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A B S T R A C T

High-level synthesis (HLS) mainly aims to map sequential programs to
hardware and seldomly considers alternative input types. Even though
sequential programs have parallelizable parts, they are inherently not
a good match for the massively parallel hardware on which HLS tries
to map them. Some HLS tools have libraries that help encode paral-
lelism in the input language, but they are combined with C-like input
and require plumbing to integrate it into existing systems. Instead
of consuming C as an input language, this thesis proposes a stream-
ing abstraction (essentially a domain-specific language) that encodes
thread parallelism directly and can be lowered to heavily pipelined
circuits. To achieve this goal, we introduce compiler transformations
that extend a dataflow abstraction used in dynamically scheduled HLS
to support pipelining and build the streaming abstraction on top of it.
This work demonstrates that the usage of domain-specific abstractions
for hardware is a way to simplify hardware compilation substantially.
The resulting hardware circuits consume data at line rate, i.e., at the
maximum achievable bandwidth, without user interaction during
compilation.
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1
I N T R O D U C T I O N

With the broader adoption of field-programmable gate arrays (FPGAs)
in data centers and clouds, developing applications that run directly
in hardware is becoming more and more relevant for an increasing va-
riety of use cases. Using hardware description languages (HDLs) can
be cumbersome, especially for software engineers that do not have an
electrical engineering background. Even when ignoring the language
barrier, HDLs (often Register Transfer Languages (RTLs)) are by design
more verbose due to having rich and complicated feature sets. Many
of the features exposed to the users are not required for application
developers. One way to counteract this problem is using high-level
synthesis (HLS) that allows transforming familiar languages, usually
C, to HDL. Thus, HLS tries to reduce the knowledge required to work
closely with FPGAs. As hardware is inherently parallel, mapping a
sequential input language, e.g., C, to it is a non-trivial problem HLS
needs to resolve. Many tools try to detect parallelizable program parts
or rely on the users to annotate them with pragmas [35]. Pragmas
allow developers to annotate code with additional information that
a compiler (or an HLS tool) can benefit from, e.g., mark loops as
parallelizable. Such an approach can indeed work, as many existing
tools demonstrate, but it can be very complicated to work with. Some
methods pose strict limitations on the input structures, while others
might be in-transparent in why specific inputs produce slow circuits.
This problem is only made worse by the fact that many implementa-
tions are either monolithic, closed-source, or both. Thus, non-expert
users are left guessing what went wrong when their circuits do not
work as expected.

Nithin et al. [15] showed the potential of using domain-specific
languages (DSL) compared to classical C-like inputs. That project
focused on a machine learning DSL and is sadly no longer actively
worked on. This thesis investigates if such a DSL HLS approach can be
applied to another domain: stream processing. Stream processing is a
way to describe computations on (potentially infinite) streams of data.
Operators that work on streams do so by performing simple computa-
tions for each element. Instead of sharing state, operators exchange
information explicitly with data streams. Therefore, they can work in
parallel when enough data is streamed through a network. In essence,
this computational model is very similar to how hardware works.
Compared to C-like input, a streaming DSL is naturally parallelizable
and pipelineable. Therefore, stream processing is a better match for
hardware than sequential languages. Apart from being simpler to
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introduction 7

map to hardware, the higher-level input language is expected to yield
optimization potential without investing in program analysis passes.
Furthermore, a DSL allows to naturally restrict the structure of input
programs by not exposing features that are not supported.

This work builds on top of CIRCT [9], which in turn is built on
top of MLIR [26] and LLVM [25]. CIRCT defines a set of hardware
abstractions in the form of MLIR dialects to provide a way to produce
and transform RTL. CIRCT’s RTL abstractions can be exported as
Verilog for further usage. Due to being part of the MLIR ecosystem,
CIRCT can interact with existing MLIR dialects, which makes it a
framework for investigating HLS. Our streaming abstraction reuses
parts of such an implemented HLS flow [30] that was inspired by
Dynamatic [21]. Dynamatic and CIRCT’s flow use a dynamically
scheduled HLS (DHLS) approach that is very flexible when confronted
with variable latency operations. When operations only show slow
behavior infrequently, dynamic scheduling gives lower latency and
higher throughput than its static counterparts. DHLS usually works
with sequential input programs and thus has some assumptions about
the computation it models. Reusing an abstraction for sequential
programs to model stream computations pushes it beyond its original
use case. The existing implementation effort of a DHLS flow in
CIRCT [30] already discussed how one might implement pipelining in
a DHLS setting but only implemented it for a limited set of cases. The
handshake dialect, the dataflow abstraction in CIRCT, nicely matches
the nature of a stream computation. Therefore, we implemented safety
transformations to support pipelining in the handshake dialect and
upstreamed these changes to CIRCT. By adding pipelining support to
a dataflow abstraction, we enable fast executions of streams, reduce
the initiation interval of sequential circuits, and provide the foundation
for future work in parallel and pipelined dataflow models.

The remainder of this thesis document is structured as follows: It
starts off by covering the necessary background in Chapter 2. Af-
terward, Chapter 3 describes the problem of the existing dataflow
abstraction and suggests a way to resolve these issues. Chapter 4

proposes a streaming abstraction and gives details of its implemen-
tation in the form of an MLIR dialect. Additionally, it discusses how
the dialect can be converted to CIRCT’s handshake dialect. All the
implemented work, i.e., the task pipelining transformation and the
streaming abstraction, is evaluated in Chapter 5 by demonstrating the
impact of the pipelining transformation and use cases of the streaming
abstraction. Finally, Chapter 6 concludes this thesis and discusses
possible future work.



2
B A C K G R O U N D

This chapter will cover the necessary background material for this
thesis. It starts off by introducing and defining the concepts of stream
processing. Then, the notion of control flow graphs and some con-
cepts involving them are explained. After that, we dive into high-level
synthesis by describing different approaches while focusing on dynam-
ically scheduling, as this is what we build upon. Finally, we explain
MLIR and CIRCT in more detail as the implementation part of this
thesis builds on top of these existing libraries.

2.1 stream processing

Stream processing, sometimes called dataflow processing, is a broad
term that describes different systems and programming models that
work with data in an element-by-element fashion. To ensure that
there is no misconception of the term "stream processing", this section
provides a brief description of what this thesis considers it to be.

2.1.1 Overview

Abstractly, a stream is a potentially infinite sequence of data elements.
A stream can be consumed by operators that transform data elements
and might produce new streams that contain modified data elements.
Thus, a stream computation can be expressed as a directed graph,
where each node is an operator, and each edge corresponds to a
stream. The only way two operators can communicate is by sending
data over a stream, i.e., they have no shared state. Once a data element
is submitted to a stream, it can no longer be modified by its sender.
Therefore, all operators can be executed in parallel without any issues
as long as they have inputs to process. Streams can terminate, which is
observable by their consumers. A consumer might react to that by, for
example, terminating its outputs or by emitting accumulated results.

Stream processing is often used for large-scale data processing and
was implemented in industry systems like Apache Spark [37] and
Apache Flink [4].

2.1.2 Example

An example stream computation is shown in Figure 1. The incoming
stream is split into two separate streams, both of which are dupli-
cations of the incoming elements. These outputs can be fed into

8



2.2 control flow graphs 9

Range Computation

Split

MaxMin

Diff

Input Stream

Output Stream

Figure 1: A stream computation that computes the range of an incoming
stream. Both Min and Max function as reductions that will emit their
result once their input streams are terminated.

reductions that compute the minimum and maximum, respectively.
Once the input stream terminates, the reduction will emit their re-
spective results on their output streams, and their difference will be
computed by the last operation.

2.2 control flow graphs

Control flow graphs [1] (CFGs) are an established way to represent
the control flow of a sequential program. A CFG can be denoted as a
directed graph where nodes are basic blocks (BBs), and edges form
the immediate successor relation. A BB is a sequence of operations
that has no branching in it and thus has one entry and one exit point.
A CFG has one entry block and can have an arbitrary number of exit
blocks. In general, it is possible to construct a CFG with a single exit
node from any given input CFG. As a CFG is a form of a directed
graph, all the established concepts like paths, cycles, degrees, etc., and
algorithms can be used to reason about them.

2.2.1 Dominance

The dominance relation is an important source of information for a
variety of compiler transformations.

Definition 1 (Dominator). For a given CFG with entry block e, a block n

dominates b, iff all paths from e to b include n.
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Definition 2 (Strict Dominator). For a given CFG, a block n strictly
dominates b, iff n dominates b and n ̸= b.

Definition 3 (Immediate Dominator). For a given CFG, a block n imme-
diately dominates b, iff n strictly dominates b, but no other strict dominator
of b.

Analogous to domination, there is the concept of post-domination,
which takes the paths from b to a unique exit node into account.

2.2.2 Loop Terminology

CFGs can contain cycles, usually caused by loops in the input program.
In this work we use the same terminology for loops as LLVM [10].
A loop in a CFG is a strongly connected component (SCC) where all
entering edges point to the same block, the loop header. Each block
that is a successor of the loop header but is not part of the loop is
called an entering block. The remaining successors of a loop header,
i.e., the ones of the loop, are called latch. Blocks with a successor that
is not part of a loop are called an exiting block, while these successors
are denoted as exit blocks.

Loop
header

entering entering

exiting

exit

latch exiting /
latch

exit

Figure 2: LLVM’s loop terminology has clear names for all relevant blocks of
a loop. A specific block can belong to multiple block groups, e.g.,
it can be both an existing block and a latch.

2.3 high-level synthesis

In general, HLS aims to ease the development of applications for hard-
ware by translating familiar languages, mainly C/C++, to hardware
description languages (HDLs). Writing complex applications in HDL
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requires a lot of knowledge about how the hardware behaves. While
this can be a necessity when one aims to design infrastructure, it is
an unnecessary complication when writing data processing applica-
tions. Similar to how it is sometimes required to implement certain
software parts in assembly, using higher-level languages is much more
productive and simpler. Programming languages provide expressive
features to model complex programs in just a few lines of code. On the
other hand, writing equivalent programs in assembly requires careful
thought about all the minor details, which are otherwise taken care of
by a compiler. HLS aims to do the same thing, except that it does not
replace assembly but HDL. By enabling developers to compile pro-
grams written in a high-level language down to HDL, HLS removes
substantial amounts of complexity. To simplify the problem for the
developers, it is, at least partially, moved into the HLS compilers. To
produce performant circuits, HLS must exploit parallelism as much as
possible. Thus, it has to first find program parts worth parallelizing.
Some HLS systems rely on powerful compiler analysis to discover
such parts, while others still rely on the developers to annotate them
with pragmas [35]. Many industry tools [18, 36], in fact, support
automatic optimizations but rely on pragmas to reduce the search
space.

While HLS tries to hide the parallel nature of hardware, the usage
of pragmas destroys this illusion. Forcing the usage of pragmas,
especially in sequential languages, to reach high performance defeats
the whole purpose of HLS.

2.3.1 Classical HLS

The classical (or statically scheduled) HLS approach [12], as used
in many existing tools [3, 18, 36], transforms an input program into
an intermediate representation (IR) that encodes both control and
dataflow. The IR can be optimized by using analysis information or
information provided by pragmas. Afterward, dataflow parts are as-
signed to different clock cycles in the scheduling process. Scheduling
takes the dependencies and latencies of dataflow components into
account when mapping them to cycles. All of this is done statically,
i.e., during compile time. Therefore, a scheduler needs to be conserva-
tive when working with operations that have variable latencies, e.g.,
memory accesses. Such operations are treated as if they always cause
the worst-case latency.

A controller, in the form of a finite-state machine (FSM), is used
to manage the control flow, e.g., to support unbounded loops. The
FSM uses status signals from the data path and external control inputs
to orchestrate the datapath. In a certain sense, HLS tries to build
a CPU with custom operations. This approach can work but has
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limited applicability due to the frequency differences between CPUs
and FPGAs.

2.3.2 Library & domain-specific HLS

Another approach to HLS is to encode domain-specific knowledge
in the input language to simplify the work for a compiler. Some
approaches expose features in the form of libraries to a language.
The compiler can then use this to build up an abstraction it can
analyze much easier. Instead of providing libraries to use, some
HLS approaches [15] rely on domain-specific language (DSL) as input.
Analyzing a DSL can be much simpler than analyzing C-like programs.
Furthermore, it allows encoding high-level constructs directly in the
language, which simplifies development even further.

The internal functionalities of such HLS tools can be similar to the
ones of classical HLS or DHLS, depending on the domain they want
to work with.

2.3.3 Dynamically scheduled HLS

As an alternative to statically scheduled HLS, an approach called
dynamically scheduled HLS [21] (DHLS) started emerging in recent
years. As the name suggests, this type of HLS does not statically
schedule operations to be executed in specific clock cycles. Instead,
it constructs a circuit that executes operations once its predecessors
are ready, independent of their respective latencies. Therefore, com-
ponents with variable latencies do not cause unnecessary stalls when
they are not required.

To further speed up the execution, out-of-order load-store queues
(LSQ) [20] can be used to dynamically resolve memory conflicts.
An LSQ connects to all memory operations of a DHLS circuit. It
consumes and fires control signals to dynamically check memory
operations for conflicts to potentially stall operations if required. As a
DHSL circuit can handle arbitrary delays, LSQs substantially speed
up their execution.

2.3.3.1 Existing Approaches

Like some classical HLS implementations, the existing DHLS imple-
mentations [21, 30] leverage existing software compiler frontends to
parse C/C++ and produce an intermediate representation (IR) from it.
In the case of LLVM-IR, this representation is a static single assignment
(SSA) [31] CFG. Apart from reducing the implementation effort, using
an infrastructure like LLVM enables the reuse of existing compiler
transformations and optimizations to bring the IR into a usable form.
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Producer Consumer
data

valid

ready

Figure 3: If both the valid and ready signals are asserted in the same cycle,
data is transacted.

The existing DHLS approaches produce dataflow circuits from an
IR in a structured way due to relying on the flexibility provided by
compositional dataflow circuits [13]. Compositional dataflow circuits
are based on elastic circuits [11]. Thus, they wrap all their in and
outputs into a handshaked interface. This mechanism adds two 1-bit
wires for each data wire, the valid wire from sender to consumer, and
the ready in the other direction. Only when both signals are asserted
a data transfer happens.

Existing DHLS implementations define a set of dataflow operators
which have well-defined semantics. Having an explicit abstraction
enables transforming a CFG into a dataflow abstraction. On this
abstraction, some further steps can be performed [5, 6, 22] before it is
finally converted to HDL.

The used abstraction has the following operations and components:

• Buffers are a storage unit which can hold up to N elements and
are the elastic equivalent of registers.

• FIFOs are similar to buffers, but they have an additional bypass
to forward elements directly, if the consumer is ready.

• Forks forward their input to all the consumers as soon as they
are ready. Before all consumers consume the current input, a
fork will not accept another input.

• LazyForks are similar to Forks, except that they only forward
inputs when all their consumers are ready.

• Joins await all their inputs before emitting an output. Joins are
control only, i.e., they do not have a data wire, only valid and
ready.

• Branches have two outputs and will forward a token to the
output which match the boolean input condition. They are thus
similar to control flow branches.

• Merges are the counterpart to branches. They non-deterministically
forward any input to their output.

• Control Merges function like the merge operation except that
they output the index of the transacted input as well.
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• Muxes forward one of their input, depending on the input
index provided. The inputs that were not selected will not be
consumed and are still available in a following step.

• Selects are similar to muxes, except that they require all inputs
to be present and that they consume all of them.

• Sinks can always consume their input and will simply drop it,
i.e., they always assert ready.

Once the dataflow graph is brought into a satisfactory form, it has
to be converted to an equivalent HDL representation. This transfor-
mation is achieved by instantiating and connecting HDL templates for
all the operators.

2.3.3.2 Buffer Insertion

The dataflow representation produced by DHLS approaches is not
always directly executable due to cyclic structures causing deadlocks.
Most dataflow primitives cannot store values and thus can only accept
inputs when the produced output can be forwarded to their successors.
For a cycle of operations that all have this behavior, none of them
will signal ready, which causes a deadlock. Buffers must be inserted
into loops to ensure that such cyclic dependencies are broken up. An
empty buffer can accept inputs, as it does not have to forward the
data directly.

 Basic 
 Block Merge

Branch

r = 0 r = 0

r = 0

r = 0 r = 0

(a) A cyclic dataflow graph causes
deadlocks.

 Basic 
 Block Merge

Branch

Buffer
r = 1

r = 1 r = 1

r = 1

r = 1

r = 1

(b) Inserting a buffer ensures that
the cycle can hold a value.

Figure 4: Buffers are required to prevent deadlocks in dataflow cycles.

Apart from inserting buffers to eliminate deadlocks, adding buffers
is necessary for reaching high performance. Having multiple datap-
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aths through a circuit will require faster datapaths to stall. Inserting
FIFOs on the fast paths will ensure that this stalling is hidden and
no back-pressure can cause a throughput reduction. Furthermore, se-
quential buffers function similarly to RTL registers and will therefore
split combinatorial paths over different cycles. In general, adding too
many sequential buffers in a dataflow graph will increase its latency
but will only affect throughput when there is a cycle. Adding too
many FIFOs, on the other hand, only increases area usage while not
affecting latency. Optimal buffering has been proposed for sequential
circuits [22], so this work will not dive deeper into this topic.

2.4 mlir

As LLVM grows in popularity, there are more and more custom
frontends compiling their input to LLVM-IR and thus relying on
LLVM to do the rest. All these custom compilers and their languages
can profit from the reusability of LLVM by compiling the input to
LLVM-IR.

One problem of LLVM-IR is that it is too low-level to capture some
aspects of high-level languages nicely. This resulted in the develop-
ment of language-specific IRs for many languages that use LLVM,
e.g., Swift Intermediate Language (SIL) for Swift, MIR for Rust, etc.
These IRs enable powerful language-specific optimizations as they
can preserve most of the original semantics. As soon as these IRs are
lowered to LLVM-IR, their high-level semantics are lost. For example,
loops get replaced by conditional branches. This loss of structure
makes some analysis tasks more complicated and, therefore, more
expensive and harder to implement.

MLIR (Multi-Level Intermediate Representation) [26] aims to change
this by introducing an extensible IR that allows for easier integration
of new IR features to capture more semantics. To do so, it specifies a
generic IR that can be extended. This structure not only offers generic
parsers and printers but also allows defining reusable lowering and
optimization passes.

2.4.1 IR Design

MLIR, like LLVM-IR, implements an SSA type of IR. SSA has the
benefit of assigning each variable only once, which makes most data
flow analyzes simpler. Furthermore, it is efficiently computable from
classical control flow graphs.

Even though MLIR is heavily extensible, it has a basic structure that
must be obeyed. To start off, we show an example MLIR function
with some instructions. We then use this example to elaborate on the
different MLIR constructs.
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"func.func"() ({

^bb0(%arg0: memref<1024xf32>, %arg1: index):

%0 = "memref.load"(%arg0, %arg1)

: (memref<1024xf32>, index) -> f32

%1 = "arith.constant"() {value = 0 : f32} : () -> f32

%2 = "arith.cmpf"(%0, %1) {predicate = 9 : i64}

: (f32, f32) -> i1

%3 = "scf.if"(%2) ({

%4 = "arith.addf"(%0, %0) : (f32, f32) -> f32

"scf.yield"(%4) : (f32) -> ()

}, {

"scf.yield"(%0) : (f32) -> ()

}) : (i1) -> f32

"func.return"(%3) : (f32) -> ()

}) {function_type = (memref<1024xf32>, index) -> f32,

sym_name = "demo"} : () -> ()

Listing 1: In the generic representation, each operation is printed in a verbose
but uniform representation. The semantics of this example is
irrelevant.

Most important are operations. They can not only represent instruc-
tions but functions and modules as well. Each operation has a unique
name or upcode, a list of arguments, a list of results, a type, regions,
and an attribute dictionary.

• Arguments are SSA values that are required by an operation.
This list can also be empty, depending on the operand kind.

• Results are SSA values that are produced by an operation. Some
operations do not produce results and therefore do not have to
specify them.

• Every operation has a type that is constructed from the argument
and result types.

• Blocks are similar to LLVM-IR basic blocks but have one major
difference: They can contain operations that can hold regions.
Each block is a list of typically sequentially executed instructions
and always terminates with a terminator operation. In MLIR,
blocks have block arguments instead of the ϕ-nodes [31]. If
a block is executed, it has to be "called" with matching block
arguments similar to a function call.

• A region forms an SSA CFG that belongs to an operation. This
allows subdividing the general CFG into subgraphs that are
operation-specific.
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func.func @demo(%arg0: memref<1024xf32>, %arg1: index) -> f32 {

%0 = memref.load %arg0[%arg1] : memref<1024xf32>

%cst = arith.constant 0 : f32

%1 = arith.cmpf ugt, %0, %cst : f32

%2 = scf.if %1 -> (f32) {

%3 = arith.addf %0, %0 : f32

scf.yield %3 : f32

} else {

scf.yield %0 : f32

}

return %2 : f32

}

Listing 2: When pretty printing operation, attributes and types are omitted
wherever possible to make the IR much less verbose. This program
is the same as in Listing 1

• Attributes allow parametrizing operations with static informa-
tion, e.g., loop bounds or callee names. Attribute values are
known at compile time and are provided in an attribute dictio-
nary that binds a value to the corresponding name. Similar to
operation names, attribute names should be unique.

The example in Listing 1 is very verbose and somewhat hard to
read. To make working with the IR easier, MLIR supports custom
formatting that eliminates a lot of redundancy and tries to group
relevant information (see Listing 2).

2.4.1.1 Operation Definition

Each operation kind has a declaration that defines a set of constraints
and traits, which can be used to encode requirements for legal op-
erations. For example, the operation addf has operand constraints
that enforce the passed inputs to have a FloatLike type. Addition-
ally, it has the traits Commutative, SameOperandAndResultTypes, and
NoSideEffects. The first one informs general optimization passes to
reorder the inputs, the second one yields an additional verification
constraint, and the last trait allows the generic dead-code elimination
to remove an addf operation if its result isn’t used.

2.4.2 Dialects

The concept of dialects provides a way of organizing operations into
abstractions that are isolated from others. Dialects can be treated
specifically by optimizing, lowering, and analyzing passes. All opera-
tion, attribute, and type names are prefixed with the dialect name that
serves as a namespace to avoid name clashes.
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One of the existing dialects is the vector dialect. Its purpose is
to represent vector types and operations, e.g., transposition, matrix
multiplication, outer products, and many more. Representing these
in a lower dialect or plain LLVM-IR is possible, but analyzing it is
more difficult or even impossible. For example, a sequence of vector
transpositions (as in Listing 3) can be eliminated or replaced by a
single transposition. Detecting such cases is straightforward when
inspecting such a sequence represented in the vector dialect. A simple
pattern match that looks for a transpose whose input is produced by
another transpose can detect and optimize such a case. On the other
hand, detecting these redundant transpositions on the LLVM-IR level
can be complicated and requires powerful and possibly slow analyzes.

%1 = vector.transpose %0, [1, 0]

: vector<1x3xf32> to vector<3x1xf32>

%2 = vector.transpose %1, [1, 0]

: vector<3x1xf32> to vector<1x3xf32>

Listing 3: Vector transposition

MLIR dialects can be mixed (as in Listing 2) to ensure interoper-
ability and reusability. Mixing leads to more strictly grouped dialects,
which can be observed in many lower-level dialects. For example,
memref, arith, and func only contain operations that are specific to
their respective domains.

2.4.3 Progressive Lowering

MLIR allows us to perform optimizations and lowering in a pipeline
fashion. Lowering is the process of transforming a higher-level dialect
into a lower one. Progressive lowering in this context means that the
IR is converted step-by-step to lower-level dialects on which specific
optimizations can be applied. MLIR passes can specify which opera-
tions are considered legal and illegal after they terminate to make the
conversion as flexible as possible.

2.5 circt

The motivation behind CIRCT is to unify the open-source community
around EDA tools by providing a collection of hardware abstractions,
tooling, and RTL generators (see Figure 5 for a dialect overview.).
The community applies ideas from the MLIR [26] project to a hard-
ware compiler infrastructure. While compilers like LLVM have a
well-defined intermediate representation that can be used to interface
between tools, the EDA domain relies on Verilog to do the same. Un-
fortunately, Verilog and SystemVerilog are very complicated languages
with rich feature sets. Many tools only implement a subset of these
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CIRCT Dialects

Core Dialects

Calyx HandshakePipeline

FSM FIRRTL HWArith MSFT Moore MIR

HW Seq Comb

SV LLHD SystemC

ESI

Upstream MLIR

SCF Affine

Arith CF

Func Memref

"Standard" Dialects

Figure 5: An overview of all dialects in CIRCT and MLIR dialects that interact
through transformations in CIRCT. Each box is a separate dialect,
and each arrow corresponds to a conversion pass.

features and thus are frequently incompatible. To address this, CIRCT
has a configurable Verilog emission component that allows defining
the used language feature set.

Apart from providing dialects for RTL-level abstractions, the project
started to attract higher-level dialects for FIRRTL [19] and Calyx [29].
The FIRRTL dialect is part of a drop-in replacement for the Chisel
compiler [2]. Chisel is an HDL implemented as a Scala-embedded
DSL that can use generators and other higher-level features to simplify
developing hardware. The Chisel compiler produces Verilog.

2.5.1 Usage for HLS

Due to CIRCT being built into the MLIR ecosystem, both hardware
and software dialects can interact without having to cross framework
boundaries. Therefore, CIRCT can serve as a driver for HLS research.
It already contains dialects for dataflow (the handshake dialect), FSMs,
and for static pipelines. Some transformations allow translating lower-
level MLIR dialects into the handshake dialect, which essentially is a
DHLS flow.
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2.6 coyote

Even though FPGAs are no new technology, their adoption is still
non-trivial. All models have a different set of supported functionalities
and forms of interconnection. Thus, applications are often written for
one specific version of an FPGA without the goal of eventually porting
it to a new chip. Coyote [23] tries to change that by implementing
a shell in which user logic can be executed. This shell provides an
OS-like abstraction of the surrounding system that user programs do
not have to be aware of the exact system they are running on.

To interface with the use logic, coyote uses AXI4 stream [28]. The
AXI4 specification is provided by ARM and can be used royalty-free.
AXI4 is heavily used in industry, e.g., by Xilinx. Thus, many existing
systems have such interfaces.



3
PA R A L A L L I Z E D D H L S

This section starts by covering some basics regarding parallelism in
hardware. Then it discusses the problems of existing DHLS abstrac-
tions when they are used to model pipelined executions. Afterward,
we present a more rigorous analysis of the task pipelining issues and
present mechanisms to resolve them. This presentation includes an
algorithmic description and corresponding correctness argument. Fi-
nally, we cover some of the remaining limitations that our approach
cannot address.

3.1 exploiting parallelism in hls

The ability to perform computations in parallel is the main benefit of
spacial accelerators like FPGAs compared to classical CPUs. Therefore,
the main objective of HLS tools is to find and exploit parallelism in
the input programs. The two main sources of parallelism in sequential
programs are instruction-level parallelism (ILP) and independent loop
iterations. CPU architectures have multiple approaches to resolving
these issues. Very large instruction words [14] (VLIW) CPUs rely
on a compiler to detect the ILP and perform scheduling by packing
independent operations into large instruction words. VLIW is the
CPUs equivalent of static scheduling, as it simplifies the hardware
but increases the compiler’s complexity. Superscalar, out-of-order
CPU architectures take a more dynamic approach. These architectures
can execute multiple instructions in parallel. To do so, they resolve
conflicts dynamically and issue instructions when all their dependen-
cies are ready. DHLS is conceptually similar, as it resolves conflicts
dynamically, i.e., at run time. Other CPU features that exploit paral-
lelism are vector instruction sets. These operations execute a single
instruction on each vector element in parallel, thus the terminology
"single instruction multiple data" (SIMD). The HLS equivalent is to
replicate hardware units and feed them with the independent inputs
(horizontal scaling [27]).

By the sequential nature of the usual HLS input programs, there
is only a limited amount of parallelizable structure to extract. Thus,
instead of parallelizing single executions, one can aim to parallelize
different executions. Circuit must be pipelined to do so.

As this project focuses on HLS for streaming, pipelining is a natural
way to increase hardware parallelism. Assuming that a streaming
circuit can be optimized and pipelined to have an initiation interval
(II) of 1, no horizontal scaling is required to reach peak throughput.

21
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3.2 limitations of dhls

Traditional DHLS translates from C-style control flow graphs (CFGs)
to dataflow abstractions assuming a single-threaded execution. There-
fore, the existing approaches cannot give any guarantees about how
produced circuits behave if they are used in a pipelined manner. Due
to their assumptions, existing tools enforce a high II, which behaves
like a lock around the circuit. Removing the II constraint breaks the
produced circuits. For example, a program with diverging control
flow (Figure 6a) will accept new inputs even though they can cause
incorrect behavior.

Definition 4 (Correct task pipelined execution). We consider a circuit
to support correct task pipelined execution if the following properties hold
statically:

1. It preserves the order of results, such that it is equal to the order of
their corresponding inputs.

2. No non-deterministic behavior can be triggered.

The provided example has two paths with different latencies and
thus exhibits unexpected behavior. Either results can get reordered
(invocation 1 and 2 in Figure 6b) or threads collide when entering a
block (invocations 1 and 3), which causes non-deterministic ordering.
A correct schedule should ensure that the ordering of the outputs
matches the corresponding inputs (Figure 6c).

A similar problem arises for loops. Consider a CFG with a simple
loop (Figure 7). No mechanism ensures that an incoming thread does
not collide with threads that take the back edge. Therefore, such CFGs,
without any additional mechanism, produce incorrect results when
executed in a task pipelined manner.

One cause of these problems is the usage of non-deterministic merge-
like nodes (Figure 7.i). This operation combines multiple inputs into
one output, similar to ϕ-nodes [31]. The non-deterministic behavior
only occurs if multiple inputs to a merge-like operation fire at the same
time, which can be guaranteed to never happen in a single-threaded
setting. In a CFG, a basic block (BB) has no control flow and executes
its operations sequentially. As only one BB is active at each point
in time, different predecessor blocks cannot fire in the same cycle.
The only case where problems occur is when a set of blocks form a
combinatorial cycle. As discussed in Section 2.3.3.2, this is already
prevented. This mechanism breaks down in a task pipelined context,
as multiple merge inputs can become valid.

Instead of using merge-like nodes that combine multiple inputs
without controlling the order of the inputs, one can use muxes. A mux
node in a dataflow abstraction will only consume the value provided
on the selected input while stalling the others. This functionality,
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(b) Schedule of the diamond CFG without an additional task pipelining protection.
The order of BB4 executions for invocations 1 and 3 is non-deterministic.
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(c) Schedule of the diamond CFG with an additional task pipelining protection.

Figure 6: Schedules of a diamond CFG with different latencies. Using the
circuits intended for sequential execution causes reordering and
collisions of block invocations, which results in a non-deterministic
order of results. The protection mechanism ensures correct order-
ings by stalling the execution of BB4 for the faster path.

combined with a way to determine the port to forward, can be enough
to enable correct task pipelining. The challenge is to find the places
to insert these muxes. This work suggests a way to recursively de-
compose SSA CFGs into different graph types that require a specific
protection mechanism.

Before we discuss the details of this, it is important to state that this
limitation was discovered M. B. Petersen [30]. Our work analyzes the
problem more rigorously and extends the existing implementation
with handling for feed-forward cases.
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Figure 7: A loop can cause issues due to the merge node accepting from any
input that is available.

3.3 subgraph types

This subsection describes the different kinds of subgraphs that can
cause incorrect behavior. Additionally, the transformations required
to guarantee correct execution are presented.

3.3.1 Canonical Form

Some assumptions on the structure of the CFGs are required to sim-
plify the following reasoning:

1. In all cases, a subgraph has exactly one source node and one
sink node. Furthermore, it must be true that source dominates
sink and that sink in turns post-dominates source.

2. Each block that is not part of a strongly connected component
(SCC) has at most two successors and two predecessors.

3. A loop has one exiting and exit node.

4. There are no structural infinite loops.

3.3.2 Loops (Feed-back CFGs)

A loop in a CFG corresponds to an SCC with one node having an
incoming edge, as described in Section 2.2.2. We do not support
pipelining of different threads within a loop, as this comes with chal-
lenges. The most complicated one is that threads can have different
latencies, which require a reorder buffer implementation, which is
currently not present. A simple mechanism that locks a subgraph can
guarantee correctness. Similar to a lock in multi-threaded program-
ming, this mechanism blocks all threads from entering the critical
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section as long as it contains one. Once a thread exits the subgraph,
the next may enter. While this mechanism locks subgraphs, different
threads can still be active in the same circuit, just not in the same loop.
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Figure 8: Loop protection mechanism and its different possible states during
execution.

Such a mechanism replaces the existing merge node (Figure 7.i)
with a mux (Figure 8a.i) that allows to select the input from the correct
predecessor BB. The input’s index to select is provided by a newly
added buffer of size 1 (Figure 8a.ii). The mux consumes the buffer
value once the corresponding input is valid (Figure 8b for external
inputs, Figure 8d for internal loop back edges). While the buffer is
empty, the mux will not be able to select any additional inputs (Fig-
ure 8c). Upon reset, the buffer is initialized with a token such that the
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first thread entering the subgraph will be selected (Figure 8b.i). When
the control flow reaches a branch that determines if the loop exits or
if the next iteration will start, it will refill the buffer with a new token
that indicates the correct predecessor (Figure 8a.iii).

In the case of nested loops, one lock that protects the outermost
loop is sufficient to protect the complete nest. Since only one thread
enters the outermost loop, there can be at most one thread in any of
its inner loops.
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(a) Diverging control flow
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(b) Reorder prevention

Figure 9: A CFG with diverging control flow cannot guarantee correct ex-
ecution under task pipelining. Inserting a reordering prevention
mechanism ensures that results are in order and do not collide.

3.3.3 Feed-forward CFGs

Feed-forward subgraphs have either a diamond (Figure 9) or a trian-
gular shape. Formally, a feed-forward subgraph is formed by a pair
(source, sink) with out_deg(source) = 2 and in_deg(sink) = 2. The
triangular case has a direct edge from source to sink while the other
part forms a subgraph. The diamond case has some more restrictions:
Let s0 and s1 be the two successors of source and p0 and p1 be the
two predecessors of sink. It is required for each si that there is only a
path to one of the pjs. If both ps are reachable, this is not considered
a feed-forward CFG.

If one recursively ensures correct execution in all subgraphs, a
mechanism that prevents reorderings and collisions at the point of
convergence can guarantee correctness. Storing the directions the
threads select at the entry block’s branch allows us to collect the
results from the correct subgraph (Figure 9b). As a buffer preserves a
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FIFO order and a mux will only consume selection arguments once
the corresponding input fires, this guarantees correctness.

Note that the buffer size determines the number of threads the CFG
can contain. Thus, the buffer size should be in the order of the latency
of the slow path.

3.3.4 Irreducible CFGs

The last types of CFG this transformation considers are irreducible
subgraphs. The only difference to the feed-forward case is that when
removing both source and sink, only one graph remains, i.e., one
successor of source can reach both predecessors of sink (see Figure 10

for an example).

BB1

BB2 BB3

BB4

Figure 10: An irreduccible CFG that cannot be executed in a task pipelined
manner.

These graphs have multiple points where control flow paths can
merge again. Thus, such cases cannot support multiple threads with-
out structural changes to the CFG. These subgraphs are locked by
inserting a sync operation that is fed by a token which will only be
available when the previous execution reaches the sink block (Fig-
ure 11b). sync forwards all its inputs as is but only does so once all
of them are valid, i.e., it is similar to a barrier. The sync operation
was previously not part of any DHLS dataflow abstraction. Thus, we
introduced it to the handshake dialect.

Such CFGs generally only arise when using unstructured control
flow constructs in the source abstraction (e.g., goto statements). Struc-
tured control flow (if, loops) always result in reducible CFGs. Due
to these structures arising seldomly and time constraints, we did not
implement this case but present it here for completeness.
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Figure 11: An irreducible CFG needs a kind of locking mechanism that
ensures that at most one thread is in it.

3.4 graph decomposition

To discuss this problem formally, it is necessary to state how the previ-
ously discussed subgraphs can be found. The only relevant subgraph
types are the ones described beforehand. These subgraphs can be
found by recursively traversing the CFG of a function as described
in Algorithm 1. The algorithm produces three sets of subgraphs that
then must be protected as described in Section 3.3.

3.5 correctness argument/proof

The following proof shows that the described transformation ensures
that the dataflow graphs support task pipelining. Section 3.3 already
discussed how the guard mechanisms applied to the different sub-
graph types guarantee these properties, but how these properties
expand to the full CFG remains to be shown.

Let CF(g) for a CFG g be a predicate that indicates if a graph
satisfies the canonical form described in Section 3.3.1. Furthermore,
we define P(g) ≡ CF(g) =⇒ safe(T(g)), where T is the described
transformation, and safe is a predicate that indicates if the graph
is safe for task pipelined executions. We prove ∀g.P(g) by strong
structural induction. Thus, we have to show P(g) for an arbitrary CFG
g and assume ∀g ′ ⊏ g.P(g ′) as our induction hypothesis. Assume that
CF(g), as other cases are trivial. From CF(g) follows that g = (b, t),
where b and t are entry and exit blocks of the CFG respectively. We
proceed with case analysis on g:
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Algorithm 1 Algorithm to detect different CFG parts

function findSubgraphs(b)
if visited(b) then

return
end if
Mark p as visited
if numSucc(b) = 0 then

return
end if
if isLoopHeader(b) then

l← loopAt(b)

e← l.exitNode

Add (b, e) to the set of loops
findSubgraphs(e)
return

end if
d← immediatePostDom(b)

if d ∈ succs(b) then
if |succs(b)| > 1 then

Add (b,d) to the set of feed-forward CFGs
s← the other successor of b
findSubgraphs(s)

end if
findSubgraphs(d)
return

end if
if ∀p ∈ preds(d) : ∃s ∈ succs(b) : dom(s,p) then

Add (b,d) to the set of feed-forward CFGs
∀s ∈ succs(b) : findSubgraphs(s)
return

end if
Add (b,d) to the set of irreducible CFGs
findSubgraphs(d)
return

end function
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case b == t : In this case, the region detection algorithm termi-
nates directly, and no changes happen. As g only contains one BB, g
trivially satisfies the correctness property.

case isLoopHeader(b) : Let e be the exit node of the loop start-
ing at b. (b, e) is a loop and thus will be guarded by essentially
locking it. As e is the only exit node, it follows that e is dominated
by b and post-dominates b. It follows that CF((e, t)) must hold. As
(e, t) ⊏ (b, t) the induction hypothesis applies, and we conclude that
the transformation will ensure a correct execution for graph g.

case |succs(b) | = 1 : Let s be the sole successor of b. From CF(g)

it follows that b must dominate s, and as b is the only successor, s
post-dominates b. It follows that CF((s, t)) must hold as well. Due
to (s, t) ⊏ g, we get that the recursive call ensures the correctness of
this subgraph. As the BB b only branches into s, no reordering can
happen at this point, so this case is safe.

case |succs(b) | = 2 : Let d = immediatePostDom(b). From
CF((b, t)) it follows that d dominates t and t post-dominates d. Thus
CF((d, t)) must hold, which implies the induction hypothesis. So we
get that the subgraph formed by (d, t) will be transformed correctly.
It remains to be shown that the property holds for (b,d). We show
this with an additional case split:

subcase d ∈ succs(b) : This case implies that (b,d) forms a trian-
gular CFG. Let sub be the only subgraph of (b,d). CF(sub) trivially
holds, so the induction hypothesis guarantees that the recursive trans-
formation ensures correctness. (b,d) will be protected as described
before, as its subgraph is correct, (b,d) is as well.

subcase ∀p ∈ preds(d) : ∃s ∈ succs(b) : dom(s , p) : s Wlog.
we assume that sub1 = (p0, s0) and sub2 = (p1, s1) form such pairs,
thus we get CF((p0, s0)) and CF((p1, s1)). As both sub1, sub2 ⊏ g,
the induction hypothesis yields that the required property holds for
both subgraphs. Therefore, the reordering mechanism that is applied
here will guarantee correct execution.

subcase otherwise : This implies that (b,d) forms an irreducible
subgraph that will be locked. Thus, this case trivially satisfies the
correctness property.

3.6 a note on memory

In the presence of memory, the described mechanisms are not guar-
anteed to produce correct results. If multiple threads use the same
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memory, it is, in general, impossible to statically show that the threads
cannot have memory conflicts. Every usable programming model
should guarantee that threads behave as if executed in isolation. With-
out this property, pipelining can change semantics, which makes
programming in such a model unpredictable.

One memory block can be used by an arbitrary number of memory
operations, and all these operations can potentially have conflicts.
Until the last memory operation of a thread is executed, it is unclear
what exact addresses it will access. Therefore, a subsequent thread
has to stall until all memory operations are performed. This stalling is
similar to locking. Thus, no general pipelining can be implemented.

In some sense, different threads running in isolation, but still using
the same memory, are similar to how database transactions work [17].
In contrast to threads in pipelined hardware, database transactions
can be aborted and restarted, as orders must not be preserved.
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S T R E A M P R O C E S S I N G

This chapter gives an overview of the streaming part of this work.
Most of the work described in this section was only possible due to
adding support for task pipelining to the DHLS flow (described in
Chapter 3).

The chapter starts off by giving an architectural overview of this
work. After that, it discusses the design of the streaming abstraction
and its semantics. Then, the lowering to CIRCT’s handshake dialect
is covered. The last section discusses how the circuits produced from
the streaming abstraction can interact with external components.

4.1 architectural overview

This section gives a high-level overview of the compilation flow im-
plemented in this project. The flow consumes inputs in the form of
a streaming abstraction that is a mixture of MLIR dialects and the
newly designed stream dialect (Figure 12). The stream dialect pro-
vides types that represent streams and operations to work with them.
The operations express high-level primitives, e.g., map and reduce, and
can be parametrized with regions to express a specific computation. A
region in this context can be compared to a lambda function in other
high-level programming languages. Depending on the operation it is
attached to, it takes a set of inputs and is expected to produce results
with certain types. The computation in the region is expressed using
operations from the MLIR standard dialects (see Listing 4).

func.func @top(%in: !stream.stream<i64>)

-> !stream.stream<i64> {

%out = stream.map(%in) : (!stream.stream<i64>)

-> !stream.stream<i64> {

^0(%val : i64):

%0 = arith.constant 10 : i64

%r = arith.addi %0, %val : i64

stream.yield %r : i64

}

return %out : !stream.stream<i64>

}

Listing 4: An example of a stream map operation expressed with a mixture
of dialects. The computation consumes each input stream element
and emits a new stream here all values were increased by the
constant 10.

32



4.1 architectural overview 33

Streaming Abstraction

 CIRCT Dialects

Core Dialects

Handshake

FIRRTL

HW Seq Comb

SV

Arith CF

Func Memref

MLIR "Standard" Dialects

Stream

Figure 12: A specialized streaming IR offers both (a) programmer productiv-
ity and (b) reliable and efficient hardware generation.

Due to having explicit representations of stream operations, the
compiler can apply domain-specific optimizations to simplify certain
computations. Furthermore, generic optimizations, e.g., dead code
elimination, common sub-expression elimination, constant folding,
etc., can be reused for the stream and mixed-in MLIR dialects. Finally,
canonicalization passes bring dialects into a canonical form to simplify
subsequent optimizations and transformations.

Once the streaming abstraction is in the desired shape, e.g., all
optimizations were applied, it can be lowered to CIRCT’s handshake

dialect. This transformation reuses substantial parts of CIRCT’s exist-
ing lowering from the MLIR standard dialects to handshake [30]. The
details of this non-trivial transformation are explained in Section 4.3.
The remaining steps required to transform a representation from the
handshake dialect down to Verilog was already part of the CIRCT
project. The provided example (Listing 4) results in more than 1000

lines of Verilog. The exact size depends on the buffer strategy used
(Section 2.3.3.2). Apart from the obvious difference in code size, it
must also be mentioned that complicated tasks like scheduling are
done by the compiler instead of the user.
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4.2 language specification

This section introduces a general streaming abstraction that can be
used to express a multitude of streaming applications. Such abstrac-
tions are general purpose in the sense that they can be used to not
only target FPGAs but CPUs as well. Supporting different target
architectures allows applications to be prototyped for one but still be
used for the other without relying on complicated simulation tools.
Furthermore, it lays the foundation for an abstraction that could be
compiled into heterogeneous systems.

The streaming abstraction introduces streams as first-class con-
structs and defines a set of operations that consume and produce
streams. The goal of this abstraction is to encode higher-level seman-
tics without being target device-specific. An operation applied to a
stream defines its semantics on a streaming level but hides the details
of its execution. As part of this thesis, only the lowering to RTL was
implemented, but other backends could be added. The scope of the
abstraction includes all basic streaming operations that do not use
substantial amounts of memory (see Section 3.6 for a discourse on
why memory support was limited).

4.2.1 Design Decisions

Before describing the details of the operators, a brief explanation of
some basic principles is required. Some of these decisions have a
substantial influence on the operators.

First, each stream has only one producing operation and only a
single consumer. There are different ways one might implement
multiple consumers, e.g., all have to consume an element, round-robin
consumption, first come, first served, etc. To avoid any confusion
when trying to understand a program or when lowering it, splitting
up a stream must be done explicitly.

Additionally, operators are not allowed to allocate memory. The
rationale behind this decision is the complication memory causes in a
pipelined context (see Section 3.6).

4.2.2 Types

Each stream has a corresponding element type that each sent element
satisfies. To embed this into MLIR, a value corresponding to a stream
has a parametric stream type, where the parameter describes the
element type. A stream element can either be an arbitrary but fixed-
sized integer or tuples of types. The streaming abstraction, and MLIR,
in general, are statically typed. Therefore, each operator has perfect
knowledge of the structure of a stream element.
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1 element_type ::= "i" num

::= "tuple<"element_type ("," element_type)*">"

stream_type ::= "stream.stream<" element_type ">"

Listing 5: Grammar that defines the stream types.

4.2.3 Lambdas

Different operations require a lambda parameter to define what the
operator has to do in specific steps of execution. A lambda can take
multiple inputs and produce multiple outputs. The number and
types of both are constrained by the operation that expects a lambda.
As the abstraction was implemented on top of MLIR, the supported
instructions are all the instructions from the lower-level MLIR dialects
(at the time of writing arith and cf).

A lambda creates its own scope and has no access to values or
memory defined elsewhere. This is a much-needed restriction as it
allows the compiler to skip alias analysis and enables task pipelining.

4.2.4 Operations

In this section, all the supported operators and their semantics are
listed. The set of implemented operators covers most use-case that
aims to run at max throughput. Each operator expects streams as
inputs and produces only streams as outputs. All operators guarantee
that inputs and outputs remain in order.

map The map operator applies a provided lambda on each incom-
ing value to produce a new return value. The return type can differ
from the input type but must match the output stream’s element type.

filter The filter operator applies the provided lambda on each
incoming tuple to decide if the tuple should be forwarded to the
output or dropped.

reduce The reduce operator applies the lambda on each element
in order while providing the result of the previous call to the lambda.
The first execution of the lambda is provided with a initial value
instead of a previous result. The lambda requires a type of form
(U, T) → (U), where T is the element type of the incoming stream
while U is the one of the resulting streams.

The reduce operator only emits a single result once the input stream
terminates. Therefore, it is only relevant for finite streams.
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split The split operator can split incoming streams into multiple
output streams. It expects a lambda that produces multiple results,
each of which will belong to one of the new output streams. For each
input element, each output will receive exactly one element.

combine The combine operator is the counterpart to the split
operator. It supports a variadic number of input streams and executes
a lambda with one element from each input to produce a single output
element.

If one of the incoming streams terminates, the output stream will
also be marked as complete.

sink The sink operator consumes all incoming stream elements
without producing any output. Not consuming a stream causes back-
pressure and thus potentially deadlocks a circuit. A stream without a
consumer should ideally not exist in a system, but as streams can be
passed as arguments, such cases can occur.

4.2.5 Registers

All operations that expect a lambda support registers to keep states
between different executions. A register can be added to each oper-
ation by defining a "registers" attribute that specifies its initial value
(see Listing 6).

%out = stream.filter(%in) {registers = [0 : i1]}

: (!stream.stream<i64>) -> !stream.stream<i64> {

^bb0(%val: i64, %reg: i1):

%c1 = arith.constant 1 : i1

%nReg = arith.xori %c1, %reg : i1

stream.yield %reg, %nReg : i1, i1

}

Listing 6: A filter operation that uses a register to drop every second element
from the stream.

If an operation declares a register, it has to have the corresponding
lambda argument and return value. All of these require the same type
as the initial value.

4.2.6 Execution Guarantees

While the streaming abstraction does not specify the exact way it will
be executed, it provides a set of guarantees:

• The order of elements is preserved by each operator. Thus, a
resulting stream has the same order as the corresponding inputs.
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If a data element is dropped, it will just be omitted from the
stream.

• An operation will process an element in isolation, i.e., there are
no interferences or interleavings with other data elements except
explicitly requested.

4.3 lowering to handshake

This section explains the lowering from the streaming abstraction to
CIRCT’s handshake dialect.

Function

Op0

Op2

Op3

Input Stream

Output Stream

(a) A streaming application
consisting of three con-
secutively applied op-
erators on one input
stream.

Function

Instance

Instance

Instance

Input Data

Output Data

Func0

Func1

Func2

(b) The handshake representation correspond-
ing to the streaming application.

Figure 13: Lowering a streaming application moves the operation imple-
mentations into separate functions that are instantiated by the
top-level.

The conversion from the streaming abstraction to CIRCT’s handshake
dialect follows a simple but effective strategy. Streams are transformed
into handshaked signals connecting different functions corresponding
to operations. To not clutter the top-level, each operation instance is
transformed into a separate function that is only instantiated in the
top-level (see Figure 13). The signals connect the different instances in
the same manner as in the input.

4.3.1 Types

Stream types occur on values produced or consumed by streaming
operations. Thus, such a value is a handshaked signal that connects
two stream operators. To encode additional information relevant for
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streams, the datatype of this handshaked signal is not just the stream
element type but a tuple of said type and a boolean flag that signals
termination. The termination signal marks the end-of-stream (EOS)
and is only in a sentinel pulse that carries no data.

4.3.2 Operations with Regions

Each operation holding a region expects a collection of input streams
and produces a set of output streams. While every operation has
different semantics, e.g., filters dropping elements, maps transform-
ing them, and splits producing multiple outputs, their regions are
standard MLIR dialects (apart from their terminator). Therefore, the
conversion pass reuses CIRCT’s existing conversion functionality [30]
for said regions. All operations are pipelined and thus use the task
pipelining transformation introduced in Chapter 3. The resulting
handshake region is inlined into operator-specific handshake logic,
which provides inputs and consumes the outputs. The reused low-
ering exposes an additional control in and outputs that stem from
the structured lowering approach introduced by Dynamatic. In our
case, these control signals are forged using the stream’s data signal to
activate a join operation.

%out = stream.filter(%in) : (!stream.stream<i32>)

-> !stream.stream<i32> {

^bb0(%val: i32):

%c0_i32 = arith.constant 0 : i32

%0 = arith.cmpi sgt, %val, %c0_i32 : i32

stream.yield %0 : i1

}

Listing 7: A simple filter operation dropping all inputs equal to 0.

For example, a filter operation that drops all stream elements with
value 0 (see Listing 7), will produce a circuit as shown in Listing 8.
Due to handshake reusing parts of the arith dialect, the input region
can still be spotted.

end-of-stream signal As previously mentioned, each stream
has a corresponding end-of-stream signal. If a data element arrives at
an operator and EOS is signaled, the data element is ignored, and the
operator’s computation has to be skipped (see Listing 8). Due to the
data value being undefined, it cannot be guaranteed that the element
will satisfy any implicit preconditions of the region. Causing a circuit
to fall into an infinite loop or even just having very high latency is not
desired. Thus, all computation has to be skipped on EOS. Apart from
that, the stream operator needs to be reinitialized, e.g., register values.
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handshake.func private @stream_filter(%arg0: tuple<i32, i1>)

-> tuple<i32, i1> {

%data, %eos = unpack %arg0 : tuple<i32, i1>

// Only forward input when eos == 0

%trueResult, %falseResult = cond_br %eos, %data : i32

// Produce the necessary control signal

%1 = join %falseResult : i32

// Region start

%2 = constant %1 {value = 0 : i32} : i32

%3 = arith.cmpi sgt, %falseResult, %2 : i32

// Drop element only when eos == 0, otherwise the data

// field is either way ignored.

%trueResult_0, %falseResult_1 = cond_br %eos, %eos : i1

// Determine the dropping condition. If eos == 1, the

// region was not executed, thus eos itself is the condition.

%4 = mux %eos [%3, %trueResult_0] : i1, i1

// Only forward data then needed

%trueResult_2, %falseResult_3 = cond_br %4, %arg0

: tuple<i32, i1>

return %trueResult_2 : tuple<i32, i1>

}

Listing 8: The handshake representation of a stream filter operation drops all
inputs with value 0 (omitting forks and sinks for brevity). When
EOS, the second element of the input tuple %arg0, is true, the
computation is skipped.

In the case of reduce, the data element carrying EOS is ignored,
but the accumulated value is emitted before EOS is forwarded in a
separate stream element.

register lowering Registers keep states between different ex-
ecutions of an operation’s region. Therefore, a loop-back from the
output setting the new value back to the input must be constructed.
A one-element buffer to break the combinatorial cycle and to provide
an initial value is inserted (see Figure 14).

Note that this construction implicitly produces sequential dependen-
cies between different stream element computations. The dynamically
scheduled nature of the abstraction ensures correctness but the poten-
tially high throughput penalty needs to be kept in mind. Even though
the circuits support pipelining, this is not helpful in such a scenario, as
there is an explicit data dependency, which will stall the subsequent
pipeline invocations.
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Region Buffer

Input Data

Output Data

Figure 14: A register is implemented as a buffer that is inserted within a loop
from the registers output to the input.

Similar to how data elements are prevented from entering the region
when EOS is fired, registers will flush the corresponding buffers
without forwarding the value into the region. In the case of EOS, the
buffer is refilled with the initial value instead of the lambda’s output.

The reduce operation has a special accumulation register that is
treated similarly to register. Instead of just sinking the data when EOS
is consumed, it forwards it to its output.

4.4 interaction with external world

The stream abstraction does not provide any operation that produces
new streams from nothing. All data to work with must be streamed
into the produced circuitry. We simplify the necessary integration
into existing systems by implementing the stream compatible with
the AXI4 interface. As stated previously (Section 4.3.1), a stream
corresponds to a handshaked tuple consisting of data and an EOS
element. Thus, the interface directly provides means to transfer data
and terminate connections. Additional AXI4 signals, e.g., keep, can be
encoded by changing the datatype to contain the necessary wires.

Apart from the provided easy-to-use stream interface, it is worth
mentioning that it is possible to integrate external components into a
streaming application. Streams can be connected to external compo-
nents, and their results produce streams. Providing such functionality
allows complex applications to use the streaming abstraction while
implementing critical features in RTL.

Compared to other HLS approaches, our work produces pluggable
circuits that can be used without additional integration costs.
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E VA L UAT I O N

This chapter elaborates on the different kinds of benchmarks and use
cases we implemented to demonstrate the capabilities of this work. It
starts off by showing the impact of the task pipelining transformations
with a set of micro-benchmarks. These benchmarks implement simple
circuits and compare their throughput for different strategies to show
that we outperform existing approaches’ throughputs. Afterward,
we present different streaming applications that can be constructed
within our streaming abstraction and evaluate their performance when
executed in hardware. We do this to demonstrate that we simplify
the development of streaming applications while still getting optimal
throughputs.

5.1 benchmarking setup

The goal of the benchmarks is to show that our work can be used
in existing systems. All the following benchmarks were tested with
simulators beforehand to check if they work correctly. While executing
circuits in simulations can show correct behavior, it is not architecture-
specific and might thus hide some relevant hardware issues. To ensure
our work has no hidden problem, we plug the generated circuits into
Coyote [23], which provides AXI4 streaming interfaces to connect.
As described in Section 4.4, the generated stream interfaces are very
similar to AXI4. Thus, such an integration works seamlessly.

We execute the benchmarks on a cluster [16] with a Xilinx Alveo
U55C Card [34]. The input data was streamed from a host CPU to
the FPGA through PCIe, which corresponds to a classical accelerator
setup. Due to the streaming interfaces, our work could easily be used
in other settings, but this would not change our results.

All benchmarks use a 512-bit data stream to saturate the link. Fur-
thermore, all the generated circuits reached the timing requirements
for the 300 MHz clock. As our work reuses existing lower levels that
do not implement area optimal buffering, we do not measure the area
and resource usage.

5.2 task pipelining micro-benchmarks

To investigate the impact of the task pipelining transformations in
isolation, we constructed micro-benchmarks that contain patterns
that match the different strategies. These micro benchmarks were

41
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implemented for CIRCT’s existing HLS flow and thus do not use any
streaming features.

5.2.1 A feed-forward CFG

int64_t compute(int64_t val) {

int64_t res;

if ((val >> 1) & 0x1) {

if ((val >> 2) & 0x1) {

res = val + 1;

res += 1;

res += 1;

res += 1;

} else {

res = val + 10;

}

} else

res = val;

return res;

}

Listing 9: A C representation of the program we used to evaluate the through-
put impact for feed-forward graphs. As the code is not optimized,
the branches have different latencies.

The first benchmark implements a diamond CFG that has paths
with different latencies (Listing 9). Apart from comparing the locked
to the task pipelined circuits, we also tested a simple loop back. The
loopback directly connects in and output AXI4 streams and serves as
a lower bound for the latency. The data streams triggered both the
fastest and the slowest path in 50% of the cases.

128 256 512 1k 2k 4k 8k 16k 32k 64k 128k
Transfer size [bytes]

0
2
4
6
8

10
12
14

Throuphput [GB/s] Locking Pipelining Loopback

Figure 15: The throughputs of the different task pipelining protection mech-
anisms in a feed-forward case. The pipelined execution reaches
the same throughput as a loopback. Locking, on the other hand,
has to stall due to the latency of one element.
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The results show that the task pipelining transformation runs at
line rate, i.e., the optimal throughput that cannot be outperformed
by any other implementation. On the other hand, the locked circuit
pays a substantial throughput penalty (Figure 15). It is important to
stress that previous DHLS enforces a locking, as it otherwise produces
incorrect results. Compared to the PCIe roundtrip time, the task
pipelined latency of a few clock cycles is negligible (Figure 16). On
the other hand, locking reduces the throughput and thus causes back
pressure, which increases the latency substantially.
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Figure 16: Latencies of the different task pipelining protection mechanisms
in a feed-forward case. The throughput of the pipelined circuit
is negligible compared to PCIe’s overhead. Locking, on the other
hand, is substantially slower.

5.2.2 Multiple Loops

As a second micro benchmark, we demonstrate the impact of locking
loops instead of functions. The implemented program consists of
three consecutive for-loops that all sequentially depend on each other
(Listing 10).

int64_t loop_sequence(int64_t v) {

for (int i = 0; i < 3; ++i)

v = (v ^ 0x1234) ^ (v >> 16);

for (int i = 0; i < 3; ++i)

v = (v ^ 0x1234) ^ (v >> 16);

for (int i = 0; i < 3; ++i)

v = (v ^ 0x1234) ^ (v >> 16);

return v;

}

Listing 10: A C representation of the program we used to evaluate the impact
of pipelining different loops.
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Each loop iteration and thus each loop has the same latency. There-
fore, the naive approach of locking the entire function is 3 times slower
than locking each loop separately (Figure 18). While the pipelining
approach only allows one thread per loop, it still allows one thread
per loop. Therefore, the pipeline’s II is a third of the function locking,
which increases the pipeline’s throughput accordingly (Figure 17).
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Figure 17: The throughput of the loop-wise locking, which enables some
pipelining, is 3 times higher than locking the entire function.
Locking the loops causes a large II and thus does not reach the
loopback’s throughput.
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Figure 18: The latency of the loop-wise locking is 3 times lower than locking
the entire function.

5.3 streaming use-cases

This section presents a set of different streaming applications we con-
structed, compiled, synthesized, and finally executed in hardware.
All our test cases reach the maximum throughput of the PCIe con-
nection, which is the theoretical limit. Even handwritten RTL cannot
outperform the circuits generated by our HLS flow.



5.3 streaming use-cases 45

5.3.1 Note on Buffering

As already discussed (Section 2.3.3.2), the buffering problem for se-
quential circuits was already resolved in other works [22]. Unfor-
tunately, the CIRCT project did not yet reimplement the optimal
buffering strategy. Therefore, CIRCT only provides basic buffering
strategies that do not support high throughput for any circuits.

To circumvent this issue, we implemented a custom buffering pass
that does not insert additional buffers in cycles involving a register. In
all other places, the strategy inserts buffers. As long as the computa-
tions involving a register can fit into a single clock cycle, this strategy
will guarantee a latency of 1 clock cycle. Having a latency of just 1

cycle does not cause any throughput penalty.
The buffers inserted in feed-forward graphs are a sequence of a one-

element sequential buffer to break combinational dependencies and a
multi-element FIFO. While this might over-provision buffer space and
thus incur a higher area usage, it yields the same throughput as the
optimal buffering strategy. So, our benchmarks’ throughput should
not be affected by using a non-optimal buffering strategy.

5.3.2 Statistics Computation

The first streaming application we implemented demonstrates the
bump-in-the-wire usage of our work (Figure 19). In essence, such
use cases plug in a computation on an existing data stream without
introducing slowdowns for the data streams. Such computations
perform in flight monitoring or metadata collection, e.g., with sketch
algorithms [7, 24].

This benchmark consumes a stream and returns it again while
accumulating the maximal value it observed. The data type is an
eight-tuple of 64-bit integers. As there are eight input values, the
maximum of these eight values has to be determined first. Afterward,
the remaining element is streamed into a reduction that only stores
the maximum observed over time. Once an EOS signal is received, the
maximum is emitted, and all state is reset.

The cycle caused by the reductions register must have low latency to
reach high performance. Therefore, we use the buffering strategy that
does not add additional registers in that cycle and keeps the latency
at 1 clock cycle. Thus, the produced circuit can reach peak throughput
(Figure 20).
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Figure 19: A streaming application that computes the maximum value of an
incoming stream.
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Figure 20: The throughput of the maximum computation. As desired, the
produced circuits reach peak throughput and thus do not cause
any back-pressure on the link.

5.3.3 Query Offloading

As a second use case, we evaluate the usage of the streaming work for
query offloading tasks. Data transfer is starting to become a bottleneck
for data processing applications that work with substantial amounts
of data. Networks and buses have limited bandwidth. Therefore,
dropping unneeded data as soon as possible is beneficial, i.e., close
to the data source. This concept is similar to projection and predicate
pushdown in database query optimization [33]. In large systems,
selections and projections (in streaming terms maps and filters) can
be performed close to the storage [32].
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Figure 21: A streaming application that semantically performs a select and
project database query.

SELECT (t0 + t1) AS a, (t4 + t5) AS b

FROM stream IF a <= b;

Listing 11: A pseudo SQL query which is equivalent to the stream computa-
tion.

The implemented streaming program (Figure 21, which is equivalent
to Listing 11), performs a projection (map) followed by a selection (fil-
ter) and thus only produces outputs that match the desired properties.
The generated circuits reach an II of one. Therefore, their throughput,
once saturated, reaches the peak of 100 Gbit/s (Figure 22).
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Figure 22: The throughput of the query style computation. As desired, the
generated circuits reach peak throughput and thus do not cause
any back-pressure on the link.

5.3.4 Interaction with External Components

Some functionalities cannot be implemented with the stream fea-
ture set implemented in this work. Therefore, it can be necessary



5.3 streaming use-cases 48

 i512

i512

i512 

Split

Input Stream

Output Stream

 (i512, i1)

Combine

i1

Distinct

 (i512, i1)

Filter

 i512

Map

Figure 23: A streaming application that performs a distinct query with the
usage of an external component (green).

to interface with external components. To demonstrate this capabil-
ity (described in Section 4.4), we implemented a stream application
that uses an external component that detects duplicates. The exter-
nal functionality can be plugged in to build an SQL distinct query
(Figure 23, equivalent to Listing 12).

SELECT DISTINCT FROM stream;

Listing 12: A SQL distinct query which is equivalent to the stream computa-
tion.

This streaming application, which ran a line rate in hardware Fig-
ure 24, demonstrates that our work can interact with external compo-
nents. These results show that the streaming abstraction, with some
additional components, can execute complex queries directly on the
data streams without causing noticeable latency. The handling of
variable latencies while enabling interfacing with arbitrarily complex
hardware components makes this work a promising candidate for
streaming use cases.



5.3 streaming use-cases 49

128 256 512 1k 2k 4k 8k 16k 32k 64k 128k
Transfer size [bytes]

0
2
4
6
8

10
12
14

Throuphput [GB/s] Pipelining Loopback

Figure 24: The throughput of the distinct computation. As desired, the
produced circuits reach peak throughput and thus do not cause
any back-pressure on the link.
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C O N C L U S I O N

This work presented an extension to existing DHLS flows that allows
it to model pipelined computations. The discussion of the DHLS
extension, in the form of a safety transformation, clearly points out
existing problems when one wants to reach high performance. Reduc-
ing the II of circuits with pipelining is an effective way of increasing
the throughput of a hardware circuit while also increasing the tempo-
ral utilization. Apart from providing throughput improvements for
existing DHLS flows, the task pipelining transformation lays the foun-
dation for alternative HLS approaches to reuse the DHLS dataflow
abstraction. To implement this extension, substantial parts of CIRCT’s
handshake dialect and the surrounding transformations were repaired,
modified, and extended. All these changes summed up to 9000 added
and 4000 removed lines of code and were upstreamed in 59 commits
to the CIRCT GitHub repository.

We demonstrate the reusability by providing a general-purpose
streaming abstraction that targets this DHLS abstraction. The stream-
ing abstraction is implemented in a general-purpose compiler frame-
work. Therefore, it can be targeted by other compilation flows and
target different devices, e.g., CPUs.

Furthermore, the streaming abstraction demonstrates that construct-
ing a DSL for HLS can bring benefits to HLS compilers. In contrast
to C-style HLS, the input language does not implicitly limit the kinds
of inputs it can handle. It provides no way of expressing programs
that do not match its execution model. This explicit encoding helps
both the developers and the compiler. The developers will not e sur-
prised by drastic optimization blockers, while the compiler can skip
potentially expensive analysis.

Finally, the generated circuits can be plugged into existing systems
due to supporting AXI4 interfaces and showing peak throughput.
Both properties are essential for systems integration, as there is no
integration cost in terms of interfacing or performance. Still, the
abstraction simplifies stream programming for FPGAs drastically.

6.1 future work

This section lists potential future work that builds on top of the
contributions of this thesis.

50
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6.1.1 Building a Frontend

This work defines an abstraction that encodes streaming applications,
but it lacks a non-verbose input language. Even though MLIR dialects
have pretty printing, their representations remain somewhat verbose
and thus harder to write than necessary. This abstraction should be
connected to a DSL or an existing language or framework to simplify
developing streaming applications.

6.1.2 Other compilation Backends

During this work, we focused only on compiling the streaming ab-
straction to RTL to execute programs in FPGAs. As the abstraction is
part of the MLIR ecosystem, there should be no fundamental problems
in adding other backends. While streaming might not be perfectly
suited to run on CPUs, there are use cases where this is still desirable.
Different backends could also be interesting when large stream appli-
cations should be executed on heterogeneous systems that have both
FPGAs and CPUs, e.g., Enzian [8].

6.1.3 Extending the Streaming Abstraction

The implemented abstraction does not claim feature completeness,
as the set of stream operators is large. For example, operations that
create sliding windows would be helpful but semantically not that
simple. On the other hand, splitting and combining operations that
only emit, respectively consume, from one of N streams would be
simple to implement.

Apart from adding language features, some optimizations could be
implemented. Optimizations on a higher level can eliminate unneeded
computations or increase performance. While this was not necessary
for our workloads, there might be cases where area constraints are a
concern.
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