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Abstract: Every integral current in a locally compactmetric space X can be approximated by a Lipschitz chain
with respect to the normal mass, provided that Lipschitz maps into X can be extended slightly.
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1 Introduction
In [6], after proving their celebrated deformation theorem, Federer and Fleming show that every integral
current admits an approximation by Lipschitz chains. More precisely, for each current T ∈ In,c(RN) and ε > 0
there is a Lipschitz chain P ∈ Ln,c(RN) such that N(T − P) < ε, see Theorem 5.8 in [6].

In this paper we prove an analogue of this result for a locally compact metric space X with the property
that every Lipschitz map into X can be extended to a neighborhood of its domain. In fact, we need this prop-
erty to hold only locally and for Lipschitzmapswith compact domains.Weworkwithmetric integer recti�able
currentswith �nite mass In(X), with compact support In,c(X), andmetric integral currentswith compact sup-
port In,c(X). Each current T has boundary ∂T, mass M(T), and normal mass N(T) = M(T) + M(∂T). Every
singular Lipschitz chain in X with integer coe�cients induces a Lipschitz chain P ∈ Ln,c(X), which is an
element of In,c(X) (see Section 2).

We brie�y describe Federer and Fleming’s approach in [6]. As a consequence of the deformation theorem
(see Theorem 5.5 in [6]), they �rst prove that if a current T ∈ In,c(RN) has boundary ∂T ∈ Ln−1,c(RN), it can
be deformed into a Lipschitz chain (compare with Lemma 5.7 in [6]).

Lemma 1.1. Let N > n ≥ 1 and let T ∈ In,c(RN) with ∂T ∈ Ln−1,c(RN). Then for every η > 0 there is R ∈
In+1,c(RN) with T − ∂R ∈ Ln,c(RN), N(R) ≤ η and spt(R) ⊂ spt(T)η.

Here spt(T)η denotes the open η-neighborhood of spt(T). Applying Lemma 1.1 twice, once in dimension
n − 1 and once in dimension n, they �nally prove the N-approximation theorem for RN . This argument does
not apply directly in our setting, as there is no analogue of the deformation theorem for generalmetric spaces,
althougha recent paper [3] proves aFederer-Fleming typedeformation theorem for quasiconvexmetric spaces
of �nite Nagata dimension admitting Euclidean isoperimetric inequalities.

We solve this issue taking inspiration from the strategy used in [5], [13] and [14]. We embed a compact
neighborhood K of the support spt(T) of T ∈ In,c(X) into l∞(N) and exploit themetric approximation property
of l∞(N) to project it onto a �nite dimensional vector subspace, in which we can apply Lemma 1.1. To go back
to the original current T in X we assume that Lipschitz maps into X can be extended slightly.
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De�nition 1.2. Ametric spaceX hasproperty L if the followingholds. For everymetric space Y, every compact
subset K ⊂ Y, and every 1-Lipschitz map g : K → X, there exist ε = ε(g) > 0 and L = L(g) ≥ 1 such that g
admits an L-Lipschitz extension g : Kε → X to the open ε-neighborhood Kε of K. A metric space X has local
property L if every point in X has a neighborhood with property L.

Without loss of generalitywe can set Y = l∞(N). If ametric space X has property L, then every open subset
has property L. In particular property L implies local property L. Both conditions imply that X is semi-locally
quasi-convex. Examples of spaceshavingproperty L include absolute Lipschitz neighborhood retracts,metric
spaces locally bi-Lipschitz equivalent to Rn or to a �nite piecewise Euclidean polyhedral complex. A more
detailed discussion can be found in Section 3.

To expand on the argument above, suppose that X has property L and let ι : K → l∞(N) be an isometric
embeddingwith image K′ := ι(K). By themetric approximation property of l∞(N) there is a �nite dimensional
subspace V ⊂ l∞(N) arbitrarily close to K′, and a 1-Lipschitz projection π : K′ → V. In particular, we can
choose V close enough such that the extension of ι−1 : K′ → X, say g, provided by property L is de�ned on
π(K′).

There is a push-forward T′′ = (π ◦ ι)#T ∈ In,c(V) of T in π(K′). Ideally, we could apply Federer and
Fleming’sN-approximation theorem in V and thenmap back to X using g. The issue is that by doing so we do
not control the di�erence between the original current T = (g ◦ ι)#T and g#T′′. We keep track of the di�erence
between ι#T and T′′ by constructing a “homotopy �lling” between them in l∞(N), and by using Lemma 1.1
instead of directly applying the approximation result for the N-norm.

After a small decomposition argument (Lemma 4.1) we can relax the assumption from (global) property
L to local property L, and prove the following analogue of Theorem 5.8 in [6], which is the main result of this
paper.

Theorem 1.3 (N-Approximation). Let n ≥ 1, let X be a locally compact metric space with local property L, and
let T ∈ In,c(X). Then for every ε > 0 there is P ∈ Ln,c(X) with N(T − P) < ε and spt(P) ⊂ spt(T)ε.

If n = 1, then we can �nd P with ∂P = ∂T. This is already known without assuming any Lipschitz exten-
sion property of X (see [2], [13] and [14]).

The strategy of proof outlined above is only necessary to approximate T ∈ In,c(X) with respect to the
normal massN. The argument for the mass is simpler and and does not involve passing through l∞(N). Every
compactly supported integer valued function u ∈ L1(Rn) induces an integer recti�able current JuK ∈ In,c(Rn)
with M(JuK) = ‖u‖L1 . If F : Rn → X is L-Lipschitz, then there is a push-forward F#JuK ∈ In,c(X), and
M(F#JuK) ≤ LnM(JuK).

Every current T ∈ In(X) can be written as T =
∑

i Ti, where the sum converges with respect to the
mass norm and each Ti ∈ In,c(X) is of the form Ti = (Fi)#JuiK for some integer valued ui ∈ L1(Rn), where
Fi : Ki → Fi(Ki) ⊂ X is bi-Lipschitz and Ki ⊂ Rn is a compact set containing the support of ui. By a purely
measure-theoretic argument we approximate each ui in the L1-norm with a �nite sum of characteristic func-
tions corresponding to Borel subsets Bj contained in spt(ui). Then, we approximate these Borel sets by cubes.
This produces an approximation of JuiK by Lipschitz chains with respect to theM-norm inRn. However, these
cubes may leak slightly outside of Bj and in particular outside of spt(ui), so that their image in X via Fi is not
de�ned.

This shows that if T ∈ In(X) has support contained in an open subset of X with property L, then it admits
an approximation by Lipschitz chains with respect to theM-norm. In general, however, if we assume that X
has local property L, neither T nor the Ti’s have support inside such an open subset of X and this argument
needs a small re�nement: each Ti can be decomposed as a �nite sum Ti = T1i + · · · + T

Ni
i with each T ji having

support inside an open subset of X having property L (Lemma 4.1). Note that the domain of each Fi is a subset
of Rn so that for this discussion we might as well assume that X is locally Lipschitz (n − 1)-connected, that
is, there is a constant c such that every L-Lipschitz map f : Sk → X with 0 ≤ k ≤ n − 1 admits a cL-Lipschitz
extension f : Bk+1 → X, where Sk and Bk+1 denote the unit sphere and ball in Rn+1, respectively. In this
situation we can apply the partial result just outlined for each T ji and obtain the following.
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Proposition 1.4 (M-Approximation). Let n ≥ 1, let X be a locally compact metric space, and let T ∈ In(X).
Suppose that X has local property L or that X is locally Lipschitz (n − 1)-connected. Then for every ε > 0 and
open subset U ⊂ X with spt(T) ⊂ U there is P ∈ Ln,c(X) with spt(P) ⊂ U andM(T − P) < ε.

We remark that property L and being Lipschitz n-connected for some n are not equivalent, in fact, the
sphere Sn has property L but is not Lipschitz n-connected (see Section 3 for more details).

2 Preliminaries
Let X = (X, d) be a metric space. We write Bx(r) := {y ∈ X : d(x, y) ≤ r} for the closed ball of radius r ≥ 0 and
center x ∈ X.

Given a subset A ⊂ X and ε > 0we denote by Aε := {x ∈ X : d(A, x) < ε} the open ε-neighborhood of A
in X, where d(A, x) is the in�mum over all d(a, x) with a ∈ A.

A map f : X → Y into another metric space Y = (Y , d) is L-Lipschitz, for some constant L ≥ 0, if
d(f (x), f (x′)) ≤ Ld(x, x′) for all x, x′ ∈ X. The Lipschitz constant Lip(f ) of f is the in�mum over all such L.
A map f is Lipschitz if it is L-Lipschitz for some L, it is locally Lipschitz if every point in X has a neighborhood
on which f is Lipschitz. We denote by Liploc(X) and Lipc(X) the spaces of functions X → R which are locally
Lipschitz or Lipschitz with compact support, respectively. Amap f is a bi-Lipschitz embedding if it is injective
and both f and f −1 are Lipschitz.

Metric Currents

Metric currents of �nite mass were introduced by Ambrosio and Kirchheim in [1]. Here we will work with a
variant of this theory for locally compactmetric spaces, as describedbyLang in [10]. In this sectionweprovide
some background on this theory and refer the reader to [10] for more details. We will assume throughout that
the underlying metric space X is locally compact.

For every integer n ≥ 0 let Dn(X) be the set of all (f , π) := (f , π1, . . . , πn) in Lipc(X) ×
[
Liploc(X)

]n. We
endow Dn(X) with the topology for which (f k , πk) → (f , π) if f k → f and πki → πi pointwise on X with
uniformly bounded Lipschitz constants on each compact set, and with

⋃
k spt(f

k) ⊂ K for some compact set
K ⊂ X. The idea is that (f , π1, . . . , πn) ∈ Dn(X) represents the compactly supported di�erential n-form fdπ1∧
. . . ∧ dπn if X is (an open subset of) RN and the functions f , π1, . . . , πn are smooth; and roughly speaking, a
current (with some additional properties de�ned below) is a map Dn(X) → R representing integration on a
submanifold of RN .

De�nition 2.1. An n-dimensional current T on X is an (n + 1)-linear function T : Dn(X)→ R such that
T(f k , πk) → T(f , π) whenever (f k , πk) → (f , π) in Dn(X), and T(f , π) = 0 whenever one of the functions
πi is constant on a neighborhood of spt(f ).

The vector space of all n-dimensional currents on X is denoted by Dn(X). Every function u ∈ L1loc(Rn)
induces a current JuK ∈ Dn(Rn) de�ned by

JuK(f , π1, . . . , πn) :=
∫
uf det

(∂πi
∂xj
)n
i,j=1

dx

for all (f , π1, . . . , πn) ∈ Dn(Rn), where the partial derivatives ∂πi/∂xj exist almost everywhere according to
Rademacher’s theorem. IfW ⊂ Rn is a Borel set and χW is its characteristic function, we set JWK := JχWK.

Support, Push-forward, and Boundary

Let T ∈ Dn(X) be an n-dimensional current. The support spt(T) of T is the smallest closed subset of X such
that the value T(f , π1, . . . , πn) depends only on the restrictions of f , π1, . . . , πn to it.



Lipschitz Chain Approximation of Metric Integral Currents | 43

For a proper Lipschitz map F : spt(T)→ Y into another locally compactmetric space Y, the push-forward
F#T ∈ Dn(Y) is de�ned by

F#(f , π1, . . . , πn) := T(f ◦ F, π1 ◦ F, . . . , πn ◦ F)

for all (f , π) ∈ Dn(Y). It holds that spt(F#T) ⊂ F(spt(T)).
For n ≥ 1, the boundary ∂T ∈ Dn−1(X) of T is de�ned by

(∂T)(f , π1, . . . , πn−1) = T(σ, f , π1, . . . , πn−1)

for (f , π1, . . . , πn−1) ∈ Dn−1(X), where σ is any compactly supported Lipschitz function, that is identically 1
on spt(f ) ∩ spt(T). It holds that ∂ ◦ ∂ = 0, spt(∂T) ⊂ spt(T), and F#(∂T) = ∂(F#T) for F as above. (For more
details, see Section 3 in [10].)

Mass

Let T ∈ Dn(X) be an n-dimensional current. For an open set U ⊂ X, the mass ‖T‖(U) ∈ [0,∞] of T in U is
de�ned as the supremum of

∑k
i=1 T(f

i , πi1, . . . , πin) over all �nite families (f i , πi1, . . . , πin)ki=1 ⊂ Dn(X) such
that the restrictions of πi1, . . . , πin to spt(f i) are 1-Lipschitz for all i,

⋃k
i=1 spt(f

i) ⊂ U and
∑k

i=1 |f
i| ≤ 1.

This de�nes a regular Borel measure ‖T‖ on X. The total mass ‖T‖(X) of T is denotedM(T) and is called
themass of T. If S ∈ Dn(X) is another current, then

M(T + S) ≤ M(T) +M(S).

The normal mass of T is de�ned as N(T) := M(T) +M(∂T), and T is normal if N(T) < ∞. If ‖T‖ is locally �nite,
then for every Borel set B ⊂ X there is a restriction T B ∈ Dn(X) of T to B; the measure ‖T B‖ coincides
with the restriction ‖T‖ B of the measure ‖T‖. IfM(T) < ∞ and F : spt(T)→ Y is a proper L-Lipschitz map
into a locally compact metric space Y, then

M(F#T) ≤ LnM(T).

We denote byMn(X),Mn,c(X), Nn(X), Nn,c(X) the real vector spaces of all currents with �nite mass, compact
support, normal currents, and normal currents with compact support, respectively.

If u ∈ L1(Rn), then M(JuK) = ‖u‖L1 , in particular, if K ⊂ Rn is a Borel set, then M(JKK) = Ln(K) and
M(∂JKK) < ∞ whenever χK has �nite variation. (For more details, see Sections 2, 4 and 7 of [10].)

Integral Currents

A current T ∈ Mn(X) is integer recti�able if there are countably many Lipschitz maps Fi : Ai ⊂ Rn → X
such that ‖T‖ is concentrated on

⋃
i Fi(Ai), and for every Borel set B ⊂ X with compact closure and every

Lipschitz map π : X → Rn the push-forward π#(T B) ∈ Dn(Rn) is of the form JuK, for some integer valued
u = uB,π ∈ L1(Rn).

The abelian group of integer recti�able n-currents in X is denoted by In(X); it is closed under push-
forwards and restrictions to Borel sets. We write In,c(X) for the subgroup of integer recti�able currents with
compact support.

A current T ∈ In,c(X) is an integral current with compact support, or simply an integral current, if when-
ever n ≥ 1, its boundary ∂T is integer recti�able as well. We denote the corresponding abelian groups
by In,c(X), and observe that they form a chain complex. By Theorem 8.7 (boundary recti�ability) in [10],
T ∈ In,c(X) is integral ifM(∂T) < ∞.

If K ⊂ Rn is a bounded Borel set, then JKK is an element of In,c(Rn), and it is in In,c(Rn)whenever χK has
�nite variation.

An integral current T is a cycle whenever ∂T = 0 and we denote by Zn,c(X) ⊂ In,c(X) the subgroup of
integral cycles. An element of I0,c(X) is an integer linear combination of currents of the form JxK, where x ∈ X
and JxK(f ) = f (x) for all compactly supported Lipschitz functions f ∈ D0(X). In this case Z0,c(X) ⊂ I0,c(X)
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denotes the subgroup of integer linear combinations whose coe�cients sum to zero. Note that ∂ : In,c(X) →
Zn−1,c(X) for all n ≥ 1, and if F : X → Y is a proper Lipschitz map into a locally compact metric space Y, then
the push-forward F# maps In,c(X) to In,c(Y) and Zn,c(X) to Zn,c(Y). Given Z ∈ Zn,c(X) we call V ∈ In+1,c(X) a
�lling of Z if ∂V = Z. (For more details, see Section 8 of [10].)

In general, the restriction T B of an integral current T to an arbitrary Borel subset B ⊂ X is not integral.
However, for every x ∈ X the restriction T Bx(r) is in In,c(X) for almost every r ≥ 0. (See Section 6 and
Theorem 8.5 in [10], and Section 2.6 in [8].)

Lipschitz Chains

An n-dimensional polyhedron K in Rn, such as a (hyper-)cube or an n-simplex, is the convex hull of �nitely
many (non coplanar) points in Rn. As noted above, JKK is in In,c(Rn). A Lipschitz n-chain in X is a �nite sum

L =
l∑
i=1

ai(φi)#JDiK,

where ai ∈ Z, Di ⊂ Rn are n-dimensional polyhedra and φi : Di → X are Lipschitz maps. We denote by
Ln,c(X) ⊂ In,c(X) the abelian group of Lipschitz n-chains in X.

There is a chain isomorphism I*,c(Rn)→ IFF*,c(Rn) between (metric) integral currents inRn and “classical”
Federer-Fleming integral currents of [6] which is bi-Lipschitz with respect to theM-norm with constants de-
pending only on the dimensions, and which restricts to an isomorphism between the respective subchains of
Lipschitz chains (see Theorem 5.5 in [10]). In particular we can apply Lemma 1.1 to metric integral currents in
In,c(Rn).

Finally, note that all 0-dimensional integral currents are by de�nition Lipschitz chains, that is, I0,c(X) =
L0,c(X), and therefore an approximation theorem for the N-norm is not necessary in dimension 0.

Homotopies

We recall a useful technique to produce �llings of cycles, for more details we refer the reader to Theorem 2.9
in [15] and Section 2.7 of [8]. We use this in Proposition 4.2 and Proposition 4.4 to bridge the gap between
the isometric image of a subset of a metric space and a �nite dimensional subspace in l∞(N). Let Y denote a
normedvector space andK ⊂ Y a compact subset. Letφ, ψ : K → Y be L-Lipschitzmapswith

∣∣ψ(x)−φ(x)∣∣ ≤ D
for all x ∈ K, and consider the a�ne homotopy H : [0, 1] × K → Y from φ to ψ, that is, H(t, x) := tψ(x) + (1 −
t)φ(x). If P is an element of Ln,c(K)with ∂P = 0, then the push-forward H#(J0, 1K×P) ∈ Ln+1,c(Y) has support
contained in H([0, 1] × K) and satis�es

∂H#
(
J0, 1K × P

)
= ψ#P − φ#P,

M
(
H#
(
J0, 1K × P

))
≤ (n + 1)LnDM(P).

We call H#(J0, 1K × P) the a�ne (homotopy) �lling of ψ#P − φ#P.

Finite Dimensional Projections

As mentioned in the introduction, in order to exploit the deformation theorem we project integral currents
de�ned on a metric space X into a �nite dimensional vector space. This is done in two steps.

First, every metric space X embeds isometrically into the Banach space l∞(X) of bounded maps on X via
the map x 7→ d(x, ·) − d(x0, ·), for any base point x0 ∈ X. If X is compact, or more generally separable, and
(xi)i∈N ⊂ X is a countable dense subset, then x 7→ (d(xi , x)i − d(xi , x0))i∈N is an isometric embedding into
l∞(N), and the second term d(xi , x0) is not necessary if X is bounded. This allows us to embed a compact
neighborhood of the support of T ∈ In,c(X) into l∞(N).

Then, we �nd a �nite dimensional subspace of l∞(N) that is “close enough” to the image of the embed-
ding. Recall that a Banach space V has the bounded approximation property if there exists λ ≥ 1 such that
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the following holds. For every compact subset K ⊂ V and ε > 0 there is a �nite dimensional vector subspace
V ′ ≤ V and a λ-Lipschitz map π : K → V ′ satisfying

∣∣π(x) − x∣∣ ≤ ε for all x ∈ K. We say that V has the metric
approximation property in the case λ = 1. Conveniently, l∞(N) has this property. For a detailed proof of this
fact we refer to Lemma 5.7 in [13]. In the next section we discuss the property needed to go back from l∞(N)
to X.

3 Lipschitz Extensions
We brie�y compare property L with other Lipschitz extension properties found in the literature.

Lemma 3.1. Let X be a locally compact metric space with property L. Then X is semi-locally quasi-convex, that
is, for every point o ∈ X there are constants r = r(o) > 0 and L = L(o) ≥ 1 such that any two points x, y ∈ Bo(r)
are joined by a curve of length ≤ Ld(x, y) contained in Bo(2Lr).

Suppose that X is a locally compact metric space with local property L. Then each point has an open
neighborhood U which is locally compact and has property L and hence this lemma implies that X is semi-
locally quasi-convex.

Proof. Let o ∈ X and take δ > 0 small enough such that K := Bo(δ) is compact. Consider the isometric
embedding ι : K → l∞(N) with image K′ := ι(K). By assumption there exist ε > 0, L ≥ 1 and an L-Lipschitz
extension g : K′

ε → X of ι−1 : K′ → X.
Let r := min{ ε2 , δ} and consider the possibly smaller ball Bo(r). For x, y ∈ Bo(r) let γ : [0, 1]→ l∞(N) be

the straight segment γ(t) := ι(x) + t(ι(y) − ι(x)) from ι(x) to ι(y) of length
∣∣ι(x) − ι(y)∣∣ = d(x, y) ≤ 2r. The image

of γ is within distance at most r from {ι(x), ι(y)} ⊂ K′ and hence contained in K′
ε. Thus g ◦ γ : [0, 1]→ X is a

curve from x to y of length at most Ld(x, y) and contained in Bo(r + Lr) ⊂ Bo(2Lr).

A metric space X is an absolute Lipschitz retract if whenever ι : X → Y is an isometric embedding into a
metric space Y, then there exists a Lipschitz retraction π : Y → ι(X). It is an absolute Lipschitz neighborhood
retract if the retraction is de�ned only on a neighborhoodW of ι(X) in Y.

Exploiting the isometric embedding of X into the injective space l∞(X), one canprove that X is an absolute
Lipschitz (neighborhood) retract if andonly if for everymetric spaceB andevery subsetA ⊂ B, every Lipschitz
map f : A → X admits a Lipschitz extension to (a neighborhood of A in) X (compare with Proposition 2.2 in
[9]). In particular, X has property L if it is an absolute Lipschitz neighborhood retract or even if every compact
subset is contained in one.

The opposite implication need not be true because property L only extends Lipschitz maps de�ned on
compact sets. Also, let K be a compact subset of X and consider the inclusion K ↪→ X. If X is an absolute
Lipschitz neighborhood retract, then the inclusion extends to a Lipschitz retraction onto K, while if X has
property L, then the image of the extension need not be contained in K (in fact, it might as well be the identity
on X).

Lang and Schlichenmaier [11] provide an instance in which X is an absolute Lipschitz retract and so has
property L (see Corollary 1.8 in [11]).

Theorem 3.2. Suppose that X is a metric space with �nite Nagata dimension dimN(X) ≤ n < ∞. Then X is an
absolute Lipschitz retract if and only if X is complete and Lipschitz n-connected.

The sphere Sn has property L but is not Lipschitz n-connected for all n ≥ 1. The latter assertion follows
because by Brouwer’s Fixed Point Theorem the identity id: Sn → Sn does not admit a continuous extension
Bn+1 → Sn. To see that Sn has property L one can exploit the fact that Sn ⊂ Rn+1 is a Lipschitz neighborhood
retract, and Rn+1 has property L by a well-known extension result due to McShane [12].

A similar argument shows that �nite piecewise Euclidean complexes have property L, we refer to [4] for
the relevant terminology and results. Let X be a �nite piecewise Euclidean polyhedral complex, then X is
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isometric to a simplicial complex, which in turn is bi-Lipschitz homeomorphic to its a�ne realization X′ in
RN , equippedwith the inducedEuclideandistance or the induced lengthmetric,whereN denotes the number
of vertices. Equipped with the Euclidean distance, X′ is a Lipschitz neighborhood retract inRN and the same
argument as above implies property L.

4 N-Approximation
We begin this section with the decomposition lemma mentioned in the introduction. Property L can be re-
placed with Lipschitz (n − 1)-connected without changing the argument.

Lemma 4.1. Let n ≥ 1, and let X be locally compact metric space with local property L. Every T ∈ In,c(X)
admits a decomposition T = T1 + · · · + Tk with Ti ∈ In,c(X) such that each spt(Ti) is contained in spt(T) and
has a neighborhood with property L. Suppose in addition that T ∈ In,c(X), then each Ti ∈ In,c(X) as well.

Proof. Suppose that T ∈ In,c(X); the argument for T ∈ In,c(X) is simpler but the one presented here applies
as well. By assumption there exist �nitely many points x1, . . . , xk ∈ spt(T) and radii r1, . . . , rk > 0 such that
spt(T) ⊂

⋃k
i=1 Bxi (

ri
2 ) and each Bxi (ri) has a neighborhood with property L.

Take s1 ∈ ( r12 , r1) such that T1 := T Bx1 (s1) ∈ In,c(X), then spt(T1) ⊂ spt(T), T − T1 = T (X \ Bx1 (s1)) ∈
In,c(X) has support in spt(T) and covered by

⋃k
i=2 Bxi (

ri
2 ). Then proceed analogously for r2, . . . , rk.

We now prove a version of the N-Approximation Theorem for an integral current whose boundary is al-
ready a Lipschitz chain.

Proposition 4.2. Let n ≥ 1, let X be a locally compact metric space, and let U ⊂ X be an open subset with
property L. Let T ∈ In,c(X) with ∂T ∈ Ln−1,c(X) and spt(T) ⊂ U. Then for every ε > 0 there is R ∈ Ln,c(X) with
M(T − R) < ε, ∂T = ∂R and spt(R) ⊂ spt(T)ε, in particular N(T − R) < ε.

Since Z0,c(X) ⊂ L0,c(X), it follows that any T ∈ I1,c(X) automatically satis�es the assumptions of this
proposition.

Proof. Let K denote the closed ε
2 -neighborhood of spt(T) in X, without loss of generality we might assume

that K is compact and that spt(T)ε ⊂ U. Let ι : K → l∞(N) be an isometric embedding with compact image
K′ := ι(K). By property L there exist ε0 > 0, L ≥ 1 and an L-Lipschitz extension

g : K′
ε0 → X

of ι−1 = g
∣∣
K′ to the open ε0-neighborhood of K′ in l∞(N). According to Proposition 1.4 (M-Approximation) we

�nd P ∈ Ln,c(X) with spt(P) ⊂ spt(T)ε/2 ⊂ K andM(T − P) < ε
6Ln <

ε
2 .

By the metric approximation property of l∞(N) there is a �nite dimensional subspace V ⊂ l∞(N) and a
1-Lipschitz projection π : l∞(N)→ V, such that

∣∣x − π(x)∣∣ ≤ δ
2 for all x ∈ K′, where

δ := min
{ ε0
2 , ε

3nLnM(∂T − ∂P) ,
ε
4L

}
,

in particular, K′′ := π(K′) ⊂ K′
δ ⊂ K

′
ε0/2 ∩ K

′
ε/(4L).

Now, consider

T′ := ι#T ∈ In,c(l∞(N)), P′ := ι#P ∈ Ln,c(l∞(N)),
T′′ := π#T′ ∈ In,c(V), P′′ := π#P′ ∈ Ln,c(V).

Note that ∂T′ ∈ Ln−1,c(l∞(N)), ∂T′′ ∈ Ln−1,c(V), M(T′′ − P′′) ≤ M(T′ − P′) = M(T − P), the supports of T′, P′

are contained in K′ and the supports of T′′, P′′ are contained in K′′.
Let H : [0, 1] × K′ → l∞(N) denote the a�ne homotopy between idK′ and π

∣∣
K′ , and let W := H#

(
J0, 1K ×

(∂T′ − ∂P′)
)
∈ Ln,c(l∞(N)) be the a�ne �lling of

(
∂T′′ − ∂P′′

)
−
(
∂T′ − ∂P′

)
as de�ned in Section 2. Note that
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H(t, ·) : K′ → l∞(N) is 1-Lipschitz for all t ∈ [0, 1] and H(·, x) : [0, 1] → l∞(N) has length at most δ/2 for all
x ∈ K′. Therefore the support spt(W) ofW is contained in K′

δ ⊂ K
′
ε0/2 ∩ K

′
ε/(4L) and its mass is bounded by

M(W) ≤ n δ2 M(∂T′ − ∂P′) ≤ ε
6Ln .

As ∂(T′′ − P′′) = ∂T′′ − ∂P′′ ∈ Ln−1,c(V), by Lemma 1.1 we �nd S ∈ In+1,c(V) satisfying

N(S) ≤ η := min
{ ε0
2 , ε

6Ln
}
< ε
4L ,

spt(S) ⊂ spt(T′′ − P′′)η ⊂ K′′
η ⊂ K′

η+δ ⊂ K
′
ε0 ∩ K

′
ε/(2L),

T′′ − P′′ − ∂S ∈ Ln,c(V),

(in fact, spt(S) is contained in the open η-neighborhood of spt(T′′ − P′′) in V).
Finally, note that T′′ − P′′ − ∂S andW are both Lipschitz n-chains with supports in K′

ε0 ∩ K′
ε/(2L), so that

g#
(
T′′ − P′′ − ∂S −W

)
∈ Ln,c(X) is well de�ned, has support in g(K′

ε/(2L)) ⊂ Kε/2, mass

M
(
g#
(
T′′ − P′′ − ∂S −W

))
≤ Ln

(
M(T′′ − P′′) +M(∂S) +M(W)

)
≤ ε2

and boundary

∂
(
g#
(
T′′ − P′′ − ∂S −W

))
= g#

(
∂T′′ − ∂P′′ −

(
∂T′′ − ∂P′′ − ∂T′ + ∂P′

))
= g#

(
∂T′ − ∂P′

)
= ∂T − ∂P,

where in the last equality we have used that g
∣∣
K′ = ι−1. Overall, the Lipschitz n-chain

R := P + g#
(
T′′ − P′′ − ∂S −W

)
∈ Ln,c(X)

satis�esM(T − R) ≤ M(T − P) +M(R − P) < ε
2 +

ε
2 = ε, ∂R = ∂P + ∂T − ∂P = ∂T and spt(R) ⊂ spt(P) ∪ Kε/2 ⊂

spt(T)ε.

Corollary 4.3. Let n ≥ 1, let X be a locally compactmetric space, and letU ⊂ X be an open subset with property
L. Then for every Z ∈ Zn,c(X) with spt(Z) ⊂ U, and every ε > 0, there is R ∈ Ln,c(X) with ∂R = 0, N(Z − R) < ε,
and spt(R) ⊂ spt(Z)ε.

If X has local property L we are not able to prove statements like Proposition 4.2 and Corollary 4.3 for
integral currents in X whose boundary is a Lipschitz chain but without restrictions on their supports. This is
because even if ∂T ∈ Ln−1,c(X) or ∂T = 0, the decomposition T = T1 + · · · + Tk of Lemma 4.1 does not prevent
∂Ti ∉ Ln−1,c(X) or ∂Ti ≠ 0 for some i.

Nonetheless, if n = 1 then we can improve the conclusion of Theorem 1.3. Indeed ∂Ti ∈ Z0,c(X) ⊂ L0,c(X)
for all i, and by Proposition 4.2 we obtain R1, . . . , Rk ∈ L1,c(X) with M(Ti − Ri) < ε/k, ∂Ri = ∂Ti, and
spt(Ri) ⊂ spt(Ti)ε for all i. Thus P :=

∑
Ri ∈ L1,c(X) satis�es ∂P = ∂T, N(T − P) < ε and spt(P) ⊂ spt(T)ε.

If U is an open subset of X with property L and a K ⊂ U is compact, then we can consider the isometric
embedding ι : K → l∞(N) and the Lipschitz extension g : K′

ε0 → X of ι−1 = g
∣∣
K′ . If Z ∈ Zn,c(X) has support

in K we can �ll ι#Z in l∞(N), and if M(Z) is small enough can push the �lling back into X using g. The next
proposition establishes this result precisely.

Proposition 4.4. Let n ≥ 1, let X be a locally compact metric space, and let U ⊂ X be an open subset with
property L. Then for every compact subset K ⊂ U and ε > 0 there existsM > 0 such that every Z ∈ Zn,c(X) with
spt(Z) ⊂ K andM(Z) < M possesses a �lling S ∈ In+1,c(X) with spt(S) ⊂ spt(Z)ε andM(S) < ε.

As in the proof of Proposition 4.2 we pass to a �nite dimensional subspace V of l∞(N), then we use that V
admits a Euclidean isoperimetric inequality forZn,c(V), and the existence of solutions to the Plateau problem.
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Therefore every Z ∈ Zn,c(V) admits a �lling S ∈ In+1,c(V)withM(S) ≤ CM(Z)(n+1)/n and support spt(S)within
distance at most (n + 1)CM(Z)1/n from spt(Z), where C is a constant depending only on n. This was shown
for classical integral currents in [6], later for Lipschitz cycles in Banach spaces [7], and holds more generally
for metric currents (see [15] and [8]).

Proof. Let ι : K → l∞(N) be an isometric embedding with compact image K′ := ι(K). By property L there exist
ε0 > 0, L ≥ 1 and an L-Lipschitz extension g : K′

ε0 → X of ι−1 = g
∣∣
K′ . Wemight assume that ε ≤ 1 and ε0 < ε/L

so that g(K′
ε0 ) ⊂ Kε. By themetric approximation property of l∞(N), there exist a �nite dimensional subspace

V ⊂ l∞(N) and a 1-Lipschitz map π : l∞(N) → V such that
∣∣x − π(x)∣∣ ≤ ε0/4 for all x ∈ K′, in particular

K′′ := π(K′) ⊂ K′
ε0/2.

Let C ≥ 1 be the constant from above, set

M := min
{( ε0

2(n + 1)C

)n
, ε
(C + n+1

4 ε0)Ln+1
}

and let Z ∈ Zn,c(X) with spt(Z) ⊂ K andM(Z) < M.
Consider

Z′ := ι#Z ∈ Zn,c(l∞(N)), Z′′ := π#Z′ ∈ Zn,c(V),

which have supports in K′ and K′′, respectively, and satisfy M(Z′′) ≤ M(Z′) = M(Z) < M. Let H : [0, 1] ×
spt(Z′)′ → l∞(N) denote the a�ne homotopy between idspt(Z′) and π

∣∣
spt(Z′), and let Q := H#(J0, 1K × Z′) ∈

In+1,c(l∞(N)) be the a�ne �lling of Z′′ − Z′, as de�ned in Section 2. Note that H(t, ·) : spt(Z′) → l∞(N) is 1-
Lipschitz for all t ∈ [0, 1] and H(·, x) : [0, 1] → l∞(N) has length at most ε0/4 for all x ∈ spt(Z′). Thus the
support spt(Q) of Q is contained in spt(Z′)ε0 ⊂ K′

ε0 and its mass is bounded by

M(Q) ≤ (n + 1) ε04 M(Z′) < n + 14 ε0M.

As noted above Z′′ possesses a �lling S′′ ∈ In+1,c(V) with mass

M(S′′) ≤ CM(Z′′)
n+1
n < CM

n+1
n ≤ CM

and support within distance at most (n + 1)CM(Z′′)1/n < ε0/2 from spt(Z′′) ⊂ π(spt(Z′)), in particular it is
contained in π(spt(Z′))ε0/2 ⊂ spt(Z′)ε0 ⊂ K′

ε0 .
Finally, S′′ and Q have support in spt(Z′)ε0 ⊂ K′

ε0 so that S := g#(S′′ − Q) ∈ In+1,c(X) is well de�ned, has
support in g(spt(Z′)ε0 ) ⊂ spt(Z)ε, has boundary ∂S = g#(∂S′′ − ∂Q) = g#(Z′′ − Z′′ + Z′) = Z and its mass is
bounded by

M (S) ≤ Ln+1
(
M(S′′) +M(Q)

)
< Ln+1

(
C + n+1

4 ε0
)
M ≤ ε.

We can now upgrade Proposition 4.2 to any current T ∈ In,c(X).

Proposition 4.5. Let n ≥ 1, let X be a locally compact metric space, and let U ⊂ X be an open subset with
property L. Then for every T ∈ In,c(X) with spt(T) ⊂ U, and every ε > 0, there is P ∈ Ln,c(X) with N(T − P) < ε
and spt(P) ⊂ spt(T)ε.

The case n = 1 holds already by Proposition 4.2, so that in this proof we can assume that n ≥ 2 and apply
Proposition 4.4 in dimension n − 1 ≥ 1.

Proof. Suppose n ≥ 2. Let K denote the closed ε
2 -neighborhood of spt(T) in X, without loss of generality we

might assume that K is compact and that spt(T)ε ⊂ U. LetM > 0 be the constant of Proposition 4.4 for K and
ε/4; up to decreasing it we might assume that M ≤ ε/4.

Consider T′ := ∂T ∈ Zn−1,c(X) and note that spt(T′)ε/2 ⊂ spt(T)ε/2 ⊂ K ⊂ U. By Proposition 4.2 we can
�nd P′ ∈ Ln−1,c(X) with ∂P′ = ∂T′(= 0),M(T′ − P′) < M ≤ ε/4 and spt(P′) ⊂ spt(T′)ε/4 ⊂ K.

According to Proposition 4.4 and the choice ofM, there exists a �lling S ∈ In,c(X) of T′−P′ withM(S) < ε/4
and spt(S) ⊂ spt(T′)ε/2 ⊂ U.
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Note that T − S ∈ In,c(X) has support contained in spt(T)ε/2 ⊂ U and boundary ∂(T − S) = T′ − (T′ − P′) =
P′ ∈ Ln−1,c(X) so applying Proposition 4.2 a second time we �nd P ∈ Ln,c(X) with M(T − S − P) < ε/2,
∂P = ∂(T − S) = P′, and spt(P) ⊂ spt(T − S)ε/2 ⊂ spt(T)ε.

Therefore P satis�es:

M(T − P) ≤ M(T − S − P) +M(S) < ε2 + ε4 ≤ ε,

M(∂T − ∂P) = M(T′ − P′) < M < ε.

The proof of Theorem 1.3 (N-Approximation) now follows by combining Lemma 4.1 and Proposition 4.5.

Proof of Theorem 1.3. Let X be a locally compact metric space with local property L, T ∈ In,c(X) and ε > 0. By
Lemma 4.1 we can write T = T1 + · · · + Tk with each Ti ∈ In,c(X) having support contained in both spt(T) and
in an open subset of X having property L. By Proposition 4.5 there exist Pi ∈ Ln,c(X)withN(Ti −Pi) < ε/k and
spt(Pi) ⊂ spt(Ti)ε ⊂ spt(T)ε, so that P := P1 + · · · + Pk ∈ Ln,c(X) is the desired Lipschitz approximation of T
with N(T − P) < ε and spt(P) ⊂ spt(T)ε.
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