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ABSTRACT
Generalizing machine learning (ML) models for network
traffic dynamics tends to be considered a lost cause. Hence
for every new task, we design new models and train them on
model-specific datasets closely mimicking the deployment
environments. Yet, an ML architecture called Transformer
has enabled previously unimaginable generalization in other
domains. Nowadays, one can download a model pre-trained
onmassivedatasets andonlyfine-tune it for a specific task and
context with comparatively little time and data. These fine-
tuned models are now state-of-the-art for many benchmarks.

We believe this progress could translate to networking and
propose a Network Traffic Transformer (NTT), a transformer
adapted to learn network dynamics from packet traces. Our
initial results are promising: NTT seems able to generalize to
new prediction tasks and environments. This study suggests
there is still hope for generalization through future research.

CCS CONCEPTS
•Networks→Networkdynamics;•Computingmethod-
ologies→ Neural networks;
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1 INTRODUCTION
Modeling network dynamics is a sequence modeling problem:
From a sequence of past packets, estimate the current state
of the network (e.g., Is it congested?), then predict the state’s

HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564104

Figure 1: Could we collectively learn general network
traffic dynamics once and focus on task-specific data
collecting and learning for all future models?

evolutionandfuture traffic’s fate—orwhichaction to takenext.
Thisisanotoriouslycomplextask,andtheresearchcommunity
is increasingly turning toMachineLearning (ML) for solutions
in many applications, including congestion control [4, 20,
28, 36], video streaming [5, 25, 38], traffic optimization [11],
routing [34], flow size prediction [15, 29], MAC protocol
optimization [21, 40], and network simulation [42].

Problem Today’s models do not generalize well; i.e., they
often fail to deliver outside of their original training environ-
ments[7,8,16,38,39];generalizingtodifferenttasksisnoteven
considered. Recent work argues that, rather than hoping for
generalization, one obtains better results by training in-situ,
i.e., using data collected in the deployment environment [38].
Thus, today we tend to design and train models from scratch
using model-specific datasets (Fig. 1, top). This process is
repetitive, expensive, and time-consuming. Moreover, the
growing resource requirements to evenattempt training these
models is increasing inequalities in networking research and,
ultimately, hindering collective progress.

Vision Weargue there is still hope for generalization in net-
working. Even if the networking contexts (topology, network
configuration, traffic, etc.) are very diverse, the underlying
dynamics remain similar; e.g., when buffers fill up, queuing
disciplines delay or drop packets. These dynamics can be
learned with ML, and there is no need to relearn everything
every time, e.g., how congestion looks like.

We envision a generic network model trained
to capture the shared dynamics underpinning
any network—once—which can be fine-tuned for
many different networking tasks and contexts.
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Tackling this challenge would benefit the entire community.
Starting from such a model, one would only need to collect
a small task-specific dataset for fine-tuning (Fig. 1, bottom),
assuming that the pre-trained model generalizes well.

Existing approaches—while not performing optimally out-
side of their training environments—provide evidence for
generalization. The congestion control algorithmAurora [20]
performs adequately in environments with bandwidth more
than an order of magnitude higher than during training. Mod-
els trainedwithGenet [37] on simulation data performwell in
several real-world settings. But truly “generic” models—able
toperformwellonawiderangeof tasksandnetworks—remain
unavailable, as mixing different contexts is unpredictable. In
some cases, more diverse training data has been shown to
provide benefits without consequences, e.g., training over a
wide range of propagation delays in [32]. Yet in other cases,
mixing contexts can decrease performance,e.g., varying num-
bers of senders in [32] or wired and wireless traces in [8], if
the model is not able to tell these contexts apart.

Game-changer A few years ago, a new architecture for
sequence modeling was proposed: the Transformer [35]. This
architecture is designed to train efficiently,1 enabling learn-
ing from massive datasets and unprecedented generalization
across multiple contexts. In a pre-training phase, the trans-
former learns contextual sequential “structures,” e.g., the
structure of a language from a large corpus of texts. Then, in a
much quicker fine-tuning phase, the final stages of the model
are adapted to a specific prediction task. Today, transformers
are among the state-of-the-art in natural language processing
(NLP [33]) and computer vision (CV [17, 24]).

Transformers generalize well because they can learn to
distinguish different contexts during pre-training; they learn
rich contextual representations [13]where the representation
of the same element, e.g., a word, depends on its context,
inferred from the sequence. Consider two input sequences:
Stick to it! and Can you hand me this stick? The transformer
output for each stick is different as it encodes the word’s
context. This contextual output is an efficient starting point
for fine-tuning the model to diverse downstream tasks, e.g.,
question answering, text comprehension, or sentence comple-
tion [33].Wecandrawparallels betweennetworkingandNLP:
packet metadata alone (headers, delay, etc.) provide limited
insights into the network state—we also need the context, i.e.,
the history of past packets. For example, increasing latency
indicates congestion, and loss patterns or ACK batching may
allow for differentiating wired and wireless connections.
We believe a transformer can learn many such network-

specific contexts. If it does, it could pave the way for general-
ization in networking, as it did for NLP and CV.
1Transformers scale better than recurrent neural networks, another popular
architecture for sequence modeling that Transformers effectively succeeded.

Challenges Naively transposing NLP or CV transformers
to networking fails, unsurprisingly. We must adapt them to
the peculiarity of networks. In particular, “sequences” must
be carefully defined: While text snippets and images are
relatively self-contained, any packet trace only gives a partial
view of the network. Moreover, generalizing the diversity
and dynamism of protocol interactions is far from trivial.
Ultimately, we identify three main open questions.
(1) How to adapt transformers for networking?
(2) Which pre-training task would allow the model to

generalize, and how far can we push generalization?
(3) How to assemble a dataset large and diverse enough

to allow useful generalization?

Contributions After a short background on transformers
(§2), we begin to answer these questions and present NTT:
our proof-of-concept Network Traffic Transformer (§3, [30]).
Preliminary simulations (§4) provide first evidence that NTT
can learnnetworktrafficdynamicsandgeneralize tonewtasks
and environments. This opens a broad research agenda (§5).

2 BACKGROUNDON TRANSFORMERS
In this section, we introduce attention, the mechanism behind
Transformers; detail the idea of pre-training and fine-tuning;
and present insights from adapting Transformers to CV.

Sequence modeling with attention Transformers are
built around the attention mechanism, which maps an input
sequence to an output sequence of the same length. Every
output encodes its own information and its context, i.e., infor-
mation inferred from related elements in the sequence. For a
detailed explanation, we refer to [35] and excellent online
guides [6, 18]. Computing attention is efficient as all elements
in the sequence can be processed in parallel with matrix
operations that are highly optimized on most hardware.

While attention originated as an improvement to recurrent
neural networks (RNNs), Vaswani et al. [35] realized that it
could replace them entirely. The authors propose an architec-
ture for translation tasks that contains: an embedding layer
mapping words to vectors; a transformer encoder encoding
the input sequence; and a transformer decoder generating an
output sequence based on the encoded input (Fig. 2a). Each
transformer block alternates between attention and linear
layers, i.e., between encoding context and refining features.

Pre-training and fine-tuning Transformers are used for
awide range ofNLP tasks, and the prevailing strategy is to use
pre-training and fine-tuning.We explain this approach on the
exampleofBERT[13],oneof themostwidelyusedtransformer
models. BERT uses only the transformer encoder, followed
by a small and replaceable decoder.2 BERT is pre-trained with
2Usually, a multilayer perceptron (MLP) with a few linear layers; this
decoder is often called the ‘MLP head’.
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(a) Transformer (b) BERT (c) ViT

Figure 2: Transformer variants.

a task that requires learning language structure. Concretely,
a fraction of words in the input sequence is masked out, and
the decoder is tasked to predict the original words from the
encoded input sequence (Fig. 2b). Conceptually, this is only
possible if the encoding includes sufficient context to infer the
missing word. Afterward, the unique pre-trained model can
be fine-tuned to many different tasks by replacing the small
decoderwith task-specific ones, e.g., language understanding,
question answering, or text generation [12, 13, 41]. Themodel
has already learned to encode language context and only
needs to learn to extract the task-relevant information from
this context. This requires far less data compared to starting
from scratch: BERT is pre-trained from text corpora with
several billion words and fine-tuned with ∼100 thousand
examples per task. Furthermore, BERTs pre-training task is
unsupervised, i.e., it requires only “cheap” unlabeled data for
masking and reconstruction. “Expensive” labeled data, e.g.,
for text classification, is only needed for fine-tuning.

Visiontransformers FollowingtheirsuccessinNLP,Trans-
formers gained traction in CV as well, with two notable dis-
tinctions: (i) input aggregation; and (ii) a domain-specific
pre-training task. While attention is efficient to parallelize, it
needs to compare each element in the sequence with each
other element to encode context. Consequently, the required
computation scales quadratically with the input sequence
length, and using sequences of individual pixels does not scale
to images of high resolution. As a solution, the Vision Trans-
former (ViT, [9, 14]) aggregates pixels into 16×16 patches
and applies the embedding and transformer layers to the re-
sulting sequence of patches, using an architecture similar to
BERT(Fig. 2c).However,usingaclassification task topre-train
ViT delivered better results than a reconstruction task. This
shows the importance of domain-appropriate pre-training: it
may be possible to reconstruct a patch by only considering

neighboring ones, but classification requires understanding
the whole image, i.e., the context of the entire sequence.

3 NETWORKTRAFFIC TRANSFORMER
Given the success of Transformers inNLP andCVand the sim-
ilarities between theunderlying sequencemodelingproblems,
we postulate that transformers could also generalize network
traffic dynamics. This section presents our proof-of-concept:
the Network Traffic Transformer (NTT, Fig. 3).

(1) Packets are more complex than words or pixels. Which
packet features are helpful and which are necessary to
learn network dynamics?

(2) The fate of a packet may depend on much older ones.
As the sequence length is practically limited (§2), how
can we capture both short- and long-term network
dynamics in the input sequence?

(3) Which pre-training task enables the model to learn
general network patterns effectively?

Learning feature extraction Packets carry a lot of infor-
mation that could be used asmodel features, e.g., header fields.
Today, we typically use domain knowledge to manually ex-
tract and aggregate features and feed these into off-the-shelf
ML architectures. We argue this is sub-optimal for two rea-
sons: (i) we select features for a specific task and dataset,
which limits generalization; (ii) since the features are not
learned from data, they may end up sub-optimal for the task.

Figure 3: The Network Traffic Transformer (NTT) con-
tains threemain stages: embedding, aggregation, and a
transformerencoder. Itoutputsacontext-richencoded
sequence that is fed into a task-specific decoder.
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Instead, we propose to let the model learn useful features
from raw data. To learn traffic dynamics from a sequence of
packets, we must provide the model with information about
thepackets aswell as their fate in thenetwork. Sincewedonot
want to define a priori how important the individual pieces
of information are, we feed them all into a first embedding
layer (Fig. 3). It is applied to every packet separately.

Inourproof-of-concept,weuseminimal information: times-
tamp, packet size, receiver ID,3 and end-to-end delay. These
enable learning embeddings with temporal (delays over time)
and spatial (impact of packet size on delay) patterns. We
discuss the challenge of embedding more information in §5.

Learning packet aggregation Packet sequences must be
sufficiently long to capture more than short-term traffic dy-
namics.ButasthetrainingtimeofTransformersscalesquadrat-
ically with the sequence length, we face practical limitations.

Weaddress thisproblembyusingahierarchicalaggregation
layer (Fig. 3). We aggregate a long packet sequence into a
shorter one while letting the model learn how to aggregate
the relevant historical information, similar to the pixel patch
aggregation in ViT [14]. However, we aim to both aggregate
and retain recent packet-level details. To achieve this, we
keep the most recent packets without aggregation and the
longer traffic is in the past, the more we aggregate, as details
become less relevant to predict the current traffic dynamics.

In our proof-of-concept, we set the input sequence length
to 1024 packets, enough to cover the number of in-flight
packets in our experiments. We aggregate this sequence into
48 elements in two stages: the most recent packets are kept
as-is; less recent packets are aggregated once; and the least
recent twice (Fig. 3). Our multi-timescale aggregation is easy
to adapt to a larger history without sacrificing recent packet
details. We show in §4 that this aggregation is beneficial, but
it is unclear which sequence length and levels of aggregation
generalize best; we discuss this further in §5.

Learning network patterns Finally, we need a training
task that allowsNTT to learn network dynamics: in our proof-
of-concept, we use end-to-end delay prediction. We aim to
pre-train NTT to generalize to a large set of fine-tuning tasks.
Consequently, we need a pre-training task that is generic
enough to be affected by many network effects. As almost
everything inanetworkaffectspacketdelays (e.g., path length,
buffer sizes), a delay prediction task seems a rational choice.
To pre-train NTT, we mask the delay of the most recent

packet in the sequence and use a decoder with linear layers to
predict the actual delay. During training, the NTTmust learn
which features are useful (embedding layer), how to aggregate
them over time (aggregation layer), and to infer context from
the whole sequence (transformer encoder layers).

3An IP addresses proxy, as we do not want to learn IP address parsing (yet).

Figure 4: Dataset generation setup.

During fine-tuning, one can update or replace the de-
coder (Fig. 3) to adapt NTT to a new environment (e.g., same
decoder in adifferentnetwork) or tonewtasks (e.g., predicting
message completion times). This is efficient as the knowledge
accumulated by NTT during pre-training generalizes well to
the new task, as we demonstrate in the next section.

4 PRELIMINARY EVALUATION
Our preliminary evaluation of NTT in simulation shows that:
(1) NTT is able to learn some network dynamics;
(2) Pre-training helps to generalize;
(3) Networking-specific design helps generalization.

Importantly, we do not aim to show that NTT outperforms
existing specializedmodels (yet4). Here,we focus on assessing
the potential of our approach.

Datasets Weusens-3 [31] and the setup in Fig. 4 to generate
several datasets; one for pre-training, and several for fine-
tuning. From each, we reserve a fraction for testing.

In the pre-training dataset, 60 senders generate 1Mbps of
messages each, following real-world traffic distributions [26].
They send messages over a bottleneck link with 30Mbps
bandwidth and a queue size of 1000 packets. We run 10
simulations for 1 minute each with randomized application
start times. This dataset contains about 1.2 million packets.
For the fine-tuning datasets, we add cross-traffic (case

1) and additionally extend the network topology (case 2).
Cross-traffic is modeled as 20Mbps of TCP flows. Note that
the datasets do not contain the cross-traffic packets, only
those from the senders. For each case, we generate a dataset
containingroughlyasmanypacketsasthepre-trainingdataset
and a “smaller” dataset containing about 10% of the packets.

Models We compare several versions of NTT. The pre-
trained models first learn from the pre-training and then
one fine-tuning dataset, while the from scratch versions only
learn from one fine-tuning dataset. We also pre-train ablated
versionsofNTT:wecompareourmulti-timescale aggregation
of 1024 packets into 48 aggregates (see §3)with no aggregation
(using only 48 individual packets) andfixed aggregation (using
4The research on Transformers in CV showed that large datasets are
required for transformers to outperform the state-of-the-art.
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all values ×10−3 Pre-training Fine-tuning (10%)

Delay Delay log MCT

NTT
Pre-trained 0.072 0.097 65
From scratch - 0.313 117

Baselines
Last observed 0.142 0.121 2189
EWMA 0.259 0.211 1147

NTT (Ablated)
No aggregation 0.258 0.430 61
Fixed aggregation 0.055 0.134 115
Without packet size 0.001 8.688 94
Without delay 15.797 10.898 802

Table 1: Mean Squared Error for all models and tasks.
Thepre-trainedNTToutperformsthefrom-scratchver-
sion and benefits from our design choices (see §3).

48 aggregates of 21 packets each, i.e., 1008-packet sequences).
In addition, we pre-train one model without delay and one
without packet size information in the input sequences. Finally,
we consider two naive baselines: one always returns the last
observed output value; another returns an EWMA.5

Tasks We evaluate ourmodels on two prediction tasks. The
first is to predict the delay of the last packet of the sequence;
this task is also used for pre-training. The second task is to
predict the message completion times (MCTs), i.e., the time
until the final packet of amessage is delivered. This flow-level
prediction task uses a decoder with two inputs: the NTT
outputs for the past packets and the message size. We report
the mean-squared error (MSE) for both tasks and process
MCTs on a logarithmic scale to limit the impact of outliers.6

Case #1 – Generalization on the same topology We
first consider the fine-tuning case 1, where we add unseen
cross-traffic on the same topology (see Fig. 4, Tables 1 and 2).

First, we confirm that the pre-trained NTT beats all base-
lines (Table 1). While this is no breakthrough (the baselines
are basic), it suggests that NTT indeed learns sensible values.

Second, we observe that pre-training is beneficial: on both
fine-tuning tasks, the pre-trained NTT outperforms the from
scratch version (Table 1); it generalizes to a new context (i.e.,
unseen cross-traffic) and a new task (i.e., MCT prediction).

Third, we observe the benefits of hierarchical aggregation
and the mix of network and traffic information in the raw
data (Table 1).Withnoaggregation, themodel has little history
available; we observe that, perhaps surprisingly, this affects
the delay predictions but not the MCT ones. Conversely,
with a fixed aggregation, the model loses packet-level details

5Exponentially Weighted Moving Average; we used α = 0.01.
6MCT mean: 0.2s ; 99.9th percentile: 23s

Layers trained MSE(Delay) Training time

Pre-trained ×10−3
Fine-tuning (full) Decoder only 0.033 8h45
Fine-tuning (10%) Decoder only 0.037 3h45

From scratch
Fine-tuning (full) Full NTT 0.036 26h
Fine-tuning (10%) Full NTT 0.118 8h40

Table2:Onasimplesetting,pre-trainingsaves training
resources: fine-tuning data and computing power.

but has access to a longer history; this seems sufficient to
predict delays but not MCT. More generally, this initial result
suggests that both recent packet-level information and an
aggregatedhistoryareusefultogeneralizetoalargesetoftasks.
Considering theNTTversionswithout packet size andwithout
delay information,weobservethatneithergeneralize.Without
packet size, the model overfits the pre-training dataset and
performs poorly on predicting delay for fine-tuning. Without
delay information, the model can logically not produce any
sensible prediction related to packet delays or MCTs.
Finally, one can argue that the pre-trained NTT has an

unfair advantage as it trained on about ten times more data
than the from scratch version. To put things into perspective,
Table 2 compares the delay MSE and training time for NTT
versions fine-tuned on different datasets. We observe that
fine-tuningona full dataset fromscratchyieldsabout thesame
performance as the on the 10% dataset after pre-training.7
However, fine-tuning on the full dataset also requires almost
seven times as much training time (26h vs. 3h45). In practice,
collecting fine-tuning data is often expensive; it is thus bene-
ficial to require less. Finally, fine-tuning from scratch may
just not work in more complex settings, as shown next.

Case #2 –Generalization on a larger topology We now
consider the fine-tuning case 2, with several cross-traffic
sources on a larger topology (Fig. 4). In this setting, packets
toward different receivers experience different path delays
and different levels of congestion from cross-traffic.

MSE(Delay) Training time

Pre-trained ×10−3
Fine-tuning (full) 0.004 10h
Fine-tuning (10%) 0.035 8h

From scratch
Fine-tuning (full) 5.2 20h
Fine-tuning (10%) 8.2 11h

Table 3: On a larger topology, fine-tuning from scratch
no longer works, even if using a large dataset.

7Tables 1 and 2 were obtained with different “10% fine-tuning datasets”.
The data allows comparison within each table but not across the two tables.
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As evident from Table 3, pre-training is essential for NTT
to learn basic congestion dynamics first, then generalize later
on to the topology’s specifics during fine-tuning.8 When fine-
tuning from scratch, even the full dataset is not enough to
learn; performance is worse than the baselines (MSE of 11.2
and 4.0–not shown). Without addressing information, NTT
cannot differentiate between the receivers and thus cannot
predict the packet delay accurately (MSE of 2.8–not shown).

5 CONCLUSION& FUTURE RESEARCH
Our initial results are promising: they show that NTT effec-
tively learns, that the pre-training knowledge generalizes to
new tasks and contexts, and that its specific design benefits
overall performance. Nevertheless, it merely validates that
NTTmaywork. There is a lotmore research to assesswhether
our vision can indeed become a reality.

Does the premise hold? We showed some potential of pre-
training and fine-tuning with small-scale simulations. How-
ever, real networks are undeniably more complex than this
environment.Real topologies includemanypathswheremany
differentapplications,transportprotocols,queuingdisciplines,
etc. coexist. There are also many more fine-tuning tasks to
consider, e.g., flowclassification for security or anomalydetec-
tion. Testing ourNTTprototype in real, diverse environments
and withmultiple fine-tuning tasks would provide invaluable
insights into the strengths andweaknesses of our architecture
and the ‘learnability’ of network dynamics in general. A next
step would be experiments to analyze real-world datasets
from Caida [1], M-LAB [3], or Crawdad [2].

How does the NTT hold up with more diverse
environments and fine-tuning tasks?

Which aspects of network dynamics are easy to
generalize to, and which are difficult?

Advancing NTT Our prototype architecture [30] needs
enhancements to be helpful in more diverse environments.
We see three directions for improvement: (i) packet head-
ers; (ii) network telemetry; and (iii) sequence aggregation.
Considering packet headers may be essential to learning the
behavioral differences of transport protocols or network pri-
oritization of different traffic classes. However, raw headers
are challenging inputs for an ML model, as they may appear
in many combinations and contain values that are difficult
to learn, like IP addresses [42]. Research from the network
verification community on header space analysis [23] may
provide valuable insights on header representations and po-
tential first steps in this direction. In addition, we may collect
telemetry data like packet drops or buffer occupancy. This
8The importance of learning increasingly complex tasks is a problem known
as curriculum learning [27] and was recently considered in networking [37].

may help to learn, but not every trace will contain all teleme-
try, and future research will need to address this potential
mismatch. Finally, we base our prototype aggregation levels
on the number of in-flight packets, i.e., whether packets in the
sequence may share some fate, usually determined by buffer
sizes. The further packets are apart, the less likely they do,
and the more we aggregate. We believe matching individual
aggregation levels to typical buffer sizes (e.g., flow and switch
buffers) may be beneficial. Still, future research needs to put
this hypothesis to the test and determine the best sequence
sizes and aggregation levels across multiple networks.

How can we improve the NTT design to learn efficiently
from diverse environments? How can we deal with an

information mismatch between environments?

Collaborative pre-training Transformers in NLP and CV
truly outshone their competition only when pre-trained with
massive amounts of data.We envision this could require a pre-
viously unseen collaboration across the networking industry.
We see two main challenges: (i) training data volume; and (ii)
privacy concerns preventing data sharing. One can also see
these challenges as opportunities: First,MLmodels effectively
compress data. For example, GPT-3 [10], one of the largest cur-
rent Transformer models, consists of 175 Billion parameters
or roughly 350 Gigabytes. However, it contains information
from over 45 Terabytes of text data: Sharing a pre-trained
model is much more feasible than sharing all the underlying
data, not to mention the savings in training resources. Sec-
ond, sharing models instead of data could overcome privacy
barriers via federated learning [22]: Organizations could keep
their data private and only share pre-trained models, which
can be combined into a final collectively pre-trained model.

Can we leverage pre-training and federated learning to
learn from previously unavailable data?

Continual learning A cat remains a cat, but the Internet is
an evolving environment. Protocols, applications, etc., change
over time. We conjecture that underlying network dynamics
change less frequently than specific environments; thus, the
same NTT may be used for several updates of the same fine-
tuned model. Nevertheless, even a pre-trained model may
become outdated. It is already difficult to determine when to
re-train a specific model [38]; it might be even more difficult
for amodel supposed to capture a large rangeof environments.

At which point should we consider an NTT outdated?
When and with what data should it be re-trained?
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