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Abstract – The Laser Interferometer Space Antenna (LISA) is a space-borne observatory of
gravitational waves to be launched by ESA and NASA in the 2030s. Interferometric measurements
are made between three spacecraft orbiting the Sun. The measurements are dependent on the
geometric information due to the relative locations between the spacecraft as well as the intrinsic
parameters of the astrophysical objects that generate the gravitational waves. We show that the
measurements of mildly chirping gravitational waves can be approximated by means of a tri-linear
representation, where the geometric information about the location of the observed object as well
as that of the spacecraft locations are separated by different factors. We discuss that for low
frequencies the relative approximation error is proportional to the square of the signal’s carrier
frequency and illustrate this accuracy in numerical experiments. For the sake of illustration, we
outline a simple algorithm for extracting parameters from the observed gravitational waves.

open  access Copyright c© 2022 The author(s)

Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License
(CC BY). Further distribution of this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

Introduction. – For centuries, electromagnetic radi-
ation has been the only option to observe the Universe.
However, most of it remains electromagnetically dark. In-
stead, detection of yet unrevealed astrophysical objects
and mechanisms can be achieved through Gravitational
Wave (GW) observation [1,2]. These waves interact only
weakly with matter and hence, travel through the Universe
without distortion of the information they carry about
their origins. For instance, insights into the Milky Way
and galaxy formation, in general, can be obtained by ana-
lyzing measurements of GWs that are emitted by massive
black holes or ultra-compact binaries [3–7].

Similar to electromagnetic waves, GWs have two polar-
ization components. Their particular effect on the space-
time fabric is a tidal deformation. Its strength is given
as the relative change in the initial extent of the matter
that is distorted by the GW. For waves from astrophysical
sources, this ratio typically ranges in the order of magni-
tude of 10−21. Such small amplitudes can be detected by
means of laser interferometry [1,8–13]. Since the first de-
tector of this kind went into operation in 2002, a whole
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network of ground-based interferometers evolved [14–17].
In spite of the many successes, including the first direct
detection of a GW in 2015 [8], terrestrial GW detection is
limited: seismic noise as well as noise originating from
Earth’s local gravity restrict the sensitivity of ground-
based interferometers to GWs that are emitted at frequen-
cies above a few Hz [18,19]. However, it is expected that
the richest part of the gravitational radiation spectrum
corresponds to frequencies below 100 mHz [1]. Access to
this low-frequency regime is expected to be provided by
LISA, a project that is jointly proposed by ESA, NASA,
and an international group of scientists, the LISA con-
sortium [1,2]. LISA is planned to be the space-based
counterpart to the terrestrial interferometric GW detec-
tors and is designed to simultaneously detect several thou-
sand GWs from the low-frequency regime. It consists of
three spacecraft that are separated by order of millions of
kilometers and arranged in a triangular formation. Laser
beams are relayed back and forth between the satellites,
building the interferometric arms along which the rela-
tive change due to GWs is measured. Further, LISA
trails the Earth around the Sun while the spacecraft rotate
around their barycenter. This orbital motion introduces
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amplitude, frequency, and phase modulations to the mea-
sured data which encodes relevant information about the
gravitational wave source such as source location, orienta-
tion, and the orbital plane [6,20]. The full potential of the
LISA measurements is to be exploited with data analysis
algorithms that are capable of extracting individual sig-
nals from a data stream that contains an unknown number
of overlapping signals [21,22]. Most of the initial attempts
at LISA data analysis originate from the ground-based de-
tector community, where the established analysis method
is grid-based matched filtering [23–27]. Other statistical
methods for the detection of gravitational waves have been
suggested in [21,28–37].

In this paper, we propose to approach the LISA data
analysis from a different direction. We show that mildly
chirping gravitational waves that will be detected by LISA
can be well approximated using a tri-linear structure. We
will employ some rudimentary assumptions on the arm-
lengths [38] and filtering in the Fourier domain [30] as
also used elsewhere. The tri-linear approximation allows
for a representation where contributions caused by the ge-
ometry of LISA are separated from those of the observed
astrophysical object. Specifically, it is shown that the con-
tributions of the astrophysical object further factor into:
the waveform, its direction of propagation, and a term that
encodes a sequence of Euler rotations together with the
source’s extrinsic parameters. This approximation can be
used to design new detection algorithms based on linear al-
gebra techniques. We illustrate this with a simple method
using alternating least squares for an isolated event. The
construction of more complex strategies falls out of the
scope of this letter.

Tri-linear representations. – The gravitational wave
emitted from a source in the direction k ∈ R

3 at a posi-
tion x ∈ R3 can be modeled by the tensor-valued function
Hα

0 : R × R3 → R3×3. The parameters describing the
source are gathered in the vector α = {k, . . .}, where the
notation “. . . ” indicates additional parameters. Specifi-
cally, transverse, traceless plane gravitational waves will
be considered, for which the gravitational waves take the
form

Hα
0 (t, x) = Hα(t − x · k), (1)

where Hα : R → R3×3. This function may further be
decomposed as

Hα(t) = hα
+(t)E+ + hα

×(t)E×,

where h+, h× : R → R represent the two polarization com-
ponents. Whereas both the direction k and the polariza-
tion components strictly speaking depend on the location
x, the distances to the sources of the gravitational waves
and the observation points are that large so that this de-
pendence is negligible. These quantities are therefore re-
garded to be constants. The polarization tensors E+ and

E× are 3 × 3 symmetric matrices satisfying

kT E+k = 0, kT E×k = 0,

trace(E+) = 0, trace(E×) = 0,
(2)

where trace denotes the matrix trace. The elements of
these matrices are included in the parameter vector α.
We will assume that the polarization components in turn
can be written as

hα
+(t) = Re (c+hα(t)) , hα

×(t) = Re (c×hα(t)) ,

where c+, c× ∈ C are constant amplitudes and hα is com-
plex valued. This property holds true, for instance for
galactic and massive black holes binaries. As will be de-
scribed later on, the approach that we will present holds in
the more general case, but simplifies in the above setting.
We now define

E = c+E+ + c×E×.

Note that it holds that kT Ek = 0, and that trace(E) =
0, similarly as before. The gravitational waves that we
consider can thus be described by

Hα(t) = Re (hα(t)E) ,

where α = {k, E, . . .}, and where the additional param-
eters indicated by . . . describe the waveform hα. The
introduced gravitational wave model is based on [39,40] to
which we refer for further information. With LISA, mea-
surements will be made using three spacecraft, measuring
fluctuations in their relative positions as a function of time
by means of laser interferometers. We denote their loca-
tions by the functions p0

j(t), j ∈ {1, 2, 3}. Moreover, we
introduce

p0(t) = (p0
1(t) + p0

2(t) + p0
3(t))/3

to denote the average location, and

pj(t) = p0
j(t) − p0(t)

as the locations relative to the average location. For the
moment, let us assume that

p0(t) = 0. (3)

We also introduce the normalized direction vectors

nj1,j2(t) =
pj2(t) − pj1(t)

‖pj2(t) − pj1(t)‖
, (4)

and the arm-lengths

Lj1,j2(t) = ‖pj1(t) − pj2(t)‖, j1, j2 ∈ {1, 2, 3}. (5)

The time it takes the light to travel between two space-
crafts is often taken into account when defining the arm-
lengths. In this case it is necessary to distinguish between
Lj1,j2(t) and Lj2,j1(t). However, for the frequency range
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and given the kind of approximations that we will con-
sider in this work, this effect is marginal and it will be
ignored. Moreover, we will assume that the change in po-
sitions is small compared to the time it takes for light to
travel between spacecrafts. We introduce the time delay
operator

Tτf(t) = f(t − τ).

Regarding the remark above and using units where the
speed of light is one, we will now make approximate ex-
pressions of the form

TLj3,j4 (t)TLj1,j2 (t)f(t) = TLj3,j4 (t)f(t − Lj1,j2(t))

≈ f(t − Lj1,j2(t) − Lj3,j4(t)),

without explicitly mentioning its effect since it is negli-
gible. Following [41,42], the response yα

1,2 for the one-
way Doppler measurements conducted in the LISA setup
(sending from spacecraft 1 and receiving at spacecraft 2)
is given by

yα
1,2(t) =

1
2

nT
1,2(t)En1,2(t)
1 − n1,2(t) · k

×
(
hα(t − L1,2(t) − p1(t) · k) − hα(t − p2(t) · k)

)
.

(6)
We will now assume that hα can be decomposed as

hα(t) = gα(t)φ(t), φ(t) = e2πiω0t, (7)

with gα varying slowly in comparison to the carrying
frequency ω0. This assumption holds true for instance
for the case of mildly chirping galactic binaries, and for
monochromatic galactic binaries, in particular, it is possi-
ble to choose ω0 so that gα becomes constant.

This representation can be made slightly more general
by inluding a “carrier” chirp component, ω̇0 in φ(t). Do-
ing so allows for the representation of moderately chirping
events, some more details are provided, cf. (15). However,
in this letter we focus on the case above as it allows for a
simpler partitioning of the frequency domain that is more
useful when searching for large numbers of galactic bina-
ries.

The right-hand side of (6) can then be approximated by

1
2

nT
1,2(t)En1,2(t)
1 − n1,2(t) · k

gα(t)φ(t)

×
(
e−2πiω0(L1,2(t)+p1(t)·k) − e−2πiω0p2(t)·k

)
,

which we can rewrite as

1
2

nT
1,2(t)En1,2(t)
1 − n1,2(t) · k gα(t)φ(t)e−2πiω0p2(t)·k

×
(
e−2πiω0L1,2(t)(1−n1,2(t)·k) − 1

)
.

Let us introduce

βj1,j2(t) = −2πiω0Lj1,j2(t). (8)

In the following, let us assume that |βj1,j2(t)|, i.e.,
|ω0Lj1,j2(t)| is small. Through a series expansion we thus
have that

yα
1,2(t)φ(t) ≈ 1

2
gα(t)nT

1,2(t)En1,2(t)e−2πiω0p2(t)·k

×
(
β1,2(t) +

1
2!

β1,2(t)2(1 − n1,2(t) · k)

+
1
3!

β1,2(t)3(1 − n1,2(t) · k)2 + . . .
)
. (9)

Before going into further details about this expansion,
let us discuss how to apply the same technique to so-called
Time-Delay Interferometry (TDI) observables [41,43,44].
These are linear combinations of time delayed Doppler
measurements which feature multiple beneficial charac-
teristics. Each combination has different properties, two
such being the suppression of comparatively large noise
components or an increased robustness of the mission in
cases where one pair of spacecraft is lost [41]. A variety of
different TDI combinations exist: the first generation of
unequal arm Michelson TDIs, for instance, is given by

Xα
1 (t) =

(
TL1,2yα

12
(t) + yα

21(t)
) (

T 2
L1,3

− 1
)

+
(
TL1,3y

α
13(t) + yα

31(t)
) (

T 2
L1,2

− 1
)

,

where Xα
2 (t) and Xα

3 (t) are obtained from cyclic permu-
tation of indices [45]. Further combinations exist where
expressions of the type

(
TL1,2y

α
1,2(t) + yα

2,1(t)
)
φ(t) ap-

pear [43]. According to the assumption that gα(t) is vary-
ing slowly in comparison to φ(t), cf. (7), and that this also
holds true when comparing the variation in arm-length
and position vectors to φ(t), we may approximate

TL1,2y
α
1,2(t) ≈ eβ1,2(t)yα

1,2(t).

Using (9) along with similar manipulations for yα
2,1(t),

along with Taylor expansions of eβ1,2(t) and e−2πiω0p2(t)·k

and some calculations one obtains(
TL1,2y

α
1,2(t) + yα

2,1(t)
)
φ(t) =

1
2
gα(t)nT

1,2(t)En1,2(t)

×
(

β1,2(t)
(
2 + 2β1,2(t) +

4
3
β1,2(t)

2 − β1,2(t)
p3(t) · k

L1,2

× (1 + β1,2(t)
)

+
1
3

β1,2(t)
2

L2
1,2

× ((p1(t) · k)2

+ (p1(t) · k)(p2(t) · k) + (p2(t) · k)2
)

+ O(β1,2(t)
3)))

.

(10)
By dropping the quadratic dependence on k, we obtain⎛
⎝eβ1,2(t)yα

1,2(t) + yα
2,1(t)

eβ1,3(t)yα
1,3(t) + yα

3,1(t)
eβ2,3(t)yα

2,3(t) + yα
3,2(t)

⎞
⎠φ(t) ≈

1
2
gα(t)

⎛
⎝nT

1,2(t)En1,2(t) (a1,2(t) + a3(t) · k)
nT
1,3(t)En1,3(t) (a1,3(t) + a2(t) · k)

nT
2,3(t)En2,3(t) (a2,3(t) + a1(t) · k)

⎞
⎠ , (11)
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Fig. 1: Comparison between the tri-linear approximation and
the reference data model. Left: the real part of W (t, 1) is plot-
ted for five simulated signals (thin line, reference model; thick
line, tri-linear approximation). Right: the absolute difference
in these signals is depicted.

where

a1,2(t) = 2β1,2(t)
(

1 + β1,2(t) +
2
3
β1,2(t)2

)
,

a3(t) = −β1,2(t)2
p3(t)
L1,2

(
1 + β1,2(t)

)
,

(12)

and like-wise for the other indices. This approximation is
O(β1,2(t)4). We note that (11) is a tri-linear expression in
gα(t), E, and the affine compensated vector (1, k1, k2, k3).
All other expressions in (11) are known and only depen-
dent on the geometry of the spacecraft. Geometric in-
formation about the source of the gravitational wave is
contained in k and E, respectively, while the information
of the actual waveform is contained in gα(t).

Finally, let us loosen the requirement (3). From (1) we
see that a change in location modifies the gravitational
waves by translations of the form p0(t) · k. Hence, the
counterpart of (11) in the case where (3) does not hold is

⎛
⎝eβ1,2(t)yα

1,2(t) + yα
2,1(t)

eβ1,3(t)yα
1,3(t) + yα

3,1(t)
eβ2,3(t)yα

2,3(t) + yα
3,2(t)

⎞
⎠ ≈

1
2
hα(t − p0(t) · k)

⎛
⎝nT

1,2(t)En1,2(t) (a(t) + a3(t) · k)
nT
1,3(t)En1,3(t) (a(t) + a2(t) · k)

nT
2,3(t)En2,3(t) (a(t) + a1(t) · k)

⎞
⎠ .

(13)
This expression still has the structure of a matrix of rank
three. As a consequence, it is easy to define a three-
dimensional array with elements only depending on the
geometry and the frequency ω0. To clarify the structure
further, we introduce some additional notation. We let e
denote a complex vector with 5 elements such that

E =

⎛
⎝e1 e2 e3

e2 e4 e5

e3 e5 −e1 − e4

⎞
⎠ .

This assures that trace(E) = e1 + e4 + (−e1 − e4) = 0.
Moreover, let k̃ = (1, k1, k2, k3), gather the TDI-like ob-
servables in W , and introduce the four-dimensional array

A so that the counterpart of (16) can be expressed as

W (t, j2) ≈
5∑

j3=1

4∑
j4=1

hα(t − p0(t) · k)A(t, j2, j3, j4)ej3 k̃j4 .

(14)
We can now easily model several sources using the same
structure. We extend the vectors e and k̃ to be two-
dimensional, with the second dimension referring to the
source the parameters belong to. An approximate model
for M sources then reads as

W (t, j2) ≈
M∑

m=1

5∑
j3=1

4∑
j4=1

hαm(t − p0(t) · k·,m)A(t, j2, j3, j4)ej3,mk̃j4,m.

As shown in fig. 1, the accuracy of the approximation
is assessed by comparison to a reference using the data
model in [39]. Throughout the following comparisons, the
Solar-system–baricentric coordinate system is employed
and the orbits of the spacecraft are modeled up to sec-
ond order in the eccentricity. The coordinates are given
by eqs. (A1) and (A2) in [39] with η0 = 0 and ξ0 = 0.
Arm-lengths and unit normal vectors are computed ac-
cording to (4) and (5). For the comparison in fig. 1, we
assume that the GWs are emitted by non-chirping galac-
tic binaries, i.e., a monochromatic signal is assumed. Sky
locations and polarizations are generated randomly while
their inclinations, the initial phase as well as the devia-
tion of the frequency are set to zero and the amplitudes
are chosen to be one. All depicted GWs have the same fre-
quency ω which equals the carrier frequency ω0 = 10−4 Hz.
Each signal shown in fig. 1 is simulated for the duration
of 1 year. In order to compare the real-valued LISA mea-
surements to the complex-valued data generated by the
tri-linear approximation, we compute the complex-valued
analytic part of the reference signal, cf. [46], eq. 4.69. Fur-
ther we eliminate the oscillation originating from ω0 for
each GW signal by multiplication with φ(t), cf. (7). This
results in the slowly oscillating signals that are depicted in
fig. 1. The variations are caused by LISA’s orbital motion.
In fig. 2 the error between the tri-linear approximation
and the reference model is depicted for different carrier
frequencies ω0. The reference and approximation are com-
puted as above. For each ω0, the residual is computed for
1000 different sky locations and polarizations, i.e., k and
e. Figure 2 illustrates the behavior of the approximation
errors. For signals with the same carrier frequency, the
errors exhibit mild variation. The error mainly depends
on ω0 while impacts of different choices of k and e are
negligible.

Since βj1,j2 ∼ ω0 according to (8), it follows from (10)
and (11) that for small ω0 the amplitude of the tri-linear
approximation should be proportional to ω3

0 . At the same
time, from (12) the amplitude of the TDI counterparts
{W (t, j2)}3

j2=1 should be proportional to ω0. Hence, the
relative errors are expected to be proportional to ω2

0 for
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Fig. 2: Relative approximation error for three different ω0 each
having 1000 modeled signals. The parameters are assumed to
be constant apart from the sky locations and polarization which
are generated randomly.

low frequencies, as illustrated in fig. 2. Comparing the ap-
proximation errors to the LISA noise characteristics puts
the accuracy of the tri-linear representation into perspec-
tive. The LISA Data Challenge 1-3 data set [47] con-
tains ten verification binaries that are superimposed with
the frequency-dependent instrumental LISA noise. In the
close vicinity of each verification binary, the noise is at
least 10% and the tri-linear representations are therefore
well suited for the parameter estimation.

Tri-linear representations similar to (14) can further be
derived for signals with more significant frequency deriva-
tives. In this case, a carrier chirp ω̇0 is included in φ(t)
and βj1,j2(t) is defined as

βj1,j2(t) = −2πiω0Lj1,j2(t) − 2πiω̇0Lj1,j2(t). (15)

The accuracy of the corresponding tri-linear structures
is sufficiently low for chirps up to 10−12 Hz2. This al-
lows for instance to approximate GWs that are emitted
by an equal-mass massive black hole binary with a total
mass of 104 Solar masses and frequencies smaller than 0.5
mHz [22].

Alternating least squares for single events. – Let
us consider the case where the data consist of a single
event. This will of course also be relevant where parts
of the data can be isolated so that they mainly contain
contributions from a single event. In this scenario, we do
not impose any additional constraints on the structure of
the waveform hα, except that (14) is valid. Note that if
two out of the three sets of parameters k̃, e and hα are
fixed, then the third one can be solved by the linear sys-
tem defined by (14). A strategy for finding all parameters
is thus to iteratively lock two sets of parameters and up-
date the third. This general approach is well known in
the literature and often referred to as alternating least
squares [48]. Amongst other use-cases it is often applied
for tensor decompositions [49], numerical simulations in
higher dimensions [50] but also for matrix factorizations
in the case of incomplete data [51].

Let us set f(t) = hα(t − p0 · k) in the description that
follows. For fixed e and k̃ the best approximation of f is
obtained from minimizing the least squares problem as-
sociated with (14) for each point in time. Note that the
problem is defined such that all TDI channels are used,
and for the considered noise-free scenario no further con-
straints on the waveforms are imposed. In a similar fash-
ion, we can obtain an initial candidate for an update of e

by minimizing the least squares problem (14) obtained by
fixing f and k̃. The corresponding matrix

Ẽ =

⎛
⎝ẽ1 ẽ2 ẽ3

ẽ2 ẽ4 ẽ5

ẽ3 ẽ5 −ẽ1 − ẽ4

⎞
⎠

is not necessarily of the desired form though, as it typ-
ically would not be possible to decompose it using E+

and E× such that (2) is satisfied. A particular problem is
that Ẽ does not necessarily have one eigenvector with the
corresponding eigenvalue that is, or is close to zero, i.e.,
kT Ẽk = 0 is not necessarily satisfied. Moreover, the eigen-
vector corresponding to the eigenvalue with the smallest
absolute value is not necessarily real. This induces com-
plications in the estimation of k̃ which we want to be real-
valued. By forming the singular value representation

UΣVT =
(

Re(Ẽ)
Im(Ẽ)

)
, (16)

we can construct

EP,i,j =
2∑

r=1

Ui,rΣr,rVj,r + i Ui+3,rΣr,rVj,r (17)

which is an approximation of Ẽ that satisfies (2) up to
the traceless condition. We may now proceed by project-
ing EP on the set of traceless matrices and using that to
update e. After this last projection, the constraints (2)
will again not be satisfied. We thus either continue with
additional iterations of the same type to improve the es-
timation of e, or continue with updating the estimates of
k̃ and f(t). This is also a type of alternating projection
method. For results regarding convergence for this class of
problems see [52]. The final step concerns the estimation
of k̃ given fixed f and e. This is done by minimizing (14)
via least squares. However, it is advantageous to also in-
corporate the constraint that kT Ek = 0. This can be done
by minimizing

3∑
j2=1

∫ ∣∣∣∣∣∣W (t, j2) −
5∑

j3=1

4∑
j4=1

f(t)A(t, j2, j3, j4)ej3 k̃j4

∣∣∣∣∣∣ dt

+ S

⎛
⎝
∣∣∣∣∣

3∑
n=1

k̃n+1Vn,1

∣∣∣∣∣
2

+

∣∣∣∣∣
3∑

n=1

k̃n+1Vn,2

∣∣∣∣∣
2
⎞
⎠ ,

(18)
where V are obtained from (16), and where S is some
penalty level, for instance proportional to the equivalent
of the Frobenious norm of A. We collect the steps above
in Algorithm 1.

Figure 3 illustrates the result of the proposed alternat-
ing least squares algorithm (algorithm 1) as applied to
1000 simulations. The parameters for each simulation are
chosen as described above but with

hα(t) = e2πi((ω0+δω)t+νt2/(2t2max)).
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Algorithm 1: Alternating least squares for general
single event.

Initialize random k, and let f(t) = e−2πiω0p0(t)·k;
repeat{

Compute ẽ by minimizing the residual for (14)
with fixed f and k̃;

Obtain e and V by (16) and (17);
Compute k̃ by minimizing (18);
Compute f by least squares minimization of (14);

}until(Criterium reached)

Here, ω0 = 1 m Hz and both δω and ν are uniformly dis-
tributed on the interval [−1, 1] · 10−6. The outcome from
algorithm 1 may depend on the initial guess. As a way to
illustrate this, we choose an accuracy level of 0.001 and
run Algorithm 1 either until the tolerance level is reached,
or a maximum value of iterations (100) is reached. When
converging, the number of needed iterations is typically
about 15. Note that as long as the chosen accuracy level is
above the approximation error, further lowering it affects
the number of iterations that are required before conver-
gence. Reducing the tolerance level to 10−4, for instance,
increases the number of iteration to around 20. If con-
vergence is not reached, the procedure is restarted using a
different randomly initialized direction k. The left panel of
fig. 3 depicts the relative error in the reconstructed TDI
counterparts. The levels are slightly below 0.001 as ex-
pected. The right panel shows how many attempts of
Algorithm 1 were required before reaching the tolerance
level.

There is no explicit requirement on the waveform f , but
the assumption in (7) that a slowly oscillating part can be
extracted from the waveform is critical for the approxi-
mations to be valid. Given the system of equations (13)
governing the TDI counterparts, we see that parameters
of at most three general signals (which in practice often
degenerates into two) can be extracted. However, by im-
posing constraints on the waveform f the number of un-
known parameters reduces for each GW. As an example,
instead of estimating f at each time point, only the fre-
quency and frequency derivative need to be extracted if it
is assumed that the GW is emitted by a mildly chirping
galactic binary. This enables the identification of several
sources of gravitational waves with overlapping frequency
content. Isolating data (e.g., in narrow frequency bands)
before estimating source parameters facilitates a determin-
istic approach for estimating parameters from a substan-
tially larger number of sources across a wider frequency
range.

Conclusions. – In this paper, we describe how to ap-
proximate the LISA response of a mildly chirping grav-
itational wave under the assumption that |βj1,j2(t)| is
small by using tri-linear representations, and illustrate
this by numerical examples. We briefly mention how the

Fig. 3: Results from 1000 simulations of algorithm 1. Errors
in the left panel, and a histogram over the number of attempts
to reach tolerance level in the right panel.

methodology can be generalized to approximate events
with stronger chirp component.

Given fixed astrophysical objects, the tri-linear approx-
imation allows for the separation of the geometric contri-
butions of the spacecraft and information about the GW
and its source. The latter decouples into the waveform
hα(t), the direction of propagation k̃ and the matrix el-
ements e. The dependency of the relative approximation
error on ω2

0 , which holds for low frequencies, has been
discussed and verified through numerical experiments. A
simple algorithm for parameter estimation using this rep-
resentation was constructed and applied to an example
with isolated GWs. For this setup, it is not necessary
to constraint the waveform f . However, in more com-
plex scenarios where the data for instance contain noise or
multiple GWs (overlapping in the same frequency band),
problem-dependent constraints should be included in the
estimation of f . Properties regarding convergence and
sensitiviy to noise will depend strongly on the choice of
constraints. However, while additional information such
as knowledge about noise power spectral density will play
an important role in the estimation procedure, the use of
the tri-linear representation as a forward model will not
be impacted.

Data availability statement : The data that support the
findings of this study are available upon reasonable request
from the authors.
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