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ABSTRACT

In the past few decades, the droplet impact on a heated plate above the Leidenfrost temperature has attracted immense research interest. The
strong hydrophobicity caused by the Leidenfrost effect leads to the droplet bouncing from a flat plate at a given contact time predicted by the
classical Rayleigh theory. Numerous investigations were conducted to break the theoretical Rayleigh’s limit to reduce the interfacial contact
time. Recently, a droplet was observed to form a pancake shape and bounce as it impacted nanotube or micropost surfaces above the
Leidenfrost temperature. This led to a significant reduction in droplet contact time. However, this unique bouncing phenomenon is still not
fully understood, such as the influence of the plate configuration and the relationship between the droplet rebound time and evaporation
mass loss. In this study, we carry out a numerical study of the droplet impact dynamics on a heated porous plate above the Leidenfrost
temperature, using a multiphase thermal lattice Boltzmann model. Our model is constructed within the unified lattice Boltzmann method
framework and is first validated based on theoretical and experimental results. Then, a comprehensive parametric study is performed to
investigate the effects of the impact Weber number, the plate temperature, and the plate configurations on the droplet bouncing dynamics.
Results show that higher plate temperature, larger Weber number, and smaller pore intervals can accelerate the droplet rebound and
promote the droplet pancake bouncing. We demonstrate that the occurrence of the pancake bouncing is attributed to the additional lift force
provided by the vapor pressure due to the evaporation of liquid inside the pores. Moreover, the droplet maximum spreading time and
maximum spreading factor can be described by a power law function of the impact Weber number. The droplet evaporation mass loss
increases linearly with the impingement Weber number and the plate opening fractions. This study provides new insights into the
Leidenfrost droplet impingement on porous plates, which may potentially facilitate the design of novel engineering surfaces and devices.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0118079

I. INTRODUCTION

Droplet impingement on a heated plate is ubiquitous in nature
and the industry such as aviation, power generation, and process engi-
neering.1,2 Recently, the rapid development of miniaturized electronic
devices creates an urgent need for innovative cooling approaches, such
as spray cooling, which requires optimized manipulation of droplet
dynamics on a heated plate.3 This demands detailed insights into the
effects of the plate temperature, plate geometry, and liquid properties
on droplet impact dynamics and its evaporation over the heated
plate.4–6 According to the classical boiling heat transfer theory, the

droplet experiences several heating regimes when the plate tempera-
ture is increased, for example, the nucleate boiling regime, the transi-
tion boiling regime, and the film boiling regime.1,7 Remarkably, in the
film boiling regime, the plate temperature is above the Leidenfrost
point and the droplet’s lower surface evaporates rapidly. As a result, a
thin vapor layer is generated between the liquid phase and the
solid plate, impeding the contact of the droplet with the plate.
The Leidenfrost droplet, thus, demonstrates similar dynamics as its
impingement on superhydrophobic surfaces.4 For example, it has been
observed that a droplet rebounds after impacting a hot plate above the
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Leidenfrost temperature. On a flat plate, the contact time (tc) of the
droplet approximately follows Rayleigh’s theory, where tc=s ¼ p=4
[s ¼ ðD0

3ql=rÞ0:5 is the inertia-capillarity time].4,8–10 Also, the vapor
layer between the droplet and the heated plate prevents heat transfer
and droplet evaporation, which minimizes the heat flux at the
Leidenfrost point.1,7 Considering that the solid–liquid interface contact
time is critical to applications such as anti-icing, spray cooling, and
heat transfer, the study of droplet impingement dynamics on superhy-
drophobic surfaces11,12 and heated surfaces4 has attracted increasing
interest in the past few decades.

Considerable efforts have been made to experimentally explore
the Leidenfrost droplet dynamics. Recent advances can be generally
divided into three families: (1) understanding of the Leidenfrost drop-
let hydrodynamics. Lagubeau et al.13 first observed the self-propelled
characteristics of the Leidenfrost droplet on a ratchet surface, which
was attributed to the interaction of the vapor flow and asymmetric tex-
tures. In 2018, Bouillant et al.14 found that the Leidenfrost droplet also
demonstrated self-propelled characteristics on a hot flat plate. More
recently, an interesting self-bouncing mechanism was observed for a
deposited Leidenfrost droplet on a hot surface.15 (2) Controlling of the
Leidenfrost point to benefit the heat transfer. Celestini et al.16 found
that the Leidenfrost point could drop to room temperature as the
ambient pressure decreased. Kwon et al.17 and Kruse et al.18 suggested
that the Leidenfrost point was increased for any droplet in sparse hot
texture surfaces. Arnaldo Del Cerro et al.19 observed that the micro-
holes array surfaces can decrease the Leidenfrost point. More recently,
Jiang et al.20 inhibited the Leidenfrost point to over 1000 �C by design-
ing the steel pillar surfaces with an insulating membrane. (3) Reducing
the droplet contact time to break the limitation of Rayleigh’s theory.
Liu et al.21 observed an explosive pancake bounce as the Leidenfrost
droplet impacts a surface with a micro-scale micropore or micropost
arrays, which significantly decreased the droplet contact time. Similar
explosive pancake bouncing and contact time decreasing phenomena
were observed when the Leidenfrost droplet impinged on a surface
with nanotubes.22,23 In addition, the explosive bounce has been
observed for a multicomponent24 droplet or a contaminated droplet25

impacting a heated plate over the Leidenfrost temperature.
In addition to experimental studies, with the rapid development

of computer technologies in recent decades, numerical methods are
being increasingly adopted to study the Leidenfrost droplet dynamics.
Compared with traditional experimental methods, numerical methods
have the advantages of precise control of the physical parameters, con-
venience to obtain quantitative data, and ease to change the experi-
mental configurations. Some early studies used the volume of fluid
(VOF) algorithm to simulate the droplet impact on a flat surface (FS)
above the Leidenfrost temperature.26–28 However, it is still challenging
to couple the traditional “interface tracking” multiphase model with
the phase change model. Some studies introduced a virtual vapor layer
with a pressure-dependent model26 or a one-dimensional model27,28

to prevent direct contact of the droplet with the hot plate. More
recently, Chakraborty et al.29 developed a lubrication model to predict
the fluid flow inside the vapor layer of Leidenfrost drops.

Nevertheless, the capture of the vapor layer in most previous
numerical studies depends on artificial models. Alternatively, the lattice
Boltzmann method (LBM) provides a promising approach to model
this complex phase change problem. Benefitting from its mesoscopic
nature, the LBM is capable of incorporating realistic physical models of

interfacial and phase change problems.30,31 In the pseudopotential LBM,
for example, a realistic equation of state (EOS) of the fluid can be intro-
duced to deal with the temperature-dependent phase change.32,33

Remarkably, Li et al.34 adopted a multiple-relaxation-time (MRT) pseu-
dopotential LBmodel to simulate a Leidenfrost droplet self-propelled on
ratchet surfaces. Both Xu et al.35 and Karami et al.36 conducted system-
atic parametric studies for a two-dimensional (2D) droplet impacting a
heat plate over the Leidenfrost point by using MRT LBM. Recently, Xu
et al.37 adopted a three-dimensional cascaded lattice Boltzmannmethod
(CLBM) model proposed by Fei et al.38 to simulate droplet impact on
heated micropillar surfaces, which has reproduced the droplet impinge-
ment dynamics for a wide range of temperatures successfully.

Although many efforts have been devoted to exploring the
Leidenfrost droplet dynamics on a flat plat, there have been no system-
atic investigations into the Leidenfrost droplet impact on a heated
porous plate with pore sizes ranging from nanometer to micrometer,
let alone explanations for the complex physics at play. For this prob-
lem, the traditional experimental techniques face significant challenges
in the precise control of the plate temperature, impact velocity, and
pore size.21 It is also difficult to obtain quantitative data (such as the
quality of evaporated liquid) and observe the fluid flow inside the
pores. Therefore, it is critical to conduct a systematic numerical inves-
tigation of this problem. In this study, we adopt the unified lattice
Boltzmann method (ULBM) with the entropic-multi-relaxation-time
(KBC, proposed by Karlin, Boschj, and Chikatamarla) collision opera-
tor combined with the phase-change pseudopotential multiphase
model39 to numerically study a droplet impacting on a heated porous
plate above the Leidenfrost temperature. A comprehensive parametric
study is conducted by changing the droplet impact Weber number
(We), the plate temperature, and the plate configurations, which aims
to gain further physical insights into the mechanisms of this complex
droplet dynamics through both qualitative and quantitative analyses.
In Sec. II, we provide a brief introduction to the LB models, followed by
model validation against previous theoretical, numerical, and experi-
mental results. In Sec. III, we conduct a detailed investigation into the
influence of the impact of the Weber number on various plate tempera-
tures and geometries. Additionally, the effects of pore intervals are scru-
tinized. Finally, conclusions are drawn in Sec. IV.

II. METHODOLOGY
A. UCLBM (KBC) model for multiphase flow

In this section, we briefly introduce the LB method, which is used
in this study. The mesoscopic evolution equation of the ULBM in cen-
tral moment space can be written as39

fi x þ eiDt; t þ Dtð Þ
� f �i x; tð Þ ¼ M�1N�1 I� Sð Þ ~T i

�� �
þM�1N�1S ~T

eq
i

��� E
þM�1N�1 I� S=2ð Þ Cij i; (1)

where i indexes the 19 discrete velocity set, fi and f �i are the pre-
collision and post-collision distribution functions, respectively. I, M,
N, and S are the unit matrix, transformation matrix, shift matrix, and
relaxation matrix, respectively. ~T i

�� �
is the moment set in the co-

moving framework and superscript eq represents the equilibrium state.
Cij i is the discrete forcing term, which includes the total force acting
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on the system. In this study, a consistent forcing scheme in central
moment space proposed by Fei et al.40 is adopted,

Cij i ¼ ½0; Fx; Fy; Fz; 0; 0; 0; 0; 0; 0; FxC2
S ; FxC

2
S ; FyC

2
S ;

FzC
2
S ; FyC

2
S ; FzC

2
S ; 0; 0; 0�T: (2)

The explicit expressions of matrix M;N;M�1;N�1, as well as the
moment sets ~T i

�� �
and ~T

eqj i, are given in Ref. 39. It has been compre-
hensively proven that the ULBM framework has the ease to incorpo-
rate improved LB schemes41 and excellent portability across different
lattice models.40,42 The KBC entropic operator43 is implemented by
introducing the entropic stabilizer into the higher-order relaxation
parameters; hence, the relaxation matrix S can be written as

S ¼ diagð0; 1; 1; 1; sv; sv; sv; svc; sv; sv; svc; svc; svc;
svc; svc; svc; svc; svc; svcÞ; (3)

where 1=sv ¼ �=ðC2
SDtÞ þ 0:5 depends on the liquid kinematic vis-

cosity. The entropic stabilizer c is calculated by

c ¼ 1
sv
� 1� 1

sv

� �X
i

DsiDhi
f eqi

�X
i

DhiDhi
f eqi

; (4)

where si and hi are the shear part and high order part of the distribu-
tion function, respectively. Dsi ¼ si � seqi and Dhi ¼ hi � heqi are the
deviations. The ULBM with the KBC operator has been shown to dra-
matically reduce spurious velocities.39 More details about the ULBM
(KBC) model can be found in Refs. 39 and 41.

For the multiphase flow simulation, the combined pseudopoten-
tial model44 is employed to describe the interaction force among dif-
ferent phases, which is

Fint ¼ �0:5AG
X
i

w eij j2
� �

w2 x þ eið Þei

� 1� Að ÞGw xð Þ
X
i

w eij j2
� �

w x þ eið Þei; (5)

where A is a tunable parameter, which can be used to adjust the ther-
modynamic consistency, G ¼ �1 is the interaction strength, and
w eij j2
	 


are the weights for the D3Q19 lattice model. w is the square-
root-form pseudopotential,45

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 PEOS � qc2s
	 


Gc2

r
; (6)

where c ¼ 1 is the lattice constant, c2s ¼ 1=3 is the lattice sound speed,
and PEOS is the pressure calculated by the equation of state (EOS). In
this work, in order to simulate the multiphase flow with phase change
phenomena, we use the Peng–Robinson EOS, which can be written as

PEOS ¼ qRT
1� bq

� au Tð Þq2
1þ 2bq� b2q2

; (7)

where a ¼ 0:4572R2T2
c =Pc, b ¼ 0:0778RTc=Pc, and u Tð Þ ¼ 1½

þ 0:374 64þ 1:542 26xð �0:269 92x2Þð1� ffiffiffiffiffiffiffiffiffiffi
T=Tc

p Þ �2, and Pc and
Tc stand for the critical pressure and critical temperature, respectively.
In the following simulations, without specifying, we set R¼ 1, x
¼0:344, a¼ 1/76, and b¼ 2/21, with the corresponding Tc¼0:02351
and Pc¼0:0192.

In addition, when simulating the Leidenfrost droplet impinge-
ment, the gas phase and liquid phase are driven by the buoyancy force,

Fb ¼ � q� qavgð Þgj; (8)

where qavg is the average density of the liquid and vapor phases. The
total force acting on the fluid is F ¼ Fb þ Fint . The improved virtual-
density scheme proposed by Li et al.46 is employed to treat the interac-
tion between the solid phase and liquid phase. The virtual density of
the bounded layer in the solid phase can be described as

qw xð Þ ¼

X
i

w eij j2
� �

q x þ eiDtð Þs x þ eiDtð Þ
X
i

w eij j2
� �

s x þ eiDtð Þ
; (9)

where s xð Þ is an indicator function, which is equal to 0 for the solid
phase and 1 for the fluid phase, respectively. Based on this setup, the
interaction force between the solid phase and liquid phase can be cal-
culated by Eq. (5), and the droplet static contact angle under the iso-
thermal condition equals 90�. It should be mentioned that the above
multiphase ULBM (KBC) model has been verified by existing experi-
ments of droplet dynamics. More details can be found in our recent
work.39

Inspired by Li et al.,47 the temperature field for the liquid–vapor
phase-change can be written as

@T
@t

¼ �u � rT þ 1
qcv

kr2T þrk � rTð Þ � T
qcv

@PEOS
@T

� �
q
r � u;

(10)

where k is the thermal conductivity and cv is the specific heat capacity
at constant volume. Following the work of Li et al.,47 we use the finite
difference method to solve the above temperature equation, and the
time discretization is realized using the fourth-order Runge–Kutta
scheme,

T tþDt ¼ T t þ Dt
6

h1 þ 2h2 þ 2h3 þ h4ð Þ;

h1 ¼ K Ttð Þ; h2 ¼ K Tt þ Dt
2
h1

� �
;

h3 ¼ K Tt þ Dt
2
h2

� �
; h4 ¼ K Tt þ Dth3ð Þ;

(11)

where K Tð Þ denotes the right-hand side of Eq. (10). The coupling of
the temperature field and the liquid–vapor phase change is achieved
through the EOS of the fluid [Eq. (7)]. It is worth mentioning that the
phase change multiphase model presented above has been incorpo-
rated into the ULBM (with cascaded lattice Boltzmann model) to sim-
ulate the three-dimensional pool boiling.38,41

B. Verification of the multiphase thermal LB model

We first validate the thermodynamic consistency of the adopted
multiphase model. We simulate a flat surface and change the system
temperature from 0.5 Tc to 0.9 Tc, keeping the turntable parameter A
in Eq. (5) at�0.88. We compare the simulated coexistence densities of
the gas phase and the vapor phase with the Maxwell equal-area rules.
As presented in Fig. 1, the simulated coexistence densities (triangle
symbols) coincide with the Maxwell construction results (lines) for a
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wide range of temperatures and density ratios (up to 6700), which
proves the good thermodynamic consistency of our numerical model.
We also simulate a static droplet with the initial radius R0 ¼ 50 lattices
located at the center of a 4R0 � 4R0 � 4R0 box, with the periodic
boundaries in all directions. The density profile can be described by
the following function:

q rð Þ ¼ ql þ qg
2

þ ql � qg
2

tanh
2 r � R0ð Þ

W

� 

; (12)

where W ¼ 4 is the approximate interface thickness by adopting the
introduced setup in Sec. IIA, and r represents the distance to the drop-
let center. ql and qg are coexistence densities in the gas phase and
vapor phase, respectively. A is set as �0.84 and the system tempera-
tures are varied from 0.68 Tc to 0.88 Tc, while all the other parameters
kept the same. As indicated in the figure, the simulated coexistence

densities for the droplet test (circle symbols) are also consistent with
the Maxwell construction results. Importantly, the maximum spurious
velocities are lower than 0.0025 for all simulations due to the use of
the ULBM (KBC) collision operator.

Further verification of the model considering the temperature
field is conducted by simulating the evaporation of a single droplet.
We simulate a liquid cylinder (equivalent to a 2D droplet) with an ini-
tial diameter D0 ¼ 70, evaporating in a temperature gradient. The
simulation domain is set as 200� 200� 1 with periodic boundaries
in all directions. To compare with the results in Ref. 38, we set the tem-
perature of the liquid phase as 0.86 Tc and the surrounding vapor tem-
perature as Tc, with a¼ 2/49 and b¼ 2/21 in the EOS. The kinematic
viscosities and the specific heat capacities of the liquid phase and the
gas phase are set as the same, e.g., cvl ¼ cvg ¼ 6, �l ¼ �g ¼ 0:1.

The results of the current study (symbols) are compared with
the previous simulation results by Fei et al. (lines)38 and D2 law. To
this end, the results are plotted as a ðD=D0Þ2 vs t� in Fig. 2(a), where
the non-dimensional time t� ¼ T�g=D2

0. As shown in the figure, our
simulation results are in exact agreement with the previous simulation
results for two different thermal conductivities, kl ¼ kg ¼ 1=3 and
kl ¼ kg ¼ 2=3. Also, the temperature distribution and velocity vectors
around the evaporating droplet are shown in Fig. 2(b), demonstrating
that the liquid phase evaporation is driven by the temperature gradi-
ent. The quantitative and qualitative results prove the accuracy of the
model implementation for thermal multiphase flows.

C. Validation via Leidenfrost droplet impact
on a flat plate

Model validation is conducted via simulating droplet impact on a
heated plate above the Leidenfrost temperature. In the following simu-
lations, unless otherwise stated, the initial droplet radius is set as
R0 ¼ 50. The liquid and vapor saturated temperature (Ts) is kept
as 0.8 Tc, which leads to the corresponding coexistence densities at
ql ¼ 7:2 and ql ¼ 0.197. By using this setup, the measured surface

FIG. 1. Comparison of the simulated coexistence densities (symbols) and the
Maxwell construction law (lines) for different reduced temperatures.

FIG. 2. (a) Comparison of the evolution of (D/D0)^2 for current simulation results (solid symbols) and previous simulation results (lines), for two different thermal conductivities,
kl ¼ kg ¼ 1=3 and kl ¼ kg ¼ 2=3. (b) The temperature distribution and velocity vectors around the evaporating droplet (white profile).
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tension (r) is 0.112 35. According to Ref. 38, the latent heat (hfg) of the
droplet is calculated by

hfg ¼ hg � hl ¼
ðql
qg

1
q2

T
@PEOS
@T

� �
q
� PEOS

" #
dqþ PEOS

qg
� PEOS

ql
;

(13)

where hg and hl are the enthalpy values of the gas and liquid phases,
respectively. Substituting the Peng–Robinson EOS in Sec. IIA into Eq.
(13), the corresponding hfg equals to 0.1416. In addition, we set the liq-
uid kinematic viscosity (vl) as 0.007 so that the Ohnesorge number is
Oh ¼ ðql�lÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
D0qlr

p ¼ 0:0056 < 0:01, which implies the influence
of the viscous force can be ignored compared with the inertial force
and surface tension.48 The kinematic viscosity ratio �g=�l between the
gas phase and liquid phase is set as 20, which is comparable to the real-
istic condition.

To get an accurate prediction of the heat transfer and phase
change process, we set the Prandtl number (the ratio of the momen-
tum diffusivity to the thermal diffusivity) of the liquid phase (Prl
¼ vlqlcvl=kl), Prandtl number of the gas phase (Prg ¼ vgqgcvg=kg),
and Jacob number Ja ¼ cvl Th � Tsð Þ=hfg (the ratio of the sensible heat
to the latent heat during the phase change) comparable to the realistic
conditions, with the thermal properties of the liquid and vapor phases
referring to the values of the saturated state. In addition, the Weber
number (We ¼ D0qlU

2=r, representing the ratio of the inertial force
to the capillary force, where U is the droplet initial velocity) and Bond
number (Bo ¼ qlgD

2
0=r, standing for the gravity compared to the sur-

face tension, which is usually used to evaluate the influence of gravity)
are also chosen to represent the experimental conditions. Based on the
above setup, the corresponding fluid properties (e.g., cv and k) and
operating parameters (e.g., U and g) in the lattice unit can be

determined. For the following cases, we set cvl ¼ 7:4, cvg ¼ 3:4,
kl ¼ 0:25, kg ¼ 0:1, which leads to Prg ¼ 0:94 and Prl ¼ 1:49,
respectively. Remarkably, the following interpolation form is used to
calculate the fluid properties at the liquid–gas interface:

X ¼ Xg þ Xl � Xgð Þ
q� qg
ql � qg

; (14)

where X stands for the corresponding fluid properties.
It is worth mentioning that the conversion of a variable C

from lattice (with subscript l) to physical units (with subscript p) is
based on the characteristic variable (Cm), which can be written as
Cp ¼ ðCm;p=Cm;lÞCl . For example, we choose the droplet diameter D0

as the characteristic length; thus, the physical length can be calculated
by Lp ¼ ðD0;p=D0;lÞLl . Regarding the calculation of the droplet initial
velocity in lattice unit (Ul), it is based on the dimensionless Weber
number, e.g., Ul ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rWe=qlD0;l

p
. Additionally, the conversion from

the simulation step (tl) into the physical time (tp) is based on the
dimensionless time, where tpUp=D0;p ¼ tlUl=D0;l .

Similar to Refs. 36 and 37, when simulating the Leidenfrost drop-
let impingement, the top wall of the simulation domain is set as the
outflow boundary. The solid phase and bottom wall are set as the non-
slip boundaries with the constant temperature Th. The side walls of
the simulation domain are set as the periodic boundaries. As pointed
in Ref. 6, for most cases of droplet impact on a high temperature plate,
the contact temperature between the droplet and the plate reaches the
wall temperature immediately after the initial droplet contact.
Consequently, we set the temperature of the fluid at the first layer near
the solid wall as the wall temperature (Th). Three cases with different
impacting velocities and plate temperatures are simulated, and the
experiment conditions and simulation setups of the corresponding
cases are shown in Table I.

The first case is to simulate the experiment in Ref. 49, where a
water droplet with the initial diameter (D0) of 2.05mm impacts on a
385 �C plate with a velocity U ¼ 0:24 m/s. The simulation results for
case 1 are shown in Fig. 3 (bottom column). It can be seen that after
the droplet impacts the heated plate, it spreads in the horizontal direc-
tion. A very thin vapor film can be observed at the bottom of the drop-
let, which is generated by the evaporation of the contact liquid. Then,
during the recoiling stage of the droplet, the levitated droplet re-
contacted with the bottom wall. Finally, the droplet completely
rebounds off from the plate, owing to the strong hydrophobic charac-
teristics caused by the Leidenfrost effect. It can be observed that the

TABLE I. Experiment configurations and our simulation setups for the validation
cases.

Experiment conditions Simulation parameters

Case Prg Prl Ja We Bo Prg Prl Ja We Bo

1 0.76 1.57 0.48 2.1 0.18 0.94 1.49 0.53 2.1 0.14
2 0.76 1.57 0.51 16.3 0.23 0.94 1.49 0.61 16.0 0.19
3 0.76 1.57 0.34 22.8 0.18 0.94 1.49 0.50 21.6 0.16

FIG. 3. Experiment snapshots (top column) and simulation results (bottom column) of a droplet impacting an overheated flat plate with We¼ 2.1, Ja¼ 0.53.
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simulation results agreed well with the experiment snapshots (top col-
umn) qualitatively.

We then simulate Leidenfrost droplet impact on an overheated
plate with a higher Weber number (case 2 in Table I). In the original
experiment by Wachters et al.,50 the temperature of the hot plate is
400 �C, where the corresponding Jacob number Ja¼ 0.51. The droplet
diameter is 2.3mm and the impacting velocity is 0.63m/s, leading to
Weber number We¼ 15.7. The comparison of results is shown in
Fig. 4(a), and qualitative agreement between the simulation and exper-
imental results is achieved. Similar to Ref. 26, we quantitatively com-
pare the evolution of droplet gravity central height (emass) with the
experimental data. In our simulation, the height of the droplet gravity
center is calculated by

emass ¼

X
q>qavg

q xð Þh xð Þ
X
q>qavg

q xð Þ
; (15)

where hðxÞ is the height of each cell and q xð Þ represents the density of
the cell. As indicated in Fig. 4(b), after the droplet touches the plate,
owing to the deformation of the droplet, emass decreases from the cen-
ter of the sphere (R0Þ. After emass reaches the minimum value during
the spreading stage, it increases due to the droplet recoiling and
rebound. The simulation results are in line with previous experimental
data.50 Additionally, we conduct a mesh independency study by
increasing the mesh resolution to dx ¼ R0=60 or decreasing to
dx ¼ R0=45. As shown in Fig. 4(b), the evolution processes of emass for
all cases are consistent, which support the conclusion that the current
mesh resolution (dx ¼ R0=50) is sufficiently fine for simulation.

The last validation is based on the experiment conducted by
Biance et al.,51 corresponding to the experimental configurations and
the simulation setup of case 3 in Table I. The comparison in Fig. 5(a)
is for a water droplet (R0 ¼ 1mm) impacting a 300 �C flat plate with
an initial velocity at 0.8m/s. As presented in the figure, our simulation
results are generally consistent with the experiment results. Some

deviations between the simulation and experimental snapshots can be
found before the droplet bouncing, possibly because temperature-
independent thermal properties are used in the current simulation.
Besides, the constant contact temperature in our simulation may over-
estimate the evaporation rate of the droplet. Compared with the realis-
tic situation, this setting could lead to a thicker vapor film between the
droplet and the heated plate. Nevertheless, the current LBMmodel still
provides a reliable prediction for the Leidenfrost droplet impingement,
notably the thin vapor film between the droplet and hot plate, as well
as the droplet bouncing owing to the Leidenfrost effect.

We then extend the simulation in Fig. 5(a) to a wider range of
impact Weber numbers by increasing the droplet initial velocity, with
all the other setups kept the same. We qualitatively compare the nor-
malized droplet contact time (t�c ) and maximum spreading factor
(bmax) with the experimental data51 and theoretical predictions. Figure
5(b) indicates the droplet contact time under various Weber numbers.
In the figure, the droplet contact time is normalized by t�c ¼ Utc=D0.
In previous literature,26,52,53 the theoretical contact time of the
Leidenfrost droplet is approximately predicted by Rayleigh’s theory,8

tc=s ¼ p=4, where s ¼ ðD0
3ql=rÞ0:5 is the inertia-capillarity time.

Thus, the normalized droplet contact time can be re-written as

t�c ¼ tcU
D0

¼ p
4
U
D0

ffiffiffiffiffiffiffiffiffiffiffi
D0

3ql
r

r
¼ p

4

ffiffiffiffiffiffiffi
We

p
: (16)

We plot Eq. (16) as a solid line in Fig. 5(b). As shown in the fig-
ure, our simulation results are in excellent agreement with the experi-
mental data51 and theoretical results, for a wide range of Weber
numbers. Another comparison is conducted for the droplet maximum
spreading diameter. In this case, the maximum spreading factor of the
droplet is defined as bmax ¼ Dmax=D0, where Dmax is the droplet max-
imum spreading diameter. The simulation results are compared with
experiments (Biance et al.,51 represented by solid square symbols, and
Riboux and Gordillo,54 by solid circle symbols) as well as the power
law fitting equation (solid line) bmax ¼ aWe0:25, where the pre-factor
a ¼ 0:85 is achieved by the experimental fitting.51 We also compare

FIG. 4. (a) A qualitative comparison of simulation results (right column) and experiment snapshots (left column) of droplet impact on a heated plate with We¼ 16, Ja¼ 0.61.
(b) Transient evolution of the height of the dimensionless droplet gravity center (emass=R0), the lines represent the simulation results with various mesh resolutions and the sym-
bols indicate the experiment results in Ref. 26.
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our results with the energy balance based theoretical equation (dashed
line in the figure) for bmax, where

55

b2max � 1
	 
0:5 ffiffiffiffiffiffiffi

We
p

Oh

� ��0:2

¼
ffiffiffiffiffiffiffi
We

pffiffiffiffiffiffiffi
We

p þ 7:6
: (17)

As presented in Fig. 5(c), our simulation results are in line with
the power-law fitting and theoretical equations, for a wide range of
Weber numbers. It can be found that bmax in our simulations is some-
what lower than the experimental results at larger Weber numbers.
This is because, in our simulations, a fixed viscosity is used and the vis-
cous effects are overestimated for high Weber number cases, which
results in a lower bmax.

III. RESULTS AND DISCUSSION
A. Simulation setup

Having validated our multiphase thermal LB model within the
ULBM framework against experimental and theoretical results, we
then simulate a droplet with D0 ¼ 1:7mm impacting an overheated
plate with square pores, with a corresponding Bond number
Bo ¼ 0:12. The simulation configuration is shown in Fig. 6(a). In the
following, the simulation domain is set as a 700� 700� 720 box. The
other setups (e.g., initial droplet radius, thermal properties of the fluid

and boundary conditions) kept exactly the same as the validation cases
in Sec. IIC. The detailed structure of the plate with square pores is
shown in Fig. 6(b). The depth of the pores (Hp) is kept as 40 in lattice
unit (0.8mm), the diameter of the equal size pores is Dp, and the inter-
vals between the pores are L. In the following simulations, the Jacob
number is kept higher than 0.5 to ensure the plate temperature is over
the Leidenforst point. It also needs to be mentioned that the minimum
thickness of the vapor layer between the liquid and solid plate (the
minimum distance of the liquid above the plate to the plate’s upper
surface, emin in the figure) is recorded. The droplet spreading factor
during the evolution is defined as b ¼ D=D0.

B. The influence of the Weber number

First, we aim to investigate the influence of the impact Weber
number at various plate temperatures and configurations. In this sec-
tion, Dp and L are fixed as 11 lattices (220lm) and 4 lattices (80lm),
respectively. Two different plate temperatures are considered: one with
Jacob number Ja¼ 0.52 for Th 	 400 �C and the other with Jacob
number Ja¼ 0.7 for Th 	 500 �C. The other simulation setups kept
the same as in Sec. IIC. We change the impact Weber numbers from
4.6 to 87.4 by changing the droplet initial velocities. Evolutions of the
droplet shape are shown in Fig. 7. For ease of comparison and

FIG. 5. (a) Comparison of the experimental snapshots (top column) and simulation results (bottom column) of droplet impact on a heated plate at We¼ 21.5, Ja¼ 0.5. (b)
The normalized droplet contact time (t�c ) as a function of Weber number, the simulation results (solid square symbols) are compared with the power law fitting equation [Eq.
(16), solid line in the figure] and experiment results (hollow square symbols). (c) Comparison of the simulated droplet maximum spreading factors (bmax , hollow square sym-
bols) with experiment results (solid symbols), experimental power law fitting equation (solid line) and theoretical prediction equation (dashed line).
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observation, the droplet is shown as a half cutaway view, and a main
view snapshot of the droplet is shown in the last frame.

Figure 7(a) demonstrates the evolution of the Leidenfrost droplet
impact on a flat plate. It is noticed that an air pocket is formed during
the droplet spreading (t=s ¼ 0:35), which has also been observed in
previous simulations and experiments.56,57 The trapped air in the
pocket is caused by the droplet evaporation during the spreading, and
the pocket-like geometry of the vapor is attributed to the effect of
buoyancy force.29 The pocket neck breaks (t=s ¼ 0:35, marked by
black dashed circles) owing to different flow scales within the droplet
and the trapped air in air pocket.56 This consequently levitates the
droplet from the plate and exhausts the entrapped air. Nevertheless,
the levitated droplet re-contacts the plate during the recoiling period

and then completely bounces off from the plate when t=s ¼ 0:87.
Figure 7(b) shows the droplet impact on an overheated porous plate at
the same Weber number and Jacob number. As shown in the figure,
the droplet demonstrates similar morphologies during its evolution.
However, it can be observed that a part of the droplet penetrates into
the pores (t=s ¼ 0:04) and then evaporates (t=s ¼ 0:2). The gener-
ated vapor layer (t=s ¼ 0:36) is thicker and the droplet rebounds
faster (t=s ¼ 0:78) in this case than the case with a flat plate.

The droplet demonstrates different morphologies when impact-
ing the overheated porous plate at a larger Weber number. As shown
in Fig. 7(c), owing to a higher Weber number, more liquid penetrates
into the pores at the beginning of impingement ðt=s ¼ 0:042) and
evaporates. Remarkably, the droplet directly rebounds from the plate

FIG. 6. Illustrations of the simulation con-
figuration: (a) 3D main view of droplet ini-
tial state. (b) Half cutaway view during the
droplet evolution.

FIG. 7. Snapshots for a droplet impact on a heated plate with various We and Ja. (a) is for a droplet impacting a flat plate and (b)–(d) are for a droplet impacting a porous
plate.
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before its recoiling (t=s ¼ 0:2) in a pancake shape. Additionally, a
similar pancake-like bouncing phenomenon has also been observed in
the previous experiments for the droplet impact on high-temperature
nanotube surfaces,21,23 heated surfaces in the depressurized environ-
ment,58 superheated micropillars surfaces,59,60 as well as superheated
micropores surfaces.20 In addition, this pancake bouncing phenome-
non can also be observed when a droplet impacts a higher temperature
porous plate, as shown in Fig. 7(d).

Then, we give a detailed analysis of the mechanism of this unique
bouncing phenomenon. The transient evolutions of droplet profiles
(black lines), velocity vectors (white vectors, with a fixed scale to the
velocity magnitude), and temperature distributions during the spread-
ing stage are shown in Fig. 8. Comparing cases with the same plate
temperature but different Weber numbers [Figs. 8(a) and 8(b)], we
find that more liquid penetrates into the heated pores during the drop-
let spreading stage for the larger Weber number case [t=s¼ 0.08 in
Fig. 8(b)]. With the continuous evaporation of the penetrated liquid in
pores, entrapped air is formed between the droplet bottom part and
the heated plate. Thus, the larger the amount of evaporated liquid, the

more entrapped air will be generated. In other words, the entrapped
air generated by the evaporated liquid will provide a larger pressure
force [comparing Figs. 9(b) and 9(c) with Fig. 9(a)], because most of
the impacting kinetic energy of the droplet has been transformed into
surface energy during the spreading stage. Therefore, when the pres-
sure force is larger than the gravity and vertical dynamic force, the
droplet bounces from the plate [t=s¼ 0.214 in Fig. 8(b)]. The same
dynamics can also be found in the case with a higher Jacob number
(plate temperature). As shown in Fig. 8(c), similarly, we can observe
the penetration and evaporation of the liquid inside the pores. In the
case with a higher plate temperature, the liquid evaporation is faster.
Thus, we can find the liquid disk rebounds with a higher velocity [see-
ing the velocity vectors in Fig. 8(c) when t=s¼ 0.214].

Notably, satellite droplets can be observed during the droplet
bounce in Figs. 7(c) and 7(d). The generation of the satellite droplets is
owing to the breakup of thin liquid lamella during droplet spreading. A
3D main view for the selected cases is shown in Fig. 10 to demonstrate
the evolution of the liquid lamella. Comparing cases with a flat plate
and a porous plate for the same Weber number [Figs. 10(a) and 10(c)],

FIG. 8. Illustrations of temperature distributions, velocity vectors, and morphology evolutions of the droplet at the early stage of impacting a heated porous plate. (a)–(c) stands
for various We and Ja cases.

FIG. 9. Illustrations of pressure distributions, velocity vectors, and morphologies of a Leidenfrost droplet impacting heated porous plate at t=s¼ 0.13. (a)–(c) stand for various
We and Ja cases. The pressure in the figure is normalized by Pc.
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liquid flows into pore spaces, making holes in the lamella after impinge-
ment on the porous plate. Then, with the spreading of the liquid
lamella, the liquid bridges between the holes breakup from edges [seeing
t=s ¼ 0:36 in Fig. 10(c)], and the fragmented liquid bridges retract and
form satellite droplets [seeing t=s ¼ 0:4 in Fig. 10(c)]. However, com-
paring cases with a porous plate but different impact Weber numbers
[Figs. 10(b) and 10(c)], the liquid lamella remains intact for the lower
Weber number case, which is due to the fewer penetrated liquid and the
thicker spreading lamella.

The evolution of emin=D0 for selected cases is recorded and plot-
ted in Fig. 11(a). As indicated in the figure, for all cases, a peak value
of emin can be found before droplet recoiling. This phenomenon has
also been recorded in recent simulation studies for the droplet impact

on an overheated flat plate.9,35,61 The peak value of emin corresponds to
the instant when the droplet kinetic energy is minimized, and there-
fore, the trapped air is exhausted. Then, the droplet re-contacts the
plate during the recoiling with some small oscillations. Finally, the
droplet bounces from the plate. The period from the droplet’s first
touch on the plate to its bounce off the plate is defined as the contact
time (tc). As shown in Fig. 11(a), the peak value of emin increases
slightly with theWeber number for the droplet impact on a flat surface
(FS). Nevertheless, emin increases significantly with the Weber number
for droplet impact on a porous surface (PS). This implies the addi-
tional lift force provided by the entrapped air is similar in cases for
droplet impact on a flat surface. On the contrary, the additional lift
force increases significantly with the Weber number in cases of the

FIG. 10. Illustrations of the liquid lamella evolution at Ja¼ 0.52. (a) Droplet impacts a flat plate, at We¼ 87.5. (2) Droplet impacts a porous plate, at We¼ 47.6. (c) Droplet
impacts a porous plate, at We¼ 87.5.

FIG. 11. (a) Transient evolution of the normalized vapor layer thickness emin=D0, and different lines stand for the cases with various We, Ja and plate configurations. The
period shown in the figure represents the droplet contact time (tc). (b) Evolution of the normalized droplet gravity center emass=D0 for different cases, and the period shown in
the figure represents the droplet rebound time (tr ).
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droplet impact on a porous surface. This is attributed to the evapo-
rated liquid inside the pores. Consistent with the qualitative results, it
can be found that the droplet directly bounces off from the plate dur-
ing the spreading stage for the larger Weber number cases in the
porous plate.

We also record the evolution of emass and plot the evolution of
emass=D0 in Fig. 11(b), whose value can be used to quantify the speed
of droplet retraction and bouncing. As shown in the figure, after the
droplet touches the plate, emass decreases from the center of the sphere
ðemass=D0 ¼ 0:5Þ to a minimum value. In addition, it can be found
that the decay rate and the minimum value of emass are almost the
same in cases with the same Weber number, regardless of different
Jacob numbers and plate geometries (FS or PS). The same tendency of
emass for the same Weber number cases during the decay stage can be
explained by the spreading and collapse of the droplet disk governed
by the inertial effect.62 Thus, the penetrated liquid inside the pores has
little influence on the droplet spreading dynamics [comparing Figs.
7(a) and 7(b), at t=s < 0:36]. However, the rebound velocities are dif-
ferent for different cases. Under the same operating conditions, it is
found that the droplet rebound velocity increases with the Weber
number, and the rebound velocity is always higher in the cases of

droplet impact on a porous plate. This result can further reveal the fact
that the pressure force generated by the evaporated liquid inside the pores
contributes to the droplet bounce. As shown in the figure, we define the
period between the droplet’s first contact with the plate to emass=D0 > 0:5
(the initial position of emass) as the droplet rebound time (tr).

The dimensionless droplet contact time (tc=s) and droplet diam-
eters when the droplet leaves the plate [Dð"Þ=Dmax] for all cases are
recorded in Figs. 12(a) and 12(b), respectively. Consistent with the
results in Sec. IIC, for cases of the droplet impact on a heated flat plate,
dimensionless droplet contact time ðtc=s) almost remains constant for
a wide range of Weber number as shown in Fig. 12(a). For the droplet
impact on a porous plate at the same Jacob number [hollow triangle
cases in Fig. 12(a)], it always presents a shorter tc compared with the
droplet impact on a flat plate. Notably, a significant decrease in tc is
observed as the Weber number increases, which corresponds to the
pancake bouncing cases. It is also found that, with the increase in the
Jacob number, both tc and the minimum Weber number for the pan-
cake bouncing phenomenon keep decreasing. At lower Weber num-
bers, the lifting diameter Dð"Þ is similar for all the cases desipte
various plate geometry and plate temperature, while the pancake
bouncing doubles the lifting diameter at higher Weber numbers.

FIG. 12. Normalized (a) droplet contact time tc=s, (b) the droplet diameters when it leaves the plate Dð"Þ=Dmax , and (c) droplet rebound time tr=s as a function of impacting
We for the cases with various Ja and plate morphologies.
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It should be pointed out that the observed pancake bouncing for
droplet impact on a heated porous plate has a different mechanism
from the previous pancake bouncing due to the droplet impact on
superhydrophobic surfaces.63–65 For the droplet pancake bouncing on
textured superhydrophobic surfaces, the lift force is provided by the
capillary force. For droplet impacting a heated porous plate, as dis-
cussed above, the lift force is generated by the pressure force of the
evaporated liquid (indicated in Fig. 9). In addition, it is found that the
penetrated liquid remains in the pores when the droplet bounces from
the plate at t=s ¼ 0:2 [seeing Figs. 7(c) and 7(d)], which contrasts
sharply with the retracting droplet pancake bouncing when droplets
impact textured surfaces.64,66

The evolution of normalized droplet rebound time (tr=s) for all
cases is recorded and plotted in Fig. 12(c). As shown in the figure, for
all cases, tr decreases with Weber number. This is because, for the
larger Weber number case, the surface tension is smaller compared
with the dynamic force; thus, the droplet recoils earlier, which can be
proved in Fig. 11(b) (for the larger We cases, emass reaches the mini-
mum value earlier). Additionally, in agreement with the results in Figs.
7 and 12(a), impact cases on a porous plate always produce shorter tr
compared with flat plate impact cases. tr is further decreased for the
higher Jacob number cases at the large Weber number. The results in
Fig. 12(c) confirm the previous analysis, where the additional lift force
provided by the evaporated liquid accelerates the droplet rebound.

The modified droplet maximum spreading time tmax=s0 [the
period when the droplet reaches the maximum spreading diameter,
s0 ¼ D3

maxql=r
	 
0:5

] as a function of the Weber number is plotted in
Fig. 13(a). It indicates that tmax=s0 is almost identical for different cases
at the same Weber number, and tmax=s0 indicates a power-law decay
dependency with the increase in the Weber number. In the study of
Lin et al.,67 they proposed the following equation to predict tmax :

tmax

D3
maxql=r

	 
0:5 ¼ nWe�0:43; (18)

where n is the experiment fitting constant. It should be noticed that
the term D3

maxql=r
	 
0:5

on the right-hand side of Eq. (18) can be
regarded as the modified inertia-capillarity time (s0) referring to a
droplet of size Dmax . The experimentally fitted universal value for n is
0.44 in Ref. 67 and the corresponding equation is plotted in Fig. 13(a)
for comparison. By fitting our simulation results in Fig. 13(a), we can
see, our simulation results also follow the
We�0:43 power law depen-
dency. Note that, our fitted prefactor n¼ 0.55 is slightly higher than

the experimental value, which however matches the high viscosity
cases in Ref. 67.

Figure 13(b) demonstrates bmax as a function of Weber number
for all cases. Consistent with the results in Fig. 13(a), it can be found
that both Jacob number and plate geometries almost have no influence
on bmax . For all cases, bmax increases with Weber number with a
power law dependency. The best fitted equation for bmax in our study
is

bmax ¼ 1:05We0:17; (19)

where the perfector 1.05 is in good agreement with the fitted experi-
mental results in Ref. 51 but the index 0.17 is slightly lower than 0.25
in the experiment. We also plot the theoretical prediction Eq. (17) as
the dashed line in the figure, and it can be observed all simulation
results are in line with the theoretical equation. Notably, for the same
reason as pointed out in Sec. IIC, the simulated bmax is lower than the
theoretical value at the larger Weber numbers. In addition, this leads
to a lower index in our best fitted exponential equation than that in
Ref. 51.

Finally, the dimensionless droplet evaporation mass (Me=M0)
and the averaged heat flux (Qavg:) during the period t ¼ 0 
 tr are
plotted in Figs. 14(a) and 14(b), respectively. The heat flux of each
time instant is calculated as

q ¼ 1
LxLy

ð ð
�k

@T
@z

� �����
z¼Hpð Þ

" #
dxdy; (20)

where Lx and Ly are the length of the simulation domain in x and y
directions, respectively. As shown in Fig. 14(a), Me=M0 almost
increases linearly with Weber numbers, and the evaporation mass is
almost the same for two different Jacob number cases. A cylinder
model is used to explain the linear relationship between Me=M0 and
Weber number. We assume that the maximum deformation of the
droplet in the horizontal direction still follows rmax 
 We0:25 depen-
dency as reported in Refs. 51 and 68. In addition, as mentioned above,
the collapse of the droplet disk is governed by the inertial effect, and
the dynamic force is minimized when t ¼ tmax . Thus, the maximum
penetration length of the liquid slug inside the pores has the relation-
ship of hmax 
 Utmax 
 We0:445, where tmax is described as Eq. (18).
Considering the penetrated liquid (Mp) can be regarded as a cylinder
shape and be completely evaporated owing to the high plate tempera-
ture and small pores size ðDp=D0 < 0:1), the evaporation mass can be

FIG. 13. (a) The modified droplet maxi-
mum spreading time tmax=s0, where

s0 ¼ D3
maxql=r

	 
0:5
, (b) droplet maxi-

mum spreading factor bmax as a function
of impacting We, the different symbols in
the figure indicates various Ja and plate
configurations. The lines in the figure
stand for the theoretical prediction equa-
tions and fitted power law function.
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scaled as Me=M0 ¼ Mp=M0 
 hmaxr2max 
 We0:945 	 We. For the
time averaged heat flux shown in Fig. 14(b), Qavg: generally increases
with the Weber number, which can be explained by the fact that a
higher We leads to a higher liquid contact area (larger bmax) and a
higher spreading velocity (shorter tmax). Consequently, this enhances
the phase change heat transfer and convective heat transfer.
Considering bmax and tmax are almost the same for various Jacob num-
bers at the same Weber number, it can be understood that the higher
plate temperature cases demonstrate higher heat flux.

C. The influence of pore intervals

In this section, we investigate the influence of the pore intervals. In
the following simulations, Dp is fixed as nine lattices (180lm), and L is
changed from 1 lattice (20lm) to 97 lattices (1.9mm), which leads to
the dimensionless pore intervals L� ¼ L=D0 varying from 0.01 to 0.99.
For all the cases in this section, Weber number We¼ 69.2 and Jacob
number Ja¼ 0.7, and all the other setups are the same as in Sec. III B.

Figure 15 shows qualitative evolutions of the droplet shape as it
impacts porous plates with various L�. Similar to the results in Fig. 7,
after the droplet impacts the porous surface, a part of the droplet pene-
trates into the pores and evaporates. After that, the droplet levitates
from the plate during the spreading and the entrapped air is exhausted.
As indicated in the figure, for the smaller L� case [Fig. 15(a)], owing to
the smaller solid fraction, more liquid penetrates into the pores and
evaporates. As pointed out in the above analysis, the more evapo-
rated liquid, the larger pressure force will be provided. Consequently,
the droplet presents the pancake bouncing for the smaller L� cases
[similar to the phenomena in Figs. 7(c) and 7(d)]. For the larger L�

cases [Figs. 15(b) and 15(c)], it can be observed that the droplet re-
touches the plate during the recoiling stage and then bounces from
the plate, which is similar to the morphologies in Fig. 7(b).

The early stage evolutions for two different L� cases are shown in
Fig. 16. Consistent with the previous findings, regarding the lower L�

case, more liquid penetrates into the pores [t=s ¼ 0:077 in Fig. 16(a)]

FIG. 14. The relation of (a) the dimensionless droplet evaporation mass Me=M0 and (b) time averaged heat flux Qavg: with a variety of impacting We. The results are for drop-
let impact on a heated porous plate with different Ja, from t ¼ 0 
 tr . The dashed line in (a) represents a linear fitting function.

FIG. 15. Qualitative evolutions of droplet impact on a porous plate with various pore intervals L�, We¼ 69.2, and Ja¼ 0.7. (a) L�¼ 0.03, (b) L�¼ 0.09, and (c) L�¼ 0.25.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 093319 (2022); doi: 10.1063/5.0118079 34, 093319-13

VC Author(s) 2022

https://scitation.org/journal/phf


and then evaporates [t=s ¼ 0:129 in Fig. 16(a)]. Qualitatively, it can
be found that the droplet morphologies for various L� cases are similar
in the early spreading stage. Nevertheless, the larger quantity of evapo-
rated liquid provides a larger pressure force and finally leads to the
droplet bouncing from the plate [t=s ¼ 0:18 in Fig. 16(a)]. It can also
be confirmed by the temperature field inside the pores that for the
lower L� case, the temperature is lower due to the more significant
evaporation cooling effect by its larger evaporation rate.

The transient evolution of droplet spreading ratio for various L�

cases is plotted in Fig. 17(a). As shown in the figure, the droplet first
spreads to the maximum value and then recoils. Concurring with the
qualitative results in Fig. 16, the spreading ratio is identical for a wide
range of L�. bmax (left axis, represented by solid squares) and tmax=s0

(right axis, represented by solid circles) in relation to L� is plotted in
Fig. 17(b). As shown in the figure, consistent with the qualitative
observation in Fig. 15, both bmax and tmax=s0 are almost at a constant
value for a wide range L�, which can be observed in Fig. 17(a). The
identical bmax and tmax can be explained by the fact that the droplet
spreading stage is dominated by the inertia effect. In other words, the
penetrated liquid inside pores has little influence on the droplet
dynamics in the horizontal direction. Consequently, bmax and tmax

present similar values in the same Weber number, regardless of differ-
ent values of L�. Additionally, the predicted value of tmax by Eq. (18)

and bmax by Eq. (19) are plotted in Fig. 17(b) by dashed and solid lines,
respectively. It can be observed that the theoretical equations can also
give good predictions of bmax and tmax for a wide range of L�.

The evolution of emass=D0 is plotted in Fig. 18(a), and tr=s as a
function of L� is shown in Fig. 18(b). It can be observed that the evolu-
tion of emass during the decay stage for all cases is almost constant.
During the rebound stage, the minimum L� presents the fastest rebound
speed and shortest rebound time (tr). For the larger L� cases during the
rebound stage, the evolutions of emass are very similar (e.g., L� ¼ 0:25
and L� ¼ 0:97). It should be mentioned that the solid fraction of the
porous plate can be calculated as / ¼ 1� ðDp=ðDp þ LÞÞ2, Dp is fixed
as 9 lattices when changing L. As a result, the corresponding / varies
from 0.9 to 0.99 when L� is changed from 0.2 to 0.97, which implies
that only a small amount of liquid penetrates into the pores when
L� > 0:2, and the amount of the evaporated liquid is very small.
Consequently, the pore intervals have slight influence on droplet
dynamics. For a similar reason, we can find tr remains at a similar value
when L� > 0:2 [as shown in Fig. 18(b)]. This can also explain why b
[Fig. 17(a)] and emass [Fig. 18(a)] present similar evolution trends for the
high L� cases.

We record Me=M0 (t ¼ 0 
 tr) as a function of the plate open-
ing fraction 1� / in Fig. 19. As shown, Me=M0 is linearly increased
with 1� /. Additionally, we can find Me is significantly increased

FIG. 16. The temperature contours, velocity vectors and morphology evolutions of the droplet at the early stage of impact on a heated porous plate with different pore
intervals.

FIG. 17. (a) Transient evolution of droplet spreading ratio b for various L� cases. (b) tmax=s0 (right axis) and bmax (left axis) as a function of L
�, the dashed line and solid line

stand for the predicted value calculated by Eqs. (18) and (19), respectively.
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with 1� / when 1� / > 0:1 (L� < 0:2); thus, it explains why tr is
dramatically increased when L� < 0:2 [as shown in Fig. 18(b)].
Finally, we plot the dimensionless droplet rebound time tr=s as a func-
tion of Me=M0 for all cases in Fig. 20. As shown in the figure, the
droplet rebound time decreases with increasing evaporation mass. In
simulations of droplet impact on a porous plate, the maximum evapo-
ration mass is higher and the minimum rebound time is smaller than
the corresponding values in the flat-plate cases for the same range of
Weber numbers. Remarkably, tr=s can be fitted by a 
 ðMe=M0Þ�0:37

for the cases of droplet impact on a porous plate. However, the cases
of droplet impact on a flat plate clearly deviate from the power law
dependency. The results for the cases of droplet impact on a porous
plate demonstrate, the droplet penetration into the pores leads to a
larger quantity of evaporation mass, which generates an additional lift
force and accelerates the rebound of the droplet, leading to a short tr .
It should be pointed out that, in our simulations, the pore size Dp is
relatively small (Dp=D0 	 0:1) and, thus, the liquid in the pores can
fast evaporate. As pointed out in the above analysis, the evaporated liq-
uid is critical to the droplet bouncing dynamics, and the droplet could

present different dynamics when the liquid in the pores evaporates to
a different extent. Thus, it is necessary to extend the simulation to a
wider range of surface configurations and operating parameters in
future studies.

IV. CONCLUSION

In this study, the unified lattice Boltzmann model (ULBM) is
applied to numerically investigate the droplet impact on a porous plate
above the Leidenfrost temperature. The ULBM with the KBC collision
operator is first validated by reproducing theoretical and experimental
results of benchmark cases as well as the results of Leidenfrost droplet
impingement on a flat plate. Then, we simulate the Leidenfrost
droplet impingement on a plate with square pores. Effects of the drop-
let impacting Weber number, the plate temperature (Ja), and the plate
configuration (flat plate, porous plate, and different pore intervals L)
on droplet dynamics are revealed. The following conclusions can be
drawn:

FIG. 18. (a) Transient evolution of emass=D0 and (b) normalized tr as a function of L� for the droplet impact on an overheated porous plate with various L�.

FIG. 19. Normalized droplet evaporated mass as a function Me=M0 of surface solid
fraction 1-/, and the dashed line in the figure represents the linear fitting function.

FIG. 20. Dimensionless droplet rebound time tr=s as a function of normalized
droplet evaporated mass Me=M0 for all cases, and the dashed line in the figure rep-
resents the power law fitting function.
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(1) In cases with small Weber numbers, the Leidenfrost droplet
impact on a porous plate shows similar bouncing morphologies
as it impinges on a flat plate. On the other hand, in cases with
large Weber numbers, a part of the droplet penetrates into the
pores and evaporates. The vapor formed from the liquid evapo-
ration provides additional lift force. This subsequently causes
the droplet rebound in a pancake shape before its recoil, which
breaks the theoretical Rayleigh’s limitation and reduces the
droplet contact time (tc) significantly.

(2) Compared with the droplet impact on a flat plate, the droplet
impact on a porous plate shows a faster rebound time (tr). The
increase in the plate temperature and Weber number promotes
the droplet rebound, and the increasing Jacob number decreases
the minimum Weber number for the pancake bouncing
phenomena.

(3) The modified droplet maximum spreading time (tmax) and
maximum spreading factor (bmax) are similar in cases with the
same Weber number but various plate geometries and Jacob
numbers. The evolution of tmax= D3

maxql=r
	 
0:5

and bmax can be
predicted by the power law functions of the Weber number in
Eqs. (18) and (19), respectively. For the cases of droplet impact
on a porous plate, the evaporated liquid mass linearly increases
with the Weber number.

(4) When changing the pore intervals, values of tmax and bmax keep
almost unchanged and still follow the proposed power law
functions [Eqs. (18) and (19)]. It is found that the droplet
rebounds faster in cases with smaller normalized pore
intervals L�. In cases with the larger normalized pore intervals
(L� > 0.2), both the droplet transient evolution and the
rebound time (tr) are similar.

(5) Owing to the small pore size (Dp=D0 
 0.1), the part of the
droplet that is inside the pores evaporates rapidly. Therefore,
the normalized droplet evaporation mass (Me=M0) is propor-
tional to the plate opening fractions (1-/). The results indicate
that, for the droplet impact on a porous plate, the droplet
rebound time can be fitted as a power law decay function of the
normalized droplet evaporation mass.
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