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Abstract 
 
Mass spectrometry (MS)-based assays suffer from the inherent variability of 

measurements across instruments and over time, caused by multiple sources of 

variation, such as differences in sample preparation and system setups, biological 

matrix effects, acquisition batch effects and so on. Across -omics, reproducibility of 

quantitative experiments is a well-known issue. Untargeted metabolomics is the 

method of choice for comprehensive characterization of all chemical compounds that 

occur in a cell of a biological sample. With growing demand for untargeted 

metabolomics in personalized health applications, it is crucial to achieve the level of 

reproducibility enabling robust sample quantification in longitudinal clinical studies. 
 
In this PhD thesis, we aim at improving reproducibility of untargeted metabolomics 

leveraging the most recent developments in AI. We build a platform for continuous 

system suitability testing (SST), develop a batch correction method and investigate 

calibration strategies for a high-throughput acquisition method. Complementary to 

these efforts, we investigate representation learning approaches across data 

modalities and develop an explainable deep learning application to demonstrate 

exciting opportunities for multi-modal biomedical research. 

 

In Chapter 2, we develop an SST platform to report on a mass spectrometer state. 

For that, we design a QC sample that produces 37 robust ion peaks, including 

isotopes, fragments and adducts. We develop an acquisition method to measure the 

QC sample repeatedly and collect detailed spectral information related to the chemical 

background, QC mix and detector noise scans of ion chronogram. After the 

measurement, the raw profile data is processed by the software to extract 2850 

numerical features reflecting different aspects of the system, e.g., resolution, mass 

accuracy, ionization efficiency, levels of dirt and detector noise, etc. Those are further 

used to engineer the 16 quality indicators visualized for users through a web-service. 

We analyze in depth the QC data systematically acquired within 2 years, investigate 

the relationships between the QC features and the instrument settings and discuss the 

potentials of automatic retuning and MS diagnostics applications. 
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In Chapter 3, we develop RALPS (regularized adversarial learning preserving 

similarity) to correct for batch effects in untargeted metabolomics data. We propose a 

loss function that consists of three terms: the one penalizing batch separation to 

mitigate batch effects, another one promoting tight clustering of replicates to retain the 

biological information, and the last one penalizing sample-wise variance increase to 

stabilize the training process. We test RALPS extensively on several multi-batch 

datasets and compare to state-of-the-art methods. In addition, we run series of 

ablation experiments to demonstrate flexibility, scalability and robustness of our 

method. One of the datasets was generated specifically for the purpose of 

benchmarking data normalization methods. It has a total of 2750 samples acquired in 

7 batches over a course of 2 months. The samples comprise human serum and 13C-

labeled E. coli extracts with three classes of different spike-ins and dilution series. The 

benchmarking dataset is largely affected by batch effects and presents a major 

challenge for a number of recently proposed normalization approaches. 

 

In Chapter 4, we use the benchmarking dataset of flow injection time-of-flight mass 

spectrometry (FIA-TOF-MS) for analysis of calibration curves. We formulate three 

calibration-related tasks and approach them with machine learning. We train models 

to predict relative concentrations, absolute and relative ion abundances in human 

serum extracts. Then, we carefully assess generalizing capabilities of the models 

relevant for applications. Specifically, we test the ability of each model to extrapolate 

across dilution factors and structurally similar compounds. Finally, we discuss current 

limitations and next steps to improve the calibration of FIA-TOF-MS. 

 

The final two chapters describe collaboration projects on the metabolism of cancer cell 

lines under drug pressure. These works are not directly related to metabolomics, since 

my role was to develop AI frameworks for the analysis of time-resolved images of 

tissue cultures.  

 

In Chapter 5, we investigate and compare representation learning approaches using 

cancer cell imaging data. We implement four different models having the same CNN 

backbone for downstream feature extraction. We train them under identical conditions 

testing four strategies of random augmentations and crops for each model. To 

compare the learned representations, we formulate three independent tasks and 
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evaluate multiple metrics for each. Among other empirical results, we confirm the 

efficiency of multi-task representation learning approaches across data modalities. 

 

In Chapter 6, we develop an explainable deep learning model to classify drugs based 

on cells images of different cancer types. The model features intrinsic local 

interpretability, i.e., it allows to visualize regions of an image driving the classifier 

decision. We present many examples shedding light on drug-specific morphological 

features of cells and discuss the potential to extend this approach to a multi-modal 

setting, e.g., to explain image classification with the corresponding metabolomics data. 

 

Finally, in Chapter 7, we summarize the key contributions of this thesis. We address 

the reproducibility issue of metabolomics from multiple standpoints. We propose 

means of quality assurance and quality control for data acquisition, investigate 

calibration strategies and develop a batch correction method to improve comparability 

of FIA-TOF-MS measurements across acquisition batches. We demonstrate how 

these individual contributions advance reproducibility of FIA-TOF-MS and discuss 

their potential to synergize to enable reliable implementation of untargeted 

metabolomics into clinics. Additionally, we investigate deep representation learning 

approaches and demonstrate advantages of multi-task learning across data 

modalities. We present an explainable AI application for analysis of anti-cancer drugs 

and discuss particular ways to integrate mass spectrometry, microscopy imaging or 

other data modalities for fundamental and clinical research using cutting-edge AI 

technology. 
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Zusammenfassung 
 
Massenspektrometrie (MS)-basierte Assays leiden unter der inhärenten Variabilität 

von Messungen zwischen verschiedenen Instrumenten und im Laufe der Zeit, die 

durch mehrere Variationsquellen verursacht wird, wie z.B. Unterschiede bei der 

Probenvorbereitung und Systemeinrichtung, biologische Matrixeffekte, 

Chargeneffekte bei der Datenerfassung usw. In allen Omic-Bereichen ist die 

Reproduzierbarkeit quantitativer Experimente ein bekanntes Problem. Ungezielte 

Metabolomik ist die Methode der Wahl für die umfassende Charakterisierung aller 

chemischen Verbindungen, die in einer Zelle einer biologischen Probe vorkommen. 

Angesichts der wachsenden Nachfrage nach ungezielter Metabolomik in 

personalisierten Gesundheitsanwendungen ist es von entscheidender Bedeutung, ein 

Niveau der Reproduzierbarkeit zu erreichen, das eine robuste Probenquantifizierung 

in klinischen Längsschnittstudien ermöglicht. 

 

In dieser Doktorarbeit zielen wir darauf ab, die Reproduzierbarkeit der ungezielten 

Metabolomik zu verbessern, indem wir die neuesten Entwicklungen in der KI nutzen. 

Wir bauen eine Plattform für kontinuierliche Systemeignungstests (SST) auf, 

entwickeln eine Batch-Korrekturmethode und untersuchen Kalibrierstrategien für eine 

Hoch-Durchsatz-Erfassungsmethode. Ergänzend zu diesen Bemühungen 

untersuchen wir die Methoden von Repräsentationslernen über Datenmodalitäten 

hinweg und entwickeln eine erklärbare Deep-Learning-Anwendung, um spannende 

Möglichkeiten für die multimodale biomedizinische Forschung aufzuzeigen. 

 

In Kapitel 2 entwickeln wir eine SST-Plattform, um den Zustand eines 

Massenspektrometers zu ermitteln. Dazu entwerfen wir eine QC-Probe, die 37 robuste 

Ionenpeaks erzeugt, einschließlich Isotopen, Fragmenten und Addukten. Wir 

entwickeln eine Erfassungsmethode, um die QC-Probe wiederholt zu messen und 

detaillierte spektrale Informationen in Bezug auf den chemischen Hintergrund, den 

QC-Mix und die Detektorrauschscans des Ionenchronogramms zu sammeln. Nach 

der Messung werden die rohen Profildaten von der Software verarbeitet, um 2850 

numerische Merkmale zu extrahieren, die verschiedene Aspekte des Systems 



Zusammenfassung 
_________________________________________________________________________ 

 12 

widerspiegeln, z.B. Auflösung, Massengenauigkeit, Ionisationseffizienz, Grad der 

Verschmutzung und des Detektorrauschens usw. Aus diesen Merkmalen werden die 

16 Qualitätsindikatoren erstellt, die den Benutzern über einen Webdienst angezeigt 

werden. Wir analysieren eingehend die innerhalb von 2 Jahren systematisch erfassten 

QC-Daten, untersuchen die Beziehungen zwischen den QC-Merkmalen und den 

Geräteeinstellungen und erörtern die Möglichkeiten der automatischen Neueinstellung 

und MS-Diagnoseanwendungen. 

 

In Kapitel 3 entwickeln wir RALPS (regularized adversarial learning preserving 

similarity) zur Korrektur von Batch-Effekten in ungezielten Metabolomik-Daten. Wir 

schlagen eine Verlustfunktion vor, die sich aus drei Begriffen zusammensetzt: Ein 

Begriff bestraft die Batch-Trennung, um Batch-Effekte abzuschwächen, ein weiterer 

fördert die enge Clusterung von Replikaten, um die biologische Information zu 

erhalten, und der letzte bestraft die probenweise Varianzzunahme, um den 

Trainingsprozess zu stabilisieren. Wir testen RALPS ausgiebig an verschiedenen 

Multi-Batch-Datensätzen und vergleichen die Ergebnisse mit modernsten Methoden. 

Darüber hinaus führen wir eine Reihe von Ablationsexperimenten durch, um die 

Flexibilität, Skalierbarkeit und Robustheit unserer Methode zu demonstrieren. Einer 

der Datensätze wurde speziell zum Zwecke des Benchmarkings von 

Datennormalisierungsmethoden generiert. Es besteht aus insgesamt 2750 Proben, 

die in 7 Batches über einen Zeitraum von 2 Monaten gemessen wurden. Die Proben 

bestehen aus Humanserum und 13C-markierten E. coli-Extrakten mit drei Klassen 

unterschiedlicher Spike-Ins und Verdünnungsreihen. Der Benchmarking-Datensatz 

wird in hohem Maße von Batch-Effekten beeinflusst und stellt eine große 

Herausforderung für eine Reihe kürzlich vorgeschlagener Normalisierungsmethode 

dar. 

 

In Kapitel 4 verwenden wir den Benchmarking-Datensatz der Fließinjektions-Flugzeit-

Massenspektrometrie (FIA-TOF-MS) zur Analyse von Kalibrierkurven. Wir formulieren 

drei kalibrierungsbezogene Aufgaben und gehen diese mit dem maschinellen Lernen 

an. Wir trainieren Modelle zur Vorhersage von relativen Konzentrationen, absoluten 

und relativen Ionenhäufigkeiten in Humanserumextrakten. Danach bewerten wir 

sorgfältig die Verallgemeinerungsfähigkeiten der Modelle, die relevant für weitere 

Anwendungen sind. Insbesondere testen wir die Fähigkeit jedes Modells, über 
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Verdünnungsfaktoren und strukturell ähnliche Verbindungen hinweg zu extrapolieren. 

Schließlich diskutieren wir aktuelle Einschränkungen und nächste Schritte zur 

Verbesserung der Kalibrierung von FIA-TOF-MS. 

 

In den letzten beiden Kapiteln werden Zusammenarbeitsprojekte zum Stoffwechsel 

von Krebszelllinien unter Medikamentendruck beschrieben. Diese Arbeiten stehen 

nicht in direktem Zusammenhang mit der Metabolomik, da meine Aufgabe darin 

bestand, KI-Frameworks für die Analyse von zeitaufgelösten Bildern von 

Gewebekulturen zu entwickeln. 

 

In Kapitel 5 untersuchen und vergleichen wir Ansätze zum Repräsentationslernen von 

Krebszellenbilddaten. Wir implementieren vier verschiedene Modelle mit demselben 

CNN-Backbone für die nachgelagerte Merkmalsextraktion. Wir trainieren sie unter 

identischen Bedingungen und testen vier Strategien für zufällige Augmentationen und 

Ausschnitte für jedes Modell. Um die erlernten Repräsentationen zu vergleichen, 

formulieren wir drei unabhängige Aufgaben und bewerten jeweils mehrere Metriken. 

Neben anderen empirischen Ergebnissen bestätigen wir die Effizienz von Multi-Task-

Ansätzen zum Repräsentationslernen für verschiedene Datenmodalitäten. 

 

In Kapitel 6 entwickeln wir ein erklärbares Deep-Learning-Modell zur Klassifizierung 

von Medikamenten basierend auf Zellbildern verschiedener Krebsarten. Das Modell 

zeichnet sich durch eine intrinsische lokale Interpretierbarkeit aus, d.h. es ermöglicht 

die Visualisierung von Bildregionen, die die Klassifizierungsentscheidung 

beeinflussen. Wir stellen viele Beispiele vor, die medikamentspezifische 

morphologische Merkmale von Zellen beleuchten, und erörtern das Potenzial, diesen 

Ansatz auf ein multimodales Umfeld auszuweiten, z.B. um die Bildklassifizierung mit 

den entsprechenden Metabolomik-Daten zu erklären. 

 

Abschließend fassen wir in Kapitel 7 die wichtigsten Beiträge dieser Doktorarbeit 

zusammen. Wir betrachten das Reproduzierbarkeitsproblem der Metabolomik aus 

mehreren Blickwinkeln. Wir schlagen Mittel zur Qualitätssicherung und 

Qualitätskontrolle der Datenerfassung vor, untersuchen Kalibrierstrategien und 

entwickeln eine Batch-Korrekturmethode, um die Vergleichbarkeit von FIA-TOF-MS-

Messungen der verschiedenen Batches zu verbessern. Wir zeigen, wie diese 
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einzelnen Beiträge die Reproduzierbarkeit von FIA-TOF-MS erhöhen und diskutieren 

ihr Synergiepotenzial, um eine zuverlässige Implementierung ungezielter 

Metabolomik in Kliniken zu ermöglichen. Darüber hinaus untersuchen wir Ansätze 

zum tiefen Repräsentationslernen und demonstrieren die Vorteile der Multi-Task-

Ansätzen für verschiedene Datenmodalitäten. Wir stellen eine erklärbare KI-

Anwendung für die Analyse von Krebsmedikamenten vor und erörtern besondere 

Möglichkeiten zur Integration von Massenspektrometrie-, Mikroskopie- und andere 

Arten von Daten für die Grundlagen- und klinische Forschung mit modernster KI-

Technologie. 
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The role of metabolomics in systems biology 

 
Systems biology aims at characterizing a biological system as a whole, as opposed to 

focusing on its individual parts1. Much of this effort is based on the comprehensive 

analysis of molecular components: genes, transcripts, proteins, metabolites, lipids, 

etc. This has been made possible by steady improvements of -omics technologies. 

Powerful analytical methods were developed to unravel each layer of the central 

dogma of molecular biology2. Decoding the genome of an organism and being able to 

track its realization through RNA molecules down to protein levels was the first 

necessary step to understand biological function and its regulation. To date, DNA and 

RNA analyses are dominated by high throughput sequencing technologies3,4. Proteins 

are primarily analyzed by mass spectrometry. It allows to sequence the peptides that 

result upon enzymatic digestion, and thereby identify a multitude of proteoforms. 

Further, it allows to analyse intact soluble proteins to unravel complexes.  

 

Genes, transcripts, and proteins are hierarchically linked. They all originate from a 

stretch of DNA and, therefore, their variety is determined by the genome. This, 

however, only relates to their sequence, which is the information that determines the 

function. The actual building blocks of all cellular compartments originate from 

nutrients that are taken up from the environment. Genome-encoded enzymes play a 

fundamental role in transforming variable nutrients into hundreds of building blocks 

that are necessary to grow and duplicate an entire cell. The ensemble of all chemical 

compounds that occur in a cell is the metabolome, that is the set of all metabolites. 

Lipids have similar origin and fate and, therefore, they can be considered metabolites 

even though they are hydrophobic and tend to aggregate in droplets and bilayers. 

 

Conceptually, the metabolome results from the interaction of the environment and the 

intracellular configuration determined by the genome through the proteome. All 

changes in gene expression or environment will converge at the metabolic level and 

potentially induce a new steady-state. To ensure fitness in face of changing conditions 

or stress, cells have evolved regulatory mechanisms that sense metabolite levels and 

trigger adaptive programs to optimally adjust cellular or metabolic processes. These 

processes, in turn, are reflected in metabolic changes. Overall, measuring the 
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metabolome provides unique information on cellular status. Compared to, e.g., 

proteomics, it allows to capture the integrated response of the metabolic network, and 

it is therefore best suited to investigate metabolic phenotypes and regulation. 

 

Methods of metabolomics 
 
In metabolomics by mass spectrometry, metabolites must be converted into charged 

species (ions) to be moved and isolated by electrical and magnetic fields. Also the 

quantification requires ions, which are detected as current by extremely fast and 

sensitive electronic devices. As the counting device is not able to discern the identity 

of ions generating the current, different means have been implemented to identify 

metabolites. The first one is to measure the molecular weight or, to be more precise, 

the mass-to-charge ratio of the molecular ion. The two frequently desirable analytical 

parameters in this process are resolution and mass accuracy. Resolution essentially 

represents the ability to distinguish between ions of close mass-to-charge ratios. It can 

be calculated as ion mass divided by the full width at half maximum of the ion intensity 

peak. Thus, the higher the resolution the better. Mass accuracy can be defined as 

proximity of experimentally measured ion mass to the theoretical one (calculated by 

adding up the atom masses of a molecule). Therefore, low values of mass accuracy 

are critical for metabolite identification.  

 

To measure mass-to-charge ratios, the Orbitrap mass analyzers use frequency of 

harmonic oscillations of the orbitally trapped ions5. Despite the fact that Orbitraps offer 

the best resolution and mass accuracy, there are specific applications where other 

systems may be preferable. In particular, Time-of-Flight (TOF) mass analyzers 

measure the travel time of ions accelerated through the same electrical potential until 

they reach the detector6. There is evidence7 suggesting that TOF systems are capable 

of detecting many more metabolites in complex samples with flow injection analysis 

(FIA). Other types of mass analyzers exist as well, such as Quadrupole Ion Trap, Ion 

Cyclotron Resonance and others8. 

 

The second technique to identify metabolites is to use multi-stage mass spectrometry 

and fragmentation. Most MS instruments have the capacity to induce the breakdown 
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of ions by, e.g., collision at high kinetic energy or other forms of molecular excitation. 

Compounds will break depending on their structure and generate peculiar fragments. 

Fragments can be analysed by the MS analyzer to obtain a catalogue of all moieties 

holding any charge. This is the MS2 spectrum. On some instruments, it is possible to 

select fragments and perform additional cycles of fragmentation with increasing 

activation energy. This leads to MS3 or, in general, MSn spectra. All fragmentation 

spectra can be used to infer structural properties of the molecular ion, i.e., to determine 

what functional groups are present (or not). The inference of structure from MS2 or 

MSn is a non-trivial task which is solved either by comparing to MS2-libraries obtained 

for known compounds or by machine learning9. 

 

A third source for identification is the use of separation techniques. They aim at 

separating molecules in time on the basis of chemical or physical properties. The most 

common types of separations are gas and liquid chromatography (GC and LC), which 

adopt a column in front of the mass spectrometer. In metabolomics, liquid 

chromatography is more diffused because most metabolites are natively amenable to 

LC10,11. In the past decade, separation of molecules in the gas phase based on their 

cross-section has become also quite popular. Collectively, these methods add 

orthogonal information in the identification process. Similarly to MS2 data, 

interpretation of retention and mobility time can rely on known values for chemical 

standards or predictions by machine learning. 

 

Two fundamental approaches to metabolomics exist: targeted and untargeted (or non-

targeted). Targeted metabolomics is used to detect substances of particular interest. 

Typically, those are metabolites expected to appear within predefined mass ranges 

and measured to compare multiple experimental conditions to confirm or reject 

hypotheses. In targeted metabolomics, all protocols and acquisition methods are 

tailored to the compounds of interest. These include sample preparation, internal 

standards, chromatographic steps, MS acquisition, and data analysis. The main 

advantages of, and reasons to choose, targeted metabolomics are the best 

performance in quantification and best sensitivity.  

 

Non-targeted metabolomics is better suited for discovery. Its fundamental goal is to 

detect and “profile” as many metabolites as possible. Such data are analyzed by 
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statistical means and, therefore, don’t require quantification to support hypothesis 

generation12. Non-targeted methods employ instruments with the highest resolution to 

capture tens of thousands of ions. Processing of untargeted data is challenging, in 

particular for large scale studies13. A problem of this approach is the identification. 

Typically, thousands of metabolites are identified putatively (based on machine 

learning predictions), and only a few hundreds are assigned with high confidence 

because of the availability of chemical standards. Also in the absence of unambiguous 

identification, pathway enrichment analysis allows to investigate cellular responses14. 

Overall, untargeted metabolomics is the method of choice for comprehensive 

characterization of biological samples. 

 

The role of metabolomics in personalized health 
 

Multiple clinical applications of metabolomics have emerged in the last decade, 

including newborn screening, identification of biomarkers of disease and novel 

therapeutic targets, as well as personalized phenotyping and drug-response 

monitoring15. A number of recent publications acknowledge the growing importance of 

metabolomics for personalized medicine16–18. However, several challenges exist 

hampering inter-operability and reusability of metabolomics data, which is crucial for 

frequently longitudinal clinical studies19. Lack of standardization and reproducibility is 

definitely one of them. 

 

Reproducibility problems in LC-MS based metabolomics 
 
Reproducibility of experiment is a cornerstone of the scientific method. In absence of 

it, any scientific conclusion is doubted. In the recent years, several publications 

discussed the phenomenon of reproducibility crisis in science20,21. A survey of 703 

scientists on reproducibility of research in biology reported over 60% of respondents 

who were unable to replicate their own or someone else’s experiment22. Additionally, 

the respondents estimated almost a half of pubslihed work in their field not 

reproducible. The practical implications of that are, of course, additional efforts 

required to confirm previously reported results, poorly informed follow-up study 

designs, growing skepticism of the scientific community to the kind of analysis and 



Chapter 1  ¾  General introduction 
_________________________________________________________________________ 

 21 

beyond. Although top factors contributing to the lack of reproducibility seem to be 

anthropological23, there exists a purely technical aspect to the issue. 

 
The reproducibility problems in metabolomics, for instance, are rooted in the nature of 

the process that underly ionization and detection of ions. There are multiple sources 

of variation affecting the measurements on different levels. Day-to-day variability of 

the instrument response in a multi-day experimental design results in batch effects, 

i.e., biases specific to the system setup at acquisition times. Those can be magnified 

by the differences in the sample preparation, i.e., by variability among the replicates 

of the same experimental conditions. Matrix effects introduce additional layer of 

variability due to co-eluting biological matrix components altering the ionization of 

target metabolites. On top of that, samples measured in long sequences often present 

signal drifts associated with accumulated dirt in the system and contamination of 

precursor ions during electrospray ionization. All of these factors are inherent to mass 

spectrometry based metabolomics and limit reproducibility of the measurements.  

 

Quantification in metabolomics 
 
Two common approaches to compensate for the above problems are external and 

internal standardization24. External standardization refers to a reference standard 

measured at a series of known concentrations to calibrate the instrument response. A 

calibration line describes the signal produced by the analyte as a function of 

concentration. As soon as this dependency is established, it can be further used to 

determine the unknown concentrations  given the sample preparation procedure stays 

the same. 

 

Alternatively, internal stardardization is used in cases when multiple sample 

preparation steps are involved that may be associated with increased variability of 

response25. Internal standards (IS) are added at the same concentration to each 

sample to further calculate ratios of concentrations between the analyte and the IS 

that are conserved better. Therefore, calibration with internal standards defines a 

relationship between ratios of concentrations and ratios of the responses between the 

analyte and the IS of the experiment. For application, the ratio of responses needs to 
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be calculated first to determine the unknown sample concentration with a calibration 

curve. 

 

Linearity of the calibration indicates the quality of a bioanalytical method, thus, serving 

as a mean of quality assurance and control26,27. However, this only applies to LC-MS 

methods, as opposed to the FIA-MS often referred to as semi-quantitative. Flow 

injection analysis coupled with electrospray ionization mass spectrometry (FIA-ESI-

MS) often suffers from ion suppression driven by competitive ionization of 

compounds28. Moreover, ion suppression effects may differ among compound classes 

and biological matrices. In practice, it results in a non-linear relationship between 

compound concentration and detector response29. This is why a general practice with 

FIA-MS is to calculate and compare fold-changes between experimental conditions. 

 

A few works tried to address the aforementioned limitation in the past. In 2015, a 

matrix-induced ion suppression method was proposed to predict relative 

concentrations in urinary samples30. The authors experimented with multiple 

compounds to select an ion suppression indicator and then used it to predict low, 

medium and high concentrations in diluted pooled urine samples (16-fold, 10-fold and 

2-fold, respectively). They were able to achieve the accuracy ranging from 97.15% to 

102.10% and successfully apply  the method to metabolic profiling of breast cancer. 

In 2021, a DS-FIA (dilute and shoot) method was developed to accurately quantify 

amino acids in microbial cultivation supernatants31. The authors argue that with large 

sample dilutions and the use of labeled isotope standards the ion suppression and 

matrix effects can be minimized or even excluded, which is essential for reproducible 

FIA-MS.  

 

Measurement of (ir)reproducibility 
 
Quantification of reproducibility is an active area of research32–34. Simple, generic 

metrics exist and are well suited to benchmark -omics data. The coefficient of variation 

(CV), also known as relative standard deviation (RSD), is defined as the standard 

deviation divided by the mean of a sample. The CV provides a measure of variability 

of a sample in relation to its average value. Thus, lower CV values indicate better 
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reproducibility with zero being equivalent to identical experimental outcomes. In an -

omics data, the CV can be calculated for each detectable feature individually, and then 

aggregated by the mean. 

 

Albeit simple, the CV is a potent indicator of reproducibility in -omics experiments, and 

can be used to measure the improvement of standardization or normalization 

procedures. For instance, several recent works used it in evaluation of reproducibility 

in lipidomics35–38. Multi-laboratory assessment of reproducibility for targeted 

proteomics using SWATH-MS has shown inter-site CV reaching 39.4% for the 

normalized data and median 57.6% for the unnormalized protein quantification39. 

Another study on reproducibility of targeted metabolomics using LC and FIA tandem 

mass spectrometry reported inter-laboratory CV per metabolite class reaching 28% 

for the normalized data and median 68% for the unnormalized data40. Even small-

scale inter-laboratory studies of untargeted metabolomics using GC-MS communicate 

CVs of absolute spectra ion intensities reaching 30%41, which is likely to increase 

drastically as the number of samples, instruments or labs grows. 

 

As follows directly from the above, data normalization techniques can improve 

reproducibility of results by significantly reducing CVs. However, good quality of the 

measurements is still a prerequisite that can only be guaranteed by following the policy 

of quality assurance (QA) and quality control (QC). 

 

Quality assurance and quality control 
 
Quality assurance refers to all kinds of activities to ensure high quality of the data 

before actual acquisition42. Those include routine system suitability testing (SST), 

following standard operation procedures, observing regular instrument maintenance 

and calibration, etc. Meanwhile, quality control occurs after the data has been 

measured to assess its veracity43 by, e.g., correlating standard reference materials or 

other quality control samples. 

 

In 2018, a Quality Assurance and Quality Control Consortium (mQACC) was 

established to unite academic, industry and government institutions in addressing key 
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QA and QC challenges in untargeted metabolomics such that multi-laboratory studies 

become broadly possible44. In 2020, mQACC published a collaborative study between 

23 laboratories from North and South America, Europe and Australasia describing 

commonly adopted QA and QC practices45. According to the results, all participants 

employed system suitability procedures (100%), most of the laboratories used QC 

samples (>86%) and internal standards (91%), and manually reviewed peak 

integration following data acquisition (91%) to verify quality control. The authors state, 

however, that the 23 contributors were current members of mQACC and, perhaps, not 

representative of the worldwide pool of practitioners. 

 

Despite seemingly wide dissemination of SST practices and tools46–49, there is hardly 

any public database of historical system suitability data acquired systematically over 

a long period of time, e.g., 12 months. Such datasets are absolutely necessary to 

evaluate instrument performance over time and to connect its actual settings with 

signal and background drifts in longitudinal studies. To the date, data normalization 

methods vastly ignore this information, which in reality presents an opportunity to 

systematically obtain more accurate measurements. Beyond normalization, however, 

characterization of the instrument performance over time is key for MS diagnostics 

and automatic retuning applications. 

 

Correction for batch effects 
 
Batch effects are certain biases in measurements driven by various factors, such as 

differences in sample preparation or system setup conditions at acquisition times50. In 

practice, batch effects lead to numerical discrepancies even between supposedly 

identical samples, making direct comparison of experimental conditions dubious. 

Therefore, raw measurements need a correction for batch effects before any 

downstream analysis51.  

 

The research on the optimal batch correction approach has been active for two 

decades, at least. It originated from genomics and the analysis of microarray data52 

but ultimately reached all the other omics fields, including untargeted metabolomics. 

A variety of methods available (TIC, log, median, quantile normalization53, PQN54, 
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WaveICA55, NormAE56, to name just a few) suggests that no single solution fulfills the 

needs of the research community, on one hand. On the other hand, the evaluation 

criteria of batch correction procedures are debated50,51,57. Therefore, it remains 

unclear where the development of data normalization methods is headed, although 

every new approach is consistently shown superior to the predecessors. Nevertheless, 

two recent trends are observable, both associated with the growth of affordable 

computing power. 

 

First, the tools optimizing the entire data processing workflows are newly developed, 

maintained and constantly updated58–61. Several processing steps are jointly optimized 

to achieve, e.g., the largest number of peaks detected or the highest annotation 

confidence in the untargeted LC-MS analysis. In terms of normalization, online and 

offline platforms evaluate tens and hundreds of batch correction approaches for a 

given dataset and compare them according to multiple criteria62,63, thus, indirectly 

optimizing a joint loss function. A subtle risk of employing such “bulk” approaches for 

a single dataset is, of course, overfitting. Moreover, the more options (or parameters) 

available in the processing workflow are efficiently optimized, the higher the risk. 

 

Second, deep learning approaches for multi-batch data normalization now appear 

more often. Several methods have been published in the last years for 

transcriptomics64–66 and metabolomics56,67 studies. The power of deep representation 

learning allows to surpass older statistical methods according to the same evaluation 

criteria, just like it happened in computer vision, text comprehension, etc. Despite 

significant efforts in developing theory of deep learning68, many aspects of it are barely 

understood even within core AI community. Therefore, applied deep learning solutions 

must be treated carefully. In the context of data normalization, it is crucial to go beyond 

conventional evaluation criteria (e.g., reduced variation and reproducibility of QC 

samples) and verify consistency of the output on many levels. To support this, we 

demonstrate collapsed normalization solutions obtained with recently proposed deep 

learning methods later in this thesis. 

 

Multiple evaluation criteria and at least two datasets constitute the minimum 

requirements to demonstrate the advantages of newly developed methods. A number 

of benchmarking datasets are publicly available for that purpose and have been used 
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for systematic comparison of normalization approaches69–71. However, most of 

datasets are small (often below a hundred samples) and hardly include standard 

reference materials, internal standards, complex biological samples, spike-ins and 

dilution series all at once. As a result, normalization methods that excel on the 

benchmarking datasets fail on real data57, which leads to development of custom or 

conceptually new batch correction procedures. To break this pattern and enable in-

depth evaluation of normalization methods and their performance criteria, more 

benchmarking datasets of high quality is needed.  

 

Promises of artificial intelligence 
 
In the last decade, artificial intelligence (AI) has been growing rapidly; it penetrated 

and significantly advanced many fields of scientific research. In life sciences, for 

instance, the long-standing challenge of 3D protein structure prediction has recently 

been solved with AI using only amino acid sequence and limited meta information as 

inputs72. Beside successful applications of AI attracting a lot of public attention, there 

are numerous examples of domain-specific problems benefiting from AI. In untargeted 

metabolomics, for instance, deep learning frameworks have been proposed to improve 

peak integration73, predict retention times74, remove batch effects67 and generate 

structures de novo using mass spectra75. Altogether, such developments enhance the 

capabilities of analytical methods and provide deeper insights into the data. 

 

For system suitability testing and diagnostics, anomaly detection is perhaps the most 

relevant task. Anomaly (or outlier) detection refers to identifying data points that 

substantially deviate from the others in a given dataset. Initially, it has been viewed as 

a way to remove noisy data points76. With time and larger datasets available, it became 

clear that anomalies can be associated with rare events77 (e.g., sudden drops in the 

instrument performance) and, hence, their analysis is prolific. Unsupervised machine 

learning methods are predominantly used to detect anomalies, since they do not 

require fully labelled datasets. Among those, Isolation Forest78 (iForest) proved its 

superior efficiency, scalability and acceptable memory usage when applied to a variety 

of datasets79. Yet, it has not been frequently employed by the SST solutions. 
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Latest batch correction approaches heavily exploited multi-task representation 

learning56,65–67, wherein two or more deep neural networks are trained simultaneously 

to solve multiple coherent tasks expressed as individual terms in the joint loss function. 

This approach is designed to learn such data representations that reflect the most 

important properties of the data (e.g., similarity of biological materials in spite of batch-

related biases). In the context of batch correction, the learned representations are 

used to reconstruct the data without batch effects. Therefore, the main challenge is to 

set up multi-task representation learning in the way to remove batch effects while 

keeping the biological information intact. The exact mathematical formulation, 

however, remains an open research question. 

 

One of the most exciting trends in biomedical AI nowadays is multi-modal learning80. 

It refers to applications of deep learning to a single research question using multiple 

data modalities. The reason it is particularly useful in biomedical applications is the 

complexity of biological systems that can often be described on multiple levels81,82 

(e.g., multi-omics data characterizing survival subtypes of cancer patients83). 

Therefore, combination of data modalities (also known as data fusion) augments the 

information flow and allows to explore interactions between different parts of the 

system82. The prospective of using deep learning to analyze the fusion of untargeted 

metabolomics and microscopy imaging (highly relevant for, e.g., drug screens) poses 

a question of efficient representation learning approaches across these modalities. 

 

Another research direction critical for any healthcare application is explainable artificial 

intelligence84. The aspiration to deploy powerful decision-making systems based on 

deep learning is currently held back by the need to interpret their predictions, 

understand the underlying logic and make sure the behavior of AI system is robust 

and trustworthy85,86.  

 

A myriad of tools proposed to interpret the results of deep learning resulted in a 

taxonomy of methods listing local and global, intrinsic and post-hoc, model specific 

and model agnostic methods87. Local interpretability refers to the ability of the model 

to explain every single prediction during inference time, which is desirable for any 

clinical application. Therefore, research on deep learning models featuring intrinsic 

local interpretability is extremely topical. 



Chapter 1  ¾  General introduction 
_________________________________________________________________________ 

 28 

Conclusion  
 
In the above, we discussed the reproducibility issue of untargeted metabolomics using 

flow injection analysis with time-of-flight mass spectrometry. Several key components 

should synergize to tackle this problem: systematic quality assurance and control, data 

normalization strategy and instrument calibration. We briefly reviewed the existing 

tools and approaches with their limitations for each of the components, such as: i) lack 

of public system suitability datasets and limited awareness of the instrument state and 

how it affects the measurements; ii) trivial multi-batch benchmarking datasets, 

ambiguity of batch correction evaluation metrics and collapsing deep learning 

solutions; iii) non-linearity of calibration curves in LC-MS caused by ion suppression 

and only few attempts to overcome it. Acknowledging the current trends in AI, we also 

discussed opportunities of integrating metabolomics with other data modalities to 

enable multi-modal explainable deep learning applications for the benefit of 

fundamental and clinical biomedical research.  

 
Aim of this thesis 
 
In this PhD thesis, we aim at improving reproducibility of untargeted metabolomics  

leveraging the most recent developments in AI. Additionally, we investigate 

representation learning approaches across data modalities and develop an 

explainable deep learning application to demonstrate exciting opportunities for multi-

modal biomedical research in the future. 

 

Thesis outline 
 
In Chapter 2, we develop an SST platform to report on a mass spectrometer state. 

For that, we design a QC sample that produces 37 robust ion peaks, including 

isotopes, fragments and adducts. We develop an acquisition method to measure the 

QC sample repeatedly and collect detailed spectral information related to the chemical 

background, QC mix and detector noise scans of ion chronogram. After the 

measurement, the raw profile data is processed by the software to extract 2850 

numerical features reflecting different aspects of the system, e.g., resolution, mass 
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accuracy, ionization efficiency, levels of dirt and detector noise, etc. Those are further 

used to engineer the 16 quality indicators visualized for users through a web-service. 

We analyze in depth the QC data systematically acquired within 2 years, investigate 

the relationships between the QC features and the instrument settings and discuss the 

potentials of automatic retuning and MS diagnostics applications. 

 
In Chapter 3, we develop RALPS (regularized adversarial learning preserving 

similarity) to correct for batch effects in untargeted metabolomics data. We propose a 

loss function that consists of three terms: the one penalizing batch separation to 

mitigate batch effects, another one promoting tight clustering of replicates to retain the 

biological information, and the last one penalizing sample-wise variance increase to 

stabilize the training process. We test RALPS extensively on several multi-batch 

datasets and compare to state-of-the-art methods. In addition, we run series of 

ablation experiments to demonstrate flexibility, scalability and robustness of our 

method. One of the datasets was generated specifically for the purpose of 

benchmarking data normalization methods. It has a total of 2750 samples acquired in 

7 batches over a course of 2 months. The samples comprise human serum and 13C-

labeled E. coli extracts with three classes of different spike-ins and dilution series. The 

benchmarking dataset is largely affected by batch effects and presents a major 

challenge for a number of recently proposed normalization approaches. 

 

In Chapter 4, we use the benchmarking dataset of flow injection time-of-flight mass 

spectrometry for analysis of calibration curves. First, we investigate the possibility to 

predict relative concentrations of amino acids and nucleobases in human serum 

extracts. We test multiple machine learning models and assess their ability to 

generalize across compound classes and concentrations. Then, we evaluate the effect 

of batch correction methods on prediction of relative concentrations. Finally, we 

discuss prospective research directions to improve prediction of calibration curves for 

FIA-TOF-MS data. 

 

The final two chapters are not related to metabolomics, but are projects that I worked 

on in collaboration with a colleague who had to analyze the metabolism of cancer cell 
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lines under drug pressure. My role was to develop AI frameworks for the analysis of 

time-resolved images of tissue cultures.  

 

In Chapter 5, we investigate and compare representation learning approaches using 

cancer cell imaging data. We implement four different models having the same CNN 

backbone for downstream feature extraction. We train them under identical conditions 

testing four strategies of random augmenting and cropping for each model. To 

compare the learned representations, we formulate three independent tasks and 

evaluate multiple metrics for each. Among other empirical results, we confirm the 

efficiency of multi-task representation learning approaches across data modalities. 

 

In Chapter 6, we develop an explainable deep learning model to classify drugs based 

on cells images of different cancer types. The model features intrinsic local 

interpretability, i.e., it allows to visualize regions of an image driving the classifier 

decision. We present many examples shedding light on drug-specific morphological 

features of cells and discuss the potential to extend this approach to a multi-modal 

setting, e.g., to explain image classification with the corresponding metabolomics data. 
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Abstract 
 

The broad coverage of untargeted metabolomics poses fundamental challenges for 

the harmonization of measurements along time, even if they originate from the very 

same instrument. Internal isotopic standards can hardly cover the chemical complexity 

of study samples. Therefore, they are insufficient for normalizing data a posteriori as 

done for targeted metabolomics. Instead, it is crucial to verify instrument’s 

performance a priori, that is, before samples are injected. Here, we propose a systems 

suitability testing platform for time-of-flight mass spectrometers. It includes a 

chemically defined quality control mixture, a fast acquisition method, software for 

extracting ca. 3000 numerical features from profile data, and a simple web-service for 

monitoring. We ran a pilot for 21 months and present illustrative results for anomaly 

detection or learning causal relationships between the spectral features and machine 

settings. Beyond mere detection of anomalies, our results highlight several future 

applications such as (i) recommending instrument retuning strategies to achieve 

desirable values of quality indicators, (ii) driving preventive maintenance, or (iii) using 

the obtained, detailed spectral features for posterior data harmonization.  
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Introduction 
 

Reproducibility and replicability of experiments are essential mainstays of the scientific 

method1. Failure to reproduce measurements, computations, or results of a previous 

study is perceived as a lack of rigor and undermines the validity of study and its claims. 

Omics technologies are not immune to these challenges2. In fact, issues tend to 

increase with time and the steadily increasing number of features that every new 

technology allows to detect. This exacerbates the problems of small sample size3 and 

overfitting. Mass spectrometry (MS)-based assays also suffer from the inherent 

variability of measurements across instruments and over time. In proteomics, 

lipidomics, metabolomics, etc., reproducibility of quantitative experiments is a well-

known issue4–6. The common workaround to enable quantitation in MS-based assays 

is to add a known amount of isotopically labeled internal standards (IS), and quantify 

chemically similar compounds based on relative signals. This approach is limited by 

the availability of heavy standards and, therefore, is effective only in targeted studies 

or within compound classes.  

 

In absence of heavy standards such as in untargeted metabolomics or label-free 

quantification in proteomics, it remains challenging to ensure reproducibility such that 

it would be possible to compare samples from different experiments. A steadily 

growing arsenal of normalization methods allows correcting for differences in feature 

intensities across different batches7–9. However, they only tackle one facet of the 

reproducibility challenge. They are, however, ineffective in the case features could not 

be detected or matched across batches. This problem is quite frequent as caused by 

a multitude of common issues: drifts in retention times, loss of sensitivity, differences 

in tuning, changes in the matrix, contaminations, etc. Such irreproducible behavior 

cannot be corrected by posterior data processing. This has led to the development of 

approaches for testing LC-MS instrument performance a priori. Samples are injected 

only after the test is passed. Testing relies on three pillars: standard quality control 

(QC) samples, a standard acquisition method, and software to discover deviations10–

12 from expectations11,13. The effort toward reproducible untargeted metabolomics is 

spearheaded by the metabolomics quality assurance and quality control consortium 

(mQACC14,15). A recent survey revealed that expert metabolomics labs employ 
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procedures for system suitability testing15 but the examples of literature discussing 

specific details or presenting solutions are very scarce10. 

 

Here we propose means for systematic quality control (QC) and monitoring of 

instrument performance and properties for high-resolution mass spectrometry, 

focusing on a time-of-flight (TOF) instrument. We have been using TOF-MS 

productively for more than 10 years and analyzed more than 1 Mio samples by 

untargeted metabolomics. On occasions, we had to reanalyze entire batches of 

samples because of major problems and biases that passed unnoticed during 

instrument tuning. Hence, this work originated from the need to verify system suitability 

before injecting precious samples, and to monitor performance drifts that might require 

user intervention. Our system includes a chemically defined QC sample, a short 

acquisition method, software for extracting detailed spectral information from profile 

data, and a simple visualization service for end users.  

 

Results 
 

We set out to implement a system suitability testing platform capable of quick, 

quantitative and comprehensive characterization of the state of a high-resolution ESI-

TOF-MS instrument (Agilent 6550 iFunnel Q-TOF). On purpose, we omitted 

chromatography from testing. This decision was motivated by several practical 

reasons. Chromatography and detection are separated processes, and we frequently 

switch liquid chromatography systems depending on the type of separation needed 

(e.g., reversed phase, HILIC, ion-pairing). Chromatographic performance can be 

evaluated by means of retention time stability, height equivalent to a theoretical plate 

(HETP), peak tailing, etc., with samples that vary for the different methods. Here, we 

wanted to define a MS system suitability that is independent of a specific 

chromatographic setup and therefore more generally applicable. It was tailored to 

capture more information that relates to ionization, ion transmission and detection. We 

focused on negative mode ionization, which is predominant for metabolome profiling 

and less prone to adduct formation. The platform is composed of three core elements: 

a chemically defined quality control mix, an acquisition method, and a processing 
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engine that extracts quantitative information from measured spectra to do analytics 

and reporting through a web-service.  

 

Quality control mix 

The first element is a chemically defined quality control (QC) sample. This should 

include analytes that allow testing the system, be stable over long periods, and ready 

to inject. For the purpose of testing an ESI-MS system, the QC analytes should span 

over the full mass range of interest (m/z 100 to 800 for us), be diverse in chemical 

properties (e.g., polarity, pKa), and in propensity of analytes to build adducts or 

fragment during ionization. Following these principles, we opted for a mix of nine 

compounds. We emphasize that there is likely ample room to further optimize the 

composition of the QC mix. In the current composition, it has been in use for almost 

two years with satisfactory results and, therefore, we have not tested different mixes. 

For each compound, the concentration was adjusted to obtain an intense 

monoisotopic peak. Typically, the nine analytes also produced 27 isotopic peaks, 1 

adduct, and 9 fragments, for a total of 37 expected spectral peaks (Table S1). During 

processing, the expected peaks are analyzed individually to quantify peak and 

ionization properties. Any additional peak that is detectable but not part of the 

expected set is considered background. All background peaks are treated as a 

collective to quantify purity and dirt of the system. 

 

Acquisition method  

The acquisition method was designed to collect critical data in possibly short time. For 

the aforementioned reasons, we omitted a chromatographic separation and used an 

instrument method similar to flow injection analysis with a solvent flow of 150 µL/min. 

In principle, we were interested in capturing three types of scans: (i) full spectra for the 

chemical (solvent) background, (ii) full spectra for the QC mix, and (iii) full spectra in 

the absence of ionization. The latter was included to potentially assess background 

noise of the detector. It was obtained by stopping the liquid flow to the source and 

recording residual ion counts. The final profile is shown in Figure 1. The chemical 

background is acquired first to fully reflect the equilibrated LC-MS system and to avoid 

being affected by any tail of the QC mix peak. Given the absence of a column between 
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autosampler and ionization chamber, the injection program was modified to introduce 

a temporal delay of about 25 sec between the start of MS acquisition and the injection 

of the QC mix. After the sample has cleared from the ionization chamber (about 80 

sec), the flow is stopped to acquire detector background. Finally, the flow is ramped 

again. Throughout the period of 2 min, the MS acquires full scan profile data in 

negative ionization mode at a frequency of 4 GHz. 

Figure 1. Total ion chromatogram of the acquisition method (A). Representative spectrum for 

QC mix scans (B). 
 

Feature extraction 

Upon acquisition, raw profile data is analyzed to extract quantitative information that 

describes spectral properties in much depth. Not knowing in advance which properties 

of a spectrum drift or shift over time, we designed a very inclusive analysis that extracts 

2850 quantitative features for each QC sample injected. Ultimately, this information is 
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obtained from a detailed analysis of five scans. The largest fraction of features is 

extracted from the chronogram peak related to the QC mix. The exact scan number is 

determined dynamically by picking the scan with the highest total ion current, and the 

analysis is extended to the two following scans to obtain an average value and a 

measure of deviation for each feature. For each of the 37 expected peaks of the QC 

mix, we collect intensity, absolute mass accuracy, factual ppm, multiple widths, area 

under peak tails, symmetry, goodness-of-fit with a Gaussian, number of subsequent 

peaks and their intensity ratios (Figure S1). 

 

For each expected isotopologue, fragment, or adduct, we also measure the height 

relative to the deprotonated, monoisotopic peak, as well as the difference to the 

theoretical relative abundance. This allows diagnosing deviations from linear 

response, excessive in-source fragmentation, or increased salt contaminations, 

respectively. For each of the above features, we record the mean value and the 

standard deviation from three consecutive scans. Overall, the numeric features 

derived from the QC mix peaks are 1720. 

 

To capture baseline properties, level and type of dirt, instead of focusing on a 

predefined list of m/z features, we segmented the mass axis in windows of 50 amu. 

For each window, we recorded number of peaks, intensity sum, intensity percentiles 

with all expected ions excluded, intensities of 10 most abundant peaks, as well as their 

intensity percentiles. This resulted in 720 more features, so the total of features coming 

from the QC mix is 2440. 

 

Two other scans are analyzed to gain additional information about the system. The 

chemical background is characterized in a single scan before the QC mix peak, i.e., 

scan number 18 in our LC-MS setup. Similar to the QC mix scans, we extract 140 

features related to two reference compounds that are co-sprayed and used as lock 

masses for intra-scan mass calibration (HOT and HEX in Table S1). 180 more 

features come from the windows of 100 amu, making a total of 320 background-related 

features. Finally, pure detector signal is characterized in a late scan in absence of 

ionization. We collect 90 more features from the windows of 200 amu for a grand total 

of 2850 for each injected QC sample. 
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Feature extraction was implemented in Python. In our environment, it is triggered 

automatically by the appearance of a QC acquisition file in a predefined location. The 

results are stored in a SQL database that constitutes the access point for all 

downstream analyses. Starting from raw MS profile data, out software extracts all 

features and updates the corresponding logs and databases within 20 sec. Including 

measurement, data logistics and web-service rendering time, the full process takes 

less than 5 minutes. In the following, we showcase and discuss the immediate and 

long-term benefits of using the SST platform. 

 

Instrument monitoring  

A primary goal of the aforementioned procedure is to verify system suitability before 

proceeding with data acquisition. For this purpose, we implemented a monitoring 

system to visualize and compare current and historical data. It consists of a web-

service that pulls data in real-time from the database with extracted QC features and 

reports key information on a dashboard. For obvious reasons, including all 2850 

features would have been problematic and inefficient. To favor visualization of 

accessible information over an overflow of data, we defined 16 quality indicators that 

report aspects of analytical relevance such as resolution, mass accuracy, accuracy of 

isotopic ratios, adduct formation, signal intensity, signal-to-noise, levels of dirt and 

detector noise. These indicators were calculated from the 2850 primary features 

(Table S2) and are presented for users on the dashboard. 

 

Visualization was designed to inform on two types of patterns. First, we were 

interested in capturing particularly abnormal values of any of the quality indicators. 

Therefore, we integrated plots that visualize the distribution of quality indicator values 

in the past and the latest to be evaluated. To facilitate the analysis, the system also 

performs automatic outlier detection by the isolation forest algorithm16. The latter is 

based on an ensemble of decision trees, followed by a correction routine specific to 

the type of the indicator. In real-time, each QC sample is scored automatically by 

counting the number of outliers across the 16 quality indicators. As a rule of thumb, if 

more than 4 values are classified as outliers, the QC sample flagged with bad quality. 

The second type of pattern that we wanted to highlight is temporal trends. We 

hypothesized that factors such as detector aging or dirt accumulation could result in a 
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subtle but continuous decay of instrument performance. Such drifts are slow and, 

therefore, they would not be recognized by outlier detection. We integrated a trend 

detection that uses linear models with empirical thresholds for R2 and slope 

coefficients. Three temporal intervals are considered (two weeks, one month, and two 

months) and reported on the dashboard (Figure S2). 

 

To assess the technical reproducibility of feature extraction, we analyzed 191 QC 

samples acquired on the same day without any modification of instrument parameters, 

i.e., tuning. The median intra-day coefficient of variation across the 2850 QC features 

was 27%, but with strong differences between the types of QC features. For example, 

noisier features were associated to the lock masses included in the buffer. Other noisy 

features described the tails of DC mix ions (i.e., ringing and baseline artefacts). For 

the 16 quality indicators, the median variation coefficient was 4%. This indicates that 

the setup is robust enough to capture shifts of about 10% or more.  

 

The system has been operating in a pilot period of 21 months. During this period, at 

least one QC sample has been analyzed on 110 days constituting a total of 153 

measurements. Among those, 37 QC samples featured four or more outlier values 

and were flagged as of bad quality. Based on automated outlier detection, 

fragmentation_305 was found to be most out-of-order QC indicator (in 31% of QC 

samples), followed by isotopic_presence (28%) and baseline_25_150 (25%). The 

most stable indicators were average_accuracy (only 8% of bad quality), 

resolution_700 (6%) and baseline_50_650 (5%). During the same pilot period, a total 

of 40 trends were automatically detected for the QC indicators within 2-month 

windows. For instance, an increasing chemical_dirt trend was detected between 

October and December 2019 (R2 = 0.7071, n=16) and a decreasing resolution_700 

trend was detected between October and December 2020 (R2 = 0.6873, n=14). Other 

examples of trend detection are given on Figure S3. 

 

Upon detection of a bad quality QC sample, the user was prompted to take corrective 

actions to restore normal range. Thus far, corrective actions were suggested based 

on expert knowledge and the kind of outlier. For example, in the case of a loss of, e.g., 

resolution, mass accuracy, or ion transmission, the system was retuned focusing on 
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the relevant section of the optics or opting for a general system tune in more extreme 

cases. In the case of increases of, e.g., chemical background signals, the primary 

response was to purge the system, replace buffers, or clean the source and front 

optics. In the case of a drop in signal or signal-to-noise, we evaluated whether 

sensitivity of the detector (i.e., the voltage of the multichannel plate detector, or the 

amp gain) had to be readjusted. These recommendations were adopted by users to 

prevent the injection of samples before normal operation was verified.  

 

Analysis of QC features 

We designed the feature extraction to be very inclusive and capture possibly granular 

information on spectral properties and, in turn, instrument characteristics. This resulted 

in a long vector with 2850 numerical values. By design, several of the features are 

likely correlated because they reflect similar aspects of the same peak, report the 

same property of different peaks of the QC mix, or simply relate to neighboring regions 

of the mass range. We therefore wondered about the actual information content: is 

there a benefit in collecting very detailed information or could one describe instrument 

state with much fewer features? To address this question, we analyzed the full matrix 

of values obtained in the initial 21 months of operations. We performed a principal 

component analysis (PCA) of the feature matrix and calculated a cumulative portion 

of total variance explained. We found that the first 10 components explained only 

about 52% of total variance. To capture 95%, 100 components were necessary. This 

highlights a substantial heterogeneity of the dataset. Rather than surfing through many 

principal components, we performed a hierarchical clustering to understand whether 

the list of QC features could be compressed without tangible losses in information 

(Figure 2). In line with the PCA, numerous subtrees with peculiar patterns over the 

measured QC samples emerged. To verify what kind of QC features correlated in 

these subtrees, we sought for enrichments in either the m/z range of the feature, its 

type, or the scan the feature was extracted from (encoded in the colors on the left of 

Figure 2).  
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Figure 2. Hierarchical clustering of z-scored QC features with annotations by m/z, scan and 

feature types. See descriptions of feature types in Table S3 and Table S4. 
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Tightest clustering was found for features linked to spectral background (labeled with 

“background” in Figure 2), pointing to some redundancy. These are the values that 

are not related to the chemicals spiked in the QC mix. They dominated the upper part 

of the clustered heatmap. Background features of similar type but different mass range 

were frequently adjacent. Background features extracted from the solvent and from 

the QC mix scans co-clustered frequently. Retrospectively, this was expected because 

apart from the regions populated by QC mix ions, the two scans are expected to be 

identical. In such cases, a single feature measured in a QC mix scan seems sufficient 

to recapitulate the principal drifts and shifts observed across scans and the mass 

range. In contrast, the features derived from ions deriving from the chemicals spiked 

in the QC mix were more heterogeneous (lower part of Figure 2). Albeit many features 

of similar type were close in the tree (e.g., symmetry, isotopic properties, mass 

accuracy, etc.), their distance was generally higher than observed for background 

features. This seems to reflect the fact that peak features tend to vary across the mass 

range, possibly because of differences in intensity or in the spectral neighborhood. 

The only exception was the peak width, which correlated well across the whole mass 

range.  

 

To further investigate feature redundancy, we did a cross-correlation analysis between 

all 2417 continuous QC features. The resulting Pearson correlation coefficients were 

< 0.5 in 95% of the pairs. Only for 0.4%, the correlation was strong (|𝑟| > 0.9). As 

expected, these cases were related either to the features of the same type or to 

“synonymic” features of the same m/z window. These results confirm that QC features 

describe many spectral properties, not likely to be fungible. It is further supported by 

a simple visual analysis of the differences between injections, i.e., the columns on the 

heatmap shown in Figure 2. Many vertical stripes emerge, which indicate sets of 

features with values at the far ends of the measured range. Importantly, the extreme 

values are not aligned vertically over a large fraction of features but tend to vary across 

samples. This heterogeneity indicates that fine-grained shifts are present in the data, 

even though they might have not been captured by the 16 quality indicators that were 

adopted for instrument monitoring. It remains to be tested if such drifts had a tangible 

effect on the measurement of studies that were acquired on the same day. This 

analysis would require expanding the outlier detection introduced for system 
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monitoring to all measurable features. Whenever an extreme deviation was reported, 

a set of test samples ought to be run to evaluate the practical consequences. 

 

Association analysis between instrument settings and QC features 

We were wondering whether any of the aberrant behaviors detected during the pilot 

phase were associated to drifts in setpoints or readbacks of the instrument. Therefore, 

we studied the relationship between measured quality indicators (or QC features) and 

actual instrument settings, which include both tunable and non-tunable values. 

Tunable values affect ion optics and detection and are adjusted during instrument 

tuning or calibration according to the procedures that are implemented in the control 

software. Non-tunable values consist of readbacks of parameters such as pressures, 

currents, pump speeds, noise, and are collected for diagnostic purposes. In many 

cases, they are stored with each run or in the tuning reports. The number and type of 

accessible instrument settings varies across vendors and type of instruments. For the 

QTOF instrument described here, about ten non-tunable values and fifty tunable 

values were extracted for each QC run and stored.  

 

The connection between instrument performance and instrument settings can be 

analyzed by different approaches. For example, a significant decay in resolution (at 

m/z 700) over the period of two months was once identified by the aforementioned 

trend detection (Figure 3). To find potential causes of this loss in performance, we 

sought for correlations with instrument settings during the same period. Significant 

associations were found for two parameters: the non-tunable pressure reading in the 

first quadrupole and the ion focus strength (Figure 3B, C). This suggests that the 

transient drop in resolution might be caused by an increased spread of trajectories or 

velocities of ions in the section preceding the TOF pulser.  
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Figure 3. The decreasing resolution_700 trend (A) and the corresponding correlations with 

the instruments settings: quadrupole vacuum (B) and ion focus (C). Pearson correlation 

coefficients and Bonferroni adjusted p-values are given. 
 

An alternative approach is to seek for parameters that are associated with top 

performance. We illustrate this for the signal-to-noise, which reflects instrument 

sensitivity. In this case, we split all QC samples into groups of high (top 20th percentile) 

and low signal-to-noise. We then sought for instrument settings that were different 

between the two groups. The procedure was repeated for another quality indicator, 

the signal-to-background (Table 1). For both indicators, we found significant 

associations. Several expected associations were found. For instance, better vacuum 

(lower value of TOF_Vac) was linked to higher signal-to-noise and signal-to-

background. Increased multichannel plate voltage (MCP), or instrument firmware 

(InstrumentFW) improved both indicators. We also found less intuitive associations, 

like the voltage of several lenses of the ion optics before the TOF section (e.g., 
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Top_Slit, Bottom_Slit, Lens_2, Oct_1_RF_Vpp_1, etc.) which are likely to overall 

improve ion transmission.  

 
Table 1. Statistical comparison of the machine tunes. Machine tunes significantly different 

between signal-to-noise groups are shown on the left. Machine tunes significantly different 

between signal-to-background groups are shown on the right. In both cases, three statistical 

tests were applied for each comparison (Kolmogorov-Smirnov, Mann-Whitney U, Kruskall), 

followed by FDR correction for multiple testing. The biggest significant p-value is reported. 

Sign of linear relationship is shown, where the medians of two distributions were different. 

signal-to-noise signal-to-background 

setting sign p-value setting sign p-value 

Acc_Focus — 0.0118 Amp_Offset  0.0044 

Amp_Offset  < 0.0001 InstrumentFW + 0.0414 

Bot_Slit + 0.0229 Length_of_Transients  0.0443 

Cell_Entr + 0.0433 Lens_2  0.0414 

Cell_Exit  0.0206 Lens_2_RF_Ph  0.0255 

InstrumentFW + 0.0001 MCP  0.0034 

Lens_2  0.0007 Oct_1_RF_Vpp_1  0.0003 

Lens_2_RF_Ph  0.0007 Puller_Offset  0.0044 

MCP + 0.0001 TOF_Vac — 0.0091 

Mirror_Mid + 0.0156 Top_Slit + 0.0044 

Oct_1_RF_Vpp_1  < 0.0001    

Puller_Offset  0.0001    

TOF_Vac — 0.0003    

Top_Slit + < 0.0001    

 

All identified associations may indicate what settings determine properties of 

measured spectra but were analyzed in isolation and for selected examples. In reality, 

settings and indicators are partly interdependent. For example, adjusting a voltage to 

increase sensitivity might negatively affect resolution. To go beyond individual 

correlations and statistical tests, we attempted to learn causal relationships between 

the tunable instrument settings and the observed quality indicators. Specifically, we 

attempted to learn the underlying structure from all available data using the PC17,18 

algorithm (named after Peter and Clark19) and conditional independence testing. The 



Chapter 2  ¾  A system suitability testing platform for 
untargeted, high-resolution mass spectrometry 

_________________________________________________________________________ 

 55 

result is a directed acyclic graph that condenses statistical dependence between 

instrument settings and performance indicators (Figure 4). The results reveal that, for 

example, the spontaneous fragmentation of fluconazole (fragmentation_305) was 

associated to voltages in the section that precedes the collision cell (Lens_2, 

Lens_2_RF_Ph, Oct_1_RD_Vpp_1, Cell_Entr). Resolution (both at m/z 200 and 700) 

seems governed by the bottom slicer voltage. This is coherent with the function of the 

slicer, which flattens the ion beam before it is pulsed orthogonally in the flight tube. 

Suboptimal slicer settings increase differences in the length of the flight path which 

would result in different flight times even for ions of identical m/z. Thereby, it would 

worsen peak resolution. Instead, most settings related to the electrospray ionization 

process (aggregated on the right part of Figure 4) affect parameters related to signal 

intensity such as signal-to-baseline, isotopic accuracy, mass accuracy. With more 

data, it could be possible to build a reliable statistical model to also infer which settings 

should be adjusted to achieve or maintain a certain property of the measurement.  

 

Conclusion 
 

We present the concept of a system suitability testing platform for monitoring the status 

of a high-resolution QTOF mass spectrometer. The setup consists of a QC mixture, 

an acquisition method, software to extract a detailed ensemble of quantitative features 

describing spectral properties, and a simple R Shiny front-end for real-time 

visualization. We operated the testing platform in a pilot lasting for 21 months and 

including 153 individual measurements of the QC mixture. We demonstrated 

instrument monitoring by a small set of quality indicators (16 in our case) and the 

implementation of routines for trend and outlier detection. The platform, therefore, 

helps users in evaluating in depth the instrument readiness to measure biological 

samples. In most cases, unsatisfactory results could be effectively addressed by 

cleaning the ion optics or a thorough tuning/calibration of the instrument.  

 

The presented setup offers ample room for further improvements. In particular, the 

long-term stability of the QC mixture should be verified. The feature set could also be 

optimized. The feature extraction is generic and easily transferrable to TOF 

instruments from other vendors. Adaptation to high-resolution instruments that use a 
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Fourier Transform to reconstruct spectra would require more work. Features related 

to peak symmetry, detector ringing, baseline shifts, etc. are irrelevant. In contrast, it 

would be important to include features that can capture artifacts of FT spectra: 

harmonic peaks, coalescence, etc. 

 

Further, we illustrated how collection of instrument setpoints and readbacks allows to 

derive the causal relationships between instrument settings and instrument 

performance measured with the QC mixture. This highlights additional, potential 

applications of the testing platform. First, we envisage that the system could 

recommend instrument settings to maintain or attain a particular value of a quality 

indicator. Second, it could assist in timing preventive maintenance. We speculate that 

continuous QC data collection coupled with predictive models would be able to 

indicate when to replace wearable parts, clean specific parts of the ion path, or maybe 

even anticipate major failures such as a pump breakdown.  

 

Thus far, the testing platform has been conceived to operate with data pertaining to a 

single instrument. Future work will explore the possibility of using the detailed 

information provided by the QC mix to harmonize data collected either on the same 

instrument but at different time points, or on different instruments of the same type. 

The canonical approach to normalize across batches or instruments is to include 

internal standards, or standard reference materials. This approach, however, works 

only for compounds that are present in the standard material and fails to capture non-

linear effects. We hypothesize that capturing detailed information on, e.g., baseline, 

ion transmission, fragmentation, etc. might help to harmonize data before 

normalization by standards can be applied.  
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Figure 4. A reduced DAG reflecting the causal relationships between the instrument settings 

(in blue) and the QC indicators (in red). A significance level of 0.15 was used as the threshold 

for conditional independence testing. 
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Methods 
 

Instrument details 

All analyses were done on an Agilent 6550 QTOF instrument, operated in negative 

ionization and 4 GHz High-Resolution mode because it matches the configuration that 

we use in routine flow injection and LC-MS analysis. The mobile phase was 60% 

isopropanol in water (v/v) supplemented with homotaurine (Sigma-Aldrich, Germany) 

and Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine (Agilent) as reference 

masses for m/z axis calibration. The solvent flow was 150 µL/min. All compounds 

included in the QC mixture (Table S1) were purchased from Sigma-Aldrich (Germany) 

at the highest purity available. The injection volume was 1 µL. 

 

Anomaly detection and quality control 

We implemented two types of anomaly detection: i) based on descriptive statistics, 

and ii) based on machine learning. Both approaches require some reference (or 

training) data to apply algorithms and determine whether a new quality indicator is 

likely to be an outlier or not. Each of the 16 quality indicators of the new run is 

evaluated individually, and the total number of non-outliers serves as the QC run 

score. Two different types of anomaly detection suggest different usage scenarios of 

the monitoring system. 

 

The statistical approach assumes that the instrument preserves its properties within 

the period of the study. If the instrument performance remains the same with only little 

oscillations, appropriately, any quality indicator does as well. Thus, measuring quality 

indicators repeatedly over time makes it possible to derive confidence intervals for the 

expected mean, or the ranges that are considered as “good” or “bad” for each 

indicator. In this approach, we use quantiles to compute such ranges, as soon as 

enough data is generated and stored in the database. We set 60 measurements of the 

QC sample to be enough to classify further values of quality indicators as “good” or 

“bad”, i.e., within the expected interval or not. This number, however, is only empirical 

and remains a configurable parameter in the platform. 
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This approach may not be optimal for longitudinal studies, because it does not adapt 

to the changes in the instrument state over time. Intervals derived for the first N 

measurements will be applied to the data forever. Possible effects of instrument aging 

and hardware replacements will be ignored. To potentially account for them and to 

make the system adaptable, we implemented another approach based on machine 

learning. Isolation Forest, an unsupervised method for outlier detection, is used to re-

evaluate all the entries in the database as soon as a new QC measurement is 

acquired. This way, the platform adapts to the gradual temporal drifts in quality 

indicators, while still being capable of detecting anomalies. Because of that, only N=20 

measurements are set as a minimum number of entries to apply the method. 

 

Both methods’ predictions are corrected for the type of the quality indicator. For 

instance, low mass accuracy values are not treated as outliers, since a small 

difference between expected and measured m/z value for an ion is desired. Big signal-

to-noise ratios are not treated as outliers, since high signal-to-noise ratio is preferable, 

in general. For other cases, adjustments are made on top of the aforementioned 

methods to compensate for artifacts caused by little data available (i.e., when the total 

number of QC samples in the database is still small). 

 

In our experience, both methods to detect anomalies have shown similar results, when 

applied to the data systematically acquired within 21 months. However, in multi-day 

acquisitions, we see Isolation Forest to be preferable due to its adaptability and relative 

robustness. Isolation Forest is, therefore, a default method in the platform. 

 

Web service 

We used R Shiny framework to implement a web-service providing users with 

graphical representation of the data and analytics (Figure S2). The layout contains 

three tabs: summary, trends and table components. The summary tab allows users to 

select a QC run by date and to see how the corresponding quality indicators are 

aligned against the full dataset. Score of the selected run and the distributions for each 

metric are displayed. The trends tab depicts temporal progression for the selected 

indicator, marking overall run qualities. This allows to see and analyze each metric’s 

behavior retrospectively. Linear trends are computed and visualized as well, which 
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helps detecting gradual loss of sensitivity, gain of dirt in the system, etc. Finally, the 

table tab explicitly shows the values of the quality indicators from the database. Values 

classified as “good” or “bad” are colored in green and red, respectively. 

 

Availability 
 

The source code of the SST platform core (raw signal processing, feature extraction 

and engineering) is available at https://github.com/zamboni-lab/SST-platform-core. 

The QC database and the Shiny app of the web-service are available at 

https://github.com/zamboni-lab/SST-platform-shiny.  
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Supplementary material 
 

Table S1. Expected ions of QC mix and buffer. 
 QC mix ions  QC mix ions 

# compound m/z type  # compound m/z type 

1 

Caffeine 

193.0725 isotope  25 

Perfluorodecanoic 
acid 

512.9594 isotope 
2 194.0759 isotope  26 513.9628 isotope 
3 195.0792 isotope  27 514.9662 isotope 
4 179.0569 fragment  28 468.9696 fragment 

5 

Fluconazole 

305.0962 isotope  29 
Tricosa-

fluorododecanoic 
acid 

612.9531 isotope 
6 306.0995 isotope  30 613.9564 isotope 
7 307.1029 isotope  31 614.9598 isotope 
8 191.0681 fragment  32 568.9632 fragment 

9 

Albendazole 

264.0806 isotope  33 

Perfluorotetra-
decanoic acid 

712.9467 isotope 
10 265.0840 isotope  34 713.9500 isotope 
11 266.0873 isotope  35 714.9534 isotope 
12 188.9996 fragment  36 668.9568 fragment 
13 232.0544 fragment  37 646.9549 fragment 

14 

Triamcinolone 
acetonide 

433.2026 isotope   

15 434.2059 isotope  Buffer ions 

16 435.2093 isotope  # compound m/z type 

17 453.2088 adduct  1 
HOT 

(Homotaurine) 

138.0224 isotope 
18 337.1439 fragment  2 139.0258 isotope 

19 
Pentadeca-
fluoroheptyl 

368.9760 isotope  3 140.0291 isotope 

20 369.9794 isotope  4 HEX 
(Hexakis (1H, 1H, 

3H-tetrafluoro-
propoxy) 

phosphazine) 

940.0009 isotope 
21 370.9827 isotope  5 941.0042 isotope 

22 
3-Heptadeca-

fluorooctylaniline 

510.0150 isotope  6 942.0076 isotope 

23 511.0184 isotope      

24 512.0217 isotope      



Chapter 2  ¾  A system suitability testing platform for 
untargeted, high-resolution mass spectrometry 

_________________________________________________________________________ 

 62 

Figure S1. Examples of QC features related to the expected ion peaks. 
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Table S2. QC indicators descriptions. 
QC indicators 

# name pseudo code description 

1 resolution_200 mz_Caffeine / peak_width_Caffeine measured m/z of Caffeine divided by the 
average width of the peak 

2 resolution_700 mz_Perf_acid / peak_width_Perf_acid 
measured m/z of Perfluorotetradecanoic 
acid divided by the average width of the 

peak 

3 average_accuracy sum(mean_abs_mass_accuracy_array) / n_ions sum of mean absolute mass accuracy 
for all 37 ions divided by its number 

4 chemical_dirt sum(chem_bg_intensity_array) sum of all intensities in the chemical 
background scan 

5 instument_noise sum(noise_intensity_array) sum of all intensities in the detector 
noise scan 

6 isotopic_presence sum(abs(mean_iso_ratios_diffs_array)) / 
length(mean_iso_ratios_diffs_array) 

sum of all isotope ratios’ diffs (in 
absolute numbers) divided by its number 

7 transmission mean_intensity_Perf_acid / 
mean_intensity_Fluconazole 

mean of the Perfluorotetradecanoic acid 
intensity (m/z ~712) divided by the 
Fluconazole intensity (m/z ~305) 

8 fragmentation_305 mean_intensity_Fluconazole_fragment / 
mean_intensity_Fluconazole 

mean of Fluconazole fragment intensity 
(m/z ~191) divided by the Fluconazole 

intensity (m/z ~305) 

9 fragmentation_712 mean_intensity_Perf_acid_fragment / 
mean_intensity_Perf_acid 

mean of Perfluorotetradecanoic acid 
fragment intensity (m/z ~668) divided by 
the Perfluorotetradecanoic acid intensity 

(m/z ~712) 

10 baseline_25_150 percentile(chem_bg_intensities_150_250, 25) 
25th intensity percentile from a [150, 

250] m/z range of a chemical 
background scan 

11 baseline_50_150 median(chem_bg_intensity_array_150_250) median intensity from a [150, 250] m/z 
range of a chemical background scan 

12 baseline_25_650 percentile(chem_bg_intensity_array_650_750, 
25) 

25th intensity percentile from a [650, 
750] m/z range of a chemical 

background scan 

13 baseline_50_650 median(chem_bg_intensities_650_750) median intensity from a [650, 750] m/z 
range of a chemical background scan 

14 signal sum(mean_intensity_array) sum of mean intensities for all 37 ions 

15 s2b mean_intensity_3Hepta / 
percentile(intensity_array_500_550, 25) 

mean intensity of 3-
(Heptadecafluorooctyl)aniline (m/z ~510) 

divided by mean 25th intensity 
percentile from a [500, 550] m/z range 

16 s2n 
mean_intensity_3Hepta / 

(median(intensity_array_500_550) - 
percentile(intensity_array_500_550, 25)) 

mean intensity of 3-
(Heptadecafluorooctyl)aniline (m/z 510) 
divided by the diff between the median 
and the 25th intensity percentile from a 

[500, 550] m/z range 
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Figure S2. Snapshots of the web-service. A summary tab (top right): distributions of 

the quality indicators are displayed with red dotted lines indicating the selected run. A 

trends tab (left): historical data is displayed for the selected quality indicator on top. A 

table with summary on the trends and two trend plots are displayed below. A table tab 

(bottom right): values of the quality indicators are displayed in a table for the last 100 

QC runs. Indicators classified as ‘good’ and ‘bad’ (read “within a normal range” and 

“likely an outlier”) are in green and red, respectively. 
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Figure S3. Examples of trend detection for quality indicators. Two-weeks trends are 

shown on top and one-month trends are below. Linear regression coefficient defines 

the sign of the trend, whereas the R2 score reflects its significance. Empirical 

thresholds allow to classify the quality indicators as increasing, decreasing or 

unchanged (no significant trend detected) within the corresponding time period. 
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Table S3. Description of QC mixture feature types. 

Types of QC mix features 

# type feature description 

1 counts intensity measured intensity of the ion 

2 peak width widths width of the peak (in amu units) at 20%, 
50% and 80% of its total height 

3 mass 
accuracy 

absolute_mass_accuracy absolute mass accuracy in amu units 

ppm mass accuracy in ppm 

4 peak vicinity 
subsequent_peaks_number 

a number of subsequent centroids within 
a window of 3 peak widths (at 50% of the 

height) 

subsequent_peaks_ratios intensity ratios between the original peak 
and the subsequent peaks 

5 peak shape 

left_tail_auc 
an integral of the difference between 
actual and fitted intensities on the left 

side of the ion peak 

right_tail_auc 
an integral of the difference between 

actual and fitted intensities on the right 
side of the ion peak 

symmetry 
a measure of peak symmetry defined as 
the sum of left and right tail aucs, divided 

by the two maximums of them 

goodness_of_fit reduced chi-squared, AIC and BIC of the 
peak fit with a Gaussian model 

6 
isotopic 

abundance 
and ratios 

isotopes_ratios intensity ratios between the main ion 
peak and its isotopes 

isotopes_ratios_diffs differences between the actual isotopes’ 
ratios and the expected (theoretical) ones 

isotopes_mass_diffs 
differences between the actual isotopes’ 
m/z values and the expected (theoretical) 

ones 

7 ion fragments 

fragments_ratios intensity ratios between the main ion 
peak and its fragments 

fragments_ratios_diffs 
differences between the actual 

fragments’ ratios and the expected 
(theoretical) ones 

fragments_mass_diffs 
differences between the actual 

fragments’ m/z values and the expected 
(theoretical) ones 
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Table S4. Description of background feature types. 

Types of background features 

# type feature description 

1 background 
QCmix 

number_of_peaks_norm a total number of peaks within a particular amu window 
of a QC mix scan with 37 expected ions excluded 

intensity_sum_norm 
an intensity sum of all peaks within a particular amu 

window of a QC mix scan with 37 expected ions 
excluded 

percentiles_norm 
25th, 50th and 75th percentiles of intensities within a 

particular amu window of a QC mix scan with 37 
expected ions excluded 

top_peaks_intensities_norm 
intensities of top 10 ion peaks within a particular amu 

window of a QC mix scan with 37 expected ions 
excluded 

top_percentiles_norm 
25th, 50th and 75th percentiles of intensities of top 10 
ion peaks within a particular amu window of a QC mix 

scan with 37 expected ions excluded 

2 background 
solvent 

number_of_peaks_chem 
a total number of peaks within a particular amu window 

of a chemical background scan with 2 expected ions 
excluded 

intensity_sum_chem 
an intensity sum of all peaks within a particular amu 

window of a chemical background scan with 2 
expected ions excluded 

percentiles_chem 
25th, 50th and 75th percentiles of intensities within a 

particular amu window of a chemical background scan 
with 2 expected ions excluded 

top_peaks_intensities_chem 
intensities of top 10 ion peaks within a particular amu 

window of a chemical background scan with 2 
expected ions excluded 

top_percentiles_chem 
25th, 50th and 75th percentiles of intensities of top 10 

ion peaks within a particular amu window of a chemical 
background scan with 2 expected ions excluded 

3 background 
detector 

number_of_peaks_bg a total number of peaks within a particular amu window 
of a detector noise scan 

intensity_sum_bg an intensity sum of all peaks within a particular amu 
window of a detector noise scan 

percentiles_bg 25th, 50th and 75th percentiles of intensities within a 
particular amu window of a detector noise scan 

top_peaks_intensities_bg intensities of top 10 ion peaks within a particular amu 
window of a detector noise scan 

top_percentiles_bg 
25th, 50th and 75th percentiles of intensities of top 10 
ion peaks within a particular amu window of a detector 

noise scan 
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Abstract 
 

Untargeted metabolomics by mass spectrometry is the method of choice for unbiased 

analysis of molecules in complex samples of biological, clinical, or environmental 

relevance. The exceptional versatility and sensitivity of modern high-resolution 

instruments allows profiling of thousands of known and unknown molecules in parallel. 

Batch effects constitute a common and unresolved problem in untargeted 

metabolomics, however, and can bias data analysis and hinder long-term studies. 

Here, we present a new method, Regularized Adversarial Learning Preserving 

Similarity (RALPS), for the normalization of multi-batch untargeted metabolomics data. 

RALPS builds on deep adversarial learning with a three-term loss function that 

mitigates batch effects while preserving biological identity, spectral properties, and 

variation coefficients. Using two large metabolomics datasets, we showcase the 

superior performance of RALPS as compared with six state-of-the-art methods. Our 

results demonstrate that RALPS scales well, delivers robust results, deals with missing 

values, and can handle different experimental designs. 
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Introduction 
 

Metabolomics is the method of choice for chemical characterization of biological, 

clinical, and environmental samples. When the aim of the analysis is to monitor many 

and potentially unexpected analytes, the traditional untargeted approach is to scan the 

full mass and dynamic range with high-resolving instruments. This strategy allows 

monitoring of virtually all compounds that can be ionized and are sufficiently abundant. 

Eventually, untargeted metabolomics experiments result in semi-quantitative data for 

thousands of detectable features and many more unknowns. A largely unsolved 

problem of such large metabolomics experiments, however, is data normalization. The 

sheer number of features and the extreme sensitivity of liquid chromatography–mass 

spectrometry (MS) instruments to multiple factors mean that ion-specific temporal 

drifts, day-to-day variability, or batch effects are common in metabolomics analyses. 

These problems increase with number of samples.  

 

The most common way to account and correct for these issues is to employ isotopically 

labeled internal standards, which are added at a fixed amount to all samples and 

calibration standards. If the standard’s elution times and ionization behavior are 

identical to those of the compound of interest, the standard can be used to correct for 

linear matrix effects. This approach is quite effective with a limited number of 

metabolites, as in targeted metabolomics analyses, but does not scale to untargeted 

metabolomics. The first problem is the limited availability of heavy standards, and one 

workaround is to use a few representatives for each class and extrapolate over 

structurally similar compounds. The second problem is the limit on the number of 

standards that can be spiked without introducing novel matrix effects, i.e., when using 

standards available in salt form. 

 

In the absence of internal standards to assess and correct for experimental variations, 

drifts, batch effects, and so on, normalization needs to operate on the resulting data. 

Notable examples of batch normalization methods are ComBat1, based on empirical 

Bayes frameworks, and EigenMS2, using singular value decomposition to estimate 

and correct for bias trends in the data. These approaches, as well as probabilistic 

quotient normalization3 (PQN), have been reported as some of the best options for 
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untargeted metabolomics studies, when applied in combination4. In 2019, an algorithm 

based on the wavelet transform with independent component analysis, WaveICA, was 

proposed and showed superior performance in large-scale untargeted metabolomics 

studies5. 

 

A current trend is to employ deep learning to correct for batch effects, and several 

examples of this approach are available in single-cell RNA sequencing6–8. In 

metabolomics, the related state-of-the art method is NormAE9. All of these methods 

rely on self-supervised representation learning to project input features into a latent 

space and then apply a mechanism of merging similar patterns in that space. NormAE 

relies on adversarial learning in which two neural networks, an autoencoder and a 

classifier, are trained simultaneously to reconstruct the data and classify batches, 

respectively. The ultimate goal is to reproduce the data but remove differences 

between user-defined batches, so the autoencoder is trained with a loss function that 

includes two terms. The first term awards correct reconstruction, and the second term 

applies a penalty if samples from different batches are classified correctly. By using 

the latter term, the autoencoder is pushed to learn the data representations that make 

any user-defined batches indistinguishable. Decoding the learned representations 

results in a normalization effect on the batch. NormAE is a powerful method that excels 

in removing batch effects but carries important drawbacks. For example, it takes 

positive values of ion intensities as input, but outputs arbitrary units, undermining 

interpretability. NormAE also requires identical pooled study samples across batches 

for validation, which is not available in many studies4,10. Furthermore, the method 

suffers from issues common to all practical applications of deep learning, such as the 

non-trivial parameter optimization, computational complexity, and lack of 

reproducibility11.  

 

Here we present a new normalization method, Regularized Adversarial Learning 

Preserving Similarity (RALPS), for untargeted metabolomics that efficiently addresses 

all of these problems. RALPS builds on adversarial learning but implements a novel 

three-term loss function that suppresses batch effects while preserving biological 

information. Using several test sets, we show that RALPS outperforms state-of-the-art 

methods in terms of performance, scalability, usability, and robustness.  
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Results 
 

Method overview 

RALPS was inspired by NormAE and uses an autoencoder and a classifier to mitigate 

batch effects (Figure 1). In addition to the classifier discrimination loss (Ld), we wanted 

to introduce a mechanism to preserve characteristic differences of any set of 

supposedly similar samples across the whole sequence as a way to preserve 

biological information. For this purpose, we added a new regularization term to the 

autoencoder loss function to reward tight clustering of reference samples in the 

embedded space (rg). To evaluate clustering, RALPS flattens the multidimensional 

space by uniform manifold approximation and projection12 (UMAP) and performs 

unsupervised hierarchical density-based cluster analysis13 (HDBSCAN). Eventually, 

we score the clustering by counting how frequently reference samples of the same 

type co-occur in the same cluster.  

 

Information on reference samples is provided by the user to indicate all sample groups 

that are supposed to be similar. These groups can include biological replicates, 

technical replicates, pooled study samples, spike-ins, and dilution series. There is no 

formal limit on the number of reference groups, and although sample groups should 

span multiple batches, the same reference samples do not need to be present in all 

batches. This flexibility builds considerable freedom into the experimental design, as 

discussed below.  
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Figure 1. Graphical overview of RALPS. The autoencoder takes measured data, X, as input 

and produces its reconstruction, D(E(X)), as output. The number of neurons in the bottleneck 

layer is determined by principal component analysis. The aggregated autoencoder loss L 

consists of three terms: the regularized autoencoder loss Lg, the classifier loss Ld, and the 

variation loss Lv with real coefficients lg, ld and lv, respectively. 

 

Furthermore, we included a variation loss term (Lv) to encourage a decrease in batch 

variation coefficients (VCs). This addition was motivated by two observations. First, 

many normalization methods tend to inflate the VCs of replicate measurements. 

Second, deep learning models with encoder–decoder architectures are especially 

prone to producing outliers. Finally, we implemented several features aimed at 

improving scalability, usability, and robustness. First, RALPS adopts a flexible network 

architecture, in which the number of neurons in the model layers is automatically 
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adjusted based on a principal component analysis. By default, RALPS sets the number 

of neurons equal to the number of principal components needed to describe at least 

90% of the dataset variance. This modification eliminates many hyperparameters from 

the model and simplifies parameter optimization. Second, we introduced a randomized 

hyperparameter grid search and model selection logic, both of which enable finding 

multiple parameter sets that deliver top normalization results in an automated way. 

Third, we introduced input validation and a mechanism for early stopping to avoid 

collapsed normalization solutions that could arise because of inconsistent 

parametrization or increasing classifier loss. RALPS is implemented in Python 

programming language with a Torch deep learning framework. It requires a single 

configuration file containing the data and the batch information file paths, as well as a 

few other parameters to run normalization. RALPS is 100% open source. 

 

Generation of a multi-batch benchmarking dataset  

We faced the problem of finding suitable multi-batch datasets for testing and 

comparing normalization methods. Because such datasets are rare and often 

associated with clinical studies that preclude full disclosure and publication9, we opted 

to generate a novel benchmarking dataset. We assembled a panel of 136 samples 

with a large variety in sample type, complexity, and concentrations (Supplementary 
Figure 1). To ensure a fair representation of complex samples, we prepared roughly 

half of them using human serum extracts (NIST SRM1950). We included spike-ins 

with selections of amino acids, fatty acids, and nucleobases, and a fully 13C-labeled 

E. coli extract at different dilutions. The samples were distributed on two 96-well plates. 

Both plates were replicated several times and stored at –80 °C. The two plates were 

repeatedly analyzed in independent batches by untargeted metabolomics using flow 

injection–time-of-flight (TOF) MS on the same Agilent 6550 iFunnel Q-TOF system 

and in negative mode ionization14. The measurement of the 136 samples in technical 

triplicates and hundreds of intercalated blanks took ca. 12 hours. The same sequence 

was analyzed seven times over the span of about 2 months with time gaps of up to 3 

weeks. Between batches, the instrument was used in different experiments and 

underwent routine maintenance as well as tuning procedures. From an analytical 

standpoint, all batches were acquired with an instrument that was operating normally, 

i.e., without any indication of problems that might affect measurement quality. 
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Each batch was analyzed independently. To focus on the subset of m/z peaks that 

possibly relate to metabolites, we selected features with m/z values that were matched 

to deprotonated compounds listed by the Human Metabolome Database (ver. 4.0, 

tolerance 0.001 Da). We intersected the putative peak lists obtained from each batch 

by m/z and retained those features that could be reproducibly detected. Low 

abundance ions with average intensity < 1000 counts were filtered. This procedure 

resulted in a consolidate data table with intensities for 170 putative deprotonated 

metabolites and 2856 files, divided in seven batches. 

 

To visualize the extent of batch effects, we plotted the UMAP projections for all 

samples (Supplementary Figure 2a). We observed that samples grouped by batch, 

and almost no overlap between batches could be found. This result clearly indicates 

that batch effects dominate and confound chemically identical samples. Another way 

to quantify batch effects is to calculate the cross-correlation of identical samples within 

and between batches (Supplementary Figure 2b). Although Pearson correlation 

coefficients were >0.9 within the same batch, the distribution of inter-batch correlations 

shows a heavy tail, reaching values as low as r = 0.4, pointing to strong biases. Below, 

we use this dataset to benchmark RALPS against state-of-the-art approaches. 

 

Normalization of the multi-batch dataset 

As a first demonstration, we evaluated RALPS on our multi-batch benchmarking 

dataset. Initially, all sample labels were included as reference groups to maximize 

information available for training. We ran RALPS with default parameters and a 

randomized grid search of size 50. The best normalization solution selected by the 

model selection logic was compared to the initial dataset. First, we assessed the 

normalization effect of our method by highlighting batch labels on the UMAP 

embeddings plot (Supplementary Figure 2d). We observed that replicates from 

different batches were largely mixed for the normalized data compared with the initial 

data. The distribution of cross-correlations of all samples’ replicates within and 

between batches shifted close to the ideal value of 1 (Supplementary Figure 2e). 

Moreover, VCs calculated for all intensities in every batch were consistently reduced 

in the normalized data (Supplementary Figure 2f) compared with the initial data 
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(Supplementary Figure 2c). The total runtime for the 50 independent runs summed 

to 291 minutes, i.e., about 6 minutes per run for a dataset with almost 3000 samples. 

Note that only a single CPU core was used for all computations. With an increasing 

number of CPU cores, it would be possible to evaluate much larger hyperparameter 

sets overnight, increasing the probability of finding an optimal normalization solution. 

 

Normalization of the multi-batch dataset with limited reference 
groups 

The test described above builds on a rather artificial scenario in which all samples are 

present in every batch. In practice, however, only a small subset of samples in each 

batch are repetitions of samples of different batches and can be used to correct for 

inter-batch effects. The most common scenario is inclusion of one or two reference 

samples in all batches. If a single sample is available, a frequent option is to spike in 

standards at a relevant concentration to ensure correct recovery of significant 

differences, including MS measurement and data processing. To mimic this realistic 

scenario, we attempted to normalize the benchmarking dataset with RALPS, using 

only a few reference sample groups each time. Different sets of groups were tested. 

For instance, Supplementary Figure 3 shows the normalization achieved by RALPS 

using exclusively an undiluted NIST1950 serum extract (P2_S_0001) and the same 

sample spiked with purines and pyrimidines (P2_S_PP_0001). The labels and relation 

of all remaining samples were neglected during training. For the normalized data, 

batches no longer appeared as isolated clouds of points, and instead, samples from 

different batches were well mixed. Qualitatively, the result was like the initial test in 

which all reference groups were provided during the training phase.  

 

To demonstrate the flexibility of RALPS, we tested several combinations of up to four 

reference sample groups. For each combination, we applied RALPS with a 

randomized grid search of size 100. We used default parameters and set lv = 0 to 

loosen the constraints on the joint loss function optimized during training (Figure 1).  

We found several combinations of reference samples that produced good 

normalization effects (Supplementary Table 1). Comparing some of the evaluation 

metrics, using only undiluted NIST1950 serum extract (P2_S_0001) or using 
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combinations of two or three samples yielded results similar to those from the 

examples described above (row #1 in Supplementary Table 1). As a negative control, 

we provide results obtained by training with a single reference group consisting of 

highly diluted fatty acids in water (row #10 in Supplementary Table 1). Because of 

matrix differences and the common presence of fatty acids in the background, these 

samples are unlikely to be sufficient to correct for complex batch effects, e.g., in serum 

samples.  

 

All other tested configurations were comparably superior on all evaluation metrics, but 

not all were reproducible, as assessed by several repetitions of the training with 

identical reference groups but different random starts. Only half of the cases frequently 

reproduced comparably good results. For the other half that were not reproducible, 

including the case with undiluted serum as a unique reference group, multiple 

independent attempts would be necessary. Nevertheless, all the reference group 

configurations performed well in mixing batches on the UMAP embedding plot 

(Supplementary Figure 4). These results prove that RALPS is flexible in the choice 

of reference samples and, in principle, a few reference sample groups in triplicate can 

suffice.  

 

Next, we compared RALPS to the state-of-the-art normalization approaches 

mentioned in the introduction. Of the several training scenarios listed above, RALPS 

was trained using two reference sample groups with undiluted serum and the 

derivative with spiked purines and pyrimidines (Supplementary Figure 3). The 

performance was evaluated using one qualitative and three quantitative criteria. The 

quantitative criteria included (i) cross-correlation of all samples’ replicates, (ii) batch 

VCs, and (iii) percent of features for which the VC across replicate samples increased 

upon normalization. The qualitative criterion was the spectrum of the normalized data 

compared with that of the initial data (Figure 2). 
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Figure 2. Comparison of methods for the benchmarking dataset. (a) Distributions of 

cross-correlation of reference samples between and within batches. (b) Full spectra. (c) 

Percent of samples with increased variation coefficients. (d) Mean batch variation coefficients. 
In summary, RALPS was the only method among the seven tested approaches to 

excel in the suppression of batch biases while controlling for mean batch variance, 

replicate VCs, and drastic spectral transformation. 



Chapter 3  ¾  Regularized adversarial learning for normalization of 
multi-batch untargeted metabolomics data 

_________________________________________________________________________ 

 82 

We found that three of seven methods improved the cross-correlation of replicates 

among batches: RALPS, NormAE, and LEV+EIG (Figure 2a). In Supplementary 

Figure 5, the effect of normalization on cross-correlation is shown in detail for one of 

the samples that featured prominent bias effects, i.e., P1_FA_0008. This sample was 

an 8-fold–diluted fatty acid mix that was strongly affected by the common background 

signal of fatty acids. For this example, RALPS and LEV+EIG achieved the best results, 

with correlation coefficients > 0.9. In the case of RALPS, a small bias between the first 

batch and all others remained. A different picture was obtained in terms of improving 

mean batch VCs. All methods except NormAE resulted in reduced mean batch 

variance (Figure 2b). However, LEV+EIG, EigenMS, and PQN+POW each resulted 

in a drastic drop that suggests a degenerated solution. In practice, in the attempt to 

reduce batch effects, these methods also may attenuate biological differences and 

obscure the information of interest.  

 

The third quantitative evaluation criterion highlights a frequently overlooked caveat of 

normalization procedures: the fraction of sample whose VC increases by 5% or more 

upon normalization. The expectation is that normalization removes inter-batch biases 

without compromising intra-batch reproducibility. However, an apparent improvement 

in inter-batch reproducibility can also be attained by drastically worsening intra-batch 

precision, generally confounding all data and biological information. We again found 

the best results with EigenMS, LEV+EIG, and PQN+POW (Figure 2c). NormAE, 

meanwhile, inflated the VC in > 95% of the cases. RALPS fell in the middle average 

of the methods and outperformed ComBat and WaveICA. The striking difference 

between NormAE and RALPS highlights the relevance of the additional term Lv that 

was introduced in the loss function to control for an increase in variance.  

 

Lastly, we examined the MS spectra obtained by normalization. From an analytical 

standpoint, the expectation is that normalization will have a minor effect on the overall 

spectrum. In reality, this is the case only if the ranking of metabolites based on average 

intensities is roughly maintained. In contrast, a normalization procedure that has a 

large effect on the value ranges of features will result in a qualitatively different 

spectrum. Spectra preservation is particularly important if calibrants are included to 

estimate concentrations. By visual inspection of the resulting spectra (Figure 2d), we 
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indeed observed that using methods with the lowest batch VCs (LEV+EIG and 

EigenMS) completely altered the data. NormAE preserved high-intensity peaks but 

suppressed low-intensity features, which is in agreement with the previously reported 

issue of sensitivity to outliers9. PQN+POW yielded the opposite pattern and amplified 

low-abundance ions. RALPS, WaveICA, and ComBat had the most neutral impact on 

the spectra, preserving both high- and low-intensity features. Of note, WaveICA and 

ComBat, but not RALPS, can output negative ion intensity values, which can result in 

complications in downstream data analysis and interpretation. 

 

RALPS corrects biases on multi-batch cancer cell metabolomics 
data 

We further tested the performance of RALPS with data published by Cherkaoui et al.15. 

This dataset includes >1400 untargeted metabolomics measurements for a panel of 

ca. 180 cancer cell lines, resulting in a matrix with relative abundances for 1817 

putative metabolite ions. This dataset is interesting for three reasons. First, it 

represents real-life, mid-sized untargeted metabolomics studies. Second, its batch 

effects are associated with sample preparation and not with sample acquisition, as in 

the benchmarking dataset. This association is present because the limiting step on the 

study was sample generation and not MS analysis. Because of the tedious procedures 

necessary to cultivate numerous cell lines in parallel, the entire study was divided into 

seven batches of samples generated over the span of about a year. Upon preparation, 

cell pellets were stored at –80 °C, and when the seven sampling batches were 

complete, all samples were prepared and subjected to sequential MS analysis. The 

expected batch effects thus are dominated by shifts in cultivation conditions (e.g., 

media, incubation conditions, handling). The third aspect of interest is that the study 

did not use a set of reference samples that were included in all batches. Only two cell 

lines (MDAMB231 and MCF7) were present in multiple batches (5 and 4, respectively) 

and were used as reference samples in the training phase of RALPS.  

 

All methods seemingly improved cross-correlation of the MDAMB231 sample, except 

for PQN+POW (Supplementary Figure 6a). Additional odd results included a mean 

batch variance that dropped to almost 0 for LEV+EIG and almost doubled for NormAE 
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(Supplementary Figure 6d). In line with the previous results, spectra were altered by 

LEV+EIG, EigenMS, PQN+POW, and NormAE. Overall, RALPS and WaveICA were 

the best methods for normalizing the data from Cherkaoui et al. ComBat was also a 

good alternative, but the final cross-correlations of MDAMB231 across samples were 

worse, and more control samples would be needed for more precise conclusions.  

Among the three best methods, RALPS also appeared to better preserve low-intensity 

data. ComBat and WaveICA produced negative values that affected ca. 1% of the 

samples (Supplementary Table 2). The normalized negative values exceeded 106 

counts, resulting in obvious complications for further analysis and interpretation. In 

contrast, RALPS produced strictly positive values.  

 

Finally, we compared the evaluation times of all approaches (Supplementary Table 
3). A single run of RALPS took about 3 minutes. A randomized grid search with 50 

samples required about 2-3 hours, which was similar to the time required by the 

slowest algorithms such as NormAE (even using a GPU), EigenMS, or LEV+EIG. 

However, the total processing time with RALPS can be easily reduced to less than an 

hour by employing four or more CPUs. We conclude that RALPS, ComBat, and 

WaveICA showed overall competitive performance on the Cherkaoui et al. data. 

However, RALPS is the only method that combines top normalization performance 

with minimum biological information loss and preservation of spectral properties. A 

closer look at the UMAP embeddings of the normalized data produced by RALPS 

reveals that virtually all divisions across batches were successfully removed (Figure 
3). 

 

One important issue is the striking difference between NormAE and RALPS, which are 

both based on adversarial learning but yielded opposing results. In the Cherkaoui et 

al. data, NormAE reproducibly creates a collapsed solution driven by the growing 

classifier loss (Supplementary Figure 7). This happens when the batches are already 

fairly mixed in the initial data and the classifier fails to tell them apart. The classifier 

loss grows and keeps contributing to the joint loss function of the autoencoder, which 

ultimately leads to a singular output matrix. In RALPS, this degenerate behavior is 

prevented by the embedded early stopping. 
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Figure 3. UMAP embeddings for the cancer cell lines dataset by Cherkaoui et al. Initial (left) 

versus normalized with RALPS (right) data is presented. 

 

Top performance requires three-term loss function 

After demonstrating the performance of RALPS in practice, we set out to investigate 

in more detail how the regularization terms in the composite objective function (i.e., L 

in Figure 1) impact the outcomes. For this investigation, we used the benchmarking 

dataset and two reference sample groups (as in Supplementary Figure 3) and tested 

four scenarios of objective functions with 0 to 3 regularization terms (Figure 4a). For 

example, the case of ld = lg = lv = 0 corresponds to an autoencoder that is solely 

trained to reconstruct the data without any penalty. The last scenario with non-zero ld, 

lg, and lv reflects the default architecture with all regularization terms. For each 

scenario, we applied RALPS with default parameters and performed a randomized 

grid search of size 100, selected the 10 top-performing normalization solutions, and 

compared their key metrics (Figure 4a). As expected, introducing lg > 0 improved tight 

clustering of reference samples in the embedded space. Introducing a penalty for the 

batch classifier with ld > 0 had only subtle effects on tight clustering and replicate 

cross-correlation. Clearly, top performance on all three criteria shown is achieved only 

in combination with lv > 0. These results indicate that the three terms in the composite 

objective function L of RALPS have a synergetic effect on batch normalization. 
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Figure 4. Ablation experiments. (a) Impact of regularization terms. (b) Number of batches 

removed. (c) percent of metabolites removed. (d) percent of missing values (e) and different 

values of variance_ratio parameter. 

 

RALPS is robust against data ablations 

Missing values represent a particular challenge for normalization of untargeted 

metabolomics data. Values are missing when they are undetectable in a subset of 

samples, as is common for rare compounds, such as derivatives of drugs or special 

food additives in human serum, or low concentration compounds near the analytical 

limits of detection. To verify the robustness of RALPS, we performed multiple ablation 
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experiments. All tests were done on the benchmarking dataset using default 

parameters and the same two reference sample groups as above. First, we ran 

RALPS on subsets of the initial dataset. We shrank the dataset batch-wise from seven 

to two, i.e., down to 29% of the samples. We observed that the mean batch VC was 

generally constant and comparable to the full data case (Figure 4b). We then shrank 

the dataset by removing random metabolites down to 10% of the initial number. Only 

in the last point, corresponding to 17 metabolites, did the mean batch variance tangibly 

worsen (Figure 4c). 

 

Next, we tested the robustness to randomly distributed missing values. A user-defined 

parameter (min_relevant_intensity) instructs RALPS on the lowest value to consider. 

The default is 1000 counts, and missing values are replaced with this minimum value. 

In our test, we replaced 0%, 5%, 10%, 15%, 20%, and 30% randomly picked values 

in the data matrix with the default minimum value and then trained RALPS. We 

observed a decreasing trend in cross-correlation of replicates as the fraction of missing 

values went up (Figure 4d). However, the decrease in mean correlation coefficients 

was marginal (from 0.98 to 0.94 with 30% missing values), indicating that RALPS is 

generally robust against missing values. 

 

Finally, we verified how the number of neurons in model architectures affects 

normalization results. By default, RALPS uses as many neurons as number of 

principal components necessary to explain at least 90% of variance. We tested 

multiple values ranging from 99% to 70% variance. We did not observe any clear 

trends in any of four metrics used to evaluate and compare methods. The mean cross-

correlation of replicates stayed above 0.98 in all cases (Figure 4e).  

 

Choice of clustering algorithm 

One of the key cornerstones of RALPS is preserving similarity of reference samples 

during the adversarial training loop. To assess this in each epoch, the latent 

representations of the samples are projected with UMAP and clustered with the 

HDBSCAN algorithm. As many other clustering approaches exist16,17, some could be 

better suited than others for a particular dataset. To illustrate the impact of the 

clustering method on the benchmarking dataset with two reference sample groups, we 
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tested the performance of RALPS with five alternative clustering methods 

(Supplementary Figure 8). On all of our target metrics, HDBSCAN compared 

favorably with the other methods. MeanShift18 delivered slightly better overall results 

but required almost twice the computational time. Because the clustering is part of the 

training and repeated at each epoch, the impact on the overall normalization time is 

substantial. Hence, we selected HDBSCAN as the default method. For the tested 

dataset, UPGMA19 and BIRCH20 were also very competitive because they combined 

speed with better scores for grouping of the replicates of the reference samples in the 

embedded space. These results might vary with different datasets, and we 

recommend that users seeking the best performance test different approaches. Of 

note, six clustering methods are integrated into RALPS, and any one of them can be 

reconfigured as default. 

 

Discussion 
 

We introduce RALPS, a novel batch normalization method based on regularized 

adversarial learning for untargeted metabolomics data. In this work, we demonstrated 

its performance on two representative datasets with thousands of samples or spectral 

features. The benchmarking dataset was generated to test the algorithm on MS data 

produced over several months. In the case of the cancer cell line data by Cherkaoui 

et al., batches instead were associated with cultivation and sampling of samples over 

the span of almost a year, whereas MS analysis was done sequentially with all 

samples. We demonstrated that RALPS outperformed other state-of-the-art methods 

on several key metrics. RALPS offers additional features such as adaptive network 

architectures, embedded hyperparameter optimization, automated model selection, 

and input validation. Together, these features convey flexibility, scalability, usability, 

and robustness as confirmed by testing with different configurations of reference 

samples and in ablation experiments.  

 

Historically, the loss function with three terms embedded in RALPS evolved from 

multiple tests we performed with several datasets, some of which are not described 

here. The classification term was initially replicated from NormAE and is the 

component that drives the removal of batch effects. However, a deeper analysis of the 
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resulting normalized data revealed novel problems that prompted us to introduce 

additional terms. The observed increase in VCs for supposedly identical samples (e.g., 

replicates) upon normalization is common to most methods and is a particularly acute 

problem for NormAE. To our best knowledge, this issue has not previously been 

acknowledged or addressed. We offer two hypothetical explanations for this gap. The 

first is the use of mean absolute error for the reconstruction loss, which is sensitive to 

outliers. The second is that generally increasing the noise, and thus the VC, makes it 

more difficult for the classifier to separate batches. Hence, there is an apparent 

beneficial effect on batch discrimination, but detrimental side effects in downstream 

analyses. Introducing the variation loss Lv mitigated but did not abolish the problem.  

A closer investigation of the RALPS results revealed that the increase in VC arose 

from a small set of samples (1.2%–1.8% of the total for the tested datasets). Filtering 

these samples by outlier detection (explained below) reversed the increase in VCs for 

RALPS and EigenMS, but not for NormAE, ComBat, WaveICA, and PQN+POW 

(Supplementary Figure 9), suggesting that the latter methods produced even more 

outliers. We do not advocate for outlier detection and removal or a particular approach 

for it, but we recommend that researchers using batch normalization methods carefully 

evaluate sample-wise VCs and consider correcting them before performing 

downstream statistical analysis. 

 

The grouping regularization term rg was the second novel addition to the adversarial 

training and the key to preserving similarity of supposedly equal samples. Although 

RALPS relies on clustering of reference samples in the embedded space to assess 

grouping, alternative approaches could be considered. For example, rg could be 

calculated from distances in the latent space. Distance-based metrics would carry 

several hypothetical advantages and pitfalls. Owing to the fast computation, training 

would be tangibly shorter than with clustering. We expect that distance-based metrics 

would perform better with data characterized by subtle batch effects in which clustering 

fails to separate reference samples. Even in the case of all replicates falling into a 

single cluster (which happens naturally when most batch effects have been already 

removed), minimizing distances between all pairs of replicates would still have a 

regularization effect, whereas clustering would not. Among the potential drawbacks, 
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we would expect an increased sensitivity to single outliers. Alternative paradigms for 

similarity preservation should be tested in the future.  

 

In terms of experimental design, RALPS requires reference samples across batches, 

but it is not strictly necessary to have the very same reference samples present in all 

batches. We illustrated this flexibility in our normalization of the Cherkaoui et al. data, 

in which two reference sample groups were present in only four and five of the seven 

batches, respectively. This feature leaves considerable freedom for the experimental 

design, in particular for the number of replicate groups to include. Based on our tests 

with the benchmarking dataset and other studies not shown here, using replicates from 

a pooled study sample in each batch is generally sufficient to correct for typical batch 

biases arising from untargeted metabolomics measurements performed over different 

days. If the total number of samples does not become prohibitively large, including a 

second group of reference samples is beneficial. In this scenario, the recommendation 

is to spike in a reduced set of compounds of interest and at low concentrations to 

present a realistic challenge for calculating the grouping term rg. In contrast, blanks do 

not constitute a good control group because they can readily be distinguished from all 

other samples and are ineffective in the training process. The flexibility of RALPS 

allows it to be tested on existing datasets or applied in experiments that were not 

specifically designed with its use in mind. In all cases, RALPS is developed to make 

full use of all available reference samples in correcting multi-batch experiments. 

 

In untargeted metabolomics, batch effects are only one class of possible biases. Two 

further classes of problems exist: sample-to-sample variability and temporal drifts 

associated with MS detection. In case such problems emerge within individual 

batches, we recommend a two-step procedure. First, all single batches should be 

corrected individually to maximize coherence within each individual batch. Second, 

RALPS should be applied to harmonize data across batches.  

 

Finally, we see no fundamental problem in using RALPS to normalize any kind of 

tabular data consisting of samples coming from different batches and with features 

characterizing the samples. Information about the similarity of samples (for references 

and beyond) can be encoded via groups in the batch information file. We encourage 
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researchers from other omics fields to challenge RALPS with their own data and drive 

its further development by reporting experience and issues in the repository. 

 

Methods 
 

Loss functions and optimizers 

RALPS uses mean square error loss for the autoencoder and cross-entropy loss for 

the classifier. Mean square error was preferred over mean absolute error because of 

faster convergence and better reconstruction quality when trained without the 

classifier. Consequently, RALPS does not use pretraining epochs; both model 

networks are trained in turns from the start. Adam optimizer is used for both. 

 

Regularization term preserving similarity of samples 

We propose a regularization term rg to preserve the similarity of reference samples 

while running an adversarial training loop. This term explicitly takes into account the 

grouping of reference samples across batches in the embedded space (Figure 1). At 

every training epoch, the representations of the input data are clustered, and the 

grouping coefficient for each reference sample is computed based on how many 

replicates of the sample across batches appear to be in the same cluster. The 

regularization term penalizes the reconstruction loss (rg > 0) when the replicates of the 

reference samples happen to be in different clusters. Conversely, the regularization 

cancels out (rg  = 0) when reference samples across batches are clustered together. 

By design, the regularization term rg is limited from above (rg £ 1). Before clustering, 

RALPS uses the UMAP algorithm to generate embeddings of the learned 

representations. HDBSCAN is the default clustering algorithm parameterized with the 

number of batches times the number of replicates in the data as the minimum cluster 

size, and not allowing single clusters. 

 

Adaptive network architecture 

Although the backbones of the architectures for the autoencoder and the classifier are 

fixed, the number of neurons in some of their layers is automatically adjusted to the 
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data. Principal component analysis is used to find the number of components that 

capture a user-defined percent of variance (selected randomly among 90%, 95%, or 

99% by default). The number determines the dimensionality of the autoencoder 

bottleneck layer and the classifier input layer. In this way, RALPS adapts to the 

datasets of different sizes and variances. 

 

Randomized grid search of hyperparameters 

A few hyperparameters such as learning rates, regularization coefficients, batch size, 

and minimal variance ratio for principal component analysis are required to run 

RALPS. If the user does not provide them, they are sampled randomly from the 

predefined ranges. We also implemented ways for users to define their own ranges of 

hyperparameters for sampling. Every unique parameter set is assigned its own unique 

ID that is used to name a directory in the file system, where all the corresponding 

results will be stored. The user also provides the size of the randomized grid (defaults 

to 1, a single run). Beyond exploring the hyperparameter space and finding the best 

normalization solutions, such implementation allows for convenient testing of model 

robustness. Fixing training hyperparameters and setting the randomized grid size to 

values >1 facilitates investigations of how randomization during training affects 

performance of a particular parameter set. 

 

Model selection 

Several metrics are tracked during the training process to evaluate model performance 

and select the best model: (i) grouping coefficient calculated on the clustering results, 

(ii) statistic reflecting cross-correlation of replicates across batches, (iii) mean batch 

VC, and (iv) percent of samples with increased VCs. These metrics are calculated at 

each epoch for the two sample types: the reference samples used for rg regularization, 

and for benchmarking samples if specified by the user. Defining benchmarking 

samples is optional but may be useful to verify that the normalization solution is not 

overfitted to the reference samples.  

 

Within a single run, the best model (epoch) is supposed to achieve low grouping 

coefficient of reference samples, high cross-correlation, reduced mean VC of the 
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reference samples, and reduced mean batch VC. The best epoch is selected after the 

training is complete based on the reference samples and the overall reconstruction 

loss. First, the epochs with 10% of the lowest grouping coefficients are selected. 

Among these epochs, the 10% of the highest cross-correlation is selected. Among the 

remaining epochs, the best one corresponds to the minimal reconstruction loss. To 

avoid the risk of exploding classifier loss and the over-normalization problem, we 

implemented an early stopping criterion that interrupts training if the classifier loss 

starts continuous growing. Such models are marked as stopped early. An exemplary 

run is illustrated in Supplementary Figure 10.  

 

Model selection for the randomized grid search applies to the best epochs selected 

previously for each parameter set. The best models across all parameter sets are 

selected using a similar logic: 

• The lowest mean batch VC and the highest cross-correlation values. 

• The lowest grouping coefficient and the highest cross-correlation values. 

• The lowest grouping coefficient and the lowest percent of increased VCs. 

The models corresponding to these groups are combined and sorted by the 

reconstruction loss. The first 10 models are marked as the best in the randomized grid 

search output file containing all metrics of all evaluated parameter sets. Based on tests 

with multiple data sets, we recommend using a grid_size ³ 50 to have high chances 

of finding a (nearly) optimal normalization solution. This heuristic model selection 

strategy proved to be sufficient to pick the models of the best normalization effects in 

all applications presented in this study. However, RALPS keeps all model results so 

that the user can select a different solution, based on a combination of quantitative 

and qualitative criteria available for each model.  

 

Outlier detection 

In the attempt to control for increased VCs, we adopted a version of a boxplot outlier 

removal approach. For each sample in the normalized data, we removed metabolites 

with intensities below Q1 - a × IQR or above Q3 + a × IQR, where Q1 is the 25th intensity 

percentile, Q3 is the 75th percentile, IQR is the interquartile range, and a is a parameter 

(defaults to 1.5 for a classical boxplot). The script is available in the code repository. 
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For each application of RALPS described earlier in this paper, we selected a such that 

only 1% of samples had increased VCs. After filtering the normalized data, we 

calculated how many metabolites were dropped and then applied exactly the same 

procedure to the data normalized by other methods to compare their propensity for 

generating outliers. 

 

Data availability 
 

The full multi-batch benchmarking dataset is available at https://doi.org/10.3929/ethz-

b-000545373. The filtered data table used in our experiments is provided with the 

code. The full cancer metabolomics dataset by Cherkaoui et al. is available at 

https://doi.org/10.3929/ethz-b-000511784. 

 

Code availability 
 

The source code and the description of input parameters, as well as examples of the 

input files, are available at https://github.com/zamboni-lab/RALPS. 
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Supplementary material 
 
Supplementary Figure 1. Description of the benchmarking dataset. (a) The design of 

plates 1 (top) and 2 (bottom). (b) The labels used for the samples in the benchmarking 

dataset throughout the text. (c) The corresponding compound classes of the spike-

ins. Plasma NIST SRM1950 material is abbreviated as SRM. “0001” corresponds to 

an undiluted sample; further 2x dilutions go up to 2048 for each sample. 
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Supplementary Figure 2. Application to the benchmarking dataset using all 
study samples as references. (a, d) UMAP embeddings; (b, e) distributions of cross-

correlations; (c, f) and mean batch variation coefficients. Left panels refer to the initial 

data, right panels to the normalized data produced by RALPS. 
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Supplementary Figure 3. UMAP embeddings of the initial (left) and normalized (right) 

data using P2_S_0001 and P2_S_PP_0001 as reference samples. 
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Supplementary Figure 4. (a) UMAP embeddings of the initial data; (b-f) UMAP 

embeddings of the data normalized with reference samples groups listed in 

Supplementary Table 1. 
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Supplementary Figure 5. Cross-correlation heatmaps for replicate samples of fatty 

acids sample with 8x dilution (P1_FA_0008). 
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Supplementary Figure 6. Comparison of methods for the cancer cell lines dataset by 

Cherkaoui et al. (a) Cross-correlation heatmaps for MDAMB231 replicates; (b) full 

spectra; (c) percent of samples and feature combination with increased variation 

coefficients; (d) and mean batch variation coefficient. 
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Supplementary Figure 7. Training losses plot generated by NormAE. (a) The first 

1000 epochs are used for the autoencoder pretraining without the classifier. Then, the 

adversarial training epochs follow, where the autoencoder and batch classifier are 

trained in turns. We observe a fast decrease in the classifier loss followed by an 

“explosion”. Further training leads to the collapsed solution. Percent of unique values 

in MDAMB231 reference sample before and after normalization. (b) We observe that 

NormAE normalized the data such that it contains less than 20% of unique values. 

This indicates over-normalization, i.e., most of the biological samples became 

numerically identical and, therefore, non-comparable among each other. 
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Supplementary Figure 8. Performance of RALPS depending on the underlying 
clustering algorithm. (a) Mean cross-correlation of replicates; (b) mean batch 

variation coefficient; (c) mean grouping coefficient for samples’ replicates; (d) and 

mean total RALPS runtime. 
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Supplementary Figure 9. Outlier detection and removal. (a) Percent of samples 

with increased VCs after filtering; (b) and number of metabolites removed during 

filtering. The results were obtained with the same outlier removal procedure applied to 

the benchmarking dataset after normalization. 
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Supplementary Figure 10. (a) Losses and (b) metrics for a single run. The vertical 

line indicates the best epoch (#16) selected automatically by RALPS. The best epoch 

corresponds to the lowest grouping coefficient (b, top-right) and one of the highest 

correlation coefficients (b, bottom-left). Note that this run was stopped early, because 

the classifier loss started growing after epoch 14 (a, top-left). 
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Supplementary Table 1. Best normalization solutions of different reference 
samples. Autoencoder reconstruction loss, grouping (the lower the better) and 

Pearson correlation (the higher the better) coefficients are presented for samples’ 

replicates. A solution was treated reproducible if at least three other solutions with 

comparable could be found in an experiment of repetitive training with the same 

parameter set. 
# Reference samples reproducible MSE loss grouping correlation 

1 P2_S_0001 
P2_S_PP_0001 Yes 3.097 0.0 0.969 

2 P2_S_0001 No 2.385 0.0 0.969 

3 P2_S_0001  
P2_S_FA_0001 No 1.632 0.071 0.967 

4 P2_S_0001 
P2_SF_0001 No 2.028 0.119 0.942 

5 
P2_S_0001  
P2_S_0002  
P2_S_0004 

Yes 2.241 0.0 0.961 

6 
P2_S_0001  
P1_S_0001  
P2_S_0002 

Yes 3.684 0.033 0.972 

7 
P2_S_0001  
P2_S_0002  
P2_S_0004  
P2_S_0008 

Yes 2.190 0.094 0.972 

8 
P2_S_0001  
P2_S_0002 

P2_S_PP_0001 
P2_S_PP_0002 

No 1.775 0.113 0.955 

9 
P2_S_0001  
P1_S_0001  
P2_S_0002  
P1_S_0002 

Yes 2.358 0.0 0.970 

10 P1_FA_0016 No 17.278 0.095 0.910 
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Supplementary Table 2. Ion intensity ranges of cancer cell line data by Cherkaoui et 

al. Only methods that output ion intensities are given. 
 

 

 
 
 
 
 
 
 
  

method min max negative values 

None 0 125,663,017 0.0% 

ComBat - 4,354,927 71,056,531 1.0% 

EigenMS 402 28,265,811 0.0% 

WaveICA - 15,200,577 121,753,507 1.2% 

RALPS 0 95,519,700 0.0% 
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Supplementary Table 3. Run time for normalization of cancer cell line data by 

Cherkaoui et al. All methods, except NormAE, were run on 2.2 GHz Intel Core i7 

8750H (“Coffee Lake”) under Mac OS Big Sur. * NormAE was run on a Nvidia GeForce 

RTX 2060 under Windows 10. 
 LEV+EIG PQN+POW ComBat EigenMS WaveICA NormAE RALPS 

Time (min) 127 6 1 111 5 136* 3 
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Abstract 
 
Flow injection analysis-time-of-flight mass spectrometry offers unparalleled 

throughputs for untargeted metabolomics but comes with fundamental challenges in 

quantification. First, the lack of chromatographic separation exacerbates the 

emergence of matrix effects and non-linear responses. In addition, the use of heavy 

internal standards for quantification doesn’t scale beyond a limited number of 

compounds. Here, we test the potential of quantifying relative metabolome 

abundances in human serum extracts on the sole basis of data that can be easily 

collected. This includes dilution series of a pooled study sample and calibration curves 

for a limited number of compounds, i.e., some amino acids and nucleobases. We 

formulate calibration tasks as machine learning problems, and test different strategies 

using own benchmarking reference data. We show that (i) including more dilutions 

consistently improves performance across tasks; (ii) the model predicting absolute ion 

counts extrapolates well for spiked-in amino acids but not for purines and pyrimidines; 

(iii) prediction of relative metabolite abundances has a potential to achieve the best 

performance in reproducibility across batches. We discuss opportunities to overcome 

current limitations and deploy machine learning based calibration of FIA-TOF-MS in 

real applications. To improve extrapolation capability of the current models, we 

propose to expand the list of metabolites and compound classes, include other 

biological matrices and complement the dataset with QC features and instrument 

settings from the system suitability testing platform. These guidelines will be 

implemented in the design of calibration samples to be included in future studies. 
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Introduction 
 

The term flow injection analysis – mass spectrometry (FIA-MS) describes the direct 

injection of a liquid sample to a mass spectrometer. It is equivalent to running a liquid 

chromatography without a column for separation and under isocratic conditions, that 

is with constant mobile phase composition and flow. In absence of chromatography, 

samples elute readily in a single plug. Samples are cleared from the source by the 

effect of liquid and gas flow, in a process that can take ca. 20-30 sec. This allows 

injecting thousands of samples per day, with obvious advantages for the analysis of 

large sample sets.  

 

FIA-MS analysis comes with two important challenges. First, the lack of separation 

complicates identification of compounds and the analysis of complex samples. This 

problem is mitigated by MS instruments with high-resolution in the spectral domain, 

which allow to distinguish mass differences in the range of millidaltons and, hence, 

resolve chemical formulas with nearly identical molecular weight. One such MS 

detector is time-of-flight (TOF) MS and has been used in our lab to analyze > 1 Mio 

samples over the years1.  

 

The second major challenge of FIA-MS is the acute occurrence of matrix effects. They 

originate primarily during ionization. It is well established that only a minor fraction of 

the analytes in the electrospray become completely ionized to gas-phase ions. The 

vast majority of analytes remains trapped in solvent droplets and is evacuated from 

the ionization chamber before having a chance of entering the MS. This competitive 

process provokes an interdependence of ionization across molecules in the sample 

and non-linear responses. Eventually, matrix effects complicate quantification and 

comparability across batches. One common way to reduce matrix effects is calibration. 

 

In fact, calibration is an essential part of any quantitative analytical method2. In the 

context of mass spectrometry, it provides a relationship between the real amounts of 

analytes and the signal measured by the detector. Ideally, the relationship should be 

linear3 but it is quite common to observe non-linear calibration curves4–6. A few recent 

works vividly demonstrated the importance of FIA-MS calibration for harmonization, 
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standardization and reproducibility of results in newborn screening. Carling et al. 

investigated the effect of stable isotope internal standard used for quantitation on inter-

laboratory variation7. They found that internal calibration reduced the inter-lab variance 

significantly for most of the analytes. The most recent work of the same author 

systematically evaluated the effect of multiple calibration approaches used with 5 

different instruments in 7 labs6. They observed consistent decrease in percentage 

relative standard deviation between replicate injections and instruments, which points 

to improved reproducibility and inter-lab comparability of FIA-MS measurements. 

 

MIIS calibration method8 proposed to predict relative concentrations of compounds 

was an attempt to quantify ion suppression to gain deeper understanding of matrix 

effects. The idea to use a single compound as an ion suppression indicator enabled 

accurate prediction of dilution factors in urinary metabolomics data measured with FIA-

TOF-MS. The same system was used to develop a dilute and shoot acquisition method 

for metabolic phenotyping9 with quantification accuracy and precision comparable to 

well-established LC-MS/MS, while producing an order of magnitude higher 

throughput. The authors leveraged reduction of matrix effects in diluted samples10 to 

accurately quantify amino acids in microbial cultivation supernatants.  

 

Overall, low day-to-day reproducibility of ionization made it quite common in FIA-MS 

and LC-MS experiments to generate calibration curves each time. This is feasible for 

targeted studies with up to a few hundred compounds, but not for untargeted 

experiments that try to quantify hundreds to possibly thousands of compounds. Only 

a limited number of compounds is available as pure compounds, and there are 

practical limitations on how many can be mixed without inducing novel matrix effects 

or on how many calibrant can be run in parallel to study samples. It prompts for 

alternative and innovative approaches that allow to guess concentrations of 

metabolites in complex matrices from a limited set of calibrants. 

 

Here, we follow up on the efforts to improve calibration of FIA-ESI-MS methods and 

thereby come closer to high-throughput quantitative analysis of untargeted 

metabolomics. We aim at predicting relative and absolute amounts of amino acids and 

nucleobases in a complex biological matrix, such as human serum. We use an 
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untargeted metabolomics dataset of FIA-TOF-MS comprising NIST SRM1950 with 

multiple spike-ins and dilution series and evaluate machine learning approaches to 

predict dilution factors, absolute ion counts and relative abundances of the spiked-in 

metabolites. Further, we assess the reproducibility of predictions among individual 

batches and compare calibration with the batch correction method developed in 

Chapter 3 (RALPS). 

 

Problem formulation 
 

We set out to investigate the performance of calibration for untargeted FIA-TOF-MS 

data. In particular, we wondered to which extent it is possible to quantify metabolites 

in a complex sample that is largely affected by matrix effects. In principle, an 

untargeted metabolomics experiment can include pooled study samples, dilutions 

thereof (linear or serial), and a limited of calibration curves obtained by spiking 

chemical standards in a pooled study sample (i.e., on top of the unknown, endogenous 

concentration) or in water. The number of calibration curves is limited by the availability 

of chemicals, but also by the simple fact that it is not possible to combine too many 

compounds in a single spike because it introduces additional matrix effects which differ 

from those present in a spiked study sample. Hence, the fundamental problem is to 

investigate whether it is possible extrapolate calibrations from a small number of 

calibrants or across compounds of the same class. If the latter holds true, few 

standards would be needed to guess the (relative) abundance of a larger set of 

compounds. To test that, we formulated three coherent tasks compatible with the 

available data (Figure 1). We approached each task with machine learning by 

assembling a feature matrix X and training models to predict a target vector Y.  

 

The first test case attempts to learn a function f(X,q) that maps measured ion counts 

and minimal meta-information of a metabolite to the corresponding dilution factor of 

the dilution series, i.e., some form of a calibration curve (Figure 1a). The function f of 

the feature matrix X and parameters of the machine learning model q is, therefore, a 

regression model trained to minimize the mean squared error (MSE) and/or maximize 

coefficient of determination (R2) between true and predicted dilution factors. Both 

statistics are well-established measures of performance of linear regressions. The 
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model was trained in three different setups to evaluate its generalizing power: (i) using 

80% of randomized data, (ii) using only a fraction of spike-ins, (iii) using only a fraction 

of dilutions as a training set. The model performance was then evaluated on the test 

set comprising the remaining data (never used for fitting the model). 

 

The second test task was the prediction of absolute ion counts of spiked-in metabolites 

in the serum standard reference material (NIST SRM1950) based on the minimal 

meta-information, such as dilution factor, batch id, m/z and metabolite identity (Figure 
1b). To find the best performing setup, we supplemented the feature matrix X with ion 

counts in SRM1950 and water spike-ins as additional feature columns. However, even 

with all available features in X, the task remains challenging due to strong matrix 

effects for which the calibration obtained in water doesn’t transfer directly to serum 

extracts (Figure 2). It is easy to see that ion counts corresponding to the same dilution 

factors of SRM1950 spike-in and SRM1950 baseline samples do not correlate 

consistently. It is, therefore, impossible to establish a linear relationship between the 

two. Including more information, as we propose here, might help finding a more 

complex relationship though. The model for this task was trained and evaluated 

similarly as the previous one, except the MSE was calculated in the log-scale to 

account for vast differences in absolute ion counts among metabolites. 

 

Finally, the third test case aims at predicting relative metabolite abundances (Figure 
1c). We define relative abundance as ratio of detected ion counts between a diluted 

and an undiluted sample. For a perfectly quantitative method, we could expect the 

ratio between ion counts of a 4-fold diluted sample and an undiluted sample to be 

exactly 0.25. Due to ion suppression effects, this is far from being the case for FIA-

TOF-MS data. Nonetheless, we sought to predict relative abundances for selected 

metabolites leveraging available metabolite-specific meta-information. Notably, this 

problem formulation allows complete exclusion of SRM1950 spike-in data from the 

training set. In the ideal case, relative abundances of SRM1950 spike-ins could be 

predicted just based on the relative abundances of the same metabolites in SRM1950 

baseline samples. In reality, we also supplemented X with fractions of SRM1950 spike-

in dilutions data as additional training samples to achieve the best performance. The 

model was evaluated on the held-out test set using MSE and R2. 



Chapter 4  ¾  Prediction of relative concentrations in human serum 
analyzed by flow injection time-of-flight mass spectrometry 

_________________________________________________________________________ 

 117 

 
Figure 1. Test cases for predicting dilution factors (a), absolute ion counts (b) and relative 

abundances (c) of metabolites spiked into serum extracts (NIST SRM1950, abbreviated to 

SRM). 
 

Data 
 

To address the aforementioned machine learning tasks, we used the benchmarking 

dataset described in detail in Chapter 3. The samples were based on either the 

extracts from serum (NIST standard reference material SRM1950) or water. Each 

batch of samples included dilution series (from undiluted to 64-fold diluted), which 

allow estimating the slope of each detectable compound. In addition, each batch 

included several classes of spike-ins. We found 5 amino acids (AA) and 4 nucleobases 

(PP) producing robust ion peaks appearing in every batch and dilution. Visualizing the 

distribution of ion counts as a function of dilution factor for each metabolite, we 

observed linear relationships for amino acids and exponential relationships for most 

of the nucleobases in water (Figure 2a). Interestingly, both classes of analytes 

produced exponential calibration curves in human serum (Figure 2a, b), which is a 
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consequence of matrix effects and ion suppression. Even more so are the calibration 

curves of the SRM1950 baseline sample (without spike-ins), where dilution factor 

correlates positively with detector response for several metabolites. Additionally, we 

noted the tendency for increased number of outliers in SRM1950 spike-ins compared 

to water.  

 

Figure 2. Calibration curves for amino acids (a) and nucleobases (b) spiked into water, spiked 

into NIST SRM1950, and in unspiked NIST SRM1950 extracts. 
 

Results 
 

Prediction of dilution factors 

Given the strength of ion suppression effects (Figure 2), predicting dilution factors for 

serum spike-ins solely based on their dilutions factors in water or using just serum 

dilution series is unrealistic. We confirmed that by training several machine learning 

a water spike-in SRM spike-in SRM water spike-in SRM spike-in SRMb
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models and consistently getting R2 scores near zero. The reasons for that are, likely, 

order of magnitude differences in ion counts between the same dilution factors, as well 

as linear versus exponential calibration curves for a half of metabolites. Therefore, we 

used serum spike-in ion counts in the feature matrix for training (Figure 1a). 
Additionally, we wondered whether calibration curves for water spike-ins can improve 

prediction of dilutions factors of the same spike-ins in serum.  

 

To test that, we assembled the dataset containing the following features for each 

metabolic replicate: ion counts of water and serum spike-ins, m/z, batch id, as well as 

11 one-hot encoded features of compound names (9) and classes (2). The full feature 

matrix had 1323 samples, as for 9 compounds measured in 3 replicates for 7 dilution 

factors in each of 7 batches. This matrix was used to train an SVR model to predict 

dilutions in the log2-scale. Figure 3a shows predicted versus true dilutions for the test 

set. We observed highly accurate predictions with R2 = 0.94 and a few outliers for low 

dilution factors only. Repeating the exercise with water spike-in ion counts excluded 

gives R2 = 0.813 only and mean squared error tripled (Figure 3b), although the model 

hyperparameters and random seeds for training and splitting the data were kept 

identical. The scatter of points grew visibly for all concentrations and the linearity was 

impaired in high dilution factors. These results demonstrate a significant improvement 

in predicting relative concentrations of serum spike-ins by adding water spike-in 

samples. We speculate that the improvement is caused by lower prediction errors for 

metabolites which have exponential calibration curves in both sample types. 
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Figure 3. Prediction of relative concentrations with full data (a) and excluding spike-ins in 

water (b). 

 

Training with missing dilutions and spike-ins 

 

Next, we asked how many dilutions are 

necessary for training to accurately 

predict the remaining ones. In other 

words, we wanted to find out the minimum 

number of relative concentrations for 

spike-ins that have to be measured in 

water and serum to recover the full 

calibration curve. We employed the same 

training setup, now applied to subsets of 

dilutions. We evaluated the model for 

each combination of dilutions present in 

the training set to predict other dilutions 

appearing in the test set only. 

 
Figure 4. Lowest mean squared error 

achieved for subsets of dilutions.

We found that with increasing number of dilutions included in the training set the mean 

squared error of predictions drops, which was expected (Figure 4). However, the 

coefficient of determination R2 hardly reached 0.7 in all cases, suggesting that the 

Number of dilutions in the training set

Best MSE
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information in the training set was insufficient to achieve the performance of the full 

data case.  
 

Finally, we experimented with metabolites missing in the training data to see if the 

model can generalize within compound classes. This would allow to spike only a 

subset of compounds in a set of calibrants and extrapolate calibration on similar 

compounds. Therefore, we attempted to train the model on subsets of metabolites and 

further test it on the remaining compounds of the same class. Like in the missing 

dilutions case, we observed improvements for both metrics as the number of training 

metabolites increased (Figure 5). Top performing R2 scores were around 0.8 for cases 

of one metabolite missing in the class, which is comparable to results of full data 

without ion counts in water. However, the corresponding mean squared errors stayed 

relatively high, indicating large number of predicted outliers. It means that with current 

setup is not yet possible to efficiently extrapolate calibration based on structural 

similarity of compounds. In the following, we discuss ideas on how to achieve that in 

the future. 

Figure 5. Best regression scores achieved for subsets of metabolites within compound 

classes. 
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Prediction of absolute ion counts 

We attempted to predict absolute ion counts in serum spike-in samples using the 

dilution series data of water spike-in and serum samples (Figure 1b). First, we used 

all samples in the training set (covering all dilutions and metabolites) and 

experimented with feature columns to achieve top performance. We trained the model 

with ion counts of water spike-ins only (Figure 6a), with ion counts of SRM1950 only 

(Figure 6b) and with both of these feature columns included (Figure 6c). We were 

able to obtain good performance measures in all cases with R2 = 0.832 in the worst 

case. Not unexpectedly, combination of both features produced the best result with 

the lowest MSE score and R2 effectively reaching 0.9. Interestingly, training with 

unspiked SRM1950 samples produced higher R2 compared to using water spike-in 

samples, suggesting that biological matrix as a factor for prediction absolute ion counts 

is more important than the spiked-in metabolite. 

Figure 6. Prediction of absolute ion counts with water spike-in samples only (a), SRM1950 

samples only (b) and both sample types (c) included in the training set. 
 

Training with missing dilutions and spike-ins 

 

Next, we repeated the exercise of decreasing numbers of spike-ins and dilutions in the 

training set to assess to which extent the model can extrapolate for the missing data. 

Overall, we observed the same trend as in the task of predicting dilution factors. For 

instance, we found that including 4 dilutions out of 7 (i.e., an undiluted, 4x, 8x and 64x 

diluted samples) delivers R2 = 0.876, which is well comparable to the full data results. 

However, the prediction error grows to 0.237, which is roughly three times higher than 

in the full data case. Ultimately, including three dilutions only (an undiluted, 8x and 64x 
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diluted samples) represents the most practical example for applications where this 

level of error is still acceptable. Prediction of absolute ion counts for unseen 2x, 4x, 

16x and 32x diluted samples produced MSE of 0.24. Here we conclude that the model 

interpolates reasonably well for the missing dilutions, and the performance can be 

further improved by increasing the samples size. 

 

Decreasing the number of amino acids in the training set worked surprisingly well in 

this problem formulation. We were able to achieve R2 = 0.823 using Proline and 

Tyrosine data to predict ion counts of the other three amino acids. However, the lowest 

MSE of 0.082 could only be reached in case of single amino acids missing in the 

training data, i.e., predicting ion counts of Tyrosine. In the same setup for nucleobases, 

R2 reached as high as 0.685 predicting Cytosine ion counts and the lowest MSE of 

0.249 predicting Uracil ion counts. Therefore, our model extrapolates better for amino 

acids, which was expected simply because more data was available for this compound 

class (thus, more samples and additional informative feature columns). 

 

Evaluation of reproducibility across batches 

 

Finally, we sought to compare the best 

calibration model with the batch 

correction method developed in 

Chapter 3 in terms of reproducibility of 

quantification. For that, we calculated 

variation coefficients (VCs) for 

predicted ion counts in each data batch. 

The variation coefficient is a measure of 

noise in the sample. Therefore, better 

reproducibility is associated with lower 

VCs that are constant across batches, 

since each batch contains identical set 

of samples.  

 

Figure 7. Variation coefficient of ion counts 

per batch for calibration and batch 

correction.

We compared the calibration model of the full data case with normalization results 

produced by RALPS (Figure 7). We observed that VCs across batches were relatively 
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stable for both methods, being slightly more consistent for RALPS. In terms of actual 

values, RALPS delivered lower VCs for most batches. Compared to initial data, 

median batch VC went down from 0.123 to 0.119 for calibration and to 0.101 for 

RALPS. These results highlight better reproducibility achieved with RALPS in the 

analysis of absolute ion counts. 

 

Prediction of relative abundances 

As mentioned earlier in the problem formulation, predicting relative abundances is a 

substantially different task compared to the previous two. By design, it ignores the 

serum spike-ins data completely while training the model. This was not possible for 

predicting ion counts since absolute values differed drastically between the three 

sample types (Figure 2). However, we hypothesized that relative abundances might 

be conserved between the samples. In this case, it would be possible to train the model 

to predict relative abundances in unspiked serum samples and further reuse it for 

prediction of relative abundances in serum spike-in samples. 

 

We implemented this idea and trained the model running grid search over sets of 

hyperparameters similarly to all the previous tasks. However, rather poor performance 

was achieved on the test set of serum data with R2 = 0.501 only (Figure 8a). Testing 

the model on the unseen data of serum spike-ins generated no linear trend between 

true and predicted values and a large mean squared error (Figure 8b). 

Retrospectively, we can explain this with inconsistent calibration curves for serum 

samples: some of the metabolites were detected in larger amounts (ion counts) in 

samples of larger dilution factors (Figure 2), which is an artifact of semi-quantitative 

analysis likely caused by ion suppression. 

 

To better understand the potential of predicting relative abundances, we repeated the 

exercise using serum spike-in data only. We split the data randomly into train (80%) 

and test (20%) sets and trained the model with a grid search as before. The best 

performing hyperparameter set produced rather high R2 = 0.852 and an exceptionally 

low MSE (Figure 9a). A few predicted outliers decreased the coefficient of 

determination, but the MSE of 0.015 clearly indicates that, overall, predictions were 

highly accurate. 



Chapter 4  ¾  Prediction of relative concentrations in human serum 
analyzed by flow injection time-of-flight mass spectrometry 

_________________________________________________________________________ 

 125 

Figure 8. Prediction of relative abundances for serum (a) and serum spike-ins (b) data with 

model trained on serum data only. 

 

We further evaluated reproducibility of relative abundances across batches and 

compared the model with RALPS. In this task, we observed better consistency of 

variation coefficients for calibration (Figure 9b). These results suggest that 

transitioning from absolute ion counts to relative abundances leads to improved 

reproducibility of analysis obtained with calibration curves. For practical applications, 

however, a calibration model pretrained on sufficient data is required, which might be 

a limiting factor.  

Figure 9. Prediction of relative abundances for serum spike-ins (a), and variation coefficient 

of relative abundances per batch for calibration and batch correction (b). 
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Discussion 
 

Analyzing the benchmarking dataset of untargeted metabolomics acquired with FIA-

TOF-MS, we observed substantial matrix effects reflected in non-linearities of 

calibration curves. Not unexpectedly, some metabolites deviate from linear 

relationship between relative concentrations and the currents recorded by the MS 

detector. Previous works8–10 demonstrated how dilution series can mitigate matrix 

effects and improve calibration. Our empirical results are in agreement with this notion, 

as we were able to achieve better performance of the machine learning setups by 

including more dilutions in the training data. This was seen both for the prediction of 

dilution factors and the prediction of absolute ion counts. Additionally, we showed that 

calibration for spiked-in metabolites in human serum extracts can be improved 

significantly by including measurements of the same spike-ins in water. Although 

somewhat surprising in nature, this result can be explained by consistent decay of the 

instrument response with increasing dilution factors in water, a trend which is largely 

conserved among tested sample types and reinforced with data scaling as part of the 

training pipeline. We speculate that adding more matrices to the training set could 

further boost performance and improve quantification of metabolites generally, across 

matrices. 

 

Given the benchmarking dataset, we attempted to predict relative concentrations and 

absolute ion counts for partially missing metabolites, which mimics the actual practical 

application to some extent. However, the amount of available data was limited and 

likely not sufficient to extrapolate calibration for unseen but structurally similar 

metabolites. Although we were able to successfully predict ion counts using only 40% 

of amino acids in the training set, rather poor performance was achieved for purines 

and pyrimidines. Extrapolation capacity of the model predicting dilution factors was 

rather modest as well, as we obtained R2 scores around 0.8 only in cases of single 

metabolites missing in each compound class.  

 

Expanding the number of metabolites within compound classes and growing the 

sample size accordingly can definitely improve prediction of calibration curves. 

Introducing biophysical and/or structural information might be beneficial as well. 
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However, measuring enough of diverse compounds to cover a reasonably large 

chemical space is an ambiguous and tedious task. Instead, the set of QC features 

described in Chapter 2 as a snapshot of the system state could bring a lot of relevant 

information. The instrument tunes and readouts could complement the feature space 

linking detector response directly to the state of mass filters, lenses, mirrors, etc. 

Certainly, with large number of features in the training set, it becomes essential to 

select the most informative ones. A variety of approaches exist11, including model-

specific12,13, sequential14, recursive15, statistical16 feature selection, etc. 

 

Therefore, we envision a follow-up study involving an expanded list of metabolites 

(and, ideally, compound classes) measured in water, blood, plasma, urine, bacterial 

extracts in dilutions series for up to a factor 64x, where each analytical triplicate is 

accompanied with the QC sample and the corresponding instrument settings. Based 

on our observations, a machine learning model achieving high performance on such 

a dataset should be capable of quantifying unseen but structurally similar compounds 

across biological matrices provided the actual QC features and instrument settings are 

available during inference. In addition, quantification of relative abundances must be 

revisited to investigate reproducibility of calibration across biological matrices and 

demonstrate a real application example. 

 

Methods 
 

Data 

The dataset of multi-batch untargeted metabolomics data used in this study is 

available at https://doi.org/10.3929/ethz-b-000545373. From each batch, we retrieved 

the samples of the following prefixes: “P1_AA” for samples with spiked-in amino acids 

in water; “P1_PP” for samples with spiked-in purines and pyrimidines in water; 

“P2_SRM” for baseline SRM1950 samples; “P2_SAA” for samples with spiked-in 

amino acids in SRM1950; “P2_SPP” for samples with spiked-in purines and 

pyrimidines in SRM1950. Dilution factors for up to 64 were used to train models. Folds 

of dilution are also encoded in sample names (e.g., “0016” corresponds to 16-fold 

dilution). 
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Machine learning  

Several machine learning models were tested for predicting relative concentrations 

and absolute ion counts in the regression settings, including LASSO, Ridge, ElasticNet 

and SVR implementations from scikit-learn17. Several data scaling approaches were 

integrated into the training pipelines, including Standard, MinMax, MaxAbs scalers. 

Grid search with model-specific hyperparameters was implemented for each 

combination of model and scaler. Coefficient of determination R2 was optimized in 

stratified k-fold cross validation to achieve the best performance. Mean squared error 

between true and predicted values was evaluated along with R2 in all setups. We used 

5-fold splits for the full data settings and 3-fold for partially missing data. 

 

Standard scaler in combination with SVR consistently outperformed other methods 

and was picked for final training and evaluation. Grid search over three 

hyperparameters was implemented: C, epsilon and kernel. Linear, sigmoid and radial 

basis function (RBF) kernels were tested to account for non-linearities in the data. In 

the results section, the performance on the test set is reported. Test cases for each 

task are defined on Figure 1. Random seeds were fixed for all data splits and machine 

learning models, where possible. 

 

Data and code availability 
 

The code snippets for each of the three tasks are available at 

https://gitlab.ethz.ch/andreidm/calibration. To ensure reproducibility of results, the 

initial dataset and the one normalized with RALPS are also available in the same 

repository as csv files. 
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Abstract  
 

Recent advances in computer vision and robotics enabled automated large-scale 

biological image analysis. Various machine learning approaches have been 

successfully applied to phenotypic profiling. However, it remains unclear how they 

compare in terms of biological feature extraction. In this study, we propose a simple 

CNN architecture and implement 4 different representation learning approaches. We 

train 16 deep learning setups on the 770k cancer cell images dataset under identical 

conditions, using different augmenting and cropping strategies. We compare the 

learned representations by evaluating multiple metrics for each of three downstream 

tasks: i) distance-based similarity analysis of known drugs, ii) classification of drugs 

versus controls, iii) clustering within cell lines. We also com- pare training times and 

memory usage. Among all tested setups, multi-crops and random augmentations 

generally improved performance across tasks, as expected. Strikingly, self- 

supervised (implicit contrastive learning) models showed competitive performance 

being up to 11 times faster to train. Self-supervised regularized learning required the 

most of memory and computation to deliver arguably the most informative features. 

We observe that no single combination of augmenting and cropping strategies 

consistently results in top performance across tasks and recommend prospective 

research directions. Keywords: Representation learning, self-supervised learning, 

regularized learning, com- parison, memory constraints, cancer research, microscopy 

imaging.  
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Introduction  
 

With recent advances in robotics and deep learning methods, automated large-scale 

biological image analysis has become possible. Different microscopy technologies 

allow to collect imaging data of samples under various treatment conditions. Then, 

images are processed to extract meaningful biological features and compare samples 

across cohorts. As opposed to carefully engineered features used in the past, deep 

learning approaches are widespread and automatically distil relevant information 

directly from the data1. 

 

A lot of approaches, following different paradigms of machine learning, have been 

successfully applied to image-based phenotypic profiling: from fully supervised 

approaches2,3 to generative adversarial learning4–6 and self-supervision7,8. However, 

it remains unclear how these approaches align with each other in terms of biological 

feature extraction. The direct comparison is close to impossible, as many aspects 

differ between the studies: imaging technologies, datasets, learning approaches and 

model architectures, implementations and hardware. We discuss related works in 

more depth in a section below.  

 

In the emergent field of self-supervised learning, a key role of random data 

augmentations and multiple image views has recently been shown9. Their synergetic 

impact on learning image representations has not yet been rigorously studied. In this 

paper, we compare different deep learning setups in their ability to learn 

representations of drug-treated cancer cells. We propose a simple CNN architecture 

and implement several approaches to learn representations: the weakly-supervised 

learning (WSL), the implicit contrastive learning (ICL) and classical self-supervised 

learning without (SSL) and with regularization (SSR). We train four models on the 

same dataset of 770k images of cancer cells growing in 2D cultures in a drug 

screening campaign. We use four settings for each model: with and without random 

augmentations, with single and multi-crops. The other training conditions are kept 

identical. We compare the learned representations in three downstream analysis 

tasks, discuss their performance and provide the comparison summary table.  
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Therefore, our main contributions are:  

• implementations of 16 deep learning setups, including state-of-the-art methods 

trainable within limited resources (the source code and the trained models are 

available at https://github.com/dmitrav/morpho-learner),  

• a systematic comparison of learned representations. 

 

Related work 
 

Weak supervision has been a popular choice to learn medical image representations 

and has proven its efficiency10,11. When analyzing samples corresponding to different 

treatments, patients, or any experimental conditions, those are often used as weak 

labels. In our case, there are 693 conditions with different combinations of drugs and 

cell lines. However, the effects of those combinations are largely unknown, so we 

restrict ourselves into using two labels only: drug vs control (supposedly, effect vs no 

effect).  

 

A recent approach to understand morphological features of cancer cells by Longden 

et al. follows an unsupervised perspective12. The authors apply a deep autoencoder 

to learn 27 continuous morphological features. However, their model does not work 

with raw images. It uses 624 extracted numerical features as input, and applies a 

series of linear layers to reconstruct them. Here, we use a convolutional autoencoder 

instead, to learn more features directly from the data.  

 

Several approaches for learning representations of cell images are based on 

generative adversarial networks13,14. Such models often have two components: the 

generator and the discriminator network, trained simultaneously in a competitive 

manner. In this work, we implement a similar idea in the form of regularization: we use 

a deep convolutional autoencoder as generator, and a weakly-supervised classifier as 

discriminator. Both networks share the same stack of layers, responsible for learning 

representations, while optimizing different loss functions. In this setting, the 

computational time and memory usage remain comparable to the aforementioned 

approaches.  
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Finally, self-supervision has recently emerged in bioinformatics to address problems 

like cell segmentation, annotation and clustering15,16. Most recently, a self-supervised 

contrastive learning framework has been proposed by Ciortan & Defrance to learn 

representations of scRNA-seq data17. The authors follow SimCLR18 in the 

implementation of contrastive loss and show that their approach compares favorably 

with state-of-the-art (SOTA) methods in a downstream clustering task. Here, we train 

a self-supervised CNN backbone, following BYOL19. Unlike SimCLR, this approach 

does not need negative pairs, yet it was shown to have a superior performance.  

 

In spite of the great interest in deep-learning-based approaches to learning 

representations of biological data, there have been very few attempts to fairly compare 

those. A comparison of AI-based methods to predict cell function has come out lately20. 

However, it was primarily focused on collating traditional machine learning versus 

deep learning. Brief general comparisons of recent AI approaches can be found in 

reviews and surveys1,21,22, but they lack details and cannot inform decision making. 

Recently, a thorough comparison of data-efficient image classification models has 

been published by Brigato et al. The authors evaluated 10 models on 6 different 

datasets23. Eventually, this analysis focuses on classification tasks only. Although we 

see papers illustrating how a single study can benefit from multiple AI paradigms24, it 

remains unclear which approach is preferable in a particular representation learning 

task. In this study, we attempt to address this question for analysis of images of cancer 

cell lines growing in tissue cultures.  

 
Data 
 

The initial dataset comprises 1.1M high-resolution grey-scale images of drug-treated 

cancer cell populations growing adherently in vitro. It captures 693 unique 

combinations of 21 cell lines and 31 drugs at 5 different drug concentrations, multiple 

time points and biological replicates. Details are given in Supplementary Text 1.  
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We carefully subset the initial data to obtain a balanced dataset of two labels: strong 

drug effect (i.e., the highest drug concentration, the latest time point) and control (no 

drugs, any time point). We end up with about 770k image crops of size 64 × 64. It is 

important to note that some drugs did not provoke any effect on resistant cell lines, so 

the corresponding images of drugs and controls look similar. Some other drugs 

showed growth arrest only, which resulted in drug-treated images being similar to early 

time point controls, where the cells have not grown yet. By balancing the dataset to 

contain such cases (Figure 1), we expected the models to learn specific morphological 

differences, instead of superficial features like cell location in the crop, cell population 

density, amount of grey, etc.  

Figure 1. Examples of control and drug images (M14 cell line). On the left, an early time point 

of the control (cells have not grown yet) is shown against a strong drug effect (fragmented or 

dead cells). On the right, the end time points for the control and an ineffective drug are 

depicted. In the middle, an example of intermediate growth of a control sample versus another 

cytotoxic drug is given.  

 

Methods 
 

Model architectures 

To learn image representations, we implemented the following models:  

a. deep classifier with two output labels only (WSL),  

b. convolutional autoencoder with classic encoder-decoder architecture (SSL),  

c. models a and b in the joint encoder-classifier-decoder architecture (SSR),  

d. CNN backbone, trained with BYOL (ICL).  
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As seen on Figure 2, the four architectures contain the same CNN backbone, which 

is used to produce image representations for the downstream analysis. It was 

important to use the same stack of layers to ensure fair comparison of methods. 

However, image representations are learned solving substantially different tasks. 

 

Figure 2. Graphical overview of models. a. A weakly-supervised deep classifier with a 

categorical cross-entropy discrimination loss. b. A convolutional autoencoder with a binary 

cross-entropy reconstruction loss as in Creswell et al.25 c. A regularized convolutional 

autoencoder: models a and b, sharing the CNN backbone, trained simultaneously. d. A self-

supervised CNN backbone with a mean squared error difference loss.  

 

For the SSR model, we adopted a particular implementation where a classifier and an 

autoencoder are trained in turns, optimizing different loss functions (Figure 2c). Our 

idea was to encourage the autoencoder to learn representations that would bear 

differences between drug and control images, while still delivering high quality image 

reconstructions. In this formulation, the classifier acts as a regularizer. Although similar 

models have been utilized in chemo- and bioinformatics tasks26,27, to our knowledge 

this architecture has not been tested previously in the analysis of biological images.  

 

Training setups  

Each model was trained under 4 conditions of presence and absence of random image 

augmentations and multi-crops, giving rise to 16 training setups in total. Since the 

dataset is naturally grayscale, we only applied random resized crops, horizontal flips 

and Gaussian blurs to augment. Note that data augmentations are intrinsic to the self-

supervised approach. Therefore, we tested single and double augmenting (while 
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preprocessing and/or while training) for the ICL model. In the one-crop setting, we 

used single 64 × 64 images. For multi-crop, we added 4 random resized crops applied 

to 64 × 64 images: 2 of about half-size, and 2 more of about quarter-size (5 crops in 

total).  

 

We implemented the 16 described setups and trained them using Nvidia GeForce RTX 

2060 with 6 GB only. We chose the CNN backbone architecture, batch size and other 

common hyperparameters by running grid search and finding the best average 

performance across models, achievable within reasonable training time and hardware 

memory constraints.  

 

For the ICL model, we additionally optimized BYOL parameters: projection size, 

projections hidden size and moving average decay. We trained the model 100 times, 

sampling parameters from predefined ranges. We found that equal number of neurons 

for hidden and projection layers consistently delivered the lowest MSE loss.  

 

We trained all models for 50 epochs, using Adam optimizer with a constant learning 

rate of 0.0001. A batch size of 256 was used. We defined the same early stopping 

criterion, which checks a simple divergence condition on the loss function. We used 

the same data splits with 10% for the validation set to test classification accuracy and 

reconstruction quality.  

 
Validation and evaluation  

We validated the models by monitoring loss functions, classification accuracy and 

image reconstruction quality for training and validation sets (Supplementary Figure 
1). Evaluation metrics for the downstream tasks are described below.  

 

Distance metrics  

 

First, we compared the learned representations in their ability to capture similarity of 

known drugs. Let S1 and S2 be the sets of images of two drugs, known to have similar 
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effects, and C be the set of control images. We quantify similarity between S1 and S2 

as follows:  

• 𝐷(𝑆!, 𝑆") 	= 	 median#∈%!,'∈%"
(‖𝑢 − 𝑣‖), 

i.e., the median Euclidean distance between any two images (u, v) of two 
sets. 

• 𝑑(𝑆!, 𝑆") = 	
()	+	((%!,%")

()
, where 𝐷5 = 	 !

"
[𝐷(𝑆!, 𝐶) 	+ 	𝐷(𝑆", 𝐶)], 

i.e., the normalized difference between drug-to-control and drug-to-drug 
distances. 

The motivation for using Euclidean distance is given on Supplementary Figure 2. 

 

Classification metrics  

 

Next, we performed binary classification. We used a pretrained stack of layers of each 

model to generate latent representations and then trained a two-layer classifier to 

differentiate between drugs and controls. We used the same data splits and trained 

for 25 epochs with SGD optimizer and batch size of 1024. We ran grid search over 

learning rate, momentum and weight decay to achieve the best validation accuracy. 

To comprehensively evaluate the performance, we calculated several metrics 

individually for each cell line: accuracy, precision, recall and area under ROC.  

 

Clustering metrics  

 

Finally, we performed clustering to quantify how similar drug effects group in the latent 

space. For each cell line, we obtained image representations, reduced their 

dimensionality with UMAP28, and clustered their embeddings with HDBSCAN29. We 

evaluated several metrics on the partitions: number of identified clusters and percent 

of noise points, Silhouette score and Davies-Bouldin similarity.  

 

For each cell line, we ran grid search over two parameters: i) n neighbors, responsible 

for constraining the size of local neighborhood in UMAP, and ii) min cluster size, 

representing the smallest grouping size in HDBSCAN. We adopted the following 

procedure to find the best partitions: 1) select Silhouette scores above median, 2) 

select Davies-Bouldin scores below median, 3) select the lowest percent of noise, 4) 

pick a parameter set of max number of clusters. This logic was motivated by zero 
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correlation between Silhouette and Davies-Bouldin measures, and by the objective to 

find as many “clean” clusters as possible.  

 

Results 
 

Distance-based drug similarity analysis  

Pemetrexed (PTX) and Methotrexate (MTX) are two drugs that have similar chemical 

structures and both inhibit folate-related enzymes. Over the years, they have been 

successfully applied to cure many types of cancer30. We applied distance-based 

analysis to evaluate how close PTX and MTX are to each other in terms of learned 

features, and how distant they both are from controls (images of cells under no 

treatment).  

 

We picked all images related to PTX and MTX drugs from the validation set. Then, we 

randomly picked the same number of control images (DMSO). We calculated D(MTX, 

PTX), D(MTX, DMSO), D(PTX, DMSO) on image representations, which resulted in 

around 3600 distances for each cell line and pair on average. Based on a-priori 

knowledge of efficiency and similarity of the drugs, we expected MTX-PTX distances 

to be consistently lower than of MTX-DMSO and PTX-DMSO. Analysis of M14 cell line 

shows it was not the case for all models (Supplementary Figure 3).  

 

We repeated the same analysis for each of 21 cell lines. We found that with the 

exception of the WSL model, all produced lower average MTX-PTX distances, 

compared to MTX-DMSO and PTX-DMSO. This suggests that the space of learned 

features of the WSL model is likely to contain more trivial information about the drug 

effects, rather than features of altered morphology. Interestingly, the median 

normalized difference d turned out to be the largest for the ICL model (Table 2).  

 

Classification of drugs versus controls  

All models showed comparable classification performance, crossing 0.6 accuracy 

bottom line and reaching 0.7 in many cases. However, it is only the WSL model that 

achieved 0.8 accuracy for some cell lines (Supplementary Figure 4) and delivered 
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consistently higher performance in all setups. This was expected due to identical 

problem formulation during representation learning. Notably, the other three models 

have shown rival performance on this task. That implies that all models have a 

potential in detecting drug effects in time-series imaging data (e.g., to predict drug 

onset times for different concentrations).  

 

Table 2 contains four classification metrics for each training setup, evaluated on the 

entire dataset. Median performance for 21 cell lines is reported. The SSR model with 

single crops and augmentations showed the highest overall accuracy (0.76 ± 0.07) 

and ROAUC (0.76 ± 0.06), though the WSL model was the most robust across 

settings. The WSL and ICL models improved performance with multi-crops.  

 

Clustering analysis within cell lines  

Supplementary Figure 5 shows a particular example of clustering analysis of HCT 

cell line obtained with ICL model. Figure 3A presents numbers of identified clusters 

across all models and settings. Varying the clustering parameters resulted in relatively 

large confidence intervals. However, even the lower bounds exceeded n=2 clusters, 

which would correspond to the trivial case of differentiating between drugs and 

controls (effect vs no effect), in the majority of cases. That indicates that the learned 

representations allow studying the data in more depth (e.g., finding similarities in 

concentration-dependent morphological drug effects).  

 

Although mean numbers of clusters look similar, the quality of partitions differed 

substantially across cell lines, as follows from the Silhouette score barplots (Figure 
3B). The WSL model produced the poorest scores for the three picked cell lines. 

Close-to-zero and even negative values suggest that the clusters were mainly 

overlapping. In such cases, obtained partitions are far less trustworthy and any follow-

up analysis on them is controversial. The top performance was shown by the SSL and 

the SSR models. Statistics across all cell lines are given in Table 2.  
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Training times and memory usage  

All models were trained using Nvidia GeForce RTX 2060 with 6 GB memory. With 

batch size of 256, steady memory consumption was around 4.3 and 4.7 GB for single 

and multi- crops, respectively. Batch size of 512 resulted in cuda-out-of-memory error 

in all setups.  

Table 1. Training time (hours). 
 SSL ICL WSL SSR 

one_crop 7 1.5 2.5 9 

multi_crop 35 4 11 45 

 

Unlike memory usage, training times differed largely for model architectures and 

cropping strategies (Table 1). The ICL model was the only one to meet the early 

stopping criterion, which resulted in remarkably small training times. The one crop 

training stopped after 16/50 epochs, whereas multi crop made 7/50 epochs only. The 

other models were trained for all 50 epochs. 

 
Figure 3. Clustering analysis for three picked cell lines: SKMEL2, SW620, COLO205. Mean 

numbers of identified clusters (A) and mean Silhouette scores (B) are shown with confidence 

intervals. Model architectures are (from top to down): SSL, ICL, WSL and SSR. Different 

setups are (from left to right): augmentations + multi-crops, augmentations + single crops, no 

augmentations + multi-crops, no augmentations + single crops.  

 

A B SSL SSL SSL SSL

SSR SSR SSR SSR

WSL WSL WSL WSL

ICL ICL ICL ICL

SSL SSL SSL SSL

SSR SSR SSR SSR

WSL WSL WSL WSL

ICL ICL ICL ICL
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Discussion 
 

In this study, we used the distance-based analysis to validate and compare models. 

We took images of two drugs (PTX and MTX), known to be structurally and functionally 

similar, evaluated and compared their distances to control images in the space of 

learned features. However, this analysis stays limited to the choice of drugs. Although 

PTX and MTX made the best example for this dataset to use a-priori knowledge in 

validation and comparison of learned features, the results cannot be generalized for 

any pair of drugs.  

 

A common practice to evaluate learned representations is to apply them to different 

tasks and datasets. Often, linear evaluation and transfer learning scenarios are tested. 

However, this is the case when representations are learned from multi-class general 

purpose datasets (e.g., ImageNet). On the contrary, biological imaging datasets are 

specific. It has been reported that even SOTA models trained on ImageNet drop their 

performance significantly on such datasets19. In this study, we had a large imbalanced 

unlabeled dataset of 1.1M cell images under 693 different conditions over time. We 

sampled from it in the way to formulate a balanced binary classification problem, which 

in turn drastically limited further transfer learning applications.  

 

To the date, no consensual measure to evaluate clustering results has been 

proposed31. A number of metrics, such as Adjusted Rand Index, Silhouette score, 

Normalized Mutual Information, etc., are typically used together to compare results. 

Most metrics, however, require the ground truth labelling, which were not available in 

this study. Besides, the clustering itself can be approached in many different ways, 

using the classical or the newly developed deep-learning based algorithms17. In this 

study, we only intended to fairly compare clustering results, obtained under identical 

conditions (same algorithm, grid search parameters, evaluation metrics, etc.)  

 

In this study, we have demonstrated a number of ways to analyze large biological 

datasets with different representation learning paradigms. Similar approaches can be 

applied to address actual problems in healthcare and biotech industry (e.g., deriving 

drug onset times, characterizing concentration-dependent pharmacodynamics, 



Chapter 5  ¾  Comparing representations of biological data learned with 
different AI paradigms, augmenting and cropping strategies 

_________________________________________________________________________ 

 145 

exploring opportunities for combination therapy, etc.) In this context, it is important for 

the scientific community to see that SOTA methods (such as BYOL) can be 

successfully trained on large datasets within reasonable time using limited resources.  

 

Conclusion 
 

We applied different AI paradigms to learn representations of images of drug treated 

cancer cell lines. We implemented and trained 16 deep learning setups under identical 

conditions to ensure fair comparison of learned representations. We evaluated them 

on 3 tasks using multiple metrics to quantify performance. We made the following 

observations:  

• Multi-crops and augmentations generally improve performance in downstream 

tasks, as expected. Of 40 rows in the comparison Table 2, only 6 show superior 

performance with no augmentations and single crops (bold values in the 

rightmost column only).  

• The CNN backbone trained with BYOL (ICL) showed competitive performance 

and was the fastest to train. Strikingly, we managed to train it on the 770k 

dataset using a moderate GPU within 1.5 and 4 hours only (for single and multi-

crops). Additionally, double augmenting resulted in improved performance on 2 

of 3 downstream tasks.  

• Overall, the regularized autoencoder (SSR) produced the most informative 

features. It delivered the best accuracy and ROAUC in the classification task 

and the best quality of partitions in the clustering task. However, it required 

more time to train.  

• No single combination of model (architecture) and setting (augmenting and 

cropping strategy) consistently outperformed the others. Within each model, the 

top performance on downstream tasks was often shown by different settings.  

Our results suggest a combination of contrastive learning and domain-specific 

regularization as the most promising way to efficiently learn semantically meaningful 

representations. To achieve top performance in a particular application, we 

recommend to extensively evaluate the strength of regularization, as well as 

augmenting and cropping strategies. 
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Table 2. Summary of comparison. Median drug similarity distances and drug-vs-

control classification metrics are given with median absolute deviations. Mean 

clustering analysis metrics are given with standard deviations. All metrics satisfy the 

higher the better. Top performance for each model and task is highlighted in bold. 
 SSL 
 aug no_aug 
 multi_crop one_crop multi_crop one_crop 

d(MTX, PTX) 0.17 ± 0.00 0.17 ± 0.00 0.16 ± 0.00 0.20 ± 0.00 
D-1(MTX, PTX) 0.11 ± 0.02 0.08 ± 0.01 0.11 ± 0.02 0.09 ± 0.01 

Accuracy 0.72 ± 0.06 0.70 ± 0.06 0.72 ± 0.05 0.75 ± 0.07 
Precision 0.80 ± 0.06 0.75 ± 0.05 0.75 ± 0.04 0.86 ± 0.06 

Recall 0.66 ± 0.11 0.69 ± 0.10 0.72 ± 0.11 0.65 ± 0.12 
ROAUC 0.72 ± 0.06 0.69 ± 0.06 0.70 ± 0.05 0.75 ± 0.06 

# clusters 4 ± 2 4 ± 2 4 ± 2 3 ± 1 
Not noise, % 93 ± 6 93 ± 5 94 ± 5 94 ± 5 

Silhouette 0.32 ± 0.14 0.34 ± 0.17 0.35 ± 0.16 0.32 ± 0.08 
(Davies-Bouldin)-1 0.92 ± 0.79 0.99 ± 0.83 0.94 ± 0.89 0.80 ± 0.27 

 ICL 
d(MTX, PTX) 0.27 ± 0.00 0.24 ± 0.00 0.25 ± 0.00 0.20 ± 0.00 
D-1(MTX, PTX) 0.22 ± 0.02 0.69 ± 0.06 0.26 ± 0.02 0.64 ± 0.09 

Accuracy 0.62 ± 0.05 0.60 ± 0.04 0.61 ± 0.04 0.61 ± 0.05 
Precision 0.69 ± 0.05 0.63 ± 0.04 0.69 ± 0.05 0.69 ± 0.05 

Recall 0.54 ± 0.04 0.63 ± 0.10 0.56 ± 0.12 0.55 ± 0.13 
ROAUC 0.62 ± 0.04 0.59 ± 0.03 0.61 ± 0.04 0.61 ± 0.05 

# clusters 5 ± 3 4 ± 3 4 ± 2 3 ± 1 
Not noise, % 93 ± 4 94 ± 4 95 ± 5 95 ± 4 

Silhouette 0.29 ± 0.09 0.32 ± 0.06 0.34 ± 0.09 0.34 ± 0.12 
(Davies-Bouldin)-1 0.74 ± 0.15 0.75 ± 0.14 0.86 ± 0.47 0.92 ± 0.63 

 WSL 
d(MTX, PTX) -0.15 ± 0.00 0.03 ± 0.00 -0.18 ± 0.00 0.01 ± 0.00 
D-1(MTX, PTX) 0.14 ± 0.03 1.47 ± 0.26 0.10 ± 0.02 1.20 ± 0.19 

Accuracy 0.73 ± 0.05 0.73 ± 0.05 0.75 ± 0.05 0.73 ± 0.05 
Precision 0.73 ± 0.05 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 

Recall 0.77 ± 0.12 0.75 ± 0.11 0.77 ± 0.11 0.77 ± 0.10 
ROAUC 0.72 ± 0.05 0.73 ± 0.05 0.74 ± 0.05 0.73 ± 0.05 

# clusters 5 ± 4 3 ± 1 4 ± 1 6 ± 5 
Not noise, % 90 ± 5 91 ± 7 89 ± 8 87 ± 7 

Silhouette 0.13 ± 0.08 0.14 ± 0.09 0.13 ± 0.08 0.12 ± 0.07 
(Davies-Bouldin)-1 0.55 ± 0.17 0.54 ± 0.14 0.56 ± 0.17 0.53 ± 0.10 

 SSR 
d(MTX, PTX) 0.17 ± 0.00 0.19 ± 0.00 0.15 ± 0.00 0.18 ± 0.00 
D-1(MTX, PTX) 0.12 ± 0.02 0.08 ± 0.01 0.09 ± 0.02 0.08 ± 0.01 

Accuracy 0.73 ± 0.07 0.76 ± 0.07 0.70 ± 0.05 0.72 ± 0.06 
Precision 0.79 ± 0.05 0.83 ± 0.05 0.75 ± 0.04 0.80 ± 0.06 

Recall 0.70 ± 0.11 0.68 ± 0.11 0.66 ± 0.11 0.66 ± 0.09 
ROAUC 0.73 ± 0.06 0.76 ± 0.06 0.69 ± 0.05 0.72 ± 0.06 

# clusters 4 ± 1 4 ± 2 3 ± 1 4 ± 2 
Not noise, % 93 ± 5 93 ± 4 94 ± 5 94 ± 5 

Silhouette 0.32 ± 0.06 0.30 ± 0.09 0.35 ± 0.15 0.33 ± 0.12 
(Davies-Bouldin)-1 0.76 ± 0.20 0.77 ± 0.26 0.99 ± 0.92 0.94 ± 0.68 

     
Total bold 11 (20%) 14 (25.5%) 16 (29%) 14 (25.5%) 
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Supplementary material 
 

Supplementary Text 1. Description of the dataset. 
To cover a wide range of phenotypic effects in experimental and FDA-approved 

anticancer drugs, we selected drugs that displayed at least 3 cell lines as resistant and 

3 cell lines sensitive in the NCI-60 cancer cell line panel (Supplementary Table 1), 

with a threshold in the log10(GI50) of 1% between the sensitive and resistant groups. 

The list comprised 31 experimental and FDA-approved anticancer drugs, covering 

several modes of action of clinical and research interest (Supplementary Table 2).  

The cancer cell lines were grown in RPMI-1640 GlutaMax medium (ThermoFischer) 

with supplementation of 1% of Penicylin-Streptomycin (Gibco), and 5% of dialyzed 

fetal bovine serum (Sigma-Aldrich) at 37◦C in an atmosphere of 5% CO2. The seeding 

density to achieve a confluence of 70% was determined in Nunc 96 well plates 

(ThermoFischer), and that seeding density was used for experiments with a factor of 

four correction for the reduction in area between the 96 and 384 well plates, where 

cells were seeded in 45 uL of medium. Cells were incubated and imaged every two 

hours in the Incucyte S3 (Sartorious) 10x phase contrast mode from for up to 48 hours 

before drug addition, in order to achieve optimal cell adherence and starting 

experimental conditions. To reduce evaporation effects, the plates were sealed with 

Breathe-Easy sealing membrane (Diversified Biotech).  

 

To allow a broad coverage of effects on time, we collected the time information about 

when the drugs were treated for each cell line, and corrected the analysis based on 

the drug treatment. Drugs were resuspended in the appropriate solvent (DMSO or 

water), and the same amount of DMSO (check amount) was added across all wells, 

including controls. The randomized 384 drug source plates were generated with Echo 

Liquid Handling System (Integra-Biosciences), and then transferred in 5uL of medium 

to Nunc 384 well plates (ThermoFischer) with the AssistPlus liquid handler (Integra 

Biosciences).  
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Supplementary Table 1. Cell lines and inoculation densities for 96 well plate format. 
Cell line Panel Inoculation density 

EKVX Non-Small Cell Lung 11000 

HOP-62 Non-Small Cell Lung 9000 

COLO 205 Colon 15000 

HCT-15 Colon 12000 

HT29 Colon 12000 

SW-620 Colon 24000 

SF-539 CNS 10000 

LOX IMVI Melanoma 8500 

MALME-3M Melanoma 8500 

M14 Melanoma 5000 

SKMEL-2 Melanoma 10000 

UACC-257 Melanoma 20000 

IGR-OV1 Ovarian 10000 

OVCAR-4 Ovarian 10000 

OVCAR-5 Ovarian 15000 

A498 Renal 3200 

ACHN Renal 8200 

MDA-MB-231 / ATCC Breast 20000 

HS 578T Breast 13000 

BT-549 Breast 10000 

T-47D Breast 15000 
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Supplementary Table 2. Drugs, solvents, CAS registry numbers and maximum 

concentrations. The other four concentrations for each drug were 10x serial dilutions 

of the maximum concentration.  
Drug Fluid CAS Concentration 

Erlotinib DMSO 183321-74-6 10 uM 

Irinotecan DMSO 100286-90-6 10 uM 

Clofarabine DMSO 123318-82-1 10 uM 

Fluorouracil DMSO 51-21-8 10 uM 

Pemetrexed Water 150399-23-8 10 uM 

Docetaxel DMSO 148408-66-6 1 uM 

Everolimus DMSO 159351-69-6 1 uM 

Chlormethine DMSO 55-86-7 10 uM 

BPTES DMSO 314045-39-1 10 uM 

Oligomycin A DMSO 579-13-5 1 uM 

UK-5099 DMSO NA 10 uM 

Panzem (2-ME2) DMSO 362-07-2 10 uM 

MEDICA16 DMSO 87272-20-6 10 uM 

Gemcitabine Water 122111-03-9 1 uM 

17-AAG DMSO 75747-14-7 10 uM 

Lenvatinib DMSO 417716-92-8 10 uM 

Topotecan DMSO 119413-54-6 1 uM 

Cladribine DMSO 4291-63-8 10 uM 

Mercaptopurine DMSO 6112-76-1 10 uM 

Decitabine DMSO 2353-33-5 10 uM 

Methotrexate DMSO 59-05-2 1 uM 

Paclitaxel DMSO 33069-62-4 1 uM 

Rapamycin DMSO 53123-88-9 0.1 uM 

Oxaliplatin DMSO 61825-94-3 10 uM 

Omacetaxine DMSO 26833-87-4 1 uM 

Metformin Water 1115-70-4 10 uM 

YC-1 DMSO 170632-47-0 10 uM 

Etoximir DMSO 828934-41-4 10 uM 

Oxfenicine DMSO 32462-30-9 2.5 uM 

Trametinib DMSO 871700-17-3 1 uM 

Asparaginase Water 9015-68-3 0.00066 units / uL 
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Supplementary Figure 1. Quality of image reconstructions. Random examples of 

reconstructed and original images for the unsupervised (a) and the regularized (b) 

models. Regularization did not harm the quality of reconstructions. The learning 

capacity of the CNN backbone was sufficient to capture normal and altered 

morphology of the cells. 
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Supplementary Figure 2. Motivation for Euclidean distance in the similarity 
analysis. We tested several distances to investigate how close the two drugs (PTX 

and MTX) were to each other and both distant from control (DMSO) in the space of 

learned features. We found a number of cases, where cosine and correlation distances 

could not differentiate between drugs and controls, i.e., D(PTX, MTX) ≈ D(PTX, 

DMSO) ≈ D(MTX, DMSO). Whereas Bray-Curtis and Euclidean distances both 

resulted in D(PTX, MTX) < D(PTX, DMSO) and D(PTX, MTX) < D(MTX, DMSO). The 

figure explains it very clearly: although distributions of cosine and correlation distances 

are both slightly shifted towards zero for MTX-PTX comparison (blue), these effects 

are much stronger for Bray-Curtis and Euclidean distances. From this we concluded 

that Euclidean distance was the most informative for the drug similarity analysis of 

PTX and MTX. 
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Supplementary Figure 3. Distance-based similarity analysis for M14. Analyzing 

distances for M14 cell line, we observed that in the latent space the two drugs (PTX 

and MTX) were closer to each other than either of them to controls (DMSO) for two 

models only: the unsupervised (row 1) and the regularized (row 4) ones. The distances 

for the ICL and WSL models (rows 2 and 3) were rather on the same level. Strikingly, 

the one-crop setup for both of them (columns 2 and 4) resulted in distances close to 

zero, which implies that information in the learned representations was insufficient to 

characterize drug effects. Multi-crop setting, in turns, caused large increase in 

distances, which suggests information gain. Nonetheless, it was not enough to capture 

dissimilarity between drugs and controls in this case. 

 
  

SSL SSL SSL SSL

SSR SSR SSR SSR

WSL WSL WSL WSL

ICL ICL ICL ICL
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Supplementary Figure 4. Binary classification for HT29, HCT15 and ACHN. 

Binary classification accuracy (drug vs control) for three picked cell lines: HT29, 

HCT15, ACHN. Weakly-supervised architecture was the only one to reach 0.8 

accuracy for HT29 and cross 0.7 accuracy in all settings for HCT15 and ACHN. 
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Supplementary Figure 5. Clustering of HCT cell line representations. Clustering 

example of 20480 images (HCT15 cell line) with random cluster representatives. Each 

point is a 2D UMAP embedding of the learned image representations (self-supervised 

model). Clusters found by HDBSCAN are highlighted in colors. The left cluster (blue) 

contains drugs of no effect on HCT15. The right cluster (red) contains the drugs of the 

strongest effect. 
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Abstract  
 

In this work, we propose two novel methodologies to study temporal and 

morphological phenotypic effects caused by different experimental conditions using 

imaging data. As a proof of concept, we apply them to analyze drug effects in 2D 

cancer cell cultures. We train a convolutional autoencoder on 1M images dataset with 

random augmentations and multi-crops to use as feature extractor. We systematically 

compare it to the pretrained state-of-the-art models. We further use the feature 

extractor in two ways. First, we apply distance-based analysis and dynamic time 

warping to cluster temporal patterns of 31 drugs. We identify clusters allowing 

annotation of drugs as having cytotoxic, cytostatic, mixed or no effect. Second, we 

implement an adversarial/regularized learning setup to improve classification of 31 

drugs and visualize image regions that contribute to the improvement. We increase 

top-3 classification accuracy by 8% on average and mine examples of morphological 

feature importance maps. We provide the feature extractor and the weights to foster 

transfer learning applications in biology. We also discuss utility of other pretrained 

models and applicability of our methods to other types of biomedical data.  
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Introduction  
 

Deep learning has been extensively applied to the analysis of biological images1–4. 

Learning cellular features from imaging data in an automated way, instead of 

designing them manually with expert knowledge, resulted in a remarkable progress 

across many tasks, such as classification and segmentation, object tracking and 

others5. 

 

Among many studies based on deep representation learning, Yang et al. investigated 

cell trajectories in the feature space along the time axis6. Lu et al. exploited distance 

measures in the feature space to quantify similarity of cells7. However, no study 

applied distance-based analysis of temporal drug effects using learned 

representations. In this study, we develop a workflow to analyze effects of anti-cancer 

drugs with time. 

 

Many efforts have gone into improving interpretability of deep learning for biomedical 

applications8,9. Several methods have been used to study cellular phenotypes using 

variational autoencoders10 (VAEs) and generative adversarial networks11 (GANs). 

Here, we propose another way to gain insights into morphological features of cells 

driving drug classification. As a proof of concept, we apply it to improve classification 

of anti-cancer drugs and visualize image regions contributing to that improvement.  

 

Therefore, our main contributions are:  

• We train a convolutional autoencoder (ConvAE) on 1M cancer cell images 

using random augmentations and multi-crops. We provide the source code and 

the model for future transfer learning applications at 

https://github.com/dmitrav/pheno-ml.  

• We propose a workflow to study temporal drug effects using learned 

representations of images with distance-based clustering analysis.  

• We propose an adversarial/regularized learning setup to improve multiclass 

classification of drugs and visualize morphological features driving classifier 

decisions.  
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Related work 
 

State-of-the-art (SOTA) general purpose pretrained models (e.g., ResNet-50 trained 

with SwAV12 or DINO13) are often used for transfer learning applications14. However, 

their performance may drop significantly on specific datasets15 such as ours. Models 

trained on biological data are available, but they are usually trained on smaller 

datasets. Services and tools exist to assist on biological image analysis (such as 

CellProfiler16 or DeepImageJ17). However, they are not designed to handle high-

throughput and often do not provide direct access to extracted feature vectors. In this 

work, we train ConvAE on 1M image dataset comprising 21 cell lines and 31 cancer 

drugs on 5 concentrations. We use random augmentations and multi-crops, prove the 

representations contain meaningful biological information and provide the trained 

model with minimal API to extract features. 

 

A number of approaches to improve interpretability of deep learning are based on 

autoencoders18,19. Often, they are used to localize and visualize pathologies or 

lesions20. Perhaps, the closest approach to ours is the one by Chen et al. The authors 

train a VAE on healthy subjects and then use it to detect outliers with MAP-based 

restoration21. That is, the lesions are detected as noise in the process of image 

restoration. The detected regions are then visualized by calculating the difference 

between input and restored images. In this work, we use ConvAE as a feature 

extractor in a regularized learning setup to train the lens model22, conceptually 

introduced by Sajjadi et al. The resulting morphological feature importance maps are 

then obtained by calculating the difference between the reconstructed and the lensed 

images.  

 
Data 
 

We used advanced robotics, assay miniaturization and high-throughput imaging to 

acquire a dataset comprising 1M phase-contrast images, covering 21 cancer cell lines 

exposed to 31 experimental and FDA-approved clinical cancer drugs at 5 logs of 

concentration, where every condition was imaged every 2 hours for up to 6 days 

(Figure 1). Detailed description of the data is given in Supplementary Text 1.  
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Figure 1. Schematic of the dataset and the expected drug effects over time (on the right). 

 

Methods 
 

Learning representations 

We adopted a convolutional autoencoder (ConvAE) to learn image representations. 

We experimented with architectures to achieve good reconstruction quality and 

reasonable training time, as we used a single Nvidia GeForce RTX 2060 with 6GB 

only (see Supplementary Text 2 for details). We ended up with an architecture of 3 

convolutional layers for encoder and decoder parts, having a relatively large receptive 

field (maps of 32 × 32 pixels in the bottleneck layer). The total number of parameters 

stayed rather low (190k), which allowed faster training and feature extraction, as well 

as lower memory consumption. 

 

Augmenting and cropping strategies 

Since we had naturally grayscale images, we only applied random resized crops 

(RRCs), augmented with random Gaussian blur and horizontal flip. However, we 
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tested a number of cropping strategies. The initial 256 × 256 images were randomly 

cropped and resized to 128 × 128, but the scale of RRCs varied. We tested 

combinations of full images and square crops of about half size and about quarter size 

(e.g., the following 3-crop strategy: 1 full image, 1 square crop of random size between 

128-256 pixels, 1 square crop of random size between 64-128 pixels). We tested 12 

cropping strategies, always having a full image and up to 4 additional RRCs of different 

sizes.  

 

Evaluation and comparison to the pretrained models 

We compared image representations obtained with ConvAE and general-purpose 

SOTA models pretrained on ImageNet: i) supervised ResNet-50, ii) self-supervised 

ResNet-50 (SwAV), iii) self-supervised ResNet-50 (DINO), iv) self-supervised ViT-B/8 

(DINO). We evaluated performance of each model on 3 downstream tasks using 

multiple metrics.  

 

Similarity of biological replicates 

 

First, we analyzed similarity of biological replicates in the latent space. For that, we 

picked the images of drugs at maximum concentrations and latest time points, where 

the strongest effect must be observable if present. We did that for each cell line and 

calculated distances between every pair of images of the same drug. We used the 

following distances to estimate similarity: Euclidean, cosine, correlation and Bray-

Curtis. Since biological replicates are expected to display the same effects, we 

expected the distances to be lower for those methods that capture the similarity well.  

 

Clustering of drug effects 

 

Next, we performed clustering of images within each cell line. We retrieved latent 

representations, reduced dimensions with UMAP23 and ran HDBSCAN24 clustering 

over multiple parameter sets. Since the true labels of drug effects were not available 

in this study, we evaluated the quality of partitions with the following metrics: percent 

of noise points, Silhouette score, Davies-Bouldin measure, Calinski-Harabasz index. 
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We picked the best clustering performance over parameters sets and averaged them 

across cell lines.  

 

Classification of drugs vs controls 

 

Finally, we formulated a classification problem to differentiate between drugs and 

controls. We assigned label 1 to the images of maximum drug concentrations and 

label 0 to the control (no drug) images. We trained two-layer classifiers and calculated 

a few standard metrics: accuracy, recall, precision, specificity. The resulting setting is 

only weakly supervised, since some drugs did not in fact provoke any effect.  

 
Analysis of temporal drug effects 

To characterize temporal drug effects, we calculated distances between drug and 

control image representations at every time point and clustered trajectories of 

distances over time. More specifically, we aligned images of drugs and controls along 

the time axis first. Then, we retrieved their latent representations, averaged features 

across biological replicates and calculated distance to control for each drug at every 

time point. Finally, we normalized distances for each experimental condition, applied 

dynamic time warping (DTW) and k-means to cluster temporal patterns (Figure 2). In 

this setting, rapidly growing distance (fast divergence from control) is expected for 

immediate strong drug effect. And vice versa, low distance to control along the entire 

timeline is expected for no observable effect. We tested several distance metrics. For 

k-means, we incremented k by 1 to find the minimum number of clusters covering the 

expected biological patterns.  
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Figure 2. An overview of temporal analysis. 

 

Analysis of morphological drug effects 

Following the idea of shortcut removal25, we leveraged an adversarial learning setup 

to improve multiclass classification of drugs using the best pretrained model as feature 

extractor (Figure 3). The lens was trained on the images of the highest drug 

concentrations and the latest time points using the following loss function:  

𝐿	 = 	 𝐿./0 	– 	𝛼	×	𝐿1230, where 𝐿./0 is the image reconstruction loss, 𝐿1230 is the drug 

discrimination loss, and 𝛼 is an adversary coefficient. We used the same ConvAE 

architecture for the lens and ran grid search for 𝛼	 ∈ 	 [−60,60], evaluating classification 

accuracy on the lensed images. Negative values of α correspond to the regularized 

learning. 

 

In cases of improved classification accuracy, we visualized regions on the images 

perturbed by the lens. We did that by plotting the absolute difference between the 

lensed and the reconstructed images. The resulting regions serve as morphological 

feature importance maps, as they highlight regions of altered cell morphology 

important for drug classification.  
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Figure 3. A schematic of the lens setup. 

 
Results 
 

Multi-crops improve performance on downstream tasks  

We experimented with scales of RRCs 

and averaged their performance for 

each n-crop strategy, where n ∈ {2, 3, 

4, 5}. We used multiple metrics 

corresponding to a particular task to 

average. We further normalized 

performance on each task, so that the 

top performance equals to 1. As 

expected, we observed that increasing 

number of multi-crops improves the 

performance across tasks on average 

(Figure 4).  

Figure 4. Lowest mean squared error 

achieved for subsets of dilutions. 

 

However, different scales of RRCs sometimes led to sporadic drops in performance 

on particular tasks. The best scores across tasks were achieved by the following 5-

crop strategy: 1 full size image, 1 square crop of random size between 128-256 pixels, 

3 square crops of random size between 64-128 pixels. That strategy was used for 

training ConvAE on the entire dataset and further evaluations. 

 

 

 

Lens

Input
image

True
label

Perturbed
image

Binary Cross-Entropy
Categorical Cross-Entropy

Predicted
label

Feature
extractor Linear

layer



Chapter 6  ¾  Self-supervised learning for analysis of 
temporal and morphological drug effects in cancer cell imaging data 

_________________________________________________________________________ 

 168 

Comparison of pretrained state-of-the-arts  

We compared several pretrained models with the ConvAE on three downstream tasks 

as described earlier. Median metrics are reported in Table 1. 

 
Table 1. Comparison of pretrained models. All metrics are the higher the better. 

 Similarity Clustering Classification 
 (Euclidean)-1 (Cosine)-1 Silhouette (Davies)-1 Accuracy F1 

ResNet-50 0.10 ± 0.01 1.21 ± 0.03 0.25 ± 0.10 0.46 ± 0.18 0.59 ± 0.02 0.59 ± 0.05 
ResNet-50 (SwAV) 2.75 ± 0.63 5.37 ± 2.39 0.47 ± 0.13 0.85 ± 0.71 0.77 ± 0.01 0.78 ± 0.01 
ResNet-50 (DINO) 1.07 ± 0.02 1.12 ± 0.02 0.34 ± 0.11 0.52 ± 0.27 0.72 ± 0.00 0.73 ± 0.00 

ViT-B/8 (DINO) 2.18 ± 0.42 4.57 ± 1.91 0.44 ± 0.12 0.70 ± 0.52 0.81 ± 0.00 0.82 ± 0.00 

ConvAE (trained) 2.26 ± 0.68 1.53 ± 0.27 0.30 ± 0.11 0.39 ± 0.24 0.85 ± 0.05 0.85 ± 0.05 

 

Surprisingly, ResNet-50 pretrained on ImageNet with SwAV algorithm showed the 

best performance on similarity and clustering tasks. That indicates high level of 

consistency of the learned representations, obtained with SwAV. On the other hand, 

the best classification accuracy (drug vs control) and F1 score were shown by our 

model, followed by ViT-B/8 pretrained with DINO. Therefore, features extracted by the 

pretrained models lacked some domain-specific information to better differentiate 

between drug and control images. Notably, a small model such as ours (ConvAE) can 

show rival performance with pretrained state-of-the-arts when trained on large enough 

dataset.  

 

Proof-of-concept: studying temporal drug effects  

First, we analyzed representations learned by ConvAE and made sure they exhibit 

expected spatial and temporal separation patterns (see Supplementary Figure 1). 

Then, we calculated Euclidean distance to control for each experimental condition at 

each time point. We further scaled, DTW-aligned and clustered the distances as 

described earlier.  

 

We found three clear patterns: i) no response, where the distance between drug-

treated condition and control either stays constant or decays, so that both conditions 

become indistinguishable; ii) temporary response (cytostatic effect), where an initial 

divergence from control is observed, but ultimately reduced towards the end time 
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points; iii) constant response (cytotoxic effect), where the distance grows throughout 

the experiment (Figure 5A). Red lines are mean cluster representatives. Full 

clustering is shown on Supplementary Figure 2. 

 
Figure 5. Analysis of temporal drug effects. 

 

Analyzing these patterns, we were able to annotate concentration-dependent effects 

for all drugs in the dataset (Figure 5B). Interestingly, we observed that some drugs 

(e.g., Cladribine) switched between cytostatic and cytotoxic modes of action, as the 

concentration was increased. Notably, this was impossible to detect analyzing 

classical growth curves, as the confluence grew for all concentrations, but the highest 

(Figure 5B, bottom-right). Conversely, distance-based analysis of learned 

representations allowed picking up another distinct response pattern (Figure 5B, top-

right).  
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To validate such patterns, we visually inspected the corresponding images with time, 

as shown on Figure 5C for HT-29 cell line and three concentrations of Cladribine. The 

first row shows no effect, these images look identical to controls. In the last row, 

irregular cell morphology features (such as granules and bubbles) associated with 

cytotoxic effect can be seen. For 1.1 μM concentration in the middle, we indeed 

observed temporary proliferation arrest, accompanied with increased cell sizes. It 

proves that our method can distinguish between different response patterns and thus, 

can be used for studying temporal drug effects.  

 

Proof-of-concept: exploring morphological drug effects 

We used the trained ConvAE as feature 

extractor to train the lens. We observed 

negligible lens effects with |𝛼| 	≤ 	1. 

Increasing |𝛼| up to 60 we were able to 

obtain consistent improvement of top-3 

classification metrics (Figure 6). With 

𝛼	 = 	−60, we were able to improve 

classification accuracy by 8%, which is 

significant. We looked into examples of 

improved classification and plotted 

differences between the reconstructed 

and the lensed images.  

Figure 6. Multi-class classification 

accuracy with no (𝛼	 = 	0), adversarial (𝛼	 =

	60) and regularizing (𝛼	 = 	−	60) lens.

By design, such differences highlight regions on the image, that caused changes in 

the classification results. 

 

We considered three cases of improved classification with lens as the most useful to 

study morphological drug effects: i) when the classifier initially confused a drug with a 

control, and the lens resolved the issue; ii) when the classifier initially confused a drug 

with another drug, and the lens resolved the issue; iii) when the classifier initially had 

low probability of correct class, and the lens dramatically increased that probability. 

Figure 7 gives examples of the first two cases. 

 

padj< 0.006padj< 0.023
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An image of Topotecan (drug) was incorrectly classified as DMSO (control) without 

the lens, likely due to high confluence (cell population density) on the crop (Figure 
7A). The output probability for DMSO was quite low though. After the lens was applied, 

the classifier got it right with very high confidence. Feature importance map highlights 

the regions of altered cell morphology that improved classification. Figure 7B shows 

an image with confluence below 50% corresponding to BPTES (drug), misclassified 

as Chlormethine (another drug). However, the lens identified regions of altered 

morphology that led to correct classification with high confidence. We provide more 

examples for the increased probability case on Supplementary Figure 3 and 

Supplementary Figure 4. 

 
Figure 7. Classification results and morphological feature importance maps. 

 
Discussion 
 

Both applications were developed using ConvAE pretrained on a large dataset of drug-

treated cancer cell lines. However, we were able to obtain temporal patterns similar to 

those on Figure 5A for individual drugs using ResNet-50 pretrained with SwAV 

(Supplementary Figure 5). Thus, based on our empirical findings (Table 1), we 

speculate that ResNet-50 pretrained with SwAV could be used instead of ConvAE to 

study temporal and morphological drug effects with little information loss at no 

additional training cost. Although ViT-B/8 pretrained with DINO produced the closest 

to ConvAE classification results, using visual transformers may still be prohibitive, 

because of their size. Using a Nvidia GeForce RTX 2060, we estimated the forward 

pass of 1M images with ViT-B/8 to take around 200 hours, with ResNet-50 – 32 hours, 

with ConvAE – 40 minutes.  

 

A B
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Although we demonstrated the utility of our methods on a single biological dataset 

only, related works discussed earlier in this paper show comparable approaches 

applied to many types of biomedical imaging data. Therefore, we hope our results will 

contribute broadly to further development of deep learning methods for fundamental 

and clinical research.  

 

Conclusion 
 

In this work, we proposed two workflows to study phenotypic changes of experimental 

conditions using pretrained models. As a proof of concept, we applied them to study 

temporal and morphological drug effects on cancer cell lines. Besides, we trained a 

CNN model on a 1M images dataset comprising 21 cancer cell lines and 31 drugs at 

5 concentrations. We validated the learned representations and provided the model to 

enable transfer learning applications. Overall, our findings suggest that pretrained 

models can be used for efficient and interpretable deep learning applications in 

biological and biomedical image analysis.  
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Supplementary material 
 

Supplementary Text 1. Description of the dataset. 
To cover a wide range of phenotypic effects in experimental and FDA-approved 

anticancer drugs, we selected drugs that displayed at least 3 cell lines as resistant and 

3 cell lines sensitive in the NCI-60 cancer cell line panel (Supplementary Table 1), 

with a threshold in the log10(GI50) of 1% between the sensitive and resistant groups. 

The list comprised 31 experimental and FDA-approved anticancer drugs, covering 

several modes of action of clinical and research interest (Supplementary Table 2).  

The cancer cell lines were grown in RPMI-1640 GlutaMax medium (ThermoFischer) 

with supplementation of 1% of Penicylin-Streptomycin (Gibco), and 5% of dialyzed 

fetal bovine serum (Sigma-Aldrich) at 37°C in an atmosphere of 5% CO2. The seeding 

density to achieve a confluence of 70% was determined in Nunc 96 well plates 

(ThermoFischer), and that seeding density was used for experiments with a factor of 

four correction for the reduction in area between the 96 and 384 well plates, where 

cells were seeded in 45 uL of medium. Cells were incubated and imaged every two 

hours in the Incucyte S3 (Sartorious) 10x phase contrast mode from for up to 48 hours 

before drug addition, in order to achieve optimal cell adherence and starting 

experimental conditions. To reduce evaporation effects, the plates were sealed with 

Breathe-Easy sealing membrane (Diversified Biotech).  

 

To allow a broad coverage of effects on time, we collected the time information about 

when the drugs were treated for each cell line, and corrected the analysis based on 

the drug treatment. Drugs were resuspended in the appropriate solvent (DMSO or 

water), and the same amount of DMSO (check amount) was added across all wells, 

including controls. The randomized 384 drug source plates were generated with Echo 

Liquid Handling System (Integra-Biosciences), and then transferred in 5uL of medium 

to Nunc 384 well plates (ThermoFischer) with the AssistPlus liquid handler (Integra 

Biosciences).  
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Supplementary Text 2. Selection of the ConvAE architecture. 
To be able to demonstrate novel applications described in the results section, we 

needed a compact model trainable within limited resources (Nvidia GeForce RTX 2060 

with 6 GB only). We tested 10 other CNN architectures and compared them by 

reconstruction quality. The architectures had the same number of layers as the final 

ConvAE, but differed in number of neurons and pooling strategies to keep the same 

dimensionality of the bottleneck layer. The choice of an architecture was constrained 

by the need to fit the data and the model into the GPU memory (especially important 

for the lens framework). Therefore, an integration test for each architecture was 

performed for the lens training setup. The final architecture of ConvAE and the weights 

are now available on GitHub.  
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Supplementary Table 1. Cell lines and inoculation densities for 96 well plate format. 
Cell line Panel Inoculation density 

EKVX Non-Small Cell Lung 11000 

HOP-62 Non-Small Cell Lung 9000 

COLO 205 Colon 15000 

HCT-15 Colon 12000 

HT29 Colon 12000 

SW-620 Colon 24000 

SF-539 CNS 10000 

LOX IMVI Melanoma 8500 

MALME-3M Melanoma 8500 

M14 Melanoma 5000 

SKMEL-2 Melanoma 10000 

UACC-257 Melanoma 20000 

IGR-OV1 Ovarian 10000 

OVCAR-4 Ovarian 10000 

OVCAR-5 Ovarian 15000 

A498 Renal 3200 

ACHN Renal 8200 

MDA-MB-231 / ATCC Breast 20000 

HS 578T Breast 13000 

BT-549 Breast 10000 

T-47D Breast 15000 
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Supplementary Table 2. Drugs, solvents, CAS registry numbers and maximum 

concentrations. The other four concentrations for each drug were 10-fold serial 

dilutions of the maximum concentration.  
Drug Fluid CAS Concentration 

Erlotinib DMSO 183321-74-6 10 uM 

Irinotecan DMSO 100286-90-6 10 uM 

Clofarabine DMSO 123318-82-1 10 uM 

Fluorouracil DMSO 51-21-8 10 uM 

Pemetrexed Water 150399-23-8 10 uM 

Docetaxel DMSO 148408-66-6 1 uM 

Everolimus DMSO 159351-69-6 1 uM 

Chlormethine DMSO 55-86-7 10 uM 

BPTES DMSO 314045-39-1 10 uM 

Oligomycin A DMSO 579-13-5 1 uM 

UK-5099 DMSO NA 10 uM 

Panzem (2-ME2) DMSO 362-07-2 10 uM 

MEDICA16 DMSO 87272-20-6 10 uM 

Gemcitabine Water 122111-03-9 1 uM 

17-AAG DMSO 75747-14-7 10 uM 

Lenvatinib DMSO 417716-92-8 10 uM 

Topotecan DMSO 119413-54-6 1 uM 

Cladribine DMSO 4291-63-8 10 uM 

Mercaptopurine DMSO 6112-76-1 10 uM 

Decitabine DMSO 2353-33-5 10 uM 

Methotrexate DMSO 59-05-2 1 uM 

Paclitaxel DMSO 33069-62-4 1 uM 

Rapamycin DMSO 53123-88-9 0.1 uM 

Oxaliplatin DMSO 61825-94-3 10 uM 

Omacetaxine DMSO 26833-87-4 1 uM 

Metformin Water 1115-70-4 10 uM 

YC-1 DMSO 170632-47-0 10 uM 

Etoximir DMSO 828934-41-4 10 uM 

Oxfenicine DMSO 32462-30-9 2.5 uM 

Trametinib DMSO 871700-17-3 1 uM 

Asparaginase Water 9015-68-3 0.00066 units / uL 
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Supplementary Figure 1. Spatial and temporal separation of UMAP embeddings. 

We plotted UMAP embeddings of image representations. Taking the latest time points 

only, we observed gradual transition from drug clusters of no effect to clusters of strong 

cytotoxic drug effects. Taking UMAP embeddings of all time points, we saw spatial 

and temporal separation of images even more clearly. Single drug tracks can be seen 

in colors, and some of them diverged dramatically from the initial locus (points of time 

< 0), demonstrating a variety of drug effects, distinct in nature and intensity. 
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Supplementary Figure 2. Clusters of temporal drug effects. In total, we found 8 

clusters, characterizing expected types of response, intensity and speed of divergence 

from controls. We examined random cluster representatives to validate the analysis 

and interpret identified patterns. We found that cluster 1 is associated with a strong 

cytotoxic effect, as we observed a lot of cell deaths on the corresponding images. 

Cluster 3 represents cytostatic effect, as the images showed temporary cell growth 

arrest. Clusters 2 and 6 are related to mixed effects, as the images displayed both 

patterns. We labeled clusters 0, 4, 5, 7 as showing no effect. Images of cluster 7 stayed 

indistinguishable to controls at all time points. Clusters 4 and 5 had only 30% of images 

showing weak cytotoxic or mixed effect. Cluster 0 is an expected artifact of the 

distance-based analysis: when the cell population density is low (images of early time 

points), the distance may be large due to varying localization of cells on the crop. With 

growing cell population, the distance gradually drops unless there is a drug effect. 
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Supplementary Figure 3. Morphological feature importance maps for increased 

classification probability. 
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Supplementary Figure 4. Morphological feature importance maps for increased 

classification probability. 
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Supplementary Figure 5. Similar temporal patterns of Cladribine obtained with 
different models. We repeated distance-based analysis for the Cladribine case 

emphasized on Figure 5B. This time, we used representations obtained with ResNet-

50 pretrained with SwAV on ImageNet. We observed many similarities between 

temporal patterns previously identified with ConvAE (A) and the ones of ResNet-50 + 

SwAV (B). Three lowest concentrations showed decrease of distance to control over 

time for both models. The highest concentration, in turns, caused constant growth of 

distances. For the 1.1 μM concentration, both models produced an initial increase of 

the distance, followed by the phase of decay. However, ResNet-50 + SwAV 

additionally presents an increase of the distance in the latest timepoints. This artifact 

is likely caused by the ImageNet biases. We, therefore, recommend to use general-

purpose pretrained models to analyze more specific datasets with caution.  
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Reproducibility of metabolomics 
 

Reproducibility of experiment is a cornerstone of the scientific method1. Failure to 

reproduce measurements, computations, or results of a previous study is perceived 

as a lack of rigor and undermines the validity of study and its claims. Omics 

technologies are not immune to these challenges2. The reproducibility problems in 

metabolomics are rooted in the nature of the process that underly ionization and 

detection of ions. Sources of variation include day-to-day variability of the instrument 

response, differences in sample preparation, matrix effects, contamination and 

accumulating dirt in the system during long acquisition sequences. Together, these 

factors affect the measurements non-linearly and thereby hamper long-term 

reproducibility of results. Emerging clinical applications of metabolomics make it 

extremely important to overcome the reproducibility issue3–6. 

 

In Chapters 2-4 of this thesis, we addressed it from multiple standpoints. We proposed 

means of quality assurance and quality control for data acquisition, investigated 

calibration strategies and developed a batch correction method to improve 

comparability of FIA-TOF-MS measurements across acquisition batches. More 

specifically: 

1. We presented the concept and the actual implementation of a system suitability 

testing platform for monitoring the status of a high-resolution QTOF mass 

spectrometer. The setup consists of a QC mixture, an acquisition method, 

software to extract a detailed ensemble of quantitative features describing 

spectral properties, and a simple R Shiny front-end for real-time visualization. 

We operated the testing platform in a pilot lasting for 21 months and including 

153 individual measurements of the QC mixture. We demonstrated instrument 

monitoring by a set of quality indicators and the implementation of routines for 

trend and outlier detection. The platform, therefore, is capable of in-depth 

evaluation of the instrument readiness to measure biological samples. 

2. We introduced RALPS, a novel batch normalization method based on 

regularized adversarial learning for untargeted metabolomics data. We 

demonstrated its performance on two representative datasets with thousands 

of samples or spectral features. RALPS consistently decreased batch variation 
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coefficients while keeping the biological information intact, which enables direct 

comparison of biological replicates across distant-in-time batches. The 

benchmarking dataset was generated to test the algorithm on MS data 

produced over several months. In the case of the cancer cell line data by 

Cherkaoui et al., batches instead were associated with cultivation and sampling 

of samples over the span of almost a year, whereas MS analysis was done 

sequentially with all samples. We demonstrated that RALPS outperformed 

state-of-the-art methods on several key metrics. RALPS offers additional 

features such as adaptive network architectures, embedded hyperparameter 

optimization, automated model selection, and input validation. Together, these 

features convey flexibility, scalability, usability, and robustness as confirmed by 

testing with different configurations of reference samples and in ablation 

experiments. 

3. We investigated the performance of calibration using the benchmarking dataset 

of FIA-ESI-MS. We wondered to which extent quantification of selected 

metabolites spiked into a complex biological matrix, such as human serum, is 

possible and formulated several tasks to test that. We approached each task 

with machine learning, trained the models and evaluated their extrapolation 

capability, e.g., to predict ion counts of metabolites never used for training. We 

observed that (i) including dilution series can, indeed, improve calibration, (ii) 

machine learning models can extrapolate prediction of absolute ion counts of 

amino acids well, and (iii) prediction of relative abundances has a potential to 

beat the most advanced batch correction methods in terms of reproducibility 

when enough data is available for training. 

 

The proposed methods and tools present individual advances in reproducible flow 

injection analysis with time-of-flight mass spectrometry that are complementary to 

each other. It is clear that they must synergize to solve the reproducibility issue for 

untargeted metabolomics. Systematic monitoring of the instrument performance 

should become routine to avoid sudden drops in the quality indicators of particular 

importance for the experiment. But also, it must be accounted for during calibration or 

batch correction with statistical relationships established between quality indicators 

and instrument settings. Follow-up studies must explore and exploit this potential by 

implementing system suitability testing and including enough of QC and reference 
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samples in the study design to enable further developments in calibration and batch 

correction.  

 

The presented SST platform setup itself offers ample room for further improvements. 

In particular, the long-term stability of the QC mixture should be verified. The feature 

extraction is generic and easily transferrable to TOF instruments from other vendors. 

However, adaptation to high-resolution instruments would require additional features 

capturing artifacts of Fourier Transform spectra: harmonic peaks, coalescence, etc. 

Further, we illustrated how collection of instrument setpoints and readbacks allows to 

derive the causal relationships between instrument settings and instrument 

performance measured with the QC mixture. Beyond assistance in scheduling 

instrument maintenance and diagnostic applications, we envisage that with more data 

available it could be possible to recommend instrument settings to attain a particular 

value of a quality indicator in real-time.  

 

The central idea behind RALPS is the grouping regularization term rg responsible for 

preserving similarity of supposedly equal samples. Although RALPS relies on 

clustering of reference samples in the embedded space to assess grouping, 

alternative approaches could be considered. For example, rg could be calculated from 

distances in the latent space. Distance-based metrics would carry several hypothetical 

advantages and pitfalls. Owing to the fast computation, training would be tangibly 

faster. We expect that distance-based metrics would perform better with data 

characterized by subtle batch effects in which clustering fails to separate reference 

samples. Even in the case of all replicates falling into a single cluster (which happens 

naturally when most batch effects have been already removed), minimizing distances 

between all pairs of replicates would still have a regularization effect, whereas 

clustering would not. Among the potential drawbacks, we would expect an increased 

sensitivity to single outliers. Alternative paradigms for similarity preservation should be 

tested in the future. 

 

Another aspect we have not been able to test in batch correction is inclusion of the 

SST data. The experimental design for the benchmarking dataset assumed very few 

QC samples, which was enough to ensure normal operating state of the instrument 

but insufficient QC data to use as additional reference samples in the training process 
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of RALPS. Therefore, this test could not be implemented, though it could bring another 

layer of data harmonization in terms of consistency of the QC features across batches 

integrated into the model selection logic. On the other hand, stability of the QC features 

could be optimized directly with an additional regularization term in the joint loss 

function controlling their variation. These ideas need rigorous evaluation and 

comparison to the existing implementation, but present particular opportunities to 

achieve synergy between the proposed SST platform and RALPS. 

 

The amount of data we used for calibration of FIA-TOF-MS was also limited and likely 

not sufficient to extrapolate for unseen but structurally similar metabolites. Although 

we were able to successfully predict ion counts using only 40% of amino acids in the 

training set, rather poor performance was achieved in other setups. We envision a 

follow-up study involving an expanded list of metabolites (and, ideally, compound 

classes) measured in water, blood, plasma, urine, bacterial extracts in dilutions series 

for up to a factor of 64, where each analytical triplicate is accompanied with the QC 

sample and the corresponding instrument settings to provide auxiliary information 

linking detector response directly to the state of mass filters, lenses, mirrors, etc. 

Additionally, quantification of relative abundances must be revisited to investigate 

reproducibility of calibration across biological matrices and demonstrate a real 

application example. 
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Multi-task representation learning for applications in 
metabolomics 
 

In the last decade, the field of artificial intelligence has been growing rapidly. It 

penetrated and significantly advanced many fields of scientific research. In untargeted 

metabolomics, deep learning frameworks have been proposed to improve peak 

integration7, predict retention times8, remove batch effects9 and generate structures 

de novo using mass spectra10. Altogether, such developments enhance the 

capabilities of analytical methods and provide deeper insights into the data. 

 

Latest batch correction approaches heavily exploited multi-task representation 

learning9,11–13, wherein two or more deep neural networks are trained simultaneously 

to solve multiple coherent tasks expressed as individual terms in the joint loss function. 

This approach is designed to learn such data representations that reflect the most 

important properties of the data. In Chapter 3, we developed RALPS with an idea to 

retain similarity of biological samples while alleviating batch-related biases. The 

central challenge there was to find the suitable mathematical problem formulation and 

set up the corresponding multi-task representation learning. In Chapters 5-6 of this 

thesis, we demonstrated superiority of multi-task representation learning for another 

data modality (i.e., microscopy images of cell cultures) and used them to develop novel 

AI applications to cancer research. More specifically: 

1. We trained 16 deep learning setups on 1M cancer cell images to fairly compare 

representation learning approaches. We evaluated the learned representations 

on 3 independent tasks using multiple metrics to quantify performance. We 

made several key observations: (i) multi-crops and random augmentations 

generally enrich representations with relevant information, which results in 

improved performance in downstream tasks; (ii) some implicit contrastive 

learning setups can be trained strikingly fast, but need further refinements to 

achieve top performance across tasks; (iii) the regularized autoencoder model, 

which represents a multi-task representation learning approach, produced the 

most informative features with the best accuracy and ROAUC in the 

classification task and the best quality of partitions in the clustering task. 
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2. We proposed two workflows to study phenotypic changes of experimental 

conditions using pretrained deep learning models. As a proof of concept, we 

applied them to study temporal and morphological drug effects on cancer cell 

lines using the same dataset of 1M images comprising 21 cancer cell lines and 

31 drugs at 5 concentrations. Analyzing distances between retrieved 

representations of drug and control images, we were able to identify temporal 

patterns impossible to detect with conventional approaches (i.e., analyzing 

growth curves). Designing yet another multi-task representation learning 

approach (the lens setup), we were able to highlight morphological cell features 

of importance to predict the correct drug labels in a multi-class classification 

setting. The latter presents an explainable AI application frequently desired in 

the clinics. 

 

We conclude that multi-task representation learning is a powerful technique that 

reaches state-of-the-art performance across data modalities. For metabolomics, it 

opens countless opportunities for follow-up research integrating mass spectrometry 

data with other types of omics or imaging data. For instance, metabolic phenotype 

could be used to assign labels in the lens setup presented in Chapter 6. That is, mass 

spectrometry metabolomics data corresponding to the cancer cells exposed to drug 

treatments could be used for clustering and deriving groups of metabolic phenotypes, 

serving as class labels for microscopy images. In this case, identical formulation of the 

lens setup would provide insights into associations between exterior morphological 

features and the underlying chemical composition of the cells. Alternative formulations 

are possible exploiting representations of individual data modalities to investigate their 

interdependencies or aggregate information for more sophisticated applications.  
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