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Symmetry conditions for the superconducting diode effect in chiral superconductors
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We analyze the presence of nonreciprocal critical currents, the so-called superconducting diode effect, in chiral
superconductors within a generalized Ginzburg-Landau framework. After deriving its key symmetry conditions
we illustrate the basic mechanism for two examples, the critical current in a thin film and a Josephson junction.
The appearance of spontaneous edge currents and the energy bias for the formation of Josephson vortices play
an essential part in establishing a splitting of the critical currents running in opposite directions. Eventually this
allows us to interpret a superconducting diode effect observed in the 3-Kelvin phase of Sr2RuO4 as evidence for
spontaneously broken time-reversal symmetry in the superconducting phase.

DOI: 10.1103/PhysRevResearch.4.033167

I. INTRODUCTION

Experimentally establishing unconventional superconduc-
tivity with chiral Cooper pairing unambiguously in a given
material remains a notoriously difficult task, despite numer-
ous possible symmetry constraints leading to, in principle,
decisive selection rules [1,2]. Chiral order parameters break
time-reversal symmetry and parity for the reflection with
respect to a plane containing the chiral axis. This allows
the detection through the polar Kerr effect. Additionally, the
chiral state has intrinsic magnetic properties that manifest
themselves in spontaneous supercurrents at surfaces, impuri-
ties, or domain walls, which could be observed by zero-field
μSR or by probing the local magnetic fields through scanning
SQUID or Hall microscopes [3–5]. These features have been
tested for some superconductors which have been identified
as candidates for chiral superconductivity, such as Sr2RuO4

[6,7], URu2Si2 [8], or UPt3 [9,10], to name the most important
ones. For all three materials the polar Kerr effect suggests a
chiral superconducting phase. For UPt3 as well as Sr2RuO4

the μSR zero-field relaxation rate indicates intrinsic mag-
netism in the superconducting phase compatible with a chiral
phase. However, the extensive search for surface currents in
samples of Sr2RuO4 has so far only led to negative results
[11,12].

In the present study we would like to introduce another
feature of chiral Cooper pairing, which provides also an alter-
native way of detecting it. Our proposal is connected to the
so-called superconducting diode effect, which occurs under
certain circumstances if the critical current of a supercon-
ductor is different for opposite current directions. Broken
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time-reversal and inversion symmetry are the general condi-
tions necessary in order to observe nonreciprocal phenomena
of this kind. Recently this effect has been discussed for
noncentrosymmetric superconductors, i.e., materials without
inversion centers, where time-reversal symmetry is removed,
for instance, by a magnetic field generating the nonreciprocal
behavior of the critical current [13–17].

Before illustrating this effect for two examples, we first
examine the properties of the critical current in a two-
dimensional (2D) chiral superconductor with a striplike shape
of limited width in y and infinite length in x direction, as Fig. 1
displays. Under what conditions is the critical current Ic of this
device different for currents running in positive and negative
directions along the strip? We denote the absolute values of
these two critical currents by I±

c and introduce three symme-
try operations which change the sign of the chirality of the
superconducting state. For illustration purposes we consider
the chiral p-wave phase, which as a spin-triplet state is repre-
sented by the d-vector dχ (k) = d0ẑ(kx + iχky). Its orientation
indicates the spin configuration and its orbital part the chirality
χ = ±1, with the chiral axis pointing out-of-plane (z axis) [1].

The time-reversal symmetry operation T and the two mir-
ror operations σx and σy act as

T d±(k) = eiαT d∓(k), (1)

σxd±(k) = eiαx d∓(k), σyd±(k) = eiαy d∓(k), (2)

with

σx

(
x
y

)
=

(−x
y

)
, σy

(
x
y

)
=

(
x

−y

)
, (3)

and in our case αx = π and αT = αy = 0. Note that d rep-
resenting the spin configuration changes (keeps) sign under
time-reversal (inversion) [1].

Now we apply these symmetry operations to the critical
current Ic in both directions of x. Both T and σx reverse
the current. We thus find the following relations for the
critical current: T I±

c = I∓
c and σxI±

c = I∓
c , while σyI±

c = I±
c .
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FIG. 1. Schematic picture of a thin film, which is parallel to the
x axis and homogeneous in the z direction. The superconducting
state, which is assumed to be described by the order parameter η =
η0(1,±i), breaks time-reversal symmetry. Currents running along
the edges are highlighted by blue arrows and the critical current for
positive and negative directions are denoted by I+

c and I−
c , respec-

tively. The situation where the film is symmetric under both σx and
σy [Eq. (3)] is depicted in (a). The plots at the bottom represent cases
where one of these mirror symmetries is broken. In (b) the film is
asymmetric under σx and in (c) under σy, which is marked by the��σi

and illustrated by the shaded areas.

Combining these bulk symmetry operations so as to conserve
chirality leads to

T σxI±
c = I±

c , (4)

which does not affect the values of the two critical currents in
contrast to

T σyI±
c = I∓

c (5)

and

σxσyI±
c = I∓

c . (6)

Note that σxσy = C2 corresponds to a rotation by 180◦ around
the z axis passing through a point on the middle line of the
strip. In order to allow for the diode effect I+

c �= I−
c , both

operations T σy and σxσy should not be symmetries of the
strip. This means that the necessary condition for the diode
effect is the asymmetry with respect to the reflection σy, while
the lack of symmetry under σx is not essential.

The appearance of a splitting between I+
c and I−

c attributed
to spontaneously broken time-reversal symmetry has been
reported for the so-called 3-Kelvin (3-K) phase of Sr2RuO4.
The 3-K phase appears in eutectic samples of Sr2RuO4 with
excess Ru, which segregates into μm-sized metallic inclu-
sions whose interfaces with the bulk material presumably act
as a nucleation region for a superconducting precursor around

3 K above the bulk transition temperature at Tc ≈ 1.5 K
[18,19]. This leads to an inhomogeneous network of weakly
overlapping superconducting puddles, which upon lowering
the temperature from 3 towards 1.5 K evolves from the initial
nucleation through a second time-reversal symmetry-breaking
transition at around T ∗ ≈ 2.3 K [20–22]. The transition at T ∗
is associated with the onset of a weak but readily detectable
difference between I+

c and I−
c [20]. Apart from that, this phase

transition manifests itself additionally in the appearance of a
zero-bias anomaly in the quasiparticle tunneling spectroscopy
[21,23].

The paper is structured as follows. We begin by considering
two model cases to illustrate the conditions for the super-
conducting diode effect. The first is an analog of the strip
geometry, a superconducting thin film where we analyze the
maximal supercurrent by means of a generalized Ginzburg-
Landau formulation for a chiral superconductor in a tetragonal
crystal symmetry (Sec. II). The second example is a Josephson
junction between two chiral superconductors, for which we
derive an effective theory for the Josephson phase (Sec. III).
In both cases we will demonstrate that the absence of a mir-
ror symmetry (σy) is essential for the split. Furthermore, we
show that this discussion provides a possible explanation for
the experimental observations in the 3-K phase of Sr2RuO4.
Finally, we also highlight under which conditions nonchiral
superconducting phases exhibit the same effect (Sec. IV).

II. CRITICAL CURRENT OF A THIN FILM

In our first example we consider a chiral superconductor
shaped as a thin film, which has a narrow width L along
the y direction and extends along x and z directions with
Lx, Lz � L. Thus, the cross section in the x-y plane is the
same as shown in Fig. 1. Assuming that its thickness L is
much shorter than the London penetration depth λL, we avoid
screening effects. Nevertheless, it will be important to account
for the influence of boundary effects on the spatial variation
of the order parameter in our discussion. An exemplary super-
conducting state, incorporating the essential features of the
nonreciprocal behavior of Ic along the x direction, is a chiral
p-wave state given by d±(k) = ẑη0(kx ± iky). This spin-triplet
pairing state has its chiral axis parallel to the z axis with an
equal-spin configuration in the x-y plane [1]. An important
feature for the following discussion is the pair breaking effect
of the film boundaries in y direction, which we will analyze
with the corresponding Ginzburg-Landau theory.

A. Ginzburg-Landau theory of a chiral superconductor

The Ginzburg-Landau functional of a chiral p-wave su-
perconductor is formulated using the two-component order
parameter η = (ηx, ηy) [d(k) = ẑ(ηxkx + ηyky)]. Assuming an
underlying tetragonal point group D4h the general free energy
can be written as

F [ηx, ηy] = Lz

∫∫
dxdy

[
f + 1

8π
(∇ × A)2

z

]
, (7)
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with

f = a(T )|η|2 + b1|η|4 + b2

2

(
η∗2

x η2
y + η∗2

y η2
x

) + b3|ηx|2|ηy|2 + K1(|�xηx|2 + |�yηy|2) + K2(|�xηy|2 + |�yηx|2)

+ [K3(�xηx )∗(�yηy) + K4(�xηy)∗(�yηx ) + c.c.], (8)

where a(T ) = a′(T − Tc) and the coefficients a′, b1,2,3, and K1,2,3,4 are positive and Tc is the bulk critical temperature. This
specific form of the free energy functional is constructed to be a scalar under all symmetries of the normal state and the
coefficients are material dependent parameters which cannot be fixed by symmetry arguments [1], but require a microscopic
model (see, e.g., Ref. [24]). The covariant gradient is defined as � = −ih̄∇ − 2eA/c with A the vector potential, and e and c
the electron charge and the speed of light, respectively (from now on h̄ = 1). Furthermore, we assume that due to Lz � L we
can ignore any z dependence of the superconducting order parameter. All quantities are considered per unit length along the z
direction. The homogeneous bulk state is obtained by minimizing F for T < Tc. With η = η0(1, χ i), where χ = ±1 denotes the
chirality, the bulk value is given by

|η0|2 = −a(T )

4b1 − b2 + b3
. (9)

The gradient terms allow us to derive the expressions of the supercurrents in the plane of the film. Using j = −c∂F/∂A we find

jx = 2e[K1η
∗
x�xηx + K2η

∗
y�xηy + K3η

∗
x�yηy + K4η

∗
y�yηx + c.c.], (10)

jy = 2e[K2η
∗
x�yηx + K1η

∗
y�yηy + K3η

∗
y�xηx + K4η

∗
x�xηy + c.c.]. (11)

For L 	 λL screening effects are negligible such that we can safely neglect the vector potential from now on.

B. Symmetry dependence of the critical current

We now turn to the geometry with a finite width in y direction. The two film edges are pair breaking through scattering and
yield a local suppression of the order parameter, which is, generally, stronger for ηy than ηx [1]. Considering a current flow along
the x direction we introduce a variational ansatz for the order parameter, which takes the essential properties into account:

η(r) =
(

ηx(r)
ηy(r)

)
=

(
η̃xgx(y)

iχη̃ygy(y)

)
eiαx. (12)

The functions gx(y) and gy(y) give the transverse spatial dependence for −L/2 � y � +L/2, and the parameter α denotes
the phase gradient along x direction describing the supercurrent (for an example see Appendix A). Moreover, η0 = (η̃x, η̃y)
quantifies the magnitude of the two order parameter components (both are positive). The functions gx,y, which satisfy the
boundary conditions at the edges due to pair breaking, are converging to 1 deep inside the film assuming that the healing
lengths (coherence lengths) are shorter than L.

This variational ansatz can now be inserted into the Ginzburg-Landau free energy [Eq. (7)] and leads to the free energy density
per unit length along x direction,

f

L
= [(a + K1α

2)Ax + K2C
x]η̃2

x + [(a + K2α
2)Ay + K1C

y]η̃2
y + (2b1 − b2 + b3)Bxyη̃2

x η̃
2
y

+ b1Bxη̃4
x + b1Byη̃4

y + 2(K3Dx − K4Dy)αχη̃xη̃y. (13)

Here we introduced parameters obtained from the integration over y ∈ [−L/2, L/2],

Ax =
∫

g2
x

dy

L
, Ay =

∫
g2

y

dy

L
, Bx =

∫
g4

x

dy

L
, By =

∫
g4

y

dy

L
, Bxy =

∫
g2

xg2
y

dy

L
,

Cx =
∫

g′2
x

dy

L
, Cy =

∫
g′2

y

dy

L
, Dx =

∫
gxg′

y

dy

L
, Dy =

∫
gyg′

x

dy

L
. (14)

Taking a look at the structure of f [Eq. (13)] it is easy to see
that the different suppression of the two order parameter com-
ponents at the edges will generally lead to a double transition,
where first ηx and at a lower temperature also ηy nucleate
[25]. In the following we assume that the temperature T is
sufficiently low such that for α = 0 both order parameters are
finite.

Next we derive the current flow for the given variational
state. Inserting Eq. (12) into the expressions for the current

density [Eqs. (10) and (11)], we find that jy vanishes as ex-
pected. The total current in x direction takes the form

Ix =
∫

jx(y)dy = 4e
[ (

K1η̃
2
x Ax + K2η̃

2
y Ay

)
α︸ ︷︷ ︸

I1(α)/4e

+ (K3Dx − K4Dy)χη̃xη̃y︸ ︷︷ ︸
I2(α)/4e

] = I1(α) + I2(α). (15)
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This current is also obtained from f by a simple derivative
with respect to α, Ix = 2e∂ f /∂α.

Let us analyze these results by considering the sym-
metry aspects of our system. If both edges are identical,
the film is invariant under the mirror operation σy. The
spatial dependence of the order parameter is then also sym-
metric under y → −y: gx(−y) = gx(y) and gy(−y) = gy(y).
In this case, the integrals Dx and Dy in Eq. (14) are
zero, because gx(y)g′

y(y) = −gx(−y)g′
y(−y) and gy(y)g′

x(y) =
−gy(−y)g′

x(−y). As a consequence, the last term in the free
energy density [Eq. (13)] and I2 [Eq. (15)] vanish. All other
integrals are finite and positive.

Considering the behavior of the current as a function of
the phase gradient α, we also have to take into account that
the order parameter is modified by the current. Minimiz-
ing the free energy density with respect to both η̃x and η̃y,
we find that a growing |α| reduces both order parameters.
Since we also derive that in this situation η̃x,y(α) = η̃x,y(−α),
we obtain after inserting the order parameters in Eq. (15)
that I1(α) = −I1(−α). The maximum Ic0 = maxα|I1(α)| =
|I1(α0)| is hence independent of the current direction and has
close to α0 the approximative form Ix(α) = Ic0 + C(α − α0)2

with the constant C < 0. A current larger than Ic0 includes a
normal current and leads to phase slips of the order parameter,
which are dissipative and omitted here in our treatment.

If the two edges of the film are different, we find
gx,y(−y) �= gx,y(y). Consequently, the integrals Dx,y in the last
term in f /L [Eq. (13)] and thus also I2 [Eq. (15)] are finite.
Assuming that the term Q = (K3Dx − K4Dy) is small, the
order parameter components are only slightly corrected for
given α,

η̃μ(α) → η̃μ(α) + δη̃μ, (16)

with μ = {x, y}. We derive the correction by expanding the
free energy around its maximum at α0 in terms of δη̃μ. The Q
term is treated thereby as a small perturbation. In lowest-order
correction we find

δη̃μ ≈ RμQχα, (17)

where the factors Rμ = Rμ(α) depend on α2.
Inserting this into the expression of the total current

[Eq. (15)], which we approximate qualitatively around its
unperturbed minimum at α0 > 0 through a parabola, takes us
to

Ix(α) ≈ Ic0 + C(α − α0)2 + 8e[K1Axη̃xδη̃x

+ K2Ayη̃yδη̃y]α0 + Qη̃xη̃yχ

= Ic0 + C(α − α0)2 + K (α0)Qχα + Q̃(α0)χ

= Ic0 + C(α − α̃0)2 + δIc, (18)

where C is an undetermined constant and α̃0 is the new posi-
tion of the maximal current. We introduced

K (α0) = 8eα0[K1Axη̃x(α0)Rx + K2Ayη̃y(α0)Ry] (19)

and

Q̃(α0) = Qη̃x(α0)η̃y(α0). (20)

0

2

4

0 0.5 1 1.5 2

FIG. 2. The total current in x direction of the thin film
as a function of the phase gradient α, if the film is sym-
metric under σy (black) or not (red and blue). In the fully
symmetric system the solutions for chiralities χ = ±1 are degen-
erate. We used for the Ginzburg-Landau coefficients (b1, b2, b3) =
(0.3b, 0.4b, 0.2b) and (K1, K2, K3, K4) = (0.6K, 0.4K, 0.4K, 0.4K ),
which are in line with a generic 2D Fermi surface. The integrals
[Eq. (14)] were taken to be (Ax, Ay, Bx, By, Bxy,Cx,Cy, Dx, Dy ) ≈
(0.95, 0.6, 0.7, 0.5, 0.36, 0.01, 0.05, 0.4, 0.0). Note that our param-
eters are connected to the order parameter magnitude through |η0|2 =
−a/b and to the coherence length through ξ 2 = −K/a.

Through comparison we derive that the maximal current is
shifted by

δIc = [K (α0)Q + Q̃(α0)]χ, (21)

which depends on the chirality χ = ±1. Our result shows that
the critical current for a particular direction is influenced by
the sign of the chirality. This is equivalent to having a different
critical current for positive and negative directions with fixed
chirality,

I+
c − I−

c = δIc = [K (α0)Q + Q̃(α0)]χ, (22)

as we will show below. The relevant conditions for this dif-
ference are broken time-reversal symmetry and the lack of
mirror symmetry transverse to the film (y → −y). Note that
the observation of I+

c �= I−
c could be used to detect the onset

of a time-reversal symmetry-breaking phase. For example, an
order parameter, which is given by η = (ηx, 0) for T > T ∗
and changes into η = (ηx, ηy) for T < T ∗ [25], leads to the
described splitting of the critical currents, if the relative phase
between the components is χπ/2.

To complement the approximative treatment we show in
Fig. 2 the result of the numerically determined α dependence
of the total current, which we obtain by the minimization
of f /L [Eq. (13)] with respect to the two order parameter
components for given α. We see for positive α a splitting of the
two current maxima if Q �= 0, which correspond to opposite
chirality. Therefore, this splitting represents the nonreciprocal
behavior of the critical current. Considering, for instance, the
current for χ = −1 in Fig. 2 the time-reversal operation will
change the sign of χ and of the current. Thus, the maximal
current of χ = −1 corresponds to −I−

c of the reversed cur-
rent for χ = +1. We also observe that compared to Q = 0 a
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FIG. 3. Schematic picture of a Josephson junction consisting of
two chiral superconductors with the same chirality (gray) and a
normal state region (yellow). The Josephson current (blue) flows
along the edges. The system is homogeneous in the z direction.

nonvanishing value of Q leads to an offset of the current at
α = 0. The direction of this net current depends on the sign of
Qχ , since we have Ix(α = 0) = I2(α = 0) due to I1(α = 0) =
0. Figure 2 also shows a growing difference in the suppression
of the current for increasing α beyond the maximal value,
which is connected with the decrease of the order parameter.

Finally we would like to add a remark concerning the last
term in the free energy density of Eq. (13) which is linear
in αχ . This term describes a coupling between supercurrent
and chirality which constitutes an energetic bias on the chi-
rality for a given current direction. Therefore, a current may
trigger, in principle, a switch of chirality and, in this way,
would obscure the spontaneous diode effect of the device,
according to our symmetry analysis. The reversal of chirality
would, however, require the nucleation such domains at some
locations, which would grow to cover eventually the whole
sample. This process involves the motion of domain walls
through the sample. Because such domain walls cost energy
and may be pinned at defects or through geometric config-
uration, the feasibility of a current-induced chirality reversal
depends on geometric and sample details.

III. JOSEPHSON JUNCTION BETWEEN
CHIRAL SUPERCONDUCTORS

In this section we study the conditions for nonreciprocal
critical currents in a Josephson junction connecting two iden-
tical, chiral superconductors. For a spatially extended junction
we derive the effective free energy functional of the Josephson
phase difference φ. Compared to the standard theory, chiral
order parameters yield an additional term in the free energy,
which describes spontaneous currents at the junction edges,
influences the line energy of Josephson vortices, and splits the
critical currents running in opposite directions in the absence
of a specific mirror symmetry.

A. Effective free energy functional of the junction

We consider a Josephson junction positioned at x = 0
that extends in y and z direction, as Fig. 3 illustrates. The
coupling between the two superconductors is implemented
phenomenologically by combining the order parameters from

both the left (l) and right (r) sides,

η(r) = ηl (r) + ηr (r), (23)

which overlap in the junction region. Analogously to the thin
film we introduce a variational form for the spatial depen-
dence of the order parameter components,

ηl (r) = η0

(
gl

x(r)
iχl gl

y(r)

)
eiφ(y,z)/2, (24)

ηr (r) = η0

(
gr

x(r)
iχrgr

y(r)

)
e−iφ(y,z)/2, (25)

with non-negative gj
x(r) �= gj

y(r) ( j = {l, r}), the phase φ =
φl − φr and the chirality χl,r = ±1. We assume the following
symmetry property:

gl
μ(x, y, z) = gr

μ(−x, y, z) =
{

0, x → +∞,

1, x → −∞,
(26)

for both μ = x and y. The overlap of the interpenetrating order
parameters is restricted to a narrow region around x = 0 of the
order of the coherence length. This spatial dependence implies
invariance of gl

μ(x, y, z) + gr
μ(x, y, z) for the mirror operation

σx, taking the junction as the mirror plane.
With this setup we can now derive the free energy func-

tional for φ using the Ginzburg-Landau theory as given
in Eq. (7). Details on the derivations can be found in
Appendix B. For simplicity, we neglect any z dependence and
assume a sufficiently long extension Lz. Similar to the case of
the thin film we can avoid demagnetization fields and consider
only magnetic fields parallel to the z axis. The free energy
functional is then given by

FJ [φ] = 2
0Lz

16π3wJ

∫ +Ly/2

−Ly/2
dy

[
1

2

(
∂φ

∂y

)2

+ λ−2
J (1 − cos φ)

+ γ (χl , χr )λ−2
J

∂φ

∂y
(1 − δγ cos φ)

]
, (27)

where 0 denotes the flux quantum and λJ is the Josephson
penetration depth,

λ−2
J = 8π2wJ jc

0c
, (28)

which depends on the critical current density of the junction
jc.

The derivative of the phase is related to the local “magnetic
field” (magnetic flux density) in the junction through

∂φ

∂y
= 2π

0
Bz(y)wJ , (29)

where wJ ≈ dJ + 2λL corresponds to the effective magnetic
width and dJ to the microscopic width of the junction. The
first term of Eq. (27) represents the magnetic field energy,
while the usual coupling between the two superconductors is
described by junction energy in the second term. We ignore
higher order couplings as they are not essential for our discus-
sion. Note that these first two terms of Eq. (27) are standard
for Josephson junctions and that their derivation can be found
in textbooks such as Ref. [26].
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However, “nonstandard” is the third term in Eq. (27),
which describes the anomalous behavior of a Josephson junc-
tion between two chiral superconductors. We will call it the γ

term from now on. Using our variational order parameters, we
derive this contribution to the functional through the gradient
terms in the Ginzburg-Landau functional [Eq. (7)]. This leads
to the relation

γ (χl , χr )λ−2
J

2
0

16π3wJ
= −η2

0Aγ (χl + χr ), (30)

with

Aγ =
∫ +∞

−∞
dx

[
K3gl

x(x)′gl
y(x) − K4gl

y(x)′gl
x(x)

]
(31)

and δγ = −Bγ /Aγ with

Bγ =
∫ +∞

−∞
dx

[
K3gl

x(x)′gr
y(x) − K4gl

y(x)′gr
x(x)

]
, (32)

where we ignore any y dependence of gl,r
μ (r) for simplicity.

It is obvious that the γ term behaves like an “external field”
H̃z(φ) coupling to the local magnetic field Bz(y),

H̃z(φ) = − γ0

2πλ2
JwJ

(1 − δγ cos φ), (33)

such that the γ term reduces to

Fγ =
∫

dy
H̃z(φ)BzwJ

4π
. (34)

The physical origin of this field can be attributed to the
spontaneous current density jy(x) running on the two sides
of the Josephson junction in opposite y directions, if the two
chiralities χl,r are identical, i.e., jy(x) = − jy(−x) (see also
Fig. 3 and Appendix B). For χl = −χr the current density
is symmetric, jy(x) = jy(−x). The generated magnetic field
distribution is then odd with respect to x and cancels to zero
such that γ = 0. From a symmetry point of view, the operation
T σx leaves both the current-induced H̃z(φ) and the supercon-
ducting states invariant for χl �= χr . Obviously this property
is reflected in the simple χl,r dependence of γ in Eq. (30).

Another important feature of the γ term is that it corre-
sponds to a total differential,

∂φ

∂y
(1 − cos φ) = ∂

∂y
(φ − sin φ), (35)

and, if γ and λJ are constant, does not enter the variational
equation for φ, but only the boundary condition. The varia-
tional equation of FJ has the usual form,

∂2φ

∂y2
= 1

λ2
J

sin φ, (36)

while the boundary conditions are modified,[
∂φ

∂y
+ γ

λ2
J

(1 − δγ cos φ)

]∣∣∣∣
y=− Ly

2

= 2πwJ

0
Hz

(
−Ly

2

)
, (37)[

∂φ

∂y
+ γ

λ2
J

(1 − δγ cos φ)

]∣∣∣∣
y=+ Ly

2

= 2πwJ

0
Hz

(
+Ly

2

)
, (38)

where we introduce the magnetic fields Hz(±Ly/2) at the
boundaries of the junction (y = ±Ly/2). This magnetic field

can be decomposed into

Hz

(
±Ly

2

)
= He ∓ 2π

c

I

Lz
, (39)

where He denotes the net external magnetic field and I is the
net current through the junction. Prior to our discussion of
the critical current, we consider in the following first a homo-
geneous junction without any net external magnetic field and
current, i.e., He = I = 0. Our aim is to illustrate the impact
of the γ term on the energy of a Josephson vortex and the
presence of spontaneous currents at the ends of the junction.

B. Josephson vortices

A Josephson vortex corresponds to a kink (antikink)
solitonlike solution of the differential equation [Eq. (36)]
given by

φ±(y) = 4 tan−1(e± y−y0
λJ ), (40)

as shown for example in textbooks such as Ref. [26]. This vor-
tex, which is centered at position y0 and includes a magnetic
flux ±0, extends along (perpendicular to) the junction over
a length of λJ (wJ ). We now insert this kink solution into the
free energy functional and integrate over y assuming Ly � λJ .
The first two terms give the usual energy of a Josephson vortex
per unit length along the z direction,

Fv = 2
0

2π3wJ

1

λJ
, (41)

which is independent of the orientation of the vortex (kink or
antikink). The correction due to the γ term is then straightfor-
wardly calculated:

�Fv,± = 2
0

16π3wJ

∫
dy

γ

λ2
J

∂φ±
∂y

(1 − δγ cos φ±)

= 2
0

16π3wJ

∫
dy

γ

λ2
J

∂

∂y
(φ± − δγ sin φ±)

= 2
0

16π3wJ

γ

λ2
J

(φ± − δγ sin φ±)
∣∣y=+∞
y=−∞

= ± 2
0

8π2wJ

γ

λ2
J

. (42)

This shows that there appears a difference in vortex line en-
ergy depending on the orientation of the vortex, parallel or
antiparallel to the chirality. Thus, through the γ term vortices
may be more easily created or stabilized than antivortices or
vice versa depending on χ = χr = χl .

C. Spontaneous edge currents

Here we address a second feature due to the γ term that
appears in a junction of finite extension Ly. For simplicity we
assume that γ 	 1. The deviation from the usual lowest en-
ergy solution φ = 0 (or an integer multiple of 2π ) is then very
small, i.e., |φ| 	 1. Thus, the variational equation [Eq. (36)]
can be approximated as

∂2φ

∂y2
= φ

λ2
J

, (43)
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which is solved by

φ(y) = C+e+y/λJ + C−e−y/λJ . (44)

The boundary conditions (He = I = 0) combined with the
approximation cos φ ≈ 1 yield the solution

φ(y) = −γ (1 − δγ )
sinh(y/λJ )

cosh(Ly/2λJ )
. (45)

This leads to a spontaneous Josephson current,

j(y) = jc sin φ(y) ≈ −γ jc(1 − δγ )
sinh(y/λJ )

cosh(Ly/2λJ )
, (46)

corresponding to a current pattern which originates from both
edges of the junctions, extends over a length λJ , and runs in
opposite directions on the two edges. This is analogous to the
edge currents at ordinary surfaces that are confined within
the length of the London penetration depth λL 	 λJ . These
currents give rise to a magnetic flux penetrating at the edges,

Bz(y) = − 0γ

2πwJλJ
(1 − δγ )

cosh(y/λJ )

cosh(Ly/2λJ )
, (47)

as shown in Fig. 4(a). An extended view of the junction and
its environment is depicted schematically in Fig. 4(b), where
we observe that the well-confined spontaneous magnetic flux
extends further into the superconductor along the junction.

D. Nonreciprocal critical currents

We now turn to the situation where the lack of a specific
mirror symmetry in this type of Josephson junction causes
a difference between the critical currents flowing in opposite
directions. We consider a setup where the junction is invariant
under T σx, but not under T σy. This may be implemented,
for instance, by assuming different Josephson couplings for
positive and negative y, as in Eq. (49). We first take a look at a
short junction to show how the nonreciprocal critical current
arises within a simple approximative, yet analytical treatment.
Afterwards, we will solve numerically the case of an extended
junction, where the supercurrent is limited by the entry of
Josephson vortices from the boundary into the junction.

1. Short-junction limit

In the limit Ly 	 λJ , the junction is considered as “short”
and the variational equation for the phase is approximately
given by

∂2φ

∂y2
= 0, (48)

which is solved by the ansatz φ(y) = α + by. We now assume
that

λ−2
J (y) =

{
λ−2

+ , − Ly

2 � y < 0,

λ−2
− , 0 � y � Ly

2 ,
(49)

while we keep γ constant. We then introduce q± = γ λ−2
± =

q̄ ± q̃ > 0. Furthermore, we assume that both q̄ and q̃ are
small (|q̃Ly| 	 |q̄Ly| 	 1) such that it is justified to use the
above simple solution for the whole range of the junction. The

FIG. 4. (a) The normalized magnetic flux density Bz(y) ∝ ∂φ/∂y
created by spontaneous edge currents for He = 0 and γ 	 1. Latter
is assumed to be small enough such that φ 	 1. Taking Ly = 10 we
consider different values of λJ . (b) Schematic illustration of the spon-
taneous magnetic field distribution inside of the Josephson junction.
The field values are normalized and the location of the junction is
given by the dashed line.

boundary conditions [Eqs. (37) and (38)] are rewritten as

b + q+[1 − δγ cos(α + bLy/2)] = −CI, (50)

b + q−[1 − δγ cos(α − bLy/2)] = CI, (51)

where we set the external magnetic field He to zero and in-
troduce C = 4π2wJ/0cLz. Adding these two equations we
obtain

b = −q̄[1 − δγ cos α cos(bLy/2)] + δγ q̃ sin α sin(bLy/2)

≈ −q̄(1 − δγ cos α) + bLy

2
δγ q̃ sin α

≈ −q̄(1 − δγ cos α) + O(q̄Lyq̃), (52)

which is compatible with |bLy| ∼ |q̄Ly| 	 1.
This result can now be used to get an expression for the to-

tal current as a function of α by subtracting the two boundary
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conditions,

CI = −q̃ − δγ

2
[q− cos(α − bLy/2) − q+ cos(α + bLy/2)]

≈ −q̃(1 − δγ cos α) − δγ q̄
bLy

2
sin α

≈ (1 − δγ cos α)
(
δγ q̄2 Ly

2
sin α − q̃

)
. (53)

Since for a homogeneous junction the relation q̃ = 0 holds, we
find I (−α) = −I (α), which leads to the same critical current
for positive and negative flow direction. However, for q̃ �= 0
the maximal currents for the two flow directions are different,
I+
c �= I−

c . In lowest order we obtain I+
c − I−

c ∝ q̃. Note that
this behavior is analogous to the one derived for the thin film
in Sec. II.

2. Extended junction

We now consider the opposite limit Ly � λJ , the extended
junction, for which it is rather difficult to address analyt-
ically the question of an inhomogeneous junction, even in
an approximative way. However, the differential equation for
homogeneous junction [Eq. (36)] can be solved using Jaco-
bian elliptic functions sn(u|k2), cn(u|k2), and dn(u|k2), which
depend on the argument u and parameter k [27]. Taking k � 1
we express the phase φ through

sin

(
φ

2

)
= cn

(y − y0

kλJ

∣∣∣k2
)
, (54)

cos

(
φ

2

)
= −sn

(y − y0

kλJ

∣∣∣k2
)
, (55)

whereby the values of k and y0 have to be determined by the
boundary conditions. These are formulated as

1

kλJ
dn

(
± Ly

2 − y0

kλJ

∣∣∣∣∣k2

)
+ γ

λ2
J

cn2

(
± Ly

2 − y0

kλJ

∣∣∣∣∣k2

)
= ∓C

2
I.

(56)

where we again neglect the external magnetic field and as-
sume for simplicity δγ = 1. Note that there is an analogous
set of equations for k > 1.

Instead of discussing the inhomogeneous junction, we fo-
cus now on the homogeneous situation using the solutions
given above. We search for the values of y0 and k that fulfill
the boundary conditions [Eq. (56)] and yield the maximal
possible current I .

This allows us to analyze numerically the conditions for
the critical current, which is reached when the first Josephson
vortex enters the junction. Such vortices then move along the
junction, driven by the current, and lead to a finite voltage.
The standard case for γ = 0 has been discussed by Owen and
Scalapino [27] and is included in Fig. 5, where we plot the
current density and magnetic field distribution in the junction
with the possible maximal current (critical current). In this
case Josephson vortices nucleate at both ends of the junction
under the same conditions. Actually, the situation displayed in
Fig. 5 yields a vortex entering at y = Ly/2 and an antivortex at
y = −Ly/2. In the resistive state with a current slightly above
the critical current they enter the junction and move towards
its center, where they then annihilate each other. Note that it

FIG. 5. The current density (solid) and magnetic field distribu-
tion (dashed) inside the junction for He = 0 and various γ values.
The distance is expressed in units of the Josephson penetration depth
λJ . Note that our results converge to the ones contained in [27] for
γ → 0.

does not matter in which direction the current flows, vortex
and antivortex would just be exchanged.

Turning on the γ term and again evaluating numerically the
current density and magnetic field distribution for the maxi-
mal supercurrent through the junction, we find the remaining
sequence of panels depicted in Fig. 5 for a current in positive
direction. Increasing the values of γ yields a pattern with
growing asymmetry between the left- and right-hand side. It
is evident that the nucleation of the first, penetrating vortex
occurs on the left side (y = −Ly/2). For illustration purposes,
the different behavior at both ends of the junction is also
depicted qualitatively in Fig. 6.

The origin of this asymmetry is that a Josephson antivortex
is energetically cheaper than a vortex in the specific situation
considered here. Thus, the current is limited by the penetration
of antivortices from the left-hand side. Reversing the current
direction leads to the penetration of the corresponding antivor-
tex from the other side. For a homogeneous junction, i.e., a
junction which is symmetric under T σy, the magnitude of the
critical current remains the same for both current directions.
Naturally the critical current density is connected with the
critical current density jc.

This is now the key to understanding the splitting of I+
c

and I−
c , if T σy is not a symmetry anymore. We take again our

simple model [Eq. (49)], where the junction has a different
critical current density for y < 0 and y > 0. In this case, the
antivortices can more easily enter from the side where jc is
lower. On the other hand, the direction of the current decides
about the orientation of the vortex on the two edges. In this
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FIG. 6. The schematic magnetic field pattern if a total current is
running through the Josephson junction for (a) γ = 0 and (b) γ �= 0.
Again we normalized the values by the maximum of the magnetic
field. Note that the spontaneous field distribution depicted by Fig. 4
is negligibly small compared to the magnetic fields plotted here. The
position of the junction is indicated by the dashed line.

way we obtain the nonreciprocal behavior I+
c �= I−

c , also for
the extended junction, because once the vortex (antivortex) is
inside the junction for currents above the critical current it will
move and therefore yield dissipation.

IV. DISCUSSION AND CONCLUSION

Our two examples provide insight into the symmetry
conditions and mechanism that give rise to nonreciprocal
behavior of the critical current, the so-called spontaneous

superconducting diode effect, in a chiral superconductor. The
important nontrivial ingredient is broken time-reversal sym-
metry. Additionally, a specific asymmetry of the sample is
required, which in most cases is simply given by the device
geometry and the natural inhomogeneity of materials.

In our study we cover two related mechanisms to limit the
supercurrent. One is based on the dissipation through phase
slips in thin films and short Josephson junctions. The other
is due to the current-driven motion of flux lines (flux flow
resistance) nucleating at the device boundary, as we discussed
for long Josephson junctions. Reciprocal critical currents rely
on the symmetry, which ensures that both current directions
experience the same conditions. It is already violated if there
is a spontaneous current density whose distribution is asym-
metric such that a net current flow exists, which adds to
the external current. Then, the external currents in opposite
directions create different conditions to limit the maximal
possible supercurrent. The magnitude of the splitting of I+

c
and I−

c depends on various circumstances, like the nucleation
of phase slips or the ease with which vortices penetrate a
sample due to varying surface roughness or curvature.

Coming back to the example of the 3-K phase in Sr2RuO4-
Ru mentioned in the Introduction [20], we can now state
that the observation of a nonreciprocal effect in the critical
current likely originates from a transition to a time-reversal
symmetry-breaking phase at T ∗ ≈ 2.3 K [22]. The 3-K phase
corresponds to an inhomogeneous superconducting state
where the order parameter presumably nucleates at the inter-
face between Sr2RuO4 and Ru-metal inclusions at T ′ ≈ 3 K.
At first, a transition to a time-reversal symmetric phase occurs.
Only at T = T ∗ we see the onset of an additional order param-
eter component, which yields the violation of time-reversal
symmetry. The superconducting condensate of neighboring
inclusions overlap and form weak links like Josephson junc-
tions leading to a strong drop of resistivity, which may,
however, not be completely zero in the absence of percolation
of superconductivity in the sample. Nevertheless, in current-
voltage characteristics it is possible to observe critical currents
corresponding to the “interruption” of superconducting paths,
if the current through such weak links exceeds a threshold. In
the time-reversal symmetry-breaking phase these weak links
most likely satisfy the symmetry conditions we have discussed
above and naturally yield a nonreciprocal behavior. Moreover,
the whole Josephson network created by connecting the su-
perconducting islands around each Ru inclusion provides the
conditions for a nonreciprocal critical current, as discussed
in Ref. [22]. Our discussion suggests that the observation
of a “spontaneous” nonreciprocal critical current serves as
a good indication for a superconducting phase that breaks
time-reversal symmetry. We have analyzed the situation for
a chiral superconducting phase, because it yields this effect
under least stringent conditions. The superconducting diode
effect in noncentrosymmetric superconductors is generally
not spontaneous, since it requires the application of a mag-
netic field to break time-reversal symmetry [13–15].

We should also mention that nonchiral superconducting
order parameters, which break time-reversal symmetry, can
give rise to the same phenomenon, if the device setup pro-
vides the same conditions as discussed in the Introduction
in Eqs. (1) and (2), where x is the direction of the critical
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current and y perpendicular to it. Within a tetragonal crystal
the pairing state with s + idxy-wave symmetry (ψχ = ηs +
iχηdkxky) satisfies such conditions. This state is composed
of two components belonging to different, one-dimensional
representations, which generally do not have the same critical
temperature. Nevertheless, if both components are finite, they
satisfy Eqs. (1) and (2) with χ = ±1, which corresponds here
not to chirality. Looking at the setups we discussed, the thin
film and the Josephson junction, we find that the phenomenol-
ogy is identical. For another composite state like s + idx2−y2

we would have to rotate the x and y direction by 45◦ to obtain
the same conditions. This means that the observation of a
spontaneous, nonreciprocal critical current is not restricted
to chiral states, but under certain conditions also possible
for other, time-reversal symmetry-breaking superconducting
phases.

As discussed at the end of Sec. II, currents can, in princi-
ple, reverse chirality and spoil the spontaneous diode effect.
Such a reversal involves the formation of chiral domains and
the motion of domain walls through the sample, which sets
some limits to such a process as sufficiently large currents
are necessary. Generally we should, however, note that also
the presence of preexisting chiral domains would make the
diode effect more complex and could also lead to history
dependence. Yet this is beyond our scope and a matter for
future studies.
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APPENDIX A: SPATIAL DEPENDENCE OF THE ORDER
PARAMETER AND VALUE OF Q

The variational ansatz given in Eq. (12) separates the x and
y dependence, the latter being the transverse direction. This
simplification provides a description of the current carrying
state in a thin film geometry if the current can be considered
as uniform, i.e., L 	 λL. Here we would like to consider a
simple illustrative example for the order parameter structure
as given in Eq. (12).

For simplicity we assume boundary conditions that leave
ηx unaffected and suppress ηy due to surface scattering. Thus,
we choose gx(y) = 1, while for the other component we use

gy(y) = cos(κy) + r sin(κy), (A1)

with |r| < 1 and κL < π . This form occurs in the context of a
split phase transition expected in this geometry and the given
boundary conditions. First, ηx appears and at a slightly lower
temperature ηy. The form in Eq. (A1) is obtained through the
instability condition of the Ginzburg-Landau equations lin-
earized in ηy (see Ref. [25]). The suppression of the ηy at the
surfaces y = ±L/2 follows from the boundary condition

d

dy
gy(y)

∣∣∣∣
y=±L/2

= ∓gy(±L/2)

l±
, (A2)

where l± are the extrapolation lengths at the two boundaries,
respectively (see for example Refs. [1,28]). This leads to the
condition

r = κl+ tan(κL/2) − 1

κl+ + tan(κL/2)
= −κl− tan(κL/2) − 1

κl− + tan(κL/2)
, (A3)

which has to be solved for κ and r. We find that for identi-
cal boundaries, i.e., l+ = l−, the parameter r = 0. With this
parametrization we consider now the current density jx(y)
[Eq. (12)] for α = 0,

jx(y) = 4eK3η̃xη̃yχκ[− sin(κy) + r cos(κy)], (A4)

which constitutes the spontaneous current of the chiral super-
conductor. The current density consists of an antisymmetric
[sin(κy)] and symmetric [cos(κy)] contribution. The latter
part is proportional to r and only appears if the two boundaries
involve different surface suppression (l+ �= l−). Thus, the total
current flowing along the film is given by

Ix =
∫ +L/2

−L/2
dy jx(y) = 8eK3η̃xη̃yχr sin(κL/2). (A5)

The parameter Q = K3Dx − K4Dy is obtained as

Q =
∫ +L/2

−L/2
dy (K3gxg′

y − K4gyg′
x )

= 2K3r
sin(κL/2)

κ
, (A6)

which is only finite for r �= 0. Together with Eq. (A5) we fi-
nally have Ix = 4eκχη̃xη̃yQ. This shows that in our variational
approach the value Q is proportional to the net spontaneous
current in the thin film for α = 0. It is only nonvanishing if
the two surfaces are different, which is one way to violate the
mirror symmetry σy.

APPENDIX B: DERIVATION OF THE ANOMALOUS
JOSEPHSON JUNCTION ENERGY TERM

The anomalous γ term in Eq. (27) is obtained from the
gradient terms in the Ginzburg-Landau free energy expansion
[Eqs. (7) and (8)]. In particular, we need to consider the term

f34 = K3(�xηx )∗(�yηy) + K4(�xηy)∗(�yηx ) + c.c., (B1)

where we insert the order parameter η(r) = ηl (r) + ηr (r) with
the simplified spatial dependence proposed in Eqs. (24) and
(25). After integrating over x we find

F ′ =
∫

dx dy f34

= −(χl + χr )η2
0

∫
dy

∂φ

∂y
(Aγ − Bγ cos φ), (B2)

where Aγ and Bγ are given by Eqs. (31) and (32), respectively.
Inserting the same form of the order parameter η(r) into the
expression for the current density jy yields

jy(x) = χl [ jll (x) + jlr (x) cos φ]

+χr[ jrr (x) + jrl (x) cos φ], (B3)

033167-10



SYMMETRY CONDITIONS FOR THE SUPERCONDUCTING … PHYSICAL REVIEW RESEARCH 4, 033167 (2022)

with

jab(x) = −4eη2
0

[
K3ga

y(x)gb
x(x)′ − K4gb

x(x)ga
y(x)′

]
(B4)

and a, b ∈ {l, r}.
Taking into account the symmetry we imposed in Eq. (26),

gl
μ(x) = gr

μ(−x), where we restrict ourselves to the x depen-
dence, we find that jll (x) = − jrr (−x) and jlr (x) = − jrl (−x).
The current distribution is even for

j (even)
y (x) = 1

2
[ jy(x) + jy(−x)]

= χl − χr

2
{ jll (x) − jrr (x) + [ jlr (x) − jrl (x)] cos φ},

(B5)

and odd for

j (odd)
y (x) = 1

2
[ jy(x) − jy(−x)]

= χl + χr

2
{ jll (x) + jrr (x) + [ jlr (x) + jrl (x)] cos φ}.

(B6)

These results show that the current distribution is even, if χl =
−χr , while for the same chirality on both sides jy(y) is odd in
x. The odd current distribution induces a magnetic field even

in x, peaked and well localized at the junction. The transverse
extension is of order of the coherence length.

The current density is also influenced by the Josephson
phase φ. By comparison we find that∫ 0

−∞
dx j (odd)

y (x) = −4eη2
0(Aγ + Bγ cos φ)(χl + χr )

= c

4π
Hz(x = 0, φ), (B7)

where we used ∂Hz/∂x = 4π jy(x)/c with Hz(0) correspond-
ing to the (maximal) field at the center of the junction (x = 0).
With Eqs. (30) and (33) we then find the relation

γ

λ2
J

(1 − δγ cos φ) = πwJ

0
Hz(0, φ), (B8)

which leads to

H̃z(φ) = Hz(0, φ)

2
. (B9)

H̃z(φ) may be interpreted as the averaged field induced by the
spontaneous currents along the junction. As the solution of the
effective free energy shows, this field H̃z is screened far from
the edges in an extended Josephson junction. If the currents
are even in x for χr = −χl , the field Hz(x) is an odd function
and cancels when averaged such that γ = 0.
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