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Abstract

We study the small speed of light expansion of general relativity, utilizing the modern
perspective on non-Lorentzian geometry. This is an expansion around the ultra-local Car-
roll limit, in which light cones close up. To this end, we first rewrite the Einstein–Hilbert
action in pre-ultra-local variables, which is closely related to the 3+1 decomposition of
general relativity. At leading order in the expansion, these pre-ultra-local variables yield
Carroll geometry and the resulting action describes the electric Carroll limit of general
relativity. We also obtain the next-to-leading order action in terms of Carroll geometry
and next-to-leading order geometric fields. The leading order theory yields constraint
and evolution equations, and we can solve the evolution analytically. We furthermore
construct a Carroll version of Bowen–York initial data, which has associated conserved
boundary linear and angular momentum charges. The notion of mass is not present at
leading order and only enters at next-to-leading order. This is illustrated by considering a
particular truncation of the next-to-leading order action, corresponding to the magnetic
Carroll limit, where we find a solution that describes the Carroll limit of a Schwarzschild
black hole. Finally, we comment on how a cosmological constant can be incorporated in
our analysis.
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1 Introduction

The theory of General Relativity (GR) beautifully describes the dynamics of space and time,
incorporating local Lorentz symmetry through Einstein’s equivalence principle. Lorentz boosts
are transformations that depend on the speed of light c. An obvious and important regime to
study is the one in which c is very large. In concrete physical setups, such a limit results in
non-relativistic systems with Galilean symmetry, where the appropriate characteristic veloc-
ity is much less than the speed of light. This familiar and well-studied limit is relevant for
post-Newtonian (PN) approximations of solutions of GR, with many important applications in
astrophysics and cosmology [1–3].

In a recent development, a geometric description of the non-relativistic expansion of GR
in inverse powers of the speed of light c was obtained in Refs. [4–6], building on earlier work
[7]. This progress was spurred on in large part by novel insights [8–10] into Newton–Cartan
geometry, which is the geometry that replaces the Lorentzian geometry of GR at leading order
in the expansion. The resulting action for non-relativistic gravity (which is the next-to-next-
to leading order action in the expansion) includes Newtonian gravity, but also goes beyond
it by allowing for strong gravitational fields, which leads for example to gravitational time
dilation. More generally, these expansion methods lay the foundation for a covariant and off-
shell formulation to any order and are therefore expected to be relevant to PN expansions.
Similar non-relativistic geometries, along with corresponding probe and spacetime actions,
also prominently appear in modern approaches to non-relativistic field theory and string theory
(see for example [11–17]).

It is also interesting to consider the opposite case, namely the regime in which c is very
small. In particular, as first considered in Ref. [18–20], the Poincaré group contracts to the
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Carroll group when the speed of light is taken to zero. This has some unusual consequences
for the kinematics and dynamics in this limit. Contrary to the Galilean case, where light cones
open up, the light cones close up in the Carroll limit. Particles with non-zero energy cannot
move in space anymore, and for these particles there can be no interactions between spatially
separated events.1 Hence this Carroll limit is an ultra-local limit and its study in GR, which
goes back to [23], provides novel insights into its geometry and gravitational dynamics. More
generally, studying the small speed of light expansion of GR [24] allows for a perturbative
expansion around the (singular) Carroll point, analogous to the PN expansion for large c.

In this paper, we will perform a systematic analysis of the ultra-local Carroll expansion of
GR, utilizing the modern perspective on non-Lorentzian geometry, in analogy with the recent
results [4–6] on the non-relativistic expansion. Compared to the latter, the Carroll expansion
of general relativity will encode different aspects of the full Lorentzian theory at each order.
On a technical level, the Carroll expansion may help us to develop novel analytical approaches
which can subsequently be applied in the non-relativistic expansion, whose astrophysical rel-
evance is more obvious. In fact, we will see that the structure of the Carroll expansion clearly
brings out an analogy to the 3+1 formulation of GR and the resulting Hamiltonian and mo-
mentum constraints.

Furthermore, the dynamics of GR that are captured by the Carroll expansion may them-
selves be of physical relevance, too. Contrary to the large speed of light expansion of GR, there
is already non-trivial dynamics at leading order in the Carroll expansion. In particular, while
the ‘kinetic’ term containing extrinsic curvatures appears at next-to-next-to-leading order in
the former case, it already appears at leading order in the latter. The resulting dynamics ap-
pears to be closely related to the Beliniski-Khalatnikov-Lifshitz limit [25], which describes the
near-singularity dynamics of general relativity. Although we will not pursue this connection
in the present work, the techniques we develop could allow us to explore subleading orders of
this limit.

In order to perform the expansion, we will first reformulate the Einstein–Hilbert (EH)
action in terms of a ‘pre-ultra-local’ (PUL) variables, which is similar to the 3+1 decomposi-
tion. This way of writing the EH action is related to the ‘pre-non-relativistic’ (PNR) formula-
tion [5,6], though the connection is different and the geometric variables that are used are in
some sense dual to each other. This duality also manifests itself when expanding: the large c
expansion of the PNR variables leads to Newton–Cartan geometry plus higher-order geometric
fields, while the small c expansion of the PUL variables leads to Carroll geometry plus higher-
order geometric fields. At leading order, this observation reduces to the well-known duality
between NC and Carroll geometry [26,27].

More generally, physics with Carroll symmetries has recently appeared in a wide variety
of studies, including various aspects of Carroll gravity and geometry [21, 26–50]. In particu-
lar, since null hypersurfaces are examples of Carroll manifolds [26], Carroll symmetries have
been related to black holes [34,35], while the recent Ref. [21] considers Carroll symmetry in
relation to inflation and cosmology.2 Furthermore, Carroll field theories have been studied for
example in [21,26,47,53–60]. Carroll symmetry also features in 3D flat space holography and
tensionless strings [53,61–69], while Carroll fluids have been addressed in [70–73].

The approach pursued in the present paper, considering Carroll expansions instead of tak-
ing the Carroll limit, was also put forward in [21], where it was motivated by applications
to cosmology, inflation and dark energy. In line with the philosophy advocated earlier for GR
in [24], the idea is that the Carroll symmetry of the limiting point c = 0 of a theory provides

1There is a second type of Carroll particle [21], with zero energy, which cannot stand still, and originates from
the Carroll limit of relativistic tachyons. See also [21,22] for non-trivial dynamics of coupled Carroll particles.

2See also Ref. [51] for superluminal behavior in relation to cosmology for a brane universe moving in a curved
higher dimensional bulk space and Ref. [52] for connections between the ultra-local limit of gravity and cosmo-
logical billiards.
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an organizing principle in the study of the perturbative expansion around it. To illustrate
this, the Carroll expansion of the action of a scalar field and Maxwell theory were discussed
in [21]. Furthermore, it was shown that the expansions can be truncated in such a way that
that these relativistic theories admit two inequivalent contractions with Carroll invariance.
This feature follows from the observation [21] that not only is the leading-order (LO) action
manifestly Carroll invariant, but one can also obtain a Carroll-invariant theory if one takes the
next-to-leading (NLO) action and restricts it to the field configurations for which the LO action
vanishes.

The fact that relativistic theories generically admit two inequivalent contractions with Car-
roll symmetry was shown independently from a Hamiltonian perspective for general p-form
theories in [47], where it was also briefly considered for GR. Following these authors, we will
refer to the two distinct contractions for a given theory as the ‘electric’ and ‘magnetic’ theory,
respectively. These names are derived from the two possible contractions that were already
known for electromagnetism [26], though the magnetic theory was only known at the level
of the equations of motion. As far as GR is concerned, the electric contraction of GR has been
known since many years [23], but the existence of the magnetic contraction has only recently
been realized [47,48]. In the present work, following the suggestion of [21], we will use the
Lagrangian perspective to obtain for the first time a covariant action for the magnetic Carroll
sector of gravity. However, it is important to stress that both the electric and magnetic Carroll
limits are special cases of the general framework we develop, corresponding to the LO theory
and a truncation of the NLO theory, respectively. While these turn out to be interesting and
tractable subsectors, our general Carroll expansion will be able to describe much more general
dynamics at subleading orders.

As it turns out, the Carroll LO action already contains non-trivial equations of motion.
These can be written in a form that is very similar to the constraint and evolution equations
in the 3+1 decomposition of GR. In the full relativistic theory, solving the evolution equations
even numerically is a formidable problem. In contrast, given initial data satisfying the LO
constraint equations, its evolution can be solved analytically. Building on methods from the
3+1 decomposition of GR, we construct a Carroll version of Bowen–York initial data [74],
which describes black holes parametrized by their mass and angular/linear momentum in
the full relativistic theory. We subsequently show that the parameters in the resulting LO
solution correspond to conserved boundary charges associated to asymptotic translations and
rotations. Although the notion of mass or energy is not yet present in the LO theory [48], it is
interesting that it still contains such a class of physically relevant solutions. To obtain a mass,
one should consider the NLO theory. To illustrate this, we consider for simplicity the subsector
comprised by the magnetic theory described above. (Here, an asymptotic symmetry analysis
was previously carried out in [48].) Focusing on static solutions, we find a Carroll geometry
that describes the ultra-local limit of a Schwarzschild black hole in isotropic coordinates.

We also comment on how a cosmological constant can be incorporated in the Carroll ex-
pansion of GR, and we discuss some solutions for the electric (LO) and magnetic (truncated
NLO) theories. The relevance of the cosmological constant at these orders depends on its scal-
ing in terms of powers of c. For the LO theory we find a Carroll solution corresponding to
the ultra-local limit of de Sitter geometry. This Carroll geometry was also considered in [21]
and was earlier found as a homogeneous background in [75], where it was called the ‘light
cone’. Interestingly, while a negative cosmological constant is inconsistent with the equations
of motion of the electric theory, we will show that both signs are allowed in the magnetic
theory.

At this point, a comment is in order on the meaning of expanding GR in terms of a small
(or large) speed of light c, which is after all a dimensionful parameter. In a given physical
problem, we will have a characteristic velocity vc that allows us to expand in c/vc, which is
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dimensionless. Clearly, such an expansion breaks some form of general covariance, since the
characteristic velocity refers to a particular set of frames (or coordinate system). In the fol-
lowing, instead of considering a particular relativistic problem with a particular characteristic
velocity, we will mainly focus on developing the general ultra-local small c expansion of gen-
eral relativity. Alternatively, this can be interpreted as setting c = ĉ ε, where ε is dimensionless,
and expanding ε around zero.

Finally, it is important to note that the meaning of a ‘small c’ limit depends on how the
dimensionless parameter c/vc behaves in this limit [21]. If we take c/vc→ 0, the characteristic
velocity tends to zero slower than the speed of light, and hence all dynamics should freeze out.
For this reason, we refer to the limit c/vc→ 0 as the ultra-local limit. On the other hand, if we
take c/vc→ 1, the characteristic velocity tends to the speed of light. The latter corresponds to
the more common notion of an ultra-relativistic limit, which we do not consider here.

This paper is organized as follows. In Section 2, we introduce the main concepts of Car-
roll geometry using a small speed of light expansion of Lorentzian geometry. In particular,
we show how local Carroll boosts are obtained from local Lorentz boosts, and we identify a
suitable connection and show how to relate it and its curvature to the Levi-Civita connection
and its curvature. We also discuss the notion of spatial hypersurfaces and their induced con-
nection and curvature in the context of Carroll geometry. Next, in Section 3, we develop the
small speed of light expansion of Einstein gravity. We identify the resulting leading-order ac-
tion and a subsector of the subleading Lagrangians with the ‘electric’ and ‘magnetic’ theories
that were recently formulated from a Hamiltonian perspective, we derive their equations of
motion and we separate them into evolution and constraint equations. In particular, we obtain
a manifestly covariant action for the magnetic theory, which was unknown from the Hamil-
tonian perspective, and we show how it can be obtained from a limit of the Einstein-Hilbert
action. In Section 4 we then show that the evolution equations of the electric theory can
be solved analytically. We find solutions to the constraint equations with angular and linear
momentum, which we verify using boundary charges that we construct the covariant phase
space formalism. In the subleading magnetic theory, we identify Schwarzschild-like solutions
with non-zero mass. Finally, we show how a cosmological constant can be included in both
theories. We conclude this paper in Section 5, where we summarize our results and list future
directions. Appendix A lists our conventions and provides some useful identities involving our
Carroll connection, while Appendix B provides an alternative derivation of this connection
using frame bundles.

2 Carroll geometry from Lorentzian geometry

In this section, we develop the small speed of light expansion of the Lorentzian geometry of
general relativity. To this end, we first introduce a ‘pre-ultra-local’ (PUL) parametrization of the
Lorentzian metric and vielbeine. This parametrization is adapted to the ultra-local structure
that arises in the expansion. To be precise, at leading order, the expansion of the PUL variables
leads to a notion of Carroll geometry. In this geometry, the light cone of Lorentzian geometry
collapses to a line, and we will see that the resulting leading-order theory of gravity exhibits
ultra-local behavior.

Furthermore, the corresponding vielbeine transform under local Carroll boosts instead of
local Lorentz boosts. As a result, in the context of the ultra-local expansion, the usual Levi-
Civita connection of Lorentzian geometry is no longer a natural choice. Instead, we introduce
a convenient Carroll-compatible connection and show how it can be obtained from a PUL
parametrization of the Levi-Civita connection. Subsequently, we determine the relation be-
tween the Levi-Civita curvature that enters in the Einstein–Hilbert action and the curvature of
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our PUL connection.
With this, we obtain a PUL reparametrization of the Lorentzian geometric variables of

general relativity that is adapted to the emergence of Carroll symmetry in the ultra-local
expansion. The results of this section are closely related to the ‘pre-non-relativistic’ (PNR)
parametrization that was used for the non-relativistic expansion of GR in Section 2 of [6],
with the main difference between the two being the choice of connection.

2.1 ‘Pre-ultra-local’ parametrization and expansion

In terms of the Lorentzian metric gµν and its inverse gµν, the starting point for the ‘ultra-local’
small speed of light expansion we consider is the PUL parametrization

gµν = −c2TµTν +Πµν , gµν = −
1
c2

VµV ν +Πµν . (2.1)

In this parametrization, we have introduced a ‘timelike’ one-form and vector Tµ and Vµ as
well as the ‘spatial’ symmetric tensors Πµν and Πµν. These PUL variables satisfy the following
orthonormality and completeness relations,

TµVµ = −1 , TµΠ
µν = 0 , ΠµνV ν = 0 , δµν = −VµTν +Π

µρΠρν . (2.2)

Roughly speaking, the PUL parametrization corresponds to a split of the tangent bundle in
‘temporal’ and ‘spatial’ components, as we discuss in more detail in Section 2.5. Additionally,
it makes the factors of c2 that appear in the Lorentzian metric explicit, so that the resulting
variables can be expanded uniformly in the speed of light.

In terms of the (inverse) vielbeine Eµ
A and ΘνA, which are related to the metric using

gµν = ηAB Eµ
AEν

B and gµν = ηABΘµAΘ
ν

B, this parametrization corresponds to

Eµ
A =

�

c Tµ, Eµ
a
�

, ΘµA =
�

−
1
c

Vµ,Θµa

�

, (2.3)

so that Πµν = δabEµ
aEν

b and Πµν = δabΘµaΘ
ν

b. Here, A = 0, 1, . . . , d are spacetime frame
indices and a = 1, . . . , d are spatial frame indices.

Next, assuming that the resulting PUL vielbeine (2.3) are analytic in c2, we can expand
them as follows,

Vµ = vµ + c2Mµ +O(c4) , Tµ = τµ +O(c2) , (2.4a)

Θµa = θ
µ

a + c2πµa +O(c4) , Eµa = eµ
a +O(c2) , (2.4b)

Πµν = hµν + c2Φµν +O(c4) , Πµν = hµν +O(c2) , (2.4c)

where hµν = δabeµ
aeν

b, hµν = δabθµaθ
ν

b and Φµν = δab (θµaπ
ν

b +πµaθ
ν

b).
It is important to stress the limitations and the physical implications of the assumptions

that allow us to write down the expansion (2.4). First, following the Galilean expansion de-
veloped in Section 2.1 of [6], we restrict ourselves here to an expansion in even powers. If
the metric/vielbeine are not analytic in c2, the corresponding coordinate system/frame is not
suitable for the expansion we describe here, but see [76] for the inclusion of odd powers in
the non-relativistic expansion. More generally, the expansion (2.3) is clearly not preserved by
any coordinate transformations that are not analytic in c2, so that for example Schwarzschild
and Kruskal–Szekeres coordinates correspond to inequivalent starting points. In line with the
discussion at the end of the Introduction, the Carroll expansion of a Lorentzian geometry de-
pends on a choice of time coordinate, and different choices will allow us to probe different
aspects of the full relativistic geometry.
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Next, note that we can solve the variables appearing at subleading orders in the expansion
of Tµ, Eµa andΠµν in (2.4) in terms of the variables in the expansion of Vµ, Θµa andΠµν using
the relations (2.2), so we will not introduce separate variables for them. The leading-order
terms then satisfy

τµvµ = −1 , τµhµν = 0 , hµνvν = 0 , δµν = −vµτν + hµρhρν . (2.5)

As we will show in the following, these leading-order variables define a Carroll geometry. In
particular, we now demonstrate that their local symmetries (corresponding to Carroll transfor-
mations) can be obtained from the small c expansion of local Lorentz transformations. Subse-
quently, we introduce a convenient Carroll-compatible connection.

2.2 Carroll boosts from Lorentz boosts

In general relativity, the Lorentzian vielbeine transform under the local Lorentz transforma-
tions ΛA

B that preserve the Minkowski metric ηAB on the frame bundle,

δΛEA = ΛA
B EB , δΛΘA = −ΛB

AΘB , ΛAB = −ΛBA . (2.6)

Indices are raised and lowered using ηAB and its inverse. These Lorentz transformations cor-
respond to the following transformations of the PUL vielbeine (2.3),

δΛTµ = ΛaEµa , δΛEµa = c2ΛaTµ +Λ
a

bEµb , (2.7a)

δΛVµ = c2ΛaΘµa , δΛΘ
µ

a = ΛaVµ −Λb
aΘ
µ

b . (2.7b)

Here, we have introduced the rescaled generators Λa = cΛ0
a, which we take to be finite in the

c→ 0 limit. Next, we expand the rotation and boost parameters using

Λa
b = λ

a
b +O(c2) , Λa = λa +O(c2) . (2.8)

The leading-order Carroll vielbeine coming from the expansion (2.4) then transform as

δλτµ = λaeµ
a , δλeµ

a = λa
beµ

b , δλvµ = 0 , δλθ
µ

a = λavµ −λb
aθ
µ

b . (2.9)

The parameters λa
b correspond to spatial rotations, while λa generate Carroll boosts, and

their indices are raised and lowered using the Kronecker delta. We see that only the timelike
vector vµ and the spatial metric hµν = δabeµ

aeν
b are invariant under boosts, while τµ and

hµν = δabθµaθ
ν

b transform under boosts. In particular, we have

δλhµν = 2λ(µvν) , λµ = hµνλν = θ
µ

aλ
a . (2.10)

Note that the fact that τµ transforms under boosts while vµ does not is compatible with the
fact that τµvµ = −1, since the variation of the latter is λaeµ

avµ = 0.
These local Carroll transformations arise from the c→ 0 limit of the local Lorentz transfor-

mations, and they are a fundamental part of the resulting Carroll geometry. Note that, while
individual tensors such as hµν may transform under Carroll boosts, the combinations that arise
from limits of Lorentz-boost invariant quantities will be Carroll-boost invariant. Finally, we re-
mark that the Carroll vielbeine and their transformations can also be obtained by gauging the
Carroll algebra [27].

At higher orders in c2, additional vielbein variables and additional local symmetry trans-
formations arise. In the non-relativistic expansion, the leading-order fields describe Newton–
Cartan geometry with local Galilean symmetry. Including the fields at next-to-leading order
defines what is known as type II torsional Newton–Cartan geometry (see Section 2 of [6]).
Likewise, the additional variables and transformations that arise at higher orders in the ultra-
local expansion can be interpreted as additional fields. In the following, we will mainly be
concerned with the leading-order Carroll geometry, and we also explore parts of its next-to-
leading-order corrections. However, the systematics of our ultra-local expansion can in prin-
ciple be extended to any order.
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2.3 Carroll-compatible connection

As we have seen in the above, Carroll metric variables arise from the leading order of the
ultra-local expansion of a Lorentzian metric. We now introduce a convenient connection that
is compatible with the Carroll variables.

In Equation (2.9), we saw that the timelike vector vµ and the spatial metric hµν are in-
variant under local Carroll boosts, but their inverses τµ and hµν are not. For this reason,
the requirement that the covariant derivative of τµ and hµν vanishes would not be a boost-
invariant statement in general Carroll backgrounds. It is therefore more appropriate to work
with a connection Γ̃ρµν such that only vµ and hµν are covariantly constant with respect to the
associated covariant derivative,

∇̃µvν = 0 , ∇̃ρhµν = 0 . (2.11)

As we will see shortly, such a connection typically has non-zero torsion, and therefore it cannot
arise out of an expansion of the Levi-Civita connection that is commonly used in Lorentzian
geometry. One way to obtain a connection satisfying (2.11) at leading order is to introduce
a different connection C̃ρµν which satisfies similar requirements in terms of the PUL variables
already before the ultra-local expansion,

(C̃)

∇µV ν = 0 ,
(C̃)

∇ρΠµν = 0 . (2.12)

Such a connection is not particularly natural from the point of view of Lorentzian geometry,
since the PUL vielbeine still transform under the usual Lorentz boosts (2.6). Instead, it serves
to accommodate the Carroll structure that arises as a result of the expansion. This mirrors the
Galilean-compatible PNR connection that was considered for the non-relativistic expansion
in Section 2.1 of [6], see also [77] for a discussion from the perspective of the first-order
formulation of gravity.

The conditions (2.12) do not fully determine the connection. As we discuss in Appendix B,
a convenient choice is given by

C̃ρµν = −Vρ∂(µTν) − VρT(µLV Tν) +
1
2
Πρλ

�

∂µΠνλ + ∂νΠλµ − ∂λΠµν
�

−ΠρλTνKµλ . (2.13)

Here, Kµν = −1
2LVΠµν is the extrinsic curvature. Note that this is a symmetric and purely

spatial tensor, since VµKµν = 0. At leading order, it leads to a Carroll-compatible connection
satisfying (2.11),

Γ̃ρµν = C̃ρµν

�

�

�

c=0
= −vρ∂(µτν) − vρτ(µLvτν) +

1
2

hρλ
�

∂µhνλ + ∂νhλµ − ∂λhµν
�

− hρλτνKµλ ,

(2.14)

where Kµν = −
1
2Lvhµν is the extrinsic curvature at leading order, which is also purely spatial,

since it satisfies vµKµν = 0. This connection, which previously appeared in [29], is our pre-
ferred connection to describe the Carroll geometry that arises at leading order in the ultra-local
expansion of general relativity. It is a special case of the general class of Carroll connections
satisfying the compatibility requirements (2.11), which was determined in [27,29].

In the next section, we will relate the PUL connection C̃ρµν and its curvature to the Levi-
Civita connection and its curvature. For that, it is convenient to list some properties of the PUL
connection. The equivalent expressions for the Carroll connection Γ̃ρµν can be easily obtained
by expanding to leading order using (2.4). The torsion of the PUL connection is

2C̃ρ[µν] = 2ΠρλT[µKν]λ , (2.15)
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which is generically nonzero. The non-zero PUL metric covariant derivatives are

(C̃)

∇µTν =
1
2

Tµν − T(µLV Tν) =
1
2

Tµν − VρTρ(µTν) , (2.16a)

(C̃)

∇ρΠµν = −V (µΠν)σTσλ
�

δλρ − VλTρ
�

, (2.16b)

where we have defined Tµν = 2∂[µTν]. Note that the trace of the PUL connection is

C̃ρρν = −Vρ∂νTρ +
1
2
Πρλ∂νΠρλ − TνK =

1
E
∂νE − TνK , (2.17)

where E = det(Tµ, Eµ
a) is the vielbein determinant andK = ΠµνKµν is the trace of the extrinsic

curvature. This means that we can write a divergence containing this covariant derivative as
a total derivative plus a term proportional to the extrinsic curvature,

(C̃)

∇µXµ = ∂µXµ + C̃ρρνX ν =
1
E
∂µ (EXµ)−KTµXµ . (2.18)

This allows us to simplify such divergences inside a spacetime integral,
∫

M

(C̃)

∇µXµ E dd+1 x ≈ −
∫

M
KTµXµ E dd+1 x , (2.19)

which holds up to boundary terms (denoted using ≈). We will return to a careful study of
such boundary terms and use them to define conserved charges in Section 4.2.

2.4 Decomposition of Levi-Civita connection and curvature

Our next goal is to show how our Carroll-compatible connection Γ̃ρµν defined in Equation (2.14)
arises from the Levi-Civita connection of general relativity. First, using the PUL decomposi-
tion (2.1), the Levi-Civita connection Γρµν can be written as

Γρµν =
1
2

gρλ
�

∂µgνλ + ∂νgλµ − ∂λgµν
�

(2.20)

=
1
c2

(−2)

Cρµν + C̃ρµν + Sρµν + c2
(2)

Cρµν . (2.21)

Note that we have not yet performed an expansion in c2 yet. We have merely collected all

terms that scale as 1/c2 or c2 into the tensors
(−2)

Cρµν and
(2)

Cρµν, respectively. Additionally, we have
introduced a ‘shift’ tensor Sρµν that is tuned to produce our PUL connection C̃ρµν at level zero.
These terms are given by

(−2)

Cρµν = −VρKµν , (2.22a)

Sρµν = Π
ρλTνKµλ , (2.22b)

(2)

Cρµν = −T(µΠ
ρλ (dT )ν)λ . (2.22c)

Using this decomposition, any term involving the Levi-Civita covariant derivative can be rewrit-
ten into an expression involving the PUL covariant derivative.

In the following section, we will study the expansion of the action and the equations of
motion of general relativity. To prepare for this, we now show how the Ricci tensor of the
Levi-Civita connection can be decomposed in terms of PUL variables following (2.21),

Rµν = −∂µΓρρν + ∂ρΓ
ρ
µν − Γ

ρ

µλ
Γλρν + Γ

ρ

ρλ
Γλµν (2.23)

=
1
c4

(−4)

Rµν +
1
c2

(−2)

Rµν +
(0)

Rµν + c2
(2)

Rµν + c4
(4)

Rµν . (2.24)
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Again, we have only collected terms that scale equally in c2, without expanding the individual
tensors. The terms in this decomposition are given by

(−4)

Rµν = 0 , (2.25a)
(−2)

Rµν =
(C̃)

∇ρ
(−2)

Cρµν − 2C̃λ[µρ]
(−2)

Cρ
λν
− Sρ

µλ

(−2)

Cλρν + Sρ
ρλ

(−2)

Cλµν , (2.25b)
(0)

Rµν =
(C̃)

Rµν +
(C̃)

∇ρSρµν −
(C̃)

∇µSρρν − 2C̃λ[µρ]S
ρ

λν
−

(−2)

Cρ
µλ

(2)

Cλρν −
(2)

Cρ
µλ

(−2)

Cλρν , (2.25c)
(2)

Rµν =
(C̃)

∇ρ
(2)

Cρµν − 2C̃λ[µρ]
(2)

Cρ
λν
−

(2)

Cρ
µλ

Sλρν , (2.25d)
(4)

Rµν = −
(2)

Cρ
µλ

(2)

Cλρν . (2.25e)

Note that the terms Sρ
µλ

Sλρν and Sρ
ρλ

Sλµν at order c0 vanish identically. Here,
(C̃)

∇ denotes the

PUL covariant derivative and
(C̃)

Rµν denotes its Ricci tensor. We can decompose the Levi-Civita
Ricci scalar in a similar way,

R=
�

−
1
c2

VµV ν +Πµν
�

Rµν (2.26)

= −
1
c4

VµV ν
(−2)

Rµν +
1
c2

�

−VµV ν
(0)

Rµν +Π
µν
(−2)

Rµν
�

− VµV ν
(2)

Rµν +Π
µν

(0)

Rµν + c2
�

−VµV ν
(4)

Rµν +Π
µν

(2)

Rµν
�

. (2.27)

Several of these terms simplify significantly once the expressions (2.25) are inserted. In partic-

ular, the VµV ν projection of the Ricci tensor
(C̃)

Rµν associated to C̃ρµν vanishes due to its metric-
compatibility, see Equation (A.12a).

2.5 Spatial hypersurfaces and projected connection

When constructing concrete solutions to the theories we will obtain in the following section, it
will often be useful to specialize to a spatial hypersurface. However, as it stands, this concept
is not well-defined in a Carroll manifold. The reason for this is that we can currently only
define spatial covectors but not spatial vectors,

vµXµ = 0 , (2.28)

since τµY µ is generically not boost-invariant. For this reason, Carroll geometry naturally in-
duces a fiber bundle structure on the spacetime manifold, where the worldlines of vµ are the
one-dimensional fibers, as emphasized in [39]. The horizontal sections of this fiber bundle
then correspond to spatial submanifolds, which is equivalent to choosing an integrable Ehres-
mann connection. The freedom of choice in the Ehresmann corresponds to the transformation
of τµ under local Carroll boosts.

To define a spatial hypersurface, we must therefore specialize to a particular boost frame.
This is in contrast to Newton–Cartan geometry, where the Galilei boosts leave τµ invariant and
the natural spacetime fibration is one of spatial hypersurfaces instead of time lines. As we will
see, in Carroll geometry, we can frequently perform our spatial hypersurface computations in
one such boost frame and subsequently extrapolate to frame-independent quantities on the
entire spacetime.

For this, we choose coordinates xµ = (t, x i) such that the Carroll boost-invariant vector
field vµ is parallel to a coordinate vector, where i = 1, . . . , d. It will be useful to allow for a
‘lapse’ function α, so that we have

vµ∂µ = α
−1∂t . (2.29)
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In these coordinates the one-form τµ can be decomposed as

τµd xµ = −αd t + bid x i , (2.30)

where bi corresponds to the Ehresmann connection in [39]. In this coordinate frame, the local
Carroll boost transformations (2.9) act by shifting bi → bi + λi , corresponding to a different
choice of Ehresmann connection. Using the gauge freedom afforded by the boost transforma-
tions, we can therefore always at least locally go to an equivalent frame where bi = 0. In
this boost frame, the tangent subspace defined by the kernel of τµ can be integrated to a spa-
tial foliation given by constant t-slices. The integrability of the spatial slices is also reflected
by the fact that its defining one-form τµ then satisfies the Frobenius condition τ ∧ dτ = 0.
Consequently, in this frame, the Carroll metric data is given by

vµ∂µ = α
−1∂t , τµd xµ = −αd t , (2.31a)

hµνd xµd xν = hi jd x id x j , hµν∂µ∂ν = hi j∂i∂ j , (2.31b)

so that hi j is a Riemannian metric on the spatial hypersurfaces, with hi j as its inverse.
Additionally, we can define the spatial and temporal projectors as

hµν = hµρhρν , −vµτν . (2.32)

Using these, we can define a projected covariant derivative on the spatial slices,

∇̂ρXµ1...µl
ν1...νk = hγρhα1

µ1
. . . hαl

µl
hν1
β1

. . . hνk
βk
∇̃γXα1...αl

β1...βk . (2.33)

This projected covariant derivative acts on spatial tensors and can therefore be understood as
an intrinsic operator on the spatial slices. A small calculation shows that it is compatible with
the spatial projector,

∇̂ρhµν = hµαhβνhγρ∇̃γ
�

hαλhλβ
�

= hµαhνλhγ
β

�

−v(αhλ)στσκ
�

δκγ − vκτγ
��

= 0 , (2.34)

so that we can consistently contract spatial indices inside the derivative. Here, we have de-
fined τµν = 2∂[µτν] and we have used the fact that hµρhνστρσ = 0, which follows from the
Frobenius condition. Next, one can show that the projected covariant derivative is torsionless
and compatible with the spatial metric and its inverse,

[∇̂µ, ∇̂ν] f = 0 , ∇̂ρhµν = ∇̂ρhµν = 0 , (2.35)

where f is a scalar function. This implies that the projected connection is the Levi-Civita
connection constructed from the spatial metric.

The equivalent of the Gauss equation then allows us to write its curvature in terms of the
spacetime curvature,

R̂µνρ
σ = hαµhβνhγρhσδ R̃αβγ

δ . (2.36)

Finally, one can show that the Ricci tensor of the projected connection is related to the space-
time Ricci tensor by

R̂µν = hαµhβν R̃αβ + ∇̂µaν + aµaν , (2.37)

where aµ = Lvτµ = vντνµ is the acceleration one-form. Using these equations, the curvature
tensors that enter in our actions for Carroll gravity below can be related to the induced curva-
ture tensors on spatial slices. Although such spatial slices are not a boost-invariant notion in
Carroll geometry, we will see in Section 4 below that the resulting equations can be a useful
tool for constructing solutions from which we can subsequently reconstruct a boost-invariant
Carroll geometry.
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3 Carroll gravity from expanding general relativity

We now have all the ingredients needed to develop a systematic and covariant ultra-local ex-
pansion of general relativity. First, using the results from the previous section, we rewrite the
Einstein–Hilbert action in terms of the pre-ultra-local (PUL) variables. Next, we can expand
the resulting PUL action to a particular order in c2 in terms of the leading-order Carroll vari-
ables and their subleading corrections. In the following, we mainly focus on the leading-order
theory, but we also consider a subsector of the next-to-leading order theory. Next, we show
that these theories are equivalent to the ‘electric’ and ‘magnetic’ limits discussed in [21, 47],
providing for the first time a covariant description of the latter using our Lagrangian perspec-
tive. Finally, we note a useful analogy between the resulting equations of motion and the
constraint and evolution equations appearing in the 3+1 decomposition of general relativity.

3.1 ‘Pre-ultra-local’ Einstein–Hilbert action

Using the expression (2.27) for the Levi-Civita Ricci scalar, we can rewrite the Einstein–Hilbert
action in terms of the PUL variables as follows,

SEH =
c3

16πG

∫

M
R
p

−g dd+1 x (3.1)

≈
c2

16πG

∫

M

�

�

KµνKµν −K2
�

+ c2Πµν
(C̃)

Rµν +
c4

4
ΠµνΠρσ (dT )µρ (dT )νσ

�

E dd+1 x , (3.2)

which holds up to boundary terms. The PUL parametrization (3.2) puts the Einstein–Hilbert
action in a form that prepares it for the ultra-local expansion. Performing this expansion, we
obtain a series of actions describing covariant theories of dynamical Carroll geometry plus
subleading corrections,

SEH = c2
(2)

SLO + c4
(4)

SNLO +O(c6) . (3.3)

At leading order (LO), we find a theory with local Carroll symmetry. Each subsequent step
in the expansion adds additional fields and interpolates further between the Carroll-invariant
theory at LO and the full relativistic Einstein–Hilbert theory.

3.2 Leading-order and next-to-leading-order theory

Using the expansion of the PUL variables in (2.4), we see that the LO term coming from the
PUL Einstein–Hilbert action is given by

(2)

SLO =
1

16πG

∫

M

�

KµνKµν − K2
�

e dd+1 x , (3.4)

where e = det(τµ, eµ
a) is the Carroll-invariant vielbein determinant. Note that this action

depends only on the extrinsic curvature Kµν = −
1
2Lvhµν and not on the curvature R̃ρµνσ as-

sociated to the LO Carroll connection Γ̃ρµν. This action was previously obtained from a ‘zero
signature’ limit in the Hamiltonian formulation of GR [23], which has recently been revisited
as an ‘electric’ Carroll limit of general relativity [47]. We will return to the corresponding
‘magnetic’ limit and its relation to our expansion below. Additionally, a class of actions includ-
ing (3.4) have been obtained from gauging the Carroll algebra [27]. Here, we see that the
action (3.4) is the natural starting point in an ultra-local expansion of general relativity.

To study its dynamics, we can vary the LO action (3.4) with respect to vµ and hµν,

δ
(2)

SLO ≈
1

8πG

∫

M

�

(2)

Gv
µδvµ +

1
2

(2)

Gh
µνδhµν

�

e dd+1 x , (3.5)
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which leads to the LO equations of motion
(2)

Gv
µ = 0 and

(2)

Gh
µν = 0. They are given by

(2)

Gv
µ = −

1
2
τµ
�

KρσKρσ − K2
�

+ hνρ∇̃ρ
�

Kµν − Khµν
�

, (3.6a)

(2)

Gh
µν = −

1
2

hµν
�

KρσKρσ − K2
�

+ K
�

Kµν − Khµν
�

− vρ∇̃ρ
�

Kµν − Khµν
�

. (3.6b)

Note that we have varied with respect to hµν, which transforms under boosts, but the resulting

Ward identity vµ
(2)

Gh
µν = 0 guarantees that this is not a problem. Using the variables (vµ, hµν)

has the advantage that it fully specifies the inverse pair (τµ, hµν) at the price of boost trans-
formations, whereas the pair (τµ, hµν) cannot be solved from (vµ, hµν) since the latter two
are boost-invariant. We have chosen the above since we want to keep boost transformations
explicit in most of the following.

In contrast to the LO action in the non-relativistic expansion (see Equation (3.9) of [6]),
which only serves to impose a foliation-preserving condition on the leading-order Newton–
Cartan variables, this action already contains non-trivial physical solutions, which we will
study in more detail in Section 4. Indeed, looking at the PUL parametrization (3.2) of the
Einstein–Hilbert action, we see that these solutions probe the ‘kinetic’ terms of the relativistic
Lagrangian at order c2, rather than the ‘foliation’ terms at order c6. One of the virtues of
studying the ultra-local expansion is that it allows us to explore different parts of the full
relativistic theory in a more controlled setting.

Interpretation as constraint and evolution equations

Before proceeding to the NLO theory, it is instructive to rewrite the LO equations (3.6) using
the natural split between time and space that appears in the Carroll geometry. Projecting
out the time and space components of each equation using vµ and hµν, we see that the time

component of
(2)

Gh
µν vanishes. The remaining three sets of equations can then be written as

KµνKµν − K2 = 0 , (3.7a)

hρσ∇̃ρ(Kσµ − Khσµ) = 0 , (3.7b)

LvKµν = −2Kµ
ρKρν + KKµν . (3.7c)

To get to the third equation, we used (3.7a) and exchanged the time derivative vρ∇̃ρ for a Lie
derivative using the formula (A.6) applied to our connection (2.14).

In the form (3.7), the LO equations of motion are strongly reminiscent of the 3+1 decom-
position of the Einstein equation. The first two equations (3.7a) and (3.7b) can be interpreted
as constraint equations, meaning that they can be checked on a single ‘equal-time slice’ in the
sense of Section 2.5, and they restrict what kind of initial data (hµν, Kµν) on such a slice is
valid. Given such initial data, Equation (3.7c) and the definition Kµν = −

1
2Lvhµν of the ex-

trinsic curvature then dictate its evolution along the ‘time’ direction defined by the vector field
vµ.

Remarkably, in contrast to the 3+1 decomposition of the Einstein equations, the right-hand
side of (3.7c) contains no spatial derivatives. Thus, starting from a point on an equal-time slice,
the evolution of the initial data along vµ depends only on the value of the extrinsic curvature
and spatial metric at that particular point. This reflects the intuition that, in the ultra-local
Carroll limit, the light cone collapses to a line, and causal evolution proceeds independently
on distinct integral lines of vµ. As a result, using adapted coordinates, the initial-value problem
is simplified from a highly non-trivial PDE in general relativity to an integrable ODE. (A similar
observation was made by Dautcourt in [24].) We discuss this in more detail in Section 4.1,
where we analytically solve for the time evolution of arbitrary initial data. Additionally, in
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(2)

Gh
µν

(2)

Gv
µ

(4)

GΦµν
(4)

Gh
µν

(4)

Gv
µ

(4)

GM
µ

= =

Figure 1: The ultra-local c2 expansion of the Einstein–Hilbert action leads to two new
equations of motion for each order in the expansion. Every order also contains the
equations of the preceding order, which is illustrated up to NLO above [6,78,79].

Section 4.3, we adapt well-known methods for constructing relativistic initial data from the
3+1 formalism to construct non-trivial solutions for our LO Carroll theory.

Next-to-leading-order theory

Following the general procedure developed for the non-relativistic Galilei 1/c2 expansion in [6,
78], the NLO action in the ultra-local Carroll c2 expansion (3.3) of GR is

(4)

SNLO =
1

16πG

∫

M

�

hµνR̃µν + 2
(2)

Gv
µMµ +

1
2

(2)

Gh
µνΦ

µν

�

e dd+1 x . (3.8)

Here, Mµ and Φµν are the NLO variables appearing in the expansion (2.4) of the PUL variables
Vµ and Πµν. The equations of these subleading variables are equal to the equations of mo-
tion (3.6) of the corresponding LO variables vµ and hµν in the LO action (3.4). For this reason,
the NLO action (3.8) contains all dynamics associated to the LO action. This is illustrated in
Figure 1.

In addition, the NLO action leads to a more complicated set of equations of motion for
the LO variables vµ and hµν. In particular, these equations now involve variations of the Ricci
curvature R̃µν that was missing from the LO action (3.4), which allow the theory to support
massive solutions, as we will show in Section 4.4. For this, we only need a subsector of the
NLO equations of motion, and we leave the study of the full NLO theory to future work.

3.3 Truncation and relation to ‘magnetic’ Carroll gravity

As a first step in studying the dynamics of the NLO action (3.8), we can consider a truncation
of the theory where the NLO fields Mµ and Φµν are set to zero by hand:

(4)

SNLO

�

�

�

Mµ=Φµν=0
=

1
16πG

∫

M
hµνR̃µν e dd+1 x . (3.9)

This truncation no longer reproduces the equations of motion of the LO theory. However, the
resulting equations of motion for the remaining variables vµ and hµν are significantly simpler
than those of the full NLO action. Up to boundary terms, we get

δ
(4)

SNLO

�

�

�

Mµ=Φµν=0
≈

1
8πG

∫

M

�

(4)

Gv
µδvµ +

1
2

(4)

Gh
µνδhµν

�

�

�

�

�

Mµ=Φµν=0
e dd+1 x , (3.10)
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where the truncated NLO equations of motion are given by

(4)

Gv
µ

�

�

�

Mµ=Φµν=0
= τµhρσR̃ρσ +

1
2

hνσhλµτνλvκτκσ − ∇̃ν
�

hνστµσ
�

, (3.11a)

(4)

Gh
µν

�

�

�

Mµ=Φµν=0
= R̃(µν) −

1
2

hµνh
σρR̃σρ + 2Kvκτκ(µτν) +τσρK(µ

σ
�

vρτν) −δ
ρ

ν)

�

(3.11b)

− ∇̃λ
�

Khλ(µτν) − Kλ(µτν) −
1
2

hµνh
λγvκτκγ

�

.

Note that solutions of these equations are only solutions of the full NLO equations if they also
satisfy the LO equations of motion, which are not contained in the truncated action (3.9).
As we show in Section 4.4, the presence of the curvature terms in (3.11) allows us to obtain
massive solutions. Such terms are absent from the LO theory and first appear at NLO. Next,
we consider a further simplification of the NLO theory.

Relation to ‘magnetic’ Carroll limit of general relativity

In recent work, ‘electric’ and ‘magnetic’ Carroll limits of field theories and gravity were studied
from a Hamiltonian perspective in [47] and also for field theories from a Lagrangian perspec-
tive in [21]. This terminology is motivated by the two distinct Carroll limits of electromag-
netism that retain the electric and magnetic sectors, respectively [26]. We can now complete
this picture by proposing a Lagrangian approach to both the electric and the magnetic limit of
limits gravity in terms of our general c2 expansion, following the suggestion of [21].

As we have already remarked above, our LO theory (3.4) agrees with the electric limit of
gravity that was obtained in [47] and also earlier in [23]. This theory describes the dominant
dynamics of gravity in the c→ 0 ultra-local Carroll limit.

Next, to connect to the magnetic limit, we rewrite the PUL form of the Einstein–Hilbert
action (3.2) as follows,

S =
c4

16πG

∫

M

�

−
c2

4
Gµνρσχµνχρσ + GµνρσχµνKρσ (3.12)

+Πµν
(C̃)

Rµν +
c2

4
ΠµνΠρσ (dT )µρ (dT )νσ

�

E dd+1 x .

Here, we have introduced an auxiliary symmetric spatial tensor χµν, i.e. Vµχµν = 0. In addi-
tion, we introduced the DeWitt metric and its inverse,

Gµνρσ =
1
2
(ΠµρΠνσ +ΠµσΠνρ − 2ΠµνΠρσ) , (3.13a)

Gµνρσ =
1
2

�

ΠµρΠνσ +ΠµσΠνρ −
2

d − 1
ΠµνΠρσ

�

. (3.13b)

Note that these tensors satisfy GµνκλGκλρσ = Πρ(µΠ
σ
ν), where Πµν = δ

µ
ν + VµTν. Integrating

out χµν, we see that this action is equivalent to the PUL Einstein–Hilbert action (3.2). On the
other hand, taking c→ 0 in (3.12) leads to the action

(4)

Smag =
1

16πG

∫

M

�

φµνKµν + hµνR̃µν
�

e dd+1 x , (3.14)

where we have introduced φµν = Gµνρσχρσ. This action is invariant under Carroll boosts
provided φµν transforms as

δλφ
µν = 2

�

−hµνλρτρσvσ + hρ(µλν)τρσvσ − hρ(µ∇̃ρλν) + hµνhρσ∇̃ρλσ
�

. (3.15)
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Note that a similar Carroll-invariant theory of gravity was previously introduced from a first-
order perspective in [30]. As we will now show, the action (3.14) is equivalent to the magnetic
limit of general relativity proposed in [47]. On the one hand, the field φµν plays the role of
a Lagrange multiplier imposing the constraint Kµν = 0. On the other hand, in a Hamiltonian
analysis, it can be interpreted as the momentum dual to hµν, since only the first term of our
magnetic action contains time derivatives. The remaining equations of motion, coming from
vµ and hµν, are given by

0= ∇̃ρφρµ − vρτρνφ
ν
µ +τµhρσR̃ρσ +

1
2

hνσhλµτνλvκτκσ − ∇̃ν
�

hνστµσ
�

, (3.16a)

0= −
1
2

vρ∇̃ρφµν + R̃µν −
1
2

hµνh
σρR̃σρ +

1
2

hµν∇̃λ(hλγvκτκγ) . (3.16b)

Note that the Ricci tensor R̃µν is symmetric once we impose the constraint Kµν, see Equa-
tion (A.14). Later on, we will see that these equations allow for solutions with a non-zero
mass, in contrast to the leading-order electric theory. A similar observation was recently made
in an asymptotic symmetry analysis of the magnetic theory [48].

Next, following the discussion in Section 2.5, we can go to a boost frame that allows for a
spatial foliation. In terms of the curvature of the projected derivative (2.33), the spatial and
temporal projections of the equations of motion (3.16) are then given by

0= hµνR̂µν , (3.17a)

0= ∇̂νφνµ , (3.17b)
1
2
Lvφµν = R̂µν − ∇̂(µaν) − aµaν + hµνh

ρσ
�

∇̂(ρaσ) + aρaσ
�

. (3.17c)

The temporal projection of (3.16b) vanishes. In addition, Kµν = −
1
2Lvhµν = 0 must hold on

all slices. Equation (3.17c) is an evolution equation for φµν, whereas the first two equations
precisely reproduce the two constraint of the Hamiltonian definition of the magnetic theory
that was put forward in [47]. Therefore, following similar constructions in field theory [21],
we can now identify the magnetic limit of general relativity as a truncated sector of the NLO
theory in the ultra-local Carroll expansion.

4 Solutions of LO and NLO theories

Having constructed the LO theory and a subsector of the NLO theory in the ultra-local Car-
roll expansion of general relativity, which we subsequently identified with the electric and
magnetic contractions, we now study solutions of these theories.

As we saw previously, we can split the equations of motion of the LO theory into constraint
and evolution equations. First, starting from arbitrary initial data, we show that we can solve
the evolution analytically, since it reduces to an ODE in suitable coordinates. Next, we adapt
methods from the 3+1 formulation of general relativity and construct a Carroll version of the
Bowen–York initial data. In general relativity, this describes black hole solutions of the con-
straint equations that are parametrized by their mass and their angular and linear momentum.
We construct the analogue of these solutions in the LO Carroll theory and subsequently show
that their momentum parameters correspond to conserved boundary charges.

Finally, we construct solutions with non-zero mass, corresponding to a Carroll limit of the
Schwarzschild metric. Such solutions are absent in the LO theory, as was remarked in [48],
but they can be obtained in the magnetic truncation of the NLO theory. We also incorporate a
cosmological constant in the LO and magnetic theory.
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4.1 Exact evolution of general initial data at LO

We now rewrite the LO evolution equation using the adapted coordinates that were introduced
in Section 2.5. For this, it is convenient to reparametrize the lapse function as α = e−

B
2 . In

these coordinates, the extrinsic curvature and its Lie derivative along vµ then take the following
form,

Ki j = −
1
2
Lvhi j = −

e−
B
2

2
ḣi j , (4.1a)

LvKi j = −
e−B

2

�

ḧi j −
Ḃ
2

ḣi j

�

, (4.1b)

where dots denotes differentiation with respect to the t coordinate. The LO evolution equa-
tion (3.7c) then corresponds to the following ODE,

ḧi j +
1
2

ḣi j(h
kl ḣkl − Ḃ)− ḣikhkl ḣk j = 0 . (4.2)

We can simplify this equation by setting Ḃ = hi j ḣi j , which fixes the gauge freedom in the
lapse function up to an overall shift. Finally, given the initial data hi j(t = 0) = h(0)i j and
Ki j(t = 0) = K(0)i j , the solution to the evolution equation (4.2) is given by

hi j(t) = h(0)ik exp[−2t hkl
(0)K(0)l j] . (4.3)

In this form, the fact that hi j(t) is symmetric is perhaps not obvious, but it follows easily from

the matrix identity AeA−1B = eBA−1
A for square matrices A, B.

Remarkably, we see that the time evolution of arbitrary initial data can be solved analyt-
ically in the LO theory. This corresponds to the intuition that, in the ultra-local Carroll limit,
the domain of dependence shrinks to a line, which trivializes the possible time-dependence
of the theory. Similar results have been obtained in the context of the ‘strong coupling’ limit
of general relativity [80]. Furthermore, this result (as well as the solutions obtained in Sec-
tion 4.3 below) is strongly reminiscent of the Belinski-Khalatnikov-Lifshitz limit of general
relativity [25]. It would be very interesting to further investigate these relations and to see
how subleading corrections modify the possible dynamics that can arise.

4.2 Conserved boundary charges

An important way to characterize solutions in general relativity is by computing their conserved
boundary charges. We can develop a corresponding notion of boundary charges for the Carroll
LO theory governed by the action (3.4). A related asymptotic symmetry analysis was done for
the equivalent electric theory in the Hamiltonian formalism in [48]. Killing vector fields ξµ of
the LO Carroll geometry can be defined as

Lξvµ = 0 , Lξhµν = 0 . (4.4)

The boundary charge associated to such a Carroll Killing vector field ξ can be computed using
the covariant phase space formalism [81, 82] (see also [83]). This formalism allows one to
compute a charge integrand k[µν]

ξ
corresponding to ξ and a variation of the metric data. This

charge integrand can be computed using

k[µν]
ξ
= −δhQµν + 2ξ[µΘν]h , (4.5)
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where δ indicates an on-shell variation of the metric data, Qµν is the Noether-Wald charge and
Θµ is the presymplectic potential. For the LO theory, these are given by

Θµ =
e

8πG

�

(Khµν − Kµν)δvν −
1
2
(Khσρ − Kσρ)v

µδhσρ
�

, (4.6)

Q[µν] =
e

4πG
(v[µKν]σξ

σ − v[µξν]K) . (4.7)

Integrated over a codimension two surface S at infinity, it computes the change in the conserved
charge associated to ξ under the variation of the metric data,

/δHξ =

∫

S
kµν(dd−1 x)µν . (4.8)

The notation /δ indicates that the charge is not necessarily integrable. If it is, we can integrate
along a path in phase space from a reference metric to obtain a finite charge.

In the LO theory, it follows from the charge integrand (4.5) that there can be no non-
zero charge associated to Killing vectors that are proportional to the Carroll vector vµ, which
generates time translations. As a result, there seems to be no notion of mass or energy at the
LO level of the ultra-local expansion of general relativity.

4.3 Bowen–York-type solutions

In the previous section we saw that any initial data can be analytically evolved forward in
time. Hence, we can easily get a complete solution of the LO equations of motion after solving
the constraint equations (3.7a)-(3.7b) to obtain allowed initial data. In the 3+1 formulation
of general relativity, creating initial data is a well-studied subject. Due to the similarities of
the LO constraint equations and the full relativistic constraints, the relativistic methods can be
adapted to the Carroll limit, as we will now demonstrate.

As a first non-trivial set of solutions of the LO constraint equations, we consider a set of
initial data that is similar to the so-called Bowen–York solutions [74] (see also [84]). In general
relativity, this initial data corresponds to a black hole, which is parameterized by its mass and
its linear and angular momenta Pi and Ji . As we will see, only the momenta are retained in
the LO solution we construct.

First, we start from a conformally flat ansatz for the spatial metric data. In general rela-
tivity, the conformal factor is ultimately solved from a non-linear Poisson equation to obtain
the full Bowen–York initial data, which generically has to be done numerically. In contrast,
the simplified form of the constraints that arises from the LO theory can be solved analyti-
cally. Specializing to d = 3, the Carroll LO Bowen–York-type initial data depends on the 7
parameters (K(0), Pi , Ji) and can be written as

h(0)i j =ψ
4δi j , (4.9a)

K(0)i j =ψ
−2 L̄X i j +

1
3

K(0)ψ
4δi j , (4.9b)

where the conformal factor ψ and the conformal Killing derivative L̄X i j are given by

ψ=

�

3
2(K(0))2

L̄X i j L̄X i j

�1/12

, (4.10a)

L̄X i j =
3

2r3

�

x i P j + x j P i −
�

δi j −
x i x j

r2

�

Pk xk

�

(4.10b)

+
3
r5

�

εik
l Jk x l x j + ε jk

l Jk x l x i
�

.
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Here, indices are raised and lowered using δi j , and εi jk is the totally anti-symmetric symbol
in 3 dimensions defined by ε123 = 1. These solutions can be analytically evolved in time
using the general prescription (4.3). We can check that the parameters Pi and Ji are equal to
the charges associated to (asymptotic) translation and rotation symmetry using the boundary
charges (4.8).

4.4 Massive Schwarzschild solutions at NLO

In Section 4.2, we found that there appear to be no massive solutions at LO in the ultra-
local expansion of general relativity. This is rectified at NLO, as we will now show using the
subsector corresponding to the magnetic theory (3.14). For this, we focus on static solutions
with φµν = 0 (and recall that Kµν = 0 in the magnetic theory). Following the discussion in
Section 2.5, we can go to an equal-time slice in a boost frame where the Frobenius condition
τ ∧ dτ = 0 holds. Using the projected covariant derivative ∇̂ and its curvature from (2.33)
and (2.36), the NLO constraint and evolution equations (3.17) can then be written as

hµνR̂µν = 0 , (4.11a)

R̂µν = ∇̂µaν + aµaν , (4.11b)

where aµ = Lvτµ is the acceleration one-form. Sxince there is no evolution, we are left
with constraint equations only. In terms of the parametrization (2.31) with time and space
coordinates xµ = (t, x i), we can relate this acceleration to the lapse α using

aµ = α
−1∇̂µα , aµaν + ∇̂µaν = α

−1∇̂µ∇̂να . (4.12)

As a result, the constraints (4.11) can be written as

∇̂2α= 0 , (4.13a)

R̂i j = α
−1∇̂i∇̂ jα . (4.13b)

To obtain a massive solution, we can specialize to d = 3 and consider a conformally flat metric
hi j = ψ4δi j . Then (4.13a) implies ∂ 2ψ = 0, where ∂ 2 is the flat space Laplacian. From this,
we can obtain the solution

ψ= 1+
M
2r

, α=
M − 2r
M + 2r

, (4.14)

which results in the following static solution of the NLO theory,

vµ∂µ =
M + 2r
M − 2r

∂t , hµνd xµd xν =
�

1+
M
2r

�4

δi jd x id x j . (4.15)

This corresponds to the Carroll limit of the Schwarzschild solution in isotropic coordinates.
Using the spatial curvature terms in (4.11), we see that we can construct massive solutions at
NLO, in accordance with the observations for the magnetic theory in [48].

4.5 Cosmological constant solutions

Finally, we can add a cosmological constant Λ to the PUL Einstein–Hilbert action (3.2),

SΛ =
c4

16πG

∫

dd+1 x E(−2Λ) . (4.16)
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By considering different scalings of Λ in c2, we can introduce a cosmological constant term at
different levels in the expansion. For example, if we consider

Λ=
1
c2

(−2)

Λ+
(0)

Λ+ · · · , (4.17)

we see that
(−2)

Λ appears in the LO theory, while
(0)

Λ appears in the NLO theory, and so on. With

these scalings, we will see that the LO theory requires
(−2)

Λ to be non-negative, while in the

magnetic theory
(0)

Λ can be anything.

Positive cosmological constant solutions of the LO theory

The LO equations of motion (3.7) are modified by the cosmological constant as follows,

KµνKµν − K2 = −2
(−2)

Λ , (4.18a)

hρσ∇̃ρ(Kσµ − Khσµ) = 0 , (4.18b)

LvKµν = −2Kµ
ρKρν + KKµν −

2
d − 1

(−2)

Λhµν . (4.18c)

Following our discussion in Section 4.1, the evolution equation (4.18c) also admits a general
analytic solution. Here, we focus on constructing a particular class of solutions characterized
by uniform expansion. Using the adapted time and space coordinates xµ = (t, x i) from (2.31),
we can consider the initial data

h(0)i j , K(0)i j = −Hh(0)i j , (4.19)

where h(0)i j is an arbitrary d-dimensional Riemannian metric and H is a constant. For this class
of initial data, the constraint (4.18b) is satisfied automatically due to metric-compatibility. The

constraint (4.18a) implies that
(−2)

Λ= d(d−1)H2/2, which is always positive. Finally, with v = ∂t ,
we find that the evolution equation (4.18c) gives

hµν(t) = e2Hth(0)µν , Kµν(t) = −Hhµν(t) . (4.20)

Remarkably, we see that we can find a class of solutions with arbitrary initial metric data h(0)µν
in the presence of a positive cosmological constant at LO. Clearly, not all of these solutions to
the vacuum LO theory can descend from a Carroll limit of vacuum solutions to the Einstein
equation. For the solution (4.20) to be interpreted in the context of an ultra-local expansion,
one would have to add appropriate matter at subleading orders, and the resulting energy-
momentum tensor would have to satisfy the corresponding energy conditions.

As a simple physical example, we can choose the initial spatial metric h(0)i j to be the stan-
dard flat metric δi j in Cartesian coordinates. The LO solution (4.20) can then be interpreted
as a Carroll limit of the de Sitter metric in planar coordinates

ds2 = −c2d t2 + e2Htδi jd x id x j , (4.21)

with the cosmological constant Λ= d(d−1)H2/2c2. For this reason, the positive cosmological
constant solution (4.20) of the LO theory is a natural starting point for exploring the ultra-local
expansion of general relativity in the context of cosmology [21].
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Cosmological constant solutions of the NLO theory

In the presence of a cosmological constant (4.17), the equations of motion (4.11) of the mag-
netic subsector of the NLO theory are modified as follows,

hµν(∇̂µaν + aµaν) = −
2
(0)

Λ

d − 1
, (4.22a)

R̂µν − ∇̂µaν − aµaν =
2
(0)

Λ

d − 1
hµν . (4.22b)

Unlike the LO theory, the magnetic theory can have both positive and negative cosmological
constant. To see this, we consider the (anti-)de Sitter metric in static coordinates,

ds2 = −c2(1− kr2)d t2 + (1− kr2)−1dr2 + r2dΩ2
d−1 , (4.23)

where k = 2Λ/d(d − 1) and dΩ2
d−1 is the round metric on the (d − 1)-sphere. First, note that

the extrinsic curvature of equal t surfaces vanishes, so that we can easily construct a magnetic
limit of the metric in these coordinates. In terms of the adapted coordinates defined in (2.31),
the corresponding Carroll data is parametrized by

α=
p

1− kr2 , hi jd x id x j = (1− kr2)−1dr2 + r2dΩ2
d−1 , (4.24)

which can be checked to satisfy the equations of motion (4.22).

5 Discussion and outlook

In this paper, we have initiated the ultra-local expansion of general relativity (GR). In partic-
ular, we obtained the leading-order (LO) and next-to-leading-order NLO actions in terms of
Carroll geometry and its subleading corrections. We have analyzed the equations of motion
of the LO theory, corresponding to the ‘electric’ Carroll limit of GR, and demonstrated that it
has non-trivial solutions, for which we computed the conserved boundary charges. Further-
more, we have obtained the equations of motion for a subsector of the NLO theory, which
we subsequently identified with the magnetic Carroll limit of GR. In the latter theory, we also
constructed non-trivial solutions related to black holes and (anti-)de Sitter spacetimes.

We conclude by mentioning a number of further directions. First, it would be interesting to
work out the relation between our pre-ultra-local parametrization (as well as the earlier pre-
non-relativistic parametrization) to the 3+1 decomposition of GR in more detail. In particular,
it seems likely that similar methods to the ones we have adapted can be used both to simplify
the non-relativistic expansion and to construct further non-trivial solutions. While we have
obtained the full NLO action, we have only written down its equations of motion for the trun-
cated case where the additional NLO fields are set to zero, which includes the aforementioned
magnetic theory as a subsector. We leave the computation of the NLO equations of motion and
a study of its evolution equation as well as more general solutions to future work. These tech-
niques may also help to clarify the precise connection between the Galilean Newton–Cartan
expansion of GR and the post-Newtonian expansion, which is a subject of ongoing work.

Next, as we briefly mentioned earlier, there appears to be a close connection to work on
the strong coupling or gradient expansion of general relativity. The leading-order notion of
geometry that arises in this approach was related to Carroll symmetry in [42]. Additionally,
the exact evolution and the solutions to the constraint equations of our LO theory appear to
be similar to results that have been obtained in [80]. Finally, there also appears to be a strong
connection between our results for the LO theory and the Belinski-Khalatnikov-Lifshitz (BKL)
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near-singularity limit of general relativity [25]. It would be very interesting to explore these
connections further. Using our systematic covariant Carroll expansion it would for example be
feasible to explore subleading corrections to the BKL limit coming from the full NLO theory.

Another important direction will be to examine the coupling of matter to the Carroll ex-
pansion of GR, mimicking the corresponding study for non-relativistic gravity in [77], by an-
alyzing the small c expansion of matter actions on general backgrounds. One can then apply
this expansion to specific cases, such as probe particles and different types of matter. It would
be interesting to use our results to study cosmological perturbations, following the relation
between Carroll symmetry and cosmology identified in [21].

Carroll geometry is also relevant to flat-space holography, as well the membrane paradigm
of black hole horizons. One could wonder whether the Carroll expansion examined in this
work can provide further insights into these connections. Finally, in view of the relevance of
different types of Newton–Cartan geometries in non-relativistic string theory (see for example
Refs. [15–17, 85]), a further investigation into how strings probe a target spacetime Carroll
geometry, and more generally the geometry obtained from Carroll expansions, could teach us
more about novel corners of string theory.3
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A Conventions and useful identities

Our spacetime dimension is d + 1 and we use the following sets of indices:

• µ,ν,ρ, . . . for spacetime coordinate indices, µ= 0,1, . . . , d.

• i, j, k, . . . for spatial coordinate indices, i = 1, . . . , d.

• A, B, C , . . . for spacetime frame indices, A= 0,1, . . . d.

• a, b, c, . . . for spatial frame indices, a = 1, . . . d.

A.1 Curvatures of general connections

For a general covariant derivative ∇µ with connection coefficients Γρµν, we define the corre-
sponding Riemann curvature tensor Rµνρ

σ and torsion tensor Tρµν through its action on a
generic vector Xµ and a co-vector ωµ,

[∇µ,∇ν]Xρ = −Rµνσ
ρXσ − Tσµν∇σXρ , (A.1a)

[∇µ,∇ν]ωρ = Rµνρ
σωσ − Tσµν∇σωσ . (A.1b)

3See [53,68,69] for recent work on Carroll symmetry in string theory.
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This corresponds to the conventions

Rµνσ
ρ = −∂µΓρνσ + ∂νΓ

ρ
µσ − Γ

ρ

µλ
Γλνσ + Γ

ρ

νλ
Γλµσ , (A.2)

Tρµν = 2Γρ[µν] . (A.3)

The Riemann tensor satisfies the Bianchi identity,

R[µνσ]
ρ = Tλ[µνTρσ]λ −∇[µTρνσ] . (A.4)

We define the Ricci tensor as the contraction Rµν = Rµρν
ρ. For connections where the trace of

the connection coefficients is a total derivative Γσµσ = ∂µ f , one can show that the antisymmetric
part of the Ricci tensor is given by

2R[µν] = −2Tλσ[µTσν]λ + TλµνTσλσ +∇µTσνσ −∇νTσµσ +∇σTσµν . (A.5)

Lie derivatives can be written in terms of a general torsionful connections using

LξXµ1...µk
ν1...ν` = ξ

λ∇λXµ1...µk
ν1...ν` (A.6)

−∇λξµ1 Xλµ2...µk
ν1...ν` − . . .− ξσTµ1

σλXλµ2...µk
ν1...ν` − . . .

+∇ν1
ξλXµ1...µk

λν2...ν` + . . .+ ξσTλσν1
Xµ1...µk

λν2...ν` + . . . ,

which reduces to the familiar expression for vanishing torsion.

A.2 Properties of the Γ̃ connection

Following the discussion in Appendix B, we consider the Carroll-compatible connection

Γ̃ρµν = −vρ∂(µτν) − vρτ(µLvτν) (A.7)

+
1
2

hρλ
�

∂µhνλ + ∂νhλµ − ∂λhµν
�

− hρλτνKµλ .

The corresponding covariant derivative of the Carroll metric variables gives

∇̃ρvµ = 0 , (A.8a)

∇̃µτν =
1
2
τµν − vρτρ(µτν) , (A.8b)

∇̃ρhµν = 0 , (A.8c)

∇̃ρhµν = v(µhν)σ(δγρ −τρvγ)τγσ , (A.8d)

where τµν = 2∂[µτν]. This connection satisfies the following total derivative identities,

∂µ(eXµ) = e(∇̃µXµ +τµXµK) , (A.9a)

∂ν(eQ[µν]) = e(∇̃νQ[µν] +τσKµρQ[σρ] + KτνQ
[µν]) , (A.9b)

where the measure e is defined as

e =
q

det(τµτν + hµν) = det(τµ, eµ
a) . (A.10)

The torsion of this connection is

T̃ρµν = 2Γ̃ρ[µν] = 2hρλτ[µKν]λ . (A.11)
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From the Carroll metric-compatibility (A.8a) and (A.8c), one can derive the following identities
for the associated Riemann tensor,

R̃µνσ
ρvσ = 0 , (A.12a)

R̃µνσ
λhλρ + R̃µνρ

λhλσ = 0 . (A.12b)

Finally, it can be shown that the trace of the connection is a total derivative

Γ̃ρµρ = ∂µ log e , (A.13)

which enables one to determine the antisymmetric part of the Ricci tensor,

R̃[µν] = ∇̃[µ(τν]K) + ∇̃ρ(τ[µKρν]) . (A.14)

This implies in particular that the Ricci tensor is symmetric if the extrinsic curvature Kµν van-
ishes, which is relevant in the ‘magnetic’ theory considered in the main text.

B Frame derivation of Carroll-compatible connection

We now give a detailed derivation of the Carroll-compatible connection Γ̃ρµν that was intro-
duced in Section 2.3. For this, we first translate the consequences of the ‘pre-ultra-local’ (PUL)
parametrization of the metric to frames, following the analogous Galilean discussion in [77].
This frame perspective then gives us a concise approach to Carroll-compatibility, which can
subsequently be translated back to the tangent bundle.

B.1 Pre-ultra-local decomposition in frames

Recall that the Lorentzian metric gµν and its inverse can be described using a set of vielbeine
and their inverses. These are one-forms and vector fields in the tangent bundle respectively,
which can be written as

EA = Eµ
Ad xµ , ΘA = Θ

µ
A∂µ . (B.1)

Here, the frame indices are A = 0, 1, · · · , d, where (d + 1) is the spacetime dimension. The
vielbeine can be chosen such that the metric and its inverse are given by

gµν = ηAB Eµ
AEν

B , gµν = ηABΘµAΘν
B . (B.2)

In our conventions, the frame bundle metric ηAB = diag(−1, 1, · · · , 1) and its inverse do not
contain any explicit factors of c. The pre-ultra-local (PUL) decomposition (2.1) of the tangent
bundle metric, which we repeat here for convenience,

gµν = −c2TµTν +Πµν , gµν = −
1
c2

VµV ν +Πµν , (B.3)

then corresponds to the following decomposition of the frame metric,

ηAB = −tAtB + sAB , ηAB = −tAtB + sAB . (B.4)

Here, tAtB is a rank 1 matrix corresponding to the timelike direction, while the rank d matrix
sAB singles out the spacelike directions. Mirroring Equations (2.2) and (2.5), these tensors
satisfy the following orthonormality and completeness relations,

tAtA = −1 , tAsAB = 0 , sAB tB = 0 , δA
B = −tAtB + sAC sCB . (B.5)
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It is convenient to choose an orthonormal basis in the frame bundle such that

tA = δ
0
A , tA = −δA

0 , sAB = δ
a
Aδ

b
Bδab , sAB = δA

aδ
B
bδ

ab , (B.6)

which splits the indices A = (0, a) in a time index 0 and d space indices a. We can then use
the Kronecker deltas δab and δab to raise and lower spacelike indices.

Next, we use these adapted coordinates to split the vielbeine (B.1) into spatial and temporal
components, which allows us to define the PUL vielbeine as

tAEµ
A = c Tµ , δa

B Eµ
B = Eµa , tAΘµA = −

1
c

Vµ , δB
aΘ

µ
B = Θ

µ
a . (B.7)

As a result, following the decomposition (B.4) of the frame bundle metric, the tangent bundle
metric and its inverse can be written as

gµν = (−tAtB + sAB)Eµ
AEν

B = −c2TµTν +δabEµaEνb , (B.8a)

gµν = (−tAtB + sAB)ΘµAΘ
ν
B = −

1
c2

VµV ν +δabΘµaΘ
ν

b . (B.8b)

With Πµν = δabEµaEνb and Πµν = δabΘµaΘ
ν

b, this reproduces the decomposition (B.3).
On a Lorentzian manifold, the vielbeine transform under local Lorentz transformations,

corresponding to the local Lorentz symmetry algebra of spacetime. Typically, such Lorentz
transformations will not preserve the decompositions (B.3) or (B.4) of the tangent or frame
bundle metric. Instead, these decompositions are adapted to the local Carroll transformations
that appear at leading order in the small c expansion, as we discussed in Section 2.2.

B.2 Carroll-compatible connection

Recall that a tangent bundle connection Γρµν can be related to a frame bundle (or ‘spin’) con-
nection Ωµ

A
B and vice versa using the relation

0= ∂µEν
A− ΓρµνEρ

A+Ωµ
A

B Eν
B , (B.9)

which is also known as the vielbein postulate. We will now give a derivation of the Carroll
connection introduced in Section 2 using frame language, which is more convenient for some
of the manipulations.

Using the PUL decomposition of the frame bundle metric (B.4) and the vielbeine (B.7), we
see that the Carroll metric compatibility from Equation (2.11) corresponds to

DtA = ΩA
B tB = 0 , DsAB = −ΩA

C sCB −ΩB
C sAC , (B.10)

which implies, using the decomposition A = (0, a), that the following one-form connection
components vanish,

Ω̃0
a = 0 , Ω̃0

0 = 0 , Ω̃ab + Ω̃ba = 0 . (B.11)

In the last equation, we have lowered the spatial index using the Kronecker delta corre-
sponding to sAB in the orthonormal basis (B.6). As a result, we find that the components
T̃A(ΘB,ΘC) = T̃µν

AΘµBΘ
ν

C of the torsion two-form T̃A = dEA+ Ω̃A
B ∧ EB are

T̃0(Θa,Θb) = c d T̃ (Θa,Θb) + Ω̃
0

b(Θa)− Ω̃0
a(Θb) , (B.12a)

T̃0(Θa, V ) = c d T̃ (Θa, V )− Ω̃0
a(V ) , (B.12b)

T̃a(Θb,Θc) = dEa(Θb,Θc) + Ω̃ac(Θb)− Ω̃ab(Θc) , (B.12c)

T̃a(Θb, V ) = dEa(Θb, V )− Ω̃ab(V ) . (B.12d)
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By symmetrizing Equation (B.12d), we see that part of the torsion is independent of our choice
of connection,

T̃(a(Θb), V ) = dE(a(Θb), V ) . (B.13)

In other words, these components of the torsion are intrinsic to any Carroll-compatible con-
nection satisfying the requirement (B.11), in agreement with the recent classification in [86].
No choice of Carroll-compatible connection can set them to zero, and manually setting them to
zero would impose a constraint on the spacetime geometry. Therefore, for an arbitrary Carroll
manifold, the constraints

T0(Θa,Θb) = 0 , T0(Θa, V ) = 0 , Ta(Θb,Θc) = 0 , T[a(Θb], V ) = 0 , (B.14)

are the strongest torsion constraints we can impose on our Carroll-compatible connection.
Note that the constraints (B.14) and the compatibility conditions (B.11) do not determine

the connection uniquely, since they do not allow us to solve for the symmetrized components
Ω̃0
(a(Θb)). These components of the connection would enter in the covariant derivative of

the tensor tA, which is also not invariant under Carroll boosts. To simplify this covariant
derivative as much as possible in a given boost frame, we set these symmetrized components
to zero. Solving Equation (B.12) then gives us

Ω̃0
a(Θb) =

c
2

dT (Θa,Θb) , (B.15a)

Ω̃0
a(V ) = c dT (Θa, V ) , (B.15b)

Ω̃ab(Θc) =
1
2
[dEa(Θb,Θc) + dEb(Θc ,Θa)− dEc(Θa,Θb)] , (B.15c)

Ω̃ab(V ) = dEa(Θb, V ) . (B.15d)

This fixes our preferred connection in the frame bundle. We can then use the vielbein postu-
late (B.9) to transform this connection to the tangent bundle,

C̃ρµν = Θ
ρ

A

�

∂µEν
A+ Ω̃µ

A
B Eν

B
�

(B.16)

= −Vρ
�

∂µTν +
1
c
Ω̃µ

0
aEνa

�

+Θρa

�

∂µEνa + Ω̃µ
a

bEνb
�

(B.17)

= −Vρ∂(µTν) − VρT(µLV Tν) (B.18)

+
1
2
Πρλ

�

∂µΠνλ + ∂νΠλµ − ∂λΠµν
�

−ΠρλTνKµλ ,

which corresponds to the Carroll-compatible PUL connection in Equation (2.13). The torsion of
this connection, which is constructed to be have only intrinsic torsion corresponding to (B.13),
is given by

2C̃ρ[µν] = 2ΠρλT[µKν]λ . (B.19)

This reflects the result that the intrinsic torsion of a Carroll-compatible connection is deter-
mined by the extrinsic curvature Kµν [86]. Following Theorem 10 in [86], such connections
can be classified in i) vanishing Kµν, ii) traceless Kµν, iii) Kµν = f hµν, or iv) none of the above.
This mirrors the similar classification of Newton–Cartan connections in torsionless (dτ = 0),
twistless-torsional (τ∧ dτ= 0) or general torsion.
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[10] J. Hartong and N. A. Obers, Hořava-Lifshitz gravity from dynamical Newton-Cartan geom-
etry, J. High Energy Phys. 07, 155 (2015), doi:10.1007/JHEP07(2015)155.

[11] D. T. Son, Newton-Cartan geometry and the quantum Hall effect, arXiv:1306.0638.

[12] K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, SciPost
Phys. 5, 011 (2018), doi:10.21468/SciPostPhys.5.1.011.

[13] J. Hartong, E. Kiritsis and N. A. Obers, Lifshitz space-times for Schrödinger holography,
Phys. Lett. B 746, 318 (2015), doi:10.1016/j.physletb.2015.05.010.

[14] M. Geracie, D. T. Son, C. Wu and S.-F. Wu, Spacetime symmetries of the quantum Hall
effect, Phys. Rev. D 91, 045030 (2015), doi:10.1103/PhysRevD.91.045030.

[15] R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan gravity,
Class. Quantum Grav. 29, 235020 (2012), doi:10.1088/0264-9381/29/23/235020.

[16] T. Harmark, J. Hartong and N. A. Obers, Nonrelativistic strings and limits of the AdS/CFT
correspondence, Phys. Rev. D 96, 086019 (2017), doi:10.1103/PhysRevD.96.086019.

[17] E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic string theory and T-duality, J. High
Energy Phys. 11, 133 (2018), doi:10.1007/JHEP11(2018)133.

[18] J.-M. Levy-Léblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. inst.
Henri Poincaré (A) Phys. théor. 3, 1 (1965).

[19] H. Bacry and J. Lévy-Leblond, Possible kinematics, J. Math. Phys. 9, 1605 (1968),
doi:10.1063/1.1664490.

[20] N. D. Sen Gupta, On an analogue of the Galilei group, Nuov. Cim. A 44, 512 (1966),
doi:10.1007/BF02740871.

27

https://scipost.org
https://scipost.org/SciPostPhys.13.3.055
https://doi.org/10.12942/lrr-2002-3
https://doi.org/10.1088/1361-6633/ab12bc
https://doi.org/10.1088/1361-6382/aa83d4
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1007/JHEP06(2020)145
https://doi.org/10.1088/0264-9381/14/1A/009
https://doi.org/10.1088/0264-9381/28/10/105011
https://doi.org/10.1088/0264-9381/28/10/105011
https://doi.org/10.1103/PhysRevD.89.061901
https://doi.org/10.1007/JHEP07(2015)155
https://arxiv.org/abs/1306.0638
https://doi.org/10.21468/SciPostPhys.5.1.011
https://doi.org/10.1016/j.physletb.2015.05.010
https://doi.org/10.1103/PhysRevD.91.045030
https://doi.org/10.1088/0264-9381/29/23/235020
https://doi.org/10.1103/PhysRevD.96.086019
https://doi.org/10.1007/JHEP11(2018)133
https://doi.org/10.1063/1.1664490
https://doi.org/10.1007/BF02740871


SciPost Phys. 13, 055 (2022)

[21] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and S. Vandoren, Carroll symmetry, dark
energy and inflation, Front. Phys. 10, 810405 (2022), doi:10.3389/fphy.2022.810405.

[22] E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quantum
Grav. 31, 205009 (2014), doi:10.1088/0264-9381/31/20/205009.

[23] M. Henneaux, Geometry of zero signature space-times, Bull. Soc. Math. Belg. 31, 47
(1979).

[24] G. Dautcourt, On the ultrarelativistic limit of general relativity, arXiv:gr-qc/9801093.

[25] V. Belinski and M. Henneaux, The cosmological singularity, Cambridge University Press,
Cambridge, UK, ISBN 9781107047471 (2017), doi:10.1017/9781107239333.

[26] C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, Carroll versus Newton and
Galilei: Two dual non-Einsteinian concepts of time, Class. Quantum Grav. 31, 085016
(2014), doi:10.1088/0264-9381/31/8/085016.

[27] J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity, J. High Energy Phys.
08, 069 (2015), doi:10.1007/JHEP08(2015)069.

[28] J. Nzotungicimpaye, Kinematical versus dynamical contractions of the de Sitter Lie alge-
bras, J. Phys. Commun. 3, 105003 (2019), doi:10.1088/2399-6528/ab4683.

[29] X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised
Newton-Cartan gravity. II. An ambient perspective, J. Math. Phys. 59, 072503 (2018),
doi:10.1063/1.5030328.

[30] E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei
gravity, J. High Energy Phys. 03, 165 (2017), doi:10.1007/JHEP03(2017)165.

[31] C. Duval, G. W. Gibbons, P. A. Horvathy and P.-M. Zhang, Carroll symmetry of plane
gravitational waves, Class. Quantum Grav. 34, 175003 (2017), doi:10.1088/1361-
6382/aa7f62.

[32] L. Ciambelli and C. Marteau, Carrollian conservation laws and Ricci-flat gravity, Class.
Quantum Grav. 36, 085004 (2019), doi:10.1088/1361-6382/ab0d37.

[33] K. Morand, Embedding Galilean and Carrollian geometries. I. Gravitational waves, J. Math.
Phys. 61, 082502 (2020), doi:10.1063/1.5130907.

[34] R. F. Penna, Near-horizon Carroll symmetry and black hole Love numbers,
arXiv:1812.05643.

[35] L. Donnay and C. Marteau, Carrollian physics at the black hole horizon, Class. Quantum
Grav. 36, 165002 (2019), doi:10.1088/1361-6382/ab2fd5.

[36] E. Bergshoeff, J. M. Izquierdo, T. Ortín and L. Romano, Lie algebra expansions
and actions for non-relativistic gravity, J. High Energy Phys. 08, 048 (2019),
doi:10.1007/JHEP08(2019)048.

[37] L. Ravera, AdS Carroll Chern-Simons supergravity in 2 + 1 dimensions and its flat limit,
Phys. Lett. B 795, 331 (2019), doi:10.1016/j.physletb.2019.06.026.

[38] J. Gomis, A. Kleinschmidt, J. Palmkvist and P. Salgado-Rebolledo, Newton-
Hooke/Carrollian expansions of (A)dS and Chern-Simons gravity, J. High Energy
Phys. 02, 009 (2020), doi:10.1007/JHEP02(2020)009.

28

https://scipost.org
https://scipost.org/SciPostPhys.13.3.055
https://doi.org/10.3389/fphy.2022.810405
https://doi.org/10.1088/0264-9381/31/20/205009
https://arxiv.org/abs/gr-qc/9801093
https://doi.org/10.1017/9781107239333
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1007/JHEP08(2015)069
https://doi.org/10.1088/2399-6528/ab4683
https://doi.org/10.1063/1.5030328
https://doi.org/10.1007/JHEP03(2017)165
https://doi.org/10.1088/1361-6382/aa7f62
https://doi.org/10.1088/1361-6382/aa7f62
https://doi.org/10.1088/1361-6382/ab0d37
https://doi.org/10.1063/1.5130907
https://arxiv.org/abs/1812.05643
https://doi.org/10.1088/1361-6382/ab2fd5
https://doi.org/10.1007/JHEP08(2019)048
https://doi.org/10.1016/j.physletb.2019.06.026
https://doi.org/10.1007/JHEP02(2020)009


SciPost Phys. 13, 055 (2022)

[39] L. Ciambelli, R. G. Leigh, C. Marteau and P. M. Petropoulos, Carroll struc-
tures, null geometry, and conformal isometries, Phys. Rev. D 100, 046010 (2019),
doi:10.1103/PhysRevD.100.046010.

[40] A. Ballesteros, G. Gubitosi and F. J. Herranz, Lorentzian Snyder spacetimes and their Galilei
and Carroll limits from projective geometry, Class. Quantum Grav. 37, 195021 (2020),
doi:10.1088/1361-6382/aba668.

[41] E. Bergshoeff, J. M. Izquierdo and L. Romano, Carroll versus Galilei from a brane perspec-
tive, J. High Energy Phys. 10, 066 (2020), doi:10.1007/JHEP10(2020)066.

[42] M. Niedermaier, Nonstandard action of diffeomorphisms and gravity’s anti-Newtonian
limit, Symmetry 12, 752 (2020), doi:10.3390/sym12050752.

[43] J. Gomis, D. Hidalgo and P. Salgado-Rebolledo, Non-relativistic and Carrol-
lian limits of Jackiw-Teitelboim gravity, J. High Energy Phys. 05, 162 (2021),
doi:10.1007/JHEP05(2021)162.

[44] D. Grumiller, J. Hartong, S. Prohazka and J. Salzer, Limits of JT gravity, J. High Energy
Phys. 02, 134 (2021), doi:10.1007/JHEP02(2021)134.

[45] P. Concha, D. Peñafiel, L. Ravera and E. Rodríguez, Three-dimensional Maxwellian Car-
roll gravity theory and the cosmological constant, Phys. Lett. B 823, 136735 (2021),
doi:10.1016/j.physletb.2021.136735.

[46] A. Guerrieri and R. F. Sobreiro, Carroll limit of four-dimensional gravity theories in the
first order formalism, Class. Quantum Grav. 38, 245003 (2021), doi:10.1088/1361-
6382/ac345f.

[47] M. Henneaux and P. Salgado-Rebolledo, Carroll contractions of Lorentz-invariant theories,
J. High Energy Phys. 11, 180 (2021), doi:10.1007/JHEP11(2021)180.

[48] A. Pérez, Asymptotic symmetries in Carrollian theories of gravity, J. High Energy Phys. 12,
173 (2021), doi:10.1007/JHEP12(2021)173.

[49] J. Figueroa-O’Farrill, E. Have, S. Prohazka and J. Salzer, Carrollian and celestial spaces at
infinity, arXiv:2112.03319.

[50] Y. Herfray, Carrollian manifolds and null infinity: A view from Cartan geometry,
arXiv:2112.09048.

[51] A. A. Kehagias and E. Kiritsis, Mirage cosmology, J. High Energy Phys. 11, 022 (1999),
doi:10.1088/1126-6708/1999/11/022.

[52] T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quantum Grav.
20, R145 (2003), doi:10.1088/0264-9381/20/9/201.

[53] A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat holography: Aspects of the dual field
theory, J. High Energy Phys. 12, 147 (2016), doi:10.1007/JHEP12(2016)147.

[54] R. Basu and U. N. Chowdhury, Dynamical structure of Carrollian electrodynamics, J. High
Energy Phys. 04, 111 (2018), doi:10.1007/JHEP04(2018)111.

[55] A. Barducci, R. Casalbuoni and J. Gomis, Vector SUSY models with Carroll or Galilei in-
variance, Phys. Rev. D 99, 045016 (2019), doi:10.1103/PhysRevD.99.045016.

29

https://scipost.org
https://scipost.org/SciPostPhys.13.3.055
https://doi.org/10.1103/PhysRevD.100.046010
https://doi.org/10.1088/1361-6382/aba668
https://doi.org/10.1007/JHEP10(2020)066
https://doi.org/10.3390/sym12050752
https://doi.org/10.1007/JHEP05(2021)162
https://doi.org/10.1007/JHEP02(2021)134
https://doi.org/10.1016/j.physletb.2021.136735
https://doi.org/10.1088/1361-6382/ac345f
https://doi.org/10.1088/1361-6382/ac345f
https://doi.org/10.1007/JHEP11(2021)180
https://doi.org/10.1007/JHEP12(2021)173
https://arxiv.org/abs/2112.03319
https://arxiv.org/abs/2112.09048
https://doi.org/10.1088/1126-6708/1999/11/022
https://doi.org/10.1088/0264-9381/20/9/201
https://doi.org/10.1007/JHEP12(2016)147
https://doi.org/10.1007/JHEP04(2018)111
https://doi.org/10.1103/PhysRevD.99.045016


SciPost Phys. 13, 055 (2022)

[56] A. Bagchi, A. Mehra and P. Nandi, Field theories with conformal Carrollian symmetry, J.
High Energy Phys. 05, 108 (2019), doi:10.1007/JHEP05(2019)108.

[57] A. Bagchi, R. Basu, A. Mehra and P. Nandi, Field theories on null manifolds, J. High Energy
Phys. 02, 141 (2020), doi:10.1007/JHEP02(2020)141.

[58] K. Banerjee, R. Basu, A. Mehra, A. Mohan and A. Sharma, Interacting conformal
Carrollian theories: Cues from electrodynamics, Phys. Rev. D 103, 105001 (2021),
doi:10.1103/PhysRevD.103.105001.

[59] L. Marsot, Planar Carrollean dynamics, and the Carroll quantum equation, J. Geom. Phys.
179, 104574 (2022), doi:10.1016/j.geomphys.2022.104574.

[60] B. Chen, R. Liu and Y.-f. Zheng, On higher-dimensional Carrollian and Galilean conformal
field theories, arXiv:2112.10514.

[61] U. Lindström, B. Sundborg and G. Theodoridis, The zero tension limit of the spinning
string, Phys. Lett. B 258, 331 (1991), doi:10.1016/0370-2693(91)91094-C.

[62] J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tension-
less strings, Nucl. Phys. B 411, 122 (1994), doi:10.1016/0550-3213(94)90056-6.

[63] A. Bagchi, Tensionless strings and Galilean conformal algebra, J. High Energy Phys. 05,
141 (2013), doi:10.1007/JHEP05(2013)141.

[64] C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups and BMS symmetry,
Class. Quantum Grav. 31, 092001 (2014), doi:10.1088/0264-9381/31/9/092001.

[65] C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups, J. Phys. A: Math.
Theor. 47, 335204 (2014), doi:10.1088/1751-8113/47/33/335204.

[66] A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless strings from worldsheet symmetries,
J. High Energy Phys. 01, 158 (2016), doi:10.1007/JHEP01(2016)158.

[67] J. Hartong, Holographic reconstruction of 3D flat space-time, J. High Energy Phys. 10, 104
(2016), doi:10.1007/JHEP10(2016)104.

[68] B. Cardona, J. Gomis and J. M. Pons, Dynamics of Carroll strings, J. High Energy Phys.
07, 050 (2016), doi:10.1007/JHEP07(2016)050.

[69] A. Bagchi, A. Banerjee, S. Chakrabortty and R. Chatterjee, A Rindler road to Carrollian
worldsheets, J. High Energy Phys. 04, 082 (2022), doi:10.1007/JHEP04(2022)082.

[70] J. de Boer, J. Hartong, N. Obers, W. Sybesma and S. Vandoren, Perfect fluids, SciPost Phys.
5, 003 (2018), doi:10.21468/SciPostPhys.5.1.003.

[71] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos and K. Siampos, Covariant
Galilean versus Carrollian hydrodynamics from relativistic fluids, Class. Quantum Grav.
35, 165001 (2018), doi:10.1088/1361-6382/aacf1a.

[72] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos and K. Siampos,
Flat holography and Carrollian fluids, J. High Energy Phys. 07, 165 (2018),
doi:10.1007/JHEP07(2018)165.

[73] L. Ciambelli, C. Marteau, P. M. Petropoulos and R. Ruzziconi, Gauges in three-
dimensional gravity and holographic fluids, J. High Energy Phys. 11, 092 (2020),
doi:10.1007/JHEP11(2020)092.

30

https://scipost.org
https://scipost.org/SciPostPhys.13.3.055
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP02(2020)141
https://doi.org/10.1103/PhysRevD.103.105001
https://doi.org/10.1016/j.geomphys.2022.104574
https://arxiv.org/abs/2112.10514
https://doi.org/10.1016/0370-2693(91)91094-C
https://doi.org/10.1016/0550-3213(94)90056-6
https://doi.org/10.1007/JHEP05(2013)141
https://doi.org/10.1088/0264-9381/31/9/092001
https://doi.org/10.1088/1751-8113/47/33/335204
https://doi.org/10.1007/JHEP01(2016)158
https://doi.org/10.1007/JHEP10(2016)104
https://doi.org/10.1007/JHEP07(2016)050
https://doi.org/10.1007/JHEP04(2022)082
https://doi.org/10.21468/SciPostPhys.5.1.003
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.1007/JHEP07(2018)165
https://doi.org/10.1007/JHEP11(2020)092


SciPost Phys. 13, 055 (2022)

[74] J. M. Bowen and J. W. York, Time-asymmetric initial data for black holes and black-hole
collisions, Phys. Rev. D 21, 2047 (1980), doi:10.1103/PhysRevD.21.2047.

[75] J. Figueroa-O’Farrill and S. Prohazka, Spatially isotropic homogeneous spacetimes, J. High
Energy Phys. 01, 229 (2019), doi:10.1007/JHEP01(2019)229.

[76] M. Ergen, E. Hamamcıand D. Van den Bleeken, Oddity in nonrelativistic, strong gravity,
Eur. Phys. J. C 80, 563 (2020), doi:10.1140/epjc/s10052-020-8112-6.

[77] D. Hansen, J. Hartong, N. A. Obers and G. Oling, Galilean first-order formulation for
the nonrelativistic expansion of general relativity, Phys. Rev. D 104, L061501 (2021),
doi:10.1103/PhysRevD.104.L061501.

[78] D. Hansen, J. Hartong and N. A. Obers, Non-relativistic expansion of the Einstein-Hilbert
Lagrangian, arXiv:1905.13723.

[79] D. V. Hansen, Beyond Lorentzian physics, PhD. thesis (2021), doi:10.3929/ethz-b-
000488630.

[80] M. Niedermaier, The dynamics of strong coupling gravity, Class. Quantum Grav. 32,
015008 (2014), doi:10.1088/0264-9381/32/1/015008.

[81] V. Iyer and R. M. Wald, Some properties of the Noether charge and a proposal for dynamical
black hole entropy, Phys. Rev. D 50, 846 (1994), doi:10.1103/PhysRevD.50.846.

[82] J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31, 725 (1990),
doi:10.1063/1.528801.

[83] G. Compère, Advanced lectures on general relativity, Springer International Publishing,
Cham, ISBN 9783030042592 (2019), doi:10.1007/978-3-030-04260-8.

[84] E. Gourgoulhon, 3+ 1 formalism and bases of numerical relativity, arXiv:gr-qc/0703035.

[85] L. Bidussi, T. Harmark, J. Hartong, N. A. Obers and G. Oling, Torsional string Newton-
Cartan geometry for non-relativistic strings, J. High Energy Phys. 02, 116 (2022),
doi:10.1007/JHEP02(2022)116.

[86] J. Figueroa-O’Farrill, On the intrinsic torsion of spacetime structures, arXiv:2009.01948.

31

https://scipost.org
https://scipost.org/SciPostPhys.13.3.055
https://doi.org/10.1103/PhysRevD.21.2047
https://doi.org/10.1007/JHEP01(2019)229
https://doi.org/10.1140/epjc/s10052-020-8112-6
https://doi.org/10.1103/PhysRevD.104.L061501
https://arxiv.org/abs/1905.13723
https://doi.org/10.3929/ethz-b-000488630
https://doi.org/10.3929/ethz-b-000488630
https://doi.org/10.1088/0264-9381/32/1/015008
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1063/1.528801
https://doi.org/10.1007/978-3-030-04260-8
https://arxiv.org/abs/gr-qc/0703035
https://doi.org/10.1007/JHEP02(2022)116
https://arxiv.org/abs/2009.01948

