ETH:zurich

A New Hope for Network Model
Generalization

Conference Paper

Author(s):
Dietmdiller, Alexander (); Ray, Siddhant; Jacob, Romain (); Vanbever, Laurent

Publication date:
2022-11

Permanent link:
https://doi.org/10.3929/ethz-b-000577569

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3563766.3564 104

Funding acknowledgement:
ETH-03 19-2 - Dependable and Data-Driven Intelligent Networks (ETHZ)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

ETH Library

https://orcid.org/0000-0003-3769-3958
https://orcid.org/0000-0002-2218-5750
https://doi.org/10.3929/ethz-b-000577569
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3563766.3564104
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ANew Hope for Network Model Generalization

Alexander Dietmiiller* Siddhant Ray
ETH Ziirich ETH Ziirich

ABSTRACT

Generalizing machine learning (ML) models for network
traffic dynamics tends to be considered a lost cause. Hence
for every new task, we design new models and train them on
model-specific datasets closely mimicking the deployment
environments. Yet, an ML architecture called Transformer
has enabled previously unimaginable generalization in other
domains. Nowadays, one can download a model pre-trained
onmassive datasets and only fine-tune it for a specific task and
context with comparatively little time and data. These fine-
tuned models are now state-of-the-art for many benchmarks.

We believe this progress could translate to networking and
propose a Network Traffic Transformer (NTT), a transformer
adapted to learn network dynamics from packet traces. Our
initial results are promising: NTT seems able to generalize to
new prediction tasks and environments. This study suggests
there is still hope for generalization through future research.

CCS CONCEPTS

«Networks — Networkdynamics;» Computingmethod-
ologies — Neural networks;

KEYWORDS

Transformer, Packet-level modeling

ACM Reference Format:

Alexander Dietmiiller*, Siddhant Ray, Romain Jacob, and Laurent
Vanbever. 2022. A New Hope for Network Model Generalization.
In The 21st ACM Workshop on Hot Topics in Networks (HotNets °22),
November 14-15, 2022, Austin, TX, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3563766.3564104

*The CRediT statement for this work is available at [19].

1 INTRODUCTION

Modeling network dynamics is a sequence modeling problem:
From a sequence of past packets, estimate the current state
of the network (e.g., Is it congested?), then predict the state’s

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotNets ’22, November 14-15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564104

152

Romain Jacob Laurent Vanbever
ETH Ziirich ETH Ziirich
Today
per task Collect dataset Design and Train 9
& context large & model-specific from scratch

Models

download
Tomorrow e

Figure 1: Could we collectively learn general network
traffic dynamics once and focus on task-specific data
collecting and learning for all future models?

per task
& context

Collect dataset
small & task-specific

Fine-tune
from NTT

|

once ‘

Pre-train NTT
large & general

evolution and future traffic’s fate—or which action to take next.
Thisisanotoriously complex task,and theresearch community
isincreasingly turning to Machine Learning (ML) for solutions
in many applications, including congestion control [4, 20,
28, 36], video streaming [5, 25, 38], traffic optimization [11],
routing [34], flow size prediction [15, 29], MAC protocol
optimization [21, 40], and network simulation [42].

Problem Today’s models do not generalize well; i.e., they
often fail to deliver outside of their original training environ-
ments[7,8,16,38,39]; generalizing to different tasksisnoteven
considered. Recent work argues that, rather than hoping for
generalization, one obtains better results by training in-situ,
i.e., using data collected in the deployment environment [38].
Thus, today we tend to design and train models from scratch
using model-specific datasets (Fig. 1, top). This process is
repetitive, expensive, and time-consuming. Moreover, the
growing resource requirements to even attempt training these
models is increasing inequalities in networking research and,
ultimately, hindering collective progress.

Vision We argue there is still hope for generalization in net-
working. Even if the networking contexts (topology, network
configuration, traffic, etc.) are very diverse, the underlying
dynamics remain similar; e.g., when buffers fill up, queuing
disciplines delay or drop packets. These dynamics can be
learned with ML, and there is no need to relearn everything
every time, e.g., how congestion looks like.

We envision a generic network model trained
to capture the shared dynamics underpinning
any network—once—which can be fine-tuned for
many different networking tasks and contexts.

https://doi.org/10.1145/3563766.3564104
https://credit.niso.org/
https://doi.org/10.1145/3563766.3564104
https://creativecommons.org/licenses/by/4.0/

HotNets *22, November 14-15, 2022, Austin, TX, USA

Tackling this challenge would benefit the entire community.
Starting from such a model, one would only need to collect
a small task-specific dataset for fine-tuning (Fig. 1, bottom),
assuming that the pre-trained model generalizes well.

Existing approaches—while not performing optimally out-
side of their training environments—provide evidence for
generalization. The congestion control algorithm Aurora [20]
performs adequately in environments with bandwidth more
than an order of magnitude higher than during training. Mod-
els trained with Genet [37] on simulation data perform well in
several real-world settings. But truly “generic” models—able
toperform well on a wide range of tasks and networks—remain
unavailable, as mixing different contexts is unpredictable. In
some cases, more diverse training data has been shown to
provide benefits without consequences, e.g., training over a
wide range of propagation delays in [32]. Yet in other cases,
mixing contexts can decrease performance,e.g., varying num-
bers of senders in [32] or wired and wireless traces in [8], if
the model is not able to tell these contexts apart.

Game-changer A few years ago, a new architecture for
sequence modeling was proposed: the Transformer [35]. This
architecture is designed to train efficiently,! enabling learn-
ing from massive datasets and unprecedented generalization
across multiple contexts. In a pre-training phase, the trans-
former learns contextual sequential “structures,” e.g., the
structure of a language from a large corpus of texts. Then, in a
much quicker fine-tuning phase, the final stages of the model
are adapted to a specific prediction task. Today, transformers
are among the state-of-the-art in natural language processing
(NLP [33]) and computer vision (CV [17, 24]).

Transformers generalize well because they can learn to
distinguish different contexts during pre-training; they learn
rich contextual representations [13] where the representation
of the same element, e.g., a word, depends on its context,
inferred from the sequence. Consider two input sequences:
Stick to it! and Can you hand me this stick? The transformer
output for each stick is different as it encodes the word’s
context. This contextual output is an efficient starting point
for fine-tuning the model to diverse downstream tasks, e.g.,
question answering, text comprehension, or sentence comple-
tion [33]. We can draw parallels between networking and NLP:
packet metadata alone (headers, delay, etc.) provide limited
insights into the network state—we also need the context, i.e.,
the history of past packets. For example, increasing latency
indicates congestion, and loss patterns or ACK batching may
allow for differentiating wired and wireless connections.

We believe a transformer can learn many such network-
specific contexts. If it does, it could pave the way for general-
ization in networking, as it did for NLP and CV.

ITransformers scale better than recurrent neural networks, another popular
architecture for sequence modeling that Transformers effectively succeeded.

153

A. Dietmdiller, S. Ray, R. Jacob, and L. Vanbever

Challenges Naively transposing NLP or CV transformers
to networking fails, unsurprisingly. We must adapt them to
the peculiarity of networks. In particular, “sequences” must
be carefully defined: While text snippets and images are
relatively self-contained, any packet trace only gives a partial
view of the network. Moreover, generalizing the diversity
and dynamism of protocol interactions is far from trivial.
Ultimately, we identify three main open questions.

(1) How to adapt transformers for networking?

(2) Which pre-training task would allow the model to
generalize, and how far can we push generalization?

(3) How to assemble a dataset large and diverse enough
to allow useful generalization?

Contributions After a short background on transformers
(§2), we begin to answer these questions and present NTT:
our proof-of-concept Network Traffic Transformer (§3, [30]).
Preliminary simulations (§4) provide first evidence that NTT
canlearn network traffic dynamics and generalize to new tasks
and environments. This opens a broad research agenda (§5).

2 BACKGROUND ON TRANSFORMERS

In this section, we introduce attention, the mechanism behind
Transformers; detail the idea of pre-training and fine-tuning;
and present insights from adapting Transformers to CV.

Sequence modeling with attention Transformers are
built around the attention mechanism, which maps an input
sequence to an output sequence of the same length. Every
output encodes its own information and its context, i.e., infor-
mation inferred from related elements in the sequence. For a
detailed explanation, we refer to [35] and excellent online
guides [6, 18]. Computing attention is efficient as all elements
in the sequence can be processed in parallel with matrix
operations that are highly optimized on most hardware.
While attention originated as an improvement to recurrent
neural networks (RNNs), Vaswani et al. [35] realized that it
could replace them entirely. The authors propose an architec-
ture for translation tasks that contains: an embedding layer
mapping words to vectors; a transformer encoder encoding
the input sequence; and a transformer decoder generating an
output sequence based on the encoded input (Fig. 2a). Each
transformer block alternates between attention and linear
layers, i.e., between encoding context and refining features.

Pre-training and fine-tuning Transformers are used for
awide range of NLP tasks, and the prevailing strategy is to use
pre-training and fine-tuning. We explain this approach on the
example of BERT [13], one of the most widely used transformer
models. BERT uses only the transformer encoder, followed
by a small and replaceable decoder.? BERT is pre-trained with

2Usually, a multilayer perceptron (MLP) with a few linear layers; this
decoder is often called the ‘MLP head’.

A New Hope for Network Model Generalization

Output Output Output
translated sequence task-specific task-specific
Transformer Replaceable Replaceable
Decoder Decoder Decoder
encoded sequence encoded sequence encoded sequence
(@ttention), | l I
i i | Transformer Transformer Transformer
P Encoder Encoder Encoder
o T T
{(Attention);/ E——— Embeddin Aggregation &
mboe Idng er-word 9 Embedding
P er-,||/~vor P T per 16x16 patch
Input Input Input
word sequence word sequence image
(a) Transformer (b) BERT (c) ViT

Figure 2: Transformer variants.

a task that requires learning language structure. Concretely,
a fraction of words in the input sequence is masked out, and
the decoder is tasked to predict the original words from the
encoded input sequence (Fig. 2b). Conceptually, this is only
possible if the encoding includes sufficient context to infer the
missing word. Afterward, the unique pre-trained model can
be fine-tuned to many different tasks by replacing the small
decoder with task-specific ones, e.g., language understanding,
question answering, or text generation [12, 13, 41]. The model
has already learned to encode language context and only
needs to learn to extract the task-relevant information from
this context. This requires far less data compared to starting
from scratch: BERT is pre-trained from text corpora with
several billion words and fine-tuned with ~100 thousand
examples per task. Furthermore, BERTs pre-training task is
unsupervised, i.e., it requires only “cheap” unlabeled data for
masking and reconstruction. “Expensive” labeled data, e.g.,
for text classification, is only needed for fine-tuning.

Visiontransformers FollowingtheirsuccessinNLP, Trans-
formers gained traction in CV as well, with two notable dis-
tinctions: (i) input aggregation; and (ii) a domain-specific
pre-training task. While attention is efficient to parallelize, it
needs to compare each element in the sequence with each
other element to encode context. Consequently, the required
computation scales quadratically with the input sequence
length, and using sequences of individual pixels does not scale
to images of high resolution. As a solution, the Vision Trans-
former (ViT, [9, 14]) aggregates pixels into 16x16 patches
and applies the embedding and transformer layers to the re-
sulting sequence of patches, using an architecture similar to
BERT (Fig. 2c). However, using a classification task to pre-train
ViT delivered better results than a reconstruction task. This
shows the importance of domain-appropriate pre-training;: it
may be possible to reconstruct a patch by only considering

154

HotNets *22, November 14-15, 2022, Austin, TX, USA

neighboring ones, but classification requires understanding
the whole image, i.e., the context of the entire sequence.

3 NETWORK TRAFFIC TRANSFORMER

Given the success of Transformers in NLP and CV and the sim-
ilarities between the underlying sequence modeling problems,
we postulate that transformers could also generalize network
traffic dynamics. This section presents our proof-of-concept:
the Network Traffic Transformer (NTT, Fig. 3).

(1) Packets are more complex than words or pixels. Which
packet features are helpful and which are necessary to
learn network dynamics?

(2) The fate of a packet may depend on much older ones.
As the sequence length is practically limited (§2), how
can we capture both short- and long-term network
dynamics in the input sequence?

(3) Which pre-training task enables the model to learn
general network patterns effectively?

Learning feature extraction Packets carry a lot of infor-
mation that could be used as model features, e.g., header fields.
Today, we typically use domain knowledge to manually ex-
tract and aggregate features and feed these into off-the-shelf
ML architectures. We argue this is sub-optimal for two rea-
sons: (i) we select features for a specific task and dataset,
which limits generalization; (ii) since the features are not
learned from data, they may end up sub-optimal for the task.

Output
task-specific

Replaceable
Decoder

encoded sequence
|

Transformer
Encoder

- T

aggregated sequence/
I E—

Hierarchical
Aggregation

Linear Layers
most recent->

| 992 I
embedded sequence

N e e

embedded sequence
-
Embedding
per-packet
) N
N
N
Input
packet trace

|
|

|

|

|

|

|

N |
N 1

P

packet information + network feedback

S

Figure 3: The Network Traffic Transformer (NTT) con-
tains three main stages: embedding, aggregation,and a
transformer encoder. It outputs a context-rich encoded
sequence that is fed into a task-specific decoder.

HotNets *22, November 14-15, 2022, Austin, TX, USA

Instead, we propose to let the model learn useful features
from raw data. To learn traffic dynamics from a sequence of
packets, we must provide the model with information about
the packets as well as their fate in the network. Since we do not
want to define a priori how important the individual pieces
of information are, we feed them all into a first embedding
layer (Fig. 3). It is applied to every packet separately.

In our proof-of-concept, we use minimal information: times-
tamp, packet size, receiver ID,? and end-to-end delay. These
enable learning embeddings with temporal (delays over time)
and spatial (impact of packet size on delay) patterns. We
discuss the challenge of embedding more information in §5.

Learning packet aggregation Packet sequences must be
sufficiently long to capture more than short-term traffic dy-
namics. Butasthe training time of Transformers scales quadrat-
ically with the sequence length, we face practical limitations.

We address this problem by using a hierarchical aggregation
layer (Fig. 3). We aggregate a long packet sequence into a
shorter one while letting the model learn how to aggregate
the relevant historical information, similar to the pixel patch
aggregation in ViT [14]. However, we aim to both aggregate
and retain recent packet-level details. To achieve this, we
keep the most recent packets without aggregation and the
longer traffic is in the past, the more we aggregate, as details
become less relevant to predict the current traffic dynamics.

In our proof-of-concept, we set the input sequence length
to 1024 packets, enough to cover the number of in-flight
packets in our experiments. We aggregate this sequence into
438 elements in two stages: the most recent packets are kept
as-is; less recent packets are aggregated once; and the least
recent twice (Fig. 3). Our multi-timescale aggregation is easy
to adapt to a larger history without sacrificing recent packet
details. We show in §4 that this aggregation is beneficial, but
it is unclear which sequence length and levels of aggregation
generalize best; we discuss this further in §5.

Learning network patterns Finally, we need a training
task that allows NTT to learn network dynamics: in our proof-
of-concept, we use end-to-end delay prediction. We aim to
pre-train NTT to generalize to a large set of fine-tuning tasks.
Consequently, we need a pre-training task that is generic
enough to be affected by many network effects. As almost
everything in a network affects packet delays (e.g., path length,
buffer sizes), a delay prediction task seems a rational choice.

To pre-train NTT, we mask the delay of the most recent
packet in the sequence and use a decoder with linear layers to
predict the actual delay. During training, the NTT must learn
which features are useful (embedding layer), how to aggregate
them over time (aggregation layer), and to infer context from
the whole sequence (transformer encoder layers).

3 An IP addresses proxy, as we do not want to learn IP address parsing (yet).

155

A. Dietmdiller, S. Ray, R. Jacob, and L. Vanbever

l
3

O §

Bandwidth
30 Mbps
Senders
Receiver 1)
Cross-traffic
20 Mbps

60 Mbps

Fine-tuning
Casel &2

~1 Fine-tuning
Case 2

(I
!

Figure 4: Dataset generation setup.

During fine-tuning, one can update or replace the de-
coder (Fig. 3) to adapt NTT to a new environment (e.g., same
decoder in a different network) or to new tasks (e.g., predicting
message completion times). This is efficient as the knowledge
accumulated by NTT during pre-training generalizes well to
the new task, as we demonstrate in the next section.

4 PRELIMINARY EVALUATION

Our preliminary evaluation of NTT in simulation shows that:

(1) NTT is able to learn some network dynamics;

(2) Pre-training helps to generalize;

(3) Networking-specific design helps generalization.
Importantly, we do not aim to show that NTT outperforms
existing specialized models (yet*). Here, we focus on assessing
the potential of our approach.

Datasets We usens-3 [31] and the setup in Fig. 4 to generate
several datasets; one for pre-training, and several for fine-
tuning. From each, we reserve a fraction for testing.

In the pre-training dataset, 60 senders generate 1Mbps of
messages each, following real-world traffic distributions [26].
They send messages over a bottleneck link with 30Mbps
bandwidth and a queue size of 1000 packets. We run 10
simulations for 1 minute each with randomized application
start times. This dataset contains about 1.2 million packets.

For the fine-tuning datasets, we add cross-traffic (case
1) and additionally extend the network topology (case 2).
Cross-traffic is modeled as 20Mbps of TCP flows. Note that
the datasets do not contain the cross-traffic packets, only
those from the senders. For each case, we generate a dataset
containing roughly as many packets as the pre-training dataset
and a “smaller” dataset containing about 10% of the packets.

Models We compare several versions of NTT. The pre-
trained models first learn from the pre-training and then
one fine-tuning dataset, while the from scratch versions only
learn from one fine-tuning dataset. We also pre-train ablated
versions of NTT: we compare our multi-timescale aggregation
of 1024 packets into 48 aggregates (see §3) with no aggregation
(using only 48 individual packets) and fixed aggregation (using
“The research on Transformers in CV showed that large datasets are
required for transformers to outperform the state-of-the-art.

A New Hope for Network Model Generalization

HotNets *22, November 14-15, 2022, Austin, TX, USA

all values x1073 Pre-training Fine-tuning (10%)

Delay Delay log MCT

NTT

Pre-trained 0.072 0.097 65

From scratch - 0.313 117
Baselines

Last observed 0.142 0.121 2189

EWMA 0.259 0.211 1147
NTT (Ablated)

No aggregation 0.258 0.430 61

Fixed aggregation 0.055 0.134 115

Without packet size 0.001 8.688 94

Without delay 15.797 10.898 802

Table 1: Mean Squared Error for all models and tasks.
The pre-trained NTT outperforms the from-scratch ver-
sion and benefits from our design choices (see §3).

48 aggregates of 21 packets each, i.e., 1008-packet sequences).
In addition, we pre-train one model without delay and one
without packet sizeinformation in the input sequences. Finally,
we consider two naive baselines: one always returns the last
observed output value; another returns an EWMA.’

Tasks We evaluate our models on two prediction tasks. The
first is to predict the delay of the last packet of the sequence;
this task is also used for pre-training. The second task is to
predict the message completion times (MCTs), i.e., the time
until the final packet of a message is delivered. This flow-level
prediction task uses a decoder with two inputs: the NTT
outputs for the past packets and the message size. We report
the mean-squared error (MSE) for both tasks and process
MCTs on a logarithmic scale to limit the impact of outliers.®

Case #1 — Generalization on the same topology We
first consider the fine-tuning case 1, where we add unseen
cross-traffic on the same topology (see Fig. 4, Tables 1 and 2).
First, we confirm that the pre-trained NTT beats all base-
lines (Table 1). While this is no breakthrough (the baselines
are basic), it suggests that NTT indeed learns sensible values.
Second, we observe that pre-training is beneficial: on both
fine-tuning tasks, the pre-trained NTT outperforms the from
scratch version (Table 1); it generalizes to a new context (i.e.,
unseen cross-traffic) and a new task (i.e., MCT prediction).
Third, we observe the benefits of hierarchical aggregation
and the mix of network and traffic information in the raw
data (Table 1). With no aggregation, the model haslittle history
available; we observe that, perhaps surprisingly, this affects
the delay predictions but not the MCT ones. Conversely,
with a fixed aggregation, the model loses packet-level details

SExponentially Weighted Moving Average; we used & = 0.01.
SMCT mean: 0.2s ; 99.9th percentile: 23s

156

Layers trained MSE(Delay) Training time

Pre-trained x1073
Fine-tuning (full) Decoder only 0.033 8h45
Fine-tuning (10%) Decoder only 0.037 3h45
From scratch
Fine-tuning (full) Full NTT 0.036 26h
Fine-tuning (10%) Full NTT 0.118 8h40

Table 2: On a simple setting, pre-training saves training
resources: fine-tuning data and computing power.

but has access to a longer history; this seems sufficient to
predict delays but not MCT. More generally, this initial result
suggests that both recent packet-level information and an
aggregated history are useful to generalize toalarge set of tasks.
Considering the NTT versions without packet size and without
delayinformation, we observe thatneither generalize. Without
packet size, the model overfits the pre-training dataset and
performs poorly on predicting delay for fine-tuning. Without
delay information, the model can logically not produce any
sensible prediction related to packet delays or MCTs.
Finally, one can argue that the pre-trained NTT has an
unfair advantage as it trained on about ten times more data
than the from scratch version. To put things into perspective,
Table 2 compares the delay MSE and training time for NTT
versions fine-tuned on different datasets. We observe that
fine-tuning on a full dataset from scratch yields about the same
performance as the on the 10% dataset after pre-training.’
However, fine-tuning on the full dataset also requires almost
seven times as much training time (26h vs. 3h45). In practice,
collecting fine-tuning data is often expensive; it is thus bene-
ficial to require less. Finally, fine-tuning from scratch may
just not work in more complex settings, as shown next.

Case #2 — Generalization on a larger topology We now
consider the fine-tuning case 2, with several cross-traffic
sources on a larger topology (Fig. 4). In this setting, packets
toward different receivers experience different path delays
and different levels of congestion from cross-traffic.

MSE(Delay) Training time
Pre-trained x1073
Fine-tuning (full) 0.004 10h
Fine-tuning (10%) 0.035 8h
From scratch
Fine-tuning (full) 5.2 20h
Fine-tuning (10%) 8.2 11h

Table 3: On a larger topology, fine-tuning from scratch
no longer works, even if using a large dataset.

"Tables 1 and 2 were obtained with different “10% fine-tuning datasets”.
The data allows comparison within each table but not across the two tables.

HotNets ’22, November 14-15, 2022, Austin, TX, USA

As evident from Table 3, pre-training is essential for NTT
to learn basic congestion dynamics first, then generalize later
on to the topology’s specifics during fine-tuning.® When fine-
tuning from scratch, even the full dataset is not enough to
learn; performance is worse than the baselines (MSE of 11.2
and 4.0-not shown). Without addressing information, NTT
cannot differentiate between the receivers and thus cannot
predict the packet delay accurately (MSE of 2.8-not shown).

5 CONCLUSION & FUTURE RESEARCH

Our initial results are promising: they show that NTT effec-
tively learns, that the pre-training knowledge generalizes to
new tasks and contexts, and that its specific design benefits
overall performance. Nevertheless, it merely validates that
NTT may work. There is a lot more research to assess whether
our vision can indeed become a reality.

Does the premise hold? We showed some potential of pre-
training and fine-tuning with small-scale simulations. How-
ever, real networks are undeniably more complex than this
environment. Real topologies include many paths where many
differentapplications, transportprotocols,queuing disciplines,
etc. coexist. There are also many more fine-tuning tasks to
consider, e.g., flow classification for security or anomaly detec-
tion. Testing our NTT prototype in real, diverse environments
and with multiple fine-tuning tasks would provide invaluable
insights into the strengths and weaknesses of our architecture
and the ‘learnability’ of network dynamics in general. A next
step would be experiments to analyze real-world datasets
from Caida [1], M-LAB [3], or Crawdad [2].

How does the NTT hold up with more diverse
environments and fine-tuning tasks?
Which aspects of network dynamics are easy to
generalize to, and which are difficult?

Advancing NTT Our prototype architecture [30] needs
enhancements to be helpful in more diverse environments.
We see three directions for improvement: (i) packet head-
ers; (ii) network telemetry; and (iii) sequence aggregation.
Considering packet headers may be essential to learning the
behavioral differences of transport protocols or network pri-
oritization of different traffic classes. However, raw headers
are challenging inputs for an ML model, as they may appear
in many combinations and contain values that are difficult
to learn, like IP addresses [42]. Research from the network
verification community on header space analysis [23] may
provide valuable insights on header representations and po-
tential first steps in this direction. In addition, we may collect
telemetry data like packet drops or buffer occupancy. This

8The importance of learning increasingly complex tasks is a problem known
as curriculum learning [27] and was recently considered in networking [37].

157

A. Dietmdiller, S. Ray, R. Jacob, and L. Vanbever

may help to learn, but not every trace will contain all teleme-
try, and future research will need to address this potential
mismatch. Finally, we base our prototype aggregation levels
on the number of in-flight packets, i.e., whether packets in the
sequence may share some fate, usually determined by buffer
sizes. The further packets are apart, the less likely they do,
and the more we aggregate. We believe matching individual
aggregation levels to typical buffer sizes (e.g., flow and switch
buffers) may be beneficial. Still, future research needs to put
this hypothesis to the test and determine the best sequence
sizes and aggregation levels across multiple networks.

How can we improve the NTT design to learn efficiently
from diverse environments? How can we deal with an
information mismatch between environments?

Collaborative pre-training Transformers in NLP and CV
truly outshone their competition only when pre-trained with
massive amounts of data. We envision this could require a pre-
viously unseen collaboration across the networking industry.
We see two main challenges: (i) training data volume; and (ii)
privacy concerns preventing data sharing. One can also see
these challenges as opportunities: First, ML models effectively
compress data. For example, GPT-3 [10], one of the largest cur-
rent Transformer models, consists of 175 Billion parameters
or roughly 350 Gigabytes. However, it contains information
from over 45 Terabytes of text data: Sharing a pre-trained
model is much more feasible than sharing all the underlying
data, not to mention the savings in training resources. Sec-
ond, sharing models instead of data could overcome privacy
barriers via federated learning [22]: Organizations could keep
their data private and only share pre-trained models, which
can be combined into a final collectively pre-trained model.

Can we leverage pre-training and federated learning to
learn from previously unavailable data?

Continual learning A catremains a cat, but the Internet is
an evolving environment. Protocols, applications, etc., change
over time. We conjecture that underlying network dynamics
change less frequently than specific environments; thus, the
same NTT may be used for several updates of the same fine-
tuned model. Nevertheless, even a pre-trained model may
become outdated. It is already difficult to determine when to
re-train a specific model [38]; it might be even more difficult
foramodel supposed to capture a large range of environments.

At which point should we consider an NTT outdated?
When and with what data should it be re-trained?

Acknowledgements We thank our anonymous reviewers
for their helpful comments and feedback. This work was
partially supported by ETH Research Grant ETH-03 19-2.

A New Hope for Network Model Generalization

REFERENCES

[1] 2019. The CAIDA UCSD Anonymized Internet Traces. (2019). http:

[2
[3
[4

[10

(13

(14

(15

]
]

=

=

—

]

—

—

[t

[l

[

//www.caida.org/data/passive/passive_dataset.xml

2022. Crawdad. (2022). https://crawdad.org

2022. Measurement Lab. (2022). https://www.measurementlab.net/
Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2020. Classic
Meets Modern: A Pragmatic Learning-Based Congestion Control for
the Internet. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication. ACM, Virtual
Event USA, 632-647. https://doi.org/10.1145/3387514.3405892
Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao,
Jessica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and
Hui Zhang. 2018. Oboe: Auto-tuning Video ABR Algorithms to
Network Conditions. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 44-58.
https://doi.org/10.1145/3230543.3230558

Jay Alammar. 2018. The Illustrated Transformer. (June 2018). https:
//jalammar.github.io/illustrated-transformer/

Eytan Bakshy. 2019. Real-World Video Adaptation with Reinforcement
Learning. (April 2019). https://openreview.net/forum?id=SJICkwN8iV
Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, Vyas Sekar,
and Bruno Sinopoli. 2017. Biases in Data-Driven Networking, and What
toDo About Them. In Proceedings of the 16th ACM Workshop on Hot Topics
in Networks (HotNets-XVI). Association for Computing Machinery,
New York, NY, USA, 192-198. https://doi.org/10.1145/3152434.3152448
Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. 2022. Better
Plain ViT Baselines for ImageNet-1k. (May 2022). https://doi.org/10.
48550/arXiv.2205.01580 arXiv:cs/2205.01580

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models Are Few-Shot Learners.
arXiv:2005.14165 [cs] (July 2020). arXiv:cs/2005.14165 http://arxiv.org/
abs/2005.14165

Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO:
Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic
Traffic Optimization. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 191-205.
https://doi.org/10.1145/3230543.3230551

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and Jingjing Liu.
2020. Distilling Knowledge Learned in BERT for Text Generation. (July
2020). https://doi.org/10.48550/arXiv.1911.03829 arXiv:cs/1911.03829
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. arXiv:1810.04805 [cs] (May 2019).
arXiv:cs/1810.04805 http://arxiv.org/abs/1810.04805

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. 2021. An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale. arXiv:2010.11929 [cs] (June 2021).
arXiv:cs/2010.11929 http://arxiv.org/abs/2010.11929

Vojislav Duki¢, Sangeetha Abdu Jyothi, Bojan Karlas, Muhsen Owaida,

Ce Zhang, and Ankit Singla. 2019. Is Advance Knowledge of Flow Sizes
a Plausible Assumption?. In 16th USENIX Symposium on Networked

158

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

HotNets *22, November 14-15, 2022, Austin, TX, USA

Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 565-580. https://www.usenix.org/conference/nsdi19/
presentation/dukic

Silvery Fu, Saurabh Gupta, Radhika Mittal, and Sylvia Ratnasamy.
2021. On the Use of ML for Blackbox System Performance Prediction.
In 18th USENILX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). 763-784. https://www.usenix.org/conference/
nsdi21/presentation/fu

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo,
Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui
Yang, Yiman Zhang, and Dacheng Tao. 2022. A Survey on Vision
Transformer. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022), 1-1. https://doi.org/10.1109/TPAMI.2022.3152247
Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak,
Stella Biderman, and Sasha Rush. 2022. The Annotated Transformer.
(2022). http://nlp.seas.harvard.edu/annotated-transformer/
Romain Jacob. 2022. CRediT Statement. (Oct. 2022). https://doi.org/
10.5281/zenodo.7189024

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv
Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet
Congestion Control. In Proceedings of the 36th International Conference
on Machine Learning. PMLR, 3050-3059. https://proceedings.mlr.
press/v97/jay19a.html

Suraj Jog, Zikun Liu, Antonio Franques, Vimuth Fernando, Sergi Abadal,
Josep Torrellas, and Haitham Hassanieh. 2021. One Protocol to Rule
Them All: Wireless {Network-on-Chip} Using Deep Reinforcement
Learning. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). 973-989. https://www.usenix.org/
conference/nsdi21/presentation/jog

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert
Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary
Garrett, Adria Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson,
Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancréde Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Ozgiir, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh
Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Trameér, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. 2021. Advances and Open Problems in
Federated Learning. Foundations and Trends® in Machine Learning
14, 1-2 (June 2021), 1-210. https://doi.org/10.1561/2200000083
Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header
Space Analysis: Static Checking for Networks. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12). 113-126.
Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir,
Fahad Shahbaz Khan, and Mubarak Shah. 2021. Transformers in Vision:
A Survey. Comput. Surveys(Dec. 2021). https://doi.org/10.1145/3505244
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neu-
ral Adaptive Video Streaming with Pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM °17). Association for Computing Machinery, Los Angeles,
CA, USA, 197-210. https://doi.org/10.1145/3098822.3098843
Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A Receiver-Driven Low-Latency Transport Protocol
Using Network Priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, Budapest, Hungary, 221-235.
https://doi.org/10.1145/3230543.3230564

http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://crawdad.org
https://www.measurementlab.net/
https://doi.org/10.1145/3387514.3405892
https://doi.org/10.1145/3230543.3230558
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://openreview.net/forum?id=SJlCkwN8iV
https://doi.org/10.1145/3152434.3152448
https://doi.org/10.48550/arXiv.2205.01580
https://doi.org/10.48550/arXiv.2205.01580
http://arxiv.org/abs/cs/2205.01580
http://arxiv.org/abs/cs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.48550/arXiv.1911.03829
http://arxiv.org/abs/cs/1911.03829
http://arxiv.org/abs/cs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/cs/2010.11929
http://arxiv.org/abs/2010.11929
https://www.usenix.org/conference/nsdi19/presentation/dukic
https://www.usenix.org/conference/nsdi19/presentation/dukic
https://www.usenix.org/conference/nsdi21/presentation/fu
https://www.usenix.org/conference/nsdi21/presentation/fu
https://doi.org/10.1109/TPAMI.2022.3152247
http://nlp.seas.harvard.edu/annotated-transformer/
https://doi.org/10.5281/zenodo.7189024
https://doi.org/10.5281/zenodo.7189024
https://proceedings.mlr.press/v97/jay19a.html
https://proceedings.mlr.press/v97/jay19a.html
https://www.usenix.org/conference/nsdi21/presentation/jog
https://www.usenix.org/conference/nsdi21/presentation/jog
https://doi.org/10.1561/2200000083
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3230543.3230564

HotNets *22, November 14-15, 2022, Austin, TX, USA

[27] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E.
Taylor, and Peter Stone. 2020. Curriculum Learning for Reinforcement
Learning Domains: A Framework and Survey. (Sept. 2020). https:
//doi.org/10.48550/arXiv.2003.04960 arXiv:cs, stat/2003.04960

X. Nie, Y. Zhao, Z. Li, G. Chen, K. Sui, J. Zhang, Z. Ye, and D. Pei.
2019. Dynamic TCP Initial Windows and Congestion Control Schemes
Through Reinforcement Learning. IEEE Journal on Selected Areas in
Communications 37, 6 (June 2019), 1231-1247. https://doi.org/10.
1109/JSAC.2019.2904350

P.Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Yanhui Geng, Li Chen,
K. Chen, and Hao Jin. 2016. Online Flow Size Prediction for Improved
Network Routing. In 2016 IEEE 24th International Conference on Network
Protocols (ICNP). 1-6. https://doi.org/10.1109/ICNP.2016.7785324
Siddhant Ray and Alexander Dietmiiller. 2022. Network Traffic Trans-
former. Zenodo. (Oct. 2022). https://doi.org/10.5281/zenodo.7186893
George F. Riley and Thomas R. Henderson. 2010. The Ns-3 Network
Simulator. In Modeling and Tools for Network Simulation, Klaus Wehrle,
Mesut Giines, and James Gross (Eds.). Springer, Berlin, Heidelberg,
15-34. https://doi.org/10.1007/978-3-642-12331-3_2

Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari
Balakrishnan. 2014. An Experimental Study of the Learnability of
Congestion Control. In Proceedings of the 2014 ACM Conference on
SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 479-490.
https://doi.org/10.1145/2619239.2626324

Shane Storks, Qiaozi Gao, and Joyce Y. Chai. 2020. Recent Advances in
Natural Language Inference: A Survey of Benchmarks, Resources, and
Approaches. (Feb. 2020). https://doi.org/10.48550/arXiv.1904.01172
arXiv:cs/1904.01172

Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar.
2017. Learning to Route. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (HotNets-XVI). ACM, New York, NY, USA,
185-191. https://doi.org/10.1145/3152434.3152441

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention Is All You Need. In Advances in Neural Information Pro-
cessing Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

[28

—

[29

-

(30

[t

[31

—

(32

—

(33

[t

[34

=

(35

[’

159

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Dietmdiller, S. Ray, R. Jacob, and L. Vanbever

R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina:
Computer-generated Congestion Control. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM °13). ACM, New
York, NY, USA, 123-134. https://doi.org/10.1145/2486001.2486020
Zhengxu Xia, Yajie Zhou, Francis Y. Yan, and Junchen Jiang. 2022.
Automatic Curriculum Generation for Learning Adaptation in Net-
working. (Sept. 2022). https://doi.org/10.48550/arXiv.2202.05940
arXiv:cs/2202.05940

Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning in
Situ: A Randomized Experiment in Video Streaming. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20).
495-511. https://www.usenix.org/conference/nsdi20/presentation/yan
Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S.
Wahby, Philip Levis, and Keith Winstein. 2018. Pantheon: The Training
Ground for Internet Congestion-Control Research. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). 731-743. https:
//www.usenix.org/conference/atc18/presentation/yan-francis

Yiding Yu, Taotao Wang, and Soung Chang Liew. 2019. Deep-
Reinforcement Learning Multiple Access for Heterogeneous Wireless
Networks. IEEE Journal on Selected Areas in Communications 37, 6

(June 2019), 1277-1290. https://doi.org/10.1109/JSAC.2019.2904329
Munazza Zaib, Dai Hoang Tran, Subhash Sagar, Adnan Mahmood,

Wei E. Zhang, and Quan Z. Sheng. 2021. BERT-CoQAC: BERT-
based Conversational Question Answering in Context. (April 2021).
https://doi.org/10.48550/arXiv.2104.11394 arXiv:cs/2104.11394
Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen Yan, Joao Sedoc,
and Vincent Liu. 2021. MimicNet: Fast Performance Estimates for
Data Center Networks with Machine Learning. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference (SIGCOMM °21). Association
for Computing Machinery, New York, NY, USA, 287-304. https:
//doi.org/10.1145/3452296.3472926

https://doi.org/10.48550/arXiv.2003.04960
https://doi.org/10.48550/arXiv.2003.04960
http://arxiv.org/abs/cs, stat/2003.04960
https://doi.org/10.1109/JSAC.2019.2904350
https://doi.org/10.1109/JSAC.2019.2904350
https://doi.org/10.1109/ICNP.2016.7785324
https://doi.org/10.5281/zenodo.7186893
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1145/2619239.2626324
https://doi.org/10.48550/arXiv.1904.01172
http://arxiv.org/abs/cs/1904.01172
https://doi.org/10.1145/3152434.3152441
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.48550/arXiv.2202.05940
http://arxiv.org/abs/cs/2202.05940
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://doi.org/10.1109/JSAC.2019.2904329
https://doi.org/10.48550/arXiv.2104.11394
http://arxiv.org/abs/cs/2104.11394
https://doi.org/10.1145/3452296.3472926
https://doi.org/10.1145/3452296.3472926

