and (iv) of
the theorem are also satisfied, proving that the mesh pattern σ is
tame.

6.2 Patterns with multiplicities

All the aforementioned notions and results in this section general-
ize straightforwardly to bounding the number of appearances of a
pattern. Formally, a counted pattern is a pair σ = (τ, c), where τ is
a mesh pattern, and c is a non-negative integer. Moreover, Sn(σ)
denotes the set of all permutations from Sn that contain at most c
matches of the pattern τ , where the special case c = 0 is pattern-
avoidance (cf. [127]).

By Theorem 6.3, we can form propositional formulas F consisting of
logical ANDs ∧, ORs ∨, and tame counted patterns (τi, ci) as vari-
ables, with possibly different counts ci for each variable. The tame-
ness of each (τi, ci) can be checked by verifying whether the pat-

144 Pattern-avoiding permutations

terns τi satisfy the conditions stated in Theorem 6.10 or its corol-
laries Lemmas 6.4–6.9. We then obtain a hereditary zigzag lan-
guage Sn(F) that can be generated by Algorithm J.

A somewhat contrived example for such a language would be F =(
(231, 3) ∧ (2143, 5)

)
∨ (3142, 2), the language of permutations that

contain at most 3 matches of the pattern 231AND at most 5 matches
of the pattern 2143, OR at most 2 matches of the vincular pat-
tern 3142.

6.3 Algebra with patterns

In this section we significantly extend the methods described in the
previous section, by applying geometric transformations to permu-
tation patterns, and by describing some other types of patterns as
conjunctions and disjunctions of suitable mesh patterns (recall The-
orem 6.3). Two particularly relevant additional types of permuta-
tions covered in this section are monotone and geometric grid classes;
see Theorem 6.16 below.

6.3.1 Elementary transformations

We now consider three important elementary transformations of
permutations that are important in the context of pattern-avoidance,
as they preserve the cardinality of the set Sn(F). Each of them cor-
responds to a geometric transformation of the grid representation
of each of the patterns τ = a1 . . . ak in the formula F , and together
these transformations form the dihedral group D4 of symmetries of
a regular 4-gon:

� Reversal, defined as rev(τ) := ak . . . a1. This corresponds to a
vertical reflection of the grid representation.

� Complementation, defined as cpl(τ)i = k + 1 − ai for all i =
1, . . . , k. This corresponds to a horizontal reflection of the grid

6.3. Algebra with patterns 145

representation.
� Inversion, defined by inv(τ)τ(i) = i for all i = 1, . . . , k. This
corresponds to a diagonal reflection of the grid representation
along the south-west to north-east diagonal.

Note that a clockwise 90-degree rotation is obtained as rot(τ) :=
inv(rev(τ)) = cpl(inv(τ)). Clearly, all these operations generalize
to mesh patterns (τ, C), by applying the aforementioned geometric
transformations to the grid representation of (τ, C). These opera-
tions and their relations are illustrated in Figure 6.4 for (τ, C) =
(14352, {(1, 0), (1, 1), (3, 3), (4, 3)}).

The following lemma is immediate.

Lemma 6.11. Given any composition h of the elementary transfor-
mations reversal, complementation and inversion, and any proposi-
tional formula F consisting of logical ANDs ∧, ORs ∨, and mesh
patterns τ1, . . . , τℓ as variables, then the sets of pattern-avoiding per-
mutations Sn(F) and Sn(h(F)) are in bijection under h for all n ≥
1, where the formula h(F) is obtained from F by replacing every
pattern τi by h(τi) for all i = 1, . . . , ℓ.

Lemma 6.11 is very useful for the purpose of exhaustive generation,
because even if τi is not tame, then maybe h(τi) is. So even if
we cannot apply Algorithm J to generate Sn(τ) directly, we may
be able to generate Sn(h(τi)), and then apply h−1 to the resulting
permutations. For instance, τ = 213 is not tame, as the largest entry
appears at the rightmost position. However, cpl(τ) = 231 is tame by
Lemma 6.4, and so we can use Algorithm J to generate Sn(cpl(τ)).

As another example, consider so-called 2-stack sortable permutations
introduced by West [170] and later counted in [175, 80, 65]. These
permutations are characterized by the pattern-avoidance formula
F = τ1∧τ2 with τ1 := 2341 and τ2 := 35241 (τ2 is a barred pattern).
Unfortunately, τ2 is not tame (the barred entry 5 is not at a position

146 Pattern-avoiding permutations

rev

cpl

inv

14352 25341

15324 51342

24315

52314 41325

42351

Figure 6.4: Elementary transformations between permutations.

next to the entry 4; recall Lemma 6.6), so Algorithm J cannot be
used directly for generating Sn(F). However, applying rotation,
h(τ) := rot(τ) = inv(rev(τ)), yields two tame patterns h(τ1) = 1432
and h(τ2) = 13524 and the formula h(F) = h(τ1)∧h(τ2), which can
be used for generating Sn(h(F)) via Algorithm J:

6.3. Algebra with patterns 147

τ1 = 2341 τ2 = 35241

∧ ∧h = rot

rot(τ1) = 1432 rot(τ2) = 13524

Table 6.5 lists several more permutations patterns that have been
studied in the literature and that can be turned into tame patterns
by such elementary transformations.

Table 6.5: Permutation patterns that become tame through elemen-
tary transformations, plus corresponding combinatorial objects.

Tame patterns and combinatorial objects References/
OEIS [129]

rot(2341∧35241)=1432∧13524 [170, 175, 80]
(2-stack sortable permutations), [65], A000139
2413 ∧ 41352, 2413 ∧ 45312, [66]
2413 ∧ 21354, 3241 ∧ 24153,
rot−1(2413 ∧ 51324) = 2413 ∧ 15342,
cpl(2413 ∧ 42315) = 3142 ∧ 24351,
cpl(2314 ∧ 42513) = 3241 ∧ 24153,
cpl(3214 ∧ 24135) = 2341 ∧ 42531,
rev(2413 ∧ 41352) = 3142 ∧ 2413 : [51]
rooted non-separable planar maps
conjunction of 20 patterns τi with tame cpl(τi):
permutations generated by a stack of depth two and
an infinite stack

[67], A245233

inv(132 ∧ 312) = 132 ∧ 231: Gilbreath permutations [167, 59]

rot(3142 ∧ 3124) = rot
(

∧
)
= ∧ :

permutations that uniquely encode pile configurations
in patience sorting

[111, 39],
A129698

148 Pattern-avoiding permutations

6.3.2 Partially ordered patterns

Partially ordered patterns were introduced by Kitaev [105]. A par-
tially ordered pattern (POP) is a partially ordered set P = ([k],≺),
and we say that a permutation π contains this pattern if and only
if it contains a subpermutation ai1 . . . aik , i1 < · · · < ik, such that
k ≺ l in the partial order implies that aik < ail . In particular, if ≺
is a linear order, then this is equivalent to classical pattern avoid-
ance. However, some other constraints can be expressed much more
conveniently using POPs. For instance, avoiding the POP

P1 =
2

1 3

is equivalent to avoiding peaks in the permutation, so Sn(P1) is
the set of permutations without peaks discussed before, which sat-
isfies |Sn(P1)| = 2n−1.

More generally, the POP Pk defined by

P1 =
2

1 3
, P2 =

2 4

1 3 5
, P3 =

2 4 6

1 3 5 7
, . . . ,

Pk =
2 4

1 3 5 . . .

2k

2k − 1 2k + 1

realizes the language Sn(Pk) of permutations with at most k − 1
peaks.

We let L(P) denote the set of all linear extensions of the poset P ,
and for any linear extension x ∈ L(P), we consider the inverse
permutation of x, as the ith entry of inv(x) denotes the position of i
in x. Moreover, inv(x) ∈ Sk, so inv(x) is a classical pattern.

6.3. Algebra with patterns 149

Lemma 6.12. For any partially ordered pattern P = ([k],≺),

Sn(P) =
⋂

x∈L(P)

Sn(inv(x)) = Sn

(∧
x∈L(P)

inv(x)
)
. (6.2)

In particular, if the poset P does not have 1 or k as a maximal
element, then P is tame.

Proof. The first part of the lemma follows immediately from the def-
inition of POPs and from (6.1). To prove the second part, suppose
that P does not have 1 or k as a maximal element. Then in any
linear extension x ∈ L(P), 1 and k will not appear at the last po-
sition, and so in the inverse permutation inv(x), the largest entry k
will neither be at position 1 nor at position k. We can hence apply
Lemma 6.4, and using Theorem 6.3 we obtain that P is tame.

For instance, for the POP P1 from before we have L(P1) = {132, 312},
and so P1 = 132 ∧ 231, and for the POP P2 we have L(P2) =
{13254, 13524, 13542, 15324, 15342, 31254, . . . }, a set of 16 linear ex-
tensions in total, so P2 = 13254 ∧ 14253 ∧ 15243 ∧ 14352 ∧ 15342 ∧
23145 ∧

Moreover, we can create counted POPs with multiplicity c (recall
Section 6.2), by taking the OR of conjunctions of counted classical
patterns as described by Lemma 6.12, over all number partitions of c
into the corresponding number of parts. For instance, the counted
POP σ = (P1, c), which realizes the zigzag language Sn(σ) of per-
mutations with at most c triples of values forming a peak, is ob-
tained by considering the partitions c = c+ 0 = (c− 1) + 1 = · · · =
1 + (c− 1) = 0 + c, resulting in the formula

(P1, c) =
(
(132, c) ∧ (231, 0)

)
∨ · · · ∨

(
(132, 0) ∧ (231, c)

)
with counted classical patterns on the right-hand side.

150 Pattern-avoiding permutations

6.3.3 Barred patterns with multiple bars

Some patterns with multiple bars can be reduced to single-barred
patterns (to which Lemma 6.6 applies) as shown by the following
lemma.

Lemma 6.13 (cf. [163]). Let τ ∈ Sk, k ≥ 5, be a pattern with b ≥ 2
bars, such that no two barred entries are at neighboring positions or
have adjacent values. Let τ̃1, . . . , τ̃b ∈ Sk−b+1 be the permutations
with a single barred entry that are order-isomorphic to the sequences
obtained from τ by removing all but one barred entry. Then we have

Sn(τ) =
⋂

1≤i≤b

Sn(τ̃i) = Sn

(∧
1≤i≤b

τ̃i

)
.

Consequently, if τ− ∈ Sk−b does not have the largest value k − b at
the leftmost or rightmost position, and the largest barred entry in τ
is smaller than k or at a position next to the entry k − 1, then τ is
tame.

Proof. To prove the first part, observe that when no two barred
entries are at neighboring positions or have adjacent values, then
the definition of barred pattern avoidance is equivalent to avoiding
each of the single-barred patterns τ̃1, . . . , τ̃b, so the claim follows
using (6.1).

To prove the second part we show that each of the single-barred
patterns τ̃1, . . . , τ̃b satisfies the conditions of Lemma 6.6. Indeed, we
know that τ− = (τ̃i)

− ∈ Sk−b, 1 ≤ i ≤ b, does not have the largest
value k − b at the leftmost or rightmost position. Moreover, if τ̃i is
obtained from τ by removing all but the largest barred entry, then
the barred entry in τ̃i ∈ Sk−b+1 is either smaller than k − b + 1 or
at a position next to the entry k − b. To see this note that if the
largest entry k in τ is barred, then the second largest entry k − 1
is not barred by the assumption that no two barred entries have

6.3. Algebra with patterns 151

adjacent values. For the same reason, if τ̃i is obtained from τ by
removing barred entries including the largest one, then the barred
entry in τ̃i ∈ Sk−b+1 is smaller than k− b+1. Consequently, we can
apply Lemma 6.6 to each of the patterns τ̃1, . . . , τ̃b, and complete
the proof by applying Theorem 6.3.

Lemma 6.13 applies for instance to the tame pattern 31524 = 3142∧
2413 listed in Table 6.1.

6.3.4 Weak avoidance of barred patterns and dotted
patterns

Weak pattern avoidance and dotted patterns were introduced by
Baril [21] (see also [60]). Given a single-barred pattern τ , we define
τ ′ and τ− as in Section 6.1.4, and we say that a permutation π weakly
contains τ , if and only if it contains a match of τ− that cannot be
extended to a match of τ ′ by adding one entry of π, not necessarily
at the position specified by the barred entry. Otherwise, we say that
π weakly avoids τ . We let Sw

n (τ) denote the set of permutations that
weakly avoid τ . For instance, π = 1243 contains the barred pattern
τ = 123, as for the increasing pair 24 in π, there is no entry in π to
the right that extends this pair to an increasing triple. However, π
weakly avoids τ , as each of the increasing pairs 12, 14, 13, 24 and 23
can be extended to an increasing triple, by adding an entry from π
to the right, middle, middle, left and left of this pair, respectively.

The relation between weak pattern avoidance and mesh pattern
avoidance is captured by the following lemma.

Lemma 6.14. Let τ ∈ Sk be a single-barred pattern with barred
entry b. Consider the longest increasing or decreasing substring of
consecutive values in τ ′ that contains b, and let r and s be the start
and end indices of this substring. Let σ be the mesh pattern defined

152 Pattern-avoiding permutations

Table 6.6: Illustration of Lemma 6.14.

τ τ ′ τ− r s σ

145632 145632 34521 1 1

145632 145632 14532 2 4
145632 145632 14532 2 4
145632 145632 14532 2 4

145632 145632 13452 5 6
145632 145632 13452 5 6

by σ := (τ−, C) with

C :=
{(

r + i− 1, τ ′(r + i)− 1
)
| 0 ≤ i ≤ s− r

}
. (6.3)

Then we have Sw
n (τ) = Sn(σ).

Table 6.6 illustrates the mesh pattern σ = (τ−, C) defined in Lemma 6.14
for six different single-barred patterns.

Proof. We only consider the case that the longest substring of con-
secutive values in τ ′ that contains b is increasing, as the other case
is symmetric.

We first show that if a permutation π weakly contains τ , then it also
contains σ. For this consider a match of τ− that cannot be extended
to a match of τ ′ in the grid representation of π; see the left hand side
of Figure 6.7. Consider the s− r points Pr, . . . , Ps−1 of π to which
the entries at positions r, . . . , s − 1 of τ− are matched. We know
that they form an increasing sequence, and all other points in this
match are below or above them. Now consider the s−r+1 cells in C
defined in (6.3) between and around these points. We need to show
that none of them contains any points of π, demonstrating that this
is a match of the mesh pattern σ. Indeed, if one of these regions did

6.3. Algebra with patterns 153

contain a point Q from π, then Q together with Pr, . . . , Ps−1 would
form an increasing sequence of length s− r+1, i.e., Q would extend
the match of τ− to a match of τ ′ in π, a contradiction.

It remains to show that if a permutation π contains the mesh pat-
tern σ, then it weakly contains τ . For this consider a match of
σ = (τ−, C) in the grid representation of π; see the right hand
side of Figure 6.7. We label the points to which the entries of τ−

are matched by P1, . . . , Pk−1. By the definition of σ, the points
Pr, . . . , Ps−1 form a longest increasing sequence of consecutive val-
ues in this match. In particular, Pr−1 is not located at the bottom
left corner of the leftmost cell of C, and Ps is not located at the
top right corner of the rightmost cell of C, so there is a point Pa,
a ∈ [k−1]\{r−1, . . . , s−1}, on the same height as the lower bound-
ary of the leftmost cell of C, and a point Pb, b ∈ [k− 1] \ {r, . . . , s},
on the same height as the upper boundary of the rightmost cell of C.
We know that no point of π lies within any of the cells in C, but we
also need to show that a point Q of π contained in any of the other
cells cannot be used to extend this match of τ− to a match of τ ′.
For this we distinguish four cases: Suppose that Q is contained in
a cell L to the left of the cells in C. Then P1, . . . , Pk−1 together
with Q is not a match of τ ′, as the longest increasing substring of
consecutive values Pr, . . . , Ps−1 contains only s − r points. A sym-
metric argument works if Q is contained in a cell R to the right of
the cells in C. Now suppose that Q is contained in a cell A above a
cell from C, but not above the rightmost one, or below a cell from C,
but not below the leftmost one. In this case the points Pr, . . . , Ps−1

together with Q do not form an increasing substring, so this is not
a match of τ ′. It remains to consider the case that Q is contained in
a cell B above the rightmost cell from C, or below the leftmost cell
from C. In this case the points Pr, . . . , Ps−1 together with Q form
an increasing substring, but the values are not consecutive, as Q is
separated from Pr, . . . , Ps−1 by the point Pb or Pa, respectively, so
this is not match of τ ′ either. This completes the proof.

154 Pattern-avoiding permutations

C Pr

Ps−1

Q

C

C

C

C

C

L RBA

Pr

Ps−1

Pr−1
Ps

Pk−1Pa

Pb

Figure 6.7: Illustration of the proof of Lemma 6.14.

Baril [21] also introduced the notion of a dotted pattern τ ∈ Sk,
which is a pattern with some entries at positions I ⊆ [k] that have a
dot above them. A permutation π avoids the pattern τ if and only
if π weakly avoids every single-barred pattern obtained by putting
a bar above every entry not in I, i.e., we have

Sn(τ) :=
⋂

j∈[k]\I

Sw
n (τj), (6.4)

where τj is the barred pattern obtained by putting the bar above
entry j.

Lemma 6.15. Let τ ∈ Sk, k ≥ 3, be a dotted pattern with dots
over all positions I ⊆ [k]. If τ does not have the largest value k
at the leftmost or rightmost position, and all entries in the longest
increasing or decreasing substring of consecutive values including k
are dotted, then τ is tame.

Proof. Let r and s be the start and end indices of the longest in-
creasing or decreasing substring of consecutive values including k.
The conditions of the lemma imply that [r, s] ⊆ I.

6.3. Algebra with patterns 155

By (6.4), Theorem 6.3, and Lemma 6.14, to prove that τ is tame it
is sufficient to show this for the mesh pattern σ = (ρ−, C) with C
defined in (6.3) for every single-barred pattern ρ obtained from τ ′

by placing a bar over an entry at a position [k] \ I. As [r, s] ⊆ I, we
obtain in particular that the largest value k in ρ is not barred, and if
the second largest entry k−1 is next to k, then it is also not barred.
Combining this with the assumption that the largest value k is not
at the leftmost or rightmost position in ρ, we obtain that in ρ−,
the largest entry k − 1 is not at the leftmost or rightmost position.
Moreover, we obtain from the definition (6.3) that C does not have
any cells in the topmost row, i.e., (i, k− 1) /∈ C for i = 0, . . . , k− 1.
Therefore, applying Theorem 6.10 shows that σ is tame, completing
the proof.

6.3.5 Monotone and geometric grid classes

Monotone grid classes of permutations were introduced by Huczyn-
ska and Vatter [94]. To define them, we consider a matrix M with
entries from {0,+1,−1}, indexed first by columns from left to right,
and then by rows from bottom to top. A permutation π of [n] (for
any n ≥ 0) is in the monotone grid class of M , denoted Grid(M),
if we can place the points labelled from 1 to n from bottom to
top into a rectangular grid that has as many rows and columns
as the matrix M , and reading the labels from left to right will
yield π, subject to the following two conditions: No two points are
placed on the same horizontal or vertical line. Moreover, for each
cell (x, y) in the grid, if Mx,y = 0, then the cell contains no points,
if Mx,y = +1, then the points in this cell are increasing, and if
Mx,y = −1, then the points in this cell are decreasing. This defini-
tion is illustrated in the top part of Figure 6.8. Based on this, we
define Gridn(M) := Grid(M) ∩ Sn. It is an open problem whether
Grid(M) is characterized by finitely many forbidden patterns for
any M (cf. [4]).

156 Pattern-avoiding permutations

1
2

3

4
5

6

M1 =

(
−1 +1
+1 −1

)

π1 = 135246

Grid(M1)

1
2

3

4
5

6

M2 =

(
+1 −1
−1 +1

)

π2 = 415263

Grid(M2)

1
2

3

4
5

6

π′
1 = 623451

Geo(M1)

1
2

3 4
5

6

π′
2 = 324516

Geo(M2)

Figure 6.8: Top: Illustration of monotone grid classes. Bottom:
Illustration of geometric grid classes, with X-shaped permutations
on the left, and O-shaped permutations on the right. Observe that
π1 ∈ Grid(M1), but π1 /∈ Geo(M1), as π1 contains the pattern 2413.
Similarly, we have π2 ∈ Grid(M2), but π2 /∈ Geo(M2), as π2 contains
the pattern 1423.

6.3. Algebra with patterns 157

The second type of permutations we shall discuss in this section
are geometric grid classes, introduced by Albert, Atkinson, Bouvel,
Ruškuc, and Vatter [5]. They are defined using a matrix M with
entries from {0,+1,−1} as before. A permutation π of [n] is in the
geometric grid class of M , denoted Geo(M), if it can be drawn in a
rectangular grid as described before, with the slightly strengthened
conditions that if Mx,y = +1, then the points in the cell (x, y) lie
on the increasing diagonal line through this cell, and if Mx,y = −1,
then the points in the cell (x, y) lie on the decreasing diagonal line
through this cell. This definition is illustrated in the bottom part of
Figure 6.8. Similarly to before, we define Geon(M) := Geo(M)∩Sn.
We clearly have Geo(M) ⊆ Grid(M) and Geon(M) ⊆ Gridn(M).

Unlike for monotone grid classes, it was shown in [5] that any geo-
metric grid class Geo(M) is characterized by finitely many forbid-
den patterns, i.e.,

Geon(M) = Sn(τ1 ∧ · · · ∧ τℓ)

for a suitable set of patterns τ1, . . . , τℓ and for all n ≥ 0. For in-
stance, X-shaped permutations studied in [169, 69] are exactly the
permutations in Sn(2143∧ 2413∧ 3142∧ 3412). However, the argu-
ment given in [5] for the existence of τ1, . . . , τℓ is non-constructive,
so there is no procedure known to compute these patterns from the
matrix M .

Nevertheless, our next theorem provides an easily verifiable suffi-
cient condition for deciding whether Gridn(M) and Geon(M) are
zigzag languages, based only on two particular entries of M .

Theorem 6.16. Let M be a matrix with −1 in the top-left cor-
ner and +1 in the top-right corner. Then Gridn(M), n ≥ 0, and
Geon(M), n ≥ 0, are both hereditary sequences of zigzag languages.
Consequently, all of these languages can be generated by Algorithm J.

158 Pattern-avoiding permutations

From the two monotone and geometric grid classes shown in Fig-
ure 6.8, only the left two satisfy the conditions of the theorem.

Proof. We only prove the theorem for monotone grid classesGridn(M).
The argument for geometric grid classes Geon(M) is analogous.

We argue by induction on n. Note that Grid0(M) = S0 = {ε} is a
zigzag language by definition, so the induction basis is clear. For the
induction step let n ≥ 1. We first show that if π ∈ Gridn−1(M), then
c1(π), cn(π) ∈ Gridn(M). For this argument we use the assumption
that the top-left entry of M is −1, and the top-right entry of M
is +1, i.e., π can be drawn into a grid so that the points in the
top-left cell are decreasing, and the points in the top-right cell are
increasing. It follows that we can draw c1(π) on the same grid, by
extending the drawing of π so that the new point n is placed to
the top-left of all other points. Similarly, we can draw cn(π) on the
same grid, by extending the drawing of π so that the new point n is
placed to the top-right of all other points.

To complete the induction step, we now show that if π ∈ Gridn(M),
then p(π) ∈ Gridn−1(M). As π ∈ Gridn(M), we can draw π
into a grid respecting the monotonicity conditions described by M .
Clearly, removing any entry from π, in particular the largest one,
maintains this property, i.e., we can draw p(π) on the same grid,
showing that p(π) ∈ Gridn−1(M). This completes the proof.

6.4 Limitations of our approach

Let us also briefly motivate the definition of tame permutation pat-
terns given in Section 6.1.2. On the one hand, for a fixed pattern τ , it
is certainly reasonable to require that all of the sets Sn(τ), n ≥ 0, are
zigzag languages. This is because for any classical pattern τ ∈ Sk,
the set Sn(τ) = Sn for n < k is trivially a zigzag language, but a
very uninteresting one. On the other hand, now that we are con-

6.4. Limitations of our approach 159

cerned with an infinite sequence of sets Sn(τ), n ≥ 0, the require-
ment for the sequence to be hereditary is equally reasonable, as we
shall see by considering the problems that arise if we drop this re-
quirement. For this consider the non-tame barred pattern τ = 1324.
We have 132 /∈ S3(τ), i.e., the permutation 132 contains the pattern,
whereas c4(132) = 1324 ∈ S4(τ) avoids it. Consequently, if we were
interested in the language L4 = S4(τ), then the corresponding set
L3 := p(L4) would be L3 = S3, and not S3(τ) = S3 \ {132}. In gen-
eral, when considering Sn(τ) for a particular value of n, then the sets
Li−1 := p(Li) for i = n, n − 1, . . . , 1 are not necessarily character-
ized by avoiding the pattern τ . In fact, it is not clear whether they
are characterized by any kind of pattern-avoidance. In terms of the
tree representation of zigzag languages, if the sequence Sn(τ), n ≥ 0,
is not hereditary, then different values of n correspond to different
tree prunings. In the example from before, the node 132 is pruned
from the tree for S3(τ), but it is not pruned from the tree for S4(τ).
In contrast to that, in a hereditary sequence, all sets Sn(τ), n ≥ 0,
arise from pruning the infinite rooted tree of permutations in a way
that is consistent for all n. Summarizing, for patterns τ for which
Sn(τ) is not hereditary, our proof of Theorem 5.1 breaks seriously.
Not only that, Algorithm J in general fails to generate Sn(τ). For
instance, it fails to generate S4(τ), τ = 1324, when initialized with
id4 = 1234, while it succeeds to generate S4(τ

′) for the non-tame
barred pattern τ ′ = 4132 .

For a classical pattern τ ∈ Sk that has the largest value k at the left-
most or rightmost position, we have that Sk(τ) = Sk \ {τ} is not a
zigzag language (as τ equals either c1(p(τ)) or ck(p(τ))), i.e., τ is not
tame. Moreover, in general Algorithm J fails to generate Sk(τ). For
instance, running Algorithm J on S3(321) gives only three permu-
tations 123, 132, 312, and then the algorithm stops. This is admit-
tedly a very strong limitation of our approach, as many interesting
permutation patterns have the largest value at the boundary, such
as 321, which gives rise to an important Catalan family Sn(321).

160 Pattern-avoiding permutations

By what we said before, the condition for tameness stated in Lemma 6.4
is not only sufficient, but also necessary. In a similar way, it can be
shown that the conditions stated in Lemmas 6.5–6.9 are necessary
for tameness. The situation is slightly more complicated for Theo-
rem 6.10: Conditions (i) and (ii) of the theorem are indeed neces-
sary. Specifically, if condition (i) is violated, then Sk(σ) = Sk \ {τ}
is not a zigzag language, and if condition (ii) is violated, then
Sk(σ) ̸= p(Sk+1(σ)), i.e., the hereditary property is violated. How-
ever, conditions (iii) and (iv) are not necessary. Consider for in-
stance the patterns σ1, σ2, σ3 shown below:

σ1 σ2 σ3

They all satisfy conditions (i), (ii) and (iv), but violate condition (iii)
due to the cells (2, 3) and (1, 3), connected by an arrow in the figures.
However, the proof of Theorem 6.10 given in Section 6.1.8 can be
modified to show that σ1 is tame. The idea is to apply the exchange
argument that involves a point in a match of the pattern and that
is illustrated on the right hand side of Figure 6.3 twice instead of
only once. This idea can be iterated, and by applying the exchange
argument three or four times, respectively, one can show that σ2
and σ3 are tame as well. This kind of reasoning apparently leads
to combinatorial chaos, depending on the relative location of points
and shaded cells in the pattern, and this prevents us from being able
to formulate conditions for a mesh pattern that are necessary and
sufficient for tameness. This is not an issue from our point of view,
because again, we do not see any interesting families of pattern-
avoiding permutations that would satisfy such more complicated
conditions but not the conditions stated in Theorem 6.10.

I’ll simply pour paint onto the canvas, and
that’s it. . . It didn’t work out. It is some-
thing specific that I want to make. So, I’m
not just randomly making a mess with paint,
there’s usually quite a strong structure in
these paintings.

—Herbert Brandl,
Mountains in the Industrial Park and Other

Romantic Observations: Ines Mitterer in
Conversation with Herbert Brandl CHAPTER 7

Lattice congruences of the weak order

Except for Section 7.2.7, which has not been published, this chapter
is based on [89], which is joint work with Torsten Mütze.

The second application of our framework is the generation of the
lattice congruences of the weak order of permutations, which we will
define briefly below and in more detail in Section 7.1.2.

For a permutation π ∈ Sn, the inversion set of is the set of all
decreasing pairs of values of π = a1 · · · an, formally

inv(π) :=
{
(ai, aj) | 1 ≤ i < j ≤ n and ai > aj

}
.

We consider the classical weak order on Sn, the poset obtained by
ordering all permutations from Sn by containment of their inversion
sets, i.e., π < ρ for any two permutations π, ρ in the weak order
if and only if inv(π) ⊆ inv(ρ); see the left hand side of Figure 7.1.

161

162 Lattice congruences of the weak order

Equivalently, the weak order on Sn can be obtained as the poset
of regions of the braid arrangement of hyperplanes. Also, its Hasse
diagram is the graph of the permutahedron.

It is well-known that the weak order forms a lattice, i.e., joins π ∨ ρ
and meets π ∧ ρ are well-defined. A lattice congruence is an equiv-
alence relation ≡ on Sn that is compatible with taking joins and
meets. Formally, if π ≡ π′ and ρ ≡ ρ′ then we also have π∨ρ ≡ π′∨ρ′
and π∧ρ ≡ π′∧ρ′. The lattice quotient Sn/≡ is obtained by taking
the equivalence classes as elements, and ordering them by X < Y
if and only if there is a representative π ∈ X and a representa-
tive ρ ∈ Y such that π < ρ in the weak order; see the right hand
side of Figure 7.1. The study of lattice congruences of the weak or-
der has been developed considerably in recent years, in particular
thanks to Reading’s works, summarized in [143, 146, 147]. All of
these results have beautiful ramifications into posets, polytopes, ge-
ometry, and combinatorics. In fact, many of these results even hold
in the more general setting of arbitrary Coxeter groups and for the
poset of regions of general hyperplane arrangements.

It is not hard to see that there are double-exponentially (in n) many
distinct lattice congruences of the weak order on Sn, and many
important lattices arise as quotients of suitable lattice congruences:
the Boolean lattice, the Tamari lattice [157] (shown in Figure 7.1),
type A Cambrian lattices [142, 47], permutree lattices [132], the
increasing flip lattice on acyclic twists [131], and the rotation lattice
on diagonal rectangulations [113, 79, 43].

Additionally, Pilaud and Santos [134] showed how to realize the
cover graph of any lattice quotient Sn/≡ as the graph of an (n− 1)-
dimensional polytope, and they called these polytopes quotientopes.
Their results generalize many earlier constructions of polytopes for
the aforementioned special lattices [117, 90, 110, 132, 133, 113]. In
particular, quotientopes generalize permutahedra, associahedra, and
hypercubes. Interestingly, quotientopes are defined by a set of glid-

163

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

Figure 7.1: Hasse diagrams of the weak order on S4 (left) with
a lattice congruence ≡ (bold edges), and of the resulting lattice
quotient S4/≡ (right), which is the well-known Tamari lattice (with
corresponding binary trees).

ing hyperplanes that is consistent with refining the corresponding
lattice congruences, i.e., moving the hyperplanes outwards corre-
sponds to refining the equivalence classes. In particular, the permu-
tahedron contains all other quotientopes, and the hypercube is con-
tained in all (full-dimensional) quotientopes. Figure 7.7 shows all
quotientopes for n = 4 ordered by refinement of the corresponding
congruences, with permutahedron, associahedron, and 3-cube high-
lighted.

There are several long-standing open problems revolving around
Hamilton paths and cycles in graphs of polytopes and other highly
symmetric graphs, most prominently Barnette’s and Lovász’s con-
jectures. Barnette’s conjecture [22] asserts that the graph of every
simple three-dimensional polytope with an even number of edges
on each face has a Hamilton cycle. Another variant of the conjec-

164 Lattice congruences of the weak order

ture states that the graphs of all simple three-dimensional polytopes
with face sizes at most 6, in particular all fullerenes, have a Hamil-
ton cycle [6]. Barnette also conjectured that the graph of every sim-
ple 4-dimensional polytope has a Hamilton cycle [82, p. 1145]. Note
that the simplicity of these polytopes means that their graphs are
3-regular or 4-regular, respectively. Lovász’ conjecture [119] asserts
that every vertex-transitive graph has a Hamilton path. A stronger
form of his conjecture asserts that such graphs even have a Hamil-
ton cycle, with five well-understood exceptions, among them the
Petersen graph and the Coxeter graph.

In this chapter, we apply the general framework for exhaustive gen-
eration to the lattice quotients of the weak order on the symmetric
group Sn, yielding a Hamilton path on their cover graphs (Theo-
rem 7.12). As a consequence, since these cover graphs are also the
graphs of the quotientopes introduced by Pilaud and Santos, the
graph of every quotientope has a Hamilton path (Corollary 7.13);
see Figure 7.7. For the permutahedron, associahedron, and hyper-
cube, algorithmic constructions of such Hamilton paths were al-
ready known by the Steinhaus-Johnson-Trotter algorithm [162, 99],
by the Lucas-Roelants van Baronaigien-Ruskey tree rotation algo-
rithm [121] (see also [120, 96]), and by the binary reflected Gray
code [81], respectively. Our results thus unify and generalize all
these classical algorithms. Motivated by our Hamiltonicity results
and by Barnette’s and Lovász’ conjectures, we also characterize
which lattice congruences of the weak order on Sn yield regular or
vertex-transitive quotientopes. This characterization uses arc dia-
grams introduced by Reading [145], and allows us to derive corre-
sponding precise and asymptotic counting results. We also deter-
mine the minimum and maximum degrees and two-colorability of
quotientopes. All of these results are summarized in Table 7.9 (theo-
rems are referenced in the table). In those results, Catalan numbers,
integer compositions and partitions, and the Erdős-Szekeres theo-
rem make their appearance. As a last result, we formulate conditions

7.1. Generating lattice congruences of the weak order 165

under which a set of pattern-avoiding permutations can be realized
as a lattice congruence of the weak order on Sn (Theorem 7.47).

7.1 Generating lattice congruences of the weak
order

In this section, we show how Algorithm J can be used to generate
any lattice congruence of the weak order on Sn. The main results
of this section are summarized in Theorem 7.12 and Corollary 7.13
below.

7.1.1 Modified zigzag languages

Before discussing lattice congruences, we first mention a slight mod-
ification of the definition of zigzag languages in Section 5.3. The
following extension of this definition is necessary in order to handle
the lattice congruences in full generality. Specfically, a set of per-
mutations Ln ⊆ Sn is called a zigzag language, if either n = 0 and
L0 = {ε}, or if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag lan-
guage satisfying either one of the following conditions:

(z) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.
(ẑ) We have Ln = {cn(π) | π ∈ Ln−1}.

The new condition (ẑ) expresses that Ln is obtained from Ln−1

simply by inserting the new largest value n at the rightmost position
of all permutations, i.e., the value n only ever appears to the right
of 1, . . . , n− 1. In this case we will have in particular |Ln| = |Ln−1|.

Note that all results from Chapter 5 carry over straightforwardly. In
particular, Theorem 5.1 still holds. Indeed, recall that in the proof
of the theorem in Section 5.3.3, we defined a sequence J(Ln) of all
permutations from a zigzag language Ln and showed by induction
that Algorithm J generates the permutations of Ln exactly in this

166 Lattice congruences of the weak order

order. In the proof, we defined #„c (π) to be the sequence of all ci(π) ∈
Ln for i = 1, 2, . . . , n, starting with c1(π) and ending with cn(π),
and #„c (π) to be the reverse sequence, i.e., it starts with cn(π) and
ends with c1(π). We now modify the recursive definition of the
sequence J(Ln) as follows: If n = 0 then we define J(L0) := ε, and
if n ≥ 1 then we consider the sequence J(Ln−1) =: π1, π2, . . . and
define

J(Ln) =
#„c (π1),

#„c (π2),
#„c (π3),

#„c (π4), . . . (7.1a)

if condition (z) holds, and we define

J(Ln) = cn(π1), cn(π2), cn(π3), cn(π4), . . . (7.1b)

if condition (ẑ) holds. The inductive proof then continues almost
the same as in Section 5.3.3. The only additional argument is that
when condition (ẑ) holds, the element n cannot jump at all, and
hence the generation of sequence J(Ln) by Algorithm J follows the
inductive hypothesis for J(Ln−1).

7.1.2 Preliminaries

We begin to recall a few basic definitions for a poset (P,<). An
antichain in P is a set of pairwise incomparable elements. A sub-
set U ⊆ P is an upset if x ∈ U and x < y implies that y ∈ U . Sim-
ilarly, D ⊆ P is a downset if x ∈ D and y < x implies that y ∈ D.
Clearly, the complement of an upset is a downset and vice versa.
Moreover, the minimal elements of an upset and the maximal ele-
ments of a downset form an antichain. The upset of an element x ∈
P is the upset containing exactly all y with x < y. Similarly, the
downset of x is the downset containing exactly all y with y < x. An
interval X = [x, y] in P is the intersection of the upset of x with
the downset of y, and we write x = min(X) and y = max(X).

A cover relation is a pair x, y ∈ P with x < y for which there is
no z ∈ P with x < z < y. In this case we say that y covers x and

7.1. Generating lattice congruences of the weak order 167

we write x⋖ y. We also refer to x as a down-neighbor of y, and to y
as an up-neighbor of x. Clearly, the cover relations form an acyclic
directed graph with vertex set P , and this graph is referred to as the
cover graph of P , and its edges as cover edges. A drawing of the cover
graph with all cover edges x ⋖ y leading upwards is called a Hasse
diagram. A poset (P,<) is called a lattice, if for any two x, y ∈ P
there is a unique smallest element z, called the join x∨y of x and y,
such that z > x and z > y, and if there is a unique largest element z,
called the meet x ∧ y of x and y, satisfying z < x and z < y. A
lattice congruence is an equivalence relation ≡ on P such that x ≡ x′

and y ≡ y′ implies that x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′. Given
any lattice congruence ≡, we obtain the lattice quotient P/≡ (which
is itself a lattice) by taking the equivalence classes as elements, and
ordering them by X < Y if and only if there is an x ∈ X and
a y ∈ Y such that x < y in P . Observe that the cover graph of P/≡
is obtained from the cover graph of P by contracting all cover edges
x⋖ y with x ≡ y. For any x ∈ P , we let XP (x) = X(x) denote the
equivalence class in P/≡ containing x.

We will need the following two lemmata.

Lemma 7.1. For any lattice congruence of a finite lattice, every
equivalence class is an interval.

Lemma 7.2. Given a finite lattice (P,<) and any lattice congru-
ence ≡, the lattice quotient P/≡ is isomorphic to the induced sub-
poset of P whose elements are either the minima of the equivalence
classes or the maxima.

Lemma 7.1 follows immediately from the definition of lattice con-
gruence. Lemma 7.2 has appeared in many previous papers, see
e.g. [109, 63, 45, 139]. It can be proved by showing that given two
equivalence classes X and Y of ≡ and two elements x ∈ X, y ∈ Y
with x⋖y, then we have min(X) < min(Y) and max(X) < max(Y).

168 Lattice congruences of the weak order

Recall that the weak order on Sn is the order given by inclusion of
inversion sets. Note that the cover relations in this poset are exactly
adjacent transpositions, i.e., swaps of two entries at neighboring
positions in the permutation. Observe also that the inversion set of
the join π∨ρ of two permutations π and ρ is given by the transitive
closure of inv(π) ∪ inv(ρ), and the inversion set of the meet can be
computed similarly by considering the reverse permutations (which
have the complementary inversion set). In the weak order on Sn,
if two permutations π and ρ differ by transposing a and b, then we
refer to the corresponding cover edge as an (a, b)-edge, and if π ≡ ρ
then we refer to it as an (a, b)-bar. Bars are drawn with bold edges
in all our figures. The cover edges involving a fixed permutation
π = a1 · · · an can be described more precisely by considering all
ascents of π, i.e., all pairs (ai, ai+1) with ai < ai+1 and all descents
of π, i.e., all pairs (ai, ai+1) with ai > ai+1. Specifically, for fixed π,
all cover edges π ⋖ ρ are given by transposing the ascents of π, and
all cover edges π⋗ ρ are given by transposing the descents of π. We
let asc(π) and desc(π) denote the number of ascents and descents
of π, respectively.

7.1.3 Combinatorics of lattice congruences of the weak
order

In the following discussion of lattice congruences of the weak or-
der, we borrow some of the terminology and notation introduced by
Reading [140, 145]; see also his surveys [143, 146, 147].

It is clear from the definition of lattice congruence, that if certain
permutations are equivalent, this also forces other permutations to
be equivalent. These relations on the cover edges are expressed by
forcing constraints. The two forcing constraints that are relevant for
us are shown in Figure 7.2. We refer to them as type i and type ii
constraints, shown on the left and right of the figure, respectively.
A type i constraint involves four permutations π, ρ, π′, ρ′ satisfying

7.1. Generating lattice congruences of the weak order 169

π = ab cd

π′ = ab dc

ρ′ = ba dc

ρ = ba cd

π = abc

σ = acb

τ = bca

ρ = bac

π′ = cab

ρ′ = cba

a < b and c < d a < b < c

type i type ii

Figure 7.2: Forcing constraints in a lattice congruence of the weak
order. Bold edges indicate bars, i.e., pairs of permutations that differ
in an adjacent transposition and that belong to the same equivalence
class.

π ⋖ ρ ⋖ ρ′ and π ⋖ π′ ⋖ ρ′ that differ in adjacent transpositions of
two values a, b or two values c, d with a < b and c < d, as shown
in the figure. This constraint expresses that π ≡ ρ if and only
if π′ ≡ ρ′, i.e., either both (a, b)-edges (π, ρ) and (π′, ρ′) are bars or
both are non-bars. A type ii constraint involves six permutations
π, ρ, π′, ρ′, σ, τ satisfying π ⋖ ρ ⋖ τ ⋖ ρ′ and π ⋖ σ ⋖ π′ ⋖ ρ′ that
differ in three adjacent values a, b, c with a < b < c, as shown in the
figure. This constraint expresses that π ≡ ρ if and only if π′ ≡ ρ′,
and moreover these conditions imply σ ≡ π′ and τ ≡ ρ (but not the
converse), i.e., the first two (a, b)-edges are both either bars or non-
bars, and in the first case they also force the latter two (a, c)-edges
to be bars. Note that both constraints follow immediately from the
definition of lattice congruence, and that they are meant to capture
also the symmetric situation obtained by reversing all permutations
involved in Figure 7.2.

We now consider maximal sets of cover edges that are either all bars
or all non-bars in any lattice congruence. Given an (a, b)-bar, then
type i constraints allow us to reorder the values to the left or right
of a and b in the corresponding permutations arbitrarily. Moreover,

170 Lattice congruences of the weak order

given an (a, b)-bar, then type ii constraints allow us to move any
value that is larger or smaller than a and b to the left or right
of them. Consequently, a maximal set of mutually forcing bars is
characterized by the pair (a, b), and by the values that are strictly
between a and b and to the left of them. This motivates the following
definition: Given a triple (a, b, L) with 1 ≤ a < b ≤ n and L ⊆]a, b[,
the fence f(a, b, L) is the set of all (a, b)-edges, where the values in L
are to the left of a and b in the corresponding permutations, the
values in]a, b[\L are to the right of a and b, and the position of the
remaining values [n] \ [a, b] is arbitrary. Note that the edges of any
fence form a matching in the cover graph. For instance, for n = 4 the
fence f(2, 4, {3}) contains the (2, 4)-edges (3241, 3421), (1324, 1342),
and (3124, 3142) that are mutually forcing bars; see Figure 7.3. In
the figure, we visualize fences by an arc diagram, which consists of
a vertical sequence of n points labeled 1, . . . , n from bottom to top,
and for every fence f(a, b, L) there is an arc joining the ath and bth
point, with the points in L left of the arc, and the points in]a, b[\L
right of the arc. We let

Fn :=
{
f(a, b, L) | 1 ≤ a < b ≤ n and L ⊆]a, b[

}
denote the set of all fences.

The (non-mutual) forcing constraints between fences induced by
type ii constraints yield a partial order on Fn, called the forc-
ing order. Specifically, two fences f(a, b, L) and f(c, d,M) satisfy
f(a, b, L) ≺ f(c, d,M) in the forcing order, if a ≤ c < d ≤ b, (a, b) ̸=
(c, d), and M = L∩]c, d[. Note that two such fences form a cover re-
lation in the forcing order if and only if (c, d) = (a+1, b) or (c, d) =
(a, b− 1). Consequently, every non-maximal fence f(a, b, L) is cov-
ered by two other fences, and every non-minimal fence f(a, b, L)
covers two fences if either a = 0 or b = n, and four fences if 0 <
a < b < n. The interpretation is that if f(a, b, L) ≺ f(c, d,M), then
the bars of the fence f(c, d,M) force the bars of the fence f(a, b, L),
i.e., forcing goes downward in the forcing order. For example, we

7.1. Generating lattice congruences of the weak order 171

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 2341 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

312

321

231

132213

123

f(1, 2, ∅) f(2, 3, ∅)

f(1, 3, {2}) f(1, 3, ∅)

f(1, 2, ∅) f(2, 3, ∅) f(3, 4, ∅)

f(1, 3, {2}) f(1, 3, ∅) f(2, 4, ∅)

f(1, 4, {2, 3}) f(1, 4, {2}) f(1, 4, ∅)

f(2, 4, {3})

f(1, 4, {3})

Figure 7.3: Illustration of fences and the forcing order for n = 3
(left) and n = 4 (right). Cover edges of the same fence are drawn
in the same color. The highlighted region shows a downset in the
forcing order, corresponding to the lattice quotient in Figure 7.1.

have f(1, 4, {2, 3}) ≺ f(2, 4, {3}), i.e., the three bars (3241, 3421),
(1324, 1342), and (3124, 3142) from before force the two bars (2314, 2341)
and (3214, 3241).

Theorem 7.3 ([146, Section 10-5]). For every lattice congruence ≡
of the weak order on Sn, there is a subset of fences F≡ ⊆ Fn such
that in each equivalence class of ≡, all cover edges are a bar from a
fence in F≡, and all other cover edges are not in any fence from F≡.

172 Lattice congruences of the weak order

Moreover, F≡ is a downset of the forcing order ≺ and the map
≡ 7→ F≡ is a bijection between the lattice congruences of the weak
order on Sn and the downsets of the forcing order ≺.

From now on we use F≡ as the set of fences corresponding to a lattice
congruence ≡ given by Theorem 7.3. The downset F≡ describes
exactly all the cover edges that are contracted to obtain the lattice
quotient Sn/≡. Equivalently, the upset Fn \ F≡ describes all cover
edges that are not contracted in the quotient.

In the dual setting of hyperplane arrangements considered in [140,
134], the dual of a fence is called a shard. Moreover, these authors
represent a lattice congruence ≡ not by the set of fences F≡ that
contains all cover edges that are contracted to obtain the lattice
quotient Sn/≡, but by the set Fn \ F≡ of cover edges that are not
contracted in the quotient. The latter representation allows describ-
ing each equivalence class by a non-crossing arc diagram that con-
tains only arcs corresponding to fences from Fn \ F≡ [145]. On the
other hand, our representation makes the characterization of con-
gruences with regular and vertex-transitive quotient graphs in Sec-
tion 7.2 somewhat more natural.

We may order all downsets of the forcing order by inclusion, yielding
another lattice; see Figure 7.4. By Theorem 7.3, this corresponds
to ordering all lattice congruences of the weak order on Sn by re-
finement. The finest lattice congruence ≡ does not use any fences
F≡ = ∅, and corresponds to the set of all permutations Sn, and
the coarsest lattice congruence ≡ uses all fences F≡ = Fn, and cor-
responds to contracting all permutations into a single equivalence
class.

7.1.4 Restrictions, rails, ladders, and projections

Given a lattice congruence ≡ of the weak order on Sn, the restric-
tion of ≡, denoted ≡∗, is the relation on Sn−1 induced by all permu-

7.1. Generating lattice congruences of the weak order 173

Figure 7.4: Lattice of congruences of the weak order on Sn for n = 4,
represented by downsets of the forcing order. Each downset of fences
is represented by an arc diagram containing all the corresponding
arcs, where the arcs corresponding to maximal fences of the downset
are highlighted. The figure shows only downsets containing no non-
essential fences f(a, a+1, ∅), a ∈ [n−1], as otherwise the congruence
is equivalent to a lower-dimensional one (see Lemma 7.16 below).

174 Lattice congruences of the weak order

tations that have the largest value n at the last position, i.e., it is
the set of all pairs (π, ρ) with π, ρ ∈ Sn−1 for which cn(π) ≡ cn(ρ).

Lemma 7.4. For every lattice congruence ≡ of the weak order
on Sn, the restriction ≡∗ is a lattice congruence on Sn−1.

Proof. Clearly, for any two permutations π, ρ ∈ Sn−1 we have

cn(π) ∨ cn(ρ) = cn(π ∨ ρ) and cn(π) ∧ cn(ρ) = cn(π ∧ ρ). (7.2)

Now consider four permutations π, π′, ρ, ρ′ ∈ Sn−1 satisfying π ≡∗ π′

and ρ ≡∗ ρ′. From the definition of restriction, we have cn(π) ≡
cn(π

′) and cn(ρ) ≡ cn(ρ
′). Applying the definition of lattice con-

gruence to ≡, we obtain that cn(π) ∨ cn(ρ) ≡ cn(π
′) ∨ cn(ρ

′) and
cn(π) ∧ cn(ρ) ≡ cn(π

′) ∧ cn(ρ
′). Applying (7.2) to these relations

yields cn(π∨ρ) ≡ cn(π
′∨ρ′) and cn(π∧ρ) ≡ cn(π

′∧ρ′), from which
we obtain π ∨ ρ ≡∗ π′ ∨ ρ′ and π ∧ ρ ≡∗ π′ ∧ ρ′ with the definition
of restriction. This proves the lemma.

The following definitions are illustrated in Figure 7.5. Recall that
for any permutation π ∈ Sn−1 and for any 1 ≤ i ≤ n, the permu-
tation ci(n) is obtained from π by inserting the largest value n at
position i. Given any permutation π ∈ Sn−1, we refer to the cover
edges cn(π)⋖ cn−1(π)⋖ · · ·⋖ c1(π) in Sn as the rail r(π). Given two
permutations π, ρ ∈ Sn−1 with π ⋖ ρ, we refer to the cover edges of
the weak order induced by the permutations on the rails of π and ρ
as the ladder ℓ(π, ρ). Let k and k + 1 be the positions in which π
and ρ differ. Note that the ladder ℓ(π, ρ) has exactly all cover edges
of the rails, plus the cover edges ci(π) ⋖ ci(ρ) for all 1 ≤ i ≤ n ex-
cept for i = k + 1, which are referred to as the stairs of the ladder.
We see that the cover graph of the weak order on Sn has the follow-
ing recursive structure: It is the union of all ladders ℓ(π, ρ) obtained
from all cover edges π ⋖ ρ with π, ρ ∈ Sn−1.

7.1. Generating lattice congruences of the weak order 175

34125

31425

13425 31245

13245

34152

31452

13452 31254

13254

34512

31542

13542 31524

13524

35412

35142

15342 35124

15324

53412

53142

51342 53124

51324

34125 = c5(3412)

31425

13425 31245

13245

34152

31452

13452 31254

13254

34512

31542

13542 31524

13524

35412

35142

15342 35124

15324

53412 = c1(3412)

53142

51342 53124

51324

rail r(3412)

ladder `(1324, 3124)

s↑(31452)

p(I1) = p(I2) = p(I3)

I2 = [13254, 35412]

I3 = [13245, 34512]

I1 = [15324, 53412]

Figure 7.5: Illustration of rails, ladders, and projections. The fig-
ure shows only a subset of permutations from S5. The equivalence
classes on the right are shown as intervals.

Lemma 7.5. For every lattice congruence ≡ of the weak order
on Sn, the following three statements are equivalent:

(i) idn ≡ cn−1(idn−1), i.e., the identity permutation and the one
obtained from it by transposing the last two entries form a bar.

(ii) There is a permutation π ∈ Sn−1 such that for all 1 ≤ i < n we
have ci(π) ≡ ci+1(π), i.e., the rail r(π) consists entirely of bars.

(iii) For all permutations π ∈ Sn−1 and all 1 ≤ i < n we have
ci(π) ≡ ci+1(π), i.e., all rails r(π) consist entirely of bars.

Proof. Clearly, (iii) implies (ii) and (iii) implies (i), so it suffices
to prove that (ii) implies (iii) and that (i) implies (iii). We prove
this by showing that if there is an (n − 1, n)-bar in Sn, then (iii)
follows. If there is an (n − 1, n)-bar, this means that the fence
f(n − 1, n, ∅) is in F≡. However, as F≡ is a downset in the forcing
order (recall Theorem 7.3), it follows that all fences f(a, n, L) with

176 Lattice congruences of the weak order

1 ≤ a ≤ n − 1 and an arbitrary subset L ⊆]a, n[are also in F≡.
For any π = a1 · · · an−1 ∈ Sn−1, the ith edge along the rail r(π) =
cn(π) ⋖ cn−1(π) ⋖ · · · ⋖ c1(π) is an (an−i, n)-edge, so it is a bar
regardless of the values of a1 · · · an−i.

Combining Lemmata 7.1 and 7.5 yields the following lemma.

Lemma 7.6. Let ≡ be an equivalence relation of the weak order
on Sn with idn ̸≡ cn−1(idn−1). Then for every rail r(π), π ∈ Sn−1,
and every equivalence class X ∈ Sn/≡ we have that X ∩ r(π) is
an interval of r(π). Moreover, there are two distinct equivalence
classes X and Y containing the first and last permutation of the
rail, i.e., cn(π) ∈ X and c1(π) ∈ Y .

Recall that for π ∈ Sn, the permutation p(π) ∈ Sn−1 is obtained by
removing the largest value n from π. Given a set of permutations
X ⊆ Sn, we refer to p(X) := {p(π) | π ∈ X} as the projection of X.
This definition and the following crucial lemma are illustrated in
Figure 7.5.

Lemma 7.7. For every lattice congruence ≡ of the weak order on Sn

and every equivalence class X of ≡, we have that the projection p(X)
is an equivalence class of the restriction ≡∗. In particular, any two
equivalence classes X,Y of Sn/≡ either have the same projection
p(X) = p(Y) or disjoint projections p(X) ∩ p(Y) = ∅.

The proof of this lemma essentially proceeds by repeatedly applying
the forcing constraints shown in Figure 7.2 along ladders. However,
we do not apply these constraints directly, but using the fences cap-
tured by Theorem 7.3.

Proof. For any n ≥ 1 and any permutation π ∈ Sn, we let N(π) de-
note the set of all permutations that differ from π in an adjacent
transposition, i.e., all neighbors in the cover graph of Sn. Now con-
sider a fixed lattice congruence ≡ on Sn, fix an equivalence class X

7.1. Generating lattice congruences of the weak order 177

of ≡ and some permutation π ∈ X, and consider its projection
π′ := p(π) ∈ Sn−1. The lemma is a consequence of the following two
statements:

(i) For every ρ ∈ N(π) ⊆ Sn with π ≡ ρ we have that p(π) ≡∗ p(ρ).
(ii) For every ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′ there is a ρ ∈ N(π)

with π ≡ ρ and p(ρ) = ρ′, or there is a σ ∈ N(π) and a ρ ∈ N(σ)
with π ≡ σ ≡ ρ and p(π) = p(σ) = π′ and p(ρ) = ρ′.

In words, (i) asserts that the projection of any bar incident to π is
a bar incident to π′ in the restriction, and (ii) asserts that for any
bar incident to π′ in the restriction, there are one or two consecutive
bars starting at π whose projection is this bar.

We begin proving (i). Let ρ ∈ N(π) ⊆ Sn with π ≡ ρ. If π and ρ
are endpoints of an (a, n)-bar for some a < n (i.e., this bar is part of
the rail r(π′)), then we have p(π) = p(ρ), so trivially p(π) ≡∗ p(ρ).
Otherwise π and ρ are endpoints of some (a, b)-bar for a < b < n
(i.e., this bar is a stair of some ladder), so the fence f(a, b, L) is in F≡,
where L is the set of all values from]a, b[left of a and b in π and ρ.
By the definition of a fence, it follows that cn(p(π)) ≡ cn(p(ρ)),
i.e., the permutations obtained from π and ρ by moving the largest
value n to the rightmost position are equivalent. By the definition
of restriction, we obtain that p(π) ≡∗ p(ρ), as claimed.

We now prove (ii). Let ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′. Clearly,
π′ and ρ′ are endpoints of some (a, b)-bar in ≡∗ for a < b ≤ n − 1.
By the definition of restriction, it follows that cn(π

′) ≡ cn(ρ
′), so

f(a, b, L) is a fence in F≡, where L is the set of all values from]a, b[
left of a and b in π′ and ρ′. In the following we assume that π′ ⋖ ρ′,
i.e., π′ contains the ascent (a, b), and ρ′ contains the descent (b, a).
Let i be such that π = ci(π

′), and let k be the position of b in π′.
We now distinguish two cases. If i ̸= k, then π = ci(π

′) ⋖ ci(ρ
′) is

a cover edge in Sn (it is a stair of the ladder ℓ(π′, ρ′)), and since
it is contained in the fence f(a, b, L), we have π = ci(π

′) ≡ ci(ρ
′),

178 Lattice congruences of the weak order

i.e., this cover edge is indeed a bar. This means we can take ρ :=
ci(ρ

′) ∈ N(π), which satisfies p(ρ) = ρ′ by definition. On the other
hand, if i = k, then ci(π

′) and ci(ρ
′) are not endpoints of a cover

edge (this is the missing stair in the ladder ℓ(π′, ρ′)). However, we
may take σ := ci−1(π

′) ∈ N(π) and ρ := ci−1(ρ
′) ∈ N(σ) (note

that i = k ≥ 2), and then π ⋖ σ is an (a, n)-edge, and σ ⋖ ρ is an
(a, b)-edge. As f(a, b, L) is a fence in F≡, the forcing order implies
that f(a, n, L′) is also a fence, where L′ is defined as the set of all
values from]a, n[left of a and n in π and σ. Consequently, we have
π ≡ σ ≡ ρ, and moreover p(π) = p(σ) = π′ and p(ρ) = ρ′ by the
definition of σ and ρ, i.e., these two cover edges are indeed bars. In
the remaining subcase π′⋗ρ′ we can take ρ := ci(ρ

′) ∈ N(π) if i ̸= k,
and σ := ci+1(π

′) and ρ := ci+1(ρ
′) if i = k, and argue similarly to

before.

This proves the lemma.

We state the following two lemmata for further reference. The first
lemma is an immediate consequence of Lemma 7.7. For any lattice
congruence ≡ of the weak order on Sn and any fence f(a, b, L) in F≡
with b < n, we let f∗(a, b, L) denote the fence formed by the union
of all (a, b)-edges in the weak order on Sn−1 obtained by removing
the largest value n from all permutations of f(a, b, L).

Lemma 7.8. For every lattice congruence ≡ of the weak order
on Sn, its restriction ≡∗ satisfies F≡∗ = {f∗(a, b, L) | f(a, b, L) ∈
F≡ and b < n}.

Rephrased in terms of arc diagrams, Lemma 7.8 asserts that the arc
diagram of the restriction ≡∗ is obtained from the arc diagram of ≡
simply by removing the highest point labeled n, and by deleting all
arcs incident to it.

Lemma 7.9. For every lattice congruence ≡ of the weak order

7.1. Generating lattice congruences of the weak order 179

on Sn and any equivalence class X ∈ Sn/≡, consider its mini-
mum π := min(X) and maximum ρ := max(X). Then their projec-
tions p(π) and p(ρ) are the minimum and maximum of the equiva-
lence class p(X) of the restriction ≡∗.

Proof. Suppose for the sake of contradiction that the maximum
of p(X) is not p(ρ), but another permutation σ ∈ Sn−1. As σ ∈
p(X), we obtain from Lemma 7.7 that ci(σ) ∈ X for some 1 ≤ i ≤ n.
As σ is the unique maximum of p(X) (recall Lemma 7.1), there ex-
ist two entries a, b with a < b that are inverted in σ, i.e., b appears
before a in σ, but not in p(ρ). As inserting n into a permutation
does not change the relative order of a and b, the entries a, b are
also inverted in ci(σ), but not in ρ. However, by the definition of
the weak order on Sn, this means that ci(σ) ̸< ρ, contradicting the
fact that ρ is the maximum of X. A similar argument shows that
p(π) is the minimum of p(X).

7.1.5 Jumping through lattice congruences

For any lattice congruence ≡ of the weak order on Sn, a set of
representatives for the equivalence classes Sn/≡ is a subset Rn ⊆
Sn such that for every equivalence class X ∈ Sn/≡, exactly one
permutation is contained in Rn, i.e., |X ∩ Rn| = 1. Recall that
X(π), π ∈ Sn, denotes the equivalence class from Sn/≡ containing π.
A meaningful definition of ‘generating the lattice congruence’ is to
generate a set of representatives for its equivalence classes. We also
require that any two successive representatives form a cover relation
in the lattice quotient Sn/≡. This is what we achieve with the help
of Algorithm J.

We recursively define such a set of representatives Rn as follows;
see Figure 7.6: If n = 0 then R0 := {ε}, and if n ≥ 1 then we first
compute the representatives Rn−1 for the restriction≡∗ to Sn−1, and
we then distinguish two cases: If idn ̸≡ cn−1(idn−1), then we consider
every representative π ∈ Rn−1, the corresponding rail r(π) in Sn,

180 Lattice congruences of the weak order

and from every equivalence class X ∈ Sn/≡ with X ∩ r(π) ̸= ∅ we
pick exactly one permutation fromX∩r(π). In particular, we always
pick c1(π) and cn(π), which is possible by Lemma 7.6, yielding a
set Rπ. We then take the union of those permutations,

Rn :=
⋃

π∈Rn−1

Rπ. (7.3a)

On the other hand, if idn ≡ cn−1(idn−1) we define

Rn := {cn(π) | π ∈ Rn−1}. (7.3b)

1234

43124231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

123

321

231 312

213 132

12

21

1
1 1

2

1

5 2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

R0 = {ε}
R1 R2 R3 R4

4321

Figure 7.6: Illustration of the representatives and the jumping order
for the lattice congruence shown in Figure 7.1. The filled dots are
the permutations in the sets Rn, and the small numbers next them
indicate the ordering in the sequences J(Rn) defined in (7.1).

Lemma 7.10. For every lattice congruence ≡ of the weak order
on Sn, the set Rn ⊆ Sn defined in (7.3) is indeed a set of repre-
sentatives for Sn/≡. Moreover, Rn is a zigzag language satisfying
condition (z) if (7.3a) holds, and condition (ẑ) if (7.3b) holds.

7.1. Generating lattice congruences of the weak order 181

Proof. We argue by induction on n. The statement clearly holds
for n = 0. For the induction step, suppose that Rn−1 is a set of rep-
resentatives for the equivalence classes of Sn−1/≡∗, and that Rn−1 is
a zigzag language. If idn ̸≡ cn−1(idn−1), we obtain from Lemma 7.7
that for every equivalence classX of Sn/≡, the projection p(X) is an
equivalence class of the restriction ≡∗. Therefore, we know by induc-
tion that Rn−1 contains a unique representative π ∈ Sn−1 for p(X),
so by our choice of Rπ we indeed have |X ∩Rπ| = 1, and moreover
Rn as defined in (7.3a) satisfies |X ∩ Rn| = 1. Furthermore, as we
chose Rπ to contain c1(π) and cn(π) for all π ∈ Sn−1, we obtain
that Rn is a zigzag language satisfying condition (z) in the defini-
tion. On the other hand, if idn ≡ cn−1(idn−1), then we obtain from
Lemma 7.5 and Lemma 7.7 that every equivalence class X of Sn/≡
satisfies X = {c1(π), . . . , cn(π) | π ∈ p(X)}, showing that Rn as
defined in (7.3b) is indeed a set of representatives for Sn/≡. More-
over, in this case Rn is a zigzag language satisfying condition (ẑ) in
the definition. This completes the proof.

Lemma 7.11. Running Algorithm J with input Ln := Rn, where
Rn is the set of representatives of a lattice congruence ≡ defined
in (7.3), then for any two permutations π, ρ ∈ Rn that are vis-
ited consecutively, X(π) and X(ρ) form a cover relation in the quo-
tient Sn/≡.

Proof. Let Rn be a set of representatives of a lattice congruence ≡
defined in (7.3), and consider the set Ln := Rn, which is a zigzag
language by Lemma 7.10. If (7.3a) holds, then by Lemma 7.10 the
set Rn satisfies condition (z), so the permutations of Ln = Rn are
generated in the sequence J(Ln) defined in (7.1a). Observe that
all permutations in #„c (πk) or #„c (πk), πk ∈ Rn−1 ⊆ Sn−1, lie on the
rail r(πk). If π, ρ ∈ Rn are visited consecutively and lie on the same
rail, i.e., π = ci(πk) and ρ = cj(πk) with 1 ≤ i < j ≤ n, then there

182 Lattice congruences of the weak order

is an integer s with i ≤ s < j such that

π = ci(πk) ≡ . . . cs(πk) ̸≡ cs+1(πk) ≡ cs+2(πk) ≡ · · · ≡ cj(πk) = ρ,

so X(π) and X(ρ) form a cover relation in the quotient Sn/≡.
Moreover, when transitioning from the last permutation of #„c (πk)
to the first permutation of #„c (πk+1), or from the last permuta-
tion of #„c (πk+1) to the first permutation of #„c (πk+2), then we move
from cn(πk) to cn(πk+1), or from c1(πk+1) to c1(πk+2), respectively.
Consequently, as πk and πk+1, and also πk+1 and πk+2 form a cover
relation in the weak order on Sn−1 by induction, we obtain that any
two consecutive permutations π, ρ in J(Ln) form a cover relation in
the weak order on Sn.

On the other hand, if (7.3b) holds, then by Lemma 7.10 the set Rn

satisfies condition (ẑ), so the permutations of Ln = Rn are generated
in the sequence J(Ln) defined in (7.1b). In this case, the claim
follows immediately by induction.

Combining Lemmata 7.10 and 7.11 yields the following theorem.

Theorem 7.12. For every lattice congruence ≡ of the weak order
on Sn, let Rn ⊆ Sn be the set of representatives defined in (7.3).
Then Algorithm J generates a sequence J(Rn) = π1, π2, . . . of all
permutations from Rn such that X(π1), X(π2), . . . is a Hamilton path
in the cover graph of the lattice quotient Sn/≡.

For every lattice congruence ≡, Pilaud and Santos [134, Corol-
lary 10] defined a polytope, called the quotientope for ≡, whose
graph is exactly the cover graph of the lattice quotient Sn/≡. These
polytopes generalize many known polytopes, such as hypercubes, as-
sociahedra, permutahedra etc. The following result is an immediate
corollary of Theorem 7.12, and it is illustrated in Figure 7.7.

7.1. Generating lattice congruences of the weak order 183

Corollary 7.13. For every lattice congruence ≡ of the weak order
on Sn, Algorithm J generates a Hamilton path on the graph of the
corresponding quotientope.

Remark 7.14. Observe that in the definition (7.3a), whenever we
encounter an equivalence class X ∈ Sn/≡ with |X ∩ r(π)| ≥ 2 and
c1(p(π)), cn(p(π)) /∈ X, then we have freedom to pick an arbitrary
permutation from X∩r(π) for the set of representatives Rπ. By im-
posing a total order on Sn (e.g., lexicographic order), we can make
these choices unique, and this will make the resulting sets of repre-
sentatives consistent across the entire lattice of congruences ordered
by refinement. Specifically, given two equivalence relations ≡ and ≡′

where ≡ is a refinement of ≡′, computing the representatives Rn

and R′
n according to this rule will result in Rn ⊇ R′

n. However, the
resulting jump ordering J(Rn) may not be a subsequence of J(R′

n),
as argued in Remark 5.3. This consistent choice of representative
permutations is illustrated in Figure 7.8.

Remark 7.15. In Lemma 5.4, we showed that if each of the zigzag
languages Rk, 2 ≤ k ≤ n − 1, has even cardinality, then the order-
ing of permutations J(Rn) defined by Algorithm J is cyclic. Conse-
quently, if for a given lattice congruence, the number of equivalence
classes of each restriction to Sk, 2 ≤ k ≤ n− 1, is even, then Algo-
rithm J generates a Hamilton cycle on the graph of the correspond-
ing quotientope (the converse does not hold in general, but under
the additional assumption |R2| < |R3| < · · · < |Rn−1|). This hap-
pens for instance for the permutahedron and for the hypercube, but
not for the associahedron, even though the associahedron is known
to admit a Hamilton cycle [120, 96]. We are not aware if this con-
dition on the parity of the number of equivalence classes of a lattice
congruence can be characterized more easily (e.g., via the arc dia-
gram of the congruence). We will come back to the question about
Hamilton cycles in Section 7.4.

184 Lattice congruences of the weak order

**

* *

*

* * *
*

* * *
*

* * * *

*
**

**
*

**
** ** **

**

Figure 7.7: Lattice congruences of the weak order on S4, or-
dered by refinement and realized as polytopes, where only the full-
dimensional polytopes are shown. The polytopes are arranged in the
same way as in Figure 7.4. The figure shows the Hamilton path on
each quotientope computed by Algorithm J, with the start and end
vertex indicated by a triangle and diamond, respectively. Permuta-
hedron (top), associahedron (one of four isomorphic variants; mid-
dle right) and 3-cube (bottom) are highlighted. The graphs marked
with * are regular, and those marked with ** are vertex-transitive.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 185

1234

12431423

4123

4132

1432

1342
1324

3124
3142

3412

4312

4321

3421 3241

3214

2314

2341

2431
4231

4213
2413

2143

2134

1234

4123

4132

1342 1324

31243142

4312

4321

3421 3214

2314

4231

4213

2134

1234

12431423

4123
4132

1432

1324

3124

4312

4321

3214

2134

21434213

1234

4123

4312

3124

3214

4321

4213

2134

Figure 7.8: Four quotientopes from Figure 7.7 ordered as a diamond.
These are the permutahedron (top), the associahedron (right), the
3-cube (bottom), and some other polytope (left). The figure illus-
trates the consistent choice of representative permutations for the
congruence classes, i.e., permutations for lower quotientopes are sub-
sets of permutations for the higher ones.

7.2 Regular, vertex-transitive, and bipartite
lattice quotients

In this section, we characterize regular and vertex-transitive quo-
tientopes combinatorially via their arc diagrams, which in particu-
lar allows us to count them. We may either consider these objects
in terms of the equivalence classes of the lattice congruence, or in
terms of the cover graph of the resulting lattice quotient. As several
congruences may give the same cover graph, the latter distinction is

186 Lattice congruences of the weak order

coarser, yielding fewer distinct objects. Overall, we obtain six dif-
ferent classes of objects, and Table 7.9 summarizes our results for
each of them. The table provides the exact counts for small val-
ues of n, various exact and asymptotic counting formulas, as well
as references to the theorems where they are established. In the ta-
ble, we encounter various familiar counting sequences, namely the
squared Catalan numbers, and weighted integer compositions and
partitions. We also establish the precise minimum and maximum
degrees for those graph classes, and in the latter result the famous
Erdős-Szekeres theorem makes its appearance.

7.2.1 Preliminaries

We let Cn denote the set of all lattice congruences of the weak order
on Sn. Throughout this section, we will denote lattice congruences
by capital Latin letters such as R ∈ Sn, and whenever we consider
two permutations π, ρ in the same equivalence class of Sn/R, we
write π ≡R ρ or simply π ≡ ρ, if R is clear from the context. Recall
from Theorem 7.3 that every lattice congruence R ∈ Cn corresponds
to a downset FR ⊆ Fn of fences in the forcing order, and that such
a downset can be represented by its arc diagram, which contains
exactly one arc for each fence from FR. The reduced arc diagram
contains only the arcs that correspond to maximal elements in the
downset FR, i.e., to fences that are pairwise incomparable in the
forcing order. Every fence not of the form f(a, a+1, ∅), a ∈ [n− 1],
is referred to as essential, and we let F ∗

n ⊆ Fn denote the set of all
essential fences. We refer to any lattice congruence R with FR ⊆
F ∗
n as essential, and we let C∗n ⊆ Cn denote the set of all essential

lattice congruences. Note that by this definition, the arc diagrams
of essential lattice congruences do not contain any arcs that connect
consecutive points a and a+ 1, a ∈ [n− 1].

We refer to the underlying undirected graph of the cover graph of
any lattice quotient Sn/R, R ∈ Cn, as a quotient graph QR, and we

7.2. Regular, vertex-transitive, and bipartite lattice quotients 187

Table 7.9: Number of different classes of quotient graphs that arise
from essential lattice congruences and their minimum and maxi-
mum degrees. In this table, Cn denotes the nth Catalan number,
cn,k denotes the number of integer compositions of n with exactly k
many 2s, and tn denotes the number of 2s in all integer partitions
of n. The last column contains references to the corresponding se-
quence numbers in the OEIS [129].

Description n = 2 3 4 5 6 7 General formulas/
(Ref. and OEIS) bounds
quotient graphs |Qn| 1 4 47 3.322 11.396.000 ? [22

n−2
, 22

n−2n]
(Thm. 7.17, A330039)

regular |Rn| 1 4 25 196 1.764 17.424 = C2
n−1

(Cor. 7.26, A001246) = 16n(1+o(1))

vertex-transitive |Vn| 1 4 8 22 52 132 =
∑
k≥0

3kcn−1,k

(Cor. 7.33, A052528) = 2.48...n(1+o(1))

bipartite |Bn| 1 2 5 14 42 132 = Cn−1

(Cor. 7.43, A000108) = 4n(1+o(1))

non-isomorphic |Q′
n| 1 3 19 748 2.027.309 ? ≥ 2n − 2n+ 1

(Thm. 7.18, A330040)

non-iso. regular |R′
n| 1 3 10 51 335 2.909 ?

(A330042)

non-iso. vertex-tr. |V ′n| 1 3 4 8 11 19 = tn+1

(Cor. 7.35, A024786) = eπ
√

2n/3(1+o(1))

non-iso. bipartite |B′n| 1 2 4 9 21 55 ?

minimum degree 1 2 3 4 5 6 = n− 1
(Thm. 7.24)

maximum degree 1 2 4 5 7 8 = 2n− ⌈2
√
n⌉

(Thm. 7.27, A123663)

188 Lattice congruences of the weak order

define Qn := {QR | R ∈ C∗n}.

All 47 essential lattice congruences C∗n for n = 4 are shown in Fig-
ure 7.4, ordered by refinement of the congruences and represented
by their arc diagrams, where the arcs of the reduced diagrams are
highlighted. Recall from the previous section that for every essential
lattice congruence R ∈ C∗n, Pilaud and Santos [134, Corollary 10] de-
fined an (n− 1)-dimensional polytope, called the quotientope of R,
whose graph is exactly the quotient graph QR. These polytopes are
shown in Figure 7.7, where the regular and vertex-transitive graphs
are marked with * and **, respectively.

The following lemma justifies that in our definition of C∗n, we exclude
fences that are not essential. The reason is that including them
results in a dimension collapse, i.e., the resulting lattice quotient is
isomorphic to some quotient of smaller dimension; see Figure 7.10.

Given two posets (P,<P) and (Q,<Q), the Cartesian product is the
poset (P×Q,<) with (p, q) < (p′, q′) if and only if p <P p′ and q <Q

q′. For any set of fences F ⊆ Fn and any interval [s, t], 1 ≤ s ≤ t ≤ n,
we define F |[s,t] := {f(a, b, L) ∈ F | s ≤ a < b ≤ t}, i.e., we select
all fences from F that lie entirely in this interval. Moreover, for any
integer s we define F + s := {f(a+ s, b+ s, L+ s) | f(a, b, L) ∈ F}
with L+ s := {x+ s | x ∈ L}, i.e., we shift all fences by s.

Lemma 7.16. Let R ∈ Cn+1 be a lattice congruence with a non-
essential fence f(s, s + 1, ∅) ∈ FR, and define lattice congruences
A ∈ Cs and B ∈ Cn+1−s by FA = FR|[1,s] and FB = FR|[s+1,n+1] − s.
Moreover, let R′ ∈ Cn be the lattice congruence given by

FR′ = FA ∪
(
FB + (s− 1)

)
∪D, (7.4)

where D is the downset of the fences f(s−1, s+1, ∅) and f(s−1, s+
1, {s}) in the forcing order for Sn. Then Sn+1/R and Sn/R

′ are
both isomorphic to the Cartesian product of Ss/A and Sn+1−s/B. In
particular, the lattice quotients Sn+1/R and Sn/R

′ are isomorphic.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 189

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

123

321

231 312

213 132
'

R′ ∈ C∗3

FR

FR′

R ∈ C4

FA

FB + 2

FA

FB + 1

s

s+ 1

s

Figure 7.10: Illustration of Lemma 7.16. The left hand side
shows the lattice congruence from C4 given by the downset of the
non-essential fence f(2, 3, ∅). The right hand side shows the lat-
tice congruence from C∗3 given by the downset of the essential
fences {f(1, 3, ∅), f(1, 3, {2})}. Both lattice quotients are isomor-
phic to the Cartesian product of S2 and S2, whose cover graph is a
4-cycle.

Proof. Consider two equivalence classes X and Y of R, and two
permutations π ∈ X and ρ ∈ Y that differ in an adjacent transposi-
tion of two entries a and b. As FR contains the fence f(s, s+ 1, ∅),
the definition of forcing order implies that FR also contains all
fences f(c, d, L) for all c ∈ [1, s], d ∈ [s + 1, n + 1] and L ⊆]c, d[.
This means there are permutations π0 ∈ X and ρ0 ∈ Y , such
that in π0 and ρ0 all entries from [1, s] appear before all entries
from [s + 1, n + 1], and π0 and ρ0 differ in an adjacent transposi-
tion of a and b, and either a, b ∈ [1, s] or a, b ∈ [s + 1, n + 1]. We
can reach π0 and ρ0 from π and ρ, respectively, by moving down
within the equivalence classes X or Y towards permutations with
fewer inversions, repeatedly swapping any entry from [1, s] that is
to the right of any entry from [s + 1, n + 1]. It follows that every

190 Lattice congruences of the weak order

cover relation of Sn+1/R has a corresponding cover relation in the
Cartesian product of Ss/A and Sn+1−s/B.

Consider two equivalence classes X and Y of R′, and two permuta-
tions π ∈ X and ρ ∈ Y that differ in an adjacent transposition of two
entries a and b. By the definition (7.4), the set FR′ contain the fences
f(s−1, s+1, ∅), f(s−1, s+1, {s}), and all fences in their downset of
the forcing order for Sn, so the definition of forcing order yields that
FR′ also contains all fences f(c, d, L) for all c ∈ [1, s−1], d ∈ [s+1, n]
and L ⊆]c, d[. It follows that either a, b ∈ [1, s] or a, b ∈ [s, n]. In
the first case, there are permutations π0 ∈ X and ρ0 ∈ Y , such that
in π0 and ρ0 all entries from [1, s] appear at consecutive positions,
surrounded by all entries from [s+ 1, n], and π0 and ρ0 differ in an
adjacent transposition of a and b. In the second case, there are per-
mutations π0 ∈ X and ρ0 ∈ Y , such that in π0 and ρ0 all entries
from [s, n] appear at consecutive positions, surrounded by all entries
from [1, s−1], and π0 and ρ0 differ in an adjacent transposition of a
and b. Morever, as π, π0, π

0 ∈ X and ρ, ρ0, ρ
0 ∈ Y , we obtain that

every cover relation of Sn/R
′ has a corresponding cover relation in

the Cartesian product of Ss/A and Sn+1−s/B.

Given any lattice congruence R ∈ Cn for which FR contains non-
essential fences, we may repeatedly apply Lemma 7.16 to eliminate
them, until we arrive at a lattice congruence R′ ∈ C∗m, m < n, with
an isomorphic quotient graph QR′ ≃ QR.

7.2.2 Exact counts for small dimensions

With computer help, we determined the number of essential lattice
congruences, or equivalently, the number of quotient graphs, for
2 ≤ n ≤ 6. The results are shown in Table 7.9. We also computed
the sets Rn,Vn ⊆ Qn, and Bn ⊆ Qn of all regular, vertex-transitive,
and bipartite quotient graphs, respectively, for 2 ≤ n ≤ 7, with the
help of Theorems 7.25 and 7.42.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 191

Many of the quotient graphs from Qn are isomorphic; cf. [134, Fig-
ure 8]. This happens for instance if the corresponding arc diagrams
differ only by rotation of reflection, but not only in this case; see Fig-
ure 7.11. To this end, we let Q′

n denote all non-isomorphic quotient
graphs from Qn, and we let R′

n, V ′n, and B′n be the non-isomorphic
regular, vertex-transitive, and bipartite ones. The corresponding
counts for small n are also shown in Table 7.9. We clearly have
Vn ⊆ Rn ⊆ Qn and V ′n ⊆ R′

n ⊆ Q′
n.

7.2.3 Counting quotient graphs

The following theorem shows that there are double-exponentially
many quotient graphs.

Theorem 7.17. For all n ≥ 3, we have 22
n−2 ≤ |Qn| ≤ 22

n−2n.

Proof. The number of fences f(a, b, L) ∈ Fn with b − a = k ∈
{1, . . . , n− 1} is exactly fk := (n− k)2k−1, as for fixed k, there are
(n − k) different choices for a and b, and for fixed a and b, there
are 2k−1 many choices for L ⊆]a, b[. As all fences with k = n − 1
are essential for n ≥ 3 and also incomparable in the forcing order,
we obtain at least 2fn−1 distinct downsets. The total number of
essential fences is

∑n−1
k=2 fk = 2n − 2n =: s, so there are at most 2s

distinct downsets.

To estimate the cardinality of Q′
n, we have to factor out symmetries

of the arc diagrams, i.e., horizontal and vertical reflections, which
account for a factor of at most 4. However, isomorphic graphs also
arise from arc diagrams that do not only differ by those symmetries;
see Figure 7.11. In particular, we have |Qn|/|Q′

n| > 4 for n = 5 and
n = 6; see Table 7.9.

This difference in the growth rates can partially be explained by arc
diagrams that induce a graph product structure. I.e., if we have an
arc diagram with two arcs corresponding to the fences f(s − 1, s +

192 Lattice congruences of the weak order

Figure 7.11: Three pairs of lattice congruences from C∗4 (left), C∗5
(middle), and C∗8 (right), with distinct arc diagrams but isomorphic
quotient graphs.

1, ∅) and f(s − 1, s + 1, {s}), then by Lemma 7.16 the two parts
of the arc diagram separated by these two fences can be mirrored
independently, or modified as described by Figure 7.11, yielding
the same resulting quotient graph. Such operations clearly yield
many more than 4 symmetries. We cannot fully explain this, but
we provide the following lower bound.

Theorem 7.18. For all n ≥ 3, we have |Q′
n| ≥ 2n − 2n+ 1.

Proof. We argued before that the total number of essential fences
in the forcing order is 2n − 2n =: s. This implies that the lattice of
congruences ordered by refinement (see Figure 7.4) contains a chain
R0, . . . , Rs ∈ C∗n of size s+ 1, where R0 is the maximal element and
Rs is the minimal element, and along this chain we have |FRi | = i
for i = 0, . . . , s. Consequently, the number of vertices of the quo-
tient graphs QRi , i = 0, . . . , s, forms a strictly decreasing sequence,
starting with n! and ending with 2n−1. This is because whenever an
additional fence is added, the equivalence classes grow, and so the
quotient graph shrinks. In particular, all those quotient graphs are
non-isomorphic, proving that |Q′

n| ≥ s+ 1.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 193

7.2.4 Regular quotient graphs

It turns out that the regular quotient graphsRn can be characterized
and counted precisely via their arc diagrams. Specifically, we say
that an arc is simple if it does not connect two consecutive points
and if it does not cross the vertical line. Also, we say that a reduced
arc diagram is simple if it contains only simple arcs. Note that the
fence f(a, b, L) corresponding to a simple arc either satisfies L = ∅ or
L =]a, b[. For example, in Figure 7.11, the leftmost two reduced arc
diagrams are simple, whereas the others are not. In Theorem 7.25
below, we establish that a quotient graph is regular if and only
if the corresponding reduced arc diagram is simple. This yields a
closed counting formula involving the squared Catalan numbers; see
Corollary 7.26.

The first lemma allows us to compute degrees of the quotient graph
by considering only the minima and maxima of equivalence classes.

Lemma 7.19. Let X be an equivalence class of a lattice congru-
ence R ∈ Cn. Consider all descents in π := min(X) and all per-
mutations π′

1, . . . , π
′
d obtained from π by transposing one of them.

Also, consider all ascents in ρ := max(X) and all permutations
ρ′1, . . . , ρ

′
a obtained from ρ by transposing one of them. Then the

down-neighbors of X in the quotient graph QR are X(π′
1), . . . , X(π′

d),
and they are all distinct, and the up-neighbors of X in the quotient
graph are X(ρ′1), . . . , X(ρ′a), and they are all distinct. In particu-
lar, the degree of X in the quotient graph is the number of descents
of min(X) plus the number of ascents of max(X).

Proof. From Lemma 7.1 it follows that for any lattice congruence,
the down-neighbors of the minimum of an equivalence class X all
belong to distinct equivalence classes, and the up-neighbors of the
maximum of X all belong to distinct equivalence classes. Recall
that in the weak order on Sn, the down-neighbors of a vertex are
reached by adjacent transpositions of descents, and the up-neighbors

194 Lattice congruences of the weak order

are reached by adjacent transpositions of ascents. From this the
statement follows with the help of Lemma 7.2.

The next lemma helps us to compute the maximum of an equivalence
class quickly. It is an immediate consequence of the definition of
forcing order.

Lemma 7.20. Consider a lattice congruence R ∈ Cn and a permu-
tation π with an ascent (a, b). Let A be a substring ending with a of
entries of π of size at most a, and B a substring starting with b of
entries that are of size at least b, i.e., we have π = LABR for some
substrings L,R. If the permutation ρ obtained by transposing the
pair (a, b) is in the same equivalence class as π, i.e., π ≡ ρ, then they
are also in the same equivalence class as the permutation obtained
by swapping the entire substrings A and B, i.e., π ≡ ρ ≡ LBAR.

There is a corresponding version of Lemma 7.20 for swapping sub-
strings around a descent (b, a), to quickly compute the minimum of
an equivalence class, but we omit stating this symmetric variant ex-
plicitly here.

We first rule out non-simple arc diagrams as candidates for giving
a regular quotient graph.

Lemma 7.21. If an essential lattice congruence R ∈ C∗n has a non-
simple arc in its reduced arc diagram, then the quotient graph QR is
not regular.

Proof. As R is essential, FR does not contain any fence of the
form f(s, s + 1, ∅), s ∈ [n − 1]. Consequently, the equivalence class
containing the identity permutation idn does not contain any other
permutations and so has degree n − 1 in QR by Lemma 7.19. In
the following we identify an equivalence class X whose degree in QR

is n, which proves that QR is not a regular graph. This part of the
proof is illustrated in Figure 7.12.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 195

n

b

1

a

A

C

D

B

π=min(X)=AC a bDB

ρ = AC baDB

ρ′ = C bAaDB

ρ′′′ = C bB AaD

ρ′′ = AC bB aD

g := f(a− 1, c, ∅)

f(a, b, L)

h := f(d′, b+ 1,]d′, b+ 1[)

c=min(L)

d′ = max(L)

c′=max(L)

d = min(L)

a− 1

b+ 1

...

...

Figure 7.12: Illustration of the proof of Lemma 7.21. De-
scents in the permutations are marked by square brackets.

Consider a non-simple arc in the reduced arc diagram of R, and
consider the corresponding fence f(a, b, L) ∈ FR, a < b. We define
L :=]a, b[\L. The assumption that the arc is not simple means that
L and L are both non-empty. We define c := min(L), c′ := max(L),
d := min(L), and d′ := max(L), and we write C and D for the
increasing sequences of numbers in the sets L and L, respectively.
We also define the sequences A := (1, . . . , a − 1) and B := (b +
1, . . . , n). Now consider the equivalence class X ∈ Sn/R which
contains the permutations π := AC a bDB and ρ := AC b aDB.

Clearly, π and ρ differ in an adjacent transposition of the entries a
and b, and we have π ≡ ρ due to the fence f(a, b, L) ∈ FR. We

196 Lattice congruences of the weak order

first prove that π = min(X). By Lemma 7.19, we need to check
the descents of π, and there are exactly two of them, namely (c′, a)
and (b, d). None of them can be transposed to reach a permuta-
tion in X, as neither the fence f(a, c′,]a, c′[∩ L), nor the fence
f(d, b,]d, b[∩ L) is in FR, as both are above f(a, b, L) in the forc-
ing order, and if one of them was in FR, then the arc corresponding
to f(a, b, L) would not be in the reduced arc diagram. This proves
that π is the minimum of X.

Now consider the permutation ρ. It has only one descent (b, a),
and so n − 1 ascents. The ascents (c′, b) and (a, d) in ρ cannot
be transposed to reach a permutation in X, as neither the fence
f(c′, b,]c′, b[∩ L) nor the fence f(a, d,]a, d[∩ L) is in FR, as both
are above f(a, b, L) in the forcing order. Similarly, the ascents that
lie entirely within C or D cannot be transposed, as for any such as-
cent (r, s), the corresponding fence f(r, s,]r, s[∩L) is above f(a, b, L)
in the forcing order. Moreover, none of the ascents (s, s+1) that lie
entirely within A or B can be transposed, as FR is essential by as-
sumption and so contains none of the fences f(s, s+1, ∅), s ∈ [n−1].
It remains to consider the ascents (a − 1, c) and (d′, b + 1). They
can possibly be transposed to reach a permutation in X, but only if
the fence g := f(a − 1, c, ∅) or the fence h := f(d′, b + 1,]d′, b+ 1[)
is in FR, which may or may not be the case. If g /∈ FR and h /∈ FR,
then we have ρ = max(X), and so desc(max(X)) = 1. If g ∈ FR and
h /∈ FR, then Lemma 7.20 shows that ρ′ := C bAaDB = max(X),
and again we get desc(max(X)) = 1, as the only descent in ρ′

is (b, 1). If g /∈ FR and h ∈ FR, then Lemma 7.20 shows that
ρ′′ := AC bB aD = max(X), and again we get desc(max(X)) = 1,
as the only descent in ρ′′ is (n, a). If g ∈ FR and h ∈ FR, then
Lemma 7.20 shows that ρ′′′ := C bB AaD = max(X), and again
we get desc(max(X)) = 1, as the only descent in ρ′′′ is (n, 1).

We have shown that desc(min(X)) = 2 and desc(max(X)) = 1, and
so asc(max(X)) = n − 2. Therefore, by Lemma 7.19, the degree

7.2. Regular, vertex-transitive, and bipartite lattice quotients 197

of X in QR is desc(min(X)) + asc(max(X)) = 2 + (n − 2) = n,
which shows that QR is not regular. This completes the proof.

We now aim to prove that a simple reduced arc diagram implies
an (n − 1)-regular quotient graph. For this we need two auxiliary
lemmata.

Lemma 7.22. Consider a lattice congruence R ∈ Cn and an equiva-
lence class X such that min(X) has n at the rightmost position, and
max(X) = · · · c n d · · · , where c, d ∈ [n− 1]. Then (c, d) is a descent
in p(max(X)) ∈ Sn−1. Similarly, suppose that max(X) has n at the
leftmost position, and min(X) = · · · an b · · · , where a, b ∈ [n − 1].
Then (a, b) is an ascent in p(min(X)) ∈ Sn−1.

Proof. Consider an equivalence class X such that π := min(X) has
n at the rightmost position, and ρ := max(X) = · · · c n d · · · , where
c, d ∈ [n − 1]. Let π′ := p(π) ∈ Sn−1 and ρ′ := p(ρ) ∈ Sn−1. By
Lemma 7.9, π′ and ρ′ are the minimum and maximum of the equiv-
alence class p(X) of the restriction R∗, and as π = cn(π

′) = π′ n,
we also have that σ := cn(ρ

′) = ρ′ n ∈ X. Note that ρ is obtained
from σ by moving n to the left until the entry c is directly left of it.
In particular, the down-neighbor τ of ρ obtained by transposing n
and d satisfies τ ≡ ρ (recall Lemma 7.1). By Lemma 7.20, it follows
that (c, d) must be a descent in τ , as otherwise, the up-neighbor τ ′

of ρ obtained by transposing c and n would also satisfy τ ′ ≡ ρ, con-
tradicting the fact that ρ is the maximum of X. Consequently (c, d)
is also a descent in σ = ρ′ n and in ρ′ = p(max(X)). The proof of
the second part of the lemma is analogous.

For any permutation π ∈ Sn and any integers a, b ∈ [n] with a < b,
we let L(π, a, b) denote the set of all entries of π that are to the
left of a, and whose values are in the interval]a, b[. For example,
for π = 817632459 we have L(π, 1, 3) = ∅, L(π, 2, 5) = {3}, and
L(π, 3, 7) = {6}.

198 Lattice congruences of the weak order

nc

min(X) = π = a n b

max(X) = ρ =

π′ =
ρ′ =

c

an bc

d ncmax(X) = ρ = d b

nc d b

min(X) = π = a n bx

x

x

x

Figure 7.13: Illustration of Lemma 7.23.

Lemma 7.23. Consider a lattice congruence R ∈ Cn and an equiv-
alence class X such that π := min(X) = · · · an b · · · and ρ :=
max(X) = · · · c n d · · · , where a, b, c, d ∈ [n − 1]. Let π′ be the last
permutation in X obtained from π by moving n to the left, and let
ρ′ be the last permutation in X obtained from ρ by moving n to the
right. Then we have the following:

(i) the entry left of n in π′ is c;
(ii) the entry right of n in ρ′ is b;
(iii) if c ̸= a, then c is to the left of a in π, and we have c, b > x for

all x between c and n in π, in particular a < b;
(iv) if b ̸= d, then b is to the right of d in ρ, and we have c, b > x

for all x between n and b in ρ, in particular c > d;
(v) for any entry x between c and n in π, the fence f(x, n, L(π, x, n))

is in FR;
(vi) for any entry x between n and b in ρ, the fence f(x, n, L(ρ, x, n))

is in FR;
(vii) the fences f(b, n, L(π, b, n)) and f(x, c, L(π, x, c)), where x is

the entry right of c in π, are not in FR;
(viii) the fences f(c, n, L(ρ, c, n)) and f(x, b, L(ρ, x, b)), where x is

the entry left of b in ρ, are not in FR.

Proof. We only need to prove (i), (iii), (v) and (vii), as the other
four statements are symmetric.

We first prove (i). Suppose for the sake of contradiction that this
is not the case and that there is another entry e ̸= c left of n in π′.
Note that e must be to the right of c in π′ and π, as otherwise (n, c)

7.2. Regular, vertex-transitive, and bipartite lattice quotients 199

would be an inversion in π′, but not in ρ, contradicting the fact that
ρ is the maximum of X. We let π′′ /∈ X be the permutation obtained
from π′ by transposing e and n, i.e., inv(π′′) = inv(π′) ∪ {(n, e)}.
It follows that (n, e) /∈ inv(ρ), as otherwise π′′ would be contained
in the interval [π, ρ] = X. This means that e is left of n and left
of c in ρ. This implies that c < e, as otherwise (c, e) would be an
inversion in π′, but not in ρ.

We now move up in the weak order from π′ to ρ, creating a se-
quence of permutations that all contain the ascent (e, n), as follows:
Starting from π′, we repeatedly choose an arbitrary ascent that we
can transpose to stay inside X. First note that (n, x), x ∈ [n − 1],
is never an ascent, so n never moves to the right. Also (e, n) can
never be transposed, as (n, e) /∈ inv(ρ). Whenever we encounter a
transposition that involves the entry e, then it must be a transposi-
tion of the form (e′, e)→ (e, e′) with e′ < e (otherwise the inversion
set would shrink), and we then immediately also perform the trans-
position (e′, n) → (n, e′), keeping e and n next to each other, and
reaching a permutation in X by Lemma 7.20. As (c, e) /∈ inv(π′)
and (c, e) ∈ inv(ρ), we must encounter a step in which c and e are
transposed. However, by the same reasoning, we can then also trans-
pose c and n to reach another permutation in X, a contradiction to
(n, c) /∈ inv(ρ). This completes the proof of (i).

We now prove (iii). The fact that c is left of a in π is an immediate
consequence of (i). Note that π′ is obtained from π by moving n to
the left until n is directly right of c, and n cannot move further as
(n, c) /∈ inv(ρ). Conversely, π is obtained from π′ by moving n to the
right until n is directly left of b, and n cannot move further as π is
the minimum of X. In particular, the entry n can be moved across
the largest entry e between c and n in π. Lemma 7.20 therefore
shows that b, c > e, as otherwise n could move to the left of c in π′

or to the right of b in π.

We now prove (v). This follows immediately by considering all per-

200 Lattice congruences of the weak order

mutations encountered inX between π to π′, by moving n to the left.

It remains to prove (vii). It is clear that f(b, n, L(π, b, n)) is not
in FR, as we could otherwise transpose b and n in π, reaching a
down-neighbor of π in X. It is also clear that f(x, c, L(π, x, c)) is not
in FR, as we know that c > x from (iii), and so we could transpose c
and x, reaching another down-neighbor of π in X.

With these lemmata in hand, we are now ready to establish a tight
lower bound for the minimum degree of quotient graphs Qn.

Theorem 7.24. For every essential lattice congruence R ∈ C∗n, the
minimum degree of the quotient graph QR is n− 1.

Pilaud and Santos proved in [134] that for every essential lattice
congruence, QR is the graph of an (n−1)-dimensional polytope. This
in particular implies Theorem 7.24. Nevertheless, in this chapter
we provide a purely combinatorial proof of the theorem, with the
goal of later improving the estimates in the proof when proving
Theorem 7.25.

Proof. We prove the theorem by induction on n. For n = 1 there is
only the trivial lattice congruence for the weak order on Sn = {1},
and the corresponding quotient graph is an isolated vertex which
indeed has minimum degree n − 1 = 0. This settles the base case
for the induction.

Let n ≥ 2 and consider an essential lattice congruence R ∈ C∗n.
The equivalence class X that contains the identity permutation idn,
contains no other permutations by the assumption that R is essen-
tial, and so the degree of X = {idn} in QR is exactly n − 1 by
Lemma 7.19. By Lemma 7.19, it therefore suffices to show that for
every equivalence class X of R and its minimum π := min(X) and
maximum ρ := max(X), we have that desc(π) + asc(ρ) ≥ n− 1.

For this consider the position of the entry n in both π and ρ. By the

7.2. Regular, vertex-transitive, and bipartite lattice quotients 201

assumption that R is essential, we know that f(n − 1, n, ∅) /∈ FR,
which implies idn ̸≡ cn−1(idn−1). Applying Lemma 7.6 shows that n
cannot be simultaneously at the rightmost position of π and at the
leftmost position of ρ. Consequently, we are in one of five possible
cases:

(a) both π and ρ have n at the rightmost position.
(b) both π and ρ have n at the leftmost position.
(c) π has n at the rightmost position, and ρ = · · · c n d · · · , where

c, d ∈ [n− 1].
(d) ρ has n at the leftmost position, and π = · · · an b · · · , where

a, b ∈ [n− 1].
(e) π = · · · an b · · · and ρ = · · · c n d · · · , where a, b, c, d ∈ [n− 1].

Cases (c) and (d) are exactly the ones discussed in Lemma 7.22,
and case (e) is exactly the one discussed in Lemma 7.23. We only
prove (a), (c) and (e), as the proof of (b) is analogous to (a), and
the proof of (d) is analogous to (c).

By Lemma 7.9, Lemma 7.19, and by induction we know that

desc(p(π)) + asc(p(ρ)) ≥ n− 2. (7.5)

First consider case (a) above. As n is at the rightmost position in π
and ρ, we have

desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1, (7.6)

where the +1 comes from the ascent involving n in ρ. Combin-
ing (7.5) and (7.6) yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (7.7)

with equality if and only if (7.5) holds with equality.

202 Lattice congruences of the weak order

Now consider case (c) above. As n is at the rightmost position in π
and n is between c and d in ρ, we have

desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1− asc(c d), (7.8)

where the +1 comes from the ascent (c, n) in ρ. By Lemma 7.22,
(c, d) is a descent, so asc(c d) = 0, and hence combining (7.5) and (7.8)
yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (7.9)

with equality if and only if (7.5) holds with equality.

Now consider case (e) above. In this case we have

desc(π)+asc(ρ) = desc(p(π))+1−desc(a b)+asc(p(ρ))+1−asc(c d),
(7.10)

where the +1s come from the descent (n, b) in π and the ascent (c, n)
in ρ, respectively. We first consider the subcase that c = a and b = d.
In this case (a, b) = (c, d) is either a descent or an ascent, so in any
case desc(a b) + asc(c d) = 1, and hence combining (7.5) and (7.10)
yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (7.11)

with equality if and only if (7.5) holds with equality.

We now consider the subcase that c = a and b ̸= d. From
Lemma 7.23 (iv) we obtain that c > d, i.e., asc(c d) = 0, and hence
combining (7.5) and (7.10) yields

desc(π) + asc(ρ) ≥ (n− 2) + 2− desc(a b) ≥ n− 1, (7.12)

with equality if and only if (7.5) holds with equality and
desc(a b) = 1.

The subcase c ̸= a and b = d is similar, and yields

desc(π) + asc(ρ) ≥ (n− 2) + 2− asc(c d) ≥ n− 1, (7.13)

7.2. Regular, vertex-transitive, and bipartite lattice quotients 203

with equality if and only if (7.5) holds with equality and asc(c d) = 1.

It remains to consider the subcase c ̸= a and b ̸= d. From Lemma 7.23 (iii)
and (iv) we know that a < b and c > d, i.e., desc(a b) = 0 and
asc(c d) = 0, and hence combining (7.5) and (7.10) yields

desc(π) + asc(ρ) ≥ (n− 2) + 2 = n > n− 1. (7.14)

This completes the proof of the theorem.

We are now in position to prove the main result of this section, a
characterization of regular quotient graphs via their arc diagram.

Theorem 7.25. The regular quotient graphs Rn are obtained from
exactly those lattice congruences C∗n that have a simple reduced arc
diagram.

After the original paper [89] was published, we learned that The-
orem 7.25 can be derived from Theorem 1.13 in [57], which char-
acterizes regular quotient graphs in terms of the minimal sets of
join-irreducible elements that need to be contracted to generate the
congruence.

Proof. By Lemma 7.21, if the reduced arc diagram of a lattice con-
gruence R ∈ C∗n is not simple, then the quotient graph QR is not reg-
ular. In the following we will prove the converse, that if the reduced
arc diagram of R is simple, then the quotient graph QR is (n− 1)-
regular. We argue by induction on n, using that by Lemma 7.8, the
arc diagram of the restriction of a lattice congruence is obtained by
removing the highest point labeled n and all arcs incident with it.
In particular, removing the highest point of a simple reduced arc
diagram produces another simple reduced arc diagram.

For the induction proof we closely follow the proof of Theorem 7.24
given before, and show that all inequalities in that proof are actually
tight if we add the assumption of a simple reduced arc diagram.

204 Lattice congruences of the weak order

n

g := f(e, n, Lg) ∈ FR

h := f(c, n, Lh) /∈ FR b

c

e

x

max(X)=ρ=

h′ := f(x, b, Lh′) /∈ FR

c n d e x b
C

C

B

B

Lg = L(ρ, e, n)

Lh = L(ρ, c, n)

Lh′ = L(ρ, x, b)

Figure 7.14: Illustration of the proof of Theorem 7.25.

So consider a lattice congruence R ∈ C∗n with a simple reduced arc
diagram, an arbitrary equivalence class X of R, and let π := min(X)
and ρ := max(X). We aim to prove that desc(π) + asc(ρ) = n− 1,
assuming by induction that (7.5) holds with equality, i.e., we have

desc(p(π)) + asc(p(ρ)) = n− 2. (7.15)

We now consider the same cases (a)–(e) as in the proof of Theo-
rem 7.24. The cases (a) and (b) are easy, as (7.7) holds with equal-
ity by (7.15). Similarly, the cases (c) and (d) are easy, as (7.9) holds
with equality by (7.15). It remains to consider the case (e). The
subcase c = a and b = d is again easy, as (7.11) holds with equality
because by (7.15). We consider the remaining three subcases of (e)

7.2. Regular, vertex-transitive, and bipartite lattice quotients 205

and show the following:

(e1) If c = a and b ̸= d we have that desc(a b) = 1. From this it
follows that (7.12) holds with equality by (7.15).

(e2) If c ̸= a and b = d we have that asc(c d) = 1. From this it
follows that (7.13) holds with equality by (7.15).

(e3) The subcase c ̸= a and b ̸= d cannot occur (recall the strict
inequality (7.14)).

In proving (e1)–(e3), we will use the assumption that the reduced arc
diagram is simple. Note that claims (e1)–(e3) follow immediately
from the next two claims:

(e1’) If b ̸= d and the arc diagram is simple, then b < c.
(e2’) If c ̸= a and the arc diagram is simple, then c < b.

Indeed, if c = a and b ̸= d, then (e1’) gives b < c = a, showing that
desc(a b) = 1, proving (e1). Similarly, if c ̸= a and b = d, then (e2’)
gives c < b = d, showing that asc(c d) = 1, proving (e2). Lastly, if
c ̸= a and b ̸= d, then (e1’) and (e2’) together give b < c and c < b,
a contradiction, so this case cannot occur.

We begin proving (e1’); see Figure 7.14. By Lemma 7.23 (iv), b is
to the right of d in ρ. Let e be the maximum entry between n and b
in ρ, and let x be the entry directly left of b. It may happen that
e = d, or e = x or both, but this is irrelevant. In fact, the entry d
will not play any role in our further arguments. We clearly have
e ≥ x. Applying Lemma 7.23 (iv), we obtain that c, b > e. Suppose
for the sake of contradiction that b > c. Combining the previous
inequalities, we get x ≤ e < c < b < n, i.e., we have the situation
shown in Figure 7.14. From Lemma 7.23 (vi), we obtain that the
fence g := f(e, n, Lg) with Lg := L(ρ, e, n) is in FR. We let C denote
the set of values that are strictly larger than e and not to the right
of c in ρ. Similarly, we let B denote the set of values that are strictly

206 Lattice congruences of the weak order

larger than e and not to the left of b in ρ. By these definitions and
the maximal choice of e, we get Lg = C and Lg :=]e, n[\ Lg = B.

As c ∈ Lg and b ∈ Lg, the arc corresponding to the fence g that
connects e with n has c on its left and b on its right, i.e., this arc is not
simple. It follows that this arc cannot be in the reduced arc diagram
of R. This means there must be another fence g′ = f(u, v,]u, v[∩Lg),
e ≤ u < v ≤ n, represented by a simple arc, that forces g in the
forcing order. Clearly, as this arc is simple, we have that

]u, v[∩ Lg = ∅ or]u, v[∩ Lg =]u, v[, (7.16)

i.e.,]u, v[is an interval of consecutive numbers from B or C, respec-
tively.

From Lemma 7.23 (viii), we also know that the fences h := f(c, n, Lh)
with Lh := L(ρ, c, n) and h′ := f(x, b, Lh′) with Lh′ := L(ρ, x, b) are
not in FR. Observe that Lh =]c, n[∩Lg and Lh′ ∩]e, b[= Lg ∩]e, b[,
i.e., the arcs corresponding to the fences h and h′ pass to the left
and right of the points in the intervals]c, n[or]e, b[, respectively,
exactly in the same way as the arc corresponding to the fence g; see
Figure 7.14. It follows that the interval [u, v] cannot be contained
in the interval [e, b], as otherwise g′ would force h′ in the forcing
order, and we know that h′ /∈ FR. Similarly, it follows that the in-
terval [u, v] cannot be contained in the interval [c, n], as otherwise
g′ would force h in the forcing order, and we know that h /∈ FR. We
conclude that u < c and v > b. This however, would mean that c
is contained in the interval]u, v[∩ Lg, but b is not (as b /∈ Lg), so
none of the two conditions in (7.16) can hold, which means that the
fence g′ cannot exist. (In other words, the arc corresponding to g′

would also have to be non-simple so that g′ could force g.) We ar-
rive at a contradiction to the assumption b > c. This completes the
proof of (e1’).

The proof of (e2’) is analogous to the proof of (e1’), and uses

7.2. Regular, vertex-transitive, and bipartite lattice quotients 207

Lemma 7.23 (iii) instead of (iv), (v) instead of (vi), and (vii) in-
stead of (viii). We omit the details.

n

1 0

2(n− 1)

Figure 7.15: Bijection be-
tween non-nesting arc dia-
grams on n points and Dyck
paths with 2(n− 1) steps.

From Theorem 7.25, we obtain the
following corollary.

Corollary 7.26. The number of
regular quotient graphs Rn is
|Rn| = C2

n−1, where Cn is the nth
Catalan number Cn := 1

n+1

(
2n
n

)
.

Proof. By Theorem 7.25, we need
to count simple reduced arc dia-
grams on n points. Clearly, arcs
passing to the left of the points are
independent from arcs passing to
the right of the points, so the re-
sult is proved by showing that di-
agrams where all arcs pass on the
same side are counted by the Ca-
talan numbers Cn−1. Note that the arcs are all simple, so no arc
connects two consecutive points. Circular arcs in such a diagram
are non-nesting, by the assumption that the diagram is reduced, as
nested arcs correspond to fences that are comparable in the forcing
order. A bijection between such non-nesting circular arc diagrams
on n points and Dyck paths with 2(n−1) steps is illustrated in Fig-
ure 7.15. Here, a Dyck path with 2n steps refers to a series of steps
going up from 0 to 2n, where at every step, we go left or right by
one unit. Further, the startpoint 0 and the endpoint 2n are on a
vertical line, and the path cannot cross this line, i.e., it has no step
on one side of the line (but it can touch the line). It has been shown
that the distinct Dyck paths with 2n steps are counted by the Ca-
talan number Cn [49]. The lemma then follows.

208 Lattice congruences of the weak order

7.2.5 Maximum degree

The next theorem establishes an exact formula for the maximum
degrees of quotient graphs.

Theorem 7.27. For every lattice congruence R ∈ Cn, the maximum
degree of the quotient graph QR is at most 2n − ⌈2

√
n⌉. Moreover,

there is a lattice congruence with a vertex of this degree.

For proving Theorem 7.27, we need the following variant of the
famous Erdős-Szekeres theorem.

Lemma 7.28. Consider a sequence of distinct integers of length n,
and let r and s be the length of the longest monotonically increasing
and decreasing subsequences, respectively. Then we have r + s ≥
⌈2
√
n⌉.

The Erdős-Szekeres theorem is usually stated in the slightly weaker
form that one of r or s is at least ⌈

√
n⌉. The proof of our lemma

follows Seidenberg’s proof [153] (see also [156]).

Proof. Let x1, . . . , xn be the sequence we consider. For i = 1, . . . , n,
let ai and bi be the lengths of the longest increasing or decreasing
subsequences ending with xi. Note that for 1 ≤ i < j ≤ n we either
have xi < xj , and then we know that ai < aj , or we have xi > xj ,
and then we know that bi < bj . Consequently, all pairs (ai, bi) must
be distinct, and we have 1 ≤ ai ≤ r and 1 ≤ bi ≤ s, implying that
n ≤ rs. From the arithmetic/geometric mean inequality we obtain
r + s = 2(r + s)/2 ≥ 2

√
rs ≥ 2

√
n. As r and s must be integers,

this implies the lower bound r + s ≥ ⌈2
√
n⌉.

Proof of Theorem 7.27. Consider any permutation ρ in the weak or-
der on Sn, and consider another permutation π < ρ in its downset.
Consider the longest monotonically decreasing subsequence of ρ, and
let r denote its length. Note that ρ has at most n−1−(r−1) = n−r

7.2. Regular, vertex-transitive, and bipartite lattice quotients 209

ρ = 78456123

1 2 3

4 5 6

7 8

n = 8

s = d
√
ne = 3

r = d2
√
ne − s = 3

π = 74185263

X = [π, ρ]

asc(ρ)

desc(π)

R

1

2

3

4

5

6

7

8

Figure 7.16: Illustration of the proof of Theorem 7.27. The right
part of the figure shows the reduced arc diagram of the lattice con-
gruence R.

ascents, regardless of the values between the elements of the sub-
sequence. Similarly, consider the longest monotonically increasing
subsequence of ρ, and let s denote its length. Observe that the el-
ements of this subsequence appear in the same relative order in π,
so π has at most n − 1 − (s − 1) = n − s descents, regardless of
the values between the elements of the subsequence. Overall, we
have desc(π) + asc(ρ) ≤ 2n − (r + s). Applying Lemma 7.19 and
Lemma 7.28 completes the proof of the upper bound in the theorem.

It remains to construct a lattice congruence R ∈ Cn that has an
equivalence class X with desc(min(X)) + asc(max(X)) = 2n −
⌈2
√
n⌉. This construction is illustrated in Figure 7.16. Fill the num-

bers 1, 2, . . . , n into a table with s := ⌈
√
n⌉ columns, row by row

from bottom to top, and from left to right in each row. The topmost
row may not be filled completely. It can be checked that the number
of rows r of the table is r = ⌈2

√
n⌉ − s. Now consider the permu-

tation π obtained by reading the columns of the table from left to
right, and from top to bottom in each column. It satisfies desc(π) =
(n− 1)− (s− 1) = n− s. Also consider the permutation ρ obtained
by reading the rows of the table from top to bottom, and from left

210 Lattice congruences of the weak order

to right in each row. It satisfies asc(ρ) = (n− 1)− (r − 1) = n− r.
We now construct a lattice congruence R that has an equivalence
class X with min(X) = π and max(X) = ρ. From Lemma 7.19,
we then obtain that the degree of X in the quotient graph QR is
desc(π) + asc(ρ) = 2n− (r + s) = 2n− ⌈2

√
n⌉.

We construct R by specifying a set of fences in the forcing order,
and then take the downset of all those fences as FR. The fences
are constructed as follows: For each pair of numbers a and b in our
table where b is one row above and one column to the right of a,
we let L be the set of all numbers left of b in the same row as b,
and we add the fence f(a, b, L). Now FR is obtained by taking the
downset of all those fences in the forcing order. Observe that as our
initial fences f(a, b, L) all satisfy b − a = s + 1, all fences f(a, b, L)
in FR satisfy b − a ≥ s + 1. Using the definition of fences and
Theorem 7.3, it can be verified directly that ρ and π belong to the
same equivalence class. To see that π is the minimal element of its
equivalence class, note the all descents of π have difference s, so
none of these fences is in R, meaning that none of the edges leading
to a down-neighbor of π is a bar. Similarly, to see that ρ is the
maximal element of its equivalence class, note that all ascents of ρ
have difference 1, so none of these fences is in R, meaning that none
of the edges leading to an up-neighbor of ρ is a bar.

7.2.6 Vertex-transitive quotient graphs

It turns out that all vertex-transitive quotient graphs Vn and V ′n can
be characterized and counted precisely via weighted integer compo-
sitions and partitions, respectively; see Theorems 7.32 and 7.34 and
Corollaries 7.33 and 7.35 below. As Vn ⊆ Rn, by Theorem 7.25 we
only need to consider simple reduced arc diagrams as candidates for
vertex-transitive quotient graphs. However, as we shall see, we will
have to impose further restrictions on the diagram. Specifically, we
refer to an arc corresponding to a fence f(a, b, L) with L = ∅ as a

7.2. Regular, vertex-transitive, and bipartite lattice quotients 211

left arc, and with L =]a, b[as a right arc. Also, we say that an
arc connecting two points s − 1 and s + 1, s ∈ [2, n − 1], is short.
Moreover, we say that the reduced arc diagram is empty, if it con-
tains no arcs. We will see that all reduced arc diagrams that yield
vertex-transitive graphs are suitable concatenations of smaller dia-
grams that are either empty or contain only short left or right arcs.

The Cartesian product of two graphs G = (V,E) and H = (W,F),
denoted G □ H, is the graph with vertex set V × W and edges
connecting (v, w) with (v′, w′) whenever v = v′ and (w,w′) is an
edge in F , or w = w′ and (v, v′) is an edge in E. We write G ≃ H
if G and H are isomorphic graphs. We say that a graph is prime
if it is not a Cartesian product of two graphs with fewer vertices
each. The following lemma captures a few simple observations that
we will need later.

Lemma 7.29 ([97, page 29+Corollary 4.16+Theorem 4.19]). The
following statements hold for arbitrary connected graphs G,G′, H,H ′:

(i) We have G□H ≃ H □G.
(ii) If G□H ≃ G′□H ′ and both H and H ′ are prime, then we have

G ≃ G′ and H ≃ H ′, or G ≃ H ′ and H ≃ G′.
(iii) G and H are vertex-transitive, if and only if G □H is vertex-

transitive.

Consider a lattice congruence R ∈ C∗n such that FR contains two
fences f(s−1, s+1, ∅) and f(s−1, s+1, {s}) for some s ∈ [2, n−1].
Note that any essential fence of the form f(a, b, L), with a ∈ [1, s],
b ∈ [s, n] and L ⊆]a, b[is in the downset of one of the these two
fences in the forcing order. In other words, the reduced arc diagram
of R contains no arc from a point in [1, s] to a point in [s, n], except
the short left arc and short right arc that connect the points s − 1
and s + 1. Moreover, by Lemma 7.16, the quotient graph QR is
obtained as the Cartesian product of the quotient graphs of the
two lattice congruences A ∈ Cs and B ∈ Cn+1−s whose reduced arc

212 Lattice congruences of the weak order

diagrams contain exactly the arcs of the reduced arc diagram of R
restricted to the intervals [1, s] and [s, n], respectively. We say that
in the reduced arc diagram of R, the short left arc and right arc
that connect the points s − 1 and s + 1 form a loop centered at s,
and we say that the reduced arc diagram of R is the product of the
reduced arc diagrams of A and B. In this way, the product of two
reduced arc diagrams is obtained by gluing together their endpoints,
and placing a loop centered at the gluing point.

With slight abuse of notation, we use Sn to also denote the cover
graph of the weak order on Sn. The 5-cycle C5 is obtained as the
quotient graph for the lattice congruence R ∈ C∗3 given either by
FR = {f(1, 3, ∅)}, or by FR = {f(1, 3, {2})}. Clearly, both Sn

and C5 are vertex-transitive, and the reduced arc diagram of the
former has n points and is empty, and the reduced arc diagram of
the latter has 3 points and either one short left arc or one short right
arc that connects the first with the third point. In the following we
argue that all vertex-transitive quotient graphs Vn have arc diagrams
that are products of these two basic diagrams. We first rule out
any other arc diagrams as candidates for giving a vertex-transitive
quotient graph.

Recall that the quotient graph QR has as vertices all equivalence
classes of R, and an edge between any two classes X and Y that
contain a pair of permutations differing in an adjacent transposition.

Lemma 7.30. Let n ≥ 4, and let R ∈ C∗n be a lattice congruence
whose reduced arc diagram is simple and has no loops. If the reduced
arc diagram is not empty, then QR is not vertex-transitive.

Proof. Given a permutation π ∈ Sn and four distinct entries a, b, c, d ∈
[n] with a < b and c < d such that π is incident with an (a, b)-
edge and a (c, d)-edge in the cover graph of the weak order on Sn,
then π forms a 4-cycle in this graph, given by all four permuta-
tions obtained from π by transposing a with b, and c with d in all

7.2. Regular, vertex-transitive, and bipartite lattice quotients 213

possible ways. We denote this 4-cycle by C(π, (a, b), (c, d)). Simi-
larly, given π and three distinct entries a, b, c ∈ [n] with a < b < c
such that π is incident with an (x, y)-edge and an (x, z)-edge, where
{x, y, z} = {a, b, c}, then π forms a 6-cycle in the cover graph, given
by all six permutations obtained from π by permutating a, b, c in all
possible ways. We denote this 6-cycle by C(π, (a, b, c)). Let L de-
note the set of all entries to the left of all of a, b, c in π. The 6-cycle
C(π, (a, b, c)) has two edges belonging to the fence f(a, b, L ∩]a, b[)
and two edges belonging to the fence f(b, c, L ∩]b, c[), and we ab-
breviate these edge sets by E12 and E23, respectively. It also has
exactly one edge belonging to the fence f(a, c, L ∩]a, c[) and one
edge belonging to the fence f(a, c, L ∩]a, c[∪ {b}), and we abbrevi-
ate these edge sets by E13∅ and E132, respectively. These edge sets
of the 4-cycles and 6-cycles mentioned before capture how the type i
and type ii forcing constraints (recall Figure 7.2) act on those cy-
cles. In the following arguments, we have to distinguish carefully
between cycles in the weak order on Sn, and cycles in the quotient
graph QR. In particular, a 6-cycle in the weak order may result in a
6-, 5-, or 4-cycle in QR, or collapse to a single edge or vertex in QR,
depending on which of the four aforementioned edges are bars.

By Theorem 7.25, all vertices in the quotient graph QR have de-
gree n − 1. The strategy of our proof is to consider two particu-
lar vertices in the graph, and each of the

(
n−1
2

)
pairs of edges inci-

dent with each of those vertices. Every such pair of edges defines
a 4-, 5-, or 6-cycle in QR containing these two edges. In the cor-
responding quotientope, these cycles bound the 2-dimensional faces
incident to that vertex. We will show that the number of 4-cycles
and {5, 6}-cycles incident to the two vertices is different, implying
that the graph is not vertex-transitive. One of the two vertices we
consider is the equivalence class that contains only the identity per-
mutation idn. The n − 1 edges incident with it are (i, i + 1)-edges
for i = 1, . . . , n − 1 (recall Lemma 7.19 and that R is assumed to
be essential). There are n − 2 pairs of an (i, i + 1)-edge and an

214 Lattice congruences of the weak order

(i + 1, i + 2)-edge, and every such pair of edges defines either a 5-
cycle or a 6-cycle in QR: Indeed, the edges in E12 and E23 of the
6-cycle C(idn, (i, i+ 1, i+ 2)) are not bars, as R is essential. More-
over, by the assumption that the diagram of R contains no loops, at
most one of the fences f(i, i+2, ∅) or f(i, i+2, {i+1}) is in FR, so
at most one of the edges in E13∅ or E132 of the 6-cycle is a bar. It
follows that the corresponding cycle in QR is a 5-cycle or a 6-cycle.
The remaining

(
n−1
2

)
− (n−2) =

(
n−2
2

)
pairs of an (i, i+1)-edge and

a (j, j+1)-edge, j > i+1, incident with idn all form a 4-cycle in QR:
Indeed, none of the edges of the 4-cycle C(idn, (i, i + 1), (j, j + 1))
are bars, as R is essential.

In the remainder of this proof we identify any arc in the diagram
of R with the fence in the downset FR of the forcing order that it rep-
resents. An arc being in the diagram means that the corresponding
fence is contracted, i.e., its edges are bars, meaning that the permu-
tations that are the endpoints of such a bar are in the same equiva-
lence class. Conversely, an arc not being in the diagram means that
the corresponding fence is not contracted, i.e., its edges are not bars.

As the reduced arc diagram of R is not empty, we consider the
arc f(a, b, L) incident to the highest point. As all arcs are simple,
we may assume by symmetry that it is a left arc, i.e., L = ∅, and if
there is also a right arc incident to this point, then we may assume
that the left arc is at least as long as the right arc.

(i) The left arc f(a, b, ∅) is in the diagram.
(ii) The endpoints of all arcs are below or at point b.
(iii) If there is a right arc ending at point b, then its starting point a′

satisfies a′ ≥ a.
(iv) No two arcs in the diagram are nested, by the assumption that

the diagram is reduced, as nested arcs correspond to fences that
are comparable in the forcing order. In particular, no left arc
f(a′, b, ∅), a′ > a, is in the diagram.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 215

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

Case 1. Case 2a.

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

Case 2b.

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

a

A

a+ 1

C

a+ 2

a− 1

Case 3.

a+ 3 n− 2

A

n− 1
n

n− 3

Case 4a.

n− 2

A

n− 1
n

n− 3

Case 4b.

Figure 7.17: Case distinctions in the proof of Lemma 7.30. Arcs
in the diagram are drawn with solid lines, arcs that are not in the
diagram are indicated by dashed lines.

(v) All arcs are simple, in particular, no arc connects two consecu-
tive points, as R is assumed to be essential.

We define the sequences A := (1, . . . , a− 1), B := (a+2, . . . , b− 1),
and C := (b+1, . . . , n). The various cases considered in the following
proof are illustrated in Figure 7.17.

Case 1: b− a ≥ 3 and the short right arc f(a, a+2, {a+1}) is not
in the diagram of R. Consider the equivalence class X1 containing
the permutation π1 := Aa b (a+1)BC. It has exactly one descent,
namely (b, a + 1), and as the left arc f(a + 1, b, ∅) is not in the
diagram by (iv), we obtain that π1 is the minimum of X1 (recall
Lemma 7.19). Consider the permutation ρ1 := bAa (a + 1)BC,
obtained from π1 by transposing the substring Aa with b, and so
by (i) and Lemma 7.20, ρ1 is also contained in X1. Moreover, all
n − 2 ascents in ρ1 are (i, i + 1), for i ∈ [n − 1] \ {b − 1, b}, and
(b − 1, b + 1) (if b < n), and so by (ii) and (v), ρ1 is the maximum
of X1 (recall Lemma 7.19).

For the moment we assume that b < n − 1. As Table 7.18 shows,
there are two edges incident with idn that are labelled with a trans-

216 Lattice congruences of the weak order

Table 7.18: Summary of arguments in case 1 in the proof of
Lemma 7.30. Edges that are not bars are marked with (i)–(v), ref-
erencing the argument for why that arc is not in the diagram of R.
The edge marked with (*) is not a bar, and the argument is given
after the table. Edges marked with ? are irrelevant for our argu-
ments. The 6-cycles marked with [1] are only valid if b < n, and
those marked with [2] are only valid if b < n− 1.

ρ1 = max(X1) = bAa (a+ 1)BC
π1 = min(X1) = Aa b (a+ 1)BC

edges inc. only with idn edges inc. only with X1

(b− 1, b) (a+ 1, b)
(b, b+ 1) [1] (b− 1, b+ 1) [1]
6-cycles inc. only with idn 6-cycles inc. only with X1 E12 E23 E13∅ E132

C(idn, (b− 2, b− 1, b)) C(π1, (a, a+ 1, b)) (v) (iv) ? (*)
C(idn, (b− 1, b, b+ 1)) [1] C(π1, (a+ 1, a+ 2, b)) (v) (iv) (iv) ?
C(idn, (b, b+ 1, b+ 2)) [2] C(π1, (b− 2, b− 1, b+ 1)) [1] (v) (ii) ? (ii)

C(π1, (b− 1, b+ 1, b+ 2)) [2] (ii) (v) ? (ii)

position that does not appear at any edge incident with X1. Con-
versely, there are two edges incident with X1 that are labelled with
a transposition that does not appear at any edge incident with idn.
Together with the other edges incident with X1, we obtain three
pairs of edges incident only with idn that define a 6-cycle in the
weak order on Sn, and four pairs of edges incident only with X1

that define a 6-cycle. All the latter 6-cycles are {5, 6}-cycles in the
quotient graph QR, showing that the number of {5, 6}-cycles inci-
dent with a vertex of QR is by one higher for X1 than for idn. The
argument that at most one edge from each 6-cycle is a bar, is given
at the bottom right of the table, separately for each of the various
sets of edges on each cycle. E.g., for the 6-cycle C(π1, (a, a+ 1, b)),
the two edges in E12 belong to the fence f(a, a+ 1, ∅), and the cor-
responding arc is not in the diagram by (v). It remains to argue

7.2. Regular, vertex-transitive, and bipartite lattice quotients 217

about case (*) in the table, i.e., the arc f(a, b, {a + 1}). This arc
is non-simple, and so it is not in the reduced diagram. Moreover,
in the forcing order it can only be forced by a simple arc f(a′, b, ∅)
with a′ ≥ a+ 1, which is impossible by (iv), or by the simple short
right arc f(a, a + 2, {a + 1}), which is impossible by the extra as-
sumption we imposed at the beginning of case 1. It follows that the
arc f(a, b, {a+ 1}) is not in the diagram of R.

In the cases b = n−1 and b = n one or two of the 6-cycles in the first
two columns of Table 7.18 are invalid, but the remaining 6-cycles
still result in a surplus of {5, 6}-cycles incident with X1.

Case 2: b − a ≥ 3 and the short right arc f(a, a + 2, {a + 1}) is
in the diagram of R. Consider the equivalence class X2 containing
the permutation π2 := A (a+ 1) a bB C. This permutation has two
descents, (a + 1, a) and (b, a + 2), and it can be checked that π2 =
min(X2).

Subcase 2a: We now additionally assume that if a > 1, then the
short left arc f(a − 1, a + 1, ∅) is not in the diagram of R. Using
this assumption, it can be checked that ρ2 := max(X2) = A (a +
1) bB C a. As before, we now consider all transpositions that appear
as edge labels at only either idn or X2, and we consider the resulting
pairs of transpositions that define a 6-cycle in the weak order on Sn,
yielding the 6-cycles shown in Table 7.19, where some of them exist
only under the extra conditions on a and b stated in the table.

Unlike in case 1, where we argued that there are more {5, 6}-cycles
incident with X1 than with idn, in case 2 we argue that there are
fewer {5, 6}-cycles incident with X2 than with idn. For this we
consider the two 6-cycles marked with (*) and (**) in the table, and
argue that each of them is contracted to a 4-cycle in the quotient
graph QR. Indeed, for the 6-cycle C(ρ2, (a− 1, a+ 1, b)), the edges
in E12 are not bars by the assumption that the short left arc f(a−
1, a+1, ∅) is not in the diagram of R, the edges in E23 are not bars

218 Lattice congruences of the weak order

Table 7.19: Summary of arguments in case 2a. Some 6-cycles are
only valid under the following extra conditions: [1] b < n, [2] b <
n− 1, [3] b > a+ 3, [4] a > 1, [5] a > 2.

ρ2 = max(X2) = A (a+ 1) bB C a
π2 = min(X2) = A (a+ 1) a bB C

edges inc. only with idn edges inc. only with X
(a− 1, a) [4] (a− 1, a+ 1) [4]
(a+ 1, a+ 2) (a+ 1, b)
(b− 1, b) [3] (a+ 2, b) [3]
(b, b+ 1) [1] (b− 1, b+ 1) [1]
6-cycles inc. only with idn 6-cycles inc. only with X
C(idn, (a− 2, a− 1, a)) [5] C(π2, (a− 2, a− 1, a+ 1)) [5]
C(idn, (a, a+ 1, a+ 2)) C(ρ2, (a− 1, a+ 1, b)) [4] (*)
C(idn, (a+ 1, a+ 2, a+ 3)) [3] C(π2, (a, a+ 1, b)) (**)
C(idn, (b− 2, b− 1, b)) [3] C(ρ2, (a+ 1, a+ 2, b)) [3]
C(idn, (b− 1, b, b+ 1)) [1]+[3] C(π2, (a+ 2, a+ 3, b)) [3]
C(idn, (b, b+ 1, b+ 2)) [2] C(π2, (b− 2, b− 1, b+ 1)) [1]+[3]

C(π2, (b− 1, b+ 1, b+ 2)) [2]

by (iv), the edge in E13∅ is a bar, as the left arc f(a−1, b, ∅) is forced
by the left arc f(a, b, ∅) in the forcing order, and the edge in E132

is a bar, as the arc f(a − 1, b, {a + 1}) is forced by the short right
arc f(a, a+2, {a+1}). For the 6-cycle C(π2, (a, a+1, b)), the edges
in E12 are not bars by (v), the edges in E23 are not bars by (iv), the
edge in E13∅ is a bar by (i), and the edge in E132 is a bar, as the arc
f(a, b, {a+ 1}) is forced by the short right arc f(a, a+ 2, {a+ 1}).

As one can check from the table, the deficiency of {5, 6}-cycles in-
cident with X2 compared to idn continues to hold even when some
of the 6-cycles in Table 7.19 are invalid as a consequence of some
or all of the conditions [1]–[5] being violated, as the cycle marked
with (**) is always valid.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 219

Subcase 2b: We now assume that a > 1 and that the short left arc
f(a − 1, a + 1, ∅) is in the diagram of R. Using this assumption, it
can be checked that ρ′2 := min(X2) = (a+ 1) bB C Aa. Proceeding
similarly to before, we obtain a table that differs from Table 7.19
exactly by omitting all lines marked [4] or [5], i.e., we obtain the
same conclusion that there is a deficiency of {5, 6}-cycles incident
with X2 compared to idn.

Case 3: a < n − 2 and b = a + 2. In this case we reconsider
the equivalence class X1 defined in case 1, yielding the following
simplified Table 7.20.

Table 7.20: Summary of arguments in case 3. The 6-cycle marked
with [1] is only valid if a < n− 3.

ρ1 = max(X1) = (a+ 2)Aa (a+ 1)C
π1 = min(X1) = Aa (a+ 2) (a+ 1)C

edges inc. only with idn edges inc. only with X1

(a+ 2, a+ 3) (a+ 1, a+ 3)

6-cycles inc. only with idn 6-cycles inc. only with X1

C(idn, (a+ 2, a+ 3, a+ 4)) C(ρ1, (a, a+ 1, a+ 3) (*)
C(π1, (a+ 1, a+ 3, a+ 4)) [1]

The cycle C(idn, (a+2, a+3, a+4)) is also a 6-cycle incident with idn
in the quotient graph QR by (ii) and (v). We now show that the 6-
cycle C(ρ1, (a, a+1, a+3))marked with (*) is a 5-cycle incident with
X1 in QR, which proves that X1 is incident with one more 5-cycle
than idn. Indeed, the edges in E12 of the marked cycle are not bars
by (v), the edges in E23 are not bars by (ii), the edge in E132 is not
a bar, as the right arc f(a, a+3, {a+1, a+2}) is not in the diagram
of R by (ii), and none of the short right arcs f(a, a+ 2, {a+ 1}) or
f(a+ 1, a+ 3, {a+ 2}) that might force it is in the diagram by the
assumption that the diagram has no loops, or by (ii), respectively.
Furthermore, the edge in E13∅ is a bar, as the arc f(a, a+3, {a+2})

220 Lattice congruences of the weak order

is forced by the short left arc f(a, a+ 2, ∅), which is in the diagram
by (i).

Case 4: a = n−2 and b = a+2 = n. In this case the short right arc
f(n − 2, n, {n − 1}) is not in the diagram of R, by the assumption
that the diagram contains no loops.

Subcase 4a: We now additionally assume that the short left arc
f(n−3, n−1, ∅) is not in the diagram of R. In this subcase, we con-
sider two equivalence classes X4 and Y4 that are distinct from idn.
The first equivalence class X4 is the one containing the permuta-
tion π4 := An (n− 1) (n− 2), and one can check that π4 = min(X4)
and that ρ4 := max(X4) = nA (n − 1) (n − 2). The second equiv-
alence class Y4 contains only a single permutation σ4 = min(Y4) =
max(Y4) = A (n − 1)n (n − 2). There is only a single 6-cycle inci-
dent with only either X4 or Y4, namely C(ρ4, (n− 3, n− 2, n− 1)),
and one can argue that it is a {5, 6}-cycle in the quotient graph QR,
implying that there are more {5, 6}-cycles incident with X4 than
with Y4 in QR; see Table 7.21.

Table 7.21: Summary of arguments in case 4a.

ρ4 = max(X4) = nA (n− 1) (n− 2)
π4 = min(X4) = An (n− 1) (n− 2) σ4 = min(Y4) = max(Y4) =

A (n− 1)n (n− 2)

edges inc. only with X4 edges inc. only with Y4
(n− 2, n− 1) (n− 2, n)

6-cycles inc. only with X4 6-cycles inc. only with Y4
C(ρ4, (n− 3, n− 2, n− 1))

Subcase 4b: We now assume that the short left arc f(n− 3, n− 1, ∅)
is in the diagram of R. We consider the equivalence class X ′

4 that
contains the permutation π′

4 := A (n − 1) (n − 2)n. One can check
that π′

4 = min(X ′
4) and that ρ′4 := max(X ′

4) = (n − 1)A (n − 2)n.
There is only a single 6-cycle incident with only either idn or X ′

4,

7.2. Regular, vertex-transitive, and bipartite lattice quotients 221

namely C(ρ′4, (n− 3, n− 2, n)); see Table 7.22. We now argue that
this is a 5-cycle in the quotient graph QR, implying that there are
more 5-cycles incident with X ′

4 than with idn in QR. Indeed, the
edges in E12 are not bars by (v), the edges in E23 are not bars,
as the short right arc f(n − 2, n, {n − 1}) is not in the diagram by
the assumption that it has no loops. Morever, the edge in E13∅ is
a bar, as the arc f(n − 3, n, {n − 1}) is forced by the short left arc
f(n − 3, n − 1, ∅). Finally, the edge in E132 is not a bar, as the
right arc f(n − 3, n, {n − 2, n − 1}) is not in the reduced diagram
by (iii), and the two short right arcs f(n − 3, n − 1, {n − 2}) and
f(n− 2, n, {n− 1}) that may force it in the forcing order are not in
the diagram by the assumption of loop-freeness.

Table 7.22: Summary of arguments in case 4b.

ρ′4 = max(X ′
4) = (n− 1)A (n− 2)n

π′
4 = min(X ′

4) = A (n− 1) (n− 2)n

edges inc. only with idn edges inc. only with X ′
4

(n− 1, n) (n− 2, n)

6-cycles inc. only with idn 6-cycles inc. only with X ′
4

C(ρ′4, (n− 3, n− 2, n))

This completes the proof of the lemma.

With Lemma 7.30 in hand, we are now ready to characterize vertex-
transitive quotient graphs via their arc diagram.

Lemma 7.31. For n ≥ 2, every vertex-transitive quotient graph
from Vn is a Cartesian product with factors from the set of graphs

P := {S2, S3, S4, . . .} ∪ {C5}. (7.17)

The corresponding reduced arc diagrams are products of empty dia-
grams on at least 2 points, and of diagrams on 3 points that have
either a short left arc or a short right arc.

222 Lattice congruences of the weak order

S
5

S
4
�
S
2

S
3
�

S
3

S
3
�

S
2
�

S
2

S
2
�

S
2
�

S
2
�

S
2

4 3 + 1 2 + 2 2 + 1 + 1

1 + 1 + 1 + 1

1 + 3 1 + 2 + 1

1 + 1 + 2

S
2
�
S
4

S
3
�

C
5

S
3
�

C
5

C
5
�

S
3

C
5
�

S
3

C
5
�

C
5

C
5
�

C
5

C
5
�

C
5

C
5
�

C
5

C
5
�

S
2
�

S
2

C
5
�

S
2
�

S
2

S
2
�

S
3
�

S
2

S
2
�

C
5
�

S
2

S
2
�

C
5
�

S
2

S
2
�

S
2
�

S
3

S
2
�

S
2
�

C
5

S
2
�

S
2
�

C
5

Figure 7.23: Reduced arc diagrams of all 22 vertex-transitive quo-
tient graphs V5 (bottom), plus reduced arc diagrams of correspond-
ing isomorphic quotient graphs in Qn, n ≥ 5, with the maximal
number of non-essential fences (top), plus the corresponding inte-
ger compositions of 4. The dashed short arcs correspond to copies
of the 5-cycle C5 in the Cartesian products. The 8 non-isomorphic
quotient graphs V ′5 are highlighted, and they correspond to integer
partitions.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 223

Proof. Consider the reduced arc diagram of a lattice congruence
R ∈ Vn. By Lemma 7.16, for any loop in the diagram centered at
some point s ∈ [2, n − 1], we may split the diagram into two di-
agrams on the intervals [1, s] and [s, n], and QR is the Cartesian
product of the quotient graphs of the two lattice congruences de-
fined by the reduced arc diagrams on the two intervals. We re-
peat this elimination of loops exhaustively, yielding a factorization
of QR ≃ QA1 □ · · ·□QAp such that the reduced arc diagram of ev-
ery lattice congruence Ai ∈ C∗ni

, ni ≥ 2, has no loops. As QR is
vertex-transitive, Lemma 7.29 (iii) yields that all factors QAi must
be vertex-transitive. Therefore, by Lemma 7.30, for any factor with
ni ≥ 4, we know that the arc diagram of Ai must be empty, i.e.,
we have QAi = Sni . For any factor with ni = 3, there are ex-
actly three essential lattice congruences yielding a vertex-transitive
quotient graph, given by an arc diagram on 3 points that is either
empty, or that has a short left arc or a short right arc, and the cor-
responding graphs are QAi = S3 in the first case, and QAi = C5 in
the latter two cases. For any factor with ni = 2, there is exactly one
essential lattice congruence, represented by an empty arc diagram
on 2 points, i.e., we have QAi = S2. This proves the lemma.

Given an integer n, a composition of n is a way to write n as a sum
of positive integers a1, . . . , ap, i.e., n = a1+ · · ·+ap. A partition of n
is a composition of n where the summands are sorted decreasingly,
i.e., a1 ≥ · · · ≥ ap.

Theorem 7.32. For every n ≥ 2 and every integer composition
a1 + · · · + ap of n − 1 with exactly k many 2s, there are 3k vertex-
transitive quotient graphs in Vn, and these graphs are isomorphic to
the Cartesian products G1 □ · · · □ Gp, where Gi = Sai+1 if ai ̸= 2
and Gi ∈ {S3, C5} if ai = 2 for all i = 1, . . . , p. The corresponding
reduced arc diagrams are products of empty diagrams on ai+1 points
if ai ̸= 2, and of diagrams on 3 points that are either empty, or have

224 Lattice congruences of the weak order

one short left arc, or one short right arc that connects the first and
third point if ai = 2. All of these graphs are distinct, and every
graph in Vn arises in this way.

Proof. The proof is illustrated in Figure 7.23. We consider an in-
teger composition a1 + · · · + ap of n − 1 with exactly k many 2s.
For each summand ai ̸= 2, we consider the empty arc diagram
on ai + 1 points, and for each summand ai = 2, we consider an
arc diagram on 3 points that is either empty, or has one short left
arc, or one short right arc. As the latter case happens k times, we
have 3k choices. Consider the lattice congruences A1, . . . , Ap de-
fined by these arc diagrams, and consider the lattice congruence
R ∈ C∗n whose reduced diagram is the product of these diagrams.
By Lemma 7.16, we have that QR ≃ QA1 □ · · · □ QAp . Moreover,
if ai ̸= 2, then we have QAi = Sai+1, and if ai = 2, then we have
QAi ∈ {S3, C5}, i.e., all factors in this product are vertex-transitive.
Applying Lemma 7.29 (iii), we see that QR is vertex-transitive as
well. Clearly, all arc diagrams constructed in this way from inte-
ger compositions are distinct, yielding distinct graphs in Vn. By
Lemma 7.31, every graph in Vn arises from such a composition.

The following corollary is an immediate consequence of Theorem 7.32.

Corollary 7.33. Let cn,k denote the number of integer composi-
tions of n with exactly k many 2s. For n ≥ 2, we have |Vn| =∑

k≥0 3
kcn−1,k.

Define an :=
∑

k≥0 3
kcn−1,k for n ≥ 2 and bn := an+1 for n ≥ 1.

The sequence bn is OEIS sequence A052528, and the first few terms
are 1, 4, 8, 22, 52, 132, 324, 808, 2000. This sequence also has a linear
recurrence, namely b0 = b1 = 1 and bn = 2bn−2 +

∑
0≤i≤n−1 bi for

n ≥ 2. The generating function is (1−x)/(2x3−2x2−2x+1), so the
asymptotic growth of bn and an is (1/x0)n, where x0 is the smallest
positive root of 2x3 − 2x2 − 2x+ 1, numerically x0 ≈ 0.403032 and

7.2. Regular, vertex-transitive, and bipartite lattice quotients 225

1/x0 ≈ 2.481194.

Theorem 7.34. For every n ≥ 2 and every integer partition a1 +
· · · + ap of n − 1 with exactly k many 2s, there are k + 1 vertex-
transitive quotient graphs in V ′n, and these graphs are the Cartesian
products G1□· · ·□Gp, where Gi = Sai+1 if ai ̸= 2 and Gi ∈ {S3, C5}
if ai = 2 for all i = 1, . . . , p. The corresponding reduced arc diagrams
are products of empty diagrams on ai + 1 points if ai ̸= 2, and of
k diagrams on 3 points, exactly j ∈ {0, . . . , k} of which are empty
and k− j of which have one short left arc that connects the first and
third point, if ai = 2. All of these graphs are non-isomorphic, and
every graph in V ′n arises in this way.

The 8 non-isomorphic vertex-transitive graphs for n = 5 are high-
lighted in Figure 7.23.

Proof. By Theorem 7.32, our task is to consider all integer compo-
sitions a1 + · · · + ap of n− 1, and among the corresponding Carte-
sian products G1 □ · · ·□Gp, select those which are non-isomorphic
graphs. By Lemma 7.29 (i), reordering of the factors of any two
Cartesian products yields isomorphic graphs, and as all graphs in
the set P defined in (7.17) are prime, Lemma 7.29 (ii) shows that
these reordering operations are the only ones yielding isomorphic
graphs. Consequently, the non-isomorphic quotient graphs can be
identified with integer partitions, obtained by sorting the summands
of a composition decreasingly, and for a partition with k many 2s,
we may choose j ∈ {0, . . . , k} factors that are 6-cycles S3, and the
remaining k − j factors as 5-cycles C5.

Corollary 7.35. Let tn denote the number of 2s in all integer par-
titions of n. For n ≥ 2, we have |V ′n| = tn+1.

By Corollary 7.35, the number of vertex-transitive quotient graphs
for n = 2, . . . , 10 is tn = 1, 3, 4, 8, 11, 19, 26, 41, 56, respectively,

226 Lattice congruences of the weak order

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

4 + 2

3 + 2 + 1

2 + 2 + 2

2 + 2 + 1 + 1

2 + 1 + 1 + 1 + 1

5 + 1

4

3 + 1 + 1 + 1

3 + 3

4 + 1 + 1

6

·1

·1

·3
·2
·1

partitions of n− 1 partitions of n+ 1 with marked 2s

Figure 7.24: Illustration of the proof of Corollary 7.35 for n = 5.

which is OEIS sequence A024786. It can be shown that tn =

eπ
√

2n/3(1+o(1)).

Proof. By Theorem 7.34, there are exactly
∑

k≥0(k+ 1)pn−1,k non-
isomorphic vertex-transitive quotient graphs V ′n, where pn,k denotes
the number of integer partitions of n with exactly k many 2s. It
remains to show that this sum equals tn+1. This argument is illus-
trated in Figure 7.24. Given any integer partition of n− 1 with ex-
actly k many 2s, there are (k + 1) ways to insert another marked 2
into this partition, yielding a partition of n+1 with a marked 2. As
all partitions of n+ 1 with a marked 2 arise in this way, this corre-
sponds exactly to counting the number of 2s in all integer partitions
of n+ 1.

Remark 7.36. The lattice congruences that yield vertex-transitive
quotient graphs described in Theorem 7.32 are precisely the δ-permutree
congruences from [132] for decorations δ ∈ { , , , }n such that
any or is preceded and followed by .

7.2. Regular, vertex-transitive, and bipartite lattice quotients 227

7.2.7 Bipartite quotient graphs

Similar to the regular and vertex-transitive quotient graphs, the
bipartite quotient graphs can be characterized and counted precisely
via their arc diagrams. Specifically, for a, b ∈ [n] with a ≤ b −
2, we define a set of arcs complete with respect to a and b as the
set of all possible arcs connecting a and b, and we denote it by
Complete(a, b). The set of corresponding fences to these arcs is
also called complete with respect to a and b. Note that this set
contains all 2b−a−1 fences that have the form f(a, b, L) where L ⊆
]a, b[. In Theorem 7.42 below, we establish that a quotient graph
is bipartite if and only if the corresponding reduced arc diagram
contains only complete sets of arcs. In other words, the maximal
elements of the corresponding downset FR is a union of complete
sets of fences with respect to ai and bi, where the [ai, bi]’s are non-
nesting intervals. It follows that the bipartite quotient graphs can
be counted by the Catalan numbers; see Corollary 7.43. We also give
a count of the number of vertices in a bipartite quotient graph in
Lemma 7.44 below. Together with Remark 7.15, this implies that all
bipartite quotient graphs have a Hamilton cycle; see Corollary 7.45.

We start with a simple observation, as follows.

Lemma 7.37. Let R ∈ C∗n be a lattice congruence whose reduced
arc diagram contains only complete sets of arcs. Then for any
a, b ∈ [n], if an (a, b)-edge is a bar, then all (a, b)-edges are bars.
Moreover, the (a, b)-edges are bars, if and only if a ≤ c < d ≤ b,
where Complete(c, d) is a complete set of arcs in the reduced arc
diagram of R.

Proof. Since an (a, b)-edge is a bar, some fence f(a, b, L) is contained
in FR. If the reduced arc diagram contains Complete(a, b), then
the lemma statement directly follows. Otherwise, it contains an
arc corredponding to a fence f(c, d, L′) that is above f(a, b, L) in
the forcing order (i.e., a ≤ c < d ≤ b and L′ = L ∩]c, d[). Since

228 Lattice congruences of the weak order

the reduced arc diagram only contains complete sets of arcs, it also
contains f(c, d, L′′ ∩]c, d[) for any L′′ ∈]a, b[. Since the reduced
arc diagram does not contain Complete(a, b), we conclude that
f(a, b, L′′) ∈ FR for any L′′ ∈]a, b[. In other words, all (a, b)-edges
are bars. Further, it is easy to see that the second statement in the
lemma also follows the arguments above.

We call a poset (P,<) is graded of rank k if all maximal chains in the
lattice have the same length k. In that case, there exists a unique
rank function ρ : P → [0, k] such that ρ(y) = ρ(x) + 1 if y covers
x in P , and we call ρ(x) the rank of x. In the following lemma, we
show the gradedness of lattice quotients corresponding to reduced
arc diagrams that contain only complete sets of arcs.

Lemma 7.38. Let R ∈ C∗n be an essential lattice congruence whose
reduced arc diagram contains only complete sets of arcs with respect
to (a1, b1), . . . , (aℓ, bℓ). Assume b1 < · · · < bℓ. Further, define a0 =
0, b0 = 1, and bℓ+1 = n+1. Then Sn/R is graded with rank k, where

k :=
n(n− 1)

2
−

ℓ∑
j=0

aj(bj+1 − bj).

Proof. Since R is essential, the minimum of Sn/R contains only
idn, and the maximum contains only din := n(n − 1) . . . 1. Every
maximal chain of Sn/R has these two as their endpoints. We can
view such a maximal chain as a maximal chain in the weak order
where the edges corresponding to bars are contracted. Along one
of the maximal chains from idn to din in the weak order, when we
traverse an (a, b)-edge for a < b, we add (b, a) to the inversion set.
Since inv(idn) = ∅ and inv(din) = {(i, j) |n ≥ i > j ≥ 1}, we
conclude that for any 1 ≤ a < b ≤ n, there is exactly one (a, b)-edge
in every maximal chain. By Lemma 7.37, for any such a, b, since
the (a, b)-edges are either all bars or all non-bars, we conclude that

7.2. Regular, vertex-transitive, and bipartite lattice quotients 229

all maximal chains of Sn/R have the same length. Hence, Sn/R is
graded of rank k, for some k.

We now compute k. As argued above, k is exactly the number of
pairs (a, b), 1 ≤ a < b ≤ n, such the (a, b)-edges are not bars, which,
by Lemma 7.37, are exactly those where there is no i ∈ [ℓ] such that
a ≤ ai < bi ≤ b. For j ∈ [0, ℓ] and any b ∈ [bj , bj+1 − 1], it is easy to
see that (a, b) satisfies the above condition if and only if aj < a < b.
Therefore, the desired count is

k =

ℓ∑
j=0

bj+1−1∑
b=bj

(b− aj − 1) =

n∑
b=1

(b− 1)−
ℓ∑

j=0

aj(bj+1 − bj)

=
n(n− 1)

2
−

ℓ∑
j=0

aj(bj+1 − bj)

This completes the proof of the lemma.

Remark 7.39. For each 1 ≤ a < b ≤ n, the number of (a, b)-edges
in the weak order is (n− 1)!. From the proof of Lemma 7.38 above,
we can see that k is the number of the pairs (a, b) such that the (a, b)-
edges are not bars. Therefore the number of edges in QR is k(n−1)!.

We now show the sufficient condition for bipartite quotient graphs.

Corollary 7.40. Let R ∈ C∗n be a lattice congruence whose reduced
arc diagram contains only complete sets of arcs. Then QR is bipar-
tite.

Proof. By Lemma 7.38, QR is graded with rank k. Let ρ be the
rank function. We color each equivalence class X ∈ Sn/R with the
color ρ(X) (mod 2). Since a cover edge connects two equivalence
classes of different ranks, no two equivalence classes with the same
color are adjacent in QR. Hence, QR is bipartite, as claimed.

230 Lattice congruences of the weak order

The following lemma shows that the condition above is also neces-
sary.

Lemma 7.41. Let R ∈ C∗n be a lattice congruence whose reduced
arc diagram contains an arc which is not in a complete set of arcs.
Then QR is not bipartite.

Proof. Let a, c ∈ [n] with a < c such that the reduced arc diagram
of R contains an arc connecting a and c but not Complete(a, c).
Further, we choose a, c such that c − a is minimized. We choose
L,M ⊆]a, c[that satisfy

(i) one is obtained from the other by removing an element b, and

(ii) the arc f(a, c, L) is in the reduced arc diagram while the arc
f(a, c,M) is not.

Note that (i) implies that L and M form a cover relation in the
partial order by inclusion of the subsets of]a, c[. A choice of L andM
that satisfy (i) and (ii) is then possible, because otherwise, the cover
graph of the above partial order contains at least two connected
components, one corresponding to the subsets L where f(a, c, L) is
in the reduced arc diagram of R and another corresponding to to
the subsets L where f(a, c, L) is not.

We assume that L = M ∪ {b}; the case where M = L ∪ {b} is
analogous. We consider two cases.

Case 1: f(a, c,M) ̸∈ FR. Let π be the permutation that contains
abc as a substring, where the entries in M are on the left of a, and
the entries in]a, c[\M are on the right of a. Consider the 6-cycle ob-
tained from π by permutating a, b, c in all possible ways. Due to the
forcing constraint as illustrated in Figure 7.2, since f(a, c,M) ̸∈ FR,
we can conclude that the edge corresponding to the fence f(a, c, L)
is the only bar in this cycle. Hence, the above 6-cycle results in a
5-cycle in QR. Consequently, QR is not bipartite.

7.2. Regular, vertex-transitive, and bipartite lattice quotients 231

Case 2: f(a, c,M) ∈ FR. f(a, c,M) then must be forced by an
arc f(d, e,N) in the reduced arc diagram of R, where a ≤ d <
e ≤ c. Because of the minimality of the difference c − a in the
choice of a, c, we conclude that the reduced arc diagram must have
Complete(d, e). In particular, it contains the arc f(d, e, L∩]d, e[).
However, this arc forces f(a, c, L), which contradicts the assumption
that f(a, c, L) is in the reduced arc diagram. Hence, this case cannot
occur.

The lemma then follows.

Corollary 7.40 and Lemma 7.41 straighforwardly imply the following
theorem.

Theorem 7.42. The bipartite quotient graphs Bn are obtained from
exactly those lattice congruences R in C∗n that contains only complete
sets of arcs in the reduced arc diagram.

From Theorem 7.42, we obtain the following corollary.

Corollary 7.43. The number of bipartite quotient graph Bn is |Bn| =
Cn−1, where Cn is the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

Proof. Using Theorem 7.42, we can count the number of bipartite
quotient graphs by counting the number of reduced arc diagrams
that have only complete set of arcs. A complete set of arc with
respect to two points a, b with a, b ∈ [n] and a < b can be represented
by the interval [a, b]. As the lattice congruence is essential, we must
have b−a ≤ 2. Further, the intervals representing the complete sets
of arcs should be non-nesting, by the assumption that the diagram
is reduced. Therefore, we need to count the sets of non-nesting
intervals of length at least 2 between 1 and n. This is exactly the
Catalan number Cn−1, as discussed in the proof of Corollary 7.26.

232 Lattice congruences of the weak order

In Remark 7.15, we state that Algorithm J can generate a Hamilton
cycle for a quotient graph, if the number of equivalence classes of
each restriction to Sk, for 2 ≤ k ≤ n − 1, is even. We show that
this condition is met for bipartite quotient graphs, and hence all
these graphs have a Hamilton cycle. In particular, we can count the
number of vertices in the bipartite quotient graphs in the following
lemma.

Lemma 7.44. For n ≥ 2, let R ∈ C∗n be a lattice congruence whose
reduced arc diagrams contain only complete sets of arcs with respect
to (a1, b1), . . . , (aℓ, bℓ) for some ℓ ≥ 0. Assume b1 < · · · < bℓ. Fur-
ther, define a0 = 0, b0 = 1 and bℓ+1 = n + 1. Then the number of
vertices of QR is

ℓ∏
i=0

(bi+1 − ai − 1)!

(bi − ai − 1)!
.

Proof. We prove this by induction on n. In the base case for n = 2,
QR is an edge and ℓ = 0. The number of vertices is 2, which agrees
with the formula above.

For the inductive step n > 2, we count the number of vertices of QR

by counting the minima of the corresponding equivalence classes.
Consider the restriction R∗ of R to Sn−1. By Lemma 7.9, we can
obtain the minima in Sn/R by adding the symbol n to each mini-
mum in Sn−1/R

∗, such that in the resulting permutation π, no de-
scents are bars (and hence we cannot transpose any descent to ob-
tain an equivalent permutation that is below π in the weak order).
By Lemma 7.37, this means that we can add n in front of every sym-
bol x, where for all i ∈ [ℓ], x ≤ ai < bi ≤ n does not hold. In other
words, x ∈ [aℓ + 1, n]. Therefore, for every minimum in Sn−1/R

∗,
we can obtain n− aℓ = bℓ+1 − aℓ − 1 minima in Sn/R, and no two
minima obtained this way are the same. Since the number of min-

7.2. Regular, vertex-transitive, and bipartite lattice quotients 233

ima in Sn/R is also the number of vertices in QR, we have

|V (QR)| = (bℓ+1 − aℓ − 1)|V (QR∗)|. (7.18)

If bℓ = n, the reduced arc diagram of R∗ has the complete sets
of arcs with respect to (a1, b1), . . . , (aℓ−1, bℓ−1). By the inductive
hypothesis, Q∗

R has
∏ℓ−1

i=0
(bi+1−ai−1)!
(bi−ai−1)! . Then combining with (7.18)

and noting that bℓ = n = bℓ+1 − 1, we have

V (QR) = (bℓ+1 − aℓ − 1)
ℓ−1∏
i=0

(bi+1 − ai − 1)!

(bi − ai − 1)!
=

ℓ∏
i=0

(bi+1 − ai − 1)!

(bi − ai − 1)!
.

If bℓ ̸= n, the reduced arc diagram of R∗ has the complete sets of arcs
with respect to (a1, b1), . . . , (aℓ, bℓ). By the inductive hypothesis, Q∗

R

has (n−aℓ−1)!
(bℓ−aℓ−1)!

∏ℓ−1
i=0

(bi+1−ai−1)!
(bi−ai−1)! . Combining with (7.18), we have

V (QR) = (bℓ+1 − aℓ − 1)
(n− aℓ − 1)!

(bℓ − aℓ − 1)!

ℓ−1∏
i=0

(bi+1 − ai − 1)!

(bi − ai − 1)!

=

ℓ∏
i=0

(bi+1 − ai − 1)!

(bi − ai − 1)!
.

In either case, we obtain the claimed count, and hence complete the
proof.

Corollary 7.45. Each bipartite quotient graph in Bn for n ≥ 3 has
a Hamilton cycle.

Proof. We first argue that all bipartite quotient graphs have an
even number of vertices. If the arc diagram of R is empty, the
number of vertices in QR is n!, which is even. Otherwise, let b be the
smallest number such that the reduced arc diagram of R contains
Complete(a, b) for some a. Since a ≤ b−2, b ≥ 3. By Lemma 7.44,

234 Lattice congruences of the weak order

the number of vertices is divisible by (b− 1)!, which is even. Hence,
all bipartite quotent graphs have an even number of vertices.

For a bipartite quotient graph QR in Bn for n ≥ 3, by Lemma 7.42,
it is easy to see that its restrictions to Sk, for 2 ≤ k ≤ n − 1 are
also bipartite. Hence, the number of equivalence classes in each of
these restrictions are even. By Remark 7.15, Algorithm J can then
generate a Hamilton cycle for QR. The corollary then follows.

7.3 Pattern-avoiding permutations and lat-
tice congruences

In Chapter 6, we investigated how Algorithm J can be used to gen-
erate different classes of pattern-avoiding permutations. In this sec-
tion, we briefly comment on the relation between pattern-avoiding
permutations and lattice congruences.

Recall the following theorem in Chapter 6:

Theorem 6.3 (restated). Let F be an arbitrary propositional for-
mula consisting of logical ANDs ∧, ORs ∨, and tame patterns as
variables, then Sn(F), n ≥ 0, is a hereditary sequence of zigzag lan-
guages. Consequently, all of these languages can be generated by
Algorithm J.

Given Theorems 6.3 and 7.12, it is natural to ask: What is the
relation between pattern-avoiding permutations and lattice congru-
ences? Can every lattice congruence of the weak order on Sn be
realized by an avoidance set of tame patterns? Conversely, does ev-
ery tame permutation pattern give rise to a lattice congruence? As
we discuss next, the answer to the latter two questions is “no” in
general, so pattern-avoiding permutations and lattice congruences
are essentially different concepts, except in a few special cases, cap-
tured by Theorem 7.47 below, and demonstrated by some relevant

7.3. Pattern-avoiding permutations and lattice congruences 235

examples listed after the theorem.

Firstly, it is clear that every lattice congruence of the weak order
on Sn can be described by an avoidance set of patterns of size n,
by avoiding all except one permutation from each equivalence class.
Note that in general we will not be able to improve on this ap-
proach considerably, as the number of lattice congruences grows
double-exponentially with n (recall Theorem 7.17), so exponentially
many avoidance patterns are needed to describe most lattice congru-
ences. Moreover, the avoidance patterns resulting from this method
will in general not be tame. For instance, consider the lattice con-
gruence shown in Figure 7.1, and consider the equivalence class
{2134, 2314, 2341}. It contains two patterns that are not tame, so
at least one of them has to be avoided following this approach (even
though we know that this particular congruence could be described
more compactly by avoiding the tame pattern 231).

Conversely, consider the tame pattern τ = 2413, and suppose we
want to realize all pattern-avoiding permutations in S5 as a lattice
congruence. Now consider the permutation π = 25314, which con-
tains the pattern τ . This means π must be in the same equivalence
class with at least one of the four permutations (π1, π2, π3, π4) =
(52314, 23514, 25134, 25341) that are obtained from π by adjacent
transpositions (recall Lemma 7.1). This means we have to use at
least one of the fences f(2, 5, ∅), f(3, 5, ∅), f(1, 3, {2}), or f(1, 4, {2, 3}),
respectively, in the forcing order. However, this forces the pairs
of permutations (25341, 52341), (23541, 25341), (52134, 52314), or
(52314, 52341), respectively, to also be in the same equivalence class
(separately for each pair). As none of those permutations contains
the pattern τ , we get a contradiction.

We say that a set of vincular patterns P is well-behaved, if each
pattern τ ∈ P of size k can be written as τ = Ak1B where AB
is a permutation of {2, . . . , k − 1}, and moreover any vincular pat-
tern obtained by permuting the entries within A and within B is

236 Lattice congruences of the weak order

also in P . Note that if A is nonempty, then τ = Ak1B is a tame
pattern. Here are some examples of well-behaved sets of vincu-
lar patterns (cf. 6.1): P1 = {231}, P2 = {2413}, P ′

2 = {3412},
P3 = {35124, 35142}, P ′

3 = {24513, 42513}. The set P1 is a spe-
cial case of the family of well-behaved sets of patterns Qk :=

{
τk1 |

τ permutation of {2, . . . , k − 1}
}

for k ≥ 3 (note that P1 = Q3).
Clearly, this property is preserved under taking unions, so P2 ∪ P ′

2,
P3 ∪ P ′

3, or P1 ∪ P3 are also well-behaved sets of patterns.

Theorem 7.47. Let P be a well-behaved set of vincular patterns.
For every τ = a1 · · · ak ∈ P , consider the position i of the largest
value k in τ , i.e., ai ai+1 = k1, and consider the rewriting rule

x1 . . ._xi−1_xixi+1_xi+2_ . . ._xk_
≡ _x1_ . . ._xi−1_xi+1xi_xi+2_ . . ._xk_,

(7.19)

where the values x1, . . . , xk appear in the same relative order as in τ ,
and which therefore transposes the largest value xi and the smallest
value xi+1 in this subpermutation. Combined for all τ ∈ P , these
rewriting rules define a lattice congruence of the weak order on Sn

for any n ≥ 1. Moreover, every equivalence class contains exactly
one permutation that avoids every τ ∈ P , which is the minimum of
its equivalence class.

Theorem 7.47 follows from [141, Theorem 9.3]. Here we provide a
short independent proof.

Proof. We first show that the set of all pairs of permutations π ⋗ ρ
in the weak order on Sn that match one of the rewriting rules (7.19)
given by the patterns τ ∈ P form a downset of fences in the forcing
order.

So suppose we are given π ⋗ ρ in Sn of the form

π = _x1_ . . ._xi−1_xixi+1_xi+2_ . . ._xk_,

ρ = _x1_ . . ._xi−1_xi+1xi_xi+2_ . . ._xk_,

7.3. Pattern-avoiding permutations and lattice congruences 237

where the values x1, . . . , xk appear in the same relative order as in
one of the patterns τ ∈ P . Then we have π ≡ ρ by (7.19). Further-
more, the cover edge ρ ⋖ π is contained in the fence f(xi+1, xi, L),
where L is the set of all values between xi+1 and xi that appear to
the left of xi and xi+1 in π and ρ (in particular, {x1, . . . , xi−1} ⊆ L).
Let F≡ be the union of all those fences, taken over all choices of π
and ρ and all patterns τ ∈ P .

Consider a fence f(a, b,M) such that f(a, b,M) ≺ f(xi+1, xi, L),
i.e., we have a ≤ xi+1, b ≥ xi, L = M ∩]xi+1, xi[, in particular
x1, . . . , xi−1 ∈ M and xi+2, . . . , xk /∈ M . Consider the two permu-
tations π′ ⋗ ρ′ defined by

π′ := x1 . . . xi−1Abaxi+2 . . . xk B,

ρ′ := x1 . . . xi−1Aa b xi+2 . . . xk B,

where A and B are the increasing sequences of the elements in
M \ {x1, . . . , xi−1} and [n] \ (M ∪ {xi+2, . . . , xk, a, b}), respectively.
Then the edge ρ′ ⋖ π′ is in f(a, b,M). Furthermore, as a ≤ xi+1 =
min{x1, . . . , xk} and b ≥ xi = max{x1, . . . , xk}, the subpermuta-
tion x1 · · ·xi−1 b a xi+2 · · ·xk of π′ is a match of the pattern τ and
hence π′ ≡ ρ′ by the corresponding rewriting rule, which shows that
f(a, b,M) ∈ F≡. It follows that F≡ is a downset of fences in the
forcing order, i.e., F≡ defines a lattice congruence of the weak order
on Sn (recall Theorem 7.3).

It remains to show that any two permutations connected by an edge
in one of the fences of F≡ are related by one of our rewriting rules.
For this consider a fence f(a, b, L) from F≡. By the definition above,
there exists a sequence (x1, . . . , xk) of numbers from [n] and a pat-
tern τ = a1 · · · ak ∈ P with the vincular pair at position (i, i+1), i.e.,
ai ai+1 = k1, such that x1, . . . , xk appear in the same relative order
as in τ , a = xi+1, b = xi, x1, . . . , xi−1 ∈ L, and xi+2, . . . , xk /∈ L.
Hence, for any edge ρ⋖π in f(a, b, L), we have that (xi+1, xi) = (a, b)
is the pair transposed along this edge, and the values x1, . . . , xi−1

238 Lattice congruences of the weak order

appear to the left of this pair (not necessarily in this order), and the
values xi+1, . . . , xk appear to the right of this pair (not necessarily
in this order), in both ρ and π. As P is well-behaved, P contains all
the patterns obtained from τ by permuting a1, . . . , ai−1 to the left
of ai and ai+2, . . . , ak to the right of ai+1, implying that π matches a
pattern from P , and hence there is a rewriting rule witnessing that
π ≡ ρ.

The last part of the theorem follows by interpreting the rewrit-
ing rules as a downward orientation of all bars of the lattice con-
gruence ≡. Note here that the rule (7.19) removes the inversion
(xi+1, xi), so each equivalence class forms a directed acyclic graph,
and the unique sink in it, which must be the minimum, is the per-
mutation that avoids all patterns in P .

Applying Theorem 7.47 to the well-behaved sets of patterns men-
tioned before, P1 = {231} yields the Tamari lattice via the sylvester
congruence _b_ca_ ≡ _b_ac_ where a < b < c, with 231-avoiding
permutations as the minima of the equivalence classes; see Figure 7.1
and note that Sn(231) = Sn(231). More generally, for the set of
patterns Qk defined before, we obtain the increasing flip lattice on
acyclic twists studied in [131]. Moreover, P2 ∪ P ′

2 = {2413, 3412}
yields the rotation lattice on diagonal rectangulations [113, 79, 43],
with twisted Baxter permutations as minima. Lastly, P3 ∪ P ′

3 =
{35124, 35142, 24513, 42513} yields the lattice on generic rectangu-
lations [144], with 2-clumped permutations as minima.

7.4 Open questions

We conclude with the following open questions:

� We showed that every quotient graph has a Hamilton path, and
it is natural to ask whether it also has Hamilton cycle for n ≥
3; recall Remark 7.15. We conjecture that this is the case, and

7.4. Open questions 239

we verified this conjecture with computer help for n ≤ 5. The
proof technique described in [96] for the associahedron might be
applicable for larger classes of quotientopes.

� Given our results in Table 7.9, it seems challenging to character-
ize the non-isomorphic quotient graphs Q′

n by their arc diagrams,
and to count them; recall the examples from Figure 7.11. In par-
ticular, we wonder whether the sequence |Q′

n| grows more than ex-
ponentially with n, possibly even double-exponentially like |Qn|?

� It would also be interesting to provide a lower bound on the num-
ber of non-isomorphic regular graphs R′

n that improves upon the
trivial bound |R′

n| ≥ |V ′n|, which comes from number partitions.
In the proof of Theorem 7.34, we can replace any factor Sai+1,
ai ≥ 3, coming from a partition with a part ai by a prime regular
quotient graph. E.g., for n = 4 there are 7 non-isomorphic prime
regular graphs (10 regular, 4 of which vertex-transitive, 3 of which
are products). This technique could be improved, if we produce
non-isomorphic prime regular graphs for larger part sizes ai. To
this end, it seems worthwile to study the set P ′

n ⊆ R′
n of non-

isomorphic prime regular graphs. Probably most arc diagrams
with a single simple arc are prime graphs, which would show that
|P ′

n| ≥ Θ(n), and this would improve the lower bound for |R′
n|.

� Similarly, the count of non-isomorphic bipartite graphs B′n is still
open. The numbers of edges and vertices in a bipartite graph
(Remark 7.39 and Lemma 7.44) can provide a lower bound. It
is also unclear how to characterize quotient graphs beyond two-
colorability or whether all quotient graphs are colorable with a
constant number of colors. The latter seems difficult, since this
question is still open even for associahedra. The best known upper
bound for associahedra is O(log(n)) number of colors [25].

� Lastly, it would also be interesting to investigate which of our re-
sults extend to lattice quotients of the weak order on finite Cox-
eter groups other than the symmetric group Sn (see [143, 146]).

240 Lattice congruences of the weak order

Bibliography

[1] S. Aaronson. The computational expressiveness of a model
train set: A paperlet. https://scottaaronson.blog/?p=
5402, 2021. Accessed: 6 July 2022.

[2] E. Ackerman, G. Barequet, and R. Y. Pinter. A bijection be-
tween permutations and floorplans, and its applications. Dis-
crete Appl. Math., 154(12):1674–1684, 2006. doi:10.1016/j.
dam.2006.03.018.

[3] O. Aichholzer, M. K. Chiu, H. P. Hoang, Y. Maus, B. Vogten-
huber, and A. Weinberger. Gioan’s theorem for complete bi-
partite graphs. In Abstracts 38th European Workshop on Com-
putational Geometry, pages 31:1–31:6, 2022.

[4] M. Albert and R. Brignall. 2 × 2 monotone grid classes are
finitely based. Discrete Math. Theor. Comput. Sci., 18(2):Pa-
per No. 1, 10, 2016.

[5] M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and
V. Vatter. Geometric grid classes of permutations. Trans.
Amer. Math. Soc., 365(11):5859–5881, 2013. doi:10.1090/
S0002-9947-2013-05804-7.

241

https://scottaaronson.blog/?p=5402
https://scottaaronson.blog/?p=5402
https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1090/S0002-9947-2013-05804-7
https://doi.org/10.1090/S0002-9947-2013-05804-7

242 BIBLIOGRAPHY

[6] R. E. L. Aldred, S. Bau, D. A. Holton, and B. D.
McKay. Nonhamiltonian 3-connected cubic planar graphs.
SIAM J. Discrete Math., 13(1):25–32, 2000. doi:10.1137/
S0895480198348665.

[7] J. Ani, E. D. Demaine, D. Hendrickson, and J. Lynch.
Trains, games, and complexity: 0/1/2-player motion planning
through input/output gadgets. In P. Mutzel, M. S. Rahman,
and Slamin, editors,WALCOM: Algorithms and Computation,
pages 187–198, Cham, 2022. Springer International Publish-
ing.

[8] A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour,
and R. Y. Pinter. Orders induced by segments in floorplans
and (2-14-3, 3-41-2)-avoiding permutations. Electron. J. Com-
bin., 20(2):Paper 35, 43 pp., 2013.

[9] M. D. Atkinson. Permutations which are the union of an in-
creasing and a decreasing subsequence. Electron. J. Com-
bin., 5:Research paper 6, 13 pp., 1998. URL: http://www.
combinatorics.org/Volume_5/Abstracts/v5i1r6.html.

[10] D. Auger, P. Coucheney, and L. Duhazé. Polynomial
Time Algorithm for ARRIVAL on Tree-Like Multigraphs.
In S. Szeider, R. Ganian, and A. Silva, editors, 47th
International Symposium on Mathematical Foundations of
Computer Science (MFCS 2022), volume 241 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
12:1–12:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. URL: https://drops.
dagstuhl.de/opus/volltexte/2022/16810, doi:10.4230/
LIPIcs.MFCS.2022.12.

[11] S. Avgustinovich, S. Kitaev, V. N. Potapov, and V. Va-
jnovszki. Gray coding cubic planar maps. Theoret. Comput.
Sci., 616:59–69, 2016. doi:10.1016/j.tcs.2015.12.013.

https://doi.org/10.1137/S0895480198348665
https://doi.org/10.1137/S0895480198348665
http://www.combinatorics.org/Volume_5/Abstracts/v5i1r6.html
http://www.combinatorics.org/Volume_5/Abstracts/v5i1r6.html
https://drops.dagstuhl.de/opus/volltexte/2022/16810
https://drops.dagstuhl.de/opus/volltexte/2022/16810
https://doi.org/10.4230/LIPIcs.MFCS.2022.12
https://doi.org/10.4230/LIPIcs.MFCS.2022.12
https://doi.org/10.1016/j.tcs.2015.12.013

BIBLIOGRAPHY 243

[12] S. Avgustinovich, S. Kitaev, and A. Valyuzhenich. Avoid-
ance of boxed mesh patterns on permutations. Discrete Appl.
Math., 161(1-2):43–51, 2013. doi:10.1016/j.dam.2012.08.
015.

[13] D. Avis and K. Fukuda. Reverse search for enumeration. Dis-
crete Appl. Math., 65(1-3):21–46, 1996. First International
Colloquium on Graphs and Optimization (GOI), 1992 (Gri-
mentz). doi:10.1016/0166-218X(95)00026-N.

[14] D. Avis and D. A. Hoang. On reconfiguration graph
of independent sets under token sliding. arXiv preprint
arXiv:2203.16861, 2022.

[15] D. Avis and M. Newborn. On pop-stacks in series. Utilitas
Math., 19:129–140, 1981.

[16] E. Babson and E. Steingrímsson. Generalized permutation
patterns and a classification of the Mahonian statistics. Sém.
Lothar. Combin., 44:Art. B44b, 18, 2000.

[17] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Per-
gola. Exhaustive generation of combinatorial objects by
ECO. Acta Inform., 40(8):585–602, 2004. doi:10.1007/
s00236-004-0139-x.

[18] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a
methodology for the enumeration of combinatorial objects. J.
Differ. Equations Appl., 5(4-5):435–490, 1999. doi:10.1080/
10236199908808200.

[19] J.-L. Baril. Efficient generating algorithm for permuta-
tions with a fixed number of excedances. Pure Math. Appl.
(PU.M.A.), 19(2-3):61–69, 2008.

https://doi.org/10.1016/j.dam.2012.08.015
https://doi.org/10.1016/j.dam.2012.08.015
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1007/s00236-004-0139-x
https://doi.org/10.1007/s00236-004-0139-x
https://doi.org/10.1080/10236199908808200
https://doi.org/10.1080/10236199908808200

244 BIBLIOGRAPHY

[20] J.-L. Baril. More restrictive Gray codes for some classes
of pattern avoiding permutations. Inform. Process. Lett.,
109(14):799–804, 2009. doi:10.1016/j.ipl.2009.03.025.

[21] J.-L. Baril. Classical sequences revisited with permutations
avoiding dotted pattern. Electron. J. Combin., 18(1):Paper
178, 18 pp., 2011.

[22] D. W. Barnette. Conjecture 5. In Recent progress in combina-
torics. Proceedings of the Third Waterloo Conference on Com-
binatorics, May 1968. Edited by W. T. Tutte, pages xiv+347.
Academic Press, New York-London, 1969.

[23] J. J. Bentley. Fast algorithms for geometric traveling salesman
problems. ORSA J. Comput., 4(4):387–411, 1992. doi:10.
1287/ijoc.4.4.387.

[24] A. Bernini, E. Grazzini, E. Pergola, and R. Pinzani. A
general exhaustive generation algorithm for Gray struc-
tures. Acta Inform., 44(5):361–376, 2007. doi:10.1007/
s00236-007-0053-0.

[25] L. A. Berry, B. Reed, A. Scott, and D. R. Wood. A logarithmic
bound for the chromatic number of the associahedron. arXiv
preprint arXiv:1811.08972, 2018.

[26] S. Bhyravarapu, T. A. Hartmann, H. P. Hoang, S. Kalyana-
sundaram, and I. V. Reddy. Conflict-free coloring: Graphs
of bounded clique width and intersection graphs, 2021.
URL: https://arxiv.org/abs/2105.08693, doi:10.48550/
ARXIV.2105.08693.

[27] S. Billey. Permutation patterns for k-vexillary per-
mutations, 2013. https://sites.math.washington.edu/
~billey/papers/k.vex.html.

https://doi.org/10.1016/j.ipl.2009.03.025
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1007/s00236-007-0053-0
https://doi.org/10.1007/s00236-007-0053-0
https://arxiv.org/abs/2105.08693
https://doi.org/10.48550/ARXIV.2105.08693
https://doi.org/10.48550/ARXIV.2105.08693
https://sites.math.washington.edu/~billey/papers/k.vex.html
https://sites.math.washington.edu/~billey/papers/k.vex.html

BIBLIOGRAPHY 245

[28] S. Billey and B. Pawlowski. Permutation patterns, Stan-
ley symmetric functions, and generalized Specht modules. J.
Combin. Theory Ser. A, 127:85–120, 2014. doi:10.1016/j.
jcta.2014.05.003.

[29] A. Biniaz, K. Jain, A. Lubiw, Z. Masárová, T. Miltzow,
D. Mondal, A. M. Naredla, J. Tkadlec, and A. Turcotte. Token
swapping on trees. arXiv preprint arXiv:1903.06981, 2019.

[30] J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient gen-
eration of the binary reflected Gray code and its applications.
Comm. ACM, 19(9):517–521, 1976. doi:10.1145/360336.
360343.

[31] M. Bóna. Exact enumeration of 1342-avoiding permutations:
a close link with labeled trees and planar maps. J. Com-
bin. Theory Ser. A, 80(2):257–272, 1997. doi:10.1006/jcta.
1997.2800.

[32] M. Bóna. Combinatorics of permutations. Discrete Mathe-
matics and its Applications (Boca Raton). CRC Press, Boca
Raton, FL, second edition, 2012. With a foreword by Richard
Stanley. doi:10.1201/b12210.

[33] M. Bonamy and N. Bousquet. Token sliding on chordal
graphs. In Graph-theoretic concepts in computer sci-
ence, volume 10520 of Lecture Notes in Comput. Sci.,
pages 127–139. Springer, Cham, 2017. URL: https://
doi.org/10.1007/978-3-319-68705-6_10, doi:10.1007/
978-3-319-68705-6_10.

[34] B. Bond and L. Levine. Abelian networks I. Foundations and
examples. SIAM J. Discrete Math., 30(2):856–874, 2016. doi:
10.1137/15M1030984.

https://doi.org/10.1016/j.jcta.2014.05.003
https://doi.org/10.1016/j.jcta.2014.05.003
https://doi.org/10.1145/360336.360343
https://doi.org/10.1145/360336.360343
https://doi.org/10.1006/jcta.1997.2800
https://doi.org/10.1006/jcta.1997.2800
https://doi.org/10.1201/b12210
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1137/15M1030984
https://doi.org/10.1137/15M1030984

246 BIBLIOGRAPHY

[35] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for
permutations. Inform. Process. Lett., 65(5):277–283, 1998.
doi:10.1016/S0020-0190(97)00209-3.

[36] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev.
(2+2)-free posets, ascent sequences and pattern avoiding per-
mutations. J. Combin. Theory Ser. A, 117(7):884–909, 2010.
doi:10.1016/j.jcta.2009.12.007.

[37] P. Brändén and A. Claesson. Mesh patterns and the expan-
sion of permutation statistics as sums of permutation patterns.
Electron. J. Combin., 18(2):Paper 5, 14 pp., 2011.

[38] R. Brignall, M. Engen, and V. Vatter. A counterexam-
ple regarding labelled well-quasi-ordering. Graphs Combin.,
34(6):1395–1409, 2018. doi:10.1007/s00373-018-1962-0.

[39] A. Burstein and I. Lankham. Restricted patience sorting
and barred pattern avoidance. In Permutation patterns, vol-
ume 376 of London Math. Soc. Lecture Note Ser., pages 233–
257. Cambridge Univ. Press, Cambridge, 2010. doi:10.1017/
CBO9780511902499.013.

[40] K. Bérczi, H. P. Hoang, and L. Tóthmérész. On approximating
the rank of graph divisors, 2022. doi:10.48550/ARXIV.2206.
09662.

[41] J. Cardinal and S. Felsner. Topological drawings of complete
bipartite graphs. J. Comput. Geom., 9(1):213–246, 2018.

[42] J. Cardinal, A. Merino, and T. Mütze. Combinatorial genera-
tion via permutation languages. IV. Elimination trees. https:
//arxiv.org/abs/2106.16204, 2021.

[43] J. Cardinal, V. Sacristán, and R. I. Silveira. A note on flips
in diagonal rectangulations. Discrete Math. Theor. Comput.
Sci., 20(2):Paper No. 14, 22, 2018.

https://doi.org/10.1016/S0020-0190(97)00209-3
https://doi.org/10.1016/j.jcta.2009.12.007
https://doi.org/10.1007/s00373-018-1962-0
https://doi.org/10.1017/CBO9780511902499.013
https://doi.org/10.1017/CBO9780511902499.013
https://doi.org/10.48550/ARXIV.2206.09662
https://doi.org/10.48550/ARXIV.2206.09662
https://arxiv.org/abs/2106.16204
https://arxiv.org/abs/2106.16204

BIBLIOGRAPHY 247

[44] C. Ceballos, F. Santos, and G. M. Ziegler. Many non-
equivalent realizations of the associahedron. Combinatorica,
35(5):513–551, 2015. doi:10.1007/s00493-014-2959-9.

[45] I. Chajda and V. Snášel. Congruences in ordered sets. Math.
Bohem., 123(1):95–100, 1998.

[46] A. Chalcraft and M. Greene. Train sets. Eureka, 53:5–12, 1994.

[47] G. Chatel and V. Pilaud. Cambrian Hopf algebras. Adv.
Math., 311:598–633, 2017. doi:10.1016/j.aim.2017.02.
027.

[48] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A
fixed-parameter algorithm for the directed feedback vertex set
problem. J. ACM, 55(5):Art. 21, 19, 2008.

[49] K. L. Chung and W. Feller. On fluctuations in coin-tossing.
Proceedings of the National Academy of Sciences, 35(10):605–
608, 1949.

[50] A. Claesson and S. Kitaev. Classification of bijections be-
tween 321- and 132-avoiding permutations. In 20th Annual
International Conference on Formal Power Series and Alge-
braic Combinatorics (FPSAC 2008), Discrete Math. Theor.
Comput. Sci. Proc., AJ, pages 495–506. Assoc. Discrete Math.
Theor. Comput. Sci., Nancy, 2008.

[51] A. Claesson, S. Kitaev, and E. Steingrímsson. Decompositions
and statistics for β(1, 0)-trees and nonseparable permutations.
Adv. in Appl. Math., 42(3):313–328, 2009. doi:10.1016/j.
aam.2008.09.001.

[52] A. Condon. The complexity of stochastic games. Information
and Computation, 96(2):203 – 224, 1992.

[53] J. Cooper, B. Doerr, J. Spencer, and G. Tardos. Determinis-
tic random walks on the integers. European Journal of Com-

https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1016/j.aim.2017.02.027
https://doi.org/10.1016/j.aim.2017.02.027
https://doi.org/10.1016/j.aam.2008.09.001
https://doi.org/10.1016/j.aam.2008.09.001

248 BIBLIOGRAPHY

binatorics, 28(8):2072 – 2090, 2007. EuroComb ’05 - Combi-
natorics, Graph Theory and Applications.

[54] C. Dang, Q. Qi, and Y. Ye. Computations and complexities of
Tarski’s fixed points and supermodular games, 2020. arXiv:
2005.09836.

[55] G. B. Dantzig. Maximization of a linear function of variables
subject to linear inequalities. Activity analysis of production
and allocation, 13:339–347, 1951.

[56] M. de Berg, B. M. P. Jansen, and D. Mukherjee. Independent-
set reconfiguration thresholds of hereditary graph classes. Dis-
crete Appl. Math., 250:165–182, 2018. doi:10.1016/j.dam.
2018.05.029.

[57] L. Demonet, O. Iyama, N. Reading, I. Reiten, and H. Thomas.
Lattice theory of torsion classes. To appear in Trans. Amer.
Math. Soc.; preprint available at https://arxiv.org/abs/
1711.01785, 2018.

[58] E. Deutsch, E. Munarini, and S. Rinaldi. Skew Dyck paths.
J. Statist. Plann. Inference, 140(8):2191–2203, 2010. doi:
10.1016/j.jspi.2010.01.015.

[59] P. Diaconis and R. Graham. Magical mathematics. Prince-
ton University Press, Princeton, NJ, 2012. The mathemati-
cal ideas that animate great magic tricks, With a foreword by
Martin Gardner.

[60] P. T. Do, D. Rossin, and T. T. H. Tran. Permutations weakly
avoiding barred patterns and combinatorial bijections to gen-
eralized Dyck and Motzkin paths. Discrete Math., 320:40–50,
2014. doi:10.1016/j.disc.2013.12.007.

[61] P. T. Do, T. T. H. Tran, and V. Vajnovszki. Ex-
haustive generation for permutations avoiding (colored)

http://arxiv.org/abs/2005.09836
http://arxiv.org/abs/2005.09836
https://doi.org/10.1016/j.dam.2018.05.029
https://doi.org/10.1016/j.dam.2018.05.029
https://arxiv.org/abs/1711.01785
https://arxiv.org/abs/1711.01785
https://doi.org/10.1016/j.jspi.2010.01.015
https://doi.org/10.1016/j.jspi.2010.01.015
https://doi.org/10.1016/j.disc.2013.12.007

BIBLIOGRAPHY 249

regular sets of patterns. Discrete Applied Mathe-
matics, 2019. URL: http://www.sciencedirect.com/
science/article/pii/S0166218X19302240, doi:10.1016/
j.dam.2019.04.014.

[62] J. Dohrau, B. Gärtner, M. Kohler, J. Matoušek, and E. Welzl.
ARRIVAL: a zero-player graph game in NP ∩ coNP . In
A journey through discrete mathematics, pages 367–374.
Springer, Cham, 2017.

[63] G. Dorfer. Lattice-extensions by means of convex sublattices.
In Contributions to general algebra, 9 (Linz, 1994), pages 127–
132. Hölder-Pichler-Tempsky, Vienna, 1995.

[64] W. M. B. Dukes, M. F. Flanagan, T. Mansour, and V. Va-
jnovszki. Combinatorial Gray codes for classes of pattern
avoiding permutations. Theoret. Comput. Sci., 396(1-3):35–
49, 2008. doi:10.1016/j.tcs.2007.12.002.

[65] S. Dulucq, S. Gire, and O. Guibert. A combinatorial proof
of J. West’s conjecture. Discrete Math., 187(1-3):71–96, 1998.
doi:10.1016/S0012-365X(98)80005-8.

[66] S. Dulucq, S. Gire, and J. West. Permutations with forbidden
subsequences and nonseparable planar maps. In Proceedings
of the 5th Conference on Formal Power Series and Algebraic
Combinatorics (Florence, 1993), volume 153, pages 85–103,
1996. doi:10.1016/0012-365X(95)00130-O.

[67] M. Elder. Permutations generated by a stack of depth 2 and an
infinite stack in series. Electron. J. Combin., 13(1):Research
Paper 68, 12 pp., 2006. URL: http://www.combinatorics.
org/Volume_13/Abstracts/v13i1r68.html.

[68] S. Elizalde. Generating trees for permutations avoiding gen-
eralized patterns. Ann. Comb., 11(3-4):435–458, 2007. doi:
10.1007/s00026-007-0328-8.

http://www.sciencedirect.com/science/article/pii/S0166218X19302240
http://www.sciencedirect.com/science/article/pii/S0166218X19302240
https://doi.org/10.1016/j.dam.2019.04.014
https://doi.org/10.1016/j.dam.2019.04.014
https://doi.org/10.1016/j.tcs.2007.12.002
https://doi.org/10.1016/S0012-365X(98)80005-8
https://doi.org/10.1016/0012-365X(95)00130-O
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r68.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r68.html
https://doi.org/10.1007/s00026-007-0328-8
https://doi.org/10.1007/s00026-007-0328-8

250 BIBLIOGRAPHY

[69] S. Elizalde. The X-class and almost-increasing permuta-
tions. Ann. Comb., 15(1):51–68, 2011. doi:10.1007/
s00026-011-0082-9.

[70] K. Etessami, C. Papadimitriou, A. Rubinstein, and M. Yan-
nakakis. Tarski’s Theorem, Supermodular Games, and the
Complexity of Equilibria. In T. Vidick, editor, 11th Inno-
vations in Theoretical Computer Science Conference (ITCS
2020), volume 151 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 18:1–18:19, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ITCS.2020.18.

[71] J. Fearnley, M. Gairing, M. Mnich, and R. Savani. Reachabil-
ity switching games. In 45th International Colloquium on Au-
tomata, Languages, and Programming, volume 107 of LIPIcs.
Leibniz Int. Proc. Inform., pages Art. No. 124, 14. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

[72] J. Fearnley, M. Gairing, M. Mnich, and R. Savani. Reachabil-
ity switching games. Log. Methods Comput. Sci., 17(2):Paper
No. 10, 29, 2021.

[73] J. Fearnley, S. Gordon, R. Mehta, and R. Savani. Unique end
of potential line. J. Comput. System Sci., 114:1–35, 2020.

[74] J. Fearnley, D. Pálvölgyi, and R. Savani. A faster algorithm
for finding tarski fixed points. ACM Trans. Algorithms, mar
2022. Just Accepted. doi:10.1145/3524044.

[75] A. Fink, K. Mészáros, and A. S. Dizier. Zero-one Schubert
polynomials. Math. Z., 297(3-4):1023–1042, 2021. doi:10.
1007/s00209-020-02544-2.

[76] B. Gärtner, T. D. Hansen, P. Hubáček, K. Král, H. Mosaad,
and V. Slívová. ARRIVAL: next stop in CLS. In 45th In-
ternational Colloquium on Automata, Languages, and Pro-

https://doi.org/10.1007/s00026-011-0082-9
https://doi.org/10.1007/s00026-011-0082-9
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.1145/3524044
https://doi.org/10.1007/s00209-020-02544-2
https://doi.org/10.1007/s00209-020-02544-2

BIBLIOGRAPHY 251

gramming, volume 107 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 60, 13. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2018.

[77] B. Gärtner, S. Haslebacher, and H. P. Hoang. A subexpo-
nential algorithm for ARRIVAL. In 48th International Col-
loquium on Automata, Languages, and Programming, volume
198 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 69,
14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.

[78] C. Ge. The multi-run procedure in ARRIVAL. Bachelor’s
Thesis, ETH Zurich, 2021.

[79] S. Giraudo. Algebraic and combinatorial structures on pairs
of twin binary trees. J. Algebra, 360:115–157, 2012. doi:
10.1016/j.jalgebra.2012.03.020.

[80] I. P. Goulden and J. West. Raney paths and a combinato-
rial relationship between rooted nonseparable planar maps and
two-stack-sortable permutations. J. Combin. Theory Ser. A,
75(2):220–242, 1996. doi:10.1006/jcta.1996.0074.

[81] F. Gray. Pulse code communication, 1953. March 17, 1953
(filed Nov. 1947). U.S. Patent 2,632,058.

[82] B. Grünbaum. Polytopes, graphs, and complexes. Bull.
Amer. Math. Soc., 76:1131–1201, 1970. doi:10.1090/
S0002-9904-1970-12601-5.

[83] E. Hartung, H. Hoang, T. Mütze, and A. Williams. Com-
binatorial generation via permutation languages. I. Fun-
damentals. Trans. Amer. Math. Soc., 375(4):2255–2291,
2022. URL: https://0-doi-org.pugwash.lib.warwick.ac.
uk/10.1090/tran/8199, doi:10.1090/tran/8199.

[84] E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combi-
natorial generation via permutation languages. In Proceedings

https://doi.org/10.1016/j.jalgebra.2012.03.020
https://doi.org/10.1016/j.jalgebra.2012.03.020
https://doi.org/10.1006/jcta.1996.0074
https://doi.org/10.1090/S0002-9904-1970-12601-5
https://doi.org/10.1090/S0002-9904-1970-12601-5
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/tran/8199
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/tran/8199
https://doi.org/10.1090/tran/8199

252 BIBLIOGRAPHY

of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
pages 1214–1225. SIAM, Philadelphia, PA, 2020.

[85] S. Haslebacher. Restrictions on ARRIVAL. Bachelor’s Thesis,
ETH Zurich, 2020.

[86] R. A. Hearn and E. D. Demaine. PSPACE-completeness of
sliding-block puzzles and other problems through the nonde-
terministic constraint logic model of computation. Theoret.
Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.
2005.05.008.

[87] R. A. Hearn and E. D. Demaine. Games, puzzles, and com-
putation. CRC Press, 2009.

[88] H. P. Hoang, S. Lendl, and L. Wulf. Assistance and inter-
diction problems on interval graphs. CoRR, abs/2107.14550,
2021. arXiv:2107.14550.

[89] H. P. Hoang and T. Mütze. Combinatorial generation via per-
mutation languages. II. Lattice congruences. Israel J. Math.,
244(1):359–417, 2021. URL: https://0-doi-org.pugwash.
lib.warwick.ac.uk/10.1007/s11856-021-2186-1,
doi:10.1007/s11856-021-2186-1.

[90] C. Hohlweg and C. E. M. C. Lange. Realizations of the associa-
hedron and cyclohedron. Discrete Comput. Geom., 37(4):517–
543, 2007. doi:10.1007/s00454-007-1319-6.

[91] B. Holdsworth and C. Woods. Digital logic design. Elsevier,
2002.

[92] A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp,
and D. B. Wilson. Chip-Firing and Rotor-Routing on Directed
Graphs, pages 331–364. Birkhäuser Basel, Basel, 2008. doi:
10.1007/978-3-7643-8786-0_17.

https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2005.05.008
http://arxiv.org/abs/2107.14550
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1007/s11856-021-2186-1
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1007/s11856-021-2186-1
https://doi.org/10.1007/s11856-021-2186-1
https://doi.org/10.1007/s00454-007-1319-6
https://doi.org/10.1007/978-3-7643-8786-0_17
https://doi.org/10.1007/978-3-7643-8786-0_17

BIBLIOGRAPHY 253

[93] A. E. Holroyd and J. Propp. Rotor walks and Markov chains.
In Algorithmic probability and combinatorics, volume 520 of
Contemp. Math., pages 105–126. Amer. Math. Soc., Provi-
dence, RI, 2010.

[94] S. Huczynska and V. Vatter. Grid classes and the
Fibonacci dichotomy for restricted permutations. Elec-
tron. J. Combin., 13(1):Research Paper 54, 14 pp.,
2006. URL: http://www.combinatorics.org/Volume_13/
Abstracts/v13i1r54.html.

[95] B. Hujter, V. Kiss, and L. Tóthmérész. On the complexity of
the chip-firing reachability problem. Proc. Amer. Math. Soc.,
145(8):3343–3356, 2017. doi:10.1090/proc/13498.

[96] F. Hurtado and M. Noy. Graph of triangulations of a con-
vex polygon and tree of triangulations. Comput. Geom.,
13(3):179–188, 1999. doi:10.1016/S0925-7721(99)00016-4.

[97] W. Imrich and S. Klavžar. Product graphs. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-
Interscience, New York, 2000. Structure and recognition, With
a foreword by Peter Winkler.

[98] M. Jerrum. Counting, sampling and integrating: algo-
rithms and complexity. Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, 2003. doi:10.1007/
978-3-0348-8005-3.

[99] S. Johnson. Generation of permutations by adjacent transpo-
sition. Math. Comp., 17:282–285, 1963.

[100] M. Jurdziński. Deciding the winner in parity games is in UP ∩
co-UP. Information Processing Letters, 68(3):119 – 124, 1998.

http://www.combinatorics.org/Volume_13/Abstracts/v13i1r54.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r54.html
https://doi.org/10.1090/proc/13498
https://doi.org/10.1016/S0925-7721(99)00016-4
https://doi.org/10.1007/978-3-0348-8005-3
https://doi.org/10.1007/978-3-0348-8005-3

254 BIBLIOGRAPHY

[101] M. Kamiński, P. Medvedev, and M. Milanič. Complexity of
independent set reconfigurability problems. Theoret. Comput.
Sci., 439:9–15, 2012. doi:10.1016/j.tcs.2012.03.004.

[102] R. M. Karp. Reducibility among combinatorial problems. In
Complexity of computer computations (Proc. Sympos., IBM
Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 85–103, 1972.

[103] C. S. Karthik. Did the train reach its destination: the com-
plexity of finding a witness. Inform. Process. Lett., 121:17–21,
2017.

[104] R. Kaye. A Gray code for set partitions. Information Process-
ing Lett., 5(6):171–173, 1976.

[105] S. Kitaev. Partially ordered generalized patterns. Discrete
Math., 298(1-3):212–229, 2005. doi:10.1016/j.disc.2004.
03.017.

[106] S. Kitaev. Patterns in permutations and words. Monographs
in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg, 2011. With a foreword by Jeffrey B. Remmel.
doi:10.1007/978-3-642-17333-2.

[107] D. E. Knuth. The Art of Computer Programming. Vol. 3.
Addison-Wesley, Reading, MA, 1998. Sorting and searching,
Second edition [of MR0445948].

[108] D. E. Knuth. The Art of Computer Programming. Vol. 4A.
Combinatorial algorithms. Part 1. Addison-Wesley, Upper
Saddle River, NJ, 2011.

[109] M. Kolibiar. Congruence relations and direct decompositions
of ordered sets. Acta Sci. Math. (Szeged), 51(1-2):129–135,
1987.

https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.disc.2004.03.017
https://doi.org/10.1016/j.disc.2004.03.017
https://doi.org/10.1007/978-3-642-17333-2

BIBLIOGRAPHY 255

[110] C. Lange and V. Pilaud. Associahedra via spines. Combinator-
ica, 38(2):443–486, 2018. doi:10.1007/s00493-015-3248-y.

[111] I. P. Lankham. Patience sorting and its generalizations. Pro-
Quest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)–University
of California, Davis. URL: https://www.proquest.com/
docview/304901553.

[112] A. Lascoux and M.-P. Schützenberger. Schubert polynomials
and the Littlewood-Richardson rule. Lett. Math. Phys., 10(2-
3):111–124, 1985. doi:10.1007/BF00398147.

[113] S. Law and N. Reading. The Hopf algebra of diagonal rectan-
gulations. J. Combin. Theory Ser. A, 119(3):788–824, 2012.
doi:10.1016/j.jcta.2011.09.006.

[114] C. W. Lee. The associahedron and triangulations of the n-
gon. European J. Combin., 10(6):551–560, 1989. doi:10.
1016/S0195-6698(89)80072-1.

[115] T. Leighton and S. Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms.
J. ACM, 46(6):787–832, 1999.

[116] Y. Li and J. Sawada. Gray codes for reflectable languages.
Inform. Process. Lett., 109(5):296–300, 2009. doi:10.1016/
j.ipl.2008.11.007.

[117] J.-L. Loday. Realization of the Stasheff polytope.
Arch. Math. (Basel), 83(3):267–278, 2004. doi:10.1007/
s00013-004-1026-y.

[118] D. Lokshtanov and A. E. Mouawad. The complexity of inde-
pendent set reconfiguration on bipartite graphs. ACM Trans.
Algorithms, 15(1):Art. 7, 19, 2019. doi:10.1145/3280825.

[119] L. Lovász. Problem 11, in Combinatorial structures and their
applications. In Proc. Calgary Internat. Conf. (Calgary, Al-

https://doi.org/10.1007/s00493-015-3248-y
https://www.proquest.com/docview/304901553
https://www.proquest.com/docview/304901553
https://doi.org/10.1007/BF00398147
https://doi.org/10.1016/j.jcta.2011.09.006
https://doi.org/10.1016/S0195-6698(89)80072-1
https://doi.org/10.1016/S0195-6698(89)80072-1
https://doi.org/10.1016/j.ipl.2008.11.007
https://doi.org/10.1016/j.ipl.2008.11.007
https://doi.org/10.1007/s00013-004-1026-y
https://doi.org/10.1007/s00013-004-1026-y
https://doi.org/10.1145/3280825

256 BIBLIOGRAPHY

berta, 1969), pages 243–246, New York, 1970. Gordon and
Breach Science Publishers.

[120] J. M. Lucas. The rotation graph of binary trees is Hamil-
tonian. J. Algorithms, 8(4):503–535, 1987. doi:10.1016/
0196-6774(87)90048-4.

[121] J. M. Lucas, D. Roelants van Baronaigien, and F. Ruskey. On
rotations and the generation of binary trees. J. Algorithms,
15(3):343–366, 1993. doi:10.1006/jagm.1993.1045.

[122] G. Manuell. A simple lower bound for arrival. arXiv preprint
arXiv:2108.06273, 2021.

[123] N. Matsumoto, A. Nakamoto, and S. Negami. Diagonal flips in
plane graphs with triangular and quadrangular faces. Discrete
Appl. Math., 283:292–305, 2020. doi:10.1016/j.dam.2020.
01.007.

[124] A. Merino and T. Mütze. Combinatorial generation via per-
mutation languages. III. Rectangulations. To appear in Dis-
crete Comput. Geom.; preprint available at https://arxiv.
org/abs/2103.09333, 2021.

[125] T. Mütze. Combinatorial gray codes-an updated survey. arXiv
preprint arXiv:2202.01280, 2022.

[126] N. Nishimura. Introduction to reconfiguration. Algorithms
(Basel), 11(4):Paper No. 52, 25, 2018. doi:10.3390/
a11040052.

[127] J. Noonan and D. Zeilberger. The enumeration of permuta-
tions with a prescribed number of “forbidden” patterns. Adv.
in Appl. Math., 17(4):381–407, 1996. doi:10.1006/aama.
1996.0016.

https://doi.org/10.1016/0196-6774(87)90048-4
https://doi.org/10.1016/0196-6774(87)90048-4
https://doi.org/10.1006/jagm.1993.1045
https://doi.org/10.1016/j.dam.2020.01.007
https://doi.org/10.1016/j.dam.2020.01.007
https://arxiv.org/abs/2103.09333
https://arxiv.org/abs/2103.09333
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1006/aama.1996.0016
https://doi.org/10.1006/aama.1996.0016

BIBLIOGRAPHY 257

[128] J. R. Norris. Markov chains, volume 2 of Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge Univer-
sity Press, Cambridge, 1998. Reprint of 1997 original.

[129] OEIS Foundation Inc. The on-line encyclopedia of integer se-
quences, 2020. http://oeis.org.

[130] R. Parviainen. Wilf classification of bi-vincular permutation
patterns. https://arxiv.org/abs/0910.5103, 2009.

[131] V. Pilaud. Brick polytopes, lattice quotients, and Hopf al-
gebras. J. Combin. Theory Ser. A, 155:418–457, 2018. doi:
10.1016/j.jcta.2017.11.014.

[132] V. Pilaud and V. Pons. Permutrees. Algebr. Comb., 1(2):173–
224, 2018.

[133] V. Pilaud and F. Santos. The brick polytope of a sorting
network. European J. Combin., 33(4):632–662, 2012. doi:
10.1016/j.ejc.2011.12.003.

[134] V. Pilaud and F. Santos. Quotientopes. Bull. Lond. Math.
Soc., 51(3):406–420, 2019. doi:10.1112/blms.12231.

[135] L. Pournin. The diameter of associahedra. Adv. Math., 259:13–
42, 2014. doi:10.1016/j.aim.2014.02.035.

[136] V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy.
Eulerian walkers as a model of self-organized criticality. Phys.
Rev. Lett., 77:5079–5082, 1996.

[137] L. K. Pudwell. Enumeration schemes for pattern-avoiding
words and permutations. ProQuest LLC, Ann Arbor, MI,
2008. Thesis (Ph.D.)–Rutgers The State University of New
Jersey - New Brunswick. URL: http://gateway.proquest.
com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:
ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&
rft_dat=xri:pqdiss:3335550.

http://oeis.org
https://arxiv.org/abs/0910.5103
https://doi.org/10.1016/j.jcta.2017.11.014
https://doi.org/10.1016/j.jcta.2017.11.014
https://doi.org/10.1016/j.ejc.2011.12.003
https://doi.org/10.1016/j.ejc.2011.12.003
https://doi.org/10.1112/blms.12231
https://doi.org/10.1016/j.aim.2014.02.035
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3335550
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3335550
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3335550
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3335550

258 BIBLIOGRAPHY

[138] L. K. Pudwell. Enumeration schemes for permutations avoid-
ing barred patterns. Electron. J. Combin., 17(1):Research Pa-
per 29, 27 pp., 2010. URL: http://www.combinatorics.org/
Volume_17/Abstracts/v17i1r29.html.

[139] N. Reading. Order dimension, strong Bruhat order and lattice
properties for posets. Order, 19(1):73–100, 2002. doi:10.
1023/A:1015287106470.

[140] N. Reading. Lattice and order properties of the poset of
regions in a hyperplane arrangement. Algebra Universalis,
50(2):179–205, 2003. doi:10.1007/s00012-003-1834-0.

[141] N. Reading. Lattice congruences, fans and Hopf algebras. J.
Combin. Theory Ser. A, 110(2):237–273, 2005. doi:10.1016/
j.jcta.2004.11.001.

[142] N. Reading. Cambrian lattices. Adv. Math., 205(2):313–353,
2006. doi:10.1016/j.aim.2005.07.010.

[143] N. Reading. From the Tamari lattice to Cambrian lat-
tices and beyond. In Associahedra, Tamari lattices and re-
lated structures, volume 299 of Prog. Math. Phys., pages
293–322. Birkhäuser/Springer, Basel, 2012. doi:10.1007/
978-3-0348-0405-9_15.

[144] N. Reading. Generic rectangulations. European J. Combin.,
33(4):610–623, 2012. doi:10.1016/j.ejc.2011.11.004.

[145] N. Reading. Noncrossing arc diagrams and canonical join rep-
resentations. SIAM J. Discrete Math., 29(2):736–750, 2015.
doi:10.1137/140972391.

[146] N. Reading. Finite Coxeter groups and the weak order. In
Lattice theory: special topics and applications. Vol. 2, pages
489–561. Birkhäuser/Springer, Cham, 2016.

http://www.combinatorics.org/Volume_17/Abstracts/v17i1r29.html
http://www.combinatorics.org/Volume_17/Abstracts/v17i1r29.html
https://doi.org/10.1023/A:1015287106470
https://doi.org/10.1023/A:1015287106470
https://doi.org/10.1007/s00012-003-1834-0
https://doi.org/10.1016/j.jcta.2004.11.001
https://doi.org/10.1016/j.jcta.2004.11.001
https://doi.org/10.1016/j.aim.2005.07.010
https://doi.org/10.1007/978-3-0348-0405-9_15
https://doi.org/10.1007/978-3-0348-0405-9_15
https://doi.org/10.1016/j.ejc.2011.11.004
https://doi.org/10.1137/140972391

BIBLIOGRAPHY 259

[147] N. Reading. Lattice theory of the poset of regions. In Lattice
theory: special topics and applications. Vol. 2, pages 399–487.
Birkhäuser/Springer, Cham, 2016.

[148] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge.
The diameter of the Rubik’s cube group is twenty [reprint of
mr3068558]. SIAM Rev., 56(4):645–670, 2014. doi:10.1137/
140973499.

[149] G. Rote. Personal communication, 2020.

[150] F. Ruskey, J. Sawada, and A. Williams. Binary bubble
languages and cool-lex order. J. Combin. Theory Ser. A,
119(1):155–169, 2012. doi:10.1016/j.jcta.2011.07.005.

[151] C. Savage. A survey of combinatorial Gray codes. SIAM Rev.,
39(4):605–629, 1997. doi:10.1137/S0036144595295272.

[152] J. Sawada and A. Williams. Efficient oracles for generating
binary bubble languages. Electron. J. Combin., 19(1):Paper
42, 20 pp., 2012.

[153] A. Seidenberg. A simple proof of a theorem of Erdős and
Szekeres. J. London Math. Soc., 34:352, 1959. doi:10.1112/
jlms/s1-34.3.352.

[154] R. Smith and V. Vatter. A stack and a pop stack in series.
Australas. J. Combin., 58:157–171, 2014.

[155] Z. E. Stankova. Forbidden subsequences. Discrete
Math., 132(1-3):291–316, 1994. doi:10.1016/0012-365X(94)
90242-9.

[156] J. M. Steele. Variations on the monotone subsequence theme
of Erdős and Szekeres. In Discrete probability and algorithms
(Minneapolis, MN, 1993), volume 72 of IMA Vol. Math. Appl.,
pages 111–131. Springer, New York, 1995. doi:10.1007/
978-1-4612-0801-3_9.

https://doi.org/10.1137/140973499
https://doi.org/10.1137/140973499
https://doi.org/10.1016/j.jcta.2011.07.005
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1112/jlms/s1-34.3.352
https://doi.org/10.1112/jlms/s1-34.3.352
https://doi.org/10.1016/0012-365X(94)90242-9
https://doi.org/10.1016/0012-365X(94)90242-9
https://doi.org/10.1007/978-1-4612-0801-3_9
https://doi.org/10.1007/978-1-4612-0801-3_9

260 BIBLIOGRAPHY

[157] D. Tamari. The algebra of bracketings and their enumeration.
Nieuw Arch. Wisk. (3), 10:131–146, 1962.

[158] A. Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific J. Math., 5:285–309, 1955.

[159] B. Tenner. Database of permutation pattern avoidance, 2018.
https://math.depaul.edu/bridget/patterns.html.

[160] L. Tóthmérész. Rotor-routing reachability is easy, chip-firing
reachability is hard. European J. Combin., 101:Paper No.
103466, 9, 2022. doi:10.1016/j.ejc.2021.103466.

[161] L. Trevisan. Approximation algorithms for unique games. In
46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05), pages 197–205, 2005.

[162] H. F. Trotter. Algorithm 115: Perm. Commun. ACM,
5(8):434–435, 1962. URL: http://doi.acm.org/10.1145/
368637.368660, doi:10.1145/368637.368660.

[163] H. Úlfarsson. A unification of permutation patterns related to
Schubert varieties. Pure Math. Appl. (PU.M.A.), 22(2):273–
296, 2011.

[164] V. Vajnovszki. Generating involutions, derangements, and
relatives by ECO. Discrete Math. Theor. Comput. Sci.,
12(1):109–122, 2010.

[165] V. Vajnovszki and R. Vernay. Restricted compositions and
permutations: from old to new Gray codes. Inform. Process.
Lett., 111(13):650–655, 2011. doi:10.1016/j.ipl.2011.03.
022.

[166] J. van den Heuvel. The complexity of change. In Surveys in
combinatorics 2013, volume 409 of London Math. Soc. Lecture
Note Ser., pages 127–160. Cambridge Univ. Press, Cambridge,
2013.

https://math.depaul.edu/bridget/patterns.html
https://doi.org/10.1016/j.ejc.2021.103466
http://doi.acm.org/10.1145/368637.368660
http://doi.acm.org/10.1145/368637.368660
https://doi.org/10.1145/368637.368660
https://doi.org/10.1016/j.ipl.2011.03.022
https://doi.org/10.1016/j.ipl.2011.03.022

BIBLIOGRAPHY 261

[167] A. Vella. Pattern avoidance in permutations: linear and
cyclic orders. Electron. J. Combin., 9(2):Research pa-
per 18, 43 pp., 2002/03. Permutation patterns (Otago,
2003). URL: http://www.combinatorics.org/Volume_9/
Abstracts/v9i2r18.html.

[168] U. Wagner and E. Welzl. Connectivity of triangulation flip
graphs in the plane (Part I: Edge flips). In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, pages
2823–2841. SIAM, Philadelphia, PA, 2020.

[169] S. D. Waton. On permutation classes defined by token pass-
ing networks, gridding matrices and pictures: three flavours of
involvement. PhD thesis, University of St Andrews, 2007.

[170] J. West. Permutations with forbidden subsequences and stack-
sortable permutations. ProQuest LLC, Ann Arbor, MI, 1990.
Thesis (Ph.D.)–Massachusetts Institute of Technology.

[171] A. Williams. The greedy Gray code algorithm. In Algorithms
and Data Structures - 13th International Symposium, WADS
2013, London, ON, Canada, August 12-14, 2013. Proceedings,
pages 525–536, 2013. doi:10.1007/978-3-642-40104-6\
_46.

[172] A. Woo and A. Yong. When is a Schubert variety Goren-
stein? Adv. Math., 207(1):205–220, 2006. doi:10.1016/j.
aim.2005.11.010.

[173] L. Xiang, K. Cheng, and K. Ushijima. Efficient genera-
tion of Gray codes for reflectable languages. In Compu-
tational Science and Its Applications - ICCSA 2010, Inter-
national Conference, Fukuoka, Japan, March 23-26, 2010,
Proceedings, Part IV, pages 418–426, 2010. doi:10.1007/
978-3-642-12189-0_37.

http://www.combinatorics.org/Volume_9/Abstracts/v9i2r18.html
http://www.combinatorics.org/Volume_9/Abstracts/v9i2r18.html
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1016/j.aim.2005.11.010
https://doi.org/10.1016/j.aim.2005.11.010
https://doi.org/10.1007/978-3-642-12189-0_37
https://doi.org/10.1007/978-3-642-12189-0_37

262 BIBLIOGRAPHY

[174] B. Yao, H. Chen, C.-K. Cheng, and R. L. Graham. Floorplan
representations: Complexity and connections. ACM Trans.
Design Autom. Electr. Syst., 8(1):55–80, 2003. doi:10.1145/
606603.606607.

[175] D. Zeilberger. A proof of Julian West’s conjecture that
the number of two-stack-sortable permutations of length n is
2(3n)!/((n+1)!(2n+1)!). Discrete Math., 102(1):85–93, 1992.
doi:10.1016/0012-365X(92)90351-F.

[176] U. Zwick and M. Paterson. The complexity of mean payoff
games on graphs. Theoretical Computer Science, 158:343–359,
1996.

[177] U. Zwick and M. Paterson. The complexity of mean payoff
games on graphs. Theoret. Comput. Sci., 158(1-2):343–359,
1996. doi:10.1016/0304-3975(95)00188-3.

https://doi.org/10.1145/606603.606607
https://doi.org/10.1145/606603.606607
https://doi.org/10.1016/0012-365X(92)90351-F
https://doi.org/10.1016/0304-3975(95)00188-3

Curriculum Vitae

Hung Hoang

born 2 November 1989
citizen of Vietnam

2018–2022 Ph.D. in Theoretical Computer Science
ETH Zürich

2016–2017 M.Sc. in Management Science (Operational Research)
London School of Economics and Political Science

2014–2016 Business Analyst
Tata Capital Advisors Pte Ltd, Singapore

2013–2014 Audit Senior
Deloitte & Touche LLP, Singapore

2011–2013 Audit Associate
Deloitte & Touche LLP, Singapore

2007–2011 Bachelor of Business Administration (Accountancy)
National University of Singapore

263

About the cover art

The cover art is adapted from the artwork submitted to the Inter-
cultural Science-Art Project, started at the 8th Heidelberg Laureate
Forum in 2021. My friend Đỗ Công Lý created this, after our inspir-
ing conversation on combinatorial reconfiguration, a common theme
across many problems in my research and the topic of this thesis.

The title of the artwork, "Dịch biến - Diện bích", features spooner-
ism, a common word play in Vietnamese where we swap the com-
ponents of two words to form two new words. The first two words,
"dịch biến", mean "movement and transformation", capturing this
strand of research (and arguably the area of graph algorithms in
general). The second two words, "diện bích", mean "wall gazing".
It is commonly used in the phrase "cửu niên diện bích" (nine years
of wall gazing), which refers to the tale of Bodhidharma facing the
wall of a cave and meditating for nine years. I find it an interesting
word play, as one part refers to change, while the other to distanc-
ing oneself from the changes in the outside world.

While the wall can represent the nine years in the tale, it also re-
sembles the Rubik’s cube, a popular object in combinatorial recon-
figuration, as discussed in Chapter 1. The meditation of the monk
in front of this wall can then symbolize the research in this field.

264

	Overview
	ARRIVAL
	Combinatorial generation via permutation languages
	Outline and summary of contributions
	Notations

	I ARRIVAL
	ARRIVAL and its generalization
	ARRIVAL
	G-ARRIVAL
	Abelian networks
	Abelian networks
	Switching systems are Abelian networks
	Other unary networks

	Switching systems vs. rotor-routing
	Abelian networks as reconfiguration graphs

	G-ARRIVAL is well-defined
	Switching flows
	Termination and unique run profile

	Decision complexity of G-ARRIVAL
	G-ARRIVAL is in NPcoNP
	G-ARRIVAL is in UPcoUP

	Search complexity of G-ARRIVAL
	UEOPL
	Difficulties in adapting the proof for ARRIVAL
	Partial switching flow
	GS-ARRIVAL is in UEOPL

	Subexponential algorithm for G-ARRIVAL
	Naïve simulation of the train runs
	Layer decomposition
	Greedy simulations of the train runs
	A general framework
	The idea
	Candidate switching flows and guessing switching system
	Tarski fixed points

	Subexponential algorithm for G-ARRIVAL
	Feedback vertex sets
	Discussion and open questions

	G-ARRIVAL with two vertices per layer
	Preliminaries
	Algorithm Overview
	Hitting probabilities
	Initial analysis
	2-ladder with a cross
	Algorithm L
	Solving G-ARRIVAL with ladder
	Discussions

	II Combinatorial generation via permutations
	A framework for combinatorial generation
	Preliminaries
	The basic algorithm
	Zigzag languages
	Characterization via the tree of permutations
	Characterization via nuts
	Proof of Theorem 5.1

	Further properties of Algorithm J
	A general recipe with classical examples
	Permutations (Steinhaus-Johnson-Trotter)
	Binary strings (BRGC)
	Binary trees (Lucas-Roelants van Baronaigien-Ruskey)
	Set partitions (Kaye)

	Discussion

	Pattern-avoiding permutations
	Classical patterns and other variants
	Preliminaries
	Tame patterns
	Vincular patterns
	Barred patterns
	Boxed patterns
	Patterns with Bruhat restrictions
	Bivincular patterns
	Mesh patterns
	Proof of Lemmas 6.4–6.9

	Patterns with multiplicities
	Algebra with patterns
	Elementary transformations
	Partially ordered patterns
	Barred patterns with multiple bars
	Weak avoidance of barred patterns and dotted patterns
	Monotone and geometric grid classes

	Limitations of our approach

	Lattice congruences of the weak order
	Generating lattice congruences of the weak order
	Modified zigzag languages
	Preliminaries
	Combinatorics of lattice congruences of the weak order
	Restrictions, rails, ladders, and projections
	Jumping through lattice congruences

	Regular, vertex-transitive, and bipartite lattice quotients
	Preliminaries
	Exact counts for small dimensions
	Counting quotient graphs
	Regular quotient graphs
	Maximum degree
	Vertex-transitive quotient graphs
	Bipartite quotient graphs

	Pattern-avoiding permutations and lattice congruences
	Open questions

	Bibliography
	Curriculum Vitae

	Curriculum Vitae
	About the cover art

	About the cover art

