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Abstract
Strengthening Hadwiger’s conjecture, Gerards and Seymour conjectured in 1995 that every graph with no
odd Kt-minor is properly (t − 1)-colourable. This is known as the Odd Hadwiger’s conjecture. We prove a
relaxation of the above conjecture, namely we show that every graph with no odd Kt-minor admits a vertex
(2t − 2)-colouring such that all monochromatic components have size at most � 1

2 (t − 2)�. The bound on
the number of colours is optimal up to a factor of 2, improves previous bounds for the same problem
by Kawarabayashi (2008, Combin. Probab. Comput. 17 815–821), Kang and Oum (2019, Combin. Probab.
Comput. 28 740–754), Liu andWood (2021, arXiv preprint, arXiv:1905.09495), and strengthens a result by
van den Heuvel and Wood (2018, J. Lond. Math. Soc. 98 129–148), who showed that the above conclusion
holds under the more restrictive assumption that the graph is Kt-minor-free. In addition, the bound on
the component-size in our result is much smaller than those of previous results, in which the dependency
on t was given by a function arising from the graph minor structure theorem of Robertson and Seymour.
Our short proof combines the method by van den Heuvel and Wood for Kt-minor-free graphs with some
additional ideas, which make the extension to odd Kt-minor-free graphs possible.

Keywords: Odd Hadwiger’s conjecture; graph minors; odd minors; clustered coloring; defective coloring; improper coloring
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1. Introduction
Given an integer t ≥ 1, a Kt-model is a graph F consisting of t vertex-disjoint trees (Ts)ts=1, each
two of them joined by exactly one additional edge. We say that a graph G contains Kt as a minor,
or that it contains a Kt-minor, if G contains a subgraph which is a Kt-model.

The work in this paper is motivated by the famous graph colouring conjecture of Hadwiger.

Conjecture 1.1. (Hadwiger’s conjecture, 1943, [7]). For every integer t ≥ 2, if G is a graph not
containing a Kt-minor, then G is properly (t − 1)-colourable.

A lot of work in graph theory has been inspired by and built around Hadwiger’s conjecture.
A survey of results and open problems covering the state of the art up until roughly 3 years
ago was written by Seymour [25]. Hadwiger’s conjecture has been proved for all values t ≤ 6 (see
Robertson, Seymour and Thomas [24]). It remains open starting from t = 7. For a long time, the
best asymptotic upper bound on the chromatic number of graphs with no Kt-minor has remained
O(t

√
log t) as established independently by Kostochka and Thomason [15, 27]. However, this
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bound was improved considerably recently, see [2, 18, 19, 21, 22]. The current best bound of
O(t log log t) was obtained roughly a year ago by Delcourt and Postle [2].

A Kt-model F is said to be odd if there exists a 2-colouring c of V(F) such that the restriction of
c to any single tree Ts forms a proper colouring of that tree, while every edge joining two distinct
trees is monochromatic with respect to c, i.e., has the same colours at its endpoints. We say that
a graph G contains an odd Kt-minor or that it contains Kt as an odd minor if G has a subgraph
which is an odd Kt-model. Gerards and Seymour (see [6], Section 6.5) proposed the following
strengthening of Hadwiger’s conjecture, called Odd Hadwiger’s conjecture.

Conjecture 1.2. (Odd Hadwiger’s conjecture, 1995, [6]). For every integer t ≥ 2, if G is a graph
not containing an odd Kt-minor, then G is properly (t − 1)-colourable.

To see that this conjecture indeed considerably strengthens Hadwiger’s conjecture, consider for
example t = 3. While Hadwiger’s conjecture in this case amounts to saying that forests (the K3-
minor-free graphs) are 2-colourable, the Odd Hadwiger’s conjecture captures the more general
statement that all graphs without odd cycles (the odd K3-minor-free graphs) are 2-colourable.
In general, every Kt-minor-free graph is also odd Kt-minor-free, but there are odd K3-minor-free
(i.e., bipartite) graphs which contain arbitrarily large clique minors.

The above conjecture has been verified for t ≤ 4 by Catlin [1], and a solution for the case
t = 5 was announced by Guenin (cf. [25]). For t ≥ 6 the conjecture remains wide open. As for
Hadwiger’s conjecture, asymptotic upper bounds on the chromatic number of odd Kt-minor-free
graphs have been studied. An upper bound of O(t

√
log t) was proved by Geelen, Gerards, Reed,

Seymour and Vetta in [5] (see also [11]). Recently this has been improved in [2, 20, 23, 26], with
the current best bound beingO(t log log t) from [26]. Formore results around theOddHadwiger’s
conjecture, we refer the interested reader to Section 7 of the survey [25].

Given a (not necessarily proper) colouring c:V(G)→ S of a graph G, a subset of vertices is
called a monochromatic component, if it is a component of the induced subgraph G[c−1(s)] for
some s ∈ S. For instance, a colouring is proper iff all its monochromatic components have size 1.

The purpose of this paper is to prove the following relaxation of theOddHadwiger’s conjecture,
in which we allow our colouring to be improper, but instead require a constant bound (depending
only on t) for the maximum size of its monochromatic components. In return, our colouring uses
much fewer colours than the known results for proper colourings.

Theorem 1.3. Let t ≥ 3 be an integer. Then every graph G without an odd Kt-minor admits a (not
necessarily proper) vertex colouring using 2t − 2 colours such that all monochromatic components
have size at most � 1

2 (t − 2)�.
Theorem 1.3 lines up with a wide set of results on so-called improper colourings of graphs with

excluded minors. Instead of giving a long list of the individual results, let us just point to the
comprehensive 70 page-survey on improper colourings written recently by Wood [29] as well
as to Section 6 of Seymour’s survey [25]. Two main variants of improper colourings have been
studied: clustered and defective colourings. Given a graph G and integers k, c, d, we say that a
k-vertex colouring of G has clustering c if all monochromatic components have size at most c, and
we say that it has defect d if the maximum degree of all monochromatic components is bounded
by d. Clearly, every k-colouring with clustering c also has defect c− 1. We may therefore rephrase
Theorem 1.3 by saying that for t ≥ 3, every odd Kt-minor-free graph is 2(t − 1)-colourable
with clustering � 1

2 (t − 2)� and defect � 1
2 (t − 4)�. The number of colours in our result improves

upon previous results for this problem by Kawarabayashi [10], Kang and Oum [9] and Liu and
Wood [17], summarized in Table 1 below. It is optimal up to a factor of 2, as it was shown in
[4, 9] that (odd) Kt-minor-free graphs in general do not admit (t − 2)-colourings with clustering
bounded as a function of t.
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328 R. Steiner

Table 1.Bounds for improper colourings of odd Kt-minor-free graphs. The functions
f1(t), . . . , f4(t) are used to indicate that the bound guaranteed on the defect or clustering
is only dependent on t. These functions depend on bounds from the graph minor structure
theorem of Robertson and Seymour

Number of colours Clustering Defect

Kawarabayashi [10] 496t f1(t) f1(t)− 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kang and Oum [9] 6t− 9 − f2(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kang and Oum [9] 10t− 13 f3(t) f3(t)− 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Liu and Wood [17] 8t− 12 f4(t) f4(t)− 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This paper 2t− 2 � 12 (t− 2)� � 12 (t− 4)�

As an additional advantage, our result also improves the dependency of the size of the clustering
on t. Namely, the bounds on the clustering from [9, 10, 17] were functions of t depending on
bounds for the graph minor structure theorem of Robertson and Seymour.

Clustered and defective colourings of Kt-minor-free graphs have also been extensively studied,
see [4, 8, 12, 16, 17, 28]. Here the state of the art bounds are as follows: For defective colouring
it was shown by Edwards, Kang, Kim, Oum and Seymour [4] that Kt-minor-free graphs can be
(t − 1)-coloured with bounded defects. Van den Heuvel and Wood [8] proved that the defect
can be bounded by t − 2. For clustered colouring, it has been proved that Kt-minor-free graphs
can be (t + 1)-coloured with bounded clustering by Liu and Wood [17]. An optimal bound of
t − 1 colours was announced in 2017 by Dvořák and Norin [3]. A weaker bound on the number
of colours, however with an explicit bound on the clustering, was previously shown by van den
Heuvel and Wood, namely that every Kt-minor-free graph is (2t − 2)-colourable with clustering
� 1
2 (t − 2)�. Theorem 1.3 extends this result by van den Heuvel and Wood to odd Kt-minor-free

graphs.
In the remainder of this paper, we give the proof of Theorem 1.3. Our proof follows closely a

method introduced by van den Heuvel and Wood in [8] to first establish a decomposition of the
considered graphs into nicely structured disjoint subgraphs, from which a clustered colouring can
then easily be obtained. Our decomposition result (Theorem 2.3) is similar to a corresponding
result for Kt-minor-free graphs by van den Heuvel andWood, but enhances it by some additional
features, through which the extension from Kt-minor-free graphs to odd Kt-minor-free graphs
becomes possible.

2. Proof of Theorem 1.3
We need the following lemma proved by van den Heuvel and Wood in [8].

Lemma 2.1. (cf. Lemma 8, item (4) in [8]). Let G be a connected graph, and let S⊆V(G) be such
that |S| = k≥ 1. Let H ⊆G be an induced connected subgraph with a minimum number of vertices
such that S⊆V(H).

Then H admits a partition of its vertex-set into two disjoint (possibly empty) subsets A and B such
that both G[A] and G[B] have all their connected components of size at most � k

2�.
The main idea of our proof is the following modified version of the above lemma, which will

be useful for constructing odd minors. We use the following notation: Given a graphH and a par-
tition of its vertex-set into subsets A and B, we denote byH[A, B] the spanning bipartite subgraph
containing all the edges with one endpoint in A and one endpoint in B.
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Lemma 2.2. Let G be a connected graph, and let S⊆V(G) be such that |S| = k≥ 1. Then there exists
a connected induced subgraph H ⊆G with S⊆V(H) such that the following hold:

1. H admits a partition of its vertex-set into two disjoint subsets A and B such that both G[A]
and G[B] have maximum component-size at most � k

2�.
2. H[A, B] is connected.
3. For every vertex v ∈V(G) \V(H) which is adjacent in G to at least one vertex in V(H), there

exist vertices a ∈A and b ∈ B such that av, bv ∈ E(G).

Proof. By Lemma 2.1, there exists at least one connected induced subgraphH0 of G such that S⊆
V(H0) and a partition of V(H0) into subsets A0, B0 such that both G[A0],G[B0] have maximum
component-size at most � k

2�.
Now, let (H,A, B) be a triple consisting of a connected induced subgraph H ⊆G with S⊆

V(H) and a partition V(H)=A∪ B of its vertex-set such that G[A] and G[B] have maximum
component-size at most � k

2�, chosen such that the number of edges in H[A, B] is maximized
among all possible choices of such triples.

We now claim thatH with the partitionA, B satisfies all three properties required by the lemma.
Statement (1) follows directly by our choice of the triple. To verify (2), suppose towards a con-
tradiction that H[A, B] is disconnected. This would mean that there exists a partition of V(H)
into non-empty sets X, Y such that there are no edges between X ∩A and Y ∩ B, and no edges
between X ∩ B and Y ∩A in H. Now define a new partition of V(H) by A′ := (X ∩A)∪ (Y ∩ B),
and B′ := (X ∩ B)∪ (Y ∩A). It is easy to see that since no edges in G connect X ∩A and Y ∩ B or
X ∩ B and Y ∩A, every component ofG[A′] orG[B′] is fully contained in eitherA or B. Hence it is
contained in a component of either G[A] or G[B], and hence has size at most � k

2�. However, since
H is connected, there exists at least one edge e ∈ E(H) with endpoints in X and Y . This edge must
then connect X ∩A and Y ∩A or X ∩ B and Y ∩ B. In each case, e is contained in the bipartite
subgraph of H spanned between A′ and B′. Also, every edge of H[A, B] has exactly one endpoint
in A′ and in B′. Hence, (H,A′, B′) is a triple satisfying all required properties which has strictly
more edges between different sets in the partition than (H,A, B). This is a contradiction to our
choice of (H,A, B), and proves (2).

Finally, let us verify (3). Towards a contradiction, suppose that there exists a vertex v ∈V(G) \
V(H) such that v is adjacent in G to at least one vertex in V(H), but it does not have neighbours
both in A and in B. Then, w.l.o.g. (renaming A and B if necessary) we may assume that v has no
neighbours in A. Now, let H′ := G[V(H)∪ {v}] and put A′ := A∪ {v} and B′ := B. Then H′ is a
connected induced subgraph of G with S⊆V(H)⊆V(H′). Since v has no neighbours in A, every
component in G[A′] or G[B′] is either a component of G[A] or G[B] and hence has size at most
� k
2�, or is equal to {v} and has size 1≤ � k

2�.
Furthermore, the number of edges in H′ spanned between A′ and B′ is strictly greater than

the number of edges in H spanned between A and B, since in addition to these edges we have
the edges incident to v in H′. This again shows that (H′,A′, B′) is a triple satisfying all required
properties with more edges between different sets in the partition than (H,A, B), contradicting
our maximality assumption. This shows that also (3) is satisfied for (H,A, B) and concludes the
proof of the lemma. �

We next use the above lemma to prove the following decomposition result, which resem-
bles a corresponding decomposition theorem proved by van den Heuvel and Wood in [8] for
Kt-minor-free graphs (compare Theorem 11 in [8]). It extends part of the latter result with some
additional features that will allow us to relate to oddminor containment instead of ordinaryminor
containment when building the decomposition of our graph. Once the decomposition theorem
(Theorem 2.3 below) is established, Theorem 1.3 will follow easily. In the following, given a graph
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G and two vertex-disjoint subgraphs H1 and H2 of G, we say that H1 and H2 are adjacent (in G) if
there exist vertices x ∈V(H1), y ∈V(H2) such that xy ∈ E(G).

Theorem 2.3. Let t ≥ 3 be an integer, and let G be a connected graph without an odd Kt-minor.
Then there exists � ∈N and a collection H1 . . . ,H� of vertex-disjoint induced connected subgraphs
of G with V(H1)∪ · · · ∪V(H�)=V(G) such that all of the following properties are satisfied for every
i ∈ [�]:

1. Hi admits a partition of its vertex-set into two disjoint parts Ai and Bi such that in each of
G[Ai], G[Bi], the maximum component-size is at most � t−2

2 �.
2. Hi[Ai, Bi] is connected.
3. For every vertex v ∈V(G) \ (V(H1)∪ · · · ∪V(Hi)) which is adjacent in G to at least one

vertex in V(Hi), there exist vertices a ∈Ai, b ∈ Bi such that av, bv ∈ E(G).
4. For every connected component C of G− (V(H1)∪ · · · ∪V(Hi)), at most (t − 2) among the

subgraphs H1, . . . ,Hi are adjacent to C, and these subgraphs are pairwise adjacent to each
other.

Proof. We construct the induced connected subgraphs H1, . . . ,H� iteratively, maintaining the
properties (1)− (4) for all already constructed subgraphs in the sequence during the process.

Let Z denote the collection of all vertex-subsets Z ⊆V(G) such that G[Z] is bipartite and con-
nected (note that Z = ∅, since every singleton-set in V(G) belongs to Z). Let now X ∈Z be an
inclusion-wise maximal member of Z . Define H1 := G[X]. By choice of X, the subgraph H1 of G
is induced, bipartite and connected. Let us further verify that the invariants (1)− (4) are satisfied:
To verify (1), we can simply let A1, B1 be the colour classes of a bipartition of H1. Item (2) is sat-
isfied trivially, since H1 is connected and all edges of H1 join A1 and B1. For item (3), consider
any vertex v ∈V(G) \ X which has a neighbour in X. We have X ∪ {v} /∈Z by our choice of X, and
hence, G[X ∪ {v}] is non-bipartite. This means that vmust have neighbours both in A1 and B1, for
otherwise either (A1 ∪ {v}, B1) or (A1, B1 ∪ {v}) would form a bipartition of G[X ∪ {v}]. Finally,
this implies that there are neighbours a ∈A1, b ∈ B1 of v, as required. Finally, item (4) is trivially
satisfied, since t − 2≥ 1.

Next, suppose that for some integer i≥ 1 we have already constructed disjoint induced
connected subgraphs H1, . . . ,Hi of G, each satisfying the invariants (1)− (4), but such that
V(H1)∪ · · · ∪V(Hi) =V(G). Now, pick (arbitrarily) a connected component C of the graph
G− (V(H1)∪ · · · ∪V(Hi)). Let Q1, . . . ,Qk be the (ordered) sublist of H1, . . . ,Hi, containing
exactly those subgraphs which are adjacent to G[C]. Since G is connected, we have k≥ 1. By the
invariant (4) we furthermore know that k≤ t − 2 and that Q1, . . . ,Qk are pairwise adjacent to
each other. For every index j ∈ [k], by definition there exists a vertex vj ∈ C such that vj has a
neighbour in Qj. Let S := {v1, . . . , vk}. Now, apply Lemma 2.2 to the connected graph G[C] and
the set S. We conclude that there exists an induced and connected subgraph H of G such that
S⊆V(H)⊆ C, equipped with a partition of its vertex-sets into subsets A and B such that

• all components of G[A] and G[B] have size at most
⌈ |S|

2

⌉
≤ � k

2� ≤ � t−2
2 �,

• H[A, B] is connected,
• every vertex v ∈ C \V(H) which is adjacent to a vertex in V(H) has neighbours both in A

and in B.

We now finally define Hi+1 := H and Ai+1 := A, Bi+1 := B, and claim that the extended
sequence H1, . . . ,Hi,Hi+1 still satisfies the invariants (1)− (4). That the invariants (1) and (2)
remain valid is an immediate consequence of the first two properties ofH listed above. Let us now
verify that invariants (3) and (4) hold (and clearly, these need only be checked for the index i+ 1,
since the claim is satisfied for smaller indices by assumption).
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For invariant (3), let a vertex v ∈V(G) \ (V(H1)∪ · · · ∪V(Hi)∪V(Hi+1)) be given arbitrarily,
and suppose that v has at least one neighbour in Hi+1. Note that this implies that v ∈ C, since C
is a connected component ofG− (V(H1)∪ · · · ∪V(Hi)) andV(Hi+1)=V(H)⊆ C. Therefore, by
the third property of H listed above, we conclude that v has neighbours both in Ai+1 =A and in
Bi+1 = B. This verifies that the invariant (3) remains satisfied.

Finally, let us consider invariant (4). For this purpose, let a connected component
C′ of the graph G− (V(H1)∪ · · · ∪V(Hi)∪V(Hi+1)) be given to us arbitrarily. Let Q⊆
{H1, . . . ,Hi,Hi+1} contain all the subgraphs adjacent to G[C′] in G. In order to verify invari-
ant (4) for C′, we need to show that |Q| ≤ t − 2 and that the members of Q are pairwise adjacent
to each other.

Since C is a connected component of G− (V(H1)∪ · · · ∪V(Hi)), we must either have C′ ∩
C = ∅ or C′ ⊆ C, for otherwise C ∪ C′ would induce a connected subgraph of G− (V(H1)∪ · · · ∪
V(Hi)) and strictly contain C, a contradiction. For the same reason, if C′ ∩ C = ∅ then there is no
edge in G connecting C to C′, and hence C′ in particular forms a connected component also of the
graph G− (V(H1)∪ · · · ∪V(Hi)), and Hi+1 /∈Q. Therefore, in the case C′ ∩ C = ∅ the facts that
|Q| ≤ t − 2 and that the members of Q are pairwise adjacent to each other follow from invariant
(4) for index i, which is satisfied by our initial assumptions.

Moving on, suppose that C′ ⊆ C. Then we clearly must haveQ⊆ {Q1, . . . ,Qk,Hi+1}. Note that
by invariant (4) for index i (applied with the component C), the subgraphs Q1, . . . ,Qk are pair-
wise adjacent in G. Furthermore, since S= {v1, . . . , vk} ⊆V(H)=V(Hi+1) by our choice of H,
we know that Hi+1 is adjacent to each of Q1, . . . ,Qk in G. Hence, the members of Q are pair-
wise adjacent to each other. It remains to be shown that |Q| ≤ t − 2. Towards a contradiction,
suppose that |Q| ≥ t − 1. We have k≤ t − 2, and therefore this is only possible if k= t − 2 and
Q= {Q1, . . . ,Qt−2,Hi+1}.

We will now obtain the desired contradiction to the above assumption by constructing an
odd Kt-model which is a subgraph of G (clearly this does not exist by assumption on G). Let us
denote by i1 < i2 < · · · < it−1 = i+ 1 the sequence of indices such that {Q1, . . . ,Qt−2,Hi+1} =
{Hi1 , . . . ,Hit−1}. By invariant (2) for H1, . . . ,Hi,Hi+1, for every s ∈ [i+ 1] we know that
Hs[As, Bs] is connected, and therefore admits a spanning tree Ts. This is a spanning tree of Hs
which uses only edges spanned between As and Bs, for every s ∈ [i+ 1]. Furthermore, let T be
any fixed spanning tree of the connected graph G[C′]. Finally, consider a 2-colour-assignment
c:

(⋃t−1
j=1 V(Tij)

)
∪V(T)→ {1, 2} to the vertices in the t disjoint trees Ti1 , . . . , Tit−1 , T by piec-

ing together proper 2-colourings of the individual trees. To finish the construction of the odd
Kt-model, we need the following claim.

( ∗ ) Any pair of two distinct trees from the collection Ti1 , . . . , Tit−1 , T is joined by at least one
edge xy ∈ E(G) satisfying c(x)= c(y).

Proof of (∗). Consider first the case that the pair of trees is of the form Ts1 , Ts2 with s1 < s2
and s1, s2 ∈ {i1, . . . , it−1}. Then, since Hs1 ,Hs2 ∈Q are adjacent, there exists a vertex y ∈V(Ts2 )=
V(Hs2 ) which is adjacent to a vertex in V(Ts1 )=V(Hs1 ). By invariant (3), applied for the index s1
and the vertex y, we find that y must have neighbours a ∈As1 and b ∈ Bs1 in G. Note that since c
restricted to V(Ts1 ) is a proper colouring, we must have c(a) = c(b). Hence, there exists x ∈ {a, b}
with c(x)= c(y), and the edge xy ∈ E(G) connecting Ts1 and Ts2 verifies ( ∗ ) in this case.

Secondly, consider the case that the pair of trees is of the form Ts, T for some s ∈ {i1, . . . , it−1}.
Since G[C′] by definition is adjacent to every member of Q, which includes Hs, analogous to
the previous case there exists a vertex y ∈V(T) which is joined to Hs. Applying the invariant
(3) with the index s and the vertex y now yields that there are neighbours a ∈As, b ∈ Bs of y. As
above, we conclude that since c(a) = c(b) there exists x ∈ {a, b} with c(x)= c(y). The edge xy is
monochromatic and connects Ts and T, thus ( ∗ ) is verified also in the second case.

This proves ( ∗ ).
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Now the collection of the t disjoint trees Ti1 , . . . , Tit−1 , T in G, the colouring c as well as the
monochromatic edges guaranteed between each pair of trees by ( ∗ ) certify that G contains an
odd Kt-model. This is a contradiction to the assumption that G is odd Kt-minor-free, and hence,
our above assumption that |Q| ≥ t − 1 was wrong. This concludes the proof that also the invariant
(4) remains satisfied after extending the sequence H1, . . . ,Hi of subgraphs by Hi+1.

Finally, since all the subgraphs H1,H2, . . . as defined above are non-empty, after finitely many
steps the union of the subgraphs will cover all vertices of G, i.e., we will find an integer � ≥ 1 such
thatV(H1)∪ · · · ∪V(H�)=V(G) forms a partition ofG, with all four invariants (1)− (4) satisfied
for each index i ∈ [�]. This concludes the proof of the theorem.

After having done the main bulk of work in the previous proof, we can now easily conclude
Theorem 1.3.

Proof of Theorem 1.3. Let t ≥ 3 be an integer an let G be any given odd Kt-minor-free graph.
W.l.o.g. we may assume that G is connected. We apply Theorem 2.3 to obtain a collection
H1, . . . ,H� of connected induced subgraphs of G such that

• V(H1), . . . ,V(H�) forms a partition of V(G),
• every graph Hi with i ∈ [�] admits a 2-colouring fi:V(Hi)→ {1, 2} with monochromatic

components of size at most � t−2
2 � (by property (1) in Theorem 2.3), and

• for every 1≤ i< � the subgraph Hi+1 is adjacent in G to at most t − 2 among the sub-
graphsH1, . . . ,Hi (by property (4) in Theorem 2.3, applied to the connected component of
G− (V(H1)∪ · · · ∪V(Hi)) which contains V(Hi+1)).

Now define an auxiliary simple graph on the vertex-set [�], in which two indices i, j ∈ [�] are
made adjacent if and only if the subgraphs Hi and Hj are adjacent in G. By the third item above,
this graph is (t − 2)-degenerate, and hence, it has chromatic number at most (t − 2)+ 1= t − 1.
Fix a proper (t − 1)-colouring f :[�]→ [t − 1] of this auxiliary graph. Now consider the product
colouring g:V(G)→ [t − 1]× {1, 2}, defined by g(x) := (f (i), fi(x)) for every x ∈V(Hi). From the
definition of the auxiliary graph and since f is a proper colouring we have that every monochro-
matic component in G with respect to the colouring g must be fully included in V(Hi) for some
i ∈ [�]. But then it is a monochromatic component also of the colouring fi of Hi. Hence, by the
second item above it cannot be of size more than � t−2

2 �. Since g uses a colour-set of size 2(t − 1),
this proves the claim of the theorem. �
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