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Abstract

Body-centric sensor networks play a crucial role for future eHealth systems and are
envisioned to constantly monitor vitals, to provide local in-body treatments and to
warn the user about dangerous conditions. The magneto-inductive physical layer,
which is based on magnetic near-field coupling, has been shown to be promising for
the communication of such sensor networks, primarily due to the low interaction of
the human tissue with low-frequency magnetic fields. It also comprises the possibility
of purely passive relaying, which is a key enabler for communication applications.
However, many body-centric applications do not only require a stable connectivity
and high capacity between the sensors, but also a precise knowledge of the sensors’
locations and orientations. In this thesis we hence strive to extend the benefits of
magneto-inductive body-centric networks to on-body and in-body localization. To this
end, we first develop a theoretical framework, which is based on circuit theory and
draws heavily on the Cramér-Rao lower bound. The scaling behavior of magneto-
inductive localization with multiple anchors (observing infrastructure coil sensors) and
agents (coil sensors that are to be localized) is analyzed and the impact of practical
parameters such as the coil dimensions, the transmit power and the operating frequency
is quantified.

It becomes evident that the distance dependency of the magnetic near field does
not only lead to quickly decreasing channel gains, which is expected, but rather that
it limits the position root-mean-square error by making it highly directional. It is this
directional asymmetry, which often dominates the overall position root-mean-square
error. This thesis proposes two different means to mitigate this asymmetry, improve
the position root-mean-square error by orders of magnitude, and generally enhance
magneto-inductive localization. The first approach uses purely passive relays (reso-
nantly loaded coils), which provide additional signals paths from the agents to the
anchors and may be exploited for the localization. The second approach introduces
cooperation between all agents, which allows to share inter-agent channel state infor-
mation. Both approaches are investigated by simulation and their individual drawbacks
are extenuated by simple functionality extensions, such as a load-switching of the pas-
sive relays or a proper initialization for the highly-dimensional cooperative localization.
Another contribution of this work is the derivation of an analytic closed-form expression
for the maximum likelihood position estimator for a single pair of three-axis coils.
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Abstract

Based on the theoretical framework, a novel concept for a magneto-inductive hu-
man posture recognition system is proposed. This system relies on anchors that are
centralized on the human torso and on purely passive coils that are placed on the ex-
tremities. Note that the approach is inherently low-power (purely passive relays) and
low-complexity (low-frequency impedance measurements). The magnetic coupling be-
tween all coils, which depends on the body posture, leads to a detuning of the anchors’
input impedances. The relationship between anchor input impedances and postures
can consequently be learned via supervised classifiers to enable posture recognition
capabilities. For this concept neither the location of the anchor coils nor of the purely
passive coils need to be known in advance.

With the goal in mind to design and implement an experimental system, we study
and optimize this concept via simulation for different body types, coil designs, coil
placements, and also for different types of noise. For realistic noise levels, these sim-
ulations yield a classification accuracy of more than 90 %, even when only considering
single-frequency impedance measurements. Based on these results an experimental sys-
tem is implemented with low-cost materials. An extensive measurement campaign in
a real-world office environment is conducted. It confirms the simulations and an excel-
lent classification accuracy is achieved. However, this classification accuracy degrades
substantially when unaccounted posture variations and coil displacements disturb our
testing data. To increase the robustness in this practical setting, it is proposed to
measure the anchor impedance at multiple frequencies. With respect to computational
complexity, different types of classifiers are compared. Moreover, we consider different
feature spaces for the machine learning algorithms, which have practical implications
for the hardware complexity. We find that the using the magnitudes of the impedances
as features (instead of the complex impedances) already leads to a satisfactory perfor-
mance while enjoying the benefit of reduced complexity.
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Kurzfassung

Körpernahe Sensornetzwerke spielen eine entscheidende Rolle für künftige E-Health
Systeme und sollen für verschiedene Aufgabenbereiche zum Einsatz kommen. Diese
Aufgaben umfassen zum Beispiel die ständige Überwachung der Vitalfunktionen, das
Warnen des Nutzers vor gefährlichen Situationen oder die minimalinvasive Behand-
lung von Tumoren. Magnetische Induktion hat sich für die Kommunikation inner-
halb solcher Sensornetzwerke hat sich als vielversprechend erwiesen, vor allem wegen
der geringen Wechselwirkung des menschlichen Gewebes mit niederfrequenten Mag-
netfeldern. Das magnetische Nahfeld bietet ausserdem die Möglichkeit passive Spulen
einzubinden, welche die Kanalkapazität erhöhen können und damit neue Anwendun-
gen ermöglichen. Viele körpernahe Anwendungen erfordern jedoch nicht nur eine sta-
bile Konnektivität und hohe Kanalkapazität, sondern auch eine genaue Kenntnis über
die Position und Ausrichtungen aller Sensoren. In dieser Arbeit versuchen wir da-
her die Vorteile von magneto-induktiver Kommunikation auch auf magneto-induktive
Lokalisierung auszuweiten. Zu diesem Zweck entwickeln wir zunächst ein schal-
tungstheoretisches Modell und betrachten die zugehörige Cramér-Rao-Ungleichung.
Hierdurch sind wir in der Lage das Skalierungsverhalten der magneto-induktiven
Lokalisierung mit mehreren Ankern (beobachtende Infrastruktur-Spulensensoren) und
Agenten (zu lokalisierende Spulensensoren) zu analysieren und den Einfluss von prak-
tischen Parametern wie den Spulenabmessungen, der Sendeleistung oder der Betriebs-
frequenz zu quantifizieren.

Zusätzlich zeigt es sich, dass der mittlere quadratische Positionsfehler durch die
Richtungsabhängigkeit des Systems dominiert wird, welche wiederum ein Resultat
der starken Distanzabhängigkeit des magnetischen Nahfelds ist. Es werden fol-
glich zwei verschiedene Methoden vorgeschlagen, welche diese Richtungsabhängigkeit
abschwächen, den mittleren quadratischen Positionsfehler um Größenordnungen re-
duzieren, und magneto-induktive Lokalisierung andersweitig verbessern. Der erste
Ansatz verwendet resonante und rein passive Spulen, die zusätzliche Signalpfade erzeu-
gen und für die Lokalisierung ausgenutzt werden können. Der zweite Ansatz basiert
auf der Kooperation zwischen allen Agenten, welche es ermöglicht Kanalzustandsin-
formation zwischen den Agenten für die Lokalisierung auszunutzen. Beide Ansätze
werden simulationsgestützt untersucht und ihre individuellen Nachteile werden durch
einfache Funktionserweiterungen gemildert. Diese Funktionserweiterungen umfassen
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Kurzfassung

zum Beispiel eine Umschaltung der Lastimpedanz an den passiven Spulen oder eine
geeignete Initialisierung für die hochdimensionale kooperative Lokalisierung. Ein weit-
erer Beitrag dieser Arbeit ist die Herleitung des Maximum-Likelihood-Positionsschätzer
für ein einzelnes Paar von Drei-Achsen-Spulen.

Basierend auf dem schaltungstheoretischen Modell wird ausserdem ein neuar-
tiges Konzept für die magneto-induktive Haltungsdetektion des menschlichen Kör-
pers vorgeschlagen. Dieses System nutzt Anker, die zentral am Torso angebracht
sind, und rein passive Spulen, die an den Extremitäten platziert werden. Die mag-
netische Kopplung zwischen allen Spulen führt hierbei zu einer Veränderung der Ein-
gangsimpedanzen der Anker. Die Stärke dieser Veränderung hängt von der Kör-
perhaltung ab und die Beziehung zwischen den Impedanzen und der Körperhal-
tung kann folglich durch überwachte Klassifikationsalgorithmen erlernt werden. Der
Ansatz ist inhärent stromsparend (rein passive Spulen) und von geringer Komplex-
ität (Impedanzmessungen bei niedrigen Frequenzen). Für dieses Konzept muss zudem
weder die Lage der Ankerspulen noch die Lage der rein passiven Spulen im Voraus
bekannt sein.

Wir untersuchen und optimieren dieses Konzept durch Simulationen für ver-
schiedene Körpertypen, Spulenstrukturen und Arten von Störungen, mit dem Endziel
ein experimentelles System zu implementieren. Für realistische Störgrössen ergeben
diese Simulationen eine Klassifizierungsgenauigkeit von mehr als 90 %, selbst wenn die
Impedanzmessungen nur auf einer einzigen Frequenz durchgeführt werden. Basierend
auf diesen Ergebnissen wird ein experimentelles System mit kostengünstigen Ma-
terialien nachgebaut. Mit diesem System wird eine umfangreiche Messkampagne
in einer Büroumgebung durchgeführt. Die zugehörigen Ergebnisse zeigen eine aus-
gezeichnete Klassifizierungsgenauigkeit und bestätigen damit die vorherigen Simula-
tionen. Diese Klassifizierungsgenauigkeit verschlechtert sich jedoch erheblich, wenn
nicht berücksichtigte Haltungsänderungen und Spulenverschiebungen unsere Testdaten
stören. Um die Robustheit gegen solche praktischen Störungen zu erhöhen, nutzen
wir die Impedanz auf verschiedenen Frequenzen. Für die resultierenden hochdimen-
sionalen Daten werden verschiedene Arten von Klassifikationsalgorithmen miteinander
verglichen. Des Weiteren wird unter Anbetracht der Hardwarekomplexität untersucht,
welche Messdaten den grössten Einfluss auf die Klassifizierungsgenauigkeit haben. Wir
stellen fest, dass der Betrag der Impedanzen (anstelle der komplexen Impedanzen) bere-
its zu einer zufriedenstellenden Genauigkeit führt, trotz gleichzeitiger Reduktion der
Komplexität.
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Chapter 1

Motivation and Contributions

This chapter gives a brief overview of current challenges for eHealth applications and
their potential for future personalized health care. It further explains why magnetic
induction is a promising technology to tackle some of these challenges. Additionally,
related work and its shortcomings are summarized for both localization and posture
recognition. Lastly, the contributions of this dissertation are specified and all collabo-
rations are declared.

1.1 Wireless Technologies for Body-Centric Appli-
cations

The technological advancements of the last decades allowed for a miniaturization and
price reduction of powerful electronic systems. This gave rise to a widespread avail-
ability of mobile devices and sensors with currently about 6 billion mobile phone users
worldwide [1] and an even larger number of Internet of Things (IoT) connected de-
vices [2]. The associated increase in ubiquitous computational power and sensing capa-
bilities paves the way for smart cities, the IoT and other futuristic applications, both
on an individual as well as a population level. One crucial application field on the
individual level is that of eHealth, which is envisioned to enable a continuous monitor-
ing of vitals and warn users if possibly harmful anomalies are detected [3]. In clinical
settings, it is further expected that future body area networks will be a key enabler
for next generation personalized health care e.g. by allowing for controllable robot
swarms within the human body that may target cancerous cells or dispense medica-
tion in delimited areas [4–6]. However, some of these body-centric applications have
novel requirements, which are not always be met by conventional radio technologies.
In particular, they require small sensor dimensions [7], sufficient material penetration
for human tissue [8], ultra-high reliability and low-energy consumption [9, 10]. Addi-
tionally, as possibly hundreds or even thousand of sensors might be required, a low
unit cost is desired. The low energy requirements are of special importance for some
applications, as a routine retrieval of the sensors is often unfeasible, e.g. for sensors
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1 Motivation and Contributions

placed within the body or clothing [11]. Moreover, the small size requirements may
severely limit the volume and hence capacity of the batteries used [12]. For these cases
it may be helpful to power the sensors externally via Wireless Power Transfer (WPT)
or to use additional hardware that allows for continuous energy harvesting by other
external means [13].

The physical layer technologies which are used differ depending on the specific task
at hand. However, traditional radio, e.g. via Wireless Local Area Network (WLAN),
bluetooth, or Ultra-WideBand (UWB), still remains the main contender for commu-
nication purposes on and around the human body [14, 15]. Alternative technologies
such as ultrasonic transmission [16–18] or magnetic near field communication [19] have
also been proposed, but so far lack a widespread adoption. For a variety of tasks, these
physical layer technologies are additionally combined with local on-body or in-body
sensors such as Inertial Measurement Units (IMUs), pressure sensors, or various med-
ical sensors [14]. Traditional radio technologies are advantageous as they have a low
free space path loss, which is well-suited for long-range communication. They are hence
well-established with an extensive existing infrastructure. Yet, their major drawbacks
for body-centric application are fading, e.g. as a result of multi-path propagation,
and severe shadowing caused by human tissue. Moreover, for an efficient radiation
characteristic electric antennas need to be matched to the operating wavelength. This
requirement limits their efficiency as micro sensors unless ultra-high operating frequen-
cies are used, which in turn reduces the material penetration and complicates the syn-
chronization between sensors. These drawbacks still allow for communication on and
around the body, but make it challenging to use radio as main mechanism for in-body
communication or sensing applications [20,21]. Ultrasonic wireless body area networks
on the other hand incur a reduced path loss compared to radio systems and are thus
already established in challenging environments, e.g. for long-range underwater net-
works [22]. However, they are still affected by undesired reflections and scattering.
Moreover, the operating frequency and transmission power have to be chosen carefully
to obtain a sufficient channel capacity without triggering health issues through adverse
heating of tissue or cavitations [17].

Magnetic induction and more specifically AC-based low-frequency magnetic induc-
tion has the following advantages for communication and localization purposes: It has
a high material penetration and is hence robust to the limiting attenuation of otherwise
challenging materials such as human tissue or water [23, 24]. It has a low interaction
with the environment and can be predicted well by simple analytic models [25,26]. The
associated antennas operate in the near field and have a low and almost purely ohmic
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1.1 Wireless Technologies for Body-Centric Applications

resistance. In combination with a resonant multi-turn coil design, this low resistance
allows for a high current that can achieve significant channel gains and wireless power
transfer over a short range of interest [27]. As radiation is undesired, the antennas
do not require a length of about λ

2 and the overall sensors can come in various sizes,
i.e. they can easily be scaled from meters to micrometers [28]. Further, the received
power P decays according to P ∝ d−6 due to magnetic near field path loss, with
distance d between transmitter and receiver. This makes Magneto-Inductive (MI)
networks highly susceptible to variations of the sensor positions, which is beneficial
for the obtainable localization accuracy. It also leads to a so-called magnetic bubble
around the antenna [29], i.e. the strong decay limits interference between neighboring
systems which enables spatial reuse and enhances security [28]. The low frequency
operation additionally simplifies the phase synchronization, and even the time syn-
chronization requirements are relaxed e.g. compared to ultra-wideband technology.
These simplifications combined with the low production cost of the involved sensors
and other associated hardware make many MI systems low-cost and low-complexity.
Moreover, magnetic induction allows for the use of purely passive relays which may
further enhance the channel gain and have shown to be useful for both communica-
tion [30–32] and wireless power transfer [33]. Compared to passive tags which are
known from backscatter communication [34], these purely passive relays do not require
an Integrated Circuit (IC) or have to rely on load modulation in order to be beneficial.
At a first glance, magnetic induction hence satisfies all mentioned requirements for
body-centric applications. However, the sextic distance-dependency of the path loss
over also limits their applicability, since small sensors cannot reliably communicate if
their separation is large relative to their antenna sizes. In addition, the low operating
frequency reduces the usable bandwidth and hence the overall achievable rate, which
complicates the use of data-intensive applications such as high-resolution video trans-
missions. Moreover, MI systems are not well-established, so despite their low individual
cost they may require larger initial investments. Lastly, the magnetic near field can
be drastically impacted by nearby conductors [35]. Nevertheless, MI systems pose as
promising candidate for future body-centric networks and applications, especially for
in-body systems. It is thus of interest to further advance this type of technology and
possibly mitigate some of its drawbacks. In this work in particular, we study and
contribute to the current state of the art in two related fields: MI localization and MI
posture recognition.
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1 Motivation and Contributions

1.2 Localization in Sensor Networks

Many of the envisioned applications do not only require communication capabilities
from a sensor network, but also knowledge on the spatial positions of the sensors. This
knowledge can be used to enhance the existing communication links or to use the net-
work more efficiently [36,37]. On top of this, some tasks such as access control or robot
navigation may not function at all without either the full spatial information or at
least notions of proximity within the network [38]. While Global Navigation Satellite
Systems (GNSSs) are established as the gold standard for localization in outdoor envi-
ronments, they lack the accuracy that body-centric applications require. Furthermore,
the accuracy of GNSS localization degrades even further when used in indoor scenarios
or other challenging environments. Alternative localization approaches are e.g. based
on radio, inertial measurement units, or camera systems, but issues such as multipath
fading, drift errors or the need for mobility hinder these technologies, and so far no
silver bullet has been found [39]. Localization using magnetic near fields has also been
studied extensively [39–41], e.g. for indoor localization or in-body localization. Gener-
ally, it can be distinguished between systems which use ambient magnetic fields such as
the geomagnetic field [42,43], static magnetic fields e.g. via permanent magnets [44–47],
and those that use dedicated AC-generated magnetic fields [31,35,48–54]. The geomag-
netic approaches use the unique and robust distortion patterns of the earth’s magnetic
field, which occur as a result of nearby construction materials. Via initial calibration, a
fingerprinting database with these distortions can be created which associates each field
intensity with a certain position. During operation, new field intensity measurements
are then re-associated with the saved positions to localize a user. Since many devices
such as smartphones phones equipped with three-axis magnetometers by default, this
approach does not require additional hardware making it easy to use. However, recent
surveys [40,41] found that the effort of generating such a database is significant and the
resulting accuracy is often lacking due to the low differences in magnetic field intensity,
which range from 25 µT to 65 µT on the earth’s surface [55]. In [43] it was proposed
to mitigate the latter issue by relying on multiple consecutive measurements for the
fingerprinting database and to additionally incorporate opportunistic WLAN signals
to boost accuracy and allow for tracking. This combination resulted in an overall lo-
calization error of less than 5 m for 80 % of cases when tested in large parking lots or
supermarkets. Yet, both the required generation of a fingerprinting database as well
as the lack of accuracy make localization via the ambient geomagnetic field unsuit-
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1.2 Localization in Sensor Networks

able for body-centric applications. Moreover, even with dedicated magnetic fields the
generation of a fingerprinting database inside the human body would be a challenging
task and may require imaging or other additional means of localization. For similar
tasks, such as capsule endoscopy or minimally-invasive surgery, it is beneficial to have
a strong and dedicated field, which can also be modeled analytically [56]. In [44,47] the
authors hence use small permanent magnets as sources and an array of surrounding hall
sensors for measurements. They estimated the transmitters position and orientation by
numerically minimizing the difference between the measured field strength and its ex-
pected noiseless value according to the analytic model of the path loss, e.g. by using the
Levenberg-Marquardt algorithm. In these works, the obtained average localization er-
rors were in the millimeter regime, which varied depending on the network dimensions,
the sensor topology, the size of the involved permanent magnets, the employed min-
imization algorithms, the type of measurement sensors and other parameters. While
permanent magnets have the advantage of not requiring a dedicated transmit current,
the resulting coverage area and the obtainable peak accuracy of these systems are lower
than those of AC-driven MI systems of equal dimensions [40]. AC-driven MI localiza-
tion systems also commonly deploy an analytic path loss model to estimate the position
and orientation of the involved coil antennas. Due to their flexibly adjustable coverage
area that only requires a scaling of the coil antennas and the transmit power, they
have been studied for outdoor localization in harsh environments [51–53,57,58], for in-
door localization [25,26,59–61], and for in-body localization [28,62,63]. Moreover, for
three-axis coils, empirically motivated closed-form position estimators have been de-
rived in [25] allowing for a lower computational complexity compared to the numerical
minimization approaches. Additionally, the localization of passive resonant coil anten-
nas that do not require a power source has been studied in [52, 64]. In [65] it has also
been demonstrated that the load-switching of such passive coils can have further ben-
efits for MI localization. In particular, it was shown that this load-switching leads to
multiple independent measurements, which can resolve position ambiguities at a single
measurement coil, therewith enabling single-anchor localization. While the mentioned
MI systems show promise and even found their way to commercial use [66, 67], they
still suffer drastically by the range limitations of the magnetic near field. That is,
if the required coverage area is large compared to the coil dimensions, even the AC-
driven MI systems become quickly unreliable. Additionally, metal-rich environments
cause significant distortions and make those systems unsuitable if being unaccounted
for [25].
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1 Motivation and Contributions

1.3 Posture and Activity Recognition

With accurate location knowledge of multiple fixed sensors on a human body, it is
possible to estimate the corresponding body posture or movement. This is done by
matching a simplified joint-based human body model to the previously estimated sensor
locations [68, 69]. Alternatively, the joint-based body model may also be matched
to full body parts which are detectable via camera images [70] to bypass the need
for on-body sensors. Such human posture or activity estimation is used for movie
animations [69] or for navigation in virtual reality [71]. However, instead of fully
estimating the human posture, it can be sufficient to only classify a user’s current
posture from a finite set of possible options by relying on supervised classifiers, which
are trained on previously recorded data. Posture recognition or classification allows for
drastically reduced system complexity, as the individual sensor or body part positions
do not need to be known. This simpler approach may be crucial for individual health
care in terms of injury prevention or rehabilitation [72–74], but other use cases such
as fitness tracking or sports coaching may also benefit from it [75]. More particular,
reliable posture classification may prevent MusculoSkeletal Disorders (MSDs), which
are the second leading cause for disability and are often caused by over-extensions
or a repetition of unhealthy postures and movement patterns. These disorders are
not only detrimental to the economy on a global scale, they also cause chronic pain
and reduce the overall life expectancy [76]. Posture recognition systems which can
be worn comfortably on a daily basis may hence be used to recognize such unhealthy
behavior, intervene by warnings or stimuli, and consequently prevent the emergence
of these disorders in the first place [74]. The current gold standard when it comes
to posture recognition and classification is offered by vision-based systems, which can
nowadays operate without optical markers [70,72,77]. Yet, these vision-based systems
are immobile, require a line-of-sight and are often associated with a high cost. Current
wearable solutions that do not require external fixed infrastructure are e.g. based on
radio [73,78], inertial measurement units [79–85], strain sensors [11,86,87], or magnetic
near-field systems [29,88]. These wearable systems however share the common issue of
needing distributed power sources on or wired connections to all involved nodes. As
a result, current systems are often designed to only cover and monitor a single body
part of interest such as the spine [85,87]. For the recognition of full body postures, the
need of active nodes reduces practicability and widespread adoption, as it requires the
nodes to either be charged periodically or to use specific full body clothing.
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1.4 Contributions, Publications, and Structure

Sec. 1.1 to Sec. 1.3 summarized why low-frequency magnetic induction is a promising
physical layer technology for body-centric tasks. Nevertheless, some underlying issues
such as a significant range limitation hinder its widespread adoption, e.g. for envisioned
eHealth applications. This thesis hence strives to broaden our understanding of MI
networks by studying challenges and opportunities of both MI localization and MI
posture detection. In detail, we make the following core contributions to extend the
current state of the art:

• We provide simple approximations which characterize how the scaling of key
network parameters affects the MI localization accuracy. We further identify
common issues that degrade the localization accuracy, such as an asymmetry of
the associated Cramér-Rao Lower Bound (CRLB).

• We investigate the impact of passive relays on MI networks and reveal their
versatile use for localization. We also explain possible drawbacks that occur
when passive relays are employed for random network topologies and provide
ways to counteract them.

• We study cooperation within MI networks and discuss the resulting trade-off
between localization accuracy and computational complexity.

• We derive closed-form solutions of the Maximum Likelihood (ML) position, ori-
entation, and distance estimators for a single pair of three-axis coils.

• We propose a novel concept to classify the topology of a MI network without
knowledge of the coils’ deployments. This concept only requires impedance mea-
surements on a few active coils while all other coils in the network are purely
passive.

• We demonstrate the feasibility of low-complexity and low-cost MI posture recog-
nition by simulation and experiment. We identify key parameters for posture
recognition, compare the applicability of different supervised classifiers, and study
means to improve robustness against domain shifts.
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Some of these contributions were already published by us at international confer-
ences or as patent application. This dissertation is hence generally based on or related
to the following publications:

Papers

• [89] H. Schulten and A. Wittneben, “Robust Multi-Frequency Posture Detection Based on
Purely Passive Magneto-Inductive Tags,” in ICC 2022 - IEEE International Conference on
Communications. IEEE, May 2022, pp. 1–6.

• [90] H. Schulten and A. Wittneben, “Experimental Study of Posture Detection Using Purely
Passive Magneto-Inductive Tags,” in WCNC 2022 - IEEE Wireless Communications and Net-
working Conference. IEEE, Apr. 2022, pp. 1–6.

• [91] H. Schulten, F. Wernli, and A. Wittneben, “Learning-Based Posture Detection Using
Purely Passive Magneto-Inductive Tags,” in Globecom 2021 - IEEE Global Communications
Conference. IEEE, Dec. 2021, pp. 1–6.

• [92] H. Schulten, G. Dumphart, A. Koskinas, and A. Wittneben, “Cooperative Magneto-
Inductive Localization,” in PIMRC 2021 - IEEE 32nd Annual International Symposium on
Personal, Indoor and Mobile Radio Communications. IEEE, Sep. 2021, pp. 1–7.

• [93] H. Schulten and A. Wittneben, “Magneto-Inductive Localization: Fundamentals of
Passive Relaying and Load Switching,” in ICC 2020 - IEEE International Conference on Com-
munications. IEEE, Jun. 2020, pp. 1–6.

• [61] G. Dumphart, H. Schulten, B. Bhatia, C. Sulser, and A. Wittneben, “Practical Ac-
curacy Limits of Radiation-Aware Magneto-Inductive 3D Localization,” in ICC 2019 - IEEE
International Conference on Communications Workshops. IEEE, May 2019, pp. 1–6.

• [38] R. Heyn, M. Kuhn, H. Schulten, G. Dumphart, J. Zwyssig, F. Trosch, and A. Wittneben,
“User Tracking for Access Control with Bluetooth Low Energy,” in VTC2019- Spring - IEEE
89th Vehicular Technology Conference. IEEE, Apr. 2019, pp. 1–7.

• [94] H. Schulten, M. Kuhn, R. Heyn, G. Dumphart, F. Trosch, and A. Wittneben, “On
the Crucial Impact of Antennas and Diversity on BLE RSSI-Based Indoor Localization,” in
VTC2019-Spring - IEEE 89th Vehicular Technology Conference. IEEE, Apr. 2019, pp. 1–6.

Patent Applications

• [95] H. Schulten, and A. Wittneben, “Method and Apparatus for Determining a Spatial Con-
figuration of a Wireless Inductive Network and for Pose Detection,” European Patent Request
EP21 211 962.2, Dec., 2021.

• [96] F. Trosch, A. Wittneben, H. Schulten„ J. Zwyssig, and M. Kuhn, “Zugangskontrollsys-
tem und Verfahren zum Betreiben eines Zugangskontrollsystems,” World Patent WO2 020 216
877A1, Oct., 2020.
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This thesis is structured as follows:
After summarizing the theoretic background in Cpt. 2, we introduce a circuit-based

signal model for MI coupling in Cpt. 3, which works with a multitude of arbitrarily
arranged active and passive coil antennas. We derive the CRLB on the position Root-
Mean-Square Error (RMSE) for this model (cf. Appendix A) and introduce a measure
of its spatial asymmetry.

In Cpt. 4 we draw on this bound to approximate the scaling characteristics of MI
localization with respect to common design parameters. We further examine differences
between the ranging of active and passive sensors. Additionally, it is studied how the
localization capabilities are degraded due to a mutual detuning of the coil antennas in
dense networks. Lastly, localization bottlenecks inherent to the use of the magnetic
near field, and more specifically its severe distance dependency, are identified for specific
network constellations.

In Cpt. 5, which incorporates our work from [93], we introduce passive tags to the
network. These tags are additional coil antennas equipped with a fixed or variable load.
The impact of these nodes on the localization is examined and their many advantages
for MI localization are summarized. However, adverse effects occur in case of close
proximity between those tags and the sensor nodes that are to be localized. It is hence
further investigated how switching the passive tag loads may be utilized, not only to
mitigate the adverse effects but also to further boost the localization accuracy and
range.

In Cpt. 6, which is an extension of [92], we conduct a study of cooperative local-
ization for magneto-inductive sensor networks. Cooperation is defined as the agents’
ability to measure all inter-agent channel gains and forward this information to the
anchors. The impact of the number of cooperating nodes is studied by means of nu-
merical optimizers, both for solenoid and three-axis coil antennas. For a single pair
of three-axis coils, we further derive a closed-form solution for the ML position and
orientation estimator based on channel gain information between all subcoils (cf. Ap-
pendix B). Lastly, we characterize the trade-off between the achieved cooperation gain
for localization and the associated increased computational complexity for the numer-
ical optimizer.

In Cpt. 7 we shift attention away from estimation-based MI localization and propose
a novel concept to recognize the entire topology of a MI network. This concept is moti-
vated by magnetic near field fingerprinting and uses magnetic field distortion caused by
resonant passive coil antennas. These intentionally caused distortions change for dif-
ferent network topologies and can be measured by means of single-frequency complex
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1 Motivation and Contributions

impedances. Learning the relationship between a topology and the resulting complex
impedances via training data allows for re-association and hence the recognition of the
network topology. The proposed approach inherently low-power and low-complexity.

In Cpt. 8 we expand our work from [91] and use the topology recognition concept
proposed in Cpt. 7 to realize a MI posture recognition system. In detail, we place mea-
suring coil antennas on the human torso and passive coil antennas on the extremities,
such that everyday posture theoretically leads to different observed impedance val-
ues. Yet, it is unclear whether these theoretic changes are significant enough to make
the postures distinguishable when measurement noise is present and when respecting
the confinements of the human body. We hence study the approaches feasibility via
simulations and analyze the impact of different types of noise as well as practical per-
turbations. We further compare the obtained classification accuracy for different coil
antennas, body models, and supervised classifiers.

One design of the posture recognition system which was investigated in Cpt. 8 is
then implemented with low-cost materials. In Cpt. 9, which is based on [89] and [90],
we experimentally test this demonstrator system in an office environment. We study
it for a worsening noise characteristic, which would be expected for wearable low-cost
impedance analyzers. We also compare supervised classifiers to the theoretical ML
classifier and examine how minor variations of the postures and coil displacements
affect the classification. The resulting issues are addressed by extending the system to
use multi-frequency impedance measurements.

Lastly, Cpt. 10 provides a short overview on the most important results, both on a
qualitative as well as a quantitative level.

1.5 Acknowledgments and Joint Work

Whenever I hear about the phrase the self-made man or woman, I cannot help myself
but wonder, who out there in this world has truly achieved great things without the
support and influence of others. As I am no exception to this consideration, I am
thankful to a great many people without whom the creation of this work would not
have been possible.

First, I want to declare the following technical contributions and collaborations:
The works of Eric Slottke [31] and Gregor Dumphart [28], which are based on publica-
tions by Michel Ivrlak and Josef Nossek [97], laid the foundation for the closely related
signal and noise model of Cpt. 3. Vincent Wüst assisted me with a simulative investi-
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the hardware design and measurement campaigns, which were required for Cpt. 9.
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Chapter 2

Coil Antennas and Magneto-Inductive
Coupling

The entire thesis is based on sensors which use MI coupling as primary propagation
mechanism. To establish such wireless links, the sensors deploy so called coil antennas.
Various works such as [27–29,31,52] already summarize common models for coil anten-
nas and offer circuit-based representations to analytically model the MI interactions of
such coils. Yet, for convenience this chapter briefly summarizes the most important as-
pects of these models and explicates the underlying restrictions in a systematic manner.
That is, Sec. 2.1 states the main assumptions under which this thesis operates and in-
troduces our modeling approaches for coil antennas. In Sec. 2.2 the general multi-port
coupling approach is presented, which describes the magnetic near-field interactions
between multiple such coils.

2.1 Inductive Coupling and Limiting Assumptions

Generally, the electromagnetic interaction between all sensors can be described ade-
quately by the four famous and well-established equations of Maxwell [98,99]. In plain
words, they describe that (i) charges produce an electric field that diverges from pos-
itive to negative charges, (ii) the magnetic field has no such sources or sinks, (iii) a
time-varying magnetic field generates solenoidal electric fields, and (iv) either electric
currents or time-varying electric fields create solenoidal magnetic fields. Notion (iii) is
also known as Faraday’s law of induction and together with (iv), also called Ampere’s
law, establishes the basis for the herein considered wireless links. Yet, evaluation of
the Maxwell equations for practical problems is often unfeasible. It is hence common
practice to either resort to numerical approximations with finite elements [100] or to
use simplifying assumptions, which in turn drastically reduce the complexity of the
equations. In this work we do the latter, namely, we assume that for the inductive
interaction between different sensors it holds that:

1. All considered signals are harmonic with a radial operating frequency ω = 2πf ,
where f is the ordinary frequency.
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2 Coil Antennas and Magneto-Inductive Coupling

2. The MagnetoQuasiStatic (MQS) approximation applies, i.e. the generation of
solenoidal magnetic fields due to displacement currents can be neglected. We can
hence ignore retardation and residual radiation [101,102]. This is approximately
the case if all signals have a low-frequency and hence cause low-frequency fields
with a corresponding wavelength λ that is significantly larger than the distance
between any pair of considered conductors [28].

3. All considered conductors are infinitely thin-wired, so the current distribution
along the cross section of all wires is one dimensional.

4. All conductors used are electrically small, i.e. lwire ≤ λ
10 ≪ λ with lwire as full

wire length. As a result, we can assume the one-dimensional current distribution
over the entire length of the conductor to be constant [27,103].

5. All propagation media are linear, isotropic, and homogeneous.

Next we consider a transmit conductor m with current im and surface enclosing
boundary Cm, as well as a receive conductor with surface enclosing boundary Cn. Let
the receive conductor have two terminals, i.e. it is non-closed and has small gap that is
part of Cn. Applying Faraday’s law of induction in conjunction with Stokes’ theorem,
Ampere’s law and the above assumptions, it is found that the induced voltage vn

across the terminals of the receive conductor (from positive to negative pole) is given
by [28,31]

vn = jωMm,nim (2.1)

Mm,n = MNeu
m,n = KNeu

˛
Cm

˛
Cn

dlm dln

dwire(lm, ln) . (2.2)

Mm,n is called the mutual inductance, jωMm,n is referred to as mutual impedance and
(2.2) is commonly known as Neumann formula [104]. The integrals are evaluated over
the two conductor boundaries via their one-dimensional lengths’ lm, ln. These length
are used to define the positions pwire

m (lm), pwire
m (ln) of each infinitesimal wire element

on these structures and dwire
m,n(lm, ln) = ∥pwire

m (lm)−pwire
n (ln)∥ describes all pairwise dis-

tances between these elements. Moreover, dlm and dln are the infinitesimal vectorial
line-segments at each corresponding wire element position. Lastly, the multiplicative
constant is given by KNeu = µ0µr

4π
= µ

4π
with µ0 and µr as vacuum permeability and

relative permeability of the propagation medium, respectively. The analytic closed-
form evaluation of the Neumann formula is only feasible for specific structures and
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2.2 Electrically Small and Thin-Wired Coils

alignments of the conductors,. However the formula can easily be calculated by nu-
merical means. Alternatively, the conductors may sometimes also be approximated by
magnetic dipoles which allows for a simpler and analytic closed-form description of the
mutual inductance (cf. (2.3)).

2.2 Electrically Small and Thin-Wired Coils

A common shape of conductors used for MI networks is that of a coil antenna and
more specifically that of a Single-Layer Solenoid (SLS) coil antenna. To fully describe
the location of such coils, we use the three-dimensional Cartesian coordinates p =
[px, py, pz]T of the coil’s center and three Euler angles ϕ = [α, β, γ]T that describe the
coil’s orientation via z-y-z rotation [105] (cf. (A.19)). We summarize those variables
as six-dimensional deployment vector ψ = [pT,ϕT]T.

If we consider a pair m,n of such coils with sufficiently large separation
dm,n = ∥pm − pn∥ relative to their own dimensions, the fields they generate may
be approximated by that of an magnetic dipole which leads to their mutual inductance
being expressible by [28, Eq. 2.26]

Mm,n ≈MDip
m,n =

KDip
m,n

d3
m,n

oT
m

Fm,n︷ ︸︸ ︷(3
2um,nuT

m,n −
1
2I3

)
on

︸ ︷︷ ︸
Jm,n

, (2.3)

where the direction vector um,n = pm−pn

dm,n
between both coil centers is also called direc-

tion of departure. Moreover, o = [cos(α) sin(β), sin(α) sin(β), cos(β)]T represents the
Cartesian unit vector of a coil’s cylindrical main axis. It offers a simplified description
of the coil’s orientation since the parameter γ has no impact due to a dipole being
rotation symmetric around its dipole axis. These orientations further determine the
alignment factor of the coil pair Jm,n with |Jm,n| ≤ 1 [106, 107]. Lastly, the constant
KDip

m,n = µ0µrπ
32 N coil

m N coil
n (Dcoil

m Dcoil
n )2 depends on the coils’ diameters Dcoil

m , Dcoil
n and the

numbers of coil windings N coil
m , N coil

n . However, for closer coil separations dm,n this
model is highly inaccurate and the numerical evaluation via Neumann formula may be
required. For illustrative purposes, we show a single layer solenoid coil in its initial
position (i.e. p = 03×1 and ϕ = 03×1, which leads to o = [0, 0, 1]T) in Fig. 2.1.

For a randomly placed or dynamically moving pair of solenoid coils, the coils can
be misaligned, which leads to small values of Jm,n. Such a misalignment may hinder or
even prevent magnetic induction. Three-axis coils, which are a combination of three
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2 Coil Antennas and Magneto-Inductive Coupling

Hcoil

Dcoil

o

p

Dwire

Figure 2.1: Illustration of a SLS coil antenna with N coil = 10 windings in its initial position. Other
defining parameters are also displayed.

um,ndm,nom,1

om,2

om,3

on,1 on,2

on,3

Om = [om,1, om,2, om,3] On = [on,1, on,2, on,3]

Figure 2.2: A pair (m, n) of three-axis coils, each comprising three orthogonal solenoid subcoils. The
figure is adopted from [28, Fig. 3.8].

orthogonal solenoid subcoils, are hence a common design choice to mitigate such mis-
alignment losses. An exemplary three-axis coil pair with its corresponding parameters
is illustrated in Fig. 2.2. The mutual inductance matrix MDip

m,n ∈ R3×3 between such a
pair of three-axis coils is the straightforward extension of (2.3) and can be expressed
by [28]

MDip
m,n =

KDip
m,n

d3
m,n

OT
m

(3
2um,nuT

m,n −
1
2 I3

)
On , (2.4)

with orientation matrix Om = [om,1,om,2,om,3] and analogous definition for On.
This extension is apparent if we e.g. look at a single element of this matrix
[MDip

m,n]k,l = KDip
m,n

d3
m,n

[OT
m]k,:

(
3
2um,nuT

m,n − 1
2 I3

)
[On]:,l = MDip

k,l , which corresponds to
the mutual inductance between the solenoid subcoils k and l.

In circuit theory, SLS coil antennas are typically modeled by a combination of
resistances, inductances, and capacitances. One of the simplest but commonly used
representations is shown in Fig. 2.3 and only requires one of each such element. This
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Figure 2.3: Equivalent RLC circuit representation of a coil and corresponding summarized impedance
element.

model is valid as long as the operating frequencies are significantly lower than the coil’s
true self-resonance frequency [108]. For the remainder of this work except for Fig. 2.4,
this RLC representation is visually simplified by the depiction of its corresponding
equivalent complex impedance element (gray box), as indicated.

The shown inductance L of this model represents the coils’ self-inductance, i.e.
its tendency to oppose the change of its current, which is equal to the ratio between
current-generated magnetic flux and the current itself,

L = Φ(i)
i

. (2.5)

It may also be approximated by the double integral of (2.2) over the same coil if
overlapping infinitesimal elements are excluded and an additional correcting term is
added [109], so

L =
(
KNeu

˛
C

˛
C′

dl dl′

dwire(l, l′)

)

2dwire(l,l′)>Dwire
+KNeulcoilY , (2.6)

with Y = 1
2 for a homogeneous current distribution across the wire diameter and Y = 0

if the current is only on the wire surface. Further correcting terms may be required
depending on the exact coil shape but are often negligible for 2lcoil ≫ Dwire. This
formula was originally proposed for wired loops but also reasonably extends to other
coil structures.

The capacitance used illustrates an unwanted self-capacitance of the coil that is
theorized to be the result of adjacent coil windings or other effects that can be explained
by power line theories [110]. A common choice to evaluate the self-capacitance of a
coil was given in [111]. However, this choice was recently reanalyzed, criticized and
ultimately extended to the following empirically-corrected polynomial approximation
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2 Coil Antennas and Magneto-Inductive Coupling

for single layer solenoids [110]

C = 4ϵ0ϵr,out

π
Hcoil


1 + kc

1 + ϵr,in
ϵr,out

2




1 +

(
Hcoil

πDcoilN coil

)2

 , (2.7)

kc = 0.717439
(
Dcoil

Hcoil

)
+ 0.933048

(
Dcoil

Hcoil

) 3
2

+ 0.106
(
Dcoil

Hcoil

)2

(2.8)

where ϵ0 is the vacuum permittivity, ϵr,in is the relative permittivity of the coil core and
ϵr,out is the relative permittivity outside of the coil. Moreover, Hcoil is the coil height.

Lastly, the resistance R represents a combination of various losses that occur in
a coil antenna. It usually comprises ohmic losses Rohm as well radiative losses Rrad.
However, as we operate in a regime where the MQS assumption applies, the radiative
losses are significantly smaller than the ohmic losses and will therefore be neglected.
The dominant ohmic losses consider the wire material’s resistivity, the skin effect, and
the proximity effect of the coil. That is,

R = Rohm +Rrad ≈ Rohm = lwire

σwireπδ(Dwire − δ)
(

1 + Rp

R0

)
(2.9)

with σwire as conductivity of the wire and lwire = lspiral + lconn. as total wire
length of the coil, comprising both the length of the coil’s spiral part lspiral and
the length of the coil’s connector lconn.. For solenoid coils, we choose them to
be lspiral =

√
(πDcoilN coil)2 + (Hcoil)2 and lconn. = 2Hcoil−Dwire

Ncoil + Hcoil. Moreover,
δ = min

{
Dwire

2 ,
√

2
ωµσwire

}
is the skin depth and Rp

R0
is the proximity-based increase

of the ohmic losses. More details and values for the latter can be found in [27] for
different coil parameters.

With this representation, the overall frequency-dependent coil impedance evaluates
to

Z = (R + jωL) ∥ 1
jωC

= R + jωL

1 + jωC (R + jωL) . (2.10)

Moreover, the coils self-resonance frequency f self follows as [28, Eq. 2.37]

f self = 1
2π

√
1
LC
−
(
R

L

)2
≈ 1

2π
1√
LC

, (2.11)

where the direct evaluation is complicated by the frequency-dependency of the resis-
tance and the latter approximation is hence commonly used for coils with a high quality
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2.3 Inductive Coupling in a Network of Coil Antennas

factor Q that is defined as [28, Eq. 2.38]

Q = 2πf resL

R
= 1

2πf resRC
, (2.12)

where f res may be the coil’s native self-resonance frequency or a resonance frequency
that was obtained by connecting additional impedances or circuitry.

2.3 Inductive Coupling in a Network of Coil An-
tennas

Having established a model for individual coil antennas, we next look at the magnetic
near-field coupling between N coil antennas. Clearly, the voltage at each coil antenna’s
port is the result of its own self-induced voltage superposed by the induced voltages
due to all other coil antennas. This relationship can be modeled conveniently by the
multiport representation illustrated in Fig. 2.4, which was also deployed by [28,31,97,
112]. The current-voltage relationship between all coils is hence be characterized by the
complex impedance matrix ZC of the entire antenna multiport. This impedance matrix
depends on the respective self-inductances Ln, the summarized ohmic and radiative
losses Rn, and the self capacitances Cn of each coil n = 1, . . . , , N , as well as the mutual
inductances Mm,n = Mn,m between any two different coils m and n with m = 1, . . . , N
and m ̸= n. In detail, we find [19]

v = ZC i , (2.13)

ZC = Z0
C ∥

1
jωC

=
(
(Z0

C)−1 + jωC
)−1

, (2.14)

where v = [v1, . . . , vN ]T, i = [i1, . . . , iN ]T, and C = diag(C1, . . . , CN). The matrix
Z0

C = (R + jωM) is the antenna impedance matrix without the self capacitances
and can be used as an approximation ZC ≈ Z0

C in case the self capacitances are
negligible, e.g. if the operating frequency is significantly lower than the lowest self-
resonance frequency of all involved coils. The matrix Z0

C depends on the resistance
matrix R = diag(R1, . . . , RN) and the inductance matrix M. The latter contains
the respective self-inductances on its diagonal, i.e. [M]n,n = Ln and its off-diagonal
elements correspond to the respective mutual inductances [M]m,n = Mm,n between
coils m and n.
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+ −v1
i1

C1

R1 L1

+ −vN
iN

CN

RN LN

M1,N

ZC

· · ·· · ·· · ·

Figure 2.4: Near-field multiport circuit model for N coil antennas that are connected via impedance
matrix ZC. The model was also used by [28,31,52].
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Chapter 3

Fundamental Theory

This chapter introduces the different types of sensor nodes used throughout this thesis
and also specifies the underlying system model, which is used to simulate the MI
interaction between all nodes. Additionally, it also summarizes the considered types of
noise sources. The model itself is closely related to the works [28,31,97,112]. Moreover,
Sec. 3.1 is supposed to be a direct extension of [28] for passive agents, as such, the
structure, formulas, and nomenclature are intentionally chosen to be in line with this
work. Additionally, the chapter summarizes important estimation theoretic quantities
associated with this system model.

3.1 Circuit-Based Multiport Model

We consider MI sensor networks with arbitrary network constellations (also called
topologies) and a variable number of synchronized sensors N . Generally, each of the
sensor nodes comprises a coil antenna and additional circuitry. For each node n =
1, . . . , N we hence have to consider their six-dimensional deployment vector ψn (cf.
Sec. 2.2). We define the full network constellation as a stacked vector containing all
nodes’ individual deployment vectors Ψnet = [ψT

1 , . . . ,ψ
T
N ]T. We generally distinguish

between three different types of sensor nodes, which all have distinct functions:

Agents are nodes which can either be active or passive, i.e. they are either connected
to a dedicated current source or to a load which makes them resonant at a design
frequency fdes. In case they are active, they may also contain matching networks e.g.
to optimize the power transfer from their source into the remaining network on the
design frequency. Their deployment vectors are always unknown. In the first part of
this work, the underlying goal is localizing these nodes, i.e. estimating all deployment
vectors ψn which belong to agents. In the second part of this thesis, these nodes are
always passive and their deployment vectors do not need to be known. In latter case,
they are also referred to as purely passive tags.
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3 Fundamental Theory

Anchors function as measurement infrastructure, i.e. they are connected to a mea-
surement device and provide observations from which the deployment vectors of the
agents or other information about the network shall be deduced. In the first part of
this thesis, they always have a known deployment, whereas their deployment remains
unknown for the second part of this work. They can also either be active or passive
and contain matching networks.

Relays have a known deployment and are always considered passive i.e. they do not
contain a voltage or current source. They are connected to a possibly switchable load
and function as auxiliary nodes in the network. They are introduced in more detail in
Cpt. 5.

The full system model is shown in Fig. 3.1 and is based on the multiport cou-
pling model from of Sec. 2.3. It comprises nT = 1, . . . , NT agents and nR = 1, . . . , NR

anchors. The explicit illustration of the relays is omitted from this representation,
since their impact can be incorporated into the impedance matrix ZC (cf. Cpt. 5).
The agents and anchors may be operated either actively or passively as schematically
shown by the blue switches, which open and close in unison. In the active case, the
agents have independent current sources iT = [iT,1, . . . , iT,NT ]T with internal reference
resistances Rref = 50 Ω and matching networks described by the impedance matrix ZT̃.
In the passive case they are generally terminated with complex impedances. Yet, in
this work we only investigate passive agents that are resonant so it suffices to termi-
nate them with capacitances CT,1, . . . , CT,NT . The corresponding matching network
of the anchors are characterized by the impedance matrix ZR̃. The anchor side ad-
ditionally comprises input resistances Rref over which we measure the input currents
iin = [iin1 , . . . , iinNR

]T. This input current vector iin comprises all observations and is the
basis for our agent deployment estimation (cf. Sec. 3.4). In case the anchors are ac-
tive, the input resistances Rref simultaneously act as internal resistances for the anchor
current sources iR = [iR,1, . . . , iR,NR ]T. The active anchors are required to study the
localization of passive agents, which only influence the input currents by changing the
observable input impedances Zin

R̃ on the anchor side.

In order to find the input currents, we first need to fully describe all relevant
impedance matrices from Fig. 3.1. These are structured in their primary (left) and
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matching
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Rref
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iR,NR

ĩR,1

Rref
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1

iR,1

...

’R’
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1, . . . , NR

RrefINR−−−−−→

Figure 3.1: Full multiport circuit representation of agents and anchors with their corresponding match-
ing networks ZT̃, ZR̃, and their coupling matrix ZC. The model is an extension of [28,97].

secondary (right) sides and can be written in the form

ZT̃ =

 ZT̃:T ZT

T̃:CT
ZT̃:CT ZT̃:C


 ∈ C2NT×2NT , (3.1)

ZC =

 ZC:T̃ ZC:T̃R̃

ZC:R̃T̃ ZC:R̃


 ∈ C(NT+NR)×(NT+NR) , (3.2)

ZR̃ =

 ZR̃:C ZT

R̃:RC
ZR̃:RC ZR̃:R


 ∈ C2NR×2NR , (3.3)

where the partitioning of the block matrices is performed according to the size of
the corresponding primary and secondary sides, i.e. the split occurs after the NT-th,
NT-th and NR-th element, respectively. The individual blocks of these matrices are
schematically illustrated in Fig. 3.2a. The first subscript indicates affiliation to the
original blockmatrix and is separated with a colon. The second subscript indicates
the side the matrix connects to, and the third subscript indicates the side the matrix
connects from. If the second and third subscript are identical, i.e. the matrix connects
to itself, the third subscript is dropped, e.g. ZC:T̃T̃ = ZC:T̃. In case the self capacitances
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agent matching
T̃
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T̃−→
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T C
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(a) Impedance matrix structures.

ZT̃ ZC ZR̃

T T̃ C R̃ R

GT̃:CT GC:R̃T̃ GR̃:CR

ZT̃ ZC ZR̃

T T̃ C R̃ R

GT̃:TC GC:T̃R̃ GR̃:RC

(b) Current gain matrices.

Figure 3.2: Schematic illustration of the block impedances of the agent matching network ZT̃, the coil
coupling ZC, and the anchor matching network ZR̃. Additionally, the current gain matrices and their
directions are displayed.
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3.1 Circuit-Based Multiport Model

of the coils are negligible, the matrix ZC:T̃ for example describes the coupling between
all matched agent coils, ZC:R̃ the coupling between all matched anchor coils and the so
called transimpedance matrix ZC:R̃T̃ describes the open-circuit voltages on the anchor
matching side caused by the currents on the agent matching side. The associated
output and input matrices of these block matrices (cf. Fig. 3.1) are given by [28,112]

Zout
T̃ = ZT̃:T − ZT

T̃:CT(ZT̃:C + Zout
C )−1ZT̃:CT , (3.4)

Zout
C = ZC:T̃ − ZT

C:R̃T̃(ZC:R̃ + Zout
R̃ )−1ZC:R̃T̃ , (3.5)

Zout
R̃ = ZR̃:C − ZT

R̃:CR(ZR̃:R +RrefINR)−1ZR̃:CR , (3.6)
Zin

T̃ = ZT̃:C − ZT̃:CT(ZT̃:T +RrefINT)−1ZT
T̃:CT , (3.7)

Zin
C = ZC:R̃ − ZC:R̃T̃(ZC:T̃ + Zin

T̃ )−1ZT
C:R̃T̃ , (3.8)

Zin
R̃ = ZR̃:R − ZR̃:CR(ZR̃:C + Zin

C )−1ZT
R̃:CR . (3.9)

Note that in case of passive agents we have Zin
T̃ = Zload

T = 1
jω

diag(C load
T,1 , . . . , C

load
T,NT

)−1

containing the agents’ load capacitances and Zout
T̃ = Z∞INT , where Z∞ →∞ represents

the high resistance of an open circuit.

Moreover, the parts of the source currents which end up being fed into corresponding
matching networks are given by

ĩT = (RrefINT + Zout
T̃ )−1Rref iT , (3.10)

ĩR = (RrefINR + Zin
R̃)−1Rref iR , (3.11)

and we obtain the active power of the nT -th agent source and the nR -th anchor source
into the multiport system as [28, Eq. 3.12]

PT,nT = Re
[
Zout

T̃ ĩTĩH
T

]
nT,nT

, (3.12)

PR,nR = Re
[
Zin

R̃ ĩR ĩH
R

]
nR,nR

. (3.13)

We next look at the current gain matrices through each multiport, which relate
the currents into a multiport to the currents out of a multiport and are found by
considering one side as partially terminated [28]. A schematic illustration of these
current gain matrices and their directions is provided in Fig. 3.2b. Formally, they are
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given by

GT̃:CT = (Zout
C + ZT̃:C)−1ZT̃:CT , GT̃:TC = (RrefINT + ZT̃:T)−1ZT

T̃:CT , (3.14)
GC:R̃T̃ = (Zout

R̃ + ZC:R̃)−1ZC:R̃T̃ , GC:T̃R̃ = (Zin
T̃ + ZC:T̃)−1ZT

C:R̃T̃ , (3.15)
GR̃:RC = (RrefINR + ZR̃:R)−1ZR̃:RC , GR̃:CR = (Zin

C + ZR̃:C)−1ZT
R̃:RC , (3.16)

with the total current gain matrix over all concatenated multiports being the product
of the individual constituents, e.g. from agents to anchors

Gactive = GR̃:RC GC:R̃T̃ GT̃:CT . (3.17)

For consistency reasons, we also define an artificial passive current gain matrix that
connects the anchor currents into the network iin

R to the observed input currents iin

Gpassive = (RrefINR + Zin
R̃)−1 Zin

R̃ (Rref)−1 (RrefINR + Zin
R̃) . (3.18)

With these quantities, the observation input current vectors follow as

iin
T = Gactive ĩT , (active agent, passive anchor) , (3.19)

iin
R = Gpassive ĩR , (passive agent, active anchor) , (3.20)

with iin
T and iin

R being the input current vectors in case active or passive agents are
used, respectively. The quantity iin will be used to describe either of the two. Also
note that there is a significant input current vector iin

R even if no agents are present
in the network due to the currents from the anchor sources as well as the inter-anchor
coupling. Only the small difference of iin

R that is caused by the presence of the agents
actually conveys information on the agent deployments.

3.2 Noise Model

In reality, the input currents will also be affected by additional perturbations e.g. due
to thermal noise and imperfections of Low-Noise Amplifiers (LNAs). We model these
perturbations by additive circularly-symmetric zero-mean Gaussian noise currents, i.e.
[97]

imeas = iin + iw iw ∼ CN (0,K) , (3.21)
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Rref

iw
NR
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−+
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− +

vtherm
1

...Zin
R̃

Figure 3.3: Anchor side with considered noise sources due to Johnson–Nyquist noise and LNA imper-
fections. The model is adapted from [28,97].

The noisy currents at each anchor are a result of a voltage source for the thermal noise
as well as a possibly correlated voltage-current source pair, as illustrated in Fig. 3.3.
The overall noise covariance matrix for the currents is given by [28, Sec. 3.2]

K = YR(Σtherm + ΣLNA)YH
R (3.22)

YR = (RrefINR + Zin
R̃)−1 (3.23)

Σtherm = 4kBTBRe(Zin
R̃) (3.24)

ΣLNA = (σLNA)2
(
(RLNA)2INR + Zin

R̃(Zin
R̃)H − 2RLNARe((ρLNA)∗Zin

R̃)
)
, (3.25)

with YR as the serial admittance of the anchor circuit. For the covariance matrix
Σtherm of the thermal noise, only the real part of the anchor’s input impedance Zin

R̃ is
relevant [113]. Additionally, the thermal noise depends on the Boltzmann constant kB,
the temperature T and the bandwidth B. The noisy currents caused by all LNA source
pairs have the covariance matrix ΣLNA, which is defined via noise current variance
(σLNA)2, noise resistance RLNA, and the correlation coefficient ρLNA with

∥∥∥ρLNA
∥∥∥ ≤ 1.

The LNAs are also assumed to be statistically independent when the anchor coils and
anchor matching networks are uncoupled.
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3.3 Matching, Equivalent Model, and Further As-
sumptions

3.3.1 Matching Networks

The matching networks can be chosen according to the needs of the system. Typical
choices include lossless power matching on both sides or noise matching on the receiver
side, e.g. to obtain a high Signal-to-Noise Ratio (SNR) for wireless communications
[97,112]. For lossless matching networks, the corresponding impedance matrices need to
be symmetric and purely imaginary. At a chosen design frequency fdes, ideal multiport
power matching requires

Zout
T̃ = RrefINT , Zin

T̃ = (Zout
C )∗ , (ideal agent power matching) , (3.26)

Zin
R̃ = RrefINR , Zout

R̃ = (Zin
C )∗ , (ideal anchor power matching) . (3.27)

Individually, this can be realized by using matching networks with the following
impedance matrices [97]

ZT̃ =

 0NT ±j

√
RrefRe(Zout

C ) 1
2

±j
√
RrefRe(Zout

C ) 1
2 −jIm(Zout

C )


 , (3.28)

ZR̃ =

 −jIm(Zin

C ) ±j
√
RrefRe(Zin

C ) 1
2

±j
√
RrefRe(Zin

C ) 1
2 0NR


 . (3.29)

However, due to the coupling of the agents and anchors the matching networks affect
one another, which complicates a joint matching of both sides. Although iterative
matching approaches are being investigated, to the best of our knowledge there is no
analytic closed-form solution that matches both sides jointly for the Multiple Input
Multiple Output (MIMO) case. Moreover, note that actual multiport matching net-
works can be hard to realize in practice as they require a vast amount of lumped
elements with a low component tolerance, e.g. 2N2 + N lumped elements to realize
a Π-structured multiport matching network for N coils [114]. Further, for dynamic
network constellations, the matching networks require to be adaptive to satisfy either
(3.26) or (3.27).

A different low-complexity approach uses individual fixed two-port power matching
networks for each active coil. That is, the overall matching network consists of individ-
ual and lossless two-port networks that each power match the reference resistance to
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the corresponding coil antenna impedance in the absence of other coils. For the nT-th
agent or the nR-th anchor coil such a two-port network can e.g. have the impedance
matrix (cf. (3.28) and (3.29))

Ztwo-port
T̃,nT

=

 0 ±j

√
RrefRe(ZT,nT) 1

2

±j
√
RrefRe(ZT,nT) 1

2 −jIm(ZT,nT)


 , (3.30)

Ztwo-port
R̃,nR

=

 −jIm(ZR,nR) ±j

√
RrefRe(ZR,nR) 1

2

±j
√
RrefRe(ZR,nR) 1

2 0


 , (3.31)

where ZT,nT and ZR,nR are the impedances of the corresponding agent and anchor coil
antennas including their self capacitances (cf. (2.10)). For strongly-coupled coils, i.e.
when the impedances of Zout

C and Zin
C are strongly detuned from their original coil an-

tenna impedances, this approach clearly leads to a mismatch of the matching networks
and hence violates (3.26) and (3.27). Such a mismatch results in a reduced power
transfer into the network and may be detrimental for communication and localization.
Using adaptive matching networks is one intricate and possibly costly solution to mit-
igate this issue. Alternatively, it is also possible to employ other current sources which
provide a constant current (and hence increasing power) into the network, regardless
of the impedance detuning. Yet, neither of these alternatives may be practical for
low-complexity applications which have to operate on a small scale.

Lastly, for passive agents we generally consider no additional matching networks
and the agent coils are always loaded with the corresponding load capacitors. For
this case the impedance matrix of the agent matching network can be mathematically

represented by ZT̃ =

 Z∞INT 0NT

0NT Zload
T̃


.

3.3.2 Equivalent Channel Gain Description

Instead of using currents, communication theoretic works often rely on a normalized sig-
nal model to provide mathematical convenience in various circumstances. The MIMO
representations of (3.19) and (3.20) can be transformed to such models of normal-
ized signal vectors x and observation vectors y by applying the following substitu-
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tions [28, 97]

xT = Re(Zout
T̃ ) 1

2 ĩT , xR = Re(Zin
R̃) 1

2 ĩR , (3.32)
HT = (Rref) 1

2 GactiveRe(Zout
T̃ )− 1

2 , HR = (Rref) 1
2 Gpassive Re(Zin

R̃)− 1
2 , (3.33)

y = (Rref) 1
2 iin , ymeas = (Rref) 1

2 imeas , (3.34)
w = (Rref) 1

2 iw , (3.35)

which, analogously to the input current model (cf. (3.19) and (3.20)), leads to

ymeas
T = yT + w = HTxT + w , (active agent, passive anchor) , (3.36)

ymeas
R = yR + w = HRxR + w (passive agent, active anchor) . (3.37)

With these formulations, it is convenient to describe the Power Transfer Efficiency
(PTE) η, which is the corresponding ratio of active receive sum-power ∥y∥2 (receive
power) to active transmit sum-power ∥x∥2 (transmit power) without additional noise,
i.e. [28, Eq. 3.27]

ηT = ∥yT∥2

∥xT∥2 = ∥HTxT∥2

∥xT∥2
SIMO= ∥hT∥2 |xT|2

|xT|2
= ∥hT∥2 SISO= |hT|2 , (3.38)

ηR = ∥yR∥2

∥xR∥2 = ∥HRxR∥2

∥xR∥2
SISO= |hR|2 , (3.39)

where the simpler formulations for the Single Input Multiple Output (SIMO) and
Single Input Single Output (SISO) case are independent of the transmit power. For
the passive case, all anchors act simultaneously as transmitter and receiver, so there is
no SIMO case.

3.3.3 Unilateral Assumption for Weakly-Coupled Links

The wireless MI coupling of our model is in general reciprocal, i.e. ZC:T̃R̃ = ZT
C:T̃R̃. For

weakly-coupled agent and anchor sides combined with a unidirectional communication,
the resulting reverse channel (i.e. from the passive to the active side) can often be ne-
glected. This is referred to as the unilateral assumption [97]. It is commonly applied
in radio communications and also holds well for the magnetic near field if the involved
coils are separated by a large distance, which is e.g. the case for sparse networks.
We will rely on this assumption multiple times throughout this thesis as it simpli-
fies the matching procedure and makes analytic investigations more convenient. For
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the active agent case, it is mathematically represented by ZC:T̃R̃ = 0NT×NR , however
ZC:R̃T̃ ̸= 0NR×NT , which decouples the impedances on both sides of the multiport ZC,
i.e. Zout

C = ZC:T̃ and Zin
C = ZC:R̃. If we combine this assumption with an ideal power

matching on both sides, (3.4) to (3.9) can be simplified as

Zout
T̃ = RrefINT , Zin

T̃ = (Zout
C )∗ , (3.40)

Zout
C = ZC:T̃ , Zin

C = ZC:R̃ , (3.41)
Zout

R̃ = (Zin
C )∗ , Zin

R̃ = RrefINR , (3.42)

which yields (cf. (3.10) and (3.17))

Gactive = HT = 1
2Re(ZC:R̃)− 1

2 ZC:R̃T̃Re(ZC:T̃)− 1
2 , (3.43)

iin
T = 1

2GactiveiT . (3.44)

For a SISO link of an active agent m and a passive anchor n with coil resistances Rm,
Rn, mutual inductance Mm,n, and negligible self capacitances, (3.43) can be further
simplified such that the scalar current gain gactive and the scalar channel gain hT are
identical and expressed by

gactive = hT = jωMm,n√
4RmRn

. (3.45)

While the unilateral assumption is easily applied to the unidirectional active agent
case, it contradicts the bidirectional passive agent case. Moreover, even if we assume
the passive agents and active anchors to be weakly coupled such that the reverse channel
(from agent to anchors) does not meaningfully affect the anchors, then no information
about the agents may be derived from the input currents on the anchor side. The
same also holds for adaptive matching, which for ideal power matching networks on
the anchor side satisfies (3.42) and hence nullifies the agent impact, leading to (cf.
(3.11) and (3.18))

Gpassive = HR = INT , (3.46)

iin
R = Gpassive 1

2 iR = 1
2 iR . (3.47)
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3.4 Parameter Estimation and Cramér-Rao Lower
Bound

For the general case without the unilateral assumption, the observed input currents
always depend on all unknown agent deployments via mutual inductances between
the coils. The localization can be formulated in terms of a parameter estimation
problem of our model, where we define the agent constellation as stacked vector Ψ =
[ψT

1 , . . . ,ψ
T
NT

]T which contains all individual agent deployment vectors. The joint ML
estimate follows as

Ψ̂ ML = arg min
Ψ

{(
imeas − iin(Ψ)

)H
K−1

(
imeas − iin(Ψ)

)}
. (3.48)

However, to the best of our knowledge there is no analytic closed-form solution for
the estimator (3.48), due to the intricate relationship between deployment variables
and currents. Yet, for the Gaussian estimation problem at hand, the ML estimator is
known to be asymptotically efficient, i.e. it approaches the CRLB as the number of
independent observations goes to infinity [115]. We will hence analyze different setups
based on the corresponding Position Error Bound (PEB), which is the CRLB on the
position RMSE error and whose calculation requires the Fisher Information Matrix
(FIM) III. For a Gaussian Probability Density Function (PDF) with real parameters
and complex observations, the scalar elements of the FIM are given by a well-known
expression [115, Eq. 15.52]

[III(Ψ)]i,j = tr
(

K−1 ∂K
∂[Ψ]i

K−1 ∂K
∂[Ψ]j

)
+ 2Re

(
∂(iin)H

∂[Ψ]i
K−1 ∂iin

∂[Ψ]j

)
. (3.49)

In many scenarios, e.g. when the agent is active and the input impedance matrix of the
anchor matching Zin

R̃ does not vary significantly for deployment changes of the agents,
the first summand can be neglected. For such scenarios we can approximate the full
FIM as

III(Ψ) ≈ 2Re
(
JH

iin K−1 Jiin

)
, (3.50)

where Jiin is a complex-valued Jacobian with its j-th column given by [Jiin ]:,j = ∂iin

∂[Ψ]j .
In plain words, the accuracy with which we can estimate the deployment variables
depends on how severely changes of these variables impact the observed input currents
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iin relative to the intensity of the additional noise K−1. Moreover, we call the Fisher
information of any element of the position vector pm of an agent m spatial information
and Fisher information of any element of the orientation vector ϕϕϕm orientational infor-
mation. Additionally, considering a unit vector q, we call qT [III(Ψ)]1:3,1:3 q directional
(spatial) information of the first agent in the direction q, with analogous definition for
the other agents.

Furthermore, when combining k = 1, . . . , Nk statistically independent measure-
ments for a static network constellation, which may occur when combining measure-
ments from multiple distant anchors or when collecting measurements for the same
network constellation at different time instances, the overall FIM is equal to the sum
of the individual FIMs IIIk (additivity of independent Fisher information [116,117]):

III(Ψ) =
NK∑

k=1
2Re

(
JH

iin,k K−1
k Jiin,k

)
, (3.51)

where Jiin,k is the complex-valued Jacobian matrix associated with the k-th measure-
ment.

Considering only the first agent, we find the PEB of any unbiased position estimator
p̂1 = [p̂1,x, p̂1,y, p̂1,z]T via [118]

PEB1(Ψ) =
√

tr
[
[III−1(Ψ)]1:3,1:3

]
(3.52)

≤
√
E{||p̂1 − p1||2}. (3.53)

Apart from all known and fixed system quantities, the calculation of the PEB requires
the respective Jacobians. The corresponding derivatives are simply found by iteratively
applying basic matrix derivation rules (cf. Appendix A). It is shown that the evalua-
tion of (3.49) is ultimately based on all mutual inductances Mm,n and the derivatives
∂Mm,n

∂[Ψ]j thereof. We can obtain them by either modeling the coils as magnetic dipoles,
which leads to the well known approximation (2.3) of their mutual inductances whose
derivatives are found in [26]. This approximation is accurate as long as the distance
between any two coils is much larger than their radii. For closer coil proximities, the
double integral Neumann formula (2.2) can be used but generally requires a numerical
integration. Up to this numerical integration, the derivatives of the Neumann formula
for solenoid coils are also stated in Appendix A.

Being able to calculate the FIM and the scalar PEBs of any agent for a given network
constellation, we also want to analyze how the position RMSE error is bounded in any
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unit direction q. Analogous to [118], we call this bound Directional Position Error
Bound (DPEB) and express it, e.g. for the first agent, via

DPEB1(q, Ψ) =
√

qT [III−1(Ψ)]1:3,1:3 q (3.54)

≤
√
E{|qT(p̂1 − p1)|2}. (3.55)

Also note that for any three orthogonal DPEBs, it also holds that the square root
of their sum of squares equals the position error bound, e.g. for agent 1 (changed
from [118])

PEB1(Ψ) =
√

DPEB2
1(q1, Ψ) + DPEB2

1(q2, Ψ) + DPEB2
1(q3, Ψ) , (3.56)

where {q1,q2,q3} can be any orthonormal basis of R3.

The DPEBs in the directions of the orthogonal eigenvectors of [III−1]1:3,1:3 are given
by the square roots of the corresponding eigenvalues. They are of particular importance
as they yield the smallest and highest RMSE error bounds of a given deployment and
represent the principal semi-axes of an ellipsoid. This ellipsoid is formed by the DPEBs
in all directions and hence illustrates the localization uncertainty. Clearly, the direction
which offers the highest directional information is the one that yields the smallest
RMSE error bound and the same holds the other way around. Based on this geometric
interpretation, we further consider the axial ratio of the DPEBs, e.g. for agent 1, as

DPEB1 ratio(Ψ) = maxq DPEB1(q, Ψ)
minq DPEB1(q, Ψ) . (3.57)

This ratio is a measure of asymmetry of the uncertainty ellipsoid, i.e. DPEB1 ratio = 1
means the ellipsoid coincides with a sphere. High ratios mean that the ellipsoid’s main
semi-axis is significantly larger than its minor semi-axis, which implies that the overall
position error bound is dominated by the estimation errors in the direction of the main
semi-axis, i.e. PEB1(Ψ) ≈ maxq DPEB1(q, Ψ).

Lastly, another interesting quantity for a single agent-anchor pair m,n is the di-
rectional information in the direction of departure um,n ((cf. Sec. 2.2). This scalar
quantity coincides with the ranging information intensity of [118] and the square-root
of its inverse is what we call Distance Error Bound (DEB), i.e.

DEBm,n(Ψ) =
√(

uT
m,n [III(Ψ)]1:3,1:3 um,n

)−1
. (3.58)
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3.4 Parameter Estimation and Cramér-Rao Lower Bound

The DEB is the Cramér-Rao lower bound on any corresponding unbiased distance
estimator in case both coil orientations and the direction of departure are assumed
known. Compared to the DPEB in the same direction, this quantity exists as long
as the observation provides any spatial information in direction of um,n, even when
1 ≤ rank (III(Ψ)) < 3.
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3 Fundamental Theory
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Chapter 4

Range Estimation and Localization

This chapter examines localization and ranging behavior in MI networks based on the
system model from Cpt. 3. It further characterizes the underlying scaling behavior with
help of the CRLB. Lastly, it highlights inherent performance bottle necks for magnetic
near field systems which stem from the coupling mechanism itself and may degrade the
position RMSE by orders of magnitude.

4.1 Range Estimation for Active and Passive
Agents

As indicated by (3.51) and (3.52), the overall localization is ultimately a combination
of the spatial and orientational information which is collected by all anchors. For MI
localization, the spatial information clearly depends significantly on the range between
the coils. In a first step, we thus analyze how the distance estimation quality of a
single agent-anchor coil pair changes, when the agent is either active or passive. If we
conceptually ignore the matching networks on both sides, it is intuitive via (2.1) that
the induced current (and voltage) from an active agent to a passive anchor is defined by
the mutual inductance, whereas the current induced from an active anchor to a passive
agent and back is defined by the squared mutual inductance. For such a non-strongly
coupled coil pair m,n at distance dm,n for which the dipole approximation applies, we
hence expect iinT ∝ d−3

m,n and iinR ∝ d−6
m,n, respectively. These relationships in turn imply

DEB ∝ d4
m,n when using active agents and DEB ∝ d7

m,n when using passive agents (cf.
(3.50) and (3.58)).

To further illustrate this matter, in Fig. 4.1a we look at an agent-anchor coil pair
with variable distance dm,n between the coil centers and random but known orientations
of the coil pair, i.e. the orientation vector of either coil is a uniform-randomly chosen
point on the unit sphere. The parameters used for this simulation are given in Tab. 4.1
and the low-complexity two-port power matching strategy described in Sec. 3.3.1 is
applied. Our choice for the noise parameters of the LNAs is identical to that of [28].
In Fig. 4.1b we show the resulting DEB for increasing distances dm,n of this setup for
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4 Range Estimation and Localization

an either active or passive agent. The solid line represents the median DEB at each
distance and the transparent area marks its interdecile range. To verify our previous
explanation, we also show two lines that are proportional to d4

m,n and d7
m,n, respectively.

We find that our expectations match the ranging behavior for roughly dm,n ≥
2Dcoil = 2 cm. For smaller distances at which a strong coupling occurs, we observe a
drastic change in the behavior of the distance estimation which results in an almost
constant DEB. In this regime, active and passive agents also yield a comparable median
DEB. Additionally, the figure shows how severely misalignments of a coil pair may
affect the current gains and hence degrade the DEB, even for known coil orientations
that do not need to be jointly estimated. For the distance estimation of the passive
agents, the misalignment factor Jm,n (or misalignment loss) is further squared due to
the bidirectional use of the channel. The PDF of the alignment factor Jm,n for a single
coil pair with random orientations of both coils (uniformly random on the unit sphere)
was derived in [28] and is given by

fJm,n(Jm,n) = arcosh(2)√
3





1 |Jm,n| < 1
2 ,

1− arcosh(2|Jm,n|)
arcosh(2)

1
2 ≤ |Jm,n| ≤ 1 ,

0 1 ≤ |Jm,n|
. (4.1)

The PDF1 of the alignment factor’s magnitude is shown in Fig. 4.2 with highlighted
percentile ranges and matches the misalignment loss of Fig. 4.1b. Overall, MI distance
estimation hence demonstrates fundamentally different behaviors depending on the
extent of the coils’ coupling and whether active or passive agents are used.

Fig. 4.1c illustrates how the median input coupling impedance Z in
C (note Z in

C = Zout
C

for the active case) and the median power PT (active) or PR (passive) into the network
change for different agent-anchor distances. In the strongly-coupled regime, there is
a mutual detuning of the coupling input impedances that results from an increase of
the coupling input resistances (dashed lines) while the reactances (dotted lines) remain
constant. Due to the imperfect matching networks, this detuning degrades the power
(dashdotted lines) PT (active case) or PR (passive case) into the network and in turn
causes a worsening of the DEB. Aside from the impact of the matching networks, the
behavior of the DEB would also change when the coils get closer since the mutual
inductance itself converges to a constant value for close coil proximities.

Lastly, the median DEB over the agent-anchor distance is shown for different quality
factors of the involved coils in Fig. 4.1d. The quality factors are varied via the coil

1Part of the PDF is omitted to allow for a logarithmic scale.
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4.2 Scaling Behavior for Practical Design Parameters

agent current iT 1 mA
anchor current iR 1 mA
coil turns N coil 10
coil diameter Dcoil 10 mm
coil height Hcoil 8 mm
wire diameter Dwire 0.5 mm
design frequency fdes 1 MHz
op. frequency f 1 MHz
conductivity σwire 59.6 MS m−1

rel. permittivity ϵr 1
rel. permeability µr 1
bandwidth B 5 kHz
temperature T 300 K
LNA noise variance (σLNA)2 2 · 10−22A2 Hz−1

LNA noise resistance RLNA 40 Ω
LNA noise corr. coeff. ρLNA 0.5 + 0.7j

(a) Specified parameters.

resistance R 0.1 Ω
self-inductance L 0.7 µH
self-capacitance C 0.3 pF
wire length lwire 0.3 cm
wavelength λ 300 m
coil Q-factor at fdes Q 40
coil self-resonance f self 340 MHz

(b) Resulting parameters.

Table 4.1: Simulation parameters and resulting quantities.

antenna resistances R, while the other parameters such as the geometric structure, the
inductance, or the self capacitance remain constant. We find that an increasing quality
factor simply shifts the same coupling behavior to higher distances. As a result, strong
coupling and the impedance detuning already occur at distances dm,n ≥ 2Dcoil = 2 cm
for high quality factors.

4.2 Scaling Behavior for Practical Design Parame-
ters

Before we examine the scaling behavior for more complex networks, let us first have a
closer look at a single agent-anchor coil pair m,n. We only consider an active agent
and assume that the coils are separated by a sufficiently large distance such that we
can rely on the dipole approximation (2.3) of the mutual inductance and the unilateral
assumption of weakly-coupled links. We additionally assume ideal power matching and
neglect the coils’ self capacitances such that (3.45) applies, i.e.

iin = jωMm,n√
4RmRn

iT
2 (4.2)

≈ jµ0µrπ
2

25
√
RrefKohm

m Kohm
n

· Jm,n

d3
m,n

· f ·
√
N coil

m N coil
n (Dcoil

m Dcoil
n )3PT︸ ︷︷ ︸

sm,n

(4.3)
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4 Range Estimation and Localization
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(c) Impedances and input power for the active and passive case.
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(d) Median DEB with different quality factors for the active case.

Figure 4.1: Single agent-anchor coil pair at variable distances dm,n with uniformly and randomly
distributed orientation vectors on the unit sphere. The median DEB (solid line) and the interdecile
range (transparent area) of the DEB are shown for an either active or passive agent. The corresponding
input coupling impedances (left ordinate) and the power into the network (right ordinate) are also
illustrated. Lastly, the impact of the quality factors on the DEB is also shown for the active case.
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4.2 Scaling Behavior for Practical Design Parameters
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Figure 4.2: PDF of the alignment factor’s magnitude for a randomly oriented coil pair.

The approximation (4.3) follows if we additionally assume that the skin effect, the
proximity effect and coil height are negligible, which results in (2.9) being approximable
by R ≈ DcoilN coilKohm with Kohm = 4

σDwire . Moreover, we also used PT = Rref |iT|2
4

which follows from ideal power matching in conjunction with (3.12) and further limited
ourselves to strictly real currents, i.e. iT = |iT| = 2

√
PT

Rref . Under these assumptions,
we hence find that the current as well as its derivative are directly affected by the same
scaling factor, that is iin ∝ sm,n and ∂iin

∂[Ψ]j ∝ sm,n. This scaling factor incorporates
major practical design parameters such as the coil dimensions, the transmit power and
the operating frequency2. It e.g. shows that a halving of the transmit power may be
counteracted by increasing the anchor coil diameter by 3

√
2. Via (3.50) this also means

that the FIM of every independent agent-anchor link behaves according to III ∝ s2
m,n.

If a network constellation is fixed and all identical anchor coils provide independent
observations, we hence find that the PEB is characterized by PEB ∝ s−1

m,n (cf. (3.52)
and (3.51)).

In order to get an intuition on the potential and the limitations of the approxima-
tion PEB ∝ s−1

m,n we study the coplanar sensor network depicted in Fig. 4.3a comprising
NT = 1 active agent and NR = 4 passive anchors. For this setup, we compare the ex-
act PEB with the one obtained with the approximation if different parameters are
varied individually. The default system parameters are again specified by Tab. 4.1 and
ideal power matching networks are used, which leads to the default transmit power of
PT = 12.5 µW. Since all coils are identical, the impact of the coil diameter and the
number of coil windings is squared. Fig. 4.3b and Fig. 4.3c show the corresponding
PEBs if we scale the design parameters individually. That is, X0 denotes the above
choice for the corresponding parameter and X denotes the scaled version while all
other parameters remain unchanged. The simulations ignore all of the above assump-

2The design frequency fdes is scaled in correspondence with the operating frequency f .
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4 Range Estimation and Localization

tions (full model), so they e.g. consider imperfect power matching networks and back
coupling of the anchors. The results are further compared to the expected scaling
behavior according to the derived scaling factor (∝ s−1

m,n). Despite the numerous sim-
plifying assumptions that were necessary to obtain the scaling factor, we see that it
characterizes the impact of the transmit power and the coil diameter well. However,
when scaling the operating frequency a diverging behavior can be observed due to the
skin effect: For lower frequencies, the increase of the PEB does not keep up with our
expectations, since this effect is mitigated by the unconsidered decrease of both coil
resistances. For higher frequencies the contrary can be observed and the PEB roughly
follows PEB ∝ 1√

f
instead of PEB ∝ 1

f
. We observe a similar discrepancy when

changing the number of coil windings, which is a result of the proximity effect: For
fewer coil windings the proximity effect is less distinct so the coil resistances decrease
more significantly than expected. When increasing the number of coil windings the
PEB suffers from the higher resistances due to the amplified proximity effect. Yet,
since the proximity effect itself converges for a higher number of coil windings [27], the
discrepancy between the expected PEB and the actually observed one is negligible. To
emphasize these statements, we also show the PEB which is obtained when omitting
either the skin effect (no skin effect) or the proximity effect (no proximity effect) from
the simulation. For these special cases, the lines are offset by a fixed constant such
that they intersect at X/X0 = 1. Overall, we conclude that the approximated scaling
factor is well-suited to asses the impact of different transmit powers, coil diameters or,
to some extent, even the numbers of coil turns. However, for the operating frequency
it shows to be a bad fit as the skin effect has a significant impact on the coil resistance,
even on the considered frequencies in the interval f ∈ [0.110]MHz. Moreover, since
the scaling factor was derived for the dipole approximation and a weak coupling, it is
unlikely to be accurate for dense networks with close coil proximities.

4.3 Impact of Anchor Placement and Density

Another common design parameter of interest for the active agent case, which is not
directly evident from (4.3), is the total number NR of anchors used. However, even
with all assumptions from Sec. 4.2 its impact is hard to characterize since it is highly
dependent on the network topology itself. Still, the unilateral assumption and the ideal
power matching lead to K ∝ INR and hence ∂K

∂[Ψ]j = 0NR , so we can consequently write
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4.3 Impact of Anchor Placement and Density
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(b) Scaling behavior for changes in the transmit power and used frequencies.
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(c) Scaling behavior for changes in the coil diameter and number of coil windings.

Figure 4.3: Scaling behavior analysis for common design parameters in a fixed setup with NT = 1
agent and NR = 4 equidistant and well-spread out anchors. The figure compares the performance
when using the full model to the expected behavior according the simplified scaling factor. Two special
cases which neglect the skin effect and the proximity effect are also shown.
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the FIM as (cf. (3.50) and (3.51))

III ∝ Re
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. (4.5)

which directly highlights the additivity property for Gaussian independent observa-
tions. Interpreting (4.5), we see that every anchor provides additional spatial informa-
tion depending on how its input current varies for changes of the agent deployment.
For the coplanar setup of Fig. 4.3a, agent displacements along the radial direction of
an agent-anchor pair (i.e. in each respective direction um,n) directly affect the the
distance dm,n and hence have a significant impact on the input current. In comparison,
agent displacements along the perpendicular direction (um,n)⊥ have a negligible impact
on the distance and hence the input currents. For each individual agent-anchor pair
there is thus a lack of spatial information in the direction (um,n)⊥. Lastly, under the
very special assumption that each anchor provides the same spatial information, i.e.
the anchors have the same placement or are located in specific symmetric constella-
tions, we find III ∝ NR and thus PEB ∝ N

− 1
2

R with respect to the number of anchors.
While this assumption generally does not hold, it shows that even without novel spa-
tial information, the anchors may contribute to a decreasing PEB via noise-averaging
effect.

In Fig. 4.4, we look at a coplanar network topology and analyze the obtained PEB
for an increasing number of anchors. That is, we now place the anchors uniformly
random either on the outer circle shown in Fig. 4.3a, the middle circle, or within the
annulus formed by those two circle, while enforcing a minimum distance constraint
of dmin ≥ 2Dcoil for any pair of anchors. Again, the solid lines present the median
obtained PEB and the transparent areas mark the corresponding interdecile ranges.
Additionally, we show two dashed lines which are both proportional to N− 1

2
R . For both

circle placements, we see that there is a strong variability of the PEB for NR < 5. For
these operating points, the exact placement of the anchors, or rather the directions
which are covered by each anchor, play a crucial role for the PEB. Some additional
anchors hence provide localization benefits far beyond that of the noise-averaging effect.
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4.3 Impact of Anchor Placement and Density

Starting at NR = 5 anchors, this variability is already reduced significantly and the
exact placement of new anchors is almost irrelevant for the PEB. Further increasing
the number of anchors shows that any random constellation only reduces the PEB
according to N− 1

2
R . For the annulus placement a similar behavior is observed, however

more anchors are required to meaningfully decrease the interdecile range of the PEB.
This phenomenon occurs as the anchors now do not only need to cover the different
directions well, but also need to be placed as close to the agent as possible. Statistically,
it hence takes more randomly placed anchors to saturate these favorable placement
areas. Moreover, for higher anchor numbers the probability of placing all of them close
to either circle is very low, which is why the interdecile range of the annulus placement
does not overlap with the interdecile ranges of the circular anchor placements.

In comparison, Fig. 4.4c shows a scenario where the anchors are placed on the inner
circle when reducing the minimum distance constraint between anchors to dmin ≥ Dcoil,
which means that at most NR = 40 coils can be placed. For this scenario, we still
observe comparable results for low agents numbers, which then however switch to a
contrasting behavior. Namely, the PEB starts to degrade for a further increasing
number of anchors due to their mutual impedance detuning. This is further illustrated
by the dotted line, which shows the median PEB in case all identical anchors are
decoupled. For this decoupled anchor case the median PEB is comparable to the ones
in Fig. 4.4 and no deteriorating effect is apparent. Additionally, we also show the
PEB that is obtained when the anchors on the inner circle are well-spread, i.e. they
are placed on the NR vertices of the corresponding regular inscribed polygon while still
satisfying the minimum distance constraint dmin ≥ Dcoil. This well-spread constellation
constitutes the optimal anchor placement in case the observations only depend on the
distances of the individual agent-anchor pairs [119]. Yet, as we consider coupling
between the anchors, mutual impedance detuning, and imperfect matching networks,
there are random constellations that slightly outperform this well-spread constellation.

Overall, the optimal anchor placement requires optimization of the spatial diversity,
i.e. the directional information as well as the optimization of the range measurement
quality [119, 120]. We see that this also holds for MI localization, and it is hence ad-
vantageous to (i) have the anchors placed closely to the area which the agent occupies
to increase the range measurement quality and (ii) to be equally spread in order to
balance the directional information in all dimensions. In [121] this was also demon-
strated for time-of-arrival based localization , when the agent locations have a truncated
radially-symmetric PDF and when the anchors may be placed within an surrounding
annulus. In our scenarios, further increasing the number of anchors quickly shows no
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4 Range Estimation and Localization

further benefits other than the noise-averaging effect. When the anchors have a close
proximity, this noise-averaging effect also shows diminishing returns and can even be
detrimental due to the mutual detuning of the anchor impedances which is associated
with a worsening of the receive SNR.

4.4 Impact of Agent Placement

The previous investigation is interesting for initial considerations about the optimal
anchor placement. Its findings about directional information and range measurement
quality still apply, when the anchor placements are fixed and the agent can move freely.
However, this opposite perspective better highlights the limitations of conventional MI
localization and the limited application area. In Fig. 4.5 we hence show intensity
plots of the PEB and the DPEB ratio for various coplanar agent placements while the
anchors are fixed according to Fig. 4.3a. In detail, Fig. 4.5a shows a close-up of the PEB
for different agent placements that are in proximity to the anchors, whereas Fig. 4.5c
also shows the PEB for more distant placements of the agent. Fig. 4.5b and Fig. 4.5d
are the analogous plots for the corresponding DPEB ratio. We first distinguish two
different scenarios:

Clustered Anchors In case the agent m is placed far outside the anchor area,
i.e. ∥pm∥ ≫ 1.5 m, all direction vectors um,n from the anchors to the agent are ap-
proximately equal. The full anchor array hence starts to appear clustered and acts
similar to a single anchor placed at the origin. This is also indicated by the roughly
circularly-symmetric behavior of the PEB, which is apparent in Fig. 4.5c. While copla-
nar localization is still possible, the DPEB in the tangential direction of this circle
is significantly higher than the one in the radial direction, regardless where on the
two-dimensional plane the agent is placed. This asymmetry of the DPEBs is also in-
dicated by Fig. 4.5d, which shows DPEB ratio ≥ 10 for the clustered anchor scenario.
Thus, the overall PEB is dominated by uncertainties in this tangential direction. For
three-dimensional network constellations and random coil orientations, this effect is
usually still observable. However, it is sometimes slightly mitigated in case tangential
movements cause a more beneficial alignment of the coils.

Distributed Anchors Conversely, if the agent is still placed in the vicinity of the
anchor array with ∥pm∥ ≤ 1.5 m, the geometric structure of the anchors relative to
the agent plays a crucial role and defines the obtainable localization accuracy. If
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Figure 4.4: Scaling behavior analysis when increasing the number of anchors NR that are uniform
randomly placed on different structures around the agent.
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the agent is located at point A, all anchors are well-spread and close to the agent,
so the spatial information is balanced and yields the minimum PEB as well as the
minimum DPEB ratio. At point B, the agent’s distance towards two of the anchors
is drastically increased (compared to point A), which leads to a slightly higher PEB
and DPEB ratio. Yet, radial and tangential movements still cause significant changes
of the observed input currents at the two close anchors, so the agent can be located
accurately. In comparison, at point C tangential movements of the agent have almost
no impact on the input currents of the anchors that are placed at the abscissa. The
spatial information in the tangential direction thus has to be provided by the anchors
located on the ordinate, which however have a higher distance and thus a worse SNR.
The overall PEB at point C is consequently already dominated by the uncertainty in
the tangential direction, while its placement in the radial direction can be estimated
well.

Both of these scenarios are of interest, as the placement of the anchors may in reality
not be fully flexible but rather constraint by the practical limitations of the desired
application, e.g. due to a required minimum sensor size or other hardware requirements.
Additionally, the PDF of the agent deployment may not be known beforehand, so an
optimized anchor placement may be unrealistic. This could occur for medical in-body
application, where the agent may be traveling through the gastrointestinal tract and
the anchors have to be placed in a clustered sensor head that is used outside of the body.
The optimization of the anchor placement would hence be highly limited. Moreover,
the area of interest with respect to the agent deployment might depend on the medical
cause that is being screened for, so it would be unknown beforehand.

4.5 Conclusions

For the employed system model, we showed that MI localization exhibits a drastically
different behavior when the coils are in close proximity and strongly coupled, compared
to when they are further apart and weakly coupled. For the weakly-coupled regime,
we demonstrated that the distance estimation of passive agents becomes unfeasible
quickly, as the underlying distance estimation degrades according to DEB ∝ d7

m,n with
dm,n as distance between an passive agent and active anchor. In contrast, the distance
estimation of active agents works well in this regime as they are less affected by the
increasing distances of the coils, i.e. DEB ∝ d4

m,n. For the strongly-coupled regime,
we also showed that the coils cause a mutual impedance detuning, which impairs the
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Figure 4.5: Intensity plot of the PEB and the DPEB ratio for varying agent positions and with the
fixed anchor placement of Fig. 4.3a. The anchors are represented by black circles and are not true to
scale. For visibility purposes, we have also cut off the color scale for DPEB ratios larger than 100.
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transmit power and power transfer, leading to a deterioration of the distance estima-
tion. For active agents in the weakly-coupled regime, we further characterized the
impact of practical system parameters such as the diameter of the involved coils and
offered a scaling factor as simple means to adjust the system design to ones individual
application requirements.

Additional investigations of selected network constellations revealed that MI local-
ization can be highly accurate if the following criteria are met simultaneously: (i) the
agent-anchor coupling has to be strong enough to not suffer from a drastic path loss,
but not so strong that the coils trigger a mutual impedance detuning, (ii) the anchors
need to provide orientational diversity to mitigate misalignment losses, and (iii) the
anchors need to be spatially distributed such that the obtained directional information
about the agent position is balanced. If practical limitations make these requirements
unattainable, MI localization systems quickly become inaccurate and unreliable.
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Chapter 5

Passive Relays and Relay-Aided
Localization

Note: Parts of this chapter have been published by us in [93]. This work hence exhibits
similarities regarding formulations and visualizations.

In this chapter, we propose the use of a new class of sensor nodes called passive
relays in order to enhance MI localization and to mitigate the issues described in
Sec. 4.5, namely the range limitation, the misalignment loss and the asymmetry of
directional information. These sensors are supposed to function as auxiliary nodes
that are ubiquitous within the network. To this end, they are always passive, i.e. they
do not require any sources. Moreover, their deployment is assumed to be known. Due
to their low hardware complexity, passive tags are cheap to produce and can easily be
distributed within a given area, e.g. as smart dust [31]. Passive relays have already
been studied for communication and WPT, e.g. in [19, 32, 122–125]. However, so far
their main use has been to increase channel gains to boost communication capabilities
either by providing orientational diversity or by establishing a waveguide effect. Yet,
such a waveguide effect requires specific alignments of all passive relays and simply
using arbitrary alignments can lead to a degradation of the channel [32]. Apart from
their beneficial impact on the channel gains, passive relays have also been studied
for a single agent-anchor coil pair in [31]. In this work it was shown in that using
passive relays which switch their loads can lead to independent measurements at the
anchor. This process in turn resolved position ambiguities of the agent and thus enabled
single-anchor localization. Except for these works, passive relays have not been studied
thoroughly for localization to the best of our knowledge.

The goal of this chapter is to show that passive relays can have further advantages
for localization, other than only providing stronger channel gains or enabling single-
anchor localization. More precisely, we want to show that they are well-suited to
balance the directional spatial information of the agents. In Sec. 5.1, we summarize
how to easily incorporate those type of sensors into our existing system model. In
Sec. 5.2 we analyze the impact of single passive relays on the coupling mechanisms by
simulation and explain how this in turn affects the localization. This study is then
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ZY,nY

coil antenna
switchable relay load

Z load
Y,nY

Figure 5.1: Circuit representation for a switchable passive relay coil.

extended to multiple passive relays for selected topologies to visualize all advantageous
localization effects of passive relays. In Sec. 5.3 we enhance the functionality of passive
relays and enable them to switch between multiple different states of their complex
loads. Based on this enhancement we propose multiple practical switching schemes.
We then compare how these switching schemes improve the localization accuracy and
range in arbitrary MI networks.

5.1 Incorporation of Passive Relay Coils

The equivalent circuit of a single passive relay nY is shown in Fig. 5.1. It consists of a
coil antenna represented by its complex impedance ZY,nY , a variable load and a switch.
The series impedance (of the switch and the actual load) takes on a finite value with
Re{Z load

Y,nY
} ≥ 0 for a closed switch and Z load

Y,nY
= Z∞ for an open switch.

We assume that all deployments of these new nodes are known and that we can
intentionally control whether to turn them on (closed switch) or off (open switch). Note
that the switch state off implies that no current flows in the respective relays, so they do
not impact the remaining network as long as their self capacitances can be neglected.
In contrast, all relays in the on state carry induced currents and therefore generate
additional fields, which alter the input currents seen at the anchors. Consequently, the
mere presence of the passive relays will affect the coupling impedance matrix ZC and
thus our anchor observations. As before, we can characterize the near-field coupling
between all agents, anchors and passive relays by a multiport (cf. Fig. 2.4), i.e. N =
NT +NR +NY with NY being the number of passive relays. Since the current-voltage
relationships at all passive ports are predetermined by their loads, all passive relay ports
can be collapsed to obtain a new coupling matrix Z̃C between agents and anchors, which
additionally incorporates the relays’ impact. More precisely, in case there are passive
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relays in the network, we have to extend the coil antenna impedance matrix to [28]




ZT
C:YTZC ZT
C:YR

ZC:YT ZC:YR ZC:Y


 ∈ CN×N . (5.1)

with analogous construction to ZC. The impedance matrix ZC:Y describes the relay
coupling while incorporating the inductive interactions caused by the self capacitances
of all coils. The transimpedance matrices ZC:YT and ZC:YR on the other hand char-
acterize the current-voltage relationships from the agents and anchors to the relays,
respectively. As described, the relationships of currents and voltages on the relays are
predetermined via their loads, the full impedance matrix of (5.1) can be collapsed to

Z̃C = ZC︸︷︷︸
direct path

−

 ZT

C:YT

ZT
C:YR



(
ZC:Y + Zload

Y

)−1 [
ZC:YT ZC:YR

]

︸ ︷︷ ︸
relay path

, (5.2)

with Zload
Y = diag

(
Z load

Y,1 , . . . , Z
load
Y,NY

)
being the load matrix. So Z̃C has the same di-

mensions as ZC and also describes the current-voltage relationships between agents and
anchors but now incorporates the full impact of all passive relays. In case passive relays
are present in the network, ZC can hence simply be replaced by Z̃C without otherwise
changing any of the previous formulations. The additionally required derivatives for
the estimation bounds are stated in Appendix A.

5.2 Localization Impact of Passive Relays for Se-
lected Topologies

In a first step, we analyze selected topologies comprising agents, anchors and passive
relays to develop intuition and to better understand the impact that resonant passive
relays have on MI localization and communication. For all simulations of this chapter
we use the system parameters stated in Tab. 4.1 and identical solenoid coils for all
nodes1. Further, for Sec. 5.2 the relays are always resonantly loaded. That is, the relay
switch is closed and the load itself is a capacitance with impedance Z load

Y,1 = −Im(ZY,1),
which makes the relay resonant at our operating frequency. In contrast, we consider
random topologies and possibly non-resonant relays in Sec. 5.3.

1If three-axis coils are considered, its subcoils are identical to these solenoid coils.
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5.2.1 Localization Impact of a Single Resonant Passive Relay

In a first step, we consider a coplanar clustered anchor scenario with NR = 5 anchors as
shown in Fig. 5.2. A single agent is fixed at a high distance from the origin and a single
relay is placed at a variable distance dTY from the agent, as indicated. Fig. 5.2e shows
that for distances larger than the one from the agent to point A (cf. Fig. 5.2a), the relay
has no relevant impact on the localization as the corresponding PEB remains constant.
In this regime and in Fig. 5.2a, we observe the same localization behavior as in Sec. 4.4
for clustered anchors, i.e. the radial direction (in this case px) can be estimated well
while the tangential direction (in this case py) is hard to estimate and dominates the
overall PEB. When the relay moves closer to the agent, the agent-induced relay current
increases and the relay in turn starts to contribute to the observed input currents at all
anchors. This effect is more intuitive when looking at the expression (5.2) for a single
agent-anchor pair in case only a single relay is present and all self capacitances can be
ignored:

Z̃C =

 RT + jωLT jωMTR

jωMRT RR + jωLR




︸ ︷︷ ︸
direct path

+ ω2

RY


 M2

YT MT
YTMYR

MT
YRMYT M2

YR




︸ ︷︷ ︸
relay path

, (5.3)

where we omitted the agent, anchor and relay numbers from the indices. The analogous
relay-incorporated transimpedance between agent and anchor is thus given by Z̃C:RT =
jωMRT + ω2

RY
MT

YRMYT (cf. (3.2)). If we further rely on the unilateral assumption
between agent and anchor in conjunction with ideal power matching, we obtain (cf.
(3.45))

gactive = hT = jωMRT√
4(RT + ω2M2

YT
RY

)(RR + ω2M2
YR

RY
)

︸ ︷︷ ︸
hdirect

+
ω2

RY
MT

YRMYT√
4(RT + ω2M2

YT
RY

)(RR + ω2M2
YR

RY
)

︸ ︷︷ ︸
hrelay

.

(5.4)

Since iinT = 1
2 gactive iT (cf. (3.44)), it is clear that the relay contribution to the

input currents at each uncoupled anchor is 90◦ phase-shifted compared to the direct
contribution of the agent. Moreover, the derivative of this contribution with respect
to the agent deployment depends heavily on the mutual inductance MYT between
agent and relay. As a result, additional spatial information is provided by the relay.
Furthermore, this spatial information is dominated by directional information in the py
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direction and thus manages to mitigate the deficiencies of the clustered anchor topology.
This effect improves the PEB and hence the RMSE, even without meaningfully affecting
the channel gains. This is further emphasized by Fig. 5.3, where we show the PTE ηT

from the agent to the centrally placed anchor2. For this plot, we enforce the unilateral
assumption and ideal power matching, such that (5.4) holds. We further partition this
PTE into the contribution from the direct path

∣∣∣hdirect
∣∣∣
2

and the relay path
∣∣∣hrelay

∣∣∣
2
.

Additionally, Fig. 5.3 also shows the transmit power of the corresponding agent |xT|2 if
no assumptions are being enforced. The closer the relay gets to the agent, the stronger
its contribution. As a result, the DPEB is almost perfectly balanced for dTR = 3 cm.
At point B (cf. Fig. 5.2b), the PEB is minimized and the DPEB ratio already started
to increase again, as the uncertainty in py direction is now even smaller than the one
in px direction. However, at this point, the relay is close enough to start impacting
the direct path, which is evident from the denominator of (5.4). As a result, the
PTE contribution of the direct path starts to decrease while the contribution of the
relay path continues to advance due to the ongoing increase of the mutual inductance
MYT. This impact can be observed for agent-relay distances between points B and
C (cf. Fig. 5.2c), for which the worsened direct contribution leads to a higher DPEB
in the px direction. For further decreasing agent-relay distances there is a noticeable
detuning of the agent impedances due to the presence of the relay. For these agent-relay
distances the transmit power |xT|2 decreases significantly and the ideal agent power
matching assumption that was necessary to derive (5.4) cannot be justified anymore.
This detuning via passive relays which are strongly coupled with the agent is what
we call proximity problem3 and it can nullify the beneficial impact of passive relays or
even be detrimental to the overall localization. Lastly, if more than one passive relay
is present, the relay contribution at each anchor is not necessarily 90◦ phase-shifted,
but may instead be represented by a complex phasor, as shown in [32]. The magnitude
and phase of this complex phasor depend on the specific network constellation and
it can reduce the PTE to all anchors, additionally to the degradation caused by the
impedance detuning [28]. Yet, while the PTE reduction via such a complex phasor
is detrimental for communications, it is intuitive that it may still provide additional
directional information of the agent and hence be beneficial for localization.

2Since the PTE for the SISO case is only based on the channel gain hT (cf. (3.38)), it is affected by
the passive relay’s contributions to the relay-incorporated impedance matrix Z̃C However, compared
to the overall receive power |yT|2 it does not change for a reduced transmit power |xT|2 which may
occur as a result of an impedance detuning on the agent side.

3Note that the proximity problem does not occur if ideal and adaptive power matching networks
are being used or if the current source is able to provide a constant current into the network.
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(d) Relay at point D.
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Figure 5.2: Localization impact of a resonant passive relay on a MI agent-anchor system for variable
agent-relay distances. The continuous evolution of the PEB and DPEB ratio are shown in Fig. 5.2e
and Fig. 5.2a to Fig. 5.2d show the corresponding network constellations and error ellipsoids for a few
selected agent-relay distances. The coils and DPEB ellipses are not true to scale for better visibility.
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Figure 5.3: Impact of a resonant passive relay on the PTE and transmit power for the link between
the agent and the centrally placed anchor of the MI system shown in Fig. 5.2.

Next, we study the impact that a passive relay has on a misaligned agent-anchor
pair. To this end we consider the setup shown in Fig. 5.4a, where an agent and anchor
are separated by a distance of dTR = 30 cm and are almost fully misaligned with
|JRT| = 0.008. Additionally, we place a passive relay on the line connecting agent and
anchor with a distance of dTY = 3 cm to the agent. In Fig. 5.4b and Fig. 5.4c we further
show how the DEB and PTE of this setup change for increasing rotation angles β of
the relay. We also show two reference cases NoRel and NoRelCopl, for which there is no
relay present. For the NoRel case the agent and anchor are aligned exactly as shown in
Fig. 5.4a, while for the NoRelCopl case the agent and anchor are in coplanar alignment
with |JRT| = 0.5. Comparing these two cases, which are clearly independent of the
relay rotation, highlights the drastic loss caused by the misalignment which degrades
both the DEB and the PTE. If instead a single solenoid relay is present (case sol), we
see periodic improvements of DEB and PTE. These improvements follow from the relay
contribution (cf. (5.4)), which bridges the misalignment between agent and anchor and
hence benefits both communication and localization. The solenoid relay contribution
shows the optimal improvement at roughly β = 45◦ + z · 90◦ with z ∈ Z, i.e. if the
relay is equally misaligned from agent and anchors. For these optimal rotations of the
relay, the PTE is still lower compared to the NoRelCopl case. Yet, the DEB with an
optimally rotated relay even exceeds that of the NoRelCopl case, due to the additional
spatial information obtained via relay contribution. In contrast, at β = z ·90◦ the relay
is either aligned with the anchor or approximately aligned with the agent and cannot
properly mitigate their misalignment. An alignment of relay and anchor does not affect
the transmit power or PTE due to a weak coupling between agent and relay, but leads
to a minor relay contribution and hence minor improvement of the DEB. If the relay
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5 Passive Relays and Relay-Aided Localization

is however aligned with the agent, it reduces the PTE slightly but does not provide
a beneficial relay contribution at the anchor. Overall, it hence even leads to a minor
degradation of the DEB compared to the NoRel case. Lastly, we also analyze the case
3ax for which the resonant solenoid relay is replaced with a resonant three-axis relay
(cf. Fig. 2.2). Interestingly, we observe that the impact of this three-axis coil is (i)
independent of its rotation and (ii) does not drastically improve the DEB or PTE. This
effect is better understood if we again look at expression (5.2) for this agent-anchor
pair when only a single three-axis relay is present and in case the self capacitances can
be ignored:

Z̃C =

 RT + jωLT jωMTR

jωMRT RR + jωLR




︸ ︷︷ ︸
direct path

+ ω2

RY


 ∥mYT∥2 mT

YTmYR

mT
YRmYT ∥mYR∥2




︸ ︷︷ ︸
relay path

, (5.5)

with mYT = [MY1T,MY2T,MY3T]T and mYR = [MY1R,MY2R,MY3R]T as respective
mutual inductance vectors from the agent and anchor to all identical and uncoupled
subcoils of the three-axis relay. Relying on the unilateral assumption and ideal power
matching leads to

gactive = hT =
jωMRT + ω2

RY
mT

YRmYT√
4(RT + ω2∥mYT∥2

RY
)(RR + ω2∥mYR∥2

RY
)
. (5.6)

Yet, from (2.4) we find that

mT
YRmYT = KDip

YRK
Dip
YT

d3
YRd

3
YT

oT
RFYR

I3︷ ︸︸ ︷
OYOT

Y FYT oT , (5.7)

∥mYR∥2 = (KDip
YR )2

d6
YR

oT
RF2

YRoR , ∥mYT∥2 = (KDip
YT )2

d6
YT

oT
TF2

YToT , (5.8)

which means that the channel gain and current gain are independent of the resonant
three-axis relay’s orientation. Moreover, for the specific selected topology of Fig. 5.4a
it further holds that mT

YRmYT ∝ oT
RFYRFYT oT ≈ 0, so the channel gain and current

gain are only affected by the three-axis relay via their denominator and in turn only
minor changes of the DEB and PTE are induced. Note that even for random topologies,
the impact of a single three-axis relay remains independent of its orientation. Yet, in
general mT

YRmYT ̸= 0 even if agent and anchor are fully misaligned, so a three-axis
relay would normally benefit agent-anchor misalignments. The case mT

YRmYT = 0
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Figure 5.4: Almost fully misaligned agent-anchor pair (JRT ≈ 0.01) with a rotating passive relay
inbetween. Fig. 5.4b and Fig. 5.4c show the DEB and PTE for increasing rotation angles of the relay
and different cases: NoRel and NoRelCopl have no relay present but in the latter case the agent and
anchor are in coplanar alignment. For sol and 3ax the resonant relay uses has a solenoid antenna or
a three-axis antenna, respectively. The distances and coils of Fig. 5.4a are not true to scale for better
visibility.

only occurs for specific geometric structures, e.g. if the three-axis relay is placed on
the line connecting agent and anchor, which leads to FYR = FYT = FTR, while agent
and anchor are also misaligned.

5.2.2 Localization Impact of Multiple Resonant Passive Re-
lays

Another interesting effect that can be created by using passive relays is that of a
waveguide. Such a waveguide can be helpful if the link between agent and anchor
is weak due to a large separation between the coils. In Fig. 5.5a we show a coplanar
waveguide for a single agent-anchor pair, which is separated by a distance dTR = 30 cm.
The waveguide comprises a variable number NY of passive relays, which are all aligned
identically and placed equidistantly on the line between the agent and anchor with
deq = dTR

NY+1 . We distinguish between a coplanar and coaxial alignment of all involved
coils and show the corresponding DEB and PTE in Fig. 5.5b and Fig. 5.5c, respectively.
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For the coplanar alignment, we see that withNY ≤ 5 there is almost no impact on either
DEB or PTE as the passive relays are too far apart to couple well. For 5 < NY ≤ 17
we observe an overall decline of the DEB despite a decreasing PTE. For NY > 17 the
waveguide takes full effect and the PTE increases drastically, which further reduces the
DEB. Finally, at NY = 29 the DEB is almost three orders of magnitude lower compared
to the case without passive relays and the PTE is roughly 40 dB higher. Additionally,
we see that at NY = 17, when the PTE switches from a decreasing to an increasing
behavior, there is a local maximum of the DEB. At this point the contribution of the
passive relays (cf. (5.2)) overtakes the one of the direct path (not shown). Another
local maximum is evident at NY = 26. For the coaxial alignment, we observe a similar
behavior, however due to the stronger coupling the same effects occur for a lower
number of relays and the overall performance gains are more significant. When ignoring
all self capacitances for this equidistant waveguide, we obtain (cf. (2.14))

ZC:Y + Zload
Y = diag(RY,1, . . . , RY,NY) + jωKDip

YY JYY(deq)−3 ·T , (5.9)

where T is a real symmetric Toeplitz matrix of size NY × NY with its first row given
by [T]1,: = [0, 1, 1

8 ,
1
27 , . . . ,

1
(NY−1)3 ]. The inter-relay coupling is hence more intricate

compared to the previous topologies of Sec. 5.2.1. Moreover, the relay impact on the
observed input currents and possibly occuring resonance effects depend on the inverse
of ZC:Y + Zload

Y (cf. (5.2)). For reasonably large numbers of passive relays, their impact
hence cannot be described in closed form to the best of our knowledge.

In summary, the study of selected topologies shows that well-placed passive relays
affect MI links on multiple levels and can be highly beneficial for localization. They
can increase the PTE either by establishing a waveguide effect or by counteracting
severe agent-anchor orientation misalignments. Moreover, we see that even when not
increasing the PTE, well-placed passive relays are capable of providing crucial direc-
tional spatial information. However, if they get too close to the agent they trigger the
proximity problem by detuning the impedance of the agent coil. This effect can make
passive relays obsolete if it is not addressed appropriately.

5.3 Load Switching of Passive Relays

As indicated by Fig. 5.1, we want to enhance the functionality of passive relays by
enabling them to switch their load, e.g. to reduce their impact on the network if they
start to trigger the proximity problem. Moreover, with this notion of switchable passive
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Figure 5.5: Agent-anchor pair with a well-aligned chain of equidistant passive relays inbetween.
Fig. 5.4b and Fig. 5.4c show the DEB and PTE for increasing numbers NY of equidistant passive
relays and different alignments of all coils: For coplanar and coaxial cases, all coils are placed in
coplanar or coaxial alignment, respectively. The distances and coils of Fig. 5.5a are not true to scale
for better visibility.
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relay coils, we can generate a sequence of different current measurements at the anchors
by sequentially putting different sets of passive relays into the on state or by adjusting
their variable load capacitance. The entire process of switching different relays on and
off is what we call load switching. We refer to a specific set of activated passive relays
(with possibly different load values) that is used for a single measurement as load
state. We further enumerate the load states used to estimate one static agent position
by k = 1, ..., NK , so each load state has an individual load impedance matrix (Zload

Y )k

that leads to a possibly distinct measurement of input currents. We assume that the
noise of these individual observations is statistically independent, e.g. due to a sufficient
time delay between measurements. As a result, the additivity of Fisher information
applies and the calculation of the previously introduced bounds is straightforward
according to (3.51). Passive relays which are capable of switching their load hence
allow for multiple independent measurements which each provide possibly different
directional information on the agents deployment. Overall, this simple concept may
hence be a viable tool to amplify the beneficial localization impact of passive relays
while mitigating adverse effects such as the proximity problem.

Before investigating the benefits of load switching, we distinguish between multiple
empirically chosen options for relays and their switching protocols, as opposed to using
no relays at all (NoRel).

All Relays (AllRel): In the simplest case, all relays are individually loaded to
be resonant at the desired operating frequency during all measurement times k. For
NK = 1, this option coincides with our previous investigation and may easily lead to
the proximity problem described above. This relay realization is purely passive, i.e.
the relays do not require a variable load capacitance or a switch.

No Proximity (NoProx): This option is closely related to the AllRel option since
most relays are simply resonantly loaded during all measurement times k. However,
relays which couple strongly with the agent automatically open their load switch such
that they are open-circuited and have almost no impact on the channel. In our simu-
lative analysis, we realize this option by setting Z load

Y,nY
for all passive relays nY which

have a center distance of less than 2Dcoil to any agent coil.

Frequency Selection (FreqSel): With this option, all relays are loaded the same
way as for the AllRel case. Yet, for the given system parametrization and design
frequency fdes, a frequency sweep is performed and the operating frequency f̂ which

62



5.3 Load Switching of Passive Relays

yields the lowest PEB is selected. As this approach requires knowledge of the full
system constellation, it is unfeasible for practical applications. Nevertheless, it can be
helpful to assess the frequency-selective behavior of the localization that may occur
as a result of the passive relays. That is, the close proximity of multiple passive tags
may shift the overall resonance frequency. Being able to e.g. select this new resonance
frequency allows for higher channel gains and may also be beneficial for the obtained
PEB.

Binary Load Switching (Binary): Another implementation considers all relays to
be resonantly loaded but their switches to possibly change between the on and off state
for each different measurement time k. As a result, this approach enables to conve-
niently and beneficially combine FIMs that are problematic if considered individually,
due to having high DPEB ratio. As an example, let us consider Fig. 5.2d. We see that
the directional information provided is drastically skewed to the py direction. However,
if the relay is deactivated the directional information is heavily skewed towards the px

direction. Combining both measurements hence leads to a more balanced directional
position error ellipsoid and a significantly lower PEB. Yet, for a given relay deployment,
the optimal load states in general depend on the (unknown) agent deployments. This
chicken-and-egg problem of finding the optimal load states can practically be relieved
if a coarse estimate of the agent deployment is available (e.g. from an initial estimate
with all relays active or from other previous estimates), as the optimal load state is
quite robust to small agent displacements. Yet, in this work we simply select the binary
load states of all relays via genetic algorithm (GA) that is assumed to know the agent
deployment and whose goal it is to minimize the PEB for a given setup. The result may
hence be optimistic compared to a realistic approach which relies on a coarse initial
estimate.

Variable Load Switching (Variable): The last implementation is chosen as in [28].
It realizes the variable load capacitance of any relay by combining NC + 1 parallel
capacitors CnC

each with an individual switch snC
∈ {0, 1} and nC = 0, 1, . . . , NC .

The overall capacitance hence follows as Ctot = ∑NC
nC=0 snC

CnC
. The first capacitors

C0 is chosen such that it enables an individual relay to realize a resonance frequency
which is at most 10 % higher than the operating frequency. The remaining capacitors
C1, . . . , CNC

have the same ratios as the first NC prime numbers and the maximum
load capacitance (i.e. all capacitors switches are closed, so Ctot = ∑NC

nC=0 CnC
) yields a

resonance frequency that is 10 % lower than the operating frequency. The optimization
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5 Passive Relays and Relay-Aided Localization

of each relay load is managed analogously to the Binary load switching case but clearly
has a higher dimensionality. In neither case do we claim that the deployed genetic
algorithms achieve optimality.

5.4 Localization Performance for Random Relay
Topologies

In a next step, we compare the proposed switching patterns and examine whether
they are capable of bringing the benefits of passive relays to arbitrarily arranged MI
networks. To this end, we look at the three-dimensional network constellation shown
in Fig. 5.6a. The agent and anchor positions are fixed, whereas the NY = 40 passive
relays are all uniformly distributed within a sphere centered at the agent, which has a
10 cm diameter. Equivalently, we can express the combination of these two parameters
as relay density ρY = 6.4 %, which corresponds to the probability that a random point
within the sphere also lies within the cylindrical volume of any relay. The orientation
vectors of all coils are again uniformly random points on the unit sphere. For this clus-
tered anchor scenario, we compare the different load switching algorithms with NK = 2
allowed load states and NC = 10 parallel capacitors for the Variable switching. For the
subsequent analyses, we switch from using the PEB as key performance indicator to a
standardized version ĘPEB =

√
NK PEB. This standardized version is not affected by

the noise averaging effect. If the load states do not change, it hence remains constant
regardless of the number of used load states NK and thus allows a fair comparison, e.g.
between the NoProx and the Binary approach. The resulting empirical Cumulative
Distribution Functions (CDFs) of this standardized PEB, the corresponding DPEB
ratio, the PTE ηT per load state, and the receive power ∥yT∥2 per load state are given
in Fig. 5.6b, Fig. 5.6c, Fig. 5.6d, and Fig. 5.6e, respectively.

We find that with respect to the median performance, the case without relays yields
the worst results with a median standardized PEB of about ĘPEB = 2 cm. In compar-
ison, the options that do not require a further switching of the relay loads all show
a similar standardized PEB of roughly ĘPEB = 1.2 mm and hence improve the local-
ization by almost an order of magnitude. We also observe the about 5 % to 10 % of
network constellations result in outliers for the AllRel and FreqSel options. The cor-
responding degradation of the standardized PEB is even worse than the performance
obtained with the NoRel option. As intended, these outliers can be successfully mit-
igated by deploying the NoProx option. Lastly, we find that both options that allow
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for a switching of the relay loads, namely Binary and Variable, further improve the
performance and yield a median standardized PEB of approximately ĘPEB = 0.35 mm.
These options also clearly reduce the standard deviation, which indicates an increased
reliability of the system. Moreover, we presume that the slight performance advantage
of the Binary options compared to the Variable is the result of the latter no being
able to make the passive relays resonant at the exact design frequency, due the limited
number of available capacitors. Looking at the DPEB ratios in Fig. 5.6c, we observe
a similar hierarchy, although the improvements are numerically not as distinct as for
the standardized PEBs. However, due to the associated localization improvements
for options with passive relays, we assume that observed asymmetry of the DPEBs
in these cases often stems from too much information in one direction, as opposed to
having too little information in another direction. Moreover, examining the PTE of
the channel in Fig. 5.6d, we find that with exception of the FreqSel option the relays
do not have any relevant impact on this quantity. The decrease of the PTE for the
FreqSel option is a result of the impaired power matching networks on the anchor side
at frequencies other than the design frequency. Overall, the plot highlights that the
contribution of all passive tags on the transimpedance matrix does not increase the
PTE in a statistically significant manner. Moreover, the operating frequencies which
minimize the PEB, do not coincide with those operating frequencies which maximize
the PTE between agent and anchors or the receive power. For the FreqSel option, this
is further emphasized by Fig. 5.7, which shows the empirically estimated PDFs of the
selected frequency which either minimizes the PEB, maximizes the PTE or maximizes
the received sum power. While the latter two quantities exhibit a symmetric PDF
centered at the design frequency, the PDF for the frequency that minimize the PEB
is shifted to the lower frequencies. Moreover, the selected frequency for the minimal
PEB only coincided with the other selected frequencies for the PTE and receive power
in 7 % of all random realizations (not shown). Lastly, examining Fig. 5.6e, we find
that the receive power is negatively affected for the FreqSel option for the above stated
reasons and also for the AllRel option as a result of the known proximity problem. The
other options however consistently mitigate the proximity problem to yield a low PEB
while maintaining approximately the same receive sum power as the option without
any relays.

The previous investigation showed that even for random network constellations,
passive relays do improve the localization capabilities of a system if many of them
are in close vicinity to the agent. The extent of this improvement can be further
influenced drastically with well-suited load states. However, their beneficial impact
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Figure 5.6: Statistical comparison of different load switching algorithms for a three-dimensional clus-
tered anchor scenario with NY = 40 passive relays randomly distributed close to the agent. All coil
orientations are uniformly random points on the unit sphere.
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Figure 5.7: Probability density estimates of the selected operating frequency when deploying the
FreqSel option for the network constellation of Fig. 5.6a with different figures of merit.

requires knowledge of each relay’s deployment vector, which can be hard to obtain
in a practical setting. In a next step, we hence study how the beneficial impact of
the relays depends on the number of relays and load states. To this end, Fig. 5.8a
shows the standardized PEB for the previous network constellation with a changing
number of relays or equivalently, a varying relay density. To improve the visibility,
we omit the results of the FreqSel and Variable options, which are almost identical to
those of the AllRel and Binary options, respectively. We find that for NY = 1 relay,
the different options yield comparable results, which implicates that a single relay is
almost always activated as it is unlikely in the agent’s direct proximity. For more
relays, sophisticated switching of the load states via Binary option consistently leads
to an improved median standardized PEB as well as an improved interdecile range.
That is, the median standardized PEB appears to roughly scale with ĘPEB ∝ N−1

Y . In
comparison, the AllRel and NoProx options scale approximately with ĘPEB ∝ N

− 1
2

Y but
show diminishing returns for an increasing number of relays and fall almost an order
of magnitude short at NY = 100. Yet, while the median performance between the
AllRel and NoProx options only show minuscule differences, we find that the NoProx
options offers a severe robustness gain as indicated by the difference of the interdecile
ranges. Also note that from Sec. 4.3 we saw that for a distributed anchor scenario the
number of anchors only affected the PEB according to PEB ∝ 1

N2
R

via noise averaging
effect. This effect occurred after a certain threshold of anchors was met and new
anchors were unable to obtain additional directional or spatial information. We suspect
that this behavior also holds for a clustered anchor scenario, where additional anchors
cannot compensate the lack of directional information in specific directions. For these
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5 Passive Relays and Relay-Aided Localization

scenarios, using a large number of randomly deployed passive relays shows to be a
simple way to improve the localization.

Next, we also visualize the impact of the number of load states NK in dependence
of the number of relays NY for the same network constellation via intensity plots in
Fig. 5.8b and Fig. 5.8c. More precisely, the intensity plots show the resulting median
standardized PEB and median DPEB ratio for different parameter choices when the
Binary option is used. The second row of Fig. 5.8b is hence identical to the solid
green line of Fig. 5.8a. Surprisingly, we observe that the number of load states plays a
subordinate role compared to the number of relays. Moreover, while allowing for NK =
2 load states leads to minor improvements, any further increase does not significantly
impact the median standardized PEB or the median DPEB ratio. We assume that
this behavior is a result of the random network constellation. More specifically, the
example of Fig. 5.2d, which was mentioned when the Binary option was introduced,
is unlikely to occur for random network deployments. So while there theoretically are
constellations for which additional load states are highly beneficial, the chance of those
constellations actually occurring in random constellations is evidently low. As a result,
load-switching over multiple load states may not always be a worthwhile endeavor,
especially when considering the additional increase in hardware complexity that comes
with this operation. As demonstrated in [65], we hence see its main benefit as providing
multiple independent observations if only an insufficient number of anchors is located
in range of the agent.

5.4.1 Range Extension with Randomly Placed Passive Relays

So far, we have used the PEB as performance indicator since it reflects the potential
localization accuracy. Yet, we have not considered the overall supportable range of a
system, which is another important performance indicator for MI systems in practice.
That is, it may not be necessary to decrease the PEB by orders of magnitude for a given
distance, but rather to consistently uphold a certain PEB and making sure that it does
not surpass a given threshold, even if a sensors moves further away from the anchors.
In Fig. 5.9a we show a coplanar setup similar to that of Fig. 5.6a but now for increasing
distances dTR between the agent and the centrally located anchor. Additionally, we
place NY = 100 passive relays uniformly random within the depicted rectangle and in
a coplanar alignment. The corresponding standardized PEB, DPEB ratio, and PTE
are shown for selected load switching schemes in Fig. 5.9b, Fig. 5.9c, and Fig. 5.9d,
respectively. It is evident that the beneficial impact of the passive relays on the PEB
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Figure 5.8: Impact of the number of relays NY, the number of load states NK and selected load-
switching options on the standardized PEB. The network constellation is chosen randomly as in
Fig. 5.6a.
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increases over distance both for the NoProx and Binary scheme. In constrast, the PTE
is degraded for both schemes, i.e. no waveguide is established. Regarding the DPEB
ratio, we find that without relays there is a steep decrease when the agent leaves the
immediate vicinity of the anchors, followed by a continuous increase of the DPEB ratio,
which is consistent with our observations from Sec. 4.4. In comparison, the NoProx
and Binary options quickly accomplish to decrease the median DPEB ratio to roughly
DPEB ratio ≈ 5 and DPEB ratio ≈ 2, respectively. For the Binary scheme, this DPEB
ratio is upheld as long as the agent is placed within the coverage area of the relays.
Moreover, while the NoProx does not manage to fully upheld the reduced DPEB ratio,
it drastically slows its increase with distance. For a PEB = 1 cm threshold, these effects
allow for a range extension from 30 cm to either roughly 50 cm (NoProx) or roughly
90 cm (Binary). When the agent leaves the field of relays, the impact quickly subsides
and at dTR = 1.1 m no more beneficial impact can be observed.

5.5 Conclusions

We studied the use of passive relays (resonantly loaded coil antennas) as auxiliary
nodes to improve the accuracy, range and robustness of MI localization. In this pro-
cess, we showed that a passive relay provides an additional signal path from an agent
to an anchor. Via this additional contribution, a well-placed passive relay can provide
additional directional information about the agent position. As a result, a single pas-
sive relay is capable of decreasing the PEB by more than an order of magnitude for
clustered anchor constellations. Moreover, for selected placements we demonstrated
that passive relays can also increase the PTE from the agent to anchors either by
bridging misalignments of the coils or by establishing a waveguide effect. Yet, if the
passive relays couple too strongly with agents or anchors, they trigger the same mutual
detuning of the coil impedances that was already observed for agent-anchor pairs in
Sec. 4.1 and can deteriorate the PTE, the transmit power, and the PEB. This adverse
proximity problem can be mitigated by extending the functionality of the passive relays
and enabling them to switch between different loads. With this extension, we further
demonstrated that the improved localization accuracy and range offered by well-placed
passive relays can also be obtained via arbitrarily-placed swarms, if a sufficient number
of passive relays is present.
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Figure 5.9: Range Extension study for a coplanar setup with uniformly random placement of NY = 100
passive relays. The standardized PEB, the DPEB ratio and the PTE are shown for increasing agent-
anchor distances dTR and selected load switching schemes.
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Chapter 6

Cooperative Localization

Note: Parts of this chapter have been published by us in [92]. This work hence exhibits
similarities regarding formulations and visualizations.

As demonstrated in Cpt. 5, passive relays are a powerful means to mitigate inherent
issues of MI networks and thus improve the localization accuracy and range. Yet, for
them to be useful they need to have a sufficient coupling with the agents, which either
requires them to be in close proximity or for the coils to have high quality factors. It
is furthermore imperative to know the relay deployment, which may be unfeasible for
some practical settings. In this chapter, we will hence investigate cooperation of agent
nodes as an alternative means to deploying passive relays. Throughout this chapter,
we again assume to fully know the deployment of the anchors, whereas the deployment
of all agents is unknown. Further, we now consider sensor nodes which comprise either
a solenoid coil or a three-axis coil (cf. Sec. 2.2).

In non-cooperative localization networks, the agents are typically active nodes that
independently transmit a pilot signal to all anchors. The anchors then forward all re-
ceived signals to a central unit, where they are combined in order to localize each agent
individually. However, for our definition of cooperation we rely on a different working
principle, which requires a full mesh of all the nodes in the network. That is, we as-
sume that an agent also has the capability to receive the pilot signals of other agents,
extracts relevant information from these signals, and then forwards this information
(added with the corresponding agent ID) to an anchor during its next own commu-
nication session. This would ultimately lead to the central unit having information
on all inter-node signals. Compared to the traditional non-cooperative scenario, the
localization does thus not only rely on the knowledge of the agent-anchor channels, but
can also incorporate the information of all agent-agent channels. Alternatively, coop-
erating agents may thus also be interpreted as anchors with an unknown deployment.
This concept originates from traditional radio and has been investigated thoroughly,
e.g. for UWB technology (cf. [126–128]) or 5G networks (cf. [129]), where an improved
localization accuracy and robustness were identified as key benefits. While cooperative
localization has not been studied for MI networks so far, we expect it to be particularly
advantageous as it (i) generally increases the number of independent observations, (ii)
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can exploit short inter-agent distances that are associated with a strong channel gain,
(iii) counteract misalignments of agent-anchor observations, and (iv) may generally
provide further directional information to balance the DPEBs via inter-agent links.

6.1 Weakly-Coupled Channel Gain and Noise
Model

In the course of this chapter, we will use m = 1, . . . ,M as index that is exclusively
used to denote the agents and n = 1, . . . ,M, . . . ,M + N as index that describes both
agents and anchors. This distinction is an important change compared to the notation
used in previous chapters. Moreover, as we will limit the analyses to strictly active
agent nodes without the presence of passive relays, we do not require the nodes to
be strongly coupled or in close proximity for localization purposes. We hence apply a
minimum distance constraint between any pair of nodes that allows us to simplify the
more complex system model from Sec. 3.1. That is, we assume all links (even agent-
agent or anchor-anchor links) to be weakly coupled in conjunction with the unilateral
assumption, ideal power matching and the magnetic dipole approximation for all coils
(cf. Sec. 3.3.3). As a result, the channel gain for each SISO coil pair m,n is given by
(cf. (2.3) and (3.45))

hT = hm,n = jωMm,n√
4RmRn

= jam,n

d3
m,n

oT
m

(3
2um,nuT

m,n −
1
2 I3

)
on , (6.1)

with am,n = ωKDip√
4RmRn

. We can further extend this complex scalar channel gain to the
full channel matrix Hm,n ∈ C3×3 between a three-axis coil pair via (2.4), which leads
to

Hm,n = jam,n

d3
m,n

OT
m

(3
2um,nuT

m,n −
1
2 I3

)

︸ ︷︷ ︸
Fm,n

On . (6.2)

Note that the orientation matrices Om and On coincide with the rotation matrix def-
inition of (A.18) and can hence be fully expressed by the three Euler angles of the
corresponding coil.

The measured received signal ymeas
m,n comprising the thermal noise and LNA noise

74



6.1 Weakly-Coupled Channel Gain and Noise Model

then follows as

ymeas
m,n = hm,n xm,n + wm,n

∗= hmeas
m,n , (6.3)

with wm,n
i.i.d∼ CN (0, σ2

sol) and σ2
sol = kBTB + (σLNA)2

4

(
(RLNA)2

Rref +Rref − 2RLNARe(ρLNA)
)
.

This signal-based representation is equivalent to our previous current-based model
up to a scaling factor of

√
Rref . Moreover, as we assume ideal power matching the

transmit signal xm,n does not depend on the network constellation and we can choose
xm,n = 1 for mathematical convenience, which leads to equality in second part of
(6.3). As a result, the receive signal is equal to the noisy channel gain hmeas

m,n of
the corresponding coil pair. Next, if we operate each transmitting subcoil of each
three-axis coil in a time multiplexed fashion, the analogous representation for the
noisy MIMO observations is given by

Hmeas
m,n = Hm,n + Wm,n , (6.4)

with [Wm,n]k,l
i.i.d∼ CN (0, σ2

3ax) where k, l are the indices of the corresponding subcoils.
Lastly, we choose σ2

3ax = 3σ2
sol to counterbalance the difference in transmit power

between a solenoid and a three-axis coil.

For our proposed application, we collect a multitude of these noisy channel gains
or channel matrices in a set and combine them to estimate all agent positions. For
the non-cooperative scenario, we only obtain channel measurements that correspond
to agent-anchor links, whereas for the cooperative case we additionally have the agent-
agent channel measurements, i.e.

HNonCoop
3ax =

{
Hmeas

m,n | m ∈ {1, . . . ,M}, n ∈ {M + 1, . . . ,M +N}
}
, (6.5)

HCoop
3ax =

{
Hmeas

m,n | m ∈ {1, . . . ,M}, n ∈ {1, . . . ,M +N} \ {m}
}
, (6.6)

or equivalently when considering a setup that exclusively uses solenoid coils

HNonCoop
sol =

{
hmeas

m,n | m ∈ {1, . . . ,M}, n ∈ {M + 1, . . . ,M +N}
}
, (6.7)

HCoop
sol =

{
hmeas

m,n | m ∈ {1, . . . ,M}, n ∈ {1, . . . ,M +N} \ {m}
}
. (6.8)

As described in Sec. 2.2, the full placement and orientation of each coil n is given by
the six-dimensional deployment vector ψn. However, we established via (2.3) that the
last orientation parameter γ around a solenoid’s cylindrical main axis has almost no
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impact on the measurements and its estimation was not necessary. For three-axis coils
this is not the case as the rotation around any axis affects all of its solenoid subcoils
jointly and has a relevant impact on the measurement. To ensure that this distinction
is clear, we use different subscripts sol and 3ax, if the affiliation of any variables is not
directly clear from the setting. That is, for the deployment vectors we e.g. distinguish
between (ψψψm)sol = [pT

m, αm, βm]T for the solenoid case and (ψψψm)3ax = [pT
m, αm, βm, γm]T

for the three-axis case.

6.2 Position Error Bounds

In order to compare cooperative and non-cooperative localization for MI systems, we
will adjust the earlier definition of the PEB from Sec. 3.4 in this section. Since all
nodes are ideally power matched, it follows that K ∝ IN for the non-cooperative case
and K ∝ IM+N−1 for the cooperative case (cf. (3.22)). As a result, the elements of the
cooperative FIM follow from (3.49) and (3.51) as summation over all available channel
gain derivatives, e.g. for solenoid coils as

[IIICoop]i,j = 2
σ2

sol
Re




M∑

m=1

M+N∑

n=1
n̸=m

∂hH
m,n

∂[Ψ]i
∂hm,n

∂[Ψ]j


 . (6.9)

However, for any deployment variable [Ψ]i which does not belong to the agent m, it is
clear that ∂hH

m,n

∂[Ψ]i = 0. Limiting the derivatives to ∂hm,n

∂[ψm]i and ∂hm,n

∂[ψm]j instead hence allows
us to drop the first summation (cf. (6.11) and (6.12)). Moreover, if [Ψ]i belongs to
agent m and [Ψ]j belongs to a different agent n ∈ {1, . . . ,M} \ {m}, then there is only
one single channel gain which yields non-zero results, namely the one between agent
m and agent n, i.e. Re

(
∂hH

m,n

∂[ψm]i
∂hm,n

∂[ψn]j

)
̸= 0 (cf. (6.13)). Thus, only considering non-zero

blocks of IIICoop, we employ the established block matrix form [118,128]

IIICoop =




N1 + C1,1 C1,2 · · · C1,M

C2,1 N2 + C2,2 · · · C2,M

... ... . . . ...
CM,1 CM,2 · · · NM + CM,M



, (6.10)
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where the elements of each individual 5× 5 submatrix for the solenoid case are found
as (cf. [115], (3.50))

([Nm]i,j)sol = 2
σ2

sol

M+N∑

n=M+1
Re
(
∂hH

m,n

∂[ψm]i
∂hm,n

∂[ψm]j

)
, agent

m → anchor
M+1≤ n ≤M+N , (6.11)

([Cm,m]i,j)sol = 2
σ2

sol

M∑

n=1
n̸=m

Re
(
∂hH

m,n

∂[ψm]i
∂hm,n

∂[ψm]j

)
, agent

m → agents
1≤ n ≤M , (6.12)

([Cm,n]i,j)sol = 2
σ2

sol
Re
(
∂hH

m,n

∂[ψm]i
∂hm,n

∂[ψn]j

)∣∣∣∣∣
n∈{1,...,M}\{m}

, agent
m → agent

n , (6.13)

with i, j ∈ {1, . . . , 5}. The diagonal blocks Nm account for the measurements from
agent m to all anchors, whereas the diagonal blocks Cm,m account for all inter-agent
measurements of this agent, in case the other agents act as anchors. However, as their
deployment is unknown, this uncertainty in their function as anchor is expressed by
the off-diagonal blocks Cm,n. For three-axis coils the FIM has the same structure as in
(6.10) and the scalar elements of the individual 6× 6 sub matrices follow analogously
as

([Nm]i,j)3ax = 2
σ2

3ax

M+N∑

n=M+1
tr
(
∂HH

m,n

∂[ψm]i
∂Hm,n

∂[ψm]j

)
, (6.14)

([Cm,m]i,j)3ax = 2
σ2

3ax

M∑

n=1
n ̸=m

tr
(
∂HH

m,n

∂[ψm]i
∂Hm,n

∂[ψm]j

)
, (6.15)

([Cm,n]i,j)3ax = 2
σ2

3ax
tr
(
∂HH

m,n

∂[ψm]i
∂Hm,n

∂[ψn]j

)∣∣∣∣∣
n∈{1...M}\{m}

, (6.16)

with i, j ∈ {1, . . . , 6} and where we used vec
(

∂Hm,n

∂[ψm]i

)H
vec

(
∂Hm,n

∂[ψm]j

)
= tr

(
∂HH

m,n

∂[ψm]i
∂Hm,n

∂[ψm]j

)
.

The required derivatives of the channel matrices are a straight-forward extension from
the scalar case.

Consequently, in the cooperative case, the PEB of the first agent (m = 1) is given
by

PEBCoop
1 =

√
tr
([(
IIICoop

)−1
]

1:3,1:3

)
. (6.17)

By adjusting the indexing, the cooperative PEB of any other agent m can be calculated
analogously. However, the PEB of any such agent would be statistically identical to
that of agent 1, since all agent deployment vectors are i.i.d. random vectors. Our
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6 Cooperative Localization

specific choice does therefore not affect the generality.

Lastly, for the non-cooperative case it holds that Cm,n = 000 = Cm,m, so
(IIINonCoop)−1 = diag(N−1

1 , . . . ,N−1
m ) and the PEB of each agent only relies on its cor-

responding non-cooperative diagonal block, i.e.

PEBNonCoop
1 =

√
tr
([

N−1
1

]
1:3,1:3

)
. (6.18)

6.3 Cooperative and Non-Cooperative Deployment
Estimators

Compared to the studies of Cpt. 4 and Cpt. 5, we will also provide three different practi-
cal approaches to obtain estimates of the agents’ deployment vectors for either solenoid
or three-axis coils. These approaches are based on (i) a numerical Least-Squares (LS)
estimation, (ii) a pairwise ML distance estimation with subsequent position estimation,
and (iii) a combination of both.

6.3.1 LS Estimation

Having a statistical model for our observations (cf. (6.4)), the straightforward approach
to estimate all agent deployments would be via joint ML estimator, which in our
Gaussian case coincides with the joint LS estimator. For a cooperative system, this is
given by the 5M -dimensional or 6M -dimensional nonlinear LS problems

(ψ̂1, . . . , ψ̂M)Coop
3ax = arg min

(ψ1,...,ψM )3ax

M∑

m=1

M+N∑

n=1
n̸=m

∥∥∥Hmeas
m,n −Hm,n

∥∥∥
2

F
, (6.19)

(ψ̂1, . . . , ψ̂M)Coop
sol = arg min

(ψ1,...,ψM )sol

M∑

m=1

M+N∑

n=1
n̸=m

∣∣∣hmeas
m,n − hm,n

∣∣∣
2
, (6.20)

where Hm,n and hm,n are functions of ψm and ψn if n ∈ {1, . . . ,M} (agent-agent link)
or functions of just ψm if n > M (agent-anchor link with known anchor parameters).
For the non-cooperative scenario, the problem can be decomposed into M individual

78



6.3 Cooperative and Non-Cooperative Deployment Estimators

five-dimensional or six-dimensional nonlinear LS problems:

(ψ̂m)NonCoop
3ax = arg min

(ψm)3ax

M+N∑

n=M+1

∥∥∥Hmeas
m,n −Hm,n

∥∥∥
2

F
, (6.21)

(ψ̂m)NonCoop
sol = arg min

(ψm)sol

M+N∑

n=M+1

∣∣∣hmeas
m,n − hm,n

∣∣∣
2
. (6.22)

To the best of our knowledge, these estimation rules can only be realized via numerical
solvers. This approach is however computationally expensive and might easily con-
verge to local minima as shown by [61] and later visualized in Fig. 6.4. The inherent
advantage that is gained by using cooperation might hence be directly nullified due to
the additional challenges in numerical optimization.

6.3.2 Pairwise Estimation for Non-Cooperative Localization

In order to alleviate the computational complexity issue we propose a second approach,
which is based on the individual ML estimation for the pairwise links between agents
and anchors. For a pair of solenoid coils and under the assumption that one coil’s
orientation and the direction of departure are uniformly randomly distributed points
on the unit sphere, the ML distance estimator was already stated by [130] as

(d̂ML
m,n)sol = 3

√√√√√
1
2 ·

am,n∣∣∣hmeas
m,n

∣∣∣
2 . (6.23)

An established approach to combine multiple pairwise agent-anchor (n > M) distance
estimates to a position estimate is the so called multilateration (cf. [131]), i.e. solving
the three-dimensional LS problem

(p̂m)sol = arg min
pm

M+N∑

n=M+1
km,n

∣∣∣(d̂ML
m,n)sol − dm,n(pm)

∣∣∣
2
, (6.24)

individually for each agent. The weights for each agent are chosen as km,n = 0.25 for
the four strongest anchor observations (identified by

∣∣∣hmeas
m,n

∣∣∣) and km,n = 0 for all other
links. Using a weighting for a multilateration is common practice to ignore drastic
outliers which otherwise impair the overall estimation quality (cf. [132]). In our case
the simple weighting is used to mitigate the over-estimation of distances that are the
result of drastically misaligned coil pairs.

For the three-axis coil case, there is is no known ML distance estimator. We will in-
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stead derive it in the next steps. To this end, we consider the Gaussian log-LikeliHood
Function (LHF) L(ψm) of an agent’s deployment vector based on one measured pair-
wise agent-anchor1 channel matrix Hmeas

m,n with M < n ≤ M + N . We discard the
constant summand from L(ψm) for mathematical convenience and find the resulting
shifted log-LHF L̃(ψm) = L(ψm) + log(π9σ18

3ax) as

L̃(ψm) = − 1
σ2 tr

((
Hmeas

m,n −Hm,n

)H (
Hmeas

m,n −Hm,n

))
,

∝ − tr
((

Hmeas
m,n

)H
Hmeas

m,n

)
− tr

(
(Hm,n)H Hm,n

)
+ 2Re

(
tr
((

Hmeas
m,n

)H
Hm,n

))
,

= − tr
((

Hmeas
m,n

)H
Hmeas

m,n

)
− 3

2 ·
a2

m,n

d6
m,n

+ 2am,n

d3
m,n

tr
(

Im
{
Hmeas

m,n

}T
OT

n︸ ︷︷ ︸
Am,n

Fm,nOm︸ ︷︷ ︸
Bm,n

)
,

where we used (6.2), the cyclic property of the trace, and tr(FH
m,nFm,n) = 3

2 . Since the
first summand is independent of ψm, the maximization of the log-LHF thus simplifies
to

(ψ̂ML
m )3ax = arg max

ψm

−3a2
m,n

2d6
m,n

+ 2am,n

d3
m,n

tr (Am,nBm,n) , (6.25)

where Am,n
SVD= Um,nSm,nVT

m,n is fixed based on the measured channel matrix Hmeas
m,n

and the known anchor orientation matrix On. Moreover, Bm,n is the optimization
variable under the structural constraints of both Fm,n and Om.

We consequently need to maximize tr(Am,nBm,n) independently of the distance.
According to Von Neumann’s trace inequality [133], this term is generally maximized
if both matrices share the same singular vectors. However, this may not be feasible
when Om is required to be a proper rotation matrix. Our problem hence becomes a
specific constrained form of the Procrustes problem (cf. [134]) and is closely related to
the Kabsch algorithm [135]. It’s solution is obtained via (cf. Appendix B)

Ô ML
m = Vm,n diag

(
1,−1,− det

(
Um,nVT

m,n

))
UT

m,n , (6.26)

F̂ ML
m,n = Vm,n diag

(
1,−1

2 ,−
1
2

)
VT

m,n (6.27)

and hence the maximum value of the trace is equal to
zm,n = tr

(
Sm,n diag

(
1, 1

2 ,
1
2 · det(Um,nVT

m,n)
))

. For any given dm,n, this solution

1We limit ourselves to the agent-anchor case to simplify the maximization of (6.25). Alternatively,
a straightforward extension to the agent-agent case would require to also consider On in the joint
maximization and may lead to ambiguities of the solution for the estimates of the agent orientation.

80



6.3 Cooperative and Non-Cooperative Deployment Estimators

maximizes the LHF while satisfying the structural constraints of both estimated
matrices. The corresponding ML distance estimator is then found by solving
−9a2

m,n

d7
m,n

+ 6am,nzm,n

d4
m,n

!= 0, which yields

(d̂ML
m,n)3ax = 3

√
3
2 ·

am,n

zm,n

, (6.28)

where the real-valued root is chosen as estimate.
In addition, the previous solutions entail another interesting result, since F̂ ML

m,n offers
a direct estimate of the unit direction vector between agent and anchor. That is, up to
an ambiguity of its sign, the singular vector of Vm,n which corresponds to the largest
singular value can be chosen as û ML

m,n, i.e. û ML
m,n = Vm,n[1, 0, 0]T. As a result, we also

obtain an estimate on the agent position as

(p̂m)3ax = pn ± û ML
m,n (d̂ML

m,n)3ax . (6.29)

In practice, we empirically choose to resolve the ambiguity by deciding on the solu-
tion that is within the room and otherwise discarding it. In combination with the
orientation estimate Ô ML

m , which can be transformed to an estimate of [αm, βm, γm]T3ax

by the corresponding trigonometric relationships, we can ultimately estimate the full
agent deployment (ψm)3ax based on each single measurement of the channel matrix
between an agent and an anchor. Compared to the solenoid case, we thus do not even
require an additional multilateration and hence no numerical solvers to obtain a posi-
tion estimate. However, if the observations of multiple anchors are to be combined, it
is clearly possible to use the corresponding distances estimates of (6.28) as input for
an analogous multilateration as in (6.24) for three-axis anchors, where the weights are
determined on the basis of ∥Hm,n∥2 instead of |hm,n|2.

6.3.3 Advanced LS Initialization

The previously introduced pairwise estimation approaches can either be used as posi-
tion estimators in their own right or the resulting estimates may serve as a starting point
for the more complex joint LS estimation. Having an improved starting point close to
the global minimum of the highly-dimensional cost function can reduce the required
processing time as well as improve the chances of even finding the global minimum at
all. We will hence also consider an estimation approach where both, the estimates of
Sec. 6.3.2 are used as initialization values for the cooperative and non-cooperative LS
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6 Cooperative Localization

estimators of Sec. 6.3.1. For three-axis coils we initialize with the obtained position
and orientation estimates, and only use the single estimate of the closest anchor, i.e.
the one which yields the smallest distance estimate. Should this anchor not have a
unique valid position estimate, i.e. both position estimates are either outside or within
the room due to the ambiguity of (6.29), then we iteratively choose the anchor which
has the next smallest distance estimate. For solenoid coils only the position estimates
are available and the orientation variables are hence initialized as uniformly random
points on the unit sphere.

6.4 Performance Evaluation for IoT Topologies

We next look at an IoT motivated setup which comprises a 1.5 m cubic volume with
fixed anchors on the boundaries (e.g. walls) and multiple randomly placed agents
within the volume. In Fig. 6.1a we have illustrated the setup with M = 7 solenoid
agents and N = 12 solenoid anchors, whereas Fig. 6.1b shows the same cubic room
with M = 7 three-axis agents and N = 4 three-axis anchors. Throughout Sec. 6.4, the
anchors remain exactly as depicted in Fig. 6.1 while a variable number M of randomly
deployed agents is considered. More specifically, the agents’ orientations are chosen
to be i.i.d. uniform random points on the unit sphere and the agents’ placements are
uniformly random within the room, but restricted such that they satisfy a minimum
distance constraint (dmin ≥ 3Dcoil) between any coil pair. The minimum distance
constraint is higher than the ones used in Cpt. 4 and Cpt. 5 as it is not only used to
prevent strong coupling and the proximity problem, but also to justify the unilateral
assumption and ideal power matching.

The large cubic setup leads to longer agent-anchor distances on average, compared
to the setups considered in Cpt. 4 and Cpt. 5. However, depending on the IoT devices
used it is now also possible to employ larger coil antenna diameters to mitigate the
associated increase of the path loss. For the numerical evaluations of this chapter, all
identical coils (and subcoils) hence have an increased diameter of Dcoil = 5 cm. Yet, we
only use N coil = 5 coil windings to still allow for a flat coil design that may conveniently
fit inside an IoT device. Additionally, the operating frequency is reduced to f =
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Figure 6.1: 3D cubic room setup with M = 7 agents (red) that are to be localized and N = 12 solenoid
anchors (blue, left) or N = 4 three-axis anchors (blue, right).

coil turns N coil 5
coil diameter Dcoil 50 mm
coil height Hcoil 10 mm
wire diameter Dwire 1 mm
design frequency fdes 500 kHz
op. frequency f 500 kHz
conductivity σwire 59.6MS/m
rel. permittivity ϵr 1
rel. permeability µr 1
noise variance σ2

sol
1
3 · 10−10

noise variance σ2
3ax 1 · 10−10

(a) Specified parameters.

resistance R 0.07 Ω
self-inductance L 1.7 µH
self-capacitance C 2 pF
wire length lwire 0.8 cm
wavelength λ 600 m
coil Q-factor at fdes Q 75
coil self-resonance f self 86 MHz

(b) Resulting parameters.

Table 6.1: Simulation parameters and resulting quantities.

500 kHz to further improve material penetration. The resulting system parameters2

and other specifications are listed in Tab. 6.1. For all numerical optimizations we
employ the Levenberg-Marquardt algorithm (cf. [136]) via Matlab’s built-in lsqnonlin
function.

2Note that if using the same parameters as in Cpt. 4 and Cpt. 5 (cf. Tab. 4.1) while accounting for
our choice xm,n = 1 from (6.3), we would obtain σ2

sol ≈ 2.5× 10−12 for the noise variance. However,
this quantity is drastically affected by the quality of the measurement device and the measurement
duration, which may vary depending on the field of application. To make our results comparable to
other existing literature in the IoT field, we instead choose σ2

sol = 1
3 × 10−10. This choice is in line

with [61], who found this noise level to be appropriate for office environments based on vector network
analyzer measurements with coils similar to ours.
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6 Cooperative Localization

6.4.1 Numerical LS Estimation

In Fig. 6.2, it is shown how the accuracy for both cooperative (black) and non-
cooperative (gray) localization schemes changes with an increasing number of agents.
For each number of agents M , 1000 random agent topologies were considered and the
PEB and RMSE were calculated for each one. The triangle-lines represent the cor-
responding mean PEBs of agent 1 for each M , whereas the cross-lines illustrate the
mean RMSE of the corresponding LS estimators, where the mean is taken over the
random agent topologies. The numerical LS estimators (numLS) used the true agent
deployment as starting points. For both coil types, we see that the minimum which
is found on average with this perfect initialization corresponds to the PEB. Without
cooperation between the agents, the performance is not affected by their number M
and remains constant. For the cooperative scenario we see a steady improvement in
both scenarios that result in a comparable relative improvement. We will refer to this
improvement as cooperation gain. This cooperation gain can be attributed to three
factors: (i) to having more channel observations, similarly to the noise-averaging effect
when having more anchors, (ii) to having stronger channel gains between agent pairs
that are in close proximity, which for solenoid coils may also counterbalance agent-
anchor misalignment losses, and (iii) to obtaining more directional information on the
agent position. In Fig. 6.3 we emphasize (ii) by the showing the CDFs of the squared
magnitudes of the channel gains [Hm,n]k,l between any pair of either agent-agent or
agent-anchor three-axis subcoils for M = 10 randomly placed agents within the room.
We observe that about 4% of the channel gains are below the corresponding noise level
and that the agent-agent channel gains are generally stronger than the agent-anchor
channel gains. In practice, the stronger channel gains are especially relevant for the
solenoid setup, as the additional cooperation helps to mitigate the orientation-based
alignment loss similarly to passive relays, i.e. we can obtain position information about
an agent via its surrounding peers even if this agent itself is misaligned to all anchors.

Thanks to the initialization with the true deployment vector, the numerical solvers
in Fig. 6.2 approach the PEB. Without an unrealistic perfect initialization, it remains
unclear however, whether the cooperation gain found is actually feasible. To investi-
gate this matter, Fig. 6.4 shows the corresponding CDFs of the Euclidean norms of
all instantaneous positions errors for the case of M = 10 randomly deployed agent
nodes (multiple agent topologies and noise realizations). In Fig. 6.4a - Fig. 6.4d, we
distinguish between the perfect initialization (perf. init.) and a random initialization
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(b) Three-axis coils.

Figure 6.2: Comparison of the localization accuracy for cooperative vs. non-cooperative approaches
with an increasing number of agents in the room. The numerical ML estimators are perfectly initialized
and their resulting root-mean-square errors tightly approach the corresponding PEBs.
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Figure 6.3: CDFs of the magnitude squared channel gains for M = 10 randomly deployed three-axis
agents in the setup.
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(a) Non-cooperative solenoid coils.
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(b) Non-cooperative three-axis coils.
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(c) Cooperative solenoid coils.
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(d) Cooperative three-axis coils.

Figure 6.4: CDFs of the instantaneous localization errors achieved by the numerical LS estimation
(numLS) for different initializations.
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(rand. init.) within the room with either 1 or 5 random initializations3. For the easier
non-cooperative localization in Fig. 6.4a, we observe that a single random initializa-
tion only suffices in about 27% of the cases for solenoids, 40% for three-axis coils and
otherwise converges to local minima. With 5 random initialization, the percentage of
outliers reduces to roughly 25% or 10%, respectively. With even more random initial-
ization the outliers could possibly be rendered insignificant. For the specific case of
non-cooperative solenoids, [26] showed that alternating optimization approaches, which
switch between position and orientation optimization, achieve a better convergence be-
havior than trying to optimize all parameters simultaneously via gradient-based search.
For the cooperative localization in Fig. 6.4c and Fig. 6.4d, we see that additional ran-
dom initializations also generally improve the performance, but even with 5 random
initializations we still do not even remotely approach the global cost minimum of the
perfectly initialized case for either coil type. Even worse, despite combining coopera-
tion and multiple random initializations, the median performance is worse than the one
of the corresponding non-cooperative approach. Moreover, using five random initial-
izations also entails a five-fold complexity increase, which is especially problematic for
the highly-dimensional cooperative joint optimization. This shows that the increased
complexity of the optimization problem can directly nullify the cooperation gain which
the additional agent-agent observations otherwise provide.

6.4.2 Reduced Complexity Estimators

Next, we thus compare the performance of the reduced-complexity estimators, which
have been proposed in Sec. 6.3.2 and Sec. 6.3.3. The estimators are also summarized in
Tab. 6.2 and a flow chart representation for each approach is provided in Tab. 6.2. The
color of the flow chart represents the coil affiliation, i.e. blue elements are suitable for
or belong to solenoid coils, red elements only for three-axis coils and purple elements
correspond to either coil type independently. We study their performance for the same
cubic setup of Fig. 6.1 with M = 10 possibly cooperating agents.

Position Error In Fig. 6.6, we show the empirical CDFs of the position errors ob-
tained with each of these approaches. For solenoid case in Fig. 6.6a, we see that
the turboLS schemes (squares) do not yield the same results as the perfectly ini-
tialized ones (crosses), i.e. applying a prior multilateration does not fully solve the

3The ultimately selected position estimate was the one that corresponded to the lowest cost over
all individual optimization processes
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Scheme Description

numLS A numerical solver (Levenberg-Marquardt algorithm) with a cer-
tain initial parameter value is applied to the cost functions from
(6.19) to (6.22) in an attempt to solve the associated LS problem.

multilateration Obtain ML distance estimates between an agent and all anchors
with the closed-form rule (6.23) for solenoid coils and (6.28) for
three-axis coils. Then estimate the agent position via multilater-
ation, i.e. (6.24) or analogously for three-axis coils (implemented
via gradient search).

pairML Position and orientation estimates of an agent are calculated via
the closed-form ML estimation rules (6.26) to (6.29), based on
the measurement of the anchor with the smallest ML estimated
distance. This approach is only viable for three-axis coils.

turboLS For the three-axis coils, the position and orientation estimates
obtained with pairML are used as initial parameter values in
numLS, which functions as afterburner. For the solenoid coils,
the results of the multilateration are used as initial parameters.

Table 6.2: Summary of all proposed localization schemes.

solenoid
{hm,n}

three-axis
{Hm,n}

{ψ̂m} pairML
NonCoop

{ψ̂m} turboLS
Coop

NonCoop

{ψ̂m} multilateration
NonCoop

{ψ̂m} numLS
Coop

NonCoop

init. with agent deployment

· perfect (true)

· random (1 or 5 times)

{p̂m}

{ψ̂m}

{(d̂ ML
m,n)3ax}

{(d̂ ML
m,n)sol}

init. with random

agent orientation

numLS
(6.19) - (6.22)

ML distance
(6.23), (6.28)

multilateration
(6.24)

numLS
(6.19) - (6.22)

pairML
(6.26) - (6.29)

Figure 6.5: Conceptunal flow chart of all proposed localization schemes.
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Figure 6.6: CDF comparison of the instantaneous localization errors achieved for all proposed local-
ization estimators.

convergence issues of the numerical optimization process. Nevertheless, at least for the
non-cooperative case the performance improves compared to the numLS approach with
one random initialization (asterisk). For the cooperative case, the turboLS however
yields a comparable performance as the multilateration (diamonds) with which it is
initialized, so the numerical afterburner has no positive impact.

For the three-axis setup in Fig. 6.6b, we see that for both the cooperative as well
as the non-cooperative scenarios, the turboLS schemes achieve the same performance
as the perfectly initialized numLS ones. Without the LS afterburner, the pairML
scheme (circles) maintains an acceptable performance that is comparable to that of the
non-cooperative approaches despite its ultra-low complexity and despite only requir-
ing a single agent-anchor link. Moreover, it yields a median position error of about
3 mm, which may be sufficient for various practical applications. Lastly, we find that
multilateration (diamonds) exhibits poor accuracy compared to all other approaches.

Computation Time In order to further emphasize on the differences in computa-
tional complexity, Fig. 6.7 shows the CDFs of the time that each approach requires in
order to fully localize M = 10 agents. To this end, the optimization processes were run
on an Intel Core i7-10750H 2.6 GHz processor in the single core mode. For the solenoid
setup (Fig. 6.7a), the multilateration requires less than 40 ms during most localizations
and the other non-cooperative and cooperative approaches require 2.6 s or 18 s, respec-
tively. As there is no reduction of the computation time when using either the numLS
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or the turboLS approach for solenoid coils, the multilateration is a clear favorite for
these coil types when there is no cooperation and a low-complexity requirement. For
the three-axis setup (Fig. 6.7b), the pairML approach requires less than 18 ms in
almost all cases and the multilateration less than 25 ms. For the LS approaches, we
observe that the non-cooperative turboLS mostly has a processing time of less than
153 ms and its cooperative equivalent requires roughly 13 s. We also see that these tur-
boLS approaches, which are required to reliably find the global minimum, reduce the
median processing time compared to the numLS solution even with a single random
initialization. Nevertheless, the required processing time of any cooperative approach
compared to its non-cooperative alternative is still increased by more than an order of
magnitude.

For a concise overview, Fig. 6.8 further links the results of the computation time
to the corresponding position errors of each approach by showing the median of each
quantity via scatter plot, both for solenoid coils and three-axis coils. Additionally, the
dashed lines represent the cooperative or non-cooperative median PEBs as theoretical
upper limit on the performance. For solenoid coils, Fig. 6.8a clearly visualizes that
the cooperation gain cannot be realized by the considered estimators and the practical
choice between estimators is hence limited to the multilateration (low-complexity) and
the non-cooperative turboLS approach (high accuracy). For three-axis coils we find via
Fig. 6.8b that the same trade-off between complexity and accuracy holds but in this case
the cooperation gain can be realized and there are overall more viable choices available.
In detail, the lowest complexity is offered by the pairML approach, which also shows a
higher accuracy than either multilateration or numLS with one random initialization.
If a higher accuracy is required it is possible to switch to the non-cooperative turboLS
approach, which halves the median position error in exchange for an order of magnitude
more computation time. Lastly, if complexity is not an issue the cooperative turboLS
approach can be chosen. This choice decreases the median position error by a factor
of 4 compared to the pairML approach but requires a computation time that is more
than two orders of magnitude higher, on top of also needing a cooperating network.

6.5 Conclusions

In this chapter, we studied the impact of agent cooperation on MI localization. That
is, we stated the PEB if the cooperation of agents allows us to obtain noisy inter-agent
channel gains when using either solenoid or three-axis coils. For an IoT motivated
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Figure 6.7: CDF comparison of the time which each approach requires to fully localize a network
comprising M = 10 agents.
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Figure 6.8: Direct comparison of the median position error and the median computation time for each
approach when localization a network comprising M = 10 agents.
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setup, we then examined the theoretical cooperation gain in dependence of the number
of agents. However, common numerical estimators failed to put this theoretical coop-
eration gain into practice, as cooperation increased the complexity of the associated
optimization problem and caused convergence issues. In a first step to circumvent this
issue, we hence derived the closed-form ML deployment estimator for a single pair
of three-axis coils. In a second step, we combined this closed-form solution with a
numerical afterburner which allowed us to bypass the convergence issues an tightly
approach the theoretical gain. Yet, the required computation time for this approach
far exceeds that of its non-cooperative counterpart. Cooperative MI localization may
thus only be viable for applications that provide abundant computation power or are
not time-sensitive.
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Chapter 7

Topology Classification Using Purely
Passive Tags

Note: Parts of this chapter have been published by us in [91]. This work hence exhibits
similarities regarding formulations and visualizations.

In this chapter, we will propose and investigate a novel low-complexity idea to
indirectly determine a network constellation (also network topology) Ψ of a dense MI
network. We will first describe this idea conceptually, then elaborate on important
design choices, provide possible practical use cases, and lastly adapt the full system
model from Sec. 3.1 to better match the new concept. In Cpt. 8 and Cpt. 9 this idea
is further investigated for posture recognition.

7.1 Topology Classification System Concept

The proposed system uses resonantly loaded and purely passive agents (identical to
purely passive relays), whose deployment vectors we do not need to know or estimate.
To make this switch and distinction clear, we will call them passive tags. Additionally,
we will also deploy anchors but in contrast to Cpt. 3 to Cpt. 6 do not need to know
their deployment vectors either.

We place a multitude of such passive tags and anchors on an object or in an area of
interest. This placement may either be performed randomly or systematically. Next,
when we measure the input impedance of an anchor, we automatically feed a current
(or voltage) with a constant amplitude into it, which generates a magnetic field. This
magnetic field further induces currents in all nearby passive tags, which in turn gen-
erate new magnetic fields that superimpose the old one. The presence of the passive
tags hence changes the observable impedances of all anchors, as was already evident
via (3.8). Moreover, the entire set of passive tags can alternatively also be interpreted
as a single combined tag that changes its form and coupling characteristics with each
different topology of its distributed constituent parts. As a result of this dependency
on the relative positions and alignments between all coils, each different network con-
stellation leads to a possibly unique set of detuned input impedances that can be used
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7 Topology Classification Using Purely Passive Tags

as a fingerprint. Learning these fingerprints via supervised classifiers during an initial
calibration phase allows for later re-associations and therefore enables the ability to
classify between different network topologies. The novelty of this idea lies in the use
of purely passive tags that do neither require batteries nor ICs, and whose deployment
is unknown. Moreover, for simple networks with few topologies that need to be dis-
tinguished, the system may already work with a single anchor and single-frequency
impedance measurements. Still, the extent of the detuning is limited by the coil de-
signs and their placements, which in turn are limited by practical constraints. It is
thus uncertain whether the passive impedance changes are even noticeable under the
presence of additional noise for any given use case.

7.2 General Design Challenges and Considerations

While this general idea may be useful for a wide variety of applications, some important
limitations need to be considered.

1. Passive tags can only noticeably affect and detune anchors to which they are
strongly coupled. For the coils used in Cpt. 4 to Cpt. 5, this required a separation
of less than 3 coil diameters (cf. Fig. 4.1). For an increased coverage of the
system, it is hence beneficial to (i) distribute the anchors such that there are
always passive tags in close vicinity (cf. Fig. 4.1c), (ii) use coils that have high
quality factors (cf. Fig. 4.1d), (iii) exploit dense swarms of passive tags such
that the compound interaction between them boosts the coupling range to the
anchors similar to a waveguide effect (cf. Fig. 5.5), and (iv) use three-axis coils
as in Cpt. 6 to prevent misalignments.

2. All moving parts or objects that are to be tracked need to have at least one pas-
sive tag or anchor attached to them, such that their movement elicits a detuning.
Higher numbers of passive tags may however be beneficial as their inter-tag cou-
pling leads to more intricate and possibly unique detuning patterns.

3. The directional information of a passive tag still affects the system, i.e. tangential
movements of a tags typically have a weaker impact on the impedance than radial
movements (cf. Fig. 4.5). If possible, it is hence beneficial to use distributed in-
stead of clustered anchors setups. Alternatively, using swarms of passive tags that
are well-distributed also helps to enhance the impact of tangential movements.
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4. The impact of the passive tags may be weak compared to that of an active in-
terferer, so the choice of a fitting operating frequency and bandwidth is crucial.
Alternatively, interference cancellation methods have to be applied. Addition-
ally, the system should be operated in low-distortion environments since nearby
ferrous materials have an irregular impact on the detuning that cannot always
be calibrated for.

7.3 Possible Use Cases for Topology Classification

In the following, we offer a brief list of examples where the proposed topology classifi-
cation system with spreaded passive tags may be applied.

Body Posture and Activity Recognition Body posture and activity recognition
are eHealth applications that are envisioned to prevent the emergence of MSDs by rec-
ognizing unhealthy postures, to monitor rehabilitation progress after injury, to contact
emergency services in case of falls, or to provide detailed fitness tracking which may
improve athletic performance.

The proposed system may operate as a low-cost and low-complexity posture recog-
nition system that omits the need of battery powered sensors placed all over the body.
That is, multiple anchor coils may for example be centralized on the torso with passive
tags being situated on all limbs. This setup would limit the measurement process to
the torso while still enabling full body posture recognition. The coils can furthermore
be integrated into clothing for an improved ease of use. This use case is further studied
in Cpt. 8 and Cpt. 9.

Adhesive Stripes Various passive tags may be integrated into any kind of adhesive
stripes (e.g. sticky tape, duct tape, or adhesive bandages) to monitor changes of their
form or to determine relative changes of the positions and orientations between multiple
tag-integrated stripes. These stripes may for example be applied to single body parts
such as the neck or ankles to alert users in case of specific malalignments. Alternatively,
stripes such as duct tape may be used for repairs within obstructed areas, such that
their status can afterwards be monitored from the outside by means of an external
anchor.

Surgical Meshes Similar to the idea of adhesive stripes, surgical meshes or other
fixed implants may be equipped with passive tags before placing them within the body.
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7 Topology Classification Using Purely Passive Tags

An external sensor head comprising anchors may then be used for regular check ups
to examine whether the location and form of the inserted meshes or implants are still
correct.

7.4 Simplified System Model

We next adapt the full system model from Sec. 3.1 to better fit the idea from Sec. 7.1.
First, the adjusted model entirely leaves out the switchable passive relays and is only
composed of anchors and passive tags, i.e. strictly passive agents that are loaded
with a fixed capacitance to make them resonant in the absence of other coils. In
contrast to the general passive relays, the resonantly loaded passive tags do not contain
a switch and hence cannot be switched off. Second, the anchors now only operate
iteratively (time multiplexed) by using switches and are connected to individual lossless
two-port matching networks that each power match the corresponding coil antenna
impedance ZR,1, . . . ZR,NR to a reference value Rref for an impedance measurement
device. Lastly, in Sec. 3.1 we used the anchors’ input current vector iin

R as observation
quantity, since it allowed for consistency between the active and passive agent case.
However, this consistency is not required anymore as we only consider passive agents.
We therefore opt to omit the otherwise required current division (cf. (3.18) and (3.20))
and switch to measurements of the individual anchor input impedances Z in

R̃,1, . . . , Z
in
R̃,NR

.
Practically, these impedances may easily be measured by means of an impedance meter
or impedance converter systems [137, 138]. A circuit model of this simplified system
can be found in Fig. 7.1.

Since we measure the anchor’s impedances sequentially (i.e. only a single switch in
Fig. 7.1 is closed at a time), the scalar coupling input impedance Z in

C,nR
at port nR is

found as (cf. (3.8))

Z in
C,nR

= [ZC:R̃]nR,nR − [ZC:R̃T̃]nR,: (ZC:T̃ + Zload
T )−1 [ZC:R̃T̃]TnR,: , (7.1)

In case the self capacitances of all coils are negligible, the scalar [ZC:R̃]nR,nR coincides
with the coil impedance of the corresponding anchor and the vector [ZC:R̃T̃]nR,: simply
comprises the mutual impedances between this anchor and all passive tags. Other-
wise the remaining open-circuited anchors need to be incorporated into the matrix ZC

analogously to open-circuited passive relays (cf. (5.2)).
The adjacent lossless matching networks are considered to be T-structured two-
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Figure 7.1: Multiport circuit representation of passive tags and anchors with their their impedance
matrix and individual lossless matching networks.
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port power matching networks that match the measurement devices resistance1 Rref to
the coil antenna’s impedance ZR,nR (cf. (2.10)). They thus ultimately transform the
coupling input impedance of Z in

C,nR
to the anchor input impedance Z in

R̃,nR
via (cf. (3.9)

and (3.31))

Z in
R̃,nR

= RrefRe(ZR,nR)
(
Z in

C,nR
− jIm(ZR,nR)

)−1
. (7.2)

If no other coils are within range of an anchor nR, it is clear that Z in
C,nR

= ZR,nR and
hence Z in

R̃,nR
= Rref , as intended.

By combining the individual anchor observations, we can obtain the possibly de-
tuned impedance vector x0

p and the corresponding feature vector r0
p for a fixed de-

ployment of all coils, i.e. for a specific network constellation Ψp with p = 1, . . . , Np,
as

x0
p =




Z in
R̃,1

Z in
R̃,2
...

Z in
R̃,NR



, r0

p = vec



 Re(x0

p)T

Im(x0
p)T




 . (7.3)

The separation into real and imaginary parts is used in order to simplify the imple-
mentation of classification algorithms.

1In Cpt. 8 we choose Rref = 50 Ω to be in line with our Vector Network Analyzer (VNA) measure-
ments in Cpt. 9. However, this value may change significantly depending on the specific application
and measurement device used.
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Chapter 8

Human Posture Recognition: A Case
Study

Note: Parts of this chapter have been published by us in [91]. This work hence exhibits
similarities regarding formulations and visualizations.

In this chapter, we examine the low-complexity topology classification system of
Cpt. 7 for human body posture recognition. The main goal is to assess the system’s
general feasibility for this use case via simulation study. We further want to determine
the relevance of basic parameters such as the number of required coils and their design.

To this end, we first introduce human body models in Sec. 8.1 which consist of
rigid, three-dimensional body parts that are interconnected by rotatable joints. These
models allow us to dynamically place and move different on-body coils and match-
ing network, such that realistic postures and hence spatial coil configuration can be
simulated. We then introduce four different types of perturbations to our coupling
model from Sec. 7.4 in order to efficiently study the system’s noise sensitivity. Af-
ter combining the MI system and the body model, we further compare two different
types of coil designs and investigate their practical differences for 14 everyday postures.
Subsequently, the generated noisy datasets are used in Sec. 8.5 to train and evaluate
well-known supervised classification algorithms.

8.1 Body Models and Postures

With the MI model being defined in Sec. 7.4, the next step is to introduce human
body models on which the anchors and passive tags can be placed. We further choose
14 different everyday postures, which these body models have to re-enact and which
ultimately need to be distinguished by the posture recognition system.

8.1.1 Joint-Based Human Body Model

The considered human body models (sometimes referred to as mannequins) consist of
ten joints that are connecting different parts of the body. More precisely, the model
includes the body parts: calves, thighs, pelvis, torso, head, arms, forearms. Each of
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Figure 8.1: Frontal and side views of the human body models Martin and Fiona, each consisting of
10 rotatable joints (green) and 11 rigid body parts (gray mesh polygons).

these body parts is connected to at least one other body part by one of the ten joint
angles as illustrated in Fig. 8.1. In Fig. 8.1a and Fig. 8.1b we show the fit male body
model called Martin (M), whereas Fig. 8.1c and Fig. 8.1d show the analogous fit female
body model called Fiona (F).

Due to the rigid nature of the body parts, the distance between any two directly
connected joints remains constant, independent of the posture. The orientation of each
joint is defined with individual roll, pitch, and yaw angles, except for the hinge joints
(elbow and knee joints), which are each defined by only one angle. For any given
posture, the position and orientation of any body part are hence defined solely by the
orientations (angles) of all joints and can be calculated easily as a concatenation of
coordinate transformations, beginning at the torso.

8.1.2 Postures

All the postures p ∈ {1, . . . , Np} with Np = 14 which are investigated in this work
are briefly summarized in Tab. 8.1 with a simplified sketch being presented in Fig. 8.2.
These include five sitting and nine standing postures. Moreover, three of these postures
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Posture Description

Si
t

I Sitting with the arms hanging down
Front Sitting with the arms lifted on the desk in front
CallLR One arm on the desk in front the other one at the ear
Hunch Sitting and leaning forward but tilting the head upwards

St
an

d

I Standing upright with the arms hanging down
T Standing with both arms spread at a right angle
X Both arms spread at a right angle, both legs spread
CallLR One arm hanging down the other one at the ear
WalkLR One leg in front, arms in a natural swinging motion
FallLR Falling backwards, arms outstretched to regain balance

Table 8.1: All considered static postures with brief descriptions. Subscript LR mark that there are
mirrored left and right versions of the corresponding postures, which results in a total of 14 postures.

Sit

Stand

I Front CallR Hunch

I CallR T X WalkR FallR

Figure 8.2: Illustration of the reference postures. For asymmetric postures only the right (R) version
is shown.

are assumed to be unhealthy or dangerous, namely Sit Hunch, Stand FallL and Stand
FallR. Asymmetric postures with a left-right differentiation are denoted with indices
LR, and both versions will be considered individually for the classification.

8.2 Noise Models

Next, we introduce different artificial noise models to efficiently study the sensitivity of
the system and compare different system designs. To this end, the impedance vector
x0

p and the resulting feature vector r0
p (cf. (7.3)) are subsequently impaired by various

kinds of perturbations. These perturbations may result from the specific measurement
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device1, model inaccuracies, or other practical uncertainties.

Additive White Gaussian Noise (AWGN) One type of perturbation that we
consider in this posture recognition context is AWGN. It is not only the result of
electron movement at the measurement device, but also a standard assumption given
that many superimposing types of independent noise are present (cf. central limit
theorem [139]). For the AWGN case, we model the noisy impedance vectors by

xAWGN
p = x0

p + wAWGN , wAWGN i.i.d.∼ CN
(
0NR×1, (σAWGN)2 INR

)
, (8.1)

with σAWGN denoting the noise standard deviation in ohms.

Lognormal Noise Another perturbation which we consider is lognormal noise. This
type of noise is commonly used to model logarithmic quantities such as energies or con-
centrations. In a communications context, it is for example used to model the received
power (in dB) over distance, which is referred to as the lognormal path loss model [140].
For our posture recognition analysis, it is considered to also cover multiplicative per-
turbations. For the impedance vector, we model it according to

xlogN
p = diag

(
wlogN

)
· x0

p , log(wlogN) i.i.d.∼ N
(
0NR×1, (σlogN)2 INR

)
, (8.2)

where σlogN is the standard deviation of the observation’s natural logarithm. This type
of modeling introduces a correlation as it affects the real and imaginary parts of the
impedance vector equally.

Inductive Perturbations Another typically considered source of perturbations in
MI setups are the mutual inductances between all coil pairs. These may be affected
by imperfect current densities on the wires and uncertainties of the coil geometry that
cannot be calibrated for. Such changes may for example occur due to a stretching
of the coils, which clearly affects their shape and thus also their characterization.
Moreover, minor displacements of the coils (e.g. if they slip out of position) would
also impact the mutual impedances in an irregular fashion. In order to roughly model
the resulting impact of such errors on our impedance vector, we first consider the
mutual inductance matrix Mp between all corresponding coils for a given posture p.

1Note that an experimental investigation of the observed measurement noise for the VNA used in
Cpt. 9 can be found in Appendix C.
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We multiply this matrix’s individual off-diagonal elements [Mp]m,n for m ̸= n by a
multiplicative random variable according to

[MindN
p ]n,m = [MindN

p ]m,n = [Mp]m,n · windN , windN i.i.d.∼ T N (1, (σindN)2, [0, 2]) , (8.3)

where we use T N (·, ·, [a, b]) for a truncated normal distribution in the interval [a, b].
Consequently, (8.3) leads to approximately, normally distributed but symmetric off-
diagonal entries of the inductance matrix and σindN specifies the relative standard
deviation with respect to each corresponding mean value. The perturbed mutual in-
ductances are furthermore subjected to various subsequent mathematical operations,
such as multiplications and inversions according to our MI model. We summarize all
these operations by defining x0

p = g(Mp), where g(.) is the functional that combines
the steps (2.14) and (7.1) to (7.3). Overall, we then obtain the perturbed impedance
vector by applying

xindN
p = g(MindN

p ) . (8.4)

Joint Angle Perturbations Lastly, we also want to consider AWGN on all the joint
angles which connect the torso and limbs of the human body models from Sec. 8.1.
This consideration is important as slight variations of the original true posture will
inevitably be present in a real scenario. By explicitly modeling this type of noise,
we want to understand how severely minor posture variations translate into a loss of
the classification accuracy. Defining ΦΦΦp as a vector containing all the true rotatable
joint angles (cf. Sec. 8.1) for a given posture, each element [ΦΦΦp]k with k = 1, . . . , 22 is
affected as

[ΦΦΦJoints
p ]k = [ΦΦΦp]k + wJoints , wJoints i.i.d.∼ T N (0, (σJoints)2, [−180, 180]) . (8.5)

This leads to wJoints being approximately normally distributed with zero-mean in the
truncated interval [−180, 180]. The standard deviation σJoints is always stated in degree.
Since the mutual inductance matrix varies for different realizations of the joint angles
(and hence postures), the overall noisy impedance impedance vector follows as

xJoints
p = g

(
M(ΦΦΦJoints

p )
)
. (8.6)

By modeling the perturbations in the above manner, any joint on the limbs (e.g.
the elbow joint) is subject to cumulative perturbations as the individual errors on all
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connecting joints lead to a compound effect. The limb joints may thus end up with a
higher overall variation. Furthermore, we constrain all perturbed postures such that
an intersection of coils becomes impossible. Note that this modeling does not respect
anatomical constraints of the joints.

Example of Perturbed Impedance Measurements An illustrative comparison
of the different impacts on the real and imaginary parts of the impedance vector is
shown in Fig. 8.3. This result is based on a specific placement of four anchors and
nine passive tags (cf. Sec. 8.3) on the human model Martin with the fixed Stand CallR
posture. The yellow marker represents the noiseless or unperturbed case, which shows
how drastically the input impedances of all anchors are detuned from the original
Rref = 50 Ω due to the combined impact of passive tags. This significant detuning of
the input impedances is important, since a posture classification would be impossible
if these changes were imperceptible. The red and blue markers show how the different
types of perturbations affect the corresponding impedance vectors for different stan-
dard deviations (or noise levels) of the corresponding perturbation. As is apparent
from (8.1), we observe typical Gaussian point clouds for the AWGN case, whereas the
Lognormal case by construction leads to straight lines which reflect the multiplicative
attenuation or amplification of the impedances. For the perturbations of the mutual
inductances and joints, we see a more intricate behavior for each individual anchor and
a strong correlation of real and imaginary parts. Ultimately, the individual anchors
are thus not only differently affected by the passive tags, but also by the noise real-
izations. This means that each anchor may provide different posture information and
noise characteristics, so using multiple anchors may be beneficial for the classification.

Fig. 8.4 shows a similar scenario, in which the input impedances of one single anchor
are given for all 14 different postures. The yellow markers again represent the noiseless
input impedances for each different posture, whereas the red and blue markers show
noise realizations with different standard deviations. In contrast to the previous plot,
this illustration already gives some intuition on the classification capabilities of our
system. That is, we see that the postures can easily be separated into two distinct
clusters (upper right and lower left), which indeed corresponds to all standing and all
sitting postures, respectively. However, we also see that within these clusters, some
postures overlap even for small noise realizations. This means that if we were to only
rely on this single anchor, then a classification of similar postures fails quickly for higher
noise levels.
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Figure 8.3: Exemplary perturbed input impedances of four anchors for a single fixed posture. The
input impedances are displayed in the complex plane for AWGN (a), lognormal noise (b), inductive
perturbations (c) and joint angle perturbations (d).
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Figure 8.4: Exemplary perturbed input impedances of a single anchor for 14 different posture. The
input impedances are displayed in the complex plane for AWGN (a), lognormal noise (b), inductive
perturbation (c) and joint angle perturbation (d).
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8.3 Coil Types and Placement

In this section, we introduce two different coil designs which we place on the body
models to compare their suitability for posture recognition. The coil designs and the
coil placement should generally comply with recommended design considerations of
Sec. 7.2 in order for the system to work well. However, in a first instance they also
have to satisfy the following practical criteria which may object some of the earlier
considerations.

1. The coils have to fit comfortably on the human body or they have to be imple-
mentable into the clothing. This requirement restricts the coil geometry and e.g.
complicates the use of three-axis coils.

2. The anchor placement should be centralized and restricted to one piece of cloth-
ing, such that a single integrated measurement device suffices to obtain all
impedance measurements. Further, they should be placed such that the distance
to the passive tags is not unnecessarily large.

3. The coils need to couple sufficiently over the entire range of the human body.
Yet, the coils and their additional circuitry also need to be inexpensive, which
complicates the design of high-quality coils. It may hence be beneficial to com-
pensate cheaper materials by using larger coils, as long as they can be still be
worn comfortably.

4. The anchor coils have to be designed in such a way, that their self-resonance
frequencies are significantly higher than the operating frequency. If this criterion
is not met, open-circuited (deactivated) anchors would cause relevant interfer-
ence with the impedance measurement of each actively measuring anchor. This
disturbance might overshadow the detuning caused by the passive tags.

With these criteria in mind, we decided to focus on two different coil designs: (i) simple
solenoid coils that surround a body part and (ii) flat spider web coils, which are placed
evenly on a body part’s surface. The coil designs and their placements are shown in
Fig. 8.5a and Fig. 8.5b, where they are mounted on the Martin model. The general
coil and simulation parameters are given in Tab. 8.2. Other coil parameters that vary
for different coils can be found in Tab. 8.3 and Tab. 8.4 for the Martin model. The
quality factors are stated for f res = fdes.
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Figure 8.5: Suggested coil placements with solenoid coils or spider web coils on the male human body
model Martin. The anchors (blue) are placed on the torso and passive tags (red) on the limbs. The
spider web configuration has twice the number of anchor coils.
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wire diameter Dwire 254.6 µm
design frequency fdes 500 kHz
op. frequency f 500 kHz
conductivity σwire 59.6MS/m
rel. permittivity ϵr 1
rel. permeability µr 1

(a) Specified parameters.

wavelength λ 600 m
(b) Resulting parameters.

Table 8.2: Simulation parameters and resulting quantities.

Parameter →
Coil ↓

Dcoil

[cm]
N coil

[1]
Hcoil

[cm]
R
[Ω]

L
[µH]

C
[pF]

f self

[MHz]
Q
[1]

Receiving anchors nR

ShoulderLR 1,2 17 5 1 1 9.7 21.8 11 30.5
Hip 3 29.4 10 1.5 3.4 68.7 41 3 63.5
Torso 4 31.2 10 4 3.5 56.8 26.4 4.1 51

Tags nT

CalfLR 1,2 11.2 10 3 1.9 35.1 6.9 10.2 58
ThighLR 3,4 16.6 10 4 1.9 24.5 10.6 9.9 40.5
ForearmLR 5,6 8 15 3 1.4 21.8 4.4 16.3 48.9
Upper armLR 7,8 10.8 10 4 1.2 13.5 5.9 17.8 35.3
Head 9 19 10 2 2.2 36.7 17.8 6.2 52.4

Table 8.3: All solenoid coils and their parameters for the Martin model as illustrated in Fig. 8.5. All
values are rounded to single decimals.

Parameter →
Coil ↓

Dcoil

[cm]
N coil

[1]
Hcoil

[cm]
R
[Ω]

L
[µH]

C
[pF]

f self

[MHz]
Q
[1]

Receiving anchors nR

LatLR 1,2 5.7 15 2.5 1 11.2 3 27.5 35.2
TorsoLR 3,4 10.3 15 6.5 1.6 16.8 5 17.4 33
HipLR 5,6 8 15 4.5 1.3 13.8 4 21.5 33.3
BottomLR 7,8 10.3 15 6.5 1.6 16.8 5 17.4 33

Passive tags nT

CalfLR 1,2 5.2 10 2 0.6 5 2.8 42.7 26.2
ThighLR 3,4 5.7 15 2.5 1 11.2 3 27.5 35.2
ForearmLR 5,6 5.2 10 2 0.6 5 2.8 42.7 26.2
Upper armLR 7,8 5.2 10 2 0.6 5 2.8 42.7 26.2
Head 9 5.2 10 2 0.6 5 2.8 42.7 26.2

Table 8.4: All spider web coils and their parameters for the Martin model as illustrated in Fig. 8.5.
All values are rounded to single decimals. Note that the effective overall diameter of a spider web coil
is given by the root mean square of the diameters of each coil turn.
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The different impacts of the two coil designs, are analyzed for the Martin model in
Fig. 8.6. That is, for each posture p we have one unperturbed feature vector r0

p of di-
mension 2NR×1 (cf. (7.3)). Both Fig. 8.6a (solenoid) and Fig. 8.6b (spider web) show
the first and second components of the corresponding Principal Component Analysis
(PCA) [141] over all Np = 14 postures. These primary principal components are the
two orthogonal linear combinations of the anchor observations, which explain most of
the overall variance that results from taking on different postures. Each plotted point
corresponds to the feature vector r0

p of a given posture that is projected from the full
feature space onto these two principal dimensions. The explained variance of the prin-
cipal components represents the main information available to separate the different
postures. It can be seen from Fig. 8.6a that even with only two components, a sepa-
ration of most postures is easily possible with the solenoid setup. The differentiation
between the asymmetric left and right postures on the other hand shows to be prob-
lematic. This is partially caused by the fact that both principle components dependent
mainly on the hip and torso anchor coils. Yet, for these two coils the left and right
postures lead to almost identical impedance observations. Looking at the analogous
PCA of the spider web setup in Fig. 8.6b, it is clear that the separation of the different
postures is more complicated as some postures cluster more severely, namely Sit I and
Stand I, as well as Sit CallL, Sit CallR, Sit Hunch, Sit Front, Stand X, Stand T, Stand
FallL and Stand FallR. We presume that this clustering is the result of (i) a weaker
coupling between the spider web coils due to the smaller coil sizes that are required for
a flat on-body placement and (ii) having overall lower quality factors. In Fig. 8.6c and
Fig. 8.6d we show the corresponding Scree plots [142] of both PCAs. For the solenoid
setup, it can be seen that approximately five principal components are necessary to
explain the variance. In contrast, the observation variance for the spider web setup
can be approximately explained only based on two different principal components, so
the observations are more linearly dependent (i.e. there is more redundancy in our
impedance observations).

However, it is not only important how many independent observations are required
to explain the posture variance, but also how well this variance separates all individual
postures. To this end, the Fig. 8.6e shows the numerical values of the minimum and
median inter-posture distances in the full feature space for both setups. For a posture
p, the minimum inter-posture distance is determined as dmin

p = minq,q ̸=p∥r0
p − r0

q∥ and
the median inter-posture distance follows as dmed

p = medianq,q ̸=p∥r0
p − r0

q∥, where q ̸= p

denotes all postures other than p. The minimum distances are an important measure
of the noise sensitivity for each coil design. For the Gaussian case and individual
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Figure 8.6: The first row shows the two primary principal components for the solenoid (left) and
the spider web coil (right) setup. The second row shows the Scree plots for the first six principal
components of both configurations. The last row shows the minimum and median Euclidean distances
of the noiseless feature vector of a given posture with respect to all other postures.
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pairwise decisions, these minimum distance can further be translated into pairwise
error probabilities (i.e. the probability of pairwise misclassification) via Q-function.
For the other perturbations this relationship is not as straightforward. Nevertheless,
higher minimum and median distances between postures are generally associated with
lower error probabilities. From Fig. 8.6e it is clear that both the minimum and the
median distances of the solenoid setup are significantly larger than those of the spider
web setup. That is, for each posture p the minimum distance of the solenoid setup
is larger than the corresponding median distance of the spider web setup. In a direct
comparison, we thus expect the solenoid setup to offer a superior separability and
fewer misclassifications. We further deduce that the chosen spider web coil design and
placement may be unsuited for the classification of our considered postures, since most
of the minimum distances are in the mΩ regime and will easily be bridged by noise or
model uncertainties.

Interference from Neighboring Systems With regard to massive deployment,
we also evaluated the impact of multiple systems being operated in close proximity.
To this end, we looked at a scenario in which two full body Martin models with the
solenoid coil setup are separated by a distance ddistort in px direction (cf. Fig. 8.5). One
of the models remains in the Stand I posture while all of its coils, even the anchor coils,
are resonantly loaded. The other model operates as intended and measures its own
and now distorted anchor impedances Z in,distort

R̃,nR
sequentially for all different postures.

We next look at the relative error ηdistort
nR

=
∣∣∣Z in

R̃,nR
− Z in,distort

R̃,nR

∣∣∣ ·
∣∣∣Z in

R̃,nR

∣∣∣
−1

caused by this
neighboring system if other perturbations are fully omitted. In Fig. 8.7, the maximally
observed relative error (over all p) is visualized for different distances ddistort. We see
that the influence of the second model decreases quickly, as expected. At a distance of
ddistort = 1.2 m, the worst overall impact only corresponds to a distortion of the true
impedance magnitude by roughly 0.1%. This quick decay of the interference is a direct
result of the strong path loss of the magnetic near field and is sometimes also referred
to as magnetic bubble [29]. As the resulting impact is significantly smaller than the
perturbations considered in Sec. 8.5 , we omit its impact altogether and assume a
sufficient distance to possibly distorting materials.
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Figure 8.7: Maximum (over all p) relative error at f = 500 kHz as a result of a neighboring MI posture
recognition system with resonantly loaded anchors at distance of ddistort.
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8.4 Data Set Generation and Classifiers

The previous models are used to generate a dataset that can be used for training and
testing purposes of various classifiers. More precisely, for each full parametrization that
specifies body model, coil design, posture, noise model and noise level, a perturbed
impedance vector xp is generated according to (8.1) to (8.6). This complex-valued
impedance vector is further partitioned into the corresponding real-valued realization
of the perturbed feature vector rp. We generate 1000 of these 2NR × 1-dimensional
feature vectors per parametrization. For each parametrization, the total dataset is
further split into a training part (70 %, 700 feature vectors) and a testing part (30 %,
300 feature vectors). Note that the postures in either part are still equiprobable. This
dataset separation is furthermore fixed, meaning that no feature vectors of the test
part are ever considered by a training process.

Using the training part, we train any type of classifier via five-fold cross validation
to mitigate overfitting. That is, we use random 70 percent of the training part for the
learning process of a single classifier and the remaining 30 percent for the corresponding
validation of the same classifier. If we evaluate the performance of the training part, we
solely use the average misclassification rate as performance metric. If we instead want
to examine the actual performance, we evaluate the classifier’s accuracy (the total ratio
of correct classifications, i.e. accuracy = 1−misclass. rate) as performance metric on
the testing part. Note that if not stated otherwise, the classifiers are always trained
with the same body model, coil design, noise model and noise level that they are tested
on.

8.4.1 Classifier Comparison During Validation

In the following subsection, we investigate the performance of three different types
of classifiers, namely the k-Nearest Neighbors (kNN) algorithm, Support Vector
Machines (SVMs) and MultiLayer Perceptrons (MLPs). For each of these classifiers,
we compare the impact of different key hyperparameters on the performance during
validation. The other hyperparameters are determined via random search. In this
preliminary study we only use the Martin model, solenoid coils and AWGN.

kNN As one of the simpler and more established approaches, we employ a kNN
classifier [141]. It uses the Euclidean distance between neighbors, weights all distances
equally, searches for the neighbors via Kd-tree and breaks ties randomly. In order to
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decide on the number of neighbors that should be considered, Fig. 8.8a shows a colorplot
that highlights the impact of an increasing k on the number of misclassifications during
the cross-validation step. We see that for all considered noise levels, the improvements
diminish drastically for an increasing number of neighbors k. Even for the highest noise
level, there is no relevant improvement after k = 15 and we thus fix this choice as our
operating point. This result was also validated to work well for the spider web setup
and the Fiona model (not shown).

SVM We also consider a SVM that performs multi-class decisions with the One-vs-
One approach, i.e. by applying a series of binary decisions [141]. The final multi-class
decision is made based on the class with the most wins after performing all possible
binary decisions. The SVM also uses the kernel trick in order to allow for quick non-
linear decisions in the feature space [141]. In Fig. 8.8b we compare the performance
of SVMs with different kernels during the cross-validation. More precisely, we analyze
the performance for a linear SVM, a polynomial kernel of order 3 and a Radial Basis
Function (RBF) kernel.

MLP Lastly, we also analyze the performance of feed forward MLPs for the classifi-
cation [141]. For all our MLPs, we use a hyperbolic tangent sigmoid function at each
neuron, and decide for the posture which corresponds to the maximum output of the
final softmax layer. In Fig. 8.8c, we show the misclassification rate during validation
for multiple noise levels. The compared MLPs only differ with respect to the number
of hidden layers used and neurons per layer, which are indicated by the legend. The
blue line for example corresponds to a MLP with only two hidden layers, which each
comprise 28 neurons. Overall, Fig. 8.8c shows no performance difference as a result of
the network size. To mitigate possible overfitting, we hence continue with the simplest
structure MLP structure, namely the one with only two hidden layers that each contain
28 neurons.

Comparing all three types of classifiers, we find a similar performance behavior.
That is, all classifiers start with a perfect misclassification rate of approximately 0 for
low standard deviations σAWGN, which increases steadily to roughly 60 % at σAWGN =
7 Ω. Ultimately, we assume that at least with AWGN and our the low-dimensional
feature space, no intricate decision boundaries are required. As a result, even simple
classification algorithms with few parameters suffice. This behavior may however differ
for other types of perturbations.
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Figure 8.8: Impact comparison of typical hyperparameters on the misclassification rate during the
validation process for three different classifiers using the Martin model with solenoid coils and AWGN.
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8.5 Performance Evaluation

One remaining issue is the fundamental difference between the four types of perturba-
tions, which complicates a direct comparison. It is thus helpful to establish a common
basis when comparing their impact. For our analyses, we hence choose their stan-
dard deviations such that they cause the same resulting expected deviations on the
impedances vectors, i.e. we require

(σAWGN)2 = E
[
∥xAWGN

p (σAWGN)− x0
p∥2
] !≈ E

[
∥xlogN

p (σlogN)− x0
p∥2
]

!≈ E
[
∥xindN

p (σindN)− x0
p∥2
] !≈ E

[
∥xJoints

p (σJoints)− x0
p∥2
]
,

with the expectation being taken over all postures and noisy realizations for an oth-
erwise specified parametrization. We performed this standardization for the maxi-
mum values of the corresponding standard deviations and found that σAWGN = 7 Ω,
σlogN = 0.4, σindN = 0.4, and σJoints = 20◦ all lead to the roughly same impedance devi-
ations. This clearly also holds for σAWGN = 0 Ω, σlogN = 0, σindN = 0, and σJoints = 0◦.
All other considered standard deviations in-between are not necessarily of equivalent
impact.

8.5.1 Comparison of Classifiers

In Fig. 8.9 the classifiers accuracy is compared on the testing data for these fixed
noise ranges. For AWGN, all classifiers yield a similar accuracy that agrees with the
previous results of Fig. 8.8. Moreover, the performance decline is already visible with
low noise contributions, which means that some decision boundaries lie close to the
true values. For the lognormal and inductive perturbations, it is clear that the SVMs
and MLPs drastically outperform the kNN approach. Overall, we see that at least
for the solenoid Martin case, the classification with the SVM is resistant against each
noise type and maintains a 90 percent accuracy if the standard deviations are lower
than σAWGN = 1.5 Ω, σlogN = 0.35, σindN = 0.21, and σJoints = 8◦, respectively. In the
following, we will use the SVM as classifier of choice due to its high accuracy and low
computational complexity. Further, while these preliminary results seem promising, it
is unlikely that only one type of perturbation is present in reality. Minor variations
of the users posture may for example occur independently of additional thermal noise.
In Sec. 8.5.2 we thus examine how a combination of multiple noise types affects the
classification.
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(c) Inductive perturbations.
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Figure 8.9: Classification accuracy of the kNN, SVM, and MLP classifiers for different noise models
and noise levels. The results are obtained using solenoid coils on the Martin model.
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8.5.2 Mixed Perturbation

Next, we look at a mixed perturbation which combines AWGN and joint angle pertur-
bations. That is, the corresponding complex impedance vectors of this mixed pertur-
bation have the form

xmixed
p = xJoints

p + wAWGN . (8.7)

For this mixed perturbation, Fig. 8.10 shows the classification accuracy that is ob-
tained on the corresponding testing data when using the solenoid Martin case in com-
bination with a SVM. The two axes show the increasing noise standard deviations,
whereas the color represents the classification accuracy. The dashed white lines mark
the equipotential lines. These lines highlight that for a given σAWGN and a small
σJoints < 2◦, the classification performance remains approximately constant, so minor
posture changes are not detrimental to the system performance. For higher standard
deviations σJoints, the equipotential lines exhibit a linear behavior, i.e. they corre-
spond to points (σJoints, σAWGN) that approximately satisfy a σJoints + b σAWGN = c with
a, b, c ∈ R. The plot further indicates how stronger standard deviations of a single
noise type may be compensated for by reducing the standard deviation of the other
noise type. However, this compensation potential is limited by practical constraints,
e.g. the cost of the measurement device or the available measurement duration. In
order to decide on the overall feasibility, it is thus necessary to first identify realistic
operating points.

For the AWGN, we did so by evaluating different suitable measurement methods
and by comparing officially stated tolerances for impedance meters and for low-cost
measurement boards that operate in a comparable regime [137,138]. Overall, we hence
expect a measurement tolerance which leads to 99% of errors being within ±1 % of the
true impedance value. Yet, such percental errors cannot be implemented when using
the generic AWGN noise model with identical standard deviations on all impedance
measurements. We alternatively use a pessimistic workaround and simply choose the
standard deviation corresponding to the highest impedance value observed for all an-
chors and postures (cf. Fig. 8.3 and Fig. 8.4), which is roughly 50 Ω. Consequently, for
99% of errors to be in the range of [−0.5 Ω, 0.5 Ω], the standard deviation under a Gaus-
sian assumption follows via quantile function [143] as σAWGN = 0.5 Ω

(
√

2erfc−1(0.01) ≈ 0.2 Ω.
However, since we choose a pessimistic approach, lower values of σAWGN may be accept-
able as well. To further assess reasonable deviations for the joint angle perturbations,
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Figure 8.10: Colorplot of the obtained classification accuracy via SVM for the solenoid Martin model
when being subjected to both AWGN and joint angle perturbations. The dashed white lines represent
the equipotential lines of the accuracy. The red rectangle highlights reasonable operating points.

we instructed three test subjects to re-enact all postures (as would be done during a
calibration) and measured the variations of their joints compared to the corresponding
true joint angles. This led to deviations that translated to σJoints ∈ [4◦, 6◦] on average.
These practical considerations led us to believe that reasonable operating points lie
within the highlighted red rectangle.

For the subsequent analysis, we will focus on a single operating point with σAWGN =
0.2 Ω and σJoints = 5◦. The confusion charts of all body models and coil designs for this
operating point are displayed in Fig. 8.11. For both body models wearing the solenoid
coils, we see that the main classification errors are the result of left-right confusions
for the Stand Fall and Sit Call postures. We assume that these errors are so frequent
because left-right postures lead to the same detuning effect for the important large
torso coil and to very similar detuning effects for the coil on the hip. The decisions
thus have to rely on the observations of the shoulder coils, which are generally less
resistant to noise because they observe smaller impedance variations. Unfortunately,
these shoulder coils are strongly misaligned to the passive tags on the arms for the
fall-related postures, which explains the even worse discriminability. Nevertheless, if
these postures are of particular importance this issue can be addressed by an improved
anchor coil placement, e.g. by moving the upper end of the shoulder coils closer to the
neck and letting them cross the chest (cf. Fig. 8.5a). Moreover, when comparing the
unhealthy postures (Sit Hunch and both Stand Fall postures) to the healthy ones, we
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see that false classifications between these two superclasses only occur in about 0.9 %
of all cases. With the spider web coils a significantly degraded accuracy of less than
50 % is observed for either body model. This was already expected when we compared
the two coil designs in Fig. 8.6 and is a result of the weak MI links between the spider
web coils. The confusion charts thus further emphasizes how important large coils or
sufficiently high quality factors are for posture recognition with passive MI tags.

8.5.3 Mismatch of Training and Test Data

In a last step, we also want to examine the generalizability of the training data for
the two different body models with solenoid coils at the previously chosen operating
point (σAWGN = 0.2 Ω, σJoints = 5◦). That is, we look at the classification accuracy
that is obtained if the SVMs trained on one body model are evaluated on testing data
corresponding to the other body model. In Fig. 8.12 the corresponding confusion charts
for this mismatched case with out-of-domain data are displayed. Here, Fig. 8.12a shows
the case where the classifiers are trained using the solenoid Fiona data but are tested on
the solenoid Martin data. Fig. 8.12b represents the opposite scenario. We clearly see
that most classifications result in the same few classes with the overall accuracy being
comparable to that of a random guess, namely 1

14 . As almost all decisions are affected,
we deduct that this phenomenon occurs even in case of insignificant noise realizations.
We hence infer that there is a severe shift of all clusters of feature vectors between
both body models. More precisely, there is a severe domain shift (also distributional
shift), so a relevant mismatch between the distributions of the training and testing
data [144]. Without any domain adaption techniques, the learned decision boundaries
are thus not suited to deal with the different input distributions and a generalization
is not possible. In contrast, we can also train the classifiers using a mixed training set
which comprises the training data of both body models. These more general classifiers
are then evaluated on the separate testing data of both body models in Fig. 8.12c
and Fig. 8.12d, respectively. The results are on par with our previous findings from
Fig. 8.11, yielding an accuracy of roughly 93 % for either body model. This numerical
evaluation indicates that even when looking at both body models simultaneously, there
are no drastically overlapping posture clusters in the feature space. The bad results
from the mismatched cases were hence indeed the result of a domain shift and the
associated insufficient training data.
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(a) Solenoid Martin - Accuracy 0.94.

16
8

18
15

1

16
16

16

16

12
21
21
19

1
20
20

20
1

20

18
17
21
11

1
1

11
11

11
1
1

11

24
25
18
31

16
16

19

19

47
2
2

47

3
2

85

4

76

3

10
9
8
8

15
15

13

13

10
9
9
9

15
14

13

13

37
1
1

37

3
2

5
5
3
4

3
4

4

4

7
6
6

7

82
8

8
4

14

8

6
82

5
5
3
3

5
4

4

4

Sit
Call L

Sit
Call R

Sit
Front

Sit
Hunch

Sit
I

Stand Call L

Stand Call R

Stand Fall L

Stand Fall R

Stand I

Stand T

Stand W
alk L

Stand W
alk R

Stand X

Sit
Call L

Sit
Call R

Sit
Front

Sit
Hunch

Sit
I

Stand Call L

Stand Call R

Stand Fall L

Stand Fall R

Stand I

Stand T

Stand W
alk L

Stand W
alk R

Stand X

predicted class

tr
ue

cl
as

s

(b) Spider web Martin - Accuracy 0.38.
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(c) Solenoid Fiona -Accuracy 0.95.
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(d) Spider web Fiona - Accuracy 0.49.

Figure 8.11: Confusion charts displaying the average percentage of classifications for each different
posture based on evaluations on the unknown testing data. All entries are rounded to integers and
the sum of each row and column might hence be unequal to 100.
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(a) Trained Fiona | Tested Martin: Accuracy 0.067.
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(b) Trained Martin | Tested Fiona: Accuracy 0.08.
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(c) Trained both | Tested Martin: Accuracy 0.926.
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(d) Trained both | Tested Fiona: Accuracy 0.93.

Figure 8.12: Confusion charts displaying the average percentage of classifications for each different
posture based on different combinations of training and testing data. All entries are rounded to
integers and the sum of each row and column might hence be unequal to 100.
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8.6 Conclusions

We investigated the usability of the proposed topology classification system for posture
recognition. We introduced two different human body models and two different coil
designs, including flat spider web coils and large solenoid coils. We found that only
the large solenoid coils, which each fully surround a body part, were capable of caus-
ing a relevant impedance detuning for either body model. Additionally, we compared
different supervised classifiers, namely kNN, SVMs, and MLPs, which all exhibited
a similar classification accuracy. This led us to believe that the classification within
the eight-dimensional feature space does not require highly complex classifiers. Sim-
ple classifiers with few parameters that are less likely to overfit are hence preferable.
We further characterized the robustness of the system against four different types of
perturbations and identified reasonable operating points for a mixture of the different
perturbations. For these reasonable operating points, the SVM obtained a classifica-
tion accuracy of more than 90 % for both body models. This high accuracy is adequate
for the applications motivated in Sec. 1.3. Nevertheless, this accuracy can only be
obtained if the training and testing data come from the same body model. If there
is a mismatch, i.e. if the classifiers are trained exclusively on measurements from the
female body model and tested on measurements from the male body model (or vice
versa), the classification accuracy drops to less than 10 %. Having exhaustive training
data to mitigate such domain shift issues shows to be crucial for the feasibility of the
posture recognition system.
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Chapter 9

Posture Recognition Demonstrator

Note: Parts of this chapter have been published by us in [89, 90]. This work hence
exhibits similarities regarding formulations and visualizations.

By means of simulation, the previous chapter assessed the feasibility of a MI pos-
ture recognition system using purely passive tags. In this chapter we further extend
this feasibility study by presenting an experimental demonstrator system. We repeat
the single-frequency classification analyses from Cpt. 8, this time with experimental
measurement data and verify its usability for posture recognition. Next, we introduce
posture variations and coil displacements to our measurement data and find that these
additional disturbances degrade the classification accuracy if they are not also present
in the training. In order to improve robustness, we extend our system to use multi-
frequency measurements of the input impedances and examine the resulting trade-off
between bandwidth, center-frequency and classification accuracy.

9.1 Demonstrator and Measurement Setup

This section will describe our implementation of an MI posture recognition demonstra-
tor in detail. The demonstrator’s purpose is to verify the posture recognition capabili-
ties that we stipulated in Cpt. 8 and to identify possible bottlenecks and other issues.
It thus only represents the single next step towards a possible product by means of a
proof of concept, but is in no way to be understood as a functioning prototype for end
consumers. Some of the differences between this realization and our envisioned final
system are summarized in Sec. 9.1.1. Directly after this juxtaposition we will introduce
the electronics used for this demonstrator and explicate the considered postures and
testing environments.

9.1.1 Demonstrator Structure

For the posture recognition demonstrator, we use the original solenoid proposal of
Fig. 8.5a, which comprises 9 purely passive tag coils that are placed on the limbs and
4 measuring anchor coils that are situated on the torso. Each of these coils is fastened
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(a) Matching network from Cpt. 7 and Cpt. 8.
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(b) Matching network of the PCB.

Figure 9.1: Overview of different matching networks.

onto individual 3D-printed frames that can be worn on top of conventional clothing
and also offer space for additional circuitry. The coils themselves are thin-wired using
high-frequency litz wires. Despite operating in the kilohertz regime, these specific wires
help to reduce the resistance and hence drastically increase the coils’ quality factors
and their coupling capabilities. In Tab. 9.1 we summarize the measured parameters of
all coils without additional circuitry. For ease of use, both the hip and the torso coils
have an ellipse shaped base, with the minor axis length being 0.85 times the major axis
length. For these coils, the major axis length is stated as the diameter in the table.
The passive tag coils are loaded with tuneable capacitors, which can be adjusted to
obtain resonance at f = 500 kHz if no other coils are present. In contrast, the anchors
are connected to a Printed Circuit Board (PCB), which comprises matching networks,
switches and other electronic components. The PCB is used to match each anchor,
to switch it on and off via a single central unit, and to connect it to the VNA. The
balanced connections from the PCB to the VNA are established via SubMiniature
version A (SMA) microwave cables with a 50 Ω resistance and all anchor impedances
are measured sequentially. In Fig. 9.1b a PCB matching network is shown, which
compared to Fig. 9.1a, i.e. the T-structured matching approach from Cpt. 7 and
Cpt. 8, has two output ports to allow for balanced measurements. The measured data
is saved and processed via connected computer. The system and measurement room
are shown in Fig. 9.2.

In comparison, a final consumer system would likely use sewn-in coils which are
already being used for smart garments [11]. Moreover, the system would likely deploy
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Anchors

Passive
Tags

Hip

ThighR

PCB

Measurement
area and room

7.5 m

6 m

Figure 9.2: Photo of a test subject wearing the posture recognition demonstrator, close-up images of
two of its coils, the PCB and the measurement room layout. The anchors (blue) and the tags (red)
are mounted on wearable 3D-printed frames.

Parameter →
Coil ↓

Dcoil

[cm]
N coil

[1]
Hcoil

[cm]
R
[Ω]

L
[µH]

C
[pF]

f self

[MHz]
Q
[1]

Receiving anchors nR

ShoulderL 1 17 5 1 0.1 10.1 49.9 7.1 244.1
ShoulderR 2 17 5 1 0.2 10 48.3 7.2 174.5
Torso 3 37 10 4 0.5 56.2 83.2 2.4 353.1
Hip 4 39 10 1.5 0.2 26.7 209.3 2.2 419.4

Passive tags nT

CalfL 1 14 15 3 0.4 48.6 8.1 8 381.7
CalfR 2 14 15 3 0.3 48.6 5.2 10 508.9
ThighL 3 20 10 4 0.3 32.6 0.4 46.1 341.4
ThighR 4 20 10 4 0.3 32.7 6.4 11 342.4
ForearmL 5 9 15 3 0.2 26 5.3e-4 1.4e3 408.4
ForearmR 6 9 15 3 0.2 25.9 1.1e-3 9.2e2 406.8
Upper armL 7 12 10 4 0.1 15.9 2.6e-4 2.5e3 499.5
Upper armR 8 12 10 4 0.1 15.9 1.2e-4 3.7e3 499.5
Head 9 21 10 2 0.5 42.9 8.9 8.1 269.5

Table 9.1: All coils and their measured parameters. All numerical values are rounded to single
decimals, if applicable.
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9 Posture Recognition Demonstrator

Figure 9.3: Sample postures.

an integrated circuit board which would already comprise a dedicated measurement
circuit (e.g. similar to [138]). Such an integrated circuit board would simplify the
measurement process, as it would not necessarily require matching networks and other
electronic components of our PCB. Lastly, a consumer system may forward the mea-
surement data via wireless communication standard such as Bluetooth or WLAN to a
locally available mobile Central Processing Units (CPUs), e.g. via smartphone, where
the entire signal processing (filtering, calibration and classification) takes place.

9.1.2 Data Collection and Pre-Processing

Overall, we consider the same postures as in Cpt. 8, which are sketched in Fig. 8.2.
Some of the postures are also re-enacted by a test subject in Fig. 9.3. All subsequent
measurements were taken in a laboratory that resembles an office environment (cf.
Fig. 9.2). It contains desks, chairs, computers, monitors, drawers, various electronic
components and measurement devices.

While conducting a measurement campaign, the fully equipped test subject took
on each posture for as long as the measurement device needed to perform N = 128
frequency sweeps of the complex impedances. The frequency sweep used frequencies
f ∈ [480, 560] kHz at each anchor and with a spacing of 500 Hz totaling 161 frequency
points. All anchor coils except the one being measured were open-circuited to limit the
mutual impedance detuning of anchors. The switching between the anchor coils was
performed automatically. The complex impedances were again partitioned into real and
imaginary parts to obtain a real eight-dimensional feature vector (cf. (7.3)). In total,
we thus obtained 128×8×161 datapoints for each posture. Overall, we performed three
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such measurement campaigns in the same office environment, leading to three distinct
datasets of all postures. We will refer to them as datasets 1, 2, and 3 throughout our
work. Within each dataset, there are measurement variations due to the noise of the
measurement device, due to the test subject not being able to stand completely still,
and due to other external factors. For measurements belonging to different datasets,
there are additional variations as a result of a slightly different placement of the coils
due to removing and remounting them between measurement campaigns and also due to
intentional minor changes of all postures. These inter-dataset variations are deliberate
to emulate disturbances the system may be confronted with in everyday use.

In general, we further split the obtained measurement samples of each dataset
into an individual training part containing 2/3 of each full dataset and a testing part
containing the remaining other 1/3. This split is performed randomly over the N = 128
realizations, so all postures and frequencies are still equiprobable for both training and
testing data.

9.2 Single-Frequency System

In this section, we only rely on the impedance measurements of dataset 1 at a frequency
of f = 500 kHz. While this choice reduces the overall available information and hence
most likely the obtainable classification accuracy, it offers some practical advantages:

1. Only using a single frequency with a narrow bandwidth drastically reduces the
hardware complexity of the involved circuitry as well as the measurement device.

2. The measurement speed is drastically increased and there is less data that needs
to be transmitted and used for training.

3. The applicable classification algorithms can be simpler as we operate in a low,
eight-dimensional feature space and hence do not have to consider advanced
neural networks such as Convolutional Neural Networks (CNNs) [145] or Long
Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) [146], which
are beneficial when dealing with highly-dimensional and possibly correlated se-
quences of features.

9.2.1 Single-Frequency Measurements

Before we analyze the classification performance, we first have a closer look at the
impedance measurements of the full demonstrator. To this end, Fig. 9.4a and Fig. 9.4b
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9 Posture Recognition Demonstrator

show all N = 128 samples of dataset 1 for each anchor and posture in the complex
plane. Each marker type represents a different anchor and each color represents a
different posture. Note that due to the different structure of the balanced matching
networks, additional detuning causes the anchor input resistances to be greater instead
of lower than 50 Ω. This effect is further enhanced by the lower coil resistances (cf.
Tab. 9.1), which require a higher matching factor. For a given anchor and posture, we
also observe impedance measurement deviations larger than 5 % of the corresponding
mean value. Moreover, the distribution of these deviations is not symmetric as one
would expect for additive Gaussian noise. Due to the pronounced asymmetry, we
assume that the deviations are dominated by the test subject’s involuntary movements
during the measurements procedure.

Next, it is evident that the hip anchor (marker +) generally exhibits the strongest
impedance detuning from the original 50 Ω and that this single anchor may distinguish
many of the postures on its own, such as Stand I (pink) and Stand WalkR (black).
However, only using the hip anchor would be problematic when we need to differentiate
between sitting postures, such as Sit CallR (vermillion) and Sit Front (yellow). These
postures are however easily distinguishable for the other anchors, which confirms that
it is advantageous to use more than one anchor coil. When combining the observations
of all anchors, i.e. using the full eight-dimensional feature vectors, the posture-based
clustering of the impedance measurements becomes even more evident. This effect is
illustrated by the t-distributed Stochastic Neighbor Embedding (tSNE) plot [147] in
Fig. 9.4c. While its results are not representative to quantitatively evaluate the true
distances between the clusters, it shows that first, each eight-dimensional measurement
sample of a given posture clusters well within a limited domain and second, the domains
of each cluster are distinct. We thus expect that for the given dataset perfect accuracy
can be achieved. Also, note that we consider the impedances differences for the left
and right shoulder coils to be the result of non-identical coils and slightly asymmetric
realizations of the postures.

9.2.2 Single-Frequency Classification Performance

To test this assumption of perfect accuracy and further analyze the classification per-
formance, we train one-vs-one SVMs on the training data via five-fold cross validation
using the same hyperparameters as in in Cpt. 8. Again, we also partition the impedance
vector xp that contains all four complex anchor input impedance measurements into a
real eight-dimensional feature vector rp. As before, we choose the classification accu-

130



9.2 Single-Frequency System

racy of the SVM on the testing set as our performance metric. With this configuration,
the SVM yields a perfect accuracy of 1 and is hence able to correctly classify all pos-
tures (not shown). We reran this analysis for all three datasets and found that the
perfect accuracy is always obtained.

SVM Performance for Additive Gaussian Impedance Noise So far, we as-
sumed that the noise of the measurement device itself can be fully neglected compared
to the impact of minor posture variations. However, for small low-cost devices or other
external impacts this may generally not be true and we hence analyze the system’s
robustness against additional perturbations. To this end, we add circularly-symmetric
complex white Gaussian noise with zero mean and standard deviation σAWGN onto the
measured complex impedances to emulate a worsening noise characteristic.

In Fig. 9.5, we conducted a performance investigation of the SVM for this noisy
dataset. We see that the SVM maintains an almost perfect accuracy until the noise
standard deviation passes σAWGN = 40 Ω. For stronger noise levels we see a steady
decline until σAWGN = 104 Ω, at which point the SVM has a classification accuracy of
only 1

14 ≈ 7 %, which equals a random guess. The 90 % accuracy is reached at a noise
level of about σAWGN = 100 Ω, which makes up roughly 3 % of the maximally measured
impedance.

ML Classifier for Additive Gaussian Impedance Noise Next, we want to pro-
vide the ML classifier for the case that each noisy sample is the result of (i) randomly
selecting one of the N = 128 corresponding recorded impedance measurements with
equiprobability and (ii) adding the Gaussian noise to emulate a worsening noise char-
acteristic. The underlying assumption of this ML classifier is hence that all no values
other than the N = 128 recorded impedance measurements per posture are possible
and that the Gaussian noise sufficiently represents any further perturbation. The con-
ditional PDFs of the corresponding noisy feature vectors rnoisy follow via Gaussian
Mixture Models (GMMs) [148] with N = 128 equiprobable Gaussian components.
More specifically, for a given posture p the random rnoisy are distributed according to

frnoisy

(
rnoisy|p

)
= 1
N

N=128∑

n=1
fAWGN

(
rnoisy; rp,n,

(σAWGN)2

2 I8

)
, (9.1)

where fAWGN(.) is a real multivariate Gaussian PDF, (σAWGN)2

2 I8 is the covariance matrix
and the respective means are given by measured feature vectors rp,n (without additional
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noise).
The ML hypothesis, which also coincides with the Maximum A Posteriori (MAP)

hypothesis due to the equiprobable posture priors, is thus the posture which maximizes
(9.1) for a given realization rnoisy, i.e.

p̂ = arg max
p

frnoisy

(
rnoisy|p

)
. (9.2)

Yet, the evaluation of (9.1) requires to compute a sum of exponentials for a wide range
of values and can lead to numerical complications. To bypass these complications,
we can alternatively break down (9.2) to a series of pairwise decisions. That is, for
each possible pair of postures p and q with q ̸= p we instead evaluate the likelihood
ratio frnoisy(rnoisy|p)

frnoisy (rnoisy|q) individually. When evaluating these likelihood ratios, we can offset
the exponential sums of both conditional PDFs via multiplication by a fixed constant
exp(α2

p,q) with αp,q = minn{ {∥rnoisy−rp,n∥},{∥rnoisy−rq,n∥}}
σAWGN . Combining this offset with the

pairwise evaluation can make the problem numerically feasible without loss of gener-
ality.

Lastly, in case the dataset is split into a training and testing part, this additional
information can be incorporated into the ML classifier. To this end, instead of using all
N real feature vectors rp,n in (9.1), only the ones which correspond to the testing set
are considered. For our investigation with fixed measurements and additional Gaus-
sian noise, the ML classifier of (9.2) constitutes an statistical upper bound to any other
possible classifier such as a SVM. However, it is unfeasible in practice as the feature
vectors rp,n of the testing data are typically unknown beforehand. Furthermore, the
conditional PDF of (9.1) is only the result of our assumptions and the adequate incor-
poration of real world perturbations (e.g. due to more posture variations, interference,
or distortions) may lead to a fundamentally different PDF, which in turn would require
a different ML classifier. Nevertheless, we can use (9.2) as a theoretical benchmark for
practical classifiers. Further, the simplified evaluation of (9.2) is computationally cheap
and facilitates the study of the posture recognition system.

ML Classifier Performance for Additive Gaussian Impedance Noise In
Fig. 9.5, we compare the performance of the ML classifier as a theoretical upper bound
to that of the SVM. Regarding the average classification accuracy, the ML classifier
exhibits a similar behavior and outperforms the SVM by at most 6 %, despite using
the testing data which offers superior prior information. Due to these minuscule dif-
ferences, we presume that the training data reasonably represents the testing data and
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that the SVM approximates the optimal decision boundaries fairly well. Overall, we
summarize that the full system exhibits a great performance and shows to be resistant
against additive Gaussian impedance noise.

In order to get a more detailed picture of the underlying system-related classification
challenges for individual postures, Fig. 9.6a and Fig. 9.6b show the confusion charts
of the ML classifier when averaging the accuracy over many noise realizations with
σAWGN = 100 Ω and σAWGN = 300 Ω, respectively. The confusion chart for σAWGN =
100 Ω has an overall accuracy of 92 % and the errors are dominated by misclassifications
between the Sit CallR and the Sit Front postures, as well as the Stand FallL and Stand
FallR postures. For this noise level, there were also no misclassifications between the
super classes Sit and Stand. For σAWGN = 300 Ω, the overall accuracy is decreased to
67 % and now includes various different posture misclassifications, even between super
classes. However, even for this high noise level some postures are recognized well, such
as Sit I, Stand WalkR or Stand X. To understand why some of these misclassifications
are dominant, we next consider all pairwise Euclidean inter-posture distances between
all eight-dimensional feature vectors of one posture and all feature vectors of all other
postures, in the absence of the additive noise. Fig. 9.7 illustrates these inter-posture
distances via box plots, where the whiskers represent the true minimum and maximum
distances, the box itself shows the interquartile range (25th to 75th percentile) and
the red bar shows the median distance. As in Sec. 8.3, larger Euclidean distances
for a given posture hence indicate a higher robustness against misclassifications. The
box plot consequently shows that misclassifications between both Stand Fall postures
or between the Sit CallR and the Sit Front postures are more likely to occur and
hence reaffirms the previous results of the confusion charts. To mitigate these errors
efficiently, it is necessary to adjust the system itself, e.g. by adapting the coil design
or placement, such that the detuning of either of these postures increases.

Different Anchor Selections Based on the ML classifier Another interesting
question is which of the anchors are actually needed when additional disturbances, as
described in the previous paragraph, are present. Although it is clear that the hip
(H) and torso (T) anchors are detuned the most, we saw that the inclusion of the
shoulder anchors (SL and SR) may be beneficial to distinguish specific postures. To
quantify these considerations, Fig. 9.8 shows the average accuracy of the ML classifier
for all possible anchor selections. For this extensive analysis, we used the ML classifier
instead of the SVM to reduce computation times, but expect a similar overall behavior
(cf. Fig. 9.5). The anchor selection is expressed in terms of an ordered binary sequence,
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SL SR T H, where a 1 indicates that the anchor is used and a 0 represents an anchor
unused. The sequence 0 1 1 0 for example means that only observations from the right
shoulder and the torso anchor are used. The sequences are ordered from the worst
to the best in terms of accuracy averaged over all noise levels. As a first observation,
we see that when only using a single anchor, the left shoulder anchor performs worst,
closely followed by the right shoulder anchor, then the torso anchor and lastly the hip
anchor (rows 1, 2, 4 and 8). While none of the anchors manages to obtain a perfect
accuracy individually, a system with reduced complexity that e.g. only uses the left
shoulder and hip anchor (row 10) may still be sufficient for some fields of application.

SVM Performance Degradation under a Domain Shift (Mismatch) Up to
now, the experimental results hold qualitatively for any of the datasets 1, 2, or 3, and
affirm a high classification accuracy. In a next step, we analyze the generalizability
between those datasets. That is, Fig. 9.5 also shows the performance of a mismatched
SVM which was trained on one of datasets and tested on the other two. This mis-
matched scenario shows a significant degradation compared to the correctly trained
SVM and exhibits a classification accuracy of roughly 68 %, even for low noise levels.
Surprisingly, the accuracy improves slightly for minor increases of the noise level, be-
fore it starts to decline and approach the accuracy of a random guess. As in Sec. 8.5.3,
we expect the bad initial performance to be the result of shifted impedance clusters for
some postures. For such postures, the decision boundaries learned from one dataset
may not at all enclose the corresponding impedance cluster from a different dataset.
As a result, misclassifications are present even if the additional noise is weak. Yet,
for increasing noise levels the perturbations can (i) randomly compensate this shift or
(ii) lead to broader decision boundaries, which may explain the slight improvement of
the classification accuracy. Overall, these results highlight that domain shifts are a
practical issues that significantly reduce the usability of the experimental system and
need to be addressed.

9.3 Multi-Frequency System

The experimental results of Sec. 9.2.2 reinforce our simulation-based findings from
Cpt. 8, which showed the presented low-complexity single-frequency system to work
with high accuracy. This high accuracy is maintained even when only relying on two
anchor coils (cf. Fig. 9.8). However, the simulation and experimental study both re-
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vealed that domain shifts, i.e. a mismatch between the PDFs of training and testing
data, can cause a severe performance degradation (cf. Fig. 8.12 and Fig. 9.5). This
performance degradation overshadowed the impact of additional noise significantly and
rendered the posture recognition system unusable. In Cpt. 8, the mismatch was ana-
lyzed by using training data from one body model and testing data from a different
body model, which may in practice be circumvented by requiring each individual user
to calibrate their own system. Alternatively, it could also be mitigated by having ex-
haustive training data or by applying transformations that allow to match more general
training data to a specific user. In contrast, a mismatch that is caused by irregular
posture variations and minor coil displacements would be harder to avoid in everyday
use. The experimental single-frequency study already revealed that such issues are also
detrimental and need to be addressed. This section hence investigates this latter type
of mismatch and further illustrates why single-frequency measurements are sometimes
insufficient for reliable posture recognition. Moreover, we qualitatively analyze the
advantages of using a broader measurement spectrum to deal with such domain shifts
at the cost of a more complex system. In this process, we characterize the trade-off
between bandwidth, center frequency and classification accuracy.

9.3.1 Multi-Frequency Measurements and Domain Shifts

Fig. 9.9 depicts multiple measured input impedances of the hip anchor for two differ-
ent postures at a single frequency of f = 495 kHz. The postures are distinguished by
color and the different datasets to which the measurements belong are distinguished
by marker type. We observe that the impedance variations within each dataset are
minor compared to the differences across the different datasets. We also see that the
Stand CallL posture shows overall weaker variations compared to the Stand X posture,
both within each dataset as well as across the different datasets. The figure also in-
cludes a decision boundary (dashed line), which only considers observations of dataset
1 as training data. This boundary clearly works perfectly for any impedance of either
dataset 1 or dataset 2. For dataset 3 however, all impedances of the Stand X posture
would incorrectly be classified as Stand CallL as a result of the previously described
mismatch. In comparison, if impedances of all three datasets were considered, the re-
sulting modified decision boundary represented by the solid line correctly distinguishes
impedances from all datasets. We conclude that for single-frequency measurements, the
distribution of one dataset does not represent the distributions of the other datasets
sufficiently well. This result is common for supervised classifiers and illustrates the
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need for comprehensive training data or other adaption techniques [149]. Obtaining
more comprehensive and diverse training data via extensive additional measurements
is possible, but requires a substantially higher user effort. Alternatively, this domain
shift issue may also be solved by using augmented or transferred training data which
however requires a very accurate model and precise measurements of the coils and
noise to work well. Lastly, it is also possible to incorporate different features (other
than the single-frequency complex impedances) which carry more posture information
or are more robust against the described mismatch. It is well known, that magnetic
coupling affects the resonance frequency of the circuits involved. If the resonant cir-
cuits have a high quality factor, this detuning may result in considerable impedance
changes at a given frequency. While this effect is desired in principle as it allows to
detect posture-induced changes in the coil topology, it also may explain the observed
inter-dataset variations that are exemplified in Fig. 9.9. We anticipate for these rea-
sons, that using wideband impedance measurements as extended features may proof
to be more robust. To investigate this conjecture, Fig. 9.10 shows the same resistances
and reactances for all three datasets, but now measured over all frequencies. First,
it can be observed that despite each passive tag being resonant at f = 500 kHz, the
overall resonance peaks are shifted to higher frequencies as a result of the compound
near-field coupling. This means, that depending on the posture, different frequencies
may be more relevant to characterize the detuning behavior and no single frequency
may reflect the true detuning behavior properly for all different postures. We also find
that the shape of the impedance curves is distinct for different postures. However,
the shape of the impedance curves does not vary significantly between either measure-
ments or datasets. This similarity highlights that the differences observed in Fig. 9.9
are minuscule (Ω scale) compared to the overall detuning behavior over frequency (kΩ
scale). We therefore conjecture that learning the impedance behavior over frequency
instead of using a single-frequency measurement makes a classifier more robust when
training data and testing data are taken from different datasets.

Fig. 9.11 shows the eight standardized feature sequences, i.e. real and imaginary
parts of the four anchor impedances over frequency, as rows of an image. The stan-
dardization was performed for each feature sequence individually (e.g. the real part
of the hip anchor impedance over frequency), and the corresponding single mean and
single standard deviations for each sequence were empirically determined via training
data (cf. Sec. 9.3.2). The anchor names are again abbreviated as SL (shoulder left),
SR (shoulder right), T (torso), and H (hip). The fourth and eighth row of Fig. 9.11
are for example scaled and shifted versions of one corresponding line (marker x) from
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Fig. 9.10. Ultimately, such a 8× 161-dimensional image is a simple approach to com-
pactly visualize one multi-anchor multi-frequency measurement, which is used as input
data for the classification process. For the two postures shown in Fig. 9.11, it is for
example easily observed that the left shoulder anchor SL is more helpful to distinguish
between the two postures than its right counterpart SR.

Overall, we conclude that an extended frequency spectrum is helpful to observe the
full extent of the posture-induced impedance detuning. At least at a first glance, the
multi-frequency measurement also seem to be more robust and may hence mitigate the
performance degradation caused by domain shifts. However, using multiple frequencies
requires more intricate measurement circuits and more measurement time. Moreover,
since the amount of data that needs to be processed increases with this approach, it
also leads to longer computation times.

9.3.2 Multi-Frequency Classification Performance

As described in Sec. 9.1.2, each of the datasets 1, 2 and 3 contains N = 128 of the
8 × 161-dimensional images per posture (cf. Fig. 9.11), of which 2

3 are used for the
training data and 1

3 for the testing data.
For the multi-frequency classification, we compare two widely-known supervised

classification algorithms: a SVM, which was already used for the single-frequency mea-
surements (cf. Sec. 9.2.2), and a CNN. The latter choice is more complex and was
unnecessary for the low-dimensional feature space of the single-frequency operation.
In contrast, it may be beneficial for the multi-frequency operation as it is capable to
factor in important correlations inbetween and within different feature sequences.

1. The input for the SVM is a flattened (vectorized) 1 × 8NF -dimensional vector
of the corresponding 8 × NF -dimensional image, where NF is the number of
considered frequencies from our measurements with 1 ≤ NF ≤ 161. The SVM
uses a RBF kernel and the other hyperparameters are determined via random
search.

2. The CNN directly uses the 8×NF -dimensional image as standardized input with
three convolutional layers containing 12, 24 and 48 filters with a kernel size of
2 and a stride of 1. Each of these layers is followed by a batch normalization
layer, a rectified linear unit activation and a max pooling layer. After these con-
volutions, a fully connected layer is directly followed by a softmax normalization.
Subsequently, the posture which corresponds to the maximum output is selected.
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The classifiers’ accuracy on the testing data is compared in Fig. 9.12. For the
case General (opaque bars), the classifiers are trained on the training data of all three
datasets and their accuracy is examined on the corresponding testing data of all three
datasets (comparable to the solid decision boundary of Fig. 9.9). For the case Mismatch
(transparent bars), each classifier is only trained on the training data of one single
dataset and tested on the testing data of the other two datasets (comparable to the
dashed decision boundary of Fig. 9.9). This is done for all datasets 1,2 and 3 with the
accuracy being averaged. The figure further distinguishes between using impedances
from all frequencies (fall, red) with NF = 161 and only using the impedances at f =
500 kHz (f500, blue) with NF = 1.

We observe that in all General scenarios, the classification is perfect, regardless of
the used classifier or the used frequency range. As we now do not consider additional
noise, this observation is in line with our findings from Sec. 9.2.2. In contrast, in the
scenario Mismatch with single-frequency observations, the accuracy degrades to 65 %
for the SVM and to 56 % for the CNN. This performance loss likely is the result of the
decision boundaries not being general enough to deal with the variety of unknown new
data, as was stipulated in Sec. 9.3.1. By extending the measurement spectrum, this
loss of accuracy can be mitigated to 75 % for the SVM and 91 % for the CNN.

While the multi-frequency classifiers do not yield the same results as using more
comprehensive training data, they still lead to a reasonable robustness when being
tested on new data with additional disturbances. This approach hence seems a viable
trade-off in case comprehensive training data cannot be acquired.

9.3.3 Complexity Reduction via Feature Simplification

After quantifying the possible robustness gain of using multi-frequency classifiers, we
provide a more in-depth look into which features are truly necessary to obtain this
performance gain. To do so, we reduce the amount of used features in a practical man-
ner, such that is it mitigates the inherent complexity increase of the multi-frequency
operation. That is, we repeat the full classification process but only selected a limited
subset of all available features. We do not perform a feature transformation or extrac-
tion in a traditional machine learning manner, e.g. via principal component analysis
or by analyzing the trained networks in detail, since the results may still require all
features but weighted or combined differently. Such traditional approaches hence lead
to a reduction of the computational complexity but might not necessarily affect the
hardware complexity as well.
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Measurement Spectrum: While the expansion from a single-frequency scenario to
a multi-frequency scenario led to noticeable robustness advantages, not all frequencies
may be equally relevant. A reduction of unnecessary frequency sampling points would
be beneficial as it would mitigate the complexity issues described in Sec. 9.3.1. In the
following, we focus on the Mismatch scenario and use the same CNN architecture as
before. Yet, we now train and test the CNN only on a reduced subset of all available
frequencies. In Fig. 9.13 the results of this analysis are visualized as intensity plot,
where the obtained CNN classification accuracy is shown for different combinations
of center frequency and bandwidth. The plot shows that an increasing bandwidth
generally improves the performance and that for a 90 % accuracy at least 10 kHz of
bandwidth are required. As for the center frequency, the interval [510, 530] kHz proves
to be preferable with a minor performance advantage at the higher frequencies when
using a low bandwidth. This is in line with the observations from Fig. 9.11, which
showed this area to contain the most significant detuning. Moreover, the impedance
measurements for frequencies f ≥ 540 kHz are clearly unfavorable to distinguish be-
tween postures. Lastly, we also observe that the bandwidth can be halved or even
quartered from 80 kHz to 40 kHz or 20 kHz without suffering a meaningful performance
loss.

Magnitude of Impedance: Lastly, we want to analyze whether the simultaneous
use of resistances and reactances is actually beneficial for the classification. Depending
on the implementation of the impedance measurement device, it can be more convenient
to instead rely on the magnitude of the impedance, which can be determined with non-
coherent measurement units. Fig. 9.14 thus shows the resulting performance for such
a change. The figure is analogous to Fig. 9.12 but instead of using all frequencies, it
additionally illustrates the case fselected, which uses a bandwidth of 40 kHz (i.e. NF =
81) with a center frequency of 510 kHz. That is, the classifiers are now trained and
tested using either 4× 81-dimensional or 4× 1-dimensional images1 of the impedance
magnitude measurements.

The performance of any of the shown scenarios is similar to our previous results
on complex impedances, proving that neither the reduction of the used frequencies nor
the switch from coherent to non-coherent impedance measurements causes any relevant
performance loss.

1In case of the SVM, the flattened equivalent is used.
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9.4 Conclusions

In this chapter, we built a posture recognition system based on the concept of Cpt. 7
and investigated it experimentally. A single-frequency study was conducted and showed
that the system classified all postures correctly when a high-end measurement device
was used. Further, the system still maintained a 90 % accuracy if the measurements
were perturbed by additional errors with a standard deviation of more than 3 % of
the maximally measured impedance value. It was further demonstrated that the SVM
as a practical classifier exhibited a similar performance to that of an unfeasible and
purely theoretic ML classifier. Yet, domain shifts as a result of intentional posture
variations and minor coil displacements between datasets showed to degrade the system
substantially. We analyzed the issues caused by these domain shifts in detail and
consequently extended the system to use multi-frequency impedance measurements
for an increased robustness. In this process, we characterized the trade-off between
operating frequency, bandwidth and classification accuracy quantitatively. Lastly, it
was shown that using measurements of the impedance magnitudes with a bandwidth
of B = 40 kHz and a operating frequency of B = 510 kHz was sufficient to be robust
against the domain shifts and obtain a classification accuracy of 89 %. This performance
was obtained in conjunction with a CNN, which showed to be superior for multi-
frequency impedance measurements.
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Figure 9.4: Various illustrations of the impedance measurements for all anchors at f = 500 kHz. (a)
and (b) show the measured input impedances of each anchor and for each posture in the complex
plane. (c) shows the corresponding approximate clustering via tSNE plot when combining all four
complex anchor impedances.
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Figure 9.5: Comparison of the classification accuracy if the impedance measurements are subject
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Figure 9.6: Confusion charts of the ML classifier displaying the average percentage of classifications
for a low and a high noise level causing different numbers and types of misclassifications. All entries
are rounded to integers, so the sum of each row or column might be unequal to 100.
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Chapter 10

Summary

This thesis investigated the use of low-frequency magnetic induction for body-centric
tasks, such as localization and posture recognition. The following chapter summarizes
our core results.

We extended a multiport system model to represent the MI near-field coupling of
arbitrarily arranged coil antennas, which could be operated either actively or passively.
We derived the associated PEB for this system model, which is the CRLB on the
position RMSE and as such represents the maximum achievable localization accuracy
of any unbiased estimator. The PEB revealed a drastically varying localization behavior
depending on whether the system operates in a weakly-coupled or a strongly-coupled
regime. For the weakly-coupled regime, the localization of passive agents showed to
be unfeasible. For active agents in this regime, we characterized the scaling behavior
with respect to common design parameters. We further illustrated that based on the
network constellation, the measured signal exhibits a lack of spatial information about
the agent in only a few limited directions. Estimation errors in these directions hence
dominate the overall RMSE and degrade it by orders of magnitude, even for high SNRs.
This lack of information in certain directions cannot easily be mitigated by using larger
coil dimensions or other design parameters and may be particularly pronounced if the
deployment area is unknown or if the placement area of the measuring anchors is
restricted. While this directionality issue also occurs in the electromagnetic far field,
it is more distinct in the near field due to its inherent sextic pathloss.

We showed that this issue can be managed if auxiliary coils, so called passive
relays, are introduced to the network. These passive relays provide an additional signal
contribution which fully counteracts the prior directionality issues if they are placed
beneficially. Yet, if they couple too strongly with the agents, they further degrade
the localization accuracy. We hence proposed low- and high-complexity switching
schemes of the relay loads and investigated them for random and possibly dense network
constellations. These switching schemes are not only capable of fully compensating any
adverse effects of the relays, they also boost the median accuracy by almost two orders
of magnitude and enhance the overall reliability of the localization.

We further presented the first study of cooperative localization for MI networks by
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allowing the exchange of channel state information between all coils. This approach
shows to be an alternative means to mitigate the directionality issues and increase the
SNR at the cost of a higher system complexity. We quantified this trade-off for different
coil designs and numerical estimation methods. For a single pair of three-axis coils,
we additionally derived the closed-form ML position estimator as a non-cooperative
low-complexity option for MI localization.

We proposed a novel approach for the classification of MI network topologies, which
uses resonantly loaded purely passive coils distributed on the human body and active
coils that measure their input impedances. The mere presence of the passive coils
detunes the impedances of the active coils, and the extent of this impact changes for
different network topologies. This relationship between topology and input impedance
can be learned via supervised classifiers. This novel classification approach was further
used to create and study a wearable MI posture recognition system. We demonstrated
the feasibility of this system by simulation, considering different types of perturba-
tions, body models and coil designs. Even for single-frequency measurements of the
impedance, reasonable operating points allowed for a classification accuracy of more
than 90 %. This performance was retained for any of the supervised classifiers consid-
ered.

With the insights of the simulation-based study, we built a demonstrator of this
posture recognition system to verify our results experimentally. Using measurements
recorded in an office environment, a perfect classification accuracy was obtained when
relying on a high-end measurement device. In contrast, a 90 % classification accuracy
could be obtained via supervised classifiers when additional measurement errors were
present, whose standard deviation was larger than 3 % of the maximally measured
impedance. We further compared these supervised classifiers to the herein stated theo-
retic ML classifier and found no meaningful difference. However, for severe mismatches
between the training and testing data, e.g. as a result of posture variations or displace-
ments of the coils, the classification accuracy degraded to less than 60 %. We further
showed that multi-frequency impedance measurements are robust to such mismatches
and in combination with a CNN retained the previous high accuracy. We further quan-
tified this trade-off between bandwidth, center frequency and classification accuracy.
Lastly, we evaluated the option of using simpler measurement variables such as the
impedance magnitudes and found those to be an adequate low-complexity alternative.
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System Model Derivatives and Fisher
Information

In order to calculate the estimation bounds that were introduced in Sec. 3.4, we need
to evaluate the derivatives of the all quantities of our system model. In this appendix,
we will do so iteratively from the top to the bottom with respect to an arbitrary scalar
derivation parameter [Ψ]j of the full agent constellation Ψ.

Starting with the derivatives of the input currents, we have

∂iin
T

∂[Ψ]j
=
[
∂Gactive

∂[Ψ]j
−Gactive (RrefINT + Zout

T̃ )−1 ∂Zout
T̃

∂[Ψ]j

]

· (RrefINT + Zout
T̃ )−1 Rref iT ,

(A.1)

∂iin
R

∂[Ψ]j
= (RrefINR + Zin

R̃)−1 ∂Zin
R̃

∂[Ψ]j

[
INR − (RrefINR + Zin

R̃)−1Zin
R̃

]
iR . (A.2)

As we only consider fixed and non-adaptive matching networks, the current gain GR̃:RC

of the anchor side is deployment independent. However, the current gain from the
source to the agents’ coil antennas depends on their deployment due to a possible
detuning of Zout

T̃ . The current gain derivatives hence follow as

∂Gactive

∂[Ψ]j
= GR̃:RC

[
∂GC:R̃T̃
∂[Ψ]j

GT̃:CT + GC:R̃T̃
∂GT̃:CT
∂[Ψ]j

]
, (A.3)

∂GT̃:CT
∂[Ψ]j

= −(Zout
C + ZT̃:C)−1 ∂Zout

C
∂[Ψ]j

(Zout
C + ZT̃:C)−1ZT̃:CT , (A.4)

∂GC:R̃T̃
∂[Ψ]j

= (Zout
R̃ + ZC:R̃)−1

[
∂ZC:R̃
∂[Ψ]j

(Zout
R̃ + ZC:R̃)−1ZC:R̃T̃ + ∂ZC:R̃T̃

∂[Ψ]j

]
. (A.5)

The remaining derivatives of the input and output matrices can be calculated anal-
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ogously as

∂Zout
T̃

∂[Ψ]j
= ZT

T̃:CT(ZT̃:C + Zout
C )−1 ∂Zout

C
∂[Ψ]j

(ZT̃:C + Zout
C )−1ZT̃:CT , (A.6)

∂Zin
R̃

∂[Ψ]j
= ZR̃:RC(ZR̃:C + Zin

C )−1 ∂Zin
C

∂[Ψ]j
(ZR̃:C + Zin

C )−1ZT
R̃:RC , (A.7)

∂Zout
C

∂[Ψ]j
= ∂ZC:T̃
∂[Ψ]j

− ∂ZT
C:R̃T̃

∂[Ψ]j
(ZC:R̃ + Zout

R̃ )−1ZC:R̃T̃

− ZT
C:R̃T̃(ZC:R̃ + Zout

R̃ )−1 ·
[
∂ZC:R̃T̃
∂[Ψ]j

− ∂ZC:R̃
∂[Ψ]j

(ZC:R̃ + Zout
R̃ )−1ZC:R̃T̃

]
,

(A.8)

∂Zin
C

∂[Ψ]j
= ∂ZC:R̃
∂[Ψ]j

− ∂ZC:R̃T̃
∂[Ψ]j

(ZC:T̃ + Zin
T̃ )−1ZT

C:R̃T̃

− ZC:R̃T̃(ZC:T̃ + Zin
T̃ )−1 ·

[∂ZT
C:R̃T̃

∂[Ψ]j
− ∂ZC:T̃
∂[Ψ]j

(ZC:T̃ + Zin
T̃ )−1ZT

C:R̃T̃

]
.

(A.9)

The derivatives of the current noise covariance matrix are the result of changes by
the anchor input impedance matrix ∂Zin

R̃
∂[Ψ]j and are given by

∂K
∂[Ψ]j

= ∂YR

∂[Ψ]j
(Σtherm + ΣLNA)YH

R + YR(Σtherm + ΣLNA) ∂YH
R

∂[Ψ]j

+ YR

(
∂Σtherm

∂[Ψ]j
+ ∂ΣLNA

∂[Ψ]j

)
YH

R ,

(A.10)

∂YR

∂[Ψ]j
= −YR

∂Zin
R̃

∂[Ψ]j
YR , (A.11)

∂Σtherm

∂[Ψ]j
= 4kBTBRe

(
∂Zin

R̃
∂[Ψ]j

)
, (A.12)

∂ΣLNA

∂[Ψ]j
= (σLNA)2

(
∂Zin

R̃
∂[Ψ]j

(Zin
R̃)H + Zin

R̃
∂(Zin

R̃)H

∂[Ψ]j

)

− (σLNA)22RLNARe((ρLNA)∗ ∂Zin
R̃

∂[Ψ]j
) .

(A.13)

The missing non-zero derivatives of ∂ZC:T̃
∂[Ψ]j , ∂ZC:R̃

∂[Ψ]j and ∂ZC:R̃T̃
∂[Ψ]j follow from

∂ZC

∂[Ψ]j
= jωZC(Z0

C)−1 ∂M
∂[Ψ]j

(Z0
C)−1ZC (A.14)

and further require the derivatives of all individual mutual inductances ∂Mm,n

∂[Ψ]j which
involve the agents. For the dipole model approximation of the mutual inductance,
these have been provided in [26]. In the following, we will also determine them for the
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Neumann formula when considering solenoid coils. To this end, we consider [Ψ]j to
be one of the deployment parameters of coil m. Consequently, we apply the Leibniz
integral rule to (2.2), which results in

∂Mm,n

∂[Ψ]j
= KNeu

˛
Cn

˛
Cm

∂

∂[Ψ]j

(
dlm

dwire(lm, ln)

)
dln, (A.15)

= KNeu
˛

Cn

˛
Cm

∂dlm

∂[Ψ]j dln

dwire(lm, ln) −
dlmdln

∂dwire(lm,ln)
∂[Ψ]j

(dwire)2(lm, ln) (A.16)

The vectorial line-segment dlm is defined by the given wire positions pwire
m (lm) at

length lm ∈ [0, lwire[, where lwire is the total wire length. Using a coordinate frame
transformation, this wire position can generally be expressed as

pwire
m (lm) = pm + Om porig(lm) (A.17)

where Om is the three-dimensional rotation matrix according to the respective coil’s
orientation given by

Om = Oz(αm) Oy(βm) Oz(γm) (A.18)

=




cos(αm) − sin(αm) 0
sin(αm) cos(αm) 0

0 0 1







cos(βm) 0 sin(βm)
0 1 0

− sin(βm) 0 cos(βm)







cos(γm) − sin(γm) 0
sin(γm) cos(γm) 0

0 0 1


 .

(A.19)

The deployment independent function porig(lm) is the position formula of an upright
solenoid in the coordinate origin as shown in Fig. 2.1 and its spiral part can be expressed
as

porig(lm) =




Dcoil cos
(
2πN coil lm

lspiral

)

Dcoil sin
(
2πN coil lm

lspiral

)

Hcoil lm
lspiral − Hcoil

2


 , 0 ≤ lm ≤ lspiral (A.20)

with coil radius Dcoil, number of turns N coil, total height Hcoil and lspiral < lwire as
the total length of the coil’s spiral part. The remaining part of the coil is a straight
connector on both ends with an offset of Hcoil−Dwire

Ncoil from both spiral ends. With this
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geometric restriction, the vectorial line-segment of the spiral part can be formulated as

dlm = ∂pwire
m (lm)
∂lm

∥∂pwire
m (lm)
∂lm

∥−1dlm (A.21)

= Om
2πN coildlm√

(2πN coilDcoil)2 + (Hcoil)2




−Dcoil sin
(
2πN coil lm

lspiral

)

Dcoil cos
(
2πN coil lm

lspiral

)

Hcoil

2πNcoil


 . (A.22)

For the coil’s connector, it is simply a unit vector of the corresponding direction. The
required derivative of the vectorial line-segment is only non-zero for derivatives of the
orientational parameters and follows as

∂(dlm)
∂[Ψ]j

= ∂Om

∂[Ψ]j
O−1

m dlm . (A.23)

Lastly, for the derivative of the distance between any given pair of wire elements we
have

∂dwire(lm, ln)
∂[Ψ]j

= (pwire
m (lm)− pwire

n (ln))
dwire(lm, ln)

∂pwire
m (lm)
∂[Ψ]j

. (A.24)

with ∂pwire
m (lm)
∂[Ψ]j being the corresponding unit direction vector in case of spatial deriva-

tives or ∂Om

∂[Ψ]j porig(lm) in case of orientational derivatives. The derivatives of the rotation
matrix are obtained via basic trigonometric derivatives of (A.18). We can hence nu-
merically evaluate the derivative of the mutual inductance (A.16) according to the
Neumann formula for any arbitrary solenoid coil pair (m, n).

A.1 Relay-Specific Derivatives

As mentioned in Sec. 5.1, the impact of passive relays can easily be included into the
existing model by replacing the previous impedance matrix ZC of the agent-anchor
coil antennas by the matrix Z̃C, which is the relay incorporated impedance matrix of
the agent-anchor coupling. This extension requires the derivatives of (5.2), which are
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found as

∂Z̃C

∂[Ψ]j
= ∂ZC

∂[Ψ]j
−
∂


 ZT

C:YT

ZT
C:YR




∂[Ψ]j

(
ZC:Y + ZL

)−1 [
ZC:YT ZC:YR

]

+

 ZT

C:YT

ZT
C:YR



(
ZC:Y + ZL

)−1∂ZC:Y

∂[Ψ]j

(
ZC:Y + ZL

)−1 [
ZC:YT ZC:YR

]

−

 ZT

C:YT

ZT
C:YR



(
ZC:Y + ZL

)−1∂
[

ZC:YT ZC:YR
]

∂[Ψ]j
.

(A.25)

The calculation of this quantity again requires the derivatives of all agent-involving
mutual inductances ∂Mm,n

∂[Ψ]j .
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Appendix B

Trace Maximization for Pairwise Distance
Estimates

The ML distance and orientation estimator for a pair of three-axis coils requires the
maximization of the trace in (6.25). We replace Bm,n with its constituents and drop
the indices m,n, i.e. tr (Am,nBm,n) = tr (AFO). The goal is to maximize this trace
with the underlying constraints

OOT = 1 , det(O) = 1 , F = (3
2uuT − 1

2I3) , ∥u∥ = 1 .

Applying Singular Value Decompositions (SVDs) as well as an
Eigen(Value)Decomposition (EVD) we can rewrite the trace as

tr
(

AFO
)

= tr
( UAF SAF VT

AF︷ ︸︸ ︷
UASAVT

A ·UF ΣΣΣF︸︷︷︸
SF CF

UT
F ·UOVT

O

)
, (B.1)

with SF = diag(1, 1
2 ,

1
2) and CF = diag(1, −1, −1) due to the structural constraints

on F, which hence leads to det(UF CF UT
F ) = 1 for any possible choice. Note that all

corresponding singular and eigenvalues are always considered in descending order.

From [150] we further know that for any choice of F, the optimal agent orientation
matrix is given by

Oopt = VAF diag(1, 1, det(UAVT
A))︸ ︷︷ ︸

EA

UT
AF if det(O) != 1 , (B.2)

since det(UAVT
A) = det(UAF VT

AF ). This also implies that the upper bound according
to the Von Neumann trace inequality cannot be obtained due to our constraints on O if
det(UAVT

A) = −1. Furthermore, the best feasible realization of F leads to SAF = SASF

and we hence find

tr
(

AFO
) (a)
≤ tr

(
SAF EA

) (b)
≤ tr

(
SASF EA

) (c)
≤ tr

(
SASF

)
. (B.3)
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With an optimal constrained solution

Ô = VACF EAUT
A , (B.4)

F̂ = VASF CF VT
A , (B.5)

we attain equality in (a) and (b) via (B.4) and (B.5). Moreover, under our constraints
these choices also yield equality in (c) if and only if det(UAVT

A) = 1 and for this case
coincide with the optimal unconstrained solution.
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Appendix C

Preliminary Measurements of an
Anchor-Tag Coil Pair

This appendix summarizes preliminary measurement findings regarding the detuning
of solenoid coils and the associated noise statistics of the Rohde & Schwarz ZNBT8
VNA, which was used throughout this work. The VNA is used to measure the reflection
parameter of the anchor coils and automatically transforms them to the corresponding
complex input impedance. In this preliminary study, we only use the coil antennas
of Tab. 9.1 without any additional electronics such as matching networks or switches.
The goal of this appendix is to obtain general information on extent of the detuning,
to analyze the observed noise statistics, and to assess the influence of environmental
clutter.

In detail, we use the hip coil (cf. Tab. 9.1) as an anchor and measure its input
impedance Z in

prelim via Nprelim = 256 frequency sweeps in the range f ∈ [400, 600] kHz.
Simultaneously, the right thigh coil acts as a resonantly loaded passive tag and is
placed coaxially in the anchor’s vicinity at variable coil pair distances dpair. In some
realizations, we also place a possibly distorting object on the opposite side of the an-
chor at a distance dobj, as illustrated in Fig. C.1. Generally, the input impedance
Z in

prelim(dpair, dobj, f) is hence a function of both distances and the frequency. For
notational convenience, we drop the corresponding parameters for the special cases
dobj → ∞ (no distorting object), dpair = 35 cm (reference distance of the tag), or
f = 500 kHz (resonance frequency of the individual tag). The quantity Z in

prelim without
any specifying parameters is thus the measured input impedance at f = 500 kHz if
only the passive tag is present and located at a distance of dpair = 35 cm.

AnchorPassive Tag Distorting Object

Z in
prelim(dpair, dobj, f)

dobjdpair

Figure C.1: Illustration of the preliminary measurement setup containing a single coaxially aligned
anchor-tag pair with inter-coil distance dpair and possibly different distorting objects at distance dobj

to the anchor.
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C.1 General Detuning Observations for an Anchor-
Tag Pair

In a first instance, we look at a scenario where only the anchor and the passive tag are
present, i.e. dobj →∞. Fig. C.2a summarizes the measurements for different inter-coil
distances and frequencies as locus plot. It reveals that the reactance is at least an order
of magnitude higher than the resistance and increases for higher frequencies. Moreover,
the presence of the single passive relay leads to a resonance peak close to 500 kHz for
the resistance and a point of inflection (with a zero crossing) for the reactance (cf.
Fig. C.2c). This behavior is understood by looking at the mathematical description of
the input impedance (ignoring the self capacitances):

Z in
prelim(dpair, f) = RnR + jωLnR + ω2M2

nR,nT

(
RnT + jωLnT − j

(ωdes)2LnT

ω

)−1

(C.1)

= RnR + jωLnR + ω3M2
nR,nT

RnTω + jLnT((ωdes)2 − ω2)
R2

nT
ω2 + L2

nT
((ωdes)2 − ω2)2 , (C.2)

where ωdes = 2πfdes = 2π · 500 kHz is the design frequency of the pas-
sive tag. The entire impact of the passive tag is the impedance difference
∆Z in

prelim(dpair, f) = Z in
prelim(dpair, f) − Z in

prelim(dpair → ∞, f) and can be approximated
by the last summand of (C.2). Clearly, we can determine the location of the resonance
peak, i.e. a maximum of this function, by finding the angular frequency for which the
derivative of its real part Re

(
∆Z in

prelim(dpair, f)
)

is zero. Via simple derivation rules,

this location follows as ω0 =
√

2(ωdes)4L2
nT

2(ωdes)2L2
nT −R2

nT
= ωdes

(
1− R2

nT
2(ωdes)2L2

nT

)− 1
2 RnT →0

= ωdes.

We can further repeat this step for the imaginary part Im
(
∆Z in

prelim(dpair, f)
)

and find
the theoretical location of the the point of inflection at ωinfl = ωdes. The correspond-
ing measurements of this impedance difference are shown in Fig. C.2b and Fig. C.2c.
The magnitude of this impedance difference clearly decreases rapidly over distance and
approaches a noise floor at roughly 1× 10−2 Ω, which is apparent from Fig. C.2c. Con-
sequently, even if the tag impact is measured at the correct resonance frequency, it is
not reliably detectable anymore for distance larger than dpair ≈ 70 cm.

These results highlight the range limitation of the passive MI links and reinforce
our prior assumptions that it is helpful to use multiple anchors which are placed as
close as possible to the different limbs. This causes an anchor to be mostly respondent
to the passive tags in its direct vicinity, e.g. a shoulder coil is mostly affected by
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Figure C.2: Various illustrations of the frequency and distance behavior for the input impedance
Z in

prelim(dpair, f) and the impedance difference ∆Z in
prelim(dpair, f) of the coaxially aligned anchor-tag

coil pair without nearby distorting objects.

159



Preliminary Measurements of an Anchor-Tag Coil Pair

the passive tags of the corresponding arm and head. Vice versa, it also indicates
that the system may be generally unaffected by neighboring systems, if they are not
in the direct vicinity. However, due to the presence and mutual coupling between
multiple passive tags, the overall detuning of the full demonstrator may sometimes be
noticeable even for ranges larger than 70 cm, e.g. if the combination of passive tags
causes a waveguide effect. Moreover, with multiple passive tags the resonance peak
might split (resonance mode splitting) and the resulting resonance frequencies might
be shifted more drastically. Lastly, the observed noise floor is unlikely to be fixed
but rather dependent of the transmit power, other device-specific parameters and the
measurement method in general.

C.2 Impact of Distorting Objects

Next, we look at the impact that different objects have on the impedance measure-
ments. In the simulation-based study we already examined the impact of a second
neighboring resonant system and found such a system to be negligible for larger dis-
tances. Moreover, the impact of a neighboring system may be further reduced if close-
by systems communicate and share the medium in a sophisticated manner to avoid
interference and distortions. For environmental clutter, this is however unfeasible and
the resulting irregular distortions are hard to mitigate or account for. As a result, they
may severely reduce the classification capabilities of the planned MI system. Apart
from active interference of external magnetic fields, MI systems are usually distorted if
conducting materials are nearby. To this end, we define a relative impedance difference
ηclutter, with its real part

Re
(
ηclutter(dobj)

)
=

Re
(
Z in

prelim(dobj)− Z in
prelim

)

Re
(
Z in

prelim − Z in
prelim(dpair →∞)

) , (C.3)

and an analogously defined imaginary part. This quantity, which is shown in Fig. C.3a,
represents the additional impedance change caused by the nearby object, relative to
the change that is already caused by the passive tag at dpair = 35 cm. It can be ob-
served that its real part is almost unaffected by clutter, whereas the imaginary part
suffers from distortions almost regardless of which object is present. The strongest
impact can be seen for a ferromagnetic steel plate and a monitor, which both cause
significant distortions up to a distance of dobj = 60 cm. However, even the other ob-
jects cause distortions on the imaginary part that amount to 10% at a distance of
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Figure C.3: Magnitudes of the real and imaginary parts of the relative impedance difference
ηclutter(dobj) for a coaxially-aligned anchor-tag pair with different distorting objects at distance dobj.

dobj = 35 cm. Overall, we infer that the posture recognition system is indeed impacted
by environmental clutter and its performance may degrade when being too close to
large ferromagnetic objects. If the system is to be used in a distorting environment,
additional distortion mitigation or rejection approaches (cf. [25]) may be beneficial.
However, those approaches are out of our scope and the performance analyses of this
work assume an environment without environmental clutter. Moreover, minor distor-
tions caused by the human body itself are accounted for by the training process of the
supervised classifiers.

C.3 Noise Characterization

In a next step, we want to characterize the noise statistics of the setup by further
analyzing the measurement samples of the coaxially aligned anchor-tag pair without
distorting objects. Fig. C.4a hence shows the mean of the input impedance magnitude
µ(|Z in

prelim(dpair, f)|) over all samples n for each different frequency. The related dis-
persion index, which is the ratio of the observed variance and mean σ2(|Zin

prelim(dpair,f)|)
µ(|Zin

prelim(dpair,f)|)
is also displayed. Instead of being constant, which would implicate a proportional re-
lationship between measurement magnitude and noise variance, the dispersion index
increases approximately linearly. This observation implicates colored instead of white
noise, which may be related to frequency dependencies of the measurement device’s
electronics. However, even at higher frequencies, the measured dispersion index is still
significantly lower than 8 × 10−4, which was the lowest dispersion index used for the
AWGN of the simulation-based study (cf. Sec. 8.5).

Next, we look at the residual measurement errors ϵn(dpair, f) = Z in
prelim,n(dpair, f)−
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Figure C.4: Empirical measurement error characterization for a coaxially aligned anchor-tag pair for
various distances and frequencies.

µ(Z in
prelim(dpair, f)). In Fig. C.4b we show the joint and marginal PDFs of these measure-

ment errors over all frequencies and distances. The shape of the joint PDF resembles a
two-dimensional normal distribution with the same variance for both the resistance er-
rors and reactance errors. The same behavior was also observed when only considering
the single-distance or single-frequency measurements (not shown).
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Mathematical Notation and Operators

Notation Name Description

a,A scalar cursive lower or upper case letter
a column vector lower case boldface letter
A matrix upper case boldface letter
[A]m,: matrix row row m of matrix A
[A]:,n matrix column column n of matrix A
[A]m,n matrix element matrix element of the m-th row and n-th column
(.)T transpose transpose of vector or matrix
(.)∗ complex conj. complex conjugate of scalar, vector, or matrix
(.)H conj. transpose conjugate transpose of vector or matrix
(.)−1 inverse inverse of matrix
UASAVH

A SVD singular value decomposition of matrix A
UAΛAU−1

A EVD eigendecomposition of full rank square matrix A
IN unit matrix unit matrix of dimension N ×N
1M×N all-ones matrix all-ones matrix of dimension M ×N
0M×N all-zero matrix all-zero matrix of dimension M ×N
j imaginary unit imaginary unit which fulfills j2 = −1
Re(·) real part real part
Im(·) imaginary part imaginary part
sgn(·) sign sign function
tr(·) trace trace of matrix
det(·) determinant determinant of matrix
vec(·) vectorization vectorization of matrix
diag(·) diagonalization diagonal matrix
(̂·) estimate estimate of scalar, vector, or matrix
∥(·)∥ Euclidean norm Euclidean norm
∥(·)∥F Frobenius norm Frobenius norm
(·) ∥ (·) parallel parallel connection of two impedances
fa(a) PDF probability density function of random variable a
Fa(a) CDF cumulative distribution function of random variable a
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List of Acronyms

AWGN Additive White Gaussian Noise
CDF Cumulative Distribution Function
CNN Convolutional Neural Network
CPU Central Processing Unit
CRLB Cramér-Rao Lower Bound
DPEB Directional Position Error Bound
EVD Eigen(Value)Decomposition
FIM Fisher Information Matrix
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
IoT Internet of Things
kNN k-Nearest Neighbors
LHF LikeliHood Function
LNA Low-Noise Amplifier
MAP Maximum A Posteriori
MI Magneto-Inductive
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
MLP MultiLayer Perceptron
MQS MagnetoQuasiStatic
MSD MusculoSkeletal Disorder
PCA Principal Component Analysis
PCB Printed Circuit Board
PDF Probability Density Function
PEB Position Error Bound
RMSE Root-Mean-Square Error
SIMO Single Input Multiple Output
SLS Single-Layer Solenoid
SMA SubMiniature version A
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
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List of Acronyms

SVM Support Vector Machine
tSNE t-distributed Stochastic Neighbor Embedding
UWB Ultra-WideBand
VNA Vector Network Analyzer
WLAN Wireless Local Area Network
WPT Wireless Power Transfer
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