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Rapid protein assignments and structures
fromrawNMRspectrawith thedeep learning
technique ARTINA

Piotr Klukowski 1 , Roland Riek 1 & Peter Güntert 1,2,3

Nuclear Magnetic Resonance (NMR) spectroscopy is a major technique in
structural biology with over 11,800 protein structures deposited in the Protein
Data Bank. NMR can elucidate structures and dynamics of small and medium
size proteins in solution, living cells, and solids, but has been limited by the
tedious data analysis process. It typically requires weeks or months of manual
work of a trained expert to turn NMR measurements into a protein structure.
Automation of this process is an open problem, formulated in the field over 30
years ago. We present a solution to this challenge that enables the completely
automated analysis of protein NMR data within hours after completing the
measurements. Using only NMR spectra and the protein sequence as input,
our machine learning-based method, ARTINA, delivers signal positions, reso-
nance assignments, and structures strictlywithout human intervention. Tested
on a 100-protein benchmark comprising 1329 multidimensional NMR spectra,
ARTINA demonstrated its ability to solve structures with 1.44 Å median RMSD
to the PDB reference and to identify 91.36% correct NMR resonance assign-
ments. ARTINA can be used by non-experts, reducing the effort for a protein
assignment or structure determination by NMR essentially to the preparation
of the sample and the spectra measurements.

Studying structures of proteins and ligand-protein complexes is one
of the most influential endeavors in molecular biology and rational
drug design. All key structure determination techniques, X-ray
crystallography, electron microscopy, and NMR spectroscopy, have
led to remarkable discoveries, but suffer from their respective
experimental limitations. NMR can elucidate structures and
dynamics of small and medium size proteins in solution1 and even in
living cells2. However, the analysis of NMR spectra and the resonance
assignment, which are indispensable for NMR studies, remain time-
consuming even for a skilled and experienced spectroscopist.
Attributed to this, the percentage of NMR protein structures in the
Protein Data Bank (PDB) has decreased from a maximum of 14.6% in
2007 to 7.3% in 2021 (https://www.rcsb.org/stats). The problem has
sparked research towards automating different tasks in NMR

structure determination3,4, including peak picking5–9, resonance
assignment10–12, and the identification of distance restraints13,14.
Several of these methods are available as webservers15,16. This
enabled semi-automatic17,18 but not yet unsupervised automation of
the entire NMR structure determination process, except for a very
small number of favorable proteins7,19.

The advance of machine learning techniques20 now offers
unprecedented possibilities for reliably replacing decisions of human
experts by efficient computational tools. Here, we present a method
that achieves this goal for NMR assignment and structure determina-
tion. We show for a diverse set of 100 proteins that NMR resonance
assignments and protein structures can be determined within hours
after completing the NMR measurements. Our method, Artificial
Intelligence for NMR Applications, ARTINA (Fig. 1), combines machine
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learning for tasks that are difficult to model otherwise with existing
algorithms—evolutionary optimization for resonance assignment with
FLYA12, chemical shift database searches for torsion angle restraint
generation with TALOS-N21, ambiguous distance restraints, network-
anchoring and constraint combination for NOESY assignment14,22 and
simulated annealing by torsion angle dynamics for structure calcula-
tion with CYANA23. Machine learning is used in multiple flavors—deep
residual neural networks24 for visual spectrum analysis to identify peak
positions (pp-ResNet) and to deconvolve overlapping signals (deconv-
ResNet) in 25 different types of spectra (Supplementary Table 1), ker-
nel density estimation (KDE) to reconstruct original peak positions in
folded spectra, a deep graph neural network25,26 (GNN) for chemical
shift estimation within the refinement of chemical shift assignments,
and a gradient boosted trees27 (GBT) model for the selection of
structure proposals.

A major challenge in developing ARTINA was the collection and
preparation of a large training data set that is required for machine
learning, because, in contrast to assignments and structures, NMR
spectra are generally not archived in public data repositories. Instead,
we were obliged to collect from different sources and standardize

complete sets of multidimensional NMR spectra for the assignment
and structure determination of 100 proteins.

In the followingwork, we describe the algorithm, training and test
data, and results of ARTINA automated structure determination, which
are on par with those achieved in weeks or months of human
experts’ labor.

Results
Benchmark dataset
One of the major obstacles for developing deep learning solutions for
protein NMR spectroscopy is the lack of a large-scale standardized
benchmark dataset of protein NMR spectra. To date, published
manuscripts presenting the most notable methods for computational
NMR, typically refer to less than 50 2D/3D/4D NMR spectra in their
experimental sections. Even the well-recognized CASD-NMR compe-
tition cannot serve as amajor sourceof training data for deep learning,
sinceonly theNOESY spectra of 10 proteinswereused in the last round
of the event28.

To make our study possible, we established a standardized
benchmark of 1329 2D/3D/4D NMR spectra, which allows 100 proteins

Fig. 1 | The ARTINA workflow for automated NMR protein structure determi-
nation. The flowchart presents the interplay between the main components of the
automated protein structure determination workflow: Residual Neural Network

(ResNet), FLYA automated chemical shift assignment, Graph Neural Network
(GNN), Gradient Boosted Trees (GBT), and CYANA structure calculation.
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to be recalculated using their original spectral data (Fig. 2 and Sup-
plementary Table 2). Each protein record in our dataset contains
5–20 spectra together withmanually identified chemical shifts (usually
depositions at the Biological Magnetic Resonance Data Bank, BMRB)
and thepreviouslydetermined (“ground truth”) protein structure (PDB
record; Supplementary Table 3). The benchmark covers protein sizes
typically studied by NMR spectroscopy with sequence lengths
between 35 and 175 residues (molecular mass 4–20 kDa).

Automated protein structure determination
The accuracy of protein structure determination with ARTINA was
evaluated in a 5-fold cross-validation experiment with the aforemen-
tioned benchmark dataset. Five instances of pp-ResNet and GBT were
trained, each one using data from about 80% of the proteins for
training and the remaining ones for testing. Since each protein was
present exactly once in the test set, reported quality metrics were
obtained directly in the cross-validation experiment, and no averaging
between data splits was required. To deploy pp-ResNet and GBT
models in our online system, we constructed an ensemble by aver-
aging predictions of all 5 cross-validation models. The other models
were trained only once using either generated data (deconv-ResNet,
Supplementary Fig. 1) or BMRB depositions excluding all benchmark
proteins (GNN, KDE).

In this experiment, we reproduced 100 structures in fully auto-
mated manner using only NMR spectra and the protein sequences as
input. Since ARTINA has no tunable parameters and does not require
any manual curation of data, each structure was calculated by a single
execution of the ARTINA workflow. All benchmark datasets were ana-
lyzed by ARTINA in parallel with execution times of 4–20h per protein.

All automatically determined structures, overlaid with the corre-
sponding reference structures from the PDB, are visualized in Fig. 3,
Supplementary Fig. 2, and SupplementaryMovie 1. ARTINAwas able to
reproduce the reference structures with a median backbone root-
mean-square deviation (RMSD) of 1.44Å between the mean coordi-
nates of the ARTINA structure bundle and themean coordinates of the
corresponding reference PDB structure bundle for the backbone
atomsN,Cα, C’ in the residue ranges determinedbyCYRANGE29 (Fig. 4a
and SupplementaryTable 4). ARTINA automatically identified between
459 and 4678 distance restraints (2198 on average over 100 proteins),
which corresponds to 4.25–33.20 restraints per residue (Fig. 4b). This
number ismainly influenced by the extent of unstructured regions and
the quality of the NOESY spectra. In agreement with earlier findings30,
it correlates only weakly with the backbone RMSD to reference (linear
correlation coefficient−0.38). As amore expressive validationmeasure
for the structures from ARTINA, we computed a predicted RMSD to
the PDB reference structure on the basis of the RMSDs between the 10
candidate structure bundles calculated in ARTINA (see “Methods”,
Fig. 5, and Supplementary Table 5). The average deviation between
actual and predicted RMSDs for the 100 proteins in this study is 0.35 Å,
and their linear correlation coefficient is 0.77 (Fig. 5). In no case, the
true RMSD exceeds the predicted one by more than 1 Å.

Additional structure validation scores obtained from ANSSUR31

(Supplementary Table 6), RPF32 (Supplementary Table 7), and con-
sensus structure bundles33 (Supplementary Table 8) confirm that
overall the ARTINA structures and the corresponding reference PDB
structures are of equivalent quality. Energy refinement of the ARTINA
structures in explicit water using OPALp34 (not part of the standard
ARTINA workflow) does not significantly alter the agreement with the
PDB reference structures (Supplementary Table 9). The benchmark
data set comprises 78 protein structures determined by the Northeast
Structural Genomics Consortium (NESG). On average, ARTINA yielded
structures of the same accuracy for NESG targets (median RMSD to
reference 1.44 Å) as for proteins from other sources (1.42 Å).

On average, ARTINA correctly assigned 90.39% of the chemical
shifts (Fig. 4c), as compared to the manually prepared assignments,
including both “strong” (high-reliability) and “weak” (tentative) FLYA
assignments12. Backbone chemical shifts were assigned more accu-
rately (96.03%) than side-chain ones (86.50%), which is mainly due to
difficulties in assigning lysine/arginine (79.97%) and aromatic (76.87%)
side-chains. Further details on the assignment accuracy for individual
amino acid types in the protein cores (residues with less than 20%
solvent accessibility) are given in Supplementary Table 10. Assign-
ments for core residues, which are important for the protein structure,
are generally more accurate than for the entire protein, in particular

Fig. 2 | NMR benchmark dataset content. PDB codes (or names, MH04, MDM2,
KRAS4B, if PDBcodeunavailable) of the 100benchmarkproteins areordered by the
number of residues. The histogram shows the number of spectra for backbone
assignment, side-chain assignment, andNOEmeasurement. Spectrum types in each
data set are shown by light to dark blue circles indicating the number of individual
spectra of the given type. The percentages of benchmark records that contain a
given spectrum type are given at the top. Spectrum types present in less than 5% of
the data sets have been omitted.
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Fig. 3 | 100 protein structures determined automatically by ARTINA (blue)
overlaid with corresponding PDB depositions (orange). The structures are
aligned with the RMSD to reference range as indicated on the left and hexagonal

frames color-coded by their size as indicated above. Structures with no corre-
sponding PDB depositions are marked by an asterisk.
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for core Ala, Cys, and Asp residues, which show a median assignment
accuracy of 100% over the 100 proteins. The lowest accuracies are
observed for core His (83.3%), Phe (83.3%), and Arg (87.5%) residues.
The three proteins with highest RMSD to reference, 2KCD, 2L82, and
2M47 (see below), show 68.2, 83.8, and 75.7% correct aromatic
assignments, respectively, well below the corresponding median of
85.5%. On the other hand, the assignment accuracies for the methyl-
containing residues Ala, Ile, Val are above average and reach a median
of 100, 97.6, and 98.6%, respectively.

The quality of automated structure determination and chemical
shift assignment reflects the performance of deep learning-based

visual spectrum analysis, presented qualitatively in Figs. 6–7, Supple-
mentary Fig. 3, and SupplementaryMovies 2–4. In this experiment, our
models (pp-ResNet, deconv-ResNet) automatically identified 1,168,739
cross-peakswith high confidence (≥0.50) in the benchmark spectra. All
1329 peak lists, together with automatically determined protein
structures and chemical shift lists, are available for download.

Error analysis
The largest deviations from the PDB reference structure were
observed for the proteins 2KCD, 2L82, and 2M47, forwhich the pRMSD
consistently indicated low accuracy (Fig. 5). Significant deviations are

a

b

c

< 80 residues
80 - 119 residues
120 - 159 residues
≥ 160 residues

Short-range restraints
Medium-range restraints
Long-range restraints

M
DM

2

M
DM

2
M

DM
2

Fig. 4 | Results of the automated structure determination of 100 proteins.
a Backbone RMSD to reference. b Number of distance restraints per residue.
c Chemical shift assignment accuracy. Bars represent quantity values for bench-
mark proteins, identified by PDB codes (or protein names). Proteins are ordered by

size, which is indicated by a color-coded circle. Values in the center of each panel
are 10th, 50th, and 90th percentiles of values presented in the bar plot. Short/
medium/long-range restraints are between residues i and jwith |i – j| ≤ 1, 2 ≤ |i – j| ≤
4, and |i – j| ≥ 5, respectively.
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mainly due to displacements of terminal secondary structure elements
(e.g., a tilted α-helix near a chain terminus), or inaccurate loop con-
formations (e.g., more flexible than in the PDB deposition). We inves-
tigated the origin of these discrepancies.

2KCD is a 120-residue (14.4 kDa) protein from Staphylococcus
saprophyticus with an α-β roll architecture. Its dataset comprises
19 spectra (8 backbone, 6 side-chain, and 5 NOESY). The ARTINA
structure has a backbone RMSD to PDB reference of 3.13 Å, which is
caused by the displacement of the C-terminal α-helix (residues
105–109; Supplementary Fig. 4a). Excluding this 5-residue fragment
decreases the RMSD to 2.40 Å (Supplementary Table 11). The

positioning of this helix appears to be uncertain, since an ARTINA
calculation without the 4D CC-NOESY spectrum yields a significantly
lower RMSD of 1.77 Å (Supplementary Table 12).

2L82 is a de novo designed protein of 162 residues (19.7 kDa) with
an αβ 3-layer (αβα) sandwich architecture. Although only 9 spectra (4
backbone, 2 side-chain and 3 NOESY) are available, ARTINA correctly
assigned 97.87% backbone and 81.05% side-chain chemical shifts. The
primary reason for the high RMSD value of 3.55Å is again a displace-
ment of the C-terminal α-helix (residues 138–153). The remainder of
the protein matches closely the PDB deposition (1.04 Å RMSD, Sup-
plementary Fig. 4b).

The protein with highest RMSD to reference (4.72 Å) in our
benchmark dataset is 2M47, a 163-residue (18.8 kDa) protein from
Corynebacterium glutamicum with an α-β 2-layer sandwich archi-
tecture, for which 17 spectra (7 backbone, 7 side chain and 3 NOESY)
are available. The main source of discrepancy are two α-helices span-
ning residues 111–157 near the C-terminus. Nevertheless, the residues
contributing to the high RMSD value are distributed more extensively
than in 2L82 and 2KCD just discussed. Interestingly, 2 of the 10 struc-
ture proposals calculated byARTINAhave anRMSD to reference below
2Å (1.66 Å and 1.97 Å). In the final structure selection step, our GBT
model selected the 4.72 ÅRMSD structure as the first choice and 1.66 Å
as the second one (Supplementary Fig. 4c). Such results imply that the
automated structure determination of this protein is unstable. Since
ARTINA returns the two structures selected by GBT with the highest
confidence, the user can, in principle, choose the better structure
based on contextual information.

In addition to these three case studies, we performed a quanti-
tative analysis of all regular secondary structure elements and flexible
loops present in our 100-protein benchmark in order to assess their
impact on the backbone RMSD to reference (Supplementary Table 11).
All residues in the structurally well-defined regions determined by
CYRANGE29 were assigned to 6 partially overlapping sets: (a) first
secondary structure element, (b) last secondary structure element, (c)
α-helices, (d) β-sheets, (e) α-helices and β-sheets, and (f) loops. Then,
the RMSD to reference was calculated 6 times, each time with one set
excluded. In total, for 66 of the 100 proteins the lowest RMSD was
obtained if set (f) was excluded from RMSD calculation, and 13%
benefited most from removal of the first or last secondary structure
element (a or b).Moreover, for 18 out of the 19 proteinswithmore than
0.5 Å RMSD decrease compared to the RMSD for all well-defined
residues, (a), (b), or (f) was the primary source of discrepancy. These
results are consistent with our earlier statement that deviations in
automatically determined protein structures are mainly caused by
terminal secondary structure elements or inaccurate loop
conformations.

a1

cd

e b2

b1

a2

Fig. 6 | Commonly occurring challenges in visual spectrumanalysis.A fragment
of a 15N-HSQC spectrum of the protein 1T0Y is shown. Initial signal positions
identified by the peak picking model pp-ResNet (black dots) are deconvolved by
deconv-ResNet, yielding the final coordinates used for automated assignment and
structure determination (blue crosses). a1, a2 Initial peak pickingmarker position is
refined by the deconvolution model. b1, b2 pp-ResNet output is deconvolved into
two components. c The deconvolution model supports maximally 3 components
per initial signal. d Two peak picking markers are merged by the deconvolution
model. e Peak picking output deconvolved into three components.

Fig. 5 | Actual and predicted RMSD between ARTINA and reference PDB
structures. The predicted RMSD to reference (pRMSD) is calculated from the
ARTINA results without knowledge of the reference PDB structure (see “Methods”)
and, by definition, always in the range of 0–4Å. For comparability, actual RMSD
values to reference are also truncated at 4 Å (protein 2M47with RMSD 4.47 Å). The
dotted lines represent deviations of ±1Å between the two RMSD quantities.

Fig. 7 | Performance of the peak picking model on a spectrum fragment with
high peak overlap. A fragment of the 13C-HSQC spectrum of protein 2K0M is
shown. Initial signal positions identified by the peak picking model pp-ResNet
(blackdots) are deconvolved by deconv-ResNet, yielding the final coordinates used
for automated assignment and structure determination (blue crosses).
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Ablation studies
During the experiment, we captured the state of each structure
determinationat 9 time-points, 3 per structuredetermination cycle: (a)
after the initial FLYA shift assignment, (b) after GNN shift refinement,
and (c) after structure calculation (Fig. 1). Comparative analysis of
these states allowed us to quantify the contribution of different
ARTINA components to the structure determination process (Table 1).

The results show a strong benefit of the refinement cycles, as
quantities reported in Table 1 consistently improve from cycle 1 to 3.
Themajority of benchmark proteins converge to the correct fold after
the first cycle (1.56Å median backbone RMSD to reference), which is
further refined to 1.52Å in cycle 2 and 1.44 Å in cycle 3. Additionally,
within each chemical shift refinement cycle, improvements in assign-
ment accuracy resulting from the GNN predictions are observed. This
quantity also increases consistently across all refinement cycles, in
particular for side-chains. Refinement cycles are particularly advanta-
geous for large and challenging systems, such as 2LF2, 2M7U, or 2B3W,
which benefit substantially in cycles 2 and 3 from the presence of
the approximate protein fold in the chemical shift assignment step.

Impact of 4D NOESY experiments
Aspresented in Fig. 2, 26out of 100benchmarkdatasets contain4DCC-
NOESY spectra, which require long measurement times and were used
in the manual structure determination. To quantify their impact, we
performed automated structure determinations of these 26 proteins
with and without the 4D CC-NOESY spectra (Supplementary Table 12).

On average, the presence of 4D CC-NOESY improves the back-
bone RMSD to reference by 0.15 Å (decrease from 1.88 to 1.73 Å) and
has less than 1% impact on chemical shift assignment accuracy. How-
ever, the impact is non-uniform. For three proteins, 2KIW, 2L8V, and
2LF2, use of the 4D CC-NOESY decreased the RMSD by more than 1 Å.
On theother hand, there is alsooneprotein, 2KCD, forwhich theRMSD
decreased by more than 1 Å by excluding the 4D CC-NOESY.

These results suggest that overall the amount of information
stored in 2D/3D experiments is sufficient for ARTINA to reach close to
optimal performance, and only modest improvement can be achieved
by introducing additional information redundancy from4DCC-NOESY
spectra.

Automated chemical shift assignment
Apart from structure determination, our data analysis pipeline for
protein NMR spectroscopy can address an array of problems that are

nowadays approached manually or semi-manually. For instance,
ARTINA can be stopped after visual spectrum analysis, returning
positions and intensities of cross-peaks that can be utilized for any
downstream task, not necessarily related to protein structure
determination.

Alternatively, a single chemical shift refinement cycle can be
performed to get automatically assigned cross-peaks from spectra and
sequence. We evaluated this approach with three sets of spectra: (i)
Exclusively backbone assignment spectrawere used to assignN, Cα, Cβ,
C’, and HN shifts. With this input, ARTINA assigned 92.40% (median
value) of the backbone shifts correctly. (ii) All through-bond but no
NOESY spectra were used to assign the backbone and side-chain shifts.
This raised the percentage of correct backbone assignments to
94.20%. (iii) The full data set including NOESY yielded 96.60% correct
assignments of the backbone shifts. These three experiments were
performed for the 45 benchmark proteins, for which CBCANH and
CBCAcoNH, as well as either HNCA and HNcoCA or HNCO and
HNcaCO experimentswere available. The availability of NOESY spectra
had a large impact on the side-chain assignments: 86.00%were correct
for the full spectra set iii, compared to 73.70% in the absence of NOESY
spectra (spectra set ii). The presence of NOESY spectra consistently
improved the chemical shift assignment accuracy of all amino acid
types (Supplementary Tables 13 and 14). The improvement is parti-
cularly strong for aromatic residues (Phe, 61.6 to 76.5%, Trp 52.5 to
80%, and Tyr 71.4 to 89.7%), but not limited to this group.

Discussion
The results obtainedwithARTINAdiffer in several aspects substantially
from previous approaches towards automating protein NMR
analysis3,4,7,12,17–19,35. First, ARTINA comprehends the entire workflow
from spectra to structures rather than individual steps in it, and there
are strictly no manual interventions or protein-specific parameters to
be adapted. Second, the quality of the results regarding peak identi-
fication, resonance assignments, and structures have been assessed on
a large and diverse set of 100 proteins; for the vast majority of which
they areonparwithwhat can be achievedbyhuman experts. Third, the
method provides a two-orders-of-magnitude leap in efficiency by
providing assignments and a structure within hours of computation
time rather than weeks or months of human work. This reduces the
effort for a protein structure determination by NMR essentially to the
preparation of the sample and the measurement of the spectra. Its
implementation in the https://nmrtist.org webserver (Supplementary

Table 1 | Quality of assignments and structures in each refinement cycle

Quantity Refinement cycle

1 2 3

Chemical shift assignment Initial Backbone assignment accuracy [%] 96.12 96.19 96.34

Side-chain assignment accuracy [%] 84.90 86.83 86.95

All-atom assignment accuracy [%] 89.20 90.51 90.79

Refined Backbone assignment accuracy [%] 96.78 96.92 97.22

Side-chain assignment accuracy [%] 86.02 87.75 88.04

All-atom assignment accuracy [%] 90.17 91.31 91.36

Structure calculation CYANA target function value [Å2] 4.53 4.61 4.03

Backbone RMSD to reference [Å] 1.56 1.52 1.44

Heavy-atom RMSD to reference [Å] 2.21 2.07 2.02

Proteins with backbone RMSD to reference ≤ 1 Å [%] 17 20 26

Proteins with backbone RMSD to reference 1–2 Å [%] 51 54 51

Proteins with backbone RMSD to reference 2–3 Å [%] 18 17 20

Proteins with backbone RMSD to reference > 3 Å [%] 14 9 3

Reportedquantities (except for theRMSDdistribution in the4bottomrows) aremedian valuesover the 100proteins in thebenchmark data set. Thebestmetric value in each row ispresented inbold.
A refinement cycle is a single ARTINA iteration, composed of one execution of the chemical shift refinement cycle (comprising two FLYA12 executions; rows initial and refined), and the structure
refinement cycle (comprising 10 CYANA runs22).
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Movie 5) encapsulates its complexity, eliminates any intermediate data
and format conversions by the user, and enables the use of different
types of high-performance hardware as appropriate for each of the
subtasks. ARTINA is not limited to structure determination but can be
used equally well for peak picking and resonance assignment in NMR
studies that do not aim at a structure, such as investigations of ligand
binding or dynamics.

Although ARTINA has no parameters to be optimized by the user,
care should be given to the preparation of the input data, i.e., the
choice, measurement, processing, and specification of the spectra.
Spectrum type, axes, and isotope labeling declarations must be cor-
rect, and chemical shift referencing consistent over the entire set of
spectra. Slight variations of corresponding chemical shifts within the
tolerances of 0.03 ppm for 1H and 0.4 ppm for 13C/15N can be accom-
modated, but larger deviations, resulting, for instance, from the use of
multiple samples, pH changes, protein degradation, or inaccurate
referencing, can be detrimental. Where appropriate, ARTINA proposes
corrections of chemical shift referencing36. Furthermore, based on the
large training data set, which comprises a large variety of spectral
artifacts, ARTINA largely avoids misinterpreting artifacts as signals.
However, with decreasing spectral quality, ARTINA, like a human
expert, will progressively miss real signals.

Regarding protein size and spectrum quality, limitations of
ARTINA are similar to those encountered by a trained spectroscopist.
Machine-learning-based visual analysis of spectra requires signals to be
present and distinguishable in the spectra. ARTINA does not suffer
from accidental oversight that may affect human spectra analysis. On
the other hand, human experts may exploit contextual information to
which the automated system currently has no access because it iden-
tifies individual signals by looking at relatively small, local excerpts of
spectra.

In this paper, weused all spectra that are available from the earlier
manual structure determination. For most of the 100 proteins, the
spectra data set has significant redundancy regarding information for
the resonance assignment. Our results indicate that one can expect to
obtain good assignments and structures also from smaller sets of
spectra37, with concomitant savings of NMR measurement time. We
plan to investigate this in a future study.

The present version of ARTINA can be enhanced in several
directions. Besides improving individual models and algorithms, it is
conceivable to integrate the so far independently trained collection of
machine learning models, plus additional models that replace con-
ventional algorithms, into a coherent system that is trained as a whole.
Furthermore, the reliability of machine learning approaches depends
strongly on the quantity and quality of training data available. While
the collection of the present training data set for ARTINA was cum-
bersome, from now on it can be expected to expand continuously
through the use of the https://nmrtist.org website, both quantitatively
and qualitatively with regard to greater variability in terms of protein
types. spectral quality, source laboratory, data processing (including
non-linear sampling), etc., which can be exploited in retraining the
models. ARTINA can also be extended to use additional experimental
input data, e.g., known partial assignments, stereospecific assign-
ments, 3J couplings, residual dipolar couplings, paramagnetic data,
and H-bonds. Structural information, e.g., from AlphaFold38, can be
used in combination with reduced sets of NMR spectra for rapid
structure-based assignment. Finally, the range of application of
ARTINA can be generalized to small molecule-protein complexes
relevant for structure-activity relationship studies in drug research,
protein-protein complexes, RNA, solid state, and in-cell NMR.

Overall, ARTINA stands for a paradigm change in biomolecular
NMR froma time-consuming technique for specialists to a fastmethod
open to researchers in molecular biology and medicinal chemistry. At
the same time, in a larger perspective, the appearance of generally
highly accurate structure predictions by AlphaFold38 is revolutionizing

structural biology. Nevertheless, there remains space for the experi-
mental methods, for instance, to elucidate various states of proteins
under different conditions or in dynamic exchange, or for studying
protein-ligand interaction. Regarding ARTINA, one should keep in
mind that its applications extend far beyond structure determination.
It will accelerate virtually any biological NMR studies that require the
analysis of multidimensional NMR spectra and chemical shift assign-
ments. Protein structure determination is just one possible ARTINA
application, which is both demanding in terms of the amount and
quality of required experimental data and amenable to quantitative
evaluation.

Methods
Spectrum benchmark collection
To collect the benchmark of NMR spectra (Fig. 2 and Supplementary
Table 2), we implemented a crawler software, which systematically
scanned the FTP server of the BMRB data bank39, identifying data files
relevant to our study. Additional datasets were obtained by setting up
awebsite for the deposition of published data (https://nmrdb.ethz.ch),
fromour collaboration network, or hadbeen acquired internally in our
laboratory. NMR data was collected from these channels either in the
form of processed spectra (Sparky40, NMRpipe41, XEASY42, Bruker
formats), or in the form of time-domain data accompanied by
depositor-supplied NMRpipe processing scripts. No additional spectra
processing (e.g., baseline correction) was performed as part of
this study.

The most challenging aspects of the benchmark collection pro-
cess were: scarcity of data—only a small fraction of all BMRB deposi-
tions are accompanied by uploaded spectra (or time-domain data),
lack of standards for NMR data depositions—each protein data set had
to be prepared manually, as the original data was stored in different
formats (spectra name conventions, axis label standards, spectra data
format), and difficulties in correlating data files deposited in the BMRB
FTP site with contextual information about the spectrum and the
sample (e.g., sample characteristics, measurement conditions, instru-
ment used). Manually prepared (mostly NOESY) peak lists, which are
available from the BMRB for some of the proteins in the benchmark,
were not used for this study.

Different approaches to 3D 13C-NOESY spectra measurement
had to be taken into account: (i) Two separate 13C NOESY for aliphatic
and aromatic signals. These were analyzed by ARTINA without any
special treatment. We used ALI, ARO tags (Supplementary Movie S5)
to provide the information that only either aliphatic or aromatics
shifts are expected in a given spectrum. (ii) SimultaneousNC-NOESY.
These spectra were processed twice to have proper scaling of the 13C
and 15N axes in ppm units, and cropped to extract 15N-NOESY and
13C-NOESY spectra. If nitrogen and carbon cross-peak amplitudes
have different signs, we used POS, NEG tags to provide the infor-
mation that only either positive or negative signals should be ana-
lyzed. (iii) Aliphatic and aromatic signals in a single 13C-NOESY
spectrum. These measurements do not require any special treat-
ment, but proper cross-peak unfolding plays a vital role in aromatic
signals analysis.

Overview of the ARTINA algorithm
ARTINA uses as input only the protein sequence and a set of NMR
spectra, which may contain any combination of 25 experiments cur-
rently supported by the method (Supplementary Table 1). Within
4–20h of computation time (depending on protein size, number of
spectra, and computing hardware load), ARTINAdetermines: (a) cross-
peak positions for each spectrum, (b) chemical shift assignments, (c)
distance restraints from NOESY spectra, and (d) the protein structure.
The whole process does not require any human involvement, allowing
rapid protein NMR assignment and structure determination by non-
experts.
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The ARTINA workflow starts with visual spectrum analysis (Fig. 1),
wherein cross-peak positions are identified in frequency-domain NMR
spectra using deep residual neural networks (ResNet)24. Coordinates of
signals in the spectra are passed as input to the FLYA automated
assignment algorithm12, yielding initial chemical shift assignments. In
the subsequent chemical shift refinement step, we bring to the work-
flow contextual information about thousands of protein structures
solved by NMR in the past using a deep GNN25 that was trained on
BMRB/PDB depositions. Its goal is to predict expected values of yet
missing chemical shifts, given the shifts that have already been con-
fidently and unambiguously assigned by FLYA. With these GNN pre-
dictions as additional input, the cross-peak positions are reassessed in
a second FLYA call, which completes the chemical shift refinement
cycle (Fig. 1).

In the structure refinement cycle, 10 variants of NOESY peak lists
are generated, whichdiffer in the number of cross-peaks selected from
the output of the visual spectrum analysis by varying the confidence
threshold of a signal selected byResNet between0.05 and0.5. Each set
of NOESY peak lists is used in an independent CYANA structure
calculation22,23, yielding 10 intermediate structure proposals (Fig. 1). The
structure proposals are ranked in the intermediate structure selection
step based on 96 features with a dedicated GBT model. The selected
best structure proposal is used as contextual information in a con-
secutive FLYA run, which closes the structure refinement cycle.

After the two initial steps of visual spectrum analysis and initial
chemical shift assignment, ARTINA interchangeably executes refine-
ment cycles. The chemical shift refinement cycle provides FLYA with
tighter restraints on expected chemical shifts, which helps to assign
ambiguous cross-peaks. The structure refinement cycle provides
information about possible through-space contacts, allowing identi-
fied cross-peaks (especially in NOESY) to be reassigned. The high-level
concept behind the interchangeable execution of refinement cycles is
to iteratively update the protein structure given fixed chemical shifts,
and update chemical shifts given the fixed protein structure. Both
refinement cycles are executed three times.

Automated visual analysis of the spectrum
We established two machine learning models for the visual analysis of
multidimensional NMR spectra (see downloads in the Code availability
section). In their design, we made no assumptions about the down-
stream task and the 2D/3D/4D experiment type. Therefore, the pro-
posed models can be used as the starting point of our automated
structure determination procedure, as well as for any other task that
requires cross-peak coordinates.

The automated visual analysis starts by selecting all extrema
x = x1,x2, . . . ,xN

� �
, xn 2 ND in the NMR spectrum, which is repre-

sented as a D-dimensional regular grid storing signal intensities at
discrete frequencies. We formulated the peak picking task as an object
detection problem, where possible object positions are confined to x.
This taskwas addressedby training adeep residual neural network24, in
the following denoted as peak picking ResNet (pp-ResNet), which
learns a mapping xn ! ½0, 1� that assigns to each signal extremum a
real-valued score, which resembles its probability of being a true signal
rather than an artefact.

Our network architecture is strongly linked to ResNet-1824. It
contains 8 residual blocks, followed by a single fully connected layer
with sigmoidal activation. After weight initialization with Glorot
Uniform43, the architecture was trained by optimizing a binary cross-
entropy loss using Adam44 with learning rate 10–4 and gradient clip-
ping of 0.5.

To establish an experimental training dataset for pp-ResNet, we
normalized the 1329 spectra in our benchmark with respect to reso-
lution (adjusting the number of data grid points per unit chemical shift
(ppm) using linear interpolation) and signal amplitude (scaling the
spectrum by a constant). Subsequently, 675,423 diverse 2D fragments

of size 256 × 32 × 1 were extracted from the normalized spectra and
manually annotated, yielding 98,730 positive and 576,693 negative
class training examples. During the training process, we additionally
augmented this dataset by flipping spectrum fragments along the
second dimension (32 pixels), stretching them by 0–30% in the first
and second dimensions, and perturbing signal intensities with Gaus-
sian noise addition.

The role of the pp-ResNet is to quickly iterate over signal extrema
in the spectrum, filtering out artefacts and selecting approximate
cross-peak positions for the downstream task. The relatively small
network architecture (8 residual blocks) and input size of 2D 256 × 32
image patchesmake it possible to analyze large 3D 13C-resolvedNOESY
spectra in less than 5min on a high-end desktop computer. Simulta-
neously, the first dimension of the image patch (256 pixels) provides
long-range contextual information on the possible presence of signals
aligned with the current extremum (e.g., Cα, Cβ cross-peaks in an
HNCACB spectrum).

Extrema classified with high confidence as true signals by pp-
ResNet undergo subsequent analysis with a second deep residual
neural network (deconv-ResNet). Its objective is to perform signal
deconvolution, based on a 3D spectrum fragment (64 × 32 × 5 voxels)
that is cropped around a signal extremum selected by pp-ResNet. This
task is defined as a regression problem, where deconv-ResNet outputs
a 3 × 3 matrix storing 3D coordinates of up to 3 deconvolved peak
components, relative to the center of the input image. To ensure
permutation invariance with respect to the ordering of components in
the output coordinatematrix, and to allow for a variable number of 1–3
peak components, the architecture was trained with a Chamfer dis-
tance loss45.

Since deconv-ResNet deals only with true signals and their local
neighborhood, its training dataset can be conveniently generated.
We established a spectrum fragment generator, based on rules
reflecting the physics of NMR, which produced 110,000 synthetic
training examples (Supplementary Fig. 1) having variable (a) numbers
of components to deconvolve (1–3), (b) signal-to-noise ratio, (c)
component shapes (Gaussian, Lorentzian, and mixed), (d) compo-
nent amplitude ratios, (e) component separation, and (f) component
neighborhood type (i.e., NOESY-like signal strips or HSQC-like 2D
signal clusters). The deconv-ResNet model was thus trained on fully
synthetic data.

Signal unaliasing
TouseResNet predictions in automated chemical shift assignment and
structure calculation, detected cross-peak coordinates must be
transformed from the spectrum coordinate system to their true reso-
nance frequencies. We addressed the problem of automated signal
unfolding with the classical machine learning approach to density
estimation.

At first, we generated 105 cross-peaks associated with each
experiment type supported by ARTINA (Supplementary Table 1). In
this process, we used randomly selected chemical shift lists deposited
in the BMRB database, excluding depositions associated with our
benchmark proteins. Subsequently, we trained a Kernel Density Esti-
mator (KDE):

pe xð Þ= 1
Ne

XNe

i= 1

κðx � x eð Þ
i Þ ð1Þ

which captures the distribution pe xð Þ of true peaks being present at
position x in spectrum type e, based on Ne = 105 cross-peaks
coordinates xðeÞ

i generated with BMRB data, and κ being the Gaussian
kernel.

Unfolding a k-dimensional spectrum is defined as a discrete
optimization problem, solved independently for each cross-peak x eð Þ

j
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observed in a spectrum of type e:

s* = arg max
s

peðx eð Þ
j +w � sÞ ð2Þ

wherew 2 Rk is a vector storing the spectralwidths in eachdimension
(ppm units), � is element-wise multiplication, s 2 Zk is a vector
indicating how many times the cross-peak is unfolded in each
dimension, and s* 2 Zk is the optimal cross-peak unfolding.

As long as regular and folded signals do not overlap or have dif-
ferent signs in the spectrum, KDE can unfold the peak list regardless of
spectrum dimensionality. The spectrum must not be cropped in the
foldeddimension, i.e., the folding sweepwidthmust equal thewidth of
the spectrum in the corresponding dimension.

All 2D/3D spectra in our benchmark were folded in at most one
dimensionand satisfy the aforementioned requirements.However, the
4D CC-NOESY spectra satisfy neither, as regular and folded peaks both
overlap and have the same signal amplitude sign. This introduces
ambiguity in the spectrum unfolding that prevents direct use of the
KDE technique. To retrieve original signal positions, 4D CC-NOESY
cross-peaks were unfolded to overlap with signals detected in 3D
13C-NOESY. In consequence, 4D CC-NOESY unfolding depended on
other experiments, and individual 4D cross-peaks were retained only if
they were confirmed in a 3D experiment.

Chemical shift assignment
Chemical shift assignment is performed with the existing FLYA
algorithm12 that uses a genetic algorithm combined with local opti-
mization to find an optimal matching between expected and observed
peaks. FLYA uses as input the protein sequence, lists of peak positions
from the available spectra, chemical shift statistics, either from the
BMRB39 or the GNN described in the next section, and, if available, the
structure from the previous refinement cycle. The tolerance for the
matching of peakpositions and chemical shiftswas set to0.03 ppm for
1H, and 0.4 ppm for 13C/15N shifts. Each FLYA execution comprises 20
independent runs with identical input data that differ in the random
numbers used in the optimization algorithm. Nuclei for which at least
80% of the 20 runs yield, within tolerance, the same chemical shift
value are classified as reliably assigned12 and used as input for the
following chemical shift refinement step.

Chemical shift refinement
We used a graph data structure to combine FLYA-assigned shifts with
information from previously assigned proteins (BMRB records) and
possible spatial interactions. Each node corresponds to an atom in the
protein sequence, and is represented by a feature vector composed of
(a) a one-hot encoded atom type code (e.g., Cα, Hβ), (b) a one-hot
encoded amino acid type, (c) the value of the chemical shift assigned
by FLYA (only if a confident assignment is available, zero otherwise),
(d) atom-specific BMRB shift statistics (mean and standard deviation),
and (e) 30 chemical shift values obtained from BMRB database frag-
ments. The latter feature is obtained by searching BMRB records for
assigned 2–3-residue fragments thatmatch the local protein sequence
and have minimal mean-squared-error (MSE) to shifts confidently
assigned by FLYA (non-zero values of feature (c) in the local neigh-
borhood of the atom). The edges of the graph correspond to chemical
bonds or skip connections. The latter connect the Cβ atom of a given
residue with Cβ atoms 2, 3, and 5 residues apart in the amino acid
sequence, and have the purpose to capture possible through-space
influence on the chemical shift that is typically observed in secondary
structure elements.

The chemical shift refinement task is defined as a node regression
problem,where anexpected valueof the chemical shift is predicted for
each atom that lacks a confident FLYA assignment. This task is
addressed with a DeepGCN model25,26 that was trained on 28,400
graphs extracted from 2840 referenced BMRB records39. Each training

example was created by building a fully assigned graph out of a single
BMRB record, and dropping chemical shift values (feature (c) above)
for randomly chosen atoms that FLYA typically assigns either with low
confidence or inaccurately.

Our DeepGCN model is designed specifically for de novo struc-
ture determination, as it uses only the protein sequence and partial
shift assignments to estimate values of missing chemical shifts. Its
predictions are used to guide the FLYA genetic algorithm
optimization12 by reducing its search range for assignments. The pre-
cise final chemical shift value is always determined by the position of a
signal in the spectrum, rather than the model prediction alone.

Torsion angle restraints
Before each structure calculation step, torsion angle restraints for the
ϕ and ψ angles of the polypeptide backbone were obtained from the
current backbone chemical shifts using the program TALOS-N21.
Restraints were only generated if TALOS-N classified the prediction as
‘Good’, ‘Strong’, or ‘Generous’. Given a TALOS-N torsion angle pre-
diction ofϕ ± Δϕ, the allowed range of the torsion angle was set toϕ ±
max(Δϕ, 10°) for ‘Good’ and ‘Strong’ predictions, and ϕ ± 1.5 max(Δϕ,
10°) for ‘Generous’ predictions, and likewise for ψ.

Structure calculation and selection
Given the chemical shift assignments and NOESY cross-peak positions
and intensities, the structure is calculated with CYANA23 using the
established method22 that comprises 7 cycles of NOESY cross-peak
assignment and structure calculation, followed by a final structure
calculation. In total, 8 × 100conformers are calculated for a given input
data set using 30,000 torsion angle dynamics steps per conformer.
The 20 conformers with the lowest final target function value are
chosen to represent the solution structure proposal. The entire com-
bined NOESY assignment and structure calculation procedure is exe-
cuted independently 10 timesbasedon 10 variants ofNOESYpeak lists,
which differ in the number of cross-peaks selected from the output of
the visual spectrum analysis. The first set generously includes all sig-
nals selected by ResNet with confidence ≥0.05. The other variants of
NOESY peak lists follow the same principlewith increasingly restrictive
confidence thresholds of 0.1, 0.15,…, 0.5.

The CYANA structures calculations are followed by a structure
selection step, wherein the 10 intermediate structure proposals are
compared pairwise by a Gradient Boosted Tree (GBT) model that uses
96 features from each structure proposal (including the CYANA target
function value23, number of long-range distance restraints, etc.; for
details, see downloads in the Code availability section) to rank the
structures by their expected accuracy. The best structure from the
ranking is subsequently used as contextual information for the che-
mical shift refinement cycle (Fig. 1), or returned as the final outcome of
ARTINA. The second-best final structure is also returned for
comparison.

To train GBT, we collected a set of successful and unsuccessful
structure calculations with CYANA. Each training example was a tuple
(si, ri), where si is the vector of features extracted from the CYANA
structure calculation output, and ri is theRMSDof the output structure
to the PDB reference. The GBTwas trained to take the features si and sj
of two structure calculations with CYANA as input, and to predict a
binary order variable oij, such that oij = 1 if ri < rj, and 0 otherwise.
Importantly, the deposited PDB reference structures were not used
directly in the GBT model training (they are used only to calculate the
RMSDs). Consequently, the GBT model is unaffected by methodology
and technicalities related to PDB deposition (e.g., the structure cal-
culation software used to calculate the deposited reference structure).

Structure accuracy estimate
As an accuracy estimate for the final ARTINA structure, a predicted
RMSD to reference (pRMSD) is calculated from the ARTINA results
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(without knowledge of the reference PDB structure). It aims at repro-
ducing the actual RMSD to reference, which is the RMSD between the
mean coordinates of the ARTINA structure bundle and the mean
coordinates of the corresponding reference PDB structure bundle for
the backbone atoms N, Cα, C’ in the residue ranges as given in Sup-
plementary Table 4. The predicted RMSD is given by pRMSD = (1 – t) ×
4 Å, where, in analogy to the GDT_HA value46, t is the average fraction
of the RMSDs ≤ 0.5, 1, 2, 4 Å between themean coordinates of the best
ARTINA candidate structure bundle and the mean coordinates of the
structure bundles of the 9 other structure proposals. Since t ∈ [0, 1],
the pRMSD is always in the range of 0–4Å, grouping all “bad” struc-
tures with expected RMSD to reference ≥ 4 Å at pRMSD = 4Å.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
References structures: PDB Protein Data Bank (https://www.rcsb.org/;
accession codes in Fig. 2 and Supplementary Table 3).

Spectra and reference assignments: BMRB Biological Magnetic
Resonance Data Bank (https://bmrb.io/; entry IDs in Supplementary
Table 3).

Peak lists, assignments, and structures: https://nmrtist.org/static/
public/publications/artina/ARTINA_results.zip and in the ETH
Research Collection under DOI 10.3929/ethz-b-000568621.

Source data for Figs. 2, 4, and 5 is available in Supplementary
Tables 2, 4, and 5, respectively.

Code availability
TheARTINAalgorithm is available as awebserver at https://nmrtist.org.
pp-ResNet, deconv-ResNet, GNN, and GBT are available for download
in binary form, together with architecture schemes, example input
data, model input description, and source code that allows to read
model files and make predictions (https://github.com/PiotrKlukowski/
ARTINA, https://nmrtist.org/static/public/publications/artina/models/
{ARTINA_peak_picking.zip, ARTINA_peak_deconvolution.zip, ARTINA_
shift_prediction.zip, ARTINA_structure_ranking.zip}). These files pro-
vide a full technical specification of the components developed within
ARTINA, and allow for their independent use in Python.

Existing software used: Python (https://www.python.org/),
CYANA (https://www.las.jp/), TALOS-N (https://spin.niddk.nih.gov/
bax/software/TALOS-N).

References
1. Wüthrich, K. NMR studies of structure and function of biological

macromolecules (Nobel Lecture). Angew. Chem. Int. Ed. 42,
3340–3363 (2003).

2. Sakakibara, D. et al. Protein structure determination in livingcells by
in-cell NMR spectroscopy. Nature 458, 102–105 (2009).

3. Guerry, P. & Herrmann, T. Advances in automated NMR protein
structure determination. Q. Rev. Biophys. 44, 257–309
(2011).

4. Güntert, P. Automated structure determination from NMR spectra.
Eur. Biophys. J. 38, 129–143 (2009).

5. Garrett, D. S., Powers, R., Gronenborn, A. M. & Clore, G. M. A
common sense approach to peak picking two-, three- and four-
dimensional spectra using automatic computer analysis of contour
diagrams. J. Magn. Reson. 95, 214–220 (1991).

6. Koradi, R., Billeter, M., Engeli, M., Güntert, P. & Wüthrich, K. Auto-
mated peak picking and peak integration in macromolecular NMR
spectra using AUTOPSY. J. Magn. Reson. 135, 288–297 (1998).

7. Würz, J. M. & Güntert, P. Peak picking multidimensional NMR
spectra with the contour geometry based algorithm CYPICK. J.
Biomol. NMR 67, 63–76 (2017).

8. Klukowski, P. et al. NMRNet: A deep learning approach to auto-
mated peak picking of protein NMR spectra. Bioinformatics 34,
2590–2597 (2018).

9. Li, D. W., Hansen, A. L., Yuan, C. H., Bruschweiler-Li, L. & Brüsch-
weiler, R. DEEP picker is a deep neural network for accurate
deconvolution of complex two-dimensional NMR spectra. Nat.
Commun. 12, 5229 (2021).

10. Bartels, C., Güntert, P., Billeter, M. & Wüthrich, K. GARANT—A
general algorithm for resonance assignment of multidimensional
nuclear magnetic resonance spectra. J. Comput. Chem. 18,
139–149 (1997).

11. Zimmerman, D. E. et al. Automated analysis of protein NMR
assignments using methods from artificial intelligence. J. Mol. Biol.
269, 592–610 (1997).

12. Schmidt, E. & Güntert, P. A new algorithm for reliable and general
NMR resonance assignment. J. Am. Chem. Soc. 134,
12817–12829 (2012).

13. Linge, J. P., O’Donoghue, S. I. &Nilges,M.Automated assignment of
ambiguous nuclear overhauser effects with ARIA. Methods Enzy-
mol. 339, 71–90 (2001).

14. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure
determination with automated NOE assignment using the new
software CANDID and the torsion angle dynamics algorithm
DYANA. J. Mol. Biol. 319, 209–227 (2002).

15. Allain, F., Mareuil, F., Ménager, H., Nilges, M. & Bardiaux, B. ARIA-
web: a server for automated NMR structure calculation. Nucleic
Acids Res. 48, W41–W47 (2020).

16. Lee, W. et al. I-PINE web server: Aan integrative probabilistic NMR
assignment system for proteins. J. Biomol. NMR 73, 213–222 (2019).

17. Huang, Y. P. J. et al. An integrated platform for automated analysis
of protein NMR structures. Methods Enzymol. 394, 111–141 (2005).

18. Kobayashi, N. et al. KUJIRA, a package of integrated modules for
systematic and interactive analysis of NMR data directed to high-
throughputNMRstructure studies. J. Biomol.NMR39, 31–52 (2007).

19. López-Méndez, B. & Güntert, P. Automated protein structure
determination from NMR spectra. J. Am. Chem. Soc. 128,
13112–13122 (2006).

20. Murphy, K. P. Probabilistic Machine Learning: An Introduction (MIT
Press, 2022).

21. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles
predicted fromNMRchemical shiftsusing artificial neural networks.
J. Biomol. NMR 56, 227–241 (2013).

22. Güntert, P. & Buchner, L. Combined automated NOE assignment
and structure calculation with CYANA. J. Biomol. NMR 62,
453–471 (2015).

23. Güntert, P.,Mumenthaler, C. &Wüthrich, K. Torsion angle dynamics
for NMR structure calculation with the new programDYANA. J. Mol.
Biol. 273, 283–298 (1997).

24. Kaiming, H., Xiangyu, Z., Shaoqing, R. & Jian, S. Deep residual
learning for image recognition. In Proc. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).

25. Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. Preprint at https://arxiv.org/abs/1609.
02907 (2016).

26. Chiang, W. L. et al. Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks. In Proc. 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD) 257–266 (2019).

27. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin,
A. CatBoost: Unbiased boosting with categorical features. In Proc.
32nd Conference on Neural Information Processing Systems
(NIPS) (2018).

28. Rosato, A. et al. The second round of Critical Assessment of Auto-
mated Structure Determination of Proteins by NMR: CASD-NMR-
2013. J. Biomol. NMR 62, 413–424 (2015).

Article https://doi.org/10.1038/s41467-022-33879-5

Nature Communications |         (2022) 13:6151 11

https://www.rcsb.org/
https://bmrb.io/
https://nmrtist.org/static/public/publications/artina/ARTINA_results.zip
https://nmrtist.org/static/public/publications/artina/ARTINA_results.zip
https://nmrtist.org
https://github.com/PiotrKlukowski/ARTINA
https://github.com/PiotrKlukowski/ARTINA
https://nmrtist.org/static/public/publications/artina/models/
https://www.python.org/
https://www.las.jp/
https://spin.niddk.nih.gov/bax/software/TALOS-N
https://spin.niddk.nih.gov/bax/software/TALOS-N
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907


29. Kirchner, D. K. & Güntert, P. Objective identification of residue
ranges for the superposition of protein structures. BMC Bioinform.
12, 170 (2011).

30. Buchner, L. & Güntert, P. Systematic evaluation of combined
automated NOE assignment and structure calculation with CYANA.
J. Biomol. NMR 62, 81–95 (2015).

31. Fowler, N. J., Sljoka, A. & Williamson, M. P. A method for validating
the accuracy of NMR protein structures. Nat. Commun. 11,
6321 (2020).

32. Huang, Y. J., Powers, R. & Montelione, G. T. Protein NMR recall,
precision, and F-measure scores (RPF scores): Structure quality
assessment measures based on information retrieval statistics. J.
Am. Chem. Soc. 127, 1665–1674 (2005).

33. Buchner, L. & Güntert, P. Increased reliability of nuclear magnetic
resonance protein structures by consensus structure bundles.
Structure 23, 425–434 (2015).

34. Koradi, R., Billeter, M. & Güntert, P. Point-centered domain
decomposition for parallel molecular dynamics simulation. Com-
put. Phys. Commun. 124, 139–147 (2000).

35. Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure
determination with automated NOE-identification in the NOESY
spectra using the new software ATNOS. J. Biomol. NMR 24,
171–189 (2002).

36. Buchner, L., Schmidt, E. & Güntert, P. Peakmatch: A simple and
robust method for peak list matching. J. Biomol. NMR 55,
267–277 (2013).

37. Scott, A., López-Méndez, B. & Güntert, P. Fully automated structure
determinations of the Fes SH2 domain using different sets of NMR
spectra. Magn. Reson. Chem. 44, S83–S88 (2006).

38. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

39. Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36,
D402–D408 (2008).

40. Goddard, T. D. & Kneller, D. G. Sparky 3. (University of California,
San Francisco, 2001).

41. Delaglio, F. et al. NMRPipe—A multidimensional spectral proces-
sing system based on Unix pipes. J. Biomol. NMR 6, 277–293 (1995).

42. Bartels, C., Xia, T. H., Billeter, M., Güntert, P. & Wüthrich, K. The
program XEASY for computer-supported NMR spectral analysis of
biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

43. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. Proc. Mach. Learn. Res. 9,
249–256 (2010).

44. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2015).

45. Davies, E. R. Computer Vision (Academic Press, 2018).
46. Kryshtafovych, A. et al. New tools and expanded data analysis

capabilities at the protein structure prediction center. Proteins 69,
19–26 (2007).

Acknowledgements
We thank Drs. Frédéric Allain, FredDamberger, Hideo Iwai, Harindranath
Kadavath, Julien Orts, and Dean Strotz for providing unpublished

spectra. This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No 891690 (P.K.), and a Grant-in-Aid
for Scientific Research of the Japan Society for the Promotion of Science
(P.G., 20 K06508).

Author contributions
P.K. prepared training and test data sets, designed and trained machine
learning models, performed experiments described in the manuscript,
and implemented ARTINA within the nmrtist.org web platform. P.K. and
P.G. wrote the software. P.K., R.R., and P.G. conceived the project,
analyzed the results, and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33879-5.

Correspondence and requests for materials should be addressed to
Piotr Klukowski, Roland Riek or Peter Güntert.

Peer review information Nature Communications thanks Benjamin
Bardiaux, Gaetano Montelione, Theresa Ramelot, and the other, anon-
ymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33879-5

Nature Communications |         (2022) 13:6151 12

https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41467-022-33879-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

