

Lipschitz Chain Approximation of Metric Integral Currents

Journal Article

Author(s): Goldhirsch, Tommaso

Publication date: 2022-01

Permanent link: https://doi.org/10.3929/ethz-b-000575372

Rights / license: Creative Commons Attribution 4.0 International

Originally published in: Analysis and Geometry in Metric Spaces 10(1), <u>https://doi.org/10.1515/agms-2022-0140</u>

This page was generated automatically upon download from the <u>ETH Zurich Research Collection</u>. For more information, please consult the <u>Terms of use</u>.

Research Article

Open Access

Tommaso Goldhirsch*

Lipschitz Chain Approximation of Metric Integral Currents

https://doi.org/10.1515/agms-2022-0140 Received June 4, 2022; accepted August 10, 2022

Abstract: Every integral current in a locally compact metric space *X* can be approximated by a Lipschitz chain with respect to the normal mass, provided that Lipschitz maps into *X* can be extended slightly.

Keywords: metric spaces; integral currents; polyhedral chains; Lipschitz chains

MSC: 49Q15, 58A25, 53C23

1 Introduction

In [6], after proving their celebrated deformation theorem, Federer and Fleming show that every integral current admits an approximation by Lipschitz chains. More precisely, for each current $T \in \mathbf{I}_{n,c}(\mathbb{R}^N)$ and $\varepsilon > 0$ there is a Lipschitz chain $P \in \mathbf{L}_{n,c}(\mathbb{R}^N)$ such that $\mathbf{N}(T - P) < \varepsilon$, see Theorem 5.8 in [6].

In this paper we prove an analogue of this result for a locally compact metric space *X* with the property that every Lipschitz map into *X* can be extended to a neighborhood of its domain. In fact, we need this property to hold only locally and for Lipschitz maps with compact domains. We work with metric *integer rectifiable currents* with finite mass $\mathcal{I}_n(X)$, with compact support $\mathcal{I}_{n,c}(X)$, and metric *integral currents* with compact support $\mathbf{I}_{n,c}(X)$. Each current *T* has *boundary* ∂T , *mass* $\mathbf{M}(T)$, and *normal mass* $\mathbf{N}(T) = \mathbf{M}(T) + \mathbf{M}(\partial T)$. Every singular Lipschitz chain in *X* with integer coefficients induces a *Lipschitz chain* $P \in \mathbf{L}_{n,c}(X)$, which is an element of $\mathbf{I}_{n,c}(X)$ (see Section 2).

We briefly describe Federer and Fleming's approach in [6]. As a consequence of the deformation theorem (see Theorem 5.5 in [6]), they first prove that if a current $T \in \mathbf{I}_{n,c}(\mathbb{R}^N)$ has boundary $\partial T \in \mathbf{L}_{n-1,c}(\mathbb{R}^N)$, it can be deformed into a Lipschitz chain (compare with Lemma 5.7 in [6]).

Lemma 1.1. Let $N > n \ge 1$ and let $T \in \mathbf{I}_{n,c}(\mathbb{R}^N)$ with $\partial T \in \mathbf{L}_{n-1,c}(\mathbb{R}^N)$. Then for every $\eta > 0$ there is $R \in \mathbf{I}_{n+1,c}(\mathbb{R}^N)$ with $T - \partial R \in \mathbf{L}_{n,c}(\mathbb{R}^N)$, $\mathbf{N}(R) \le \eta$ and $\operatorname{spt}(R) \subset \operatorname{spt}(T)_{\eta}$.

Here $\operatorname{spt}(T)_{\eta}$ denotes the open η -neighborhood of $\operatorname{spt}(T)$. Applying Lemma 1.1 twice, once in dimension n - 1 and once in dimension n, they finally prove the **N**-approximation theorem for \mathbb{R}^N . This argument does not apply directly in our setting, as there is no analogue of the deformation theorem for general metric spaces, although a recent paper [3] proves a Federer-Fleming type deformation theorem for quasiconvex metric spaces of finite Nagata dimension admitting Euclidean isoperimetric inequalities.

We solve this issue taking inspiration from the strategy used in [5], [13] and [14]. We embed a compact neighborhood *K* of the support spt(*T*) of $T \in \mathbf{I}_{n,c}(X)$ into $l^{\infty}(\mathbb{N})$ and exploit the metric approximation property of $l^{\infty}(\mathbb{N})$ to project it onto a finite dimensional vector subspace, in which we can apply Lemma 1.1. To go back to the original current *T* in *X* we assume that Lipschitz maps into *X* can be extended slightly.

9

^{*}Corresponding Author: Tommaso Goldhirsch: Department of Mathematics, ETH Zürich, Zürich, Switzerland, E-mail: tommaso.goldhirsch@math.ethz.ch

Open Access. [Image: Common and Common and Commons Attribution 4.0 License.

Definition 1.2. A metric space *X* has *property L* if the following holds. For every metric space *Y*, every compact subset $K \subset Y$, and every 1-Lipschitz map $g: K \to X$, there exist $\varepsilon = \varepsilon(g) > 0$ and $L = L(g) \ge 1$ such that g admits an *L*-Lipschitz extension $\overline{g}: K_{\varepsilon} \to X$ to the open ε -neighborhood K_{ε} of *K*. A metric space *X* has *local property L* if every point in *X* has a neighborhood with property *L*.

Without loss of generality we can set $Y = l^{\infty}(\mathbb{N})$. If a metric space *X* has property *L*, then every open subset has property *L*. In particular property *L* implies local property *L*. Both conditions imply that *X* is semi-locally quasi-convex. Examples of spaces having property *L* include absolute Lipschitz neighborhood retracts, metric spaces locally bi-Lipschitz equivalent to \mathbb{R}^n or to a finite piecewise Euclidean polyhedral complex. A more detailed discussion can be found in Section 3.

To expand on the argument above, suppose that *X* has property *L* and let $\iota: K \to l^{\infty}(\mathbb{N})$ be an isometric embedding with image $K' := \iota(K)$. By the metric approximation property of $l^{\infty}(\mathbb{N})$ there is a finite dimensional subspace $V \subset l^{\infty}(\mathbb{N})$ arbitrarily close to K', and a 1-Lipschitz projection $\pi: K' \to V$. In particular, we can choose *V* close enough such that the extension of $\iota^{-1}: K' \to X$, say *g*, provided by property *L* is defined on $\pi(K')$.

There is a push-forward $T'' = (\pi \circ \iota)_{\#}T \in \mathbf{I}_{n,c}(V)$ of T in $\pi(K')$. Ideally, we could apply Federer and Fleming's **N**-approximation theorem in V and then map back to X using g. The issue is that by doing so we do not control the difference between the original current $T = (g \circ \iota)_{\#}T$ and $g_{\#}T''$. We keep track of the difference between $\iota_{\#}T$ and T'' by constructing a "homotopy filling" between them in $l^{\infty}(\mathbb{N})$, and by using Lemma 1.1 instead of directly applying the approximation result for the **N**-norm.

After a small decomposition argument (Lemma 4.1) we can relax the assumption from (global) property L to local property L, and prove the following analogue of Theorem 5.8 in [6], which is the main result of this paper.

Theorem 1.3 (N-Approximation). Let $n \ge 1$, let X be a locally compact metric space with local property L, and let $T \in \mathbf{I}_{n,c}(X)$. Then for every $\varepsilon > 0$ there is $P \in \mathbf{L}_{n,c}(X)$ with $\mathbf{N}(T - P) < \varepsilon$ and $\operatorname{spt}(P) \subset \operatorname{spt}(T)_{\varepsilon}$.

If n = 1, then we can find P with $\partial P = \partial T$. This is already known without assuming any Lipschitz extension property of X (see [2], [13] and [14]).

The strategy of proof outlined above is only necessary to approximate $T \in \mathbf{I}_{n,c}(X)$ with respect to the normal mass **N**. The argument for the mass is simpler and and does not involve passing through $l^{\infty}(\mathbb{N})$. Every compactly supported integer valued function $u \in L^1(\mathbb{R}^n)$ induces an integer rectifiable current $[\![u]\!] \in \mathcal{I}_{n,c}(\mathbb{R}^n)$ with $\mathbf{M}([\![u]\!]) = ||u||_{L^1}$. If $F \colon \mathbb{R}^n \to X$ is *L*-Lipschitz, then there is a push-forward $F_{\#}[\![u]\!] \in \mathcal{I}_{n,c}(X)$, and $\mathbf{M}(F_{\#}[\![u]\!]) \leq L^n \mathbf{M}([\![u]\!])$.

Every current $T \in \mathfrak{I}_n(X)$ can be written as $T = \sum_i T_i$, where the sum converges with respect to the mass norm and each $T_i \in \mathfrak{I}_{n,c}(X)$ is of the form $T_i = (F_i)_{\#}[\![u_i]\!]$ for some integer valued $u_i \in L^1(\mathbb{R}^n)$, where $F_i \colon K_i \to F_i(K_i) \subset X$ is bi-Lipschitz and $K_i \subset \mathbb{R}^n$ is a compact set containing the support of u_i . By a purely measure-theoretic argument we approximate each u_i in the L¹-norm with a finite sum of characteristic functions corresponding to Borel subsets B_j contained in $\operatorname{spt}(u_i)$. Then, we approximate these Borel sets by cubes. This produces an approximation of $[\![u_i]\!]$ by Lipschitz chains with respect to the **M**-norm in \mathbb{R}^n . However, these cubes may leak slightly outside of B_j and in particular outside of $\operatorname{spt}(u_i)$, so that their image in X via F_i is not defined.

This shows that if $T \in \mathfrak{I}_n(X)$ has support contained in an open subset of X with property L, then it admits an approximation by Lipschitz chains with respect to the **M**-norm. In general, however, if we assume that Xhas local property L, neither T nor the T_i 's have support inside such an open subset of X and this argument needs a small refinement: each T_i can be decomposed as a finite sum $T_i = T_i^1 + \cdots + T_i^{N_i}$ with each T_i^j having support inside an open subset of X having property L (Lemma 4.1). Note that the domain of each F_i is a subset of \mathbb{R}^n so that for this discussion we might as well assume that X is locally *Lipschitz* (n - 1)-connected, that is, there is a constant c such that every L-Lipschitz map $f \colon S^k \to X$ with $0 \le k \le n - 1$ admits a cL-Lipschitz extension $\overline{f} \colon B^{k+1} \to X$, where S^k and B^{k+1} denote the unit sphere and ball in \mathbb{R}^{n+1} , respectively. In this situation we can apply the partial result just outlined for each T_i^j and obtain the following. We remark that property *L* and being Lipschitz *n*-connected for some *n* are not equivalent, in fact, the sphere S^n has property *L* but is not Lipschitz *n*-connected (see Section 3 for more details).

2 Preliminaries

Let X = (X, d) be a metric space. We write $B_x(r) := \{y \in X : d(x, y) \le r\}$ for the closed ball of radius $r \ge 0$ and center $x \in X$.

Given a subset $A \subset X$ and $\varepsilon > 0$ we denote by $A_{\varepsilon} := \{x \in X : d(A, x) < \varepsilon\}$ the open ε -neighborhood of A in X, where d(A, x) is the infimum over all d(a, x) with $a \in A$.

A map $f: X \to Y$ into another metric space Y = (Y, d) is *L*-*Lipschitz*, for some constant $L \ge 0$, if $d(f(x), f(x')) \le Ld(x, x')$ for all $x, x' \in X$. The *Lipschitz constant* Lip(f) of f is the infimum over all such L. A map f is *Lipschitz* if it is *L*-Lipschitz for some L, it is *locally Lipschitz* if every point in X has a neighborhood on which f is Lipschitz. We denote by Lip_{loc}(X) and Lip_c(X) the spaces of functions $X \to \mathbb{R}$ which are locally Lipschitz or Lipschitz with compact support, respectively. A map f is a *bi-Lipschitz* embedding if it is injective and both f and f^{-1} are Lipschitz.

Metric Currents

Metric currents of finite mass were introduced by Ambrosio and Kirchheim in [1]. Here we will work with a variant of this theory for locally compact metric spaces, as described by Lang in [10]. In this section we provide some background on this theory and refer the reader to [10] for more details. We will assume throughout that the underlying metric space *X* is locally compact.

For every integer $n \ge 0$ let $\mathscr{D}^n(X)$ be the set of all $(f, \pi) := (f, \pi_1, \ldots, \pi_n)$ in $\operatorname{Lip}_{c}(X) \times [\operatorname{Lip}_{\operatorname{loc}}(X)]^n$. We endow $\mathscr{D}^n(X)$ with the topology for which $(f^k, \pi^k) \to (f, \pi)$ if $f^k \to f$ and $\pi_i^k \to \pi_i$ pointwise on X with uniformly bounded Lipschitz constants on each compact set, and with $\bigcup_k \operatorname{spt}(f^k) \subset K$ for some compact set $K \subset X$. The idea is that $(f, \pi_1, \ldots, \pi_n) \in \mathscr{D}^n(X)$ represents the compactly supported differential n-form $fd\pi_1 \land \ldots \land d\pi_n$ if X is (an open subset of) \mathbb{R}^N and the functions f, π_1, \ldots, π_n are smooth; and roughly speaking, a current (with some additional properties defined below) is a map $\mathscr{D}^n(X) \to \mathbb{R}$ representing integration on a submanifold of \mathbb{R}^N .

Definition 2.1. An *n*-dimensional *current T* on *X* is an (n + 1)-linear function $T: \mathscr{D}^n(X) \to \mathbb{R}$ such that $T(f^k, \pi^k) \to T(f, \pi)$ whenever $(f^k, \pi^k) \to (f, \pi)$ in $\mathscr{D}^n(X)$, and $T(f, \pi) = 0$ whenever one of the functions π_i is constant on a neighborhood of spt(*f*).

The vector space of all *n*-dimensional currents on *X* is denoted by $\mathcal{D}_n(X)$. Every function $u \in L^1_{loc}(\mathbb{R}^n)$ induces a current $\llbracket u \rrbracket \in \mathcal{D}_n(\mathbb{R}^n)$ defined by

$$\llbracket u \rrbracket (f, \pi_1, \ldots, \pi_n) \coloneqq \int uf \det \left(\frac{\partial \pi_i}{\partial x^j}\right)_{i,j=1}^n \mathrm{d}x$$

for all $(f, \pi_1, ..., \pi_n) \in \mathscr{D}^n(\mathbb{R}^n)$, where the partial derivatives $\partial \pi_i / \partial x^j$ exist almost everywhere according to Rademacher's theorem. If $W \subset \mathbb{R}^n$ is a Borel set and χ_W is its characteristic function, we set $[W] := [\chi_W]$.

Support, Push-forward, and Boundary

Let $T \in \mathcal{D}_n(X)$ be an *n*-dimensional current. The *support* spt(*T*) of *T* is the smallest closed subset of *X* such that the value $T(f, \pi_1, ..., \pi_n)$ depends only on the restrictions of $f, \pi_1, ..., \pi_n$ to it.

For a proper Lipschitz map F: spt $(T) \to Y$ into another locally compact metric space Y, the *push-forward* $F_{\#}T \in \mathcal{D}_n(Y)$ is defined by

$$F_{\#}(f, \pi_1, \ldots, \pi_n) \coloneqq T(f \circ F, \pi_1 \circ F, \ldots, \pi_n \circ F)$$

for all $(f, \pi) \in \mathscr{D}^n(Y)$. It holds that $\operatorname{spt}(F_{\#}T) \subset F(\operatorname{spt}(T))$.

For $n \ge 1$, the *boundary* $\partial T \in \mathcal{D}_{n-1}(X)$ of T is defined by

 $(\partial T)(f, \pi_1, \ldots, \pi_{n-1}) = T(\sigma, f, \pi_1, \ldots, \pi_{n-1})$

for $(f, \pi_1, \ldots, \pi_{n-1}) \in \mathscr{D}^{n-1}(X)$, where σ is any compactly supported Lipschitz function, that is identically 1 on spt $(f) \cap$ spt(T). It holds that $\partial \circ \partial = 0$, spt $(\partial T) \subset$ spt(T), and $F_{\#}(\partial T) = \partial(F_{\#}T)$ for F as above. (For more details, see Section 3 in [10].)

Mass

Let $T \in \mathscr{D}_n(X)$ be an *n*-dimensional current. For an open set $U \subset X$, the mass $||T||(U) \in [0, \infty]$ of *T* in *U* is defined as the supremum of $\sum_{i=1}^k T(f^i, \pi_1^i, \ldots, \pi_n^i)$ over all finite families $(f^i, \pi_1^i, \ldots, \pi_n^i)_{i=1}^k \subset \mathscr{D}^n(X)$ such that the restrictions of π_1^i, \ldots, π_n^i to $\operatorname{spt}(f^i)$ are 1-Lipschitz for all $i, \bigcup_{i=1}^k \operatorname{spt}(f^i) \subset U$ and $\sum_{i=1}^k |f^i| \le 1$.

This defines a regular Borel measure ||T|| on X. The total mass ||T||(X) of T is denoted $\mathbf{M}(T)$ and is called the *mass* of T. If $S \in \mathcal{D}_n(X)$ is another current, then

$$\mathbf{M}(T+S) \leq \mathbf{M}(T) + \mathbf{M}(S).$$

The *normal mass* of *T* is defined as $\mathbf{N}(T) := \mathbf{M}(T) + \mathbf{M}(\partial T)$, and *T* is *normal* if $\mathbf{N}(T) < \infty$. If ||T|| is locally finite, then for every Borel set $B \subset X$ there is a *restriction* $T \sqcup B \in \mathcal{D}_n(X)$ of *T* to *B*; the measure $||T \sqcup B||$ coincides with the restriction $||T|| \sqcup B$ of the measure ||T||. If $\mathbf{M}(T) < \infty$ and F: spt $(T) \to Y$ is a proper *L*-Lipschitz map into a locally compact metric space *Y*, then

$$\mathbf{M}(F_{\#}T) \leq L^n \mathbf{M}(T).$$

We denote by $\mathbf{M}_n(X)$, $\mathbf{M}_{n,c}(X)$, $\mathbf{N}_n(X)$, $\mathbf{N}_{n,c}(X)$ the real vector spaces of all currents with finite mass, compact support, normal currents, and normal currents with compact support, respectively.

If $u \in L^1(\mathbb{R}^n)$, then $\mathbf{M}(\llbracket u \rrbracket) = \Vert u \Vert_{L^1}$, in particular, if $K \subset \mathbb{R}^n$ is a Borel set, then $\mathbf{M}(\llbracket K \rrbracket) = \mathcal{L}^n(K)$ and $\mathbf{M}(\partial \llbracket K \rrbracket) < \infty$ whenever χ_K has finite variation. (For more details, see Sections 2, 4 and 7 of [10].)

Integral Currents

A current $T \in \mathbf{M}_n(X)$ is *integer rectifiable* if there are countably many Lipschitz maps $F_i: A_i \subset \mathbb{R}^n \to X$ such that ||T|| is concentrated on $\bigcup_i F_i(A_i)$, and for every Borel set $B \subset X$ with compact closure and every Lipschitz map $\pi: X \to \mathbb{R}^n$ the push-forward $\pi_{\#}(T \sqcup B) \in \mathcal{D}_n(\mathbb{R}^n)$ is of the form $[\![u]\!]$, for some integer valued $u = u_{B,\pi} \in L^1(\mathbb{R}^n)$.

The abelian group of *integer rectifiable n*-currents in *X* is denoted by $\mathcal{I}_n(X)$; it is closed under pushforwards and restrictions to Borel sets. We write $\mathcal{I}_{n,c}(X)$ for the subgroup of integer rectifiable currents with compact support.

A current $T \in \mathfrak{I}_{n,c}(X)$ is an *integral current* with compact support, or simply an integral current, if whenever $n \ge 1$, its boundary ∂T is integer rectifiable as well. We denote the corresponding abelian groups by $\mathbf{I}_{n,c}(X)$, and observe that they form a chain complex. By Theorem 8.7 (boundary rectifiability) in [10], $T \in \mathfrak{I}_{n,c}(X)$ is integral if $\mathbf{M}(\partial T) < \infty$.

If $K \subset \mathbb{R}^n$ is a bounded Borel set, then $[\![K]\!]$ is an element of $\mathfrak{I}_{n,c}(\mathbb{R}^n)$, and it is in $\mathbf{I}_{n,c}(\mathbb{R}^n)$ whenever χ_K has finite variation.

An integral current *T* is a *cycle* whenever $\partial T = 0$ and we denote by $\mathbf{Z}_{n,c}(X) \subset \mathbf{I}_{n,c}(X)$ the subgroup of integral cycles. An element of $\mathbf{I}_{0,c}(X)$ is an integer linear combination of currents of the form [x], where $x \in X$ and [x](f) = f(x) for all compactly supported Lipschitz functions $f \in \mathcal{D}^0(X)$. In this case $\mathbf{Z}_{0,c}(X) \subset \mathbf{I}_{0,c}(X)$

denotes the subgroup of integer linear combinations whose coefficients sum to zero. Note that ∂ : $\mathbf{I}_{n,c}(X) \rightarrow \mathbf{Z}_{n-1,c}(X)$ for all $n \ge 1$, and if $F: X \rightarrow Y$ is a proper Lipschitz map into a locally compact metric space Y, then the push-forward $F_{\#}$ maps $\mathbf{I}_{n,c}(X)$ to $\mathbf{I}_{n,c}(Y)$ and $\mathbf{Z}_{n,c}(X)$ to $\mathbf{Z}_{n,c}(Y)$. Given $Z \in \mathbf{Z}_{n,c}(X)$ we call $V \in \mathbf{I}_{n+1,c}(X)$ a *filling* of Z if $\partial V = Z$. (For more details, see Section 8 of [10].)

In general, the restriction $T \sqcup B$ of an integral current T to an arbitrary Borel subset $B \subset X$ is not integral. However, for every $x \in X$ the restriction $T \sqcup B_x(r)$ is in $\mathbf{I}_{n,c}(X)$ for almost every $r \ge 0$. (See Section 6 and Theorem 8.5 in [10], and Section 2.6 in [8].)

Lipschitz Chains

An *n*-dimensional polyhedron *K* in \mathbb{R}^n , such as a (hyper-)cube or an *n*-simplex, is the convex hull of finitely many (non coplanar) points in \mathbb{R}^n . As noted above, [K] is in $\mathbf{I}_{n,c}(\mathbb{R}^n)$. A *Lipschitz n-chain* in *X* is a finite sum

$$L = \sum_{i=1}^{l} a_i(\varphi_i)_{\#}\llbracket D_i \rrbracket,$$

where $a_i \in \mathbb{Z}$, $D_i \subset \mathbb{R}^n$ are *n*-dimensional polyhedra and $\varphi_i : D_i \to X$ are Lipschitz maps. We denote by $\mathbf{L}_{n,c}(X) \subset \mathbf{I}_{n,c}(X)$ the abelian group of Lipschitz *n*-chains in *X*.

There is a chain isomorphism $\mathbf{I}_{*,c}(\mathbb{R}^n) \to \mathbf{I}_{*,c}^{FF}(\mathbb{R}^n)$ between (metric) integral currents in \mathbb{R}^n and "classical" Federer-Fleming integral currents of [6] which is bi-Lipschitz with respect to the **M**-norm with constants depending only on the dimensions, and which restricts to an isomorphism between the respective subchains of Lipschitz chains (see Theorem 5.5 in [10]). In particular we can apply Lemma 1.1 to metric integral currents in $\mathbf{I}_{n,c}(\mathbb{R}^n)$.

Finally, note that all 0-dimensional integral currents are by definition Lipschitz chains, that is, $I_{0,c}(X) = L_{0,c}(X)$, and therefore an approximation theorem for the **N**-norm is not necessary in dimension 0.

Homotopies

We recall a useful technique to produce fillings of cycles, for more details we refer the reader to Theorem 2.9 in [15] and Section 2.7 of [8]. We use this in Proposition 4.2 and Proposition 4.4 to bridge the gap between the isometric image of a subset of a metric space and a finite dimensional subspace in $l^{\infty}(\mathbb{N})$. Let *Y* denote a normed vector space and $K \subset Y$ a compact subset. Let φ , $\psi : K \to Y$ be *L*-Lipschitz maps with $|\psi(x)-\varphi(x)| \leq D$ for all $x \in K$, and consider the affine homotopy H: $[0, 1] \times K \to Y$ from φ to ψ , that is, $H(t, x) := t\psi(x) + (1 - t)\varphi(x)$. If *P* is an element of $\mathbf{L}_{n,c}(K)$ with $\partial P = 0$, then the push-forward $H_{\#}(\llbracket 0, 1 \rrbracket \times P) \in \mathbf{L}_{n+1,c}(Y)$ has support contained in $H([0, 1] \times K)$ and satisfies

$$\partial H_{\#}(\llbracket 0, 1 \rrbracket \times P) = \psi_{\#}P - \varphi_{\#}P,$$

$$\mathbf{M}\left(H_{\#}(\llbracket 0, 1 \rrbracket \times P)\right) \le (n+1)L^{n}D\,\mathbf{M}(P).$$

We call $H_{\#}([0, 1]] \times P)$ the *affine (homotopy) filling* of $\psi_{\#}P - \varphi_{\#}P$.

Finite Dimensional Projections

As mentioned in the introduction, in order to exploit the deformation theorem we project integral currents defined on a metric space *X* into a finite dimensional vector space. This is done in two steps.

First, every metric space *X* embeds isometrically into the Banach space $l^{\infty}(X)$ of bounded maps on *X* via the map $x \mapsto d(x, \cdot) - d(x_0, \cdot)$, for any base point $x_0 \in X$. If *X* is compact, or more generally separable, and $(x_i)_{i \in \mathbb{N}} \subset X$ is a countable dense subset, then $x \mapsto (d(x_i, x)_i - d(x_i, x_0))_{i \in \mathbb{N}}$ is an isometric embedding into $l^{\infty}(\mathbb{N})$, and the second term $d(x_i, x_0)$ is not necessary if *X* is bounded. This allows us to embed a compact neighborhood of the support of $T \in \mathbf{I}_{n,c}(X)$ into $l^{\infty}(\mathbb{N})$.

Then, we find a finite dimensional subspace of $l^{\infty}(\mathbb{N})$ that is "close enough" to the image of the embedding. Recall that a Banach space *V* has the *bounded approximation property* if there exists $\lambda \ge 1$ such that the following holds. For every compact subset $K \subset V$ and $\varepsilon > 0$ there is a finite dimensional vector subspace $V' \leq V$ and a λ -Lipschitz map $\pi \colon K \to V'$ satisfying $|\pi(x) - x| \leq \varepsilon$ for all $x \in K$. We say that V has the *metric approximation property* in the case $\lambda = 1$. Conveniently, $l^{\infty}(\mathbb{N})$ has this property. For a detailed proof of this fact we refer to Lemma 5.7 in [13]. In the next section we discuss the property needed to go back from $l^{\infty}(\mathbb{N})$ to X.

3 Lipschitz Extensions

We briefly compare property L with other Lipschitz extension properties found in the literature.

Lemma 3.1. Let X be a locally compact metric space with property L. Then X is semi-locally quasi-convex, that is, for every point $o \in X$ there are constants r = r(o) > 0 and $L = L(o) \ge 1$ such that any two points $x, y \in B_o(r)$ are joined by a curve of length $\le Ld(x, y)$ contained in $B_o(2Lr)$.

Suppose that X is a locally compact metric space with local property L. Then each point has an *open* neighborhood U which is locally compact and has property L and hence this lemma implies that X is semilocally quasi-convex.

Proof. Let $o \in X$ and take $\delta > 0$ small enough such that $K := B_o(\delta)$ is compact. Consider the isometric embedding $\iota : K \to l^{\infty}(\mathbb{N})$ with image $K' := \iota(K)$. By assumption there exist $\varepsilon > 0$, $L \ge 1$ and an *L*-Lipschitz extension $g : K'_{\varepsilon} \to X$ of $\iota^{-1} : K' \to X$.

Let $r := \min\{\frac{\varepsilon}{2}, \delta\}$ and consider the possibly smaller ball $B_o(r)$. For $x, y \in B_o(r)$ let $\gamma : [0, 1] \to l^{\infty}(\mathbb{N})$ be the straight segment $\gamma(t) := \iota(x) + t(\iota(y) - \iota(x))$ from $\iota(x)$ to $\iota(y)$ of length $|\iota(x) - \iota(y)| = d(x, y) \le 2r$. The image of γ is within distance at most r from $\{\iota(x), \iota(y)\} \subset K'$ and hence contained in K'_{ε} . Thus $g \circ \gamma : [0, 1] \to X$ is a curve from x to y of length at most Ld(x, y) and contained in $B_o(r + Lr) \subset B_o(2Lr)$.

A metric space *X* is an *absolute Lipschitz retract* if whenever $\iota: X \to Y$ is an isometric embedding into a metric space *Y*, then there exists a Lipschitz retraction $\pi: Y \to \iota(X)$. It is an *absolute Lipschitz neighborhood retract* if the retraction is defined only on a neighborhood *W* of $\iota(X)$ in *Y*.

Exploiting the isometric embedding of *X* into the injective space $l^{\infty}(X)$, one can prove that *X* is an absolute Lipschitz (neighborhood) retract if and only if for every metric space *B* and every subset $A \subset B$, every Lipschitz map $f : A \to X$ admits a Lipschitz extension to (a neighborhood of *A* in) *X* (compare with Proposition 2.2 in [9]). In particular, *X* has property *L* if it is an absolute Lipschitz neighborhood retract or even if every compact subset is contained in one.

The opposite implication need not be true because property *L* only extends Lipschitz maps defined on compact sets. Also, let *K* be a compact subset of *X* and consider the inclusion $K \hookrightarrow X$. If *X* is an absolute Lipschitz neighborhood retract, then the inclusion extends to a Lipschitz retraction onto *K*, while if *X* has property *L*, then the image of the extension need not be contained in *K* (in fact, it might as well be the identity on *X*).

Lang and Schlichenmaier [11] provide an instance in which *X* is an absolute Lipschitz retract and so has property *L* (see Corollary 1.8 in [11]).

Theorem 3.2. Suppose that X is a metric space with finite Nagata dimension $\dim_N(X) \le n < \infty$. Then X is an absolute Lipschitz retract if and only if X is complete and Lipschitz n-connected.

The sphere S^n has property L but is not Lipschitz n-connected for all $n \ge 1$. The latter assertion follows because by Brouwer's Fixed Point Theorem the identity id: $S^n \to S^n$ does not admit a continuous extension $B^{n+1} \to S^n$. To see that S^n has property L one can exploit the fact that $S^n \subset \mathbb{R}^{n+1}$ is a Lipschitz neighborhood retract, and \mathbb{R}^{n+1} has property L by a well-known extension result due to McShane [12].

A similar argument shows that finite piecewise Euclidean complexes have property L, we refer to [4] for the relevant terminology and results. Let X be a finite piecewise Euclidean polyhedral complex, then X is isometric to a simplicial complex, which in turn is bi-Lipschitz homeomorphic to its affine realization X' in \mathbb{R}^N , equipped with the induced Euclidean distance or the induced length metric, where N denotes the number of vertices. Equipped with the Euclidean distance, X' is a Lipschitz neighborhood retract in \mathbb{R}^N and the same argument as above implies property L.

4 N-Approximation

We begin this section with the decomposition lemma mentioned in the introduction. Property L can be replaced with Lipschitz (n - 1)-connected without changing the argument.

Lemma 4.1. Let $n \ge 1$, and let X be locally compact metric space with local property L. Every $T \in \mathcal{J}_{n,c}(X)$ admits a decomposition $T = T_1 + \cdots + T_k$ with $T_i \in \mathfrak{I}_{n,c}(X)$ such that each $\mathfrak{spt}(T_i)$ is contained in $\mathfrak{spt}(T)$ and has a neighborhood with property L. Suppose in addition that $T \in \mathbf{I}_{n,c}(X)$, then each $T_i \in \mathbf{I}_{n,c}(X)$ as well.

Proof. Suppose that $T \in \mathbf{I}_{n,c}(X)$; the argument for $T \in \mathcal{I}_{n,c}(X)$ is simpler but the one presented here applies as well. By assumption there exist finitely many points $x_1, \ldots, x_k \in \operatorname{spt}(T)$ and radii $r_1, \ldots, r_k > 0$ such that spt(*T*) $\subset \bigcup_{i=1}^{k} B_{x_i}(\frac{r_i}{2})$ and each $B_{x_i}(r_i)$ has a neighborhood with property *L*.

Take $s_1 \in (\frac{r_1}{2}, r_1)$ such that $T_1 := T \sqcup B_{x_1}(s_1) \in \mathbf{I}_{n,c}(X)$, then $\operatorname{spt}(T_1) \subset \operatorname{spt}(T)$, $T - T_1 = T \sqcup (X \setminus B_{x_1}(s_1)) \in \mathbf{I}_{n,c}(X)$ $I_{n,c}(X)$ has support in spt(T) and covered by $\bigcup_{i=2}^{k} B_{x_i}(\frac{r_i}{2})$. Then proceed analogously for r_2, \ldots, r_k .

We now prove a version of the **N**-Approximation Theorem for an integral current whose boundary is already a Lipschitz chain.

Proposition 4.2. Let $n \ge 1$, let X be a locally compact metric space, and let $U \subset X$ be an open subset with property *L*. Let $T \in \mathbf{I}_{n,c}(X)$ with $\partial T \in \mathbf{L}_{n-1,c}(X)$ and $\operatorname{spt}(T) \subset U$. Then for every $\varepsilon > 0$ there is $R \in \mathbf{L}_{n,c}(X)$ with $\mathbf{M}(T-R) < \varepsilon, \ \partial T = \partial R \ and \ \operatorname{spt}(R) \subset \operatorname{spt}(T)_{\varepsilon}, \ in \ particular \ \mathbf{N}(T-R) < \varepsilon.$

Since $\mathbf{Z}_{0,c}(X) \subset \mathbf{L}_{0,c}(X)$, it follows that any $T \in \mathbf{I}_{1,c}(X)$ automatically satisfies the assumptions of this proposition.

Proof. Let *K* denote the closed $\frac{\varepsilon}{2}$ -neighborhood of spt(*T*) in *X*, without loss of generality we might assume that *K* is compact and that spt(*T*) $_{\varepsilon} \subset U$. Let $\iota \colon K \to l^{\infty}(\mathbb{N})$ be an isometric embedding with compact image $K' := \iota(K)$. By property *L* there exist $\varepsilon_0 > 0$, $L \ge 1$ and an *L*-Lipschitz extension

$$g: K'_{\varepsilon_0} \to X$$

of $\iota^{-1} = g|_{K'}$ to the open ε_0 -neighborhood of K' in $l^{\infty}(\mathbb{N})$. According to Proposition 1.4 (**M**-Approximation) we find $P \in \mathbf{L}_{n,c}(X)$ with $\operatorname{spt}(P) \subset \operatorname{spt}(T)_{\varepsilon/2} \subset K$ and $\mathbf{M}(T-P) < \frac{\varepsilon}{6L^n} < \frac{\varepsilon}{2}$.

By the metric approximation property of $l^{\infty}(\mathbb{N})$ there is a finite dimensional subspace $V \subset l^{\infty}(\mathbb{N})$ and a 1-Lipschitz projection $\pi: l^{\infty}(\mathbb{N}) \to V$, such that $|x - \pi(x)| \leq \frac{\delta}{2}$ for all $x \in K'$, where

$$\delta \coloneqq \min\left\{\frac{\varepsilon_0}{2}, \frac{\varepsilon}{3nL^n \mathbf{M}(\partial T - \partial P)}, \frac{\varepsilon}{4L}\right\},\$$

in particular, $K'' \coloneqq \pi(K') \subset K'_{\delta} \subset K'_{\epsilon_0/2} \cap K'_{\epsilon/(4L)}$.

Now, consider

$$T' \coloneqq \iota_{\#} T \in \mathbf{I}_{n,c}(l^{\infty}(\mathbb{N})), \qquad P' \coloneqq \iota_{\#} P \in \mathbf{L}_{n,c}(l^{\infty}(\mathbb{N})),$$
$$T'' \coloneqq \pi_{\#} T' \in \mathbf{I}_{n,c}(V), \qquad P'' \coloneqq \pi_{\#} P' \in \mathbf{L}_{n,c}(V).$$

Note that $\partial T' \in \mathbf{L}_{n-1,c}(l^{\infty}(\mathbb{N})), \ \partial T'' \in \mathbf{L}_{n-1,c}(V), \ \mathbf{M}(T'' - P'') \leq \mathbf{M}(T' - P') = \mathbf{M}(T - P)$, the supports of T', P'are contained in K' and the supports of T'', P'' are contained in K''.

Let $H: [0, 1] \times K' \to l^{\infty}(\mathbb{N})$ denote the affine homotopy between $\mathrm{id}_{K'}$ and $\pi|_{K'}$, and let $W := H_{\#}([0, 1]] \times K')$ $(\partial T' - \partial P') \in \mathbf{L}_{n,c}(l^{\infty}(\mathbb{N}))$ be the affine filling of $(\partial T'' - \partial P'') - (\partial T' - \partial P')$ as defined in Section 2. Note that $H(t, \cdot)$: $K' \to l^{\infty}(\mathbb{N})$ is 1-Lipschitz for all $t \in [0, 1]$ and $H(\cdot, x)$: $[0, 1] \to l^{\infty}(\mathbb{N})$ has length at most $\delta/2$ for all $x \in K'$. Therefore the support spt(W) of W is contained in $K'_{\delta} \subset K'_{\epsilon_0/2} \cap K'_{\epsilon/(4L)}$ and its mass is bounded by

$$\mathbf{M}(W) \leq n \frac{\delta}{2} \, \mathbf{M}(\partial T' - \partial P') \leq \frac{\varepsilon}{6L^n}.$$

As $\partial(T'' - P'') = \partial T'' - \partial P'' \in \mathbf{L}_{n-1,c}(V)$, by Lemma 1.1 we find $S \in \mathbf{I}_{n+1,c}(V)$ satisfying

$$\begin{split} \mathbf{N}(S) &\leq \eta := \min\left\{\frac{\varepsilon_0}{2}, \frac{\varepsilon}{6L^n}\right\} < \frac{\varepsilon}{4L},\\ \operatorname{spt}(S) &\subset \operatorname{spt}(T'' - P'')_\eta \subset K''_\eta \subset K'_{\eta+\delta} \subset K'_{\varepsilon_0} \cap K'_{\varepsilon/(2L)},\\ T'' - P'' - \partial S &\in \mathbf{L}_{n,c}(V), \end{split}$$

(in fact, spt(*S*) is contained in the open η -neighborhood of spt(T'' - P'') in *V*).

Finally, note that $T'' - P'' - \partial S$ and W are both Lipschitz *n*-chains with supports in $K'_{\varepsilon_0} \cap K'_{\varepsilon/(2L)}$, so that $g_{\#}(T'' - P'' - \partial S - W) \in \mathbf{L}_{n,c}(X)$ is well defined, has support in $g(K'_{\varepsilon/(2L)}) \subset K_{\varepsilon/2}$, mass

$$\mathbf{M}\left(g_{\#}\left(T^{\prime\prime}-P^{\prime\prime}-\partial S-W\right)\right)\leq L^{n}\left(\mathbf{M}(T^{\prime\prime}-P^{\prime\prime})+\mathbf{M}(\partial S)+\mathbf{M}(W)\right)\leq \frac{8}{2}$$

and boundary

$$\partial (g_{\#}(T'' - P'' - \partial S - W)) = g_{\#}(\partial T'' - \partial P'' - (\partial T'' - \partial P'' - \partial T' + \partial P'))$$
$$= g_{\#}(\partial T' - \partial P')$$
$$= \partial T - \partial P,$$

where in the last equality we have used that $g|_{K'} = t^{-1}$. Overall, the Lipschitz *n*-chain

$$R \coloneqq P + g_{\#}(T'' - P'' - \partial S - W) \in \mathbf{L}_{n,c}(X)$$

satisfies $\mathbf{M}(T-R) \leq \mathbf{M}(T-P) + \mathbf{M}(R-P) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, $\partial R = \partial P + \partial T - \partial P = \partial T$ and $\operatorname{spt}(R) \subset \operatorname{spt}(P) \cup K_{\varepsilon/2} \subset \operatorname{spt}(T)_{\varepsilon}$.

Corollary 4.3. Let $n \ge 1$, let X be a locally compact metric space, and let $U \subset X$ be an open subset with property L. Then for every $Z \in \mathbf{Z}_{n,c}(X)$ with $\operatorname{spt}(Z) \subset U$, and every $\varepsilon > 0$, there is $R \in \mathbf{L}_{n,c}(X)$ with $\partial R = 0$, $\mathbf{N}(Z - R) < \varepsilon$, and $\operatorname{spt}(R) \subset \operatorname{spt}(Z)_{\varepsilon}$.

If *X* has local property *L* we are not able to prove statements like Proposition 4.2 and Corollary 4.3 for integral currents in *X* whose boundary is a Lipschitz chain but without restrictions on their supports. This is because even if $\partial T \in \mathbf{L}_{n-1,c}(X)$ or $\partial T = 0$, the decomposition $T = T_1 + \cdots + T_k$ of Lemma 4.1 does not prevent $\partial T_i \notin \mathbf{L}_{n-1,c}(X)$ or $\partial T_i \neq 0$ for some *i*.

Nonetheless, if n = 1 then we can improve the conclusion of Theorem 1.3. Indeed $\partial T_i \in \mathbf{Z}_{0,c}(X) \subset \mathbf{L}_{0,c}(X)$ for all *i*, and by Proposition 4.2 we obtain $R_1, \ldots, R_k \in \mathbf{L}_{1,c}(X)$ with $\mathbf{M}(T_i - R_i) < \varepsilon/k$, $\partial R_i = \partial T_i$, and $\operatorname{spt}(R_i) \subset \operatorname{spt}(T_i)_{\varepsilon}$ for all *i*. Thus $P \coloneqq \sum R_i \in \mathbf{L}_{1,c}(X)$ satisfies $\partial P = \partial T$, $\mathbf{N}(T - P) < \varepsilon$ and $\operatorname{spt}(P) \subset \operatorname{spt}(T)_{\varepsilon}$.

If *U* is an open subset of *X* with property *L* and a $K \subset U$ is compact, then we can consider the isometric embedding $\iota: K \to l^{\infty}(\mathbb{N})$ and the Lipschitz extension $g: K'_{\varepsilon_0} \to X$ of $\iota^{-1} = g|_{K'}$. If $Z \in \mathbb{Z}_{n,c}(X)$ has support in *K* we can fill $\iota_{\#}Z$ in $l^{\infty}(\mathbb{N})$, and if $\mathbb{M}(Z)$ is small enough can push the filling back into *X* using *g*. The next proposition establishes this result precisely.

Proposition 4.4. Let $n \ge 1$, let X be a locally compact metric space, and let $U \subset X$ be an open subset with property L. Then for every compact subset $K \subset U$ and $\varepsilon > 0$ there exists M > 0 such that every $Z \in \mathbf{Z}_{n,c}(X)$ with $\operatorname{spt}(Z) \subset K$ and $\mathbf{M}(Z) < M$ possesses a filling $S \in \mathbf{I}_{n+1,c}(X)$ with $\operatorname{spt}(S) \subset \operatorname{spt}(Z)_{\varepsilon}$ and $\mathbf{M}(S) < \varepsilon$.

As in the proof of Proposition 4.2 we pass to a finite dimensional subspace *V* of $l^{\infty}(\mathbb{N})$, then we use that *V* admits a Euclidean isoperimetric inequality for $\mathbf{Z}_{n,c}(V)$, and the existence of solutions to the Plateau problem.

48 — Tommaso Goldhirsch

Therefore every $Z \in \mathbf{Z}_{n,c}(V)$ admits a filling $S \in \mathbf{I}_{n+1,c}(V)$ with $\mathbf{M}(S) \leq C \mathbf{M}(Z)^{(n+1)/n}$ and support spt(S) within distance at most $(n + 1)C \mathbf{M}(Z)^{1/n}$ from spt(Z), where C is a constant depending only on n. This was shown for classical integral currents in [6], later for Lipschitz cycles in Banach spaces [7], and holds more generally for metric currents (see [15] and [8]).

Proof. Let $\iota: K \to l^{\infty}(\mathbb{N})$ be an isometric embedding with compact image $K' := \iota(K)$. By property L there exist $\varepsilon_0 > 0, L \ge 1$ and an L-Lipschitz extension $g: K'_{\varepsilon_0} \to X$ of $\iota^{-1} = g|_{K'}$. We might assume that $\varepsilon \le 1$ and $\varepsilon_0 < \varepsilon/L$ so that $g(K'_{\varepsilon_0}) \subset K_{\varepsilon}$. By the metric approximation property of $l^{\infty}(\mathbb{N})$, there exist a finite dimensional subspace $V \subset l^{\infty}(\mathbb{N})$ and a 1-Lipschitz map $\pi: l^{\infty}(\mathbb{N}) \to V$ such that $|x - \pi(x)| \le \varepsilon_0/4$ for all $x \in K'$, in particular $K'' := \pi(K') \subset K'_{\varepsilon_0/2}$.

Let $C \ge 1$ be the constant from above, set

$$M \coloneqq \min\left\{\left(\frac{\varepsilon_0}{2(n+1)C}\right)^n, \frac{\varepsilon}{(C+\frac{n+1}{4}\varepsilon_0)L^{n+1}}\right\}$$

and let $Z \in \mathbf{Z}_{n,c}(X)$ with spt $(Z) \subset K$ and $\mathbf{M}(Z) < M$.

Consider

$$Z' \coloneqq \iota_{\#} Z \in \mathbf{Z}_{n,c}(l^{\infty}(\mathbb{N})), \qquad \qquad Z'' \coloneqq \pi_{\#} Z' \in \mathbf{Z}_{n,c}(V)$$

which have supports in K' and K'', respectively, and satisfy $\mathbf{M}(Z') \leq \mathbf{M}(Z') = \mathbf{M}(Z) < M$. Let $H: [0, 1] \times \operatorname{spt}(Z')' \to l^{\infty}(\mathbb{N})$ denote the affine homotopy between $\operatorname{id}_{\operatorname{spt}(Z')}$ and $\pi|_{\operatorname{spt}(Z')}$, and let $Q := H_{\#}(\llbracket 0, 1 \rrbracket \times Z') \in \mathbf{I}_{n+1,c}(l^{\infty}(\mathbb{N}))$ be the affine filling of Z'' - Z', as defined in Section 2. Note that $H(t, \cdot): \operatorname{spt}(Z') \to l^{\infty}(\mathbb{N})$ is 1-Lipschitz for all $t \in [0, 1]$ and $H(\cdot, x): [0, 1] \to l^{\infty}(\mathbb{N})$ has length at most $\varepsilon_0/4$ for all $x \in \operatorname{spt}(Z')$. Thus the support $\operatorname{spt}(Q)$ of Q is contained in $\operatorname{spt}(Z')_{\varepsilon_0} \subset K'_{\varepsilon_0}$ and its mass is bounded by

$$\mathbf{M}(Q) \leq (n+1)\frac{\varepsilon_0}{4} \mathbf{M}(Z') < \frac{n+1}{4}\varepsilon_0 M.$$

As noted above Z'' possesses a filling $S'' \in \mathbf{I}_{n+1,c}(V)$ with mass

$$\mathbf{M}(S'') \le C \mathbf{M}(Z'')^{\frac{n+1}{n}} < CM^{\frac{n+1}{n}} \le CM$$

and support within distance at most $(n + 1)C \mathbf{M}(Z'')^{1/n} < \varepsilon_0/2$ from $\operatorname{spt}(Z'') \subset \pi(\operatorname{spt}(Z'))$, in particular it is contained in $\pi(\operatorname{spt}(Z'))_{\varepsilon_0/2} \subset \operatorname{spt}(Z')_{\varepsilon_0} \subset K'_{\varepsilon_0}$.

Finally, S'' and Q have support in $\operatorname{spt}(Z')_{\varepsilon_0} \subset K'_{\varepsilon_0}$ so that $S := g_{\#}(S'' - Q) \in \mathbf{I}_{n+1,c}(X)$ is well defined, has support in $g(\operatorname{spt}(Z')_{\varepsilon_0}) \subset \operatorname{spt}(Z)_{\varepsilon}$, has boundary $\partial S = g_{\#}(\partial S'' - \partial Q) = g_{\#}(Z'' - Z'' + Z') = Z$ and its mass is bounded by

$$\mathbf{M}(S) \leq L^{n+1}\left(\mathbf{M}(S'') + \mathbf{M}(Q)\right) < L^{n+1}\left(C + \frac{n+1}{4}\varepsilon_0\right) M \leq \varepsilon.$$

We can now upgrade Proposition 4.2 to any current $T \in \mathbf{I}_{n,c}(X)$.

Proposition 4.5. Let $n \ge 1$, let X be a locally compact metric space, and let $U \subset X$ be an open subset with property L. Then for every $T \in \mathbf{I}_{n,c}(X)$ with $\operatorname{spt}(T) \subset U$, and every $\varepsilon > 0$, there is $P \in \mathbf{L}_{n,c}(X)$ with $\mathbf{N}(T - P) < \varepsilon$ and $\operatorname{spt}(P) \subset \operatorname{spt}(T)_{\varepsilon}$.

The case n = 1 holds already by Proposition 4.2, so that in this proof we can assume that $n \ge 2$ and apply Proposition 4.4 in dimension $n - 1 \ge 1$.

Proof. Suppose $n \ge 2$. Let *K* denote the closed $\frac{\varepsilon}{2}$ -neighborhood of spt(*T*) in *X*, without loss of generality we might assume that *K* is compact and that spt(*T*) $_{\varepsilon} \subset U$. Let M > 0 be the constant of Proposition 4.4 for *K* and $\varepsilon/4$; up to decreasing it we might assume that $M \le \varepsilon/4$.

Consider $T' := \partial T \in \mathbb{Z}_{n-1,c}(X)$ and note that $\operatorname{spt}(T')_{\varepsilon/2} \subset \operatorname{spt}(T)_{\varepsilon/2} \subset K \subset U$. By Proposition 4.2 we can find $P' \in \mathbb{L}_{n-1,c}(X)$ with $\partial P' = \partial T'(= 0)$, $\mathbb{M}(T' - P') < M \leq \varepsilon/4$ and $\operatorname{spt}(P') \subset \operatorname{spt}(T')_{\varepsilon/4} \subset K$.

According to Proposition 4.4 and the choice of *M*, there exists a filling $S \in \mathbf{I}_{n,c}(X)$ of T' - P' with $\mathbf{M}(S) < \varepsilon/4$ and $\operatorname{spt}(S) \subset \operatorname{spt}(T')_{\varepsilon/2} \subset U$. Note that $T - S \in \mathbf{I}_{n,c}(X)$ has support contained in $\operatorname{spt}(T)_{\varepsilon/2} \subset U$ and boundary $\partial(T - S) = T' - (T' - P') = P' \in \mathbf{L}_{n-1,c}(X)$ so applying Proposition 4.2 a second time we find $P \in \mathbf{L}_{n,c}(X)$ with $\mathbf{M}(T - S - P) < \varepsilon/2$, $\partial P = \partial(T - S) = P'$, and $\operatorname{spt}(P) \subset \operatorname{spt}(T - S)_{\varepsilon/2} \subset \operatorname{spt}(T)_{\varepsilon}$.

Therefore P satisfies:

$$\mathbf{M}(T-P) \le \mathbf{M}(T-S-P) + \mathbf{M}(S) < \frac{\varepsilon}{2} + \frac{\varepsilon}{4} \le \varepsilon,$$

$$\mathbf{M}(\partial T - \partial P) = \mathbf{M}(T'-P') < M < \varepsilon.$$

The proof of Theorem 1.3 (N-Approximation) now follows by combining Lemma 4.1 and Proposition 4.5.

Proof of Theorem 1.3. Let *X* be a locally compact metric space with local property *L*, $T \in \mathbf{I}_{n,c}(X)$ and $\varepsilon > 0$. By Lemma 4.1 we can write $T = T_1 + \cdots + T_k$ with each $T_i \in \mathbf{I}_{n,c}(X)$ having support contained in both spt(*T*) and in an open subset of *X* having property *L*. By Proposition 4.5 there exist $P_i \in \mathbf{L}_{n,c}(X)$ with $\mathbf{N}(T_i - P_i) < \varepsilon/k$ and spt(P_i) \subset spt(T_i) $\varepsilon \subset$ spt(T_i ε , so that $P \coloneqq P_1 + \cdots + P_k \in \mathbf{L}_{n,c}(X)$ is the desired Lipschitz approximation of *T* with $N(T - P) < \varepsilon$ and spt(P) \subset spt(T) ε .

Acknowledgements: I am indebted to Urs Lang for suggesting the problem and providing key insights while writing this paper. I also wish to thank Lisa Ricci for many helpful discussions. I thank an anonymous referee for many valuable comments. I gratefully acknowledge the support of the Swiss National Science Foundation.

Conflict of interest: The author states no conflict of interest.

References

- [1] L. Ambrosio and B. Kirchheim. Currents in metric spaces. Acta Mathematica 185 (2000), 1-80.
- [2] L. Ambrosio and S. Wenger. Rectifiability of flat chains in Banach spaces with coefficients in \mathbb{Z}_p . *Math. Z.* **268** (2011), 477– 506.
- [3] G. Basso, S. Wenger, and R. Young. Undistorted fillings in subsets of metric spaces (2021). arXiv: 2112.11905 [math.MG].
- [4] M. R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer Berlin Heidelberg (1999).
- [5] T. De Pauw. Approximation by polyhedral G chains in Banach spaces. Z. Anal. Anwend. 33 (2014), 311–334.
- [6] H. Federer and W. H. Fleming. Normal and Integral Currents. Annals of Mathematics 72 (1960), 458–520.
- [7] M. Gromov. Filling Rimannian Manifolds. J. Differential Geom. 18 (1983), 1–147.
- [8] B. Kleiner and U. Lang. Higher rank hyperbolicity. *Inventiones mathematicae* 221 (2020), 597–664.
- [9] U. Lang. Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal. 5 (2013), 297–331.
- [10] U. Lang. Local currents in metric spaces. J. Geom. Anal. 21 (2011), 683-742.
- [11] U. Lang and T. Schlichenmaier. Nagata Dimension, Quasisymmetric Embeddings, and Lipschitz Extensions. *Internat. Math. Res. Notices* **58** (2005), 3625–3655.
- [12] E. J. McShane. Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837 –842.
- [13] E. Paolini and E. Stepanov. Decomposition of acyclic normal currents in a metric space. J. Funct. Anal. 263 (2012), 3358– 3390.
- [14] J. W. Portegies. Semicontinuity of eigenvalues under intrinsic flat convergence. *Calc. Var. Partial Differential Equations* **54** (2015), 1725–1766.
- [15] S. Wenger. Isoperimetric inequalities of Euclidean type in metric spaces. Geom. Funct. Anal. 15 (2005), 534–554.