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A B S T R A C T   

Unreinforced masonry spiral staircases have been built for more than two thousand years in castles, churches and 
palaces, and these staircases require structural assessment. For a few decades, the structural behaviour of 
“cantilever” staircases has been debated among scholars. Several structural methods have been used, but due to 
the complex 3D geometry and the substantial number of treads, a priori assumptions have been made about the 
magnitude and point of application of the contact forces between the treads and the wall-tread connections. 
These assumptions influence the calculation of torsional moment, which, in some methods, reaches high values 
that could generate shear stresses greater than the material’s strength. In this paper, a 3D model based on one 
helix of the “cantilever” spiral staircase of San Domingo de Bonaval, in Spain, has been analysed using the 
Discrete Element Method. The entire stair is analysed without making assumptions on the magnitude and 
location of the resultant contact forces, which are calculated for each tread using customised Python-based 
functions. The wall-tread connections have been modelled using rigid blocks, and several contact conditions 
have been investigated. Moreover, different friction angles and the influence of geometrical imperfections are 
analysed to simulate material tolerances and assembly imprecisions. The simulation results indicate that perfect 
wall-tread contact conditions lead to conservative predictions of the torsional moment. Instead, gaps and im-
perfections allow small displacements, which reduce the torque and increase compression forces in the inner 
helical ring of the stair. Low friction angles could increase the torsional moment values, while vertical settle-
ments do not cause a significant effect. Cantilever situations could still occur due to not perfect contact condi-
tions between consecutive treads, which suggests that the tread-tread contact area should be carefully inspected 
during restoration. More generally, this paper demonstrates the potential variability of the structural behaviour 
of highly indeterminate structures when boundary conditions are uncertain, while providing valuable context to 
inform restoration strategies.   

1. Introduction 

Unreinforced spiral staircases have been constructed for thousands 
of years. In the old testament, there is a short description of a spiral 
staircase inside the Temple of Solomon, which dates around 1000BCE 
Another well-known example is the staircase inside the Trajan’s Column 
in Rome, built around 113 CE Throughout history, spiral staircases have 
been used mainly inside castles, helping to defend against attacks, and 
churches, where they were built inside walls and were part of a network 
of passages that allowed the carpenters to transport construction ma-
terials at the upper levels, eliminating the need of timber’s scaffolding or 
other temporary structures [1]. The presence of spiral staircases in 
important buildings and their beauty promoted their use in the design of 
wealthy family homes until the end of the XIX century. 

1.1. Structural features 

The wide use of unreinforced spiral staircases contributed to the 
development of their geometrical and structural features. In the oldest 
examples, each tread was supported on the outside by the wall and on 
the inside by a central column. Later, more space was left between the 
flights. As a result, each tread was not connected to the same central 
column but supported by the tread below. Due to removing the central 
column, spiral staircases seemed to cantilever from the outer walls and 
were erroneously named “cantilever stairs”. Andrea Palladio was in his 
book “Quattro Libri dell’Architettura” to mention the name “cantilever 
stairs” for the first time, describing the stairs he built in 1560 at the 
Accademia in Venice [2]. However, as already noticed by Goethe in his 
work Italian Journey: “the stone steps are built into the wall and so tiered 
that each supports the one above it” [3]. In most existing spiral staircases, 
it has been noticed that the tread embedment within the wall is usually 
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about 10–15 cm, and only in a few cases, it reaches a length of 30 cm. 
This embedment length is often relatively short compared to the length 
of the treads, which can reach two meters. In addition, sometimes, the 
wall-tread area has windows or doors above, so there is no possibility to 
develop bending capacity in the socket (Fig. 1). 

Considering these aspects, the primary internal force that must be 
resisted by each tread is the torsional moment, which occurs due to the 
eccentricity of the force transmitted by each tread to the one below and 
which needs to be resisted by the wall-tread connection. This behaviour 
is also combined with a compression effect in the inner ring of the stair 
as described by Angelillo and de Serio in [4,5]. Unlike many unrein-
forced masonry structures where the stone elements are mainly subject 
to compression, and where the stress is one or more orders of magnitude 
lower than the strength of the material, in spiral staircases, the shear 
stress caused by the torque must be evaluated in comparison to the 
tensile capacity of the material, which is limited. The internal torsion 
that must be resisted by each tread depends on a few aspects: i) how 
much force is transmitted by each tread to the tread below and; ii) the 
point of application of the resultant forces acting on each tread with 
respect to the barycentric axis. The torque causes internal shear stresses 
which depend on the cross-section geometry. Stones have a brittle 
behaviour when subject to tensile stress; [6] investigated the mechanical 
properties of stones and the presence of defects that can cause cracks. 
[7–10] described the structural behaviour of “cantilevered” staircases 
and the failure of treads in a flight where the treads at the base failed in 
torsion and consequently the treads above failed in bending, being no 
longer supported by the treads below. The inspection of the breaking 
surfaces also highlighted this type of failure due to tensile stress. 
Although the failures cases are relatively few, structural engineers still 
need to assess the existing spiral staircases, considering fire safety re-
quirements. Indeed, in many historical buildings, spiral staircases 
represent the only vertical connection. 

1.2. Related research 

For a few decades, several scholars have investigated the structural 
behaviour of spiral stairs, primarily for assessment purposes. Several 
analysis methods have been applied: Heyman [11] analysed “cantilever” 
staircases, straight and spiral, considering that each tread transfers a 
certain amount of its weight to the tread below and assuming that the 
contact forces are located at the vertices of the solid representing the 
shape of the tread, and assuming a perfect wall-tread connection. Ac-
cording to Heyman’s assumptions, the torsional moment increases lin-
early from the top to the bottom of the staircase, and can reach high 
values for long flights of stairs. [5] investigates the structural behaviour 
of the “cantilever” staircases of San Domingo de Bonaval in Spain, built 
in the XVII century, analysing one of the three helicoidal ramps. The 
same stair has been analysed in this paper. [5] solves for equilibrium 
through an optimization problem, minimising the potential energy, 
using constraints, equalities and inequalities, that represent small dis-
placements and tolerances in the tread-wall connections or between the 
treads. Displacements and contact forces are determined at fixed points 
at the corners of the solid shape of the tread. The assumptions in De Serio 
et al. [5] result in a reduction of the torsional moment compared to 
Heyman’s approach. More specifically, the torsion does not increase 
linearly down the whole set of stairs, but only increases for approxi-
mately the first 20 treads and remains relatively constant below that 
(Fig. 2). This behaviour is combined with a ring-like model, which 
produces the increase of compression forces in the inner ring of the stairs 
which locally corresponds to an increase of the axial forces along the 
length of each tread. Thus, the force regime inside the structure is 
compressive and determines the stress levels inside the elements well 
below the limit compressive and tensile strengths. 

Meanwhile, [12] analysed straight and spiral “cantilever” staircases 
with rectangular cross-sections using the Discrete Element Method. 
Blocks were modelled as deformable and the wall-tread connections 
were simulated through specific displacement boundary conditions as-
sumptions. However, the investigation is limited by computational 
constraints due to the use of deformable blocks, and the assumptions on 
the wall-tread connection do not allow the simulations of imperfect 
contact conditions. 

So far, the analyses conducted on “cantilever” spiral staircases 
consist of two distinct phases: in the first phase, several assumptions are 
made on the magnitude of the forces transmitted by each tread to the 
one below and on the point of application of the resultant contact forces 
between the treads. As mentioned in the paragraph above, these two 
aspects influence the value of the torsional moment acting on the treads. 
In the second phase, the internal forces calculated in the first part are 
used to evaluate the stress state of the treads, considering the geomet-
rical cross-section and the mechanical material properties. Although the 
second phase is relatively straightforward, the first part of the analysis 
remains affected by the solution method, the assumptions made on the 
point of application of the resultant contact forces, and by the wall-tread 
connection modelling. These assumptions are particularly important 
due to the high level of indeterminacy typical of unreinforced masonry 
structures, and to the geometrical complexity of spiral staircases. In this 
scenario, any small displacement or variation of the wall-tread or tread- 
tread contact conditions change the state of the internal forces due to the 
different position of the resultant contact forces. In this paper, a method 
to analyse “cantilever” staircases modelling the 3D geometry of the 
treads and the wall-tread connections with rigid blocks is proposed, 
without making a priori assumptions on the position of the resultant 
contact forces between the treads, which have been instead calculated 
for several wall-tread contact conditions, including the presence of 
geometrical deviations, and potential vertical settlements of the 
staircase. 

Fig. 1. Picture of a tread in correspondence of a door opening in the spiral 
staircase of the convent of San Domingo de Bonaval, Santiago de Compostela, 
Spain, XVII century. 
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2. Methodology 

In this paper, one helix based on the spiral staircase built by Domingo 
de Andrade in the XVII century, inside the convent of San Domingo de 
Bonaval, located in Santiago de Compostela, in Spain, has been ana-
lysed. First, the treads and the external supporting wall have been 
modelled with 3D solid meshes using the open-source, Python-based 
computational framework compas [13]. The structure has been then 
analysed with the Discrete Element Modelling method, using the com-
mercial software 3DEC by Itasca [14–16]. Then, 3DEC’s results have 
been post-processed using customised python-based functions, devel-
oped in compas and COMPAS Masonry [17], to compute the position and 
magnitude of the resultant contact forces and the internal forces in each 
tread. 

2.1. 3D modelling 

The 3D model of the staircase analysed is based on the model used by 
De Serio et al. [5]. However, since in De Serio et al. [5] a simplified 
version of the actual geometry has been used, which is not suitable for a 
DEM analysis in 3DEC, in the current paper, the treads have been 
modelled considering the accurate description of the same staircase 
made by Cabo et al. [18]. According to [18], each tread is supported at 
one end by the wall and, at the other end by the tread below, through a 
protrusion that overlaps with the previous tread. 

Fig. 3 shows that for some treads there is no overlapping over the 
tread length between the protrusion and the wall socket. This particular 
geometrical feature, not very common in spiral staircases, is also dis-
cussed by Cabo et al. [18], which hypothesizes two scenarios: a) in the 
first one, the designer, Domingo de Andrade, could have left on purpose 

Fig. 2. Image taken from De Serio et al. [5]. Torsional moment values in the 126 treads of the spiral staircases of San Domingo de Bonaval calculated by De Serio 
et al. [5]. In blue, the values obtained through minimization of the potential energy, allowing settlements of the treads; in red, the torque values calculated by De 
Serio et al. [5] considering Heyman’s approach in Heyman [11]. 

Fig. 3. Gaps between the treads in the spiral staircase of San Domingo de Bonaval, Santiago de Compostela, Spain, XVII c.  
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a gap to let the light go through the treads; b) in the second one, the 
author supposes that the tiny overlapping areas between the treads were 
filled by mortar, which decayed with time. For this reason, in the current 
work, to better simulate the effect due to the unusual geometry of the 
treads, a chamfer has been introduced in the central area of each tread 
(Fig. 4) to avoid any edge-to-edge contact between them. Later, to 

understand the influence of continuous contacts along the treads, 
another model was generated overlapping the treads by 2 cm and ana-
lysed, as described in Sections 3.6–3.7. The entire model consists of 
6469 3D solid meshes: there are 126 treads, which dimensions are 
illustrated in Fig. 5, and all the other blocks make up the supporting 
exterior wall and the support ring at the base of the tower (Fig. 6). The 

Fig. 4. Digital model of the treads showing the gap created by chamfering the bottom front edge.  

Fig. 5. Dimensions of the treads and local reference system.  

Fig. 6. (a) Treads and supports. (b) Wall blocks around the stair. (c) Tread in contact with the tread below and the surrounding wall.  
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blocks composing the exterior wall are not constrained as fixed in the 
simulation. Therefore, during the calculation, they can slightly move 
vertically under their self-weight due to the joints’ elasticity. However, 
their global vertical displacements are almost negligible due to the high 
values of joint stiffness applied (as explained in Section 2.2) and their 
perfect digital geometry. 

2.2. Discrete Element modelling 

The structural analysis has been conducted using the Discrete 
Element Modelling (DEM) method through the commercial software 
3DEC by Itasca. The DEM method has been introduced for a few decades 
for the structural analysis of several engineering problems dealing with 
discrete structures (soil mechanics, particles, masonry, etc.) and has 
several applications in the field of masonry structures [19–22]. The DEM 
algorithm in 3DEC is based on the integration of the equation of motion 
in the time domain using the central difference method, which is an 
explicit method. Therefore, a large amount of damping has to be 
introduced in the equation of motion to deal with static or quasi-static 
analyses [23]. In this paper, to reach the equilibrium faster, viscous 
damping has been used in 3DEC, which through an adaptive scheme, 
considers mass-proportional damping to ensure a faster convergence to 
the solution. The peculiarities of this method - i) the discretised elements 
can move and deform independently; ii) large displacements are 
possible; iii) the blocks can detach from each other or form new contacts 
- make it suitable for the structural assessment and design [24–26] of 
unreinforced masonry structures. Indeed, in DEM, Heyman’s funda-
mental assumptions on the “material” masonry [27] can be approxi-
mated [23,28,29], namely: no tensile strength, unlimited compressive 
strength and no sliding. The no tensile condition is considered by 
eliminating the tensile strength and cohesion in the Mohr-Coulomb 
criterion applied to the joints; the use of rigid blocks implies unlimited 
compressive strength for the blocks, and the no sliding condition is 
satisfied by using high friction angles or enforced by the 3D stereotomy. 
Although, as mentioned in section 1.2, in spiral staircases, the evalua-
tion of the internal stress state is crucial to calculate the ratio between 
the tensile strength of the material and the stress applied, the analysis 
has been conducted on rigid blocks. Rigid blocks have the advantage of 
being less computational demanding in the case of complex 3D geom-
etries with many elements. The analysis with rigid blocks gives, as initial 
output, the global equilibrium of the structure without considering the 
potential breaking of the material, but it also returns the contact forces 
acting in between the treads for each vertex of the 3D solid meshes. The 
contact forces have been post-processed using customised Python-based 
compas functions, calculating the point of application, magnitude and 
direction of the resultant forces in the wall-tread connections and in 
between the treads. In this way, it is possible to follow the contact forces 
during the simulation of several boundary conditions, together with 
different friction angles, following the variations in the structural 
behaviour of the spiral staircase. Furthermore, this strategy allows using 
a more realistic model where each tread is surrounded by blocks and 
avoids approximating the wall-tread connection through displacement 
or stiffness boundary conditions assumptions. The resultant contact 
forces have been then used to calculate the internal forces, namely axial 
and shear forces and torsional and bending moments. The parametric 
model used allowed the evaluation of the internal forces at any location 
along the length. Specifically, for this work, the entire length has been 
subdivided by 100, and thus, the internal forces are evaluated every 2 
cm. Afterwards, only the treads with the highest internal forces were 
checked by calculating the internal stress state locally, based on the 
specific cross-section. In the analysis setup, the material properties 
applied to the rigid blocks are the same as [5], with a density of 2700 
Kg/m3 and a Young Modulus of 24 GPa. Three different friction angles 
have been used, 20̊, 30̊ and 40̊, to evaluate the effect on the internal 
forces. The joint stiffness values, normal and shear, have been calculated 
according to [22,30], considering a joint space equal to the height of the 

blocks (19 cm). 

Jkn =
E

hblock
, (1)  

where Jkn is the normal joint stiffness, E is the Young’s modulus of the 
material, hblock is the block height. For the evaluation of the joint shear 
stiffness, the E (Young’s modulus) has been replaced by G (shear 
modulus), which has been evaluated according to (2): 

Gblock =
E

2(1 + υ), (2)  

where υ is the Poisson’s ratio considered equal to 0.2. 
Then, the value of the shear joint stiffness has been evaluated as in 

[22]: 

Jks =
G

hblock
(3) 

The shear strength at the joints is governed by friction according to 
the Mohr-Coulomb failure criterion: 

τ = σ tan(ϕ), (4)  

where τ is the shear strength, σ is the normal stress, ϕ is the friction 
angle. The cohesion has been neglected. 

In previous studies [22,31,32], joint stiffness values have sometimes 
been decreased to reduce the computational time. In this work, the 
calculated joint stiffness values from (1) and (3) have been used without 
decreasing them. In this way, the joint stiffness is kept out of the para-
metric analysis, and the high values used have reduced the effect of the 
elasticity lumped at the joints. Indeed, the total vertical displacement at 
the top of the entire tower (treads plus exterior wall), subject to self- 
weight, is about 0.5 mm due to the joint stiffness effect. So, the uncer-
tainty in the wall-tread conditions have not been modelled by varying 
the stiffness of the joints, but this has been considered geometrically, as 
shown in the following paragraphs. Gravity has been gradually applied 
in ten steps at the beginning of each analysis to avoid dynamic effects. 

2.3. Boundary conditions 

In highly indeterminate structures such as spiral staircases, the 
implemented methodology allows to simulate and evaluate the effect of 
the variation of the boundary conditions. The goal is not to define the 
structure’s actual stress state, which is impossible to know, but to un-
derstand the trends and limits reached by the internal forces in some of 
the conditions the structure experience. The design of the boundary 
conditions has been done keeping in mind the construction process of 
“cantilever“” staircases, simulating plausible cases. Historically, from an 
assembly point of view, the construction was done completing one 
“layer” at the time [1], where each layer contains the tread and the wall 
blocks around it. The construction sequence of the stair under investi-
gation has also been simulated by Cabo et al. [18] using a physical scale 
model of a few treads together with the outer wall. The experimental 
tests conducted by Cabo et al. [18] confirm the feasibility of a layer-by- 
layer assembly process without the need to shore the treads temporarily 
(Fig. 7). 

In this construction process, it seems evident that the masons always 
tried to place each tread at least in contact with the one below and with 
the base of the wall socket. The design of the boundary conditions takes 
into account these considerations. As a result, it can be deduced that 
tolerances exist between the lateral and top surfaces of the tread and the 
wall socket (t1,t2 and t4 in Fig. 8a and Fig. 9), and cantilevering situ-
ations could only occur as a result of successive displacements or set-
tlements, which locally modify the contact conditions at the bottom of 
each tread, especially in the tread-tread connection. 
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2.3.1. Wall-tread connection 
The analysed wall-tread contact cases cover a range of real situations 

regarding the condition of the wall-tread connection. Five cases, A to E, 
have been considered, as shown in Fig. 8. 

2.3.2. Geometrical imperfections 
Geometrical imperfections exist in every structure. Defects, fabrica-

tion tolerances, and manual adjustments cause slight geometrical vari-
ations in the blocks, leading to not perfect contact conditions between 
them [32,33]. Since the contact conditions in the wall-tread connection 
and in between the treads are crucial for the behaviour of the staircase, 
an investigation has been conducted to understand their impact. Im-
perfections have been applied to the treads, only in the model with no 
clearance generating more realistic and unpredictable tolerances. For 
each tread, the geometrical imperfections have been applied to the 
vertices of the solid 3D mesh. The vertices have been first subdivided 
into two categories related to their position: the first group “A” contains 
the vertices belonging to the tread-tread connection; the second group 
“B” includes the vertices of the tread in contact with the wall socket 
(Fig. 10). 

The application of the imperfections consists of moving each vertex 
in the negative direction (i.e. towards the inside of the tread) along the 
direction of the vertex normal. The vertex normal has been evaluated as 
the weighted average of the normals of the neighbouring faces. The 
displacement value for each vertex has been picked randomly, using a 
uniform distribution, in a specific range. A different range of imperfec-
tions has been assigned to each of the two groups (“A” and “B”); smaller 
imperfections for the first group (tread-tread connection) and larger 
imperfections for the second (wall-tread). The reason behind this choice 
is to avoid imperfections that could cause a condition where the tread is 

Fig. 8. (a) No clearance. All the tolerances t1,t2,t3, and t4 are equal to zero; the tread and the wall are in perfect contact. (b) Clearance at the top of the wall-tread 
connection; t1 equal to 1 mm and t2, t3 and t4 equal zero. (c) Clearance at the top and on the lateral joints of the wall-tread connection; t1 equal to 0.5 mm, t2 and t4 
equal to 1 mm and t3 equal to zero. (d) Same as (c) but with t1 equal to 1 mm. (e) Same as (c) and (d) but with t1 equal to 6 mm. 

Fig. 9. Close-up of a portion of the spiral staircase with the location of t1,t2, 
t3,t4. 

Fig. 7. Sequence of experimental tests conducted by Cabo et al. [18] on the spiral staircase under investigation in the current work to simulate the construc-
tion sequence. 
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cantilevering from the wall. As already mentioned in paragraph 2.3, the 
authors supposed that during construction, the treads, even with im-
perfections, were always placed touching the previous one and touching 
at least the base of the wall-tread connection. For this work, two sets of 
ranges have been considered for each of the two groups of vertices, as 
shown in Table 1. Each set has been replicated three times to generate 
different random cases from the same imperfections range. 

2.3.3. Vertical settlements 
The last variation of boundary conditions investigated in this work 

concerns the effect of vertical settlements, which could have occurred 
over a long period of time, or right after construction, due to the forces 
travelling down along the central spiral ring. 

The vertical settlement of the central support (Fig. 11) has been 
applied to all the models with clearance and imperfections. 

The displacement has been simulated in 3DEC in steps of 0.0005 mm 
each, in a negative Z direction. At the end of each step, the velocity has 
been set to zero, and the global equilibrium of the entire structure has 
been calculated. The number of steps, namely the total displacement 
applied to each model, depends on the size of the tolerance t1 (Fig. 12 
top). The maximum possible vertical displacement values δ (listed in 

Table 2) have been evaluated considering the maximum allowed rota-
tion until the top part of the tread touches the intrados of the wall-tread 
connection (Fig. 12 bottom). Indeed, this should be avoided because if 
the tread starts working as a cantilever, the vertical force travelling in 
the central ring, which is responsible for the settlement, would not be 
transferred to the central support. 

3. Results and discussion 

In this section, the results of the parametric analysis are presented. In 
addition, the implemented post-processing of the 3DEC results allows 
calculation and visualization, for each boundary condition, of the 
magnitude and point of application of the forces acting on each tread of 
the stair, which clarifies the related structural behaviour. 

The resultant contact forces have been then used to calculate the 
internal forces along the entire length of each tread, with respect to the 
local barycentric axis and reference system (Fig. 5). Three friction an-
gles, namely 20̊- 30̊- 40̊, have been used in the analysis. 

Fig. 10. Example of geometrical de-
viations on a single tread. The pink 
wireframe represents the original shape 
of the tread, while the black wireframe 
the shape after the application of imper-
fections. The blue arrows indicate the 
vertices of the tread-tread area (smaller 
deviations applied), whereas the red ar-
rows represent the vertices of the wall- 
tread socket (subject to more significant 
deviations). Just for clarity, in this figure, 
the deviation used has been amplified 
compared to the values used in this paper.   

Table 1 
Values of the geometrical deviations applied.  

Set 1 
Cases Range group “A” [m] Range group “B” [m] 
i1a - i1b - i1c 0.0 0.0005 0.00051 0.001  

Set 2 
Cases Range group “A” [m] Range group “B” [m] 
i2a - i2b - i2c 0.001 0.0015 0.0016 0.002  

Fig. 11. Vertical displacement of the central support.  

Fig. 12. (Top) the initial position of the tread in the configurations with 
tolerance t1 between the tread and the socket. (Bottom) max vertical 
displacement δ, which minimises the value of t1 (tread touching the socket). 
For clarity, in this figure, the displacement δ has been amplified compared to 
the actually applied displacement. 

Table 2 
Values of the maximum possible vertical displacements δ allowed by each 
configuration analysed.  

Wall-tread connection Max possible vertical displacement (δ) [m] 

“B”  0.0056 
“C”  0.0028 
“D”  0.0056 
“E”  0.034  
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3.1. Contact forces 

All the simulated wall-tread boundary conditions are characterised 
by a specific configuration of the contact forces, which highlights the 
sensitivity of the structure to contact conditions, imperfections and 
friction angle. Fig. 13 shows the resultant contact forces applied to tread 
n̊70, counting from the bottom of the stair, for the wall-tread condition 
cases A, B, C, E, Imperfection 1 and Imperfection 2, subject to self- 
weight. 

For each case, the contact force configuration slightly varies along 
the stair due to small rotations and translations of the treads. 

In condition “A” (Fig. 13-A) the no-clearance in the socket limits the 
displacement of the tread. Reactions a and b are in the centre of the 
contact area with the above and below treads producing a clockwise 
rotation, which is counterbalanced by the anti-clockwise rotation caused 
by the couple c-d. The reactions c and d have a significant magnitude 
because, since there is no clearance, part of the weight of the wall above 
acts on the tread. The reactions e and f correspond to the contact forces 
with the lateral sides of the wall-tread socket. Finally, the contact force g 
between the backside of the tread and the wall is due to a small vertical 
downward displacement of the tread at the inner ring. 

In condition “B” (Fig. 13-B), where 1 mm clearance is introduced at 
the top of the tread, reaction c disappears, and the couple e-f counter-
balances the clockwise rotation due to the couple a-b. Due to the larger 
clearance which cause a higher downward displacement of the tread, 
reaction d moves at the edge of the wall-tread connection, forming a 
couple with the self-weight w of the tread. Reaction g in the back, moves 
as well on the right side. It is worth noticing that the larger rotation 

allowed, moves reactions a and b towards the tread below (left side), 
and this phenomenon is even more evident in condition “C”, where the 
tread has clearance at the top and on the sides, and it is freer to rotate. 

Indeed, in this case, a and b are on the left edge of the tread-tread 
contact area. Since there is no lateral contact in the wall-tread socket, 
the clockwise rotation due to the couple a-b is taken by the anti- 
clockwise rotation due to c-d. In this case, since the top tolerance t1 is 
tiny (0.5 mm), the tread rotation generates the contact force c at the top 
left corner. 

In configuration “E” (Fig. 13-E), the tolerances do not allow any 
contact with the lateral sides of the socket and with the top (t1 = 6 mm). 
In this case, the torque generated by the couple a-b is only counter-
balanced by the couple w-d. Indeed, looking at the torsional moment 
along the whole stairs (Fig. 16a), the values reached, for almost all the 
treads, are bounded from below and correspond to the self-weight of the 
tread multiplied by the moment arm, which is half the tread’s width 
from the barycentric axis to the point where force d acts. 

Finally, for the two cases with imperfections (1 and 2), there is 
variability of the actual socket conditions, and the reaction forces are in 
locations that are difficult to predict a priori. 

3.2. Internal forces and the effect of the friction angle 

As mentioned above, the location of the resultant contact forces and 
their magnitude have an influence on the internal forces in each tread. 
Thus, the normal and shear forces and the bending and torsional mo-
ments have been calculated along the entire length of each tread. Fig. 14 
shows the diagrams of the axial force and torsional moment for steps 

Fig. 13. Contact forces on the 70th tread for each of the six wall-tread contact conditions analysed.  

A. Dell’Endice et al.                                                                                                                                                                                                                            



Structures 46 (2022) 214–232

222

numbers 3, 70, and 110, for the two extreme wall-tread conditions: “A” 
with friction angle 30̊ and “E” with friction angles 30̊ and 20̊. 

Fig. 14 clarifies how a less tight socket (“E_30̊”) decreases the amount 
of torque and increases the axial force in the treads, as also shown by De 
Serio et al. [5]. On the other hand, it is interesting to notice the effect of a 
friction angle of 20̊ on case “E”. While for case “A”, with no clearance in 
the socket, a lower or higher friction angle did not show any variation of 
the internal forces, for all the other cases decreasing the friction angle 
causes a slight reduction of the axial force and increases the torsional 
moment to values comparable, for steps 70 and 110, to the one reached 
by case “A_30̊”. As shown in Fig. 15, with a lower friction angle, forces a 
and b change their directions, the tread engages the lateral sides of the 
socket (forces e and f) and the torque increases. 

More in detail, Fig. 16a shows for the wall-tread contact conditions 
A-B-C-D-E, the torsional moment values at the middle section of each of 
the 126 treads, for the case with friction angle equal to 30̊. 

From the diagram in Fig. 16a, the amount of torque generated by the 
couple a-b (Fig. 13) and transmitted through the tread cross-section is 
inversely proportional to the level of tightness of the wall-tread socket. 
Indeed, the torque decreases going from condition “A” to condition “E”. 
For case “E” (tread not touching the sides and the top of the socket), the 
magnitude of the torque is the smallest, and corresponds to the self- 
weight of the tread multiplied by the moment arm (half of the tread’s 
width in correspondence of the wall socket). The tolerances used in case 
“E” are similar to the ones used by De Serio et al. [5], and the torsional 

moment values are almost identical. 
Of all the cases analysed, the maximum torque occurs in the case 

with no clearance, where the torque increases from the top to the bottom 
of the stair. However, in this case, which is comparable to Heyman’s 
assumptions [11] about perfect wall tread-contact conditions, the torque 
does not reach the values calculated by De Serio et al. [5] following 
Heyman’s strategy. 

Meanwhile, the diagram in Fig. 16b shows the effect of the friction 
angle on the torsional moment values for case E. As already mentioned 
at the beginning of this paragraph, a lower friction angle (case E_20̊) 
increases the displacement of each tread (Fig. 17a-b-c), and, even in the 
cases with higher tolerances, the treads can rotate and engage the 
socket, increasing the torsional moment values. 

Indeed, the introduction of tolerances in the wall-tread socket in-
creases the magnitude of the contact forces travelling along the inner 
ring of the stairs and changes their directions (Fig. 18a-b-c). However, it 
is worth noticing that in both cases (with and without clearance), the 
ring force is relatively low compared to the total self-weight of the treads 
above, indicating that most of the weight is transferred to the wall. This 
mostly depends on the geometry of the treads, the position of the centre 
of mass and the features of the overlapping area between treads, and it 
needs to be evaluated case by case. 

Depending on whether the treads have clearance to move, or alter-
natively a low friction angle, they could either engage the socket or not. 
Engaging the socket increases the torsional moment; otherwise, a min-
imum torsional moment is observed. Fig. 19 describes, for the case “E”, 
the effect of friction angle on the ring and wall force components. For 30̊, 
the treads do not move enough to engage the socket, and the resultant y 
components of the contact forces in the wall-tread area do not increase 
(Fig. 19c), meaning that the treads reach the minimum torque value and 
do not touch the top or the sides of the socket. As explained in paragraph 
3.1, in this case, the couple a-b is only counterbalanced by the couple w- 
d. On the other hand, in the case of 20̊, the displacement of the treads 
allows engaging the socket laterally. Indeed, the resultant y components 
of the contact forces in the wall-tread area increase (Fig. 19c), and the 
couple e-f also counterbalances a-b. 

Finally, regarding the bending moment, since there are no cantilever 
situations in the models without geometrical imperfections, the treads 
always are in contact with each other. Therefore, the value of the 
bending moment, measured in the section at the beginning of the wall- 
tread socket, is almost constant along the whole stair and does not reach 
significant values, as described in paragraph 3.6. 

Fig. 14. Diagrams of the axial force and torsional moment for steps n̊3-70-110, for wall-tread conditions: “A” with friction angle 30̊ and “E” with friction angles 30̊
and 20̊. 

Fig. 15. Contact forces on the 70th tread from the bottom, for the wall-tread 
contact condition “E”. a) Friction angle 30̊. b) Friction angle 20̊. 
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Fig. 16. Torsional moment values in the whole staircase for the wall-tread contact conditions with perfect geometry: a) “A-B-C-D-E” with friction angle equal to 30̊; 
b) “A” with friction angle 30̊ compared to “E” with friction angles equal to 20̊, 30̊ and 40̊. 

Fig. 17. Centroid translation components ×, y, z referred to the local reference system of each tread for the wall-tread contact conditions “E” and for friction angles 
20̊, 30̊ and 40̊. 
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3.3. Geometrical imperfections 

The analysis results with geometrical imperfections highlight the 
potential importance of defects in the contact conditions. Indeed, the 
introduction of geometrical deviations not only causes different levels of 
tightness in the wall-tread socket but brings randomness to the contact 

conditions. Fig. 20a and 20b, respectively, show the torque values for 
the two sets of imperfections applied (set1 and set2), compared to the 
case “A” and “E”, which represents the upper and lower bounds of the 
torsional moment values found previously. 

Fig. 20a and b show that the magnitude of the geometrical imper-
fections, which influences the tightness of the socket, produces the same 

Fig. 18. a) and b) visualisation of the resultant contact forces within the treads. c) Magnitude of the resultant contact forces travelling along the central ring for case 
“A”, “E_20̊” and “E_30̊”. 

Fig. 19. a) Magnitude of the ring forces (y component acting at the top of each tread). b) Magnitude of the ring forces (z component acting at the top of each tread). 
c) Magnitude of the resultant wall forces (y component per tread). 
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tendency in terms of torsional moment values. As a result, the three 
models of set2 (i2a, i2b, i2c) in Fig. 20b, generated using higher toler-
ances (see Table 1), reach torque values almost identical to case “E”. 

Instead, the three models of set1 in Fig. 20a show a different behaviour. 
Positive spikes in the torsional moment correspond to locations where 
the magnitude of imperfections is relatively small, and the behaviour is 

Fig. 20. Torsional moment values in the whole staircase for the wall-tread contact conditions with geometrical imperfections compared with cases “A” and “E”: a) 
“i1a-i1b-i1c” with friction angle equal to 30̊; b) “i2a-i2b-i2c” with friction angle equal to 30̊. 

Fig. 21. Torsional moment values in the whole staircase for the wall-tread contact conditions with geometrical imperfections compared with cases “A” and “E”: a) 
“i1a-i1b-i1c” with friction angles equal to 20̊-30̊-40̊; b) “i2a-i2b-i2c” with friction angle angles equal to 20̊-30̊-40̊. 
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similar to the “A” condition. However, in other treads, the torsional 
moment is smaller than the minimum reached in case “E”, and is even 
negative at some locations. This is caused by imperfect tread-tread 
contact conditions which modify the location of forces a and b, invert-
ing the torque’s sign and potentially generating local cantilever situa-
tions, which increase the bending moment at the wall-tread socket (also 
see Fig. 22). 

Fig. 21 shows the effect of a reduction of the friction angle for the 
cases with geometrical imperfections. For case “i1a” (Fig. 21a), the 
friction angle has no considerable effect on the torsional moment, due to 
the small values of geometrical imperfections. Instead, for case i2a 
(Fig. 21b) with larger deviations, the torsional moment values increase 
only in a few locations. In this case, geometrical imperfections have a 
positive effect, mitigating the effect of a reduced friction angle for some 
treads. 

To better understand what is happening in the case of geometrical 
imperfections, Fig. 22 shows respectively:  

a. The values of the bending and torsional moment;  
b. The z component of the contact force acting on the top and bottom of 

the treads at the tread-tread contact area;  
c. The z component of the resultant contact forces acting on the top and 

bottom of the treads in the wall-tread socket. 

Fig. 22 shows the locations of cantilever behaviour due to poor 
contact conditions. For example, for tread number 61 in Fig. 22a, the 
torsional moment is almost equal to zero, while tread 62 above has a 
high value of the bending moment. The same can be observed in 
Fig. 22b, where the z component of the force at the bottom of tread 62 

goes to zero (tread 62 not touching tread 61), and the top component of 
61 goes to zero as well (62 not touching the top of 61). In Fig. 22c 
instead, the spikes of the bending moment are related to an increase of 
both z components (top and bottom) at the same tread level. 

The effects of imperfections observed in this section provide insight 
for assessment and refurbishment of real spiral staircases, which will be 
discussed in section 3.8. 

3.4. Settlements 

A vertical settlement was also applied to the central support, as 
described in paragraph 2.3.3, to simulate the possible effect if the 
foundation is poor and could not support the large reaction force at the 
base of the central ring. Fig. 23 shows that ring support settlement does 
affect stair behaviour in the lower half of the stair but does not signifi-
cantly affect the behaviour in the upper half. Notably, the maximum 
torsional moment is approximately unchanged by the settlement. The 
effect of larger settlements depends on the magnitude of the wall-tread 
socket clearance. In Fig. 23a (case “C”, top tolerance t1 equal to 0.5 
mm), the torsional moment values are affected up to the 45th tread, 
while in Fig. 23b (case “D”, top tolerance t1 equal to 1 mm), the set-
tlement effect reaches the 65th tread. This is as expected, since each 
tread has more ability to rotate for case “D”, due to the increased 
clearance in the wall socket. The settlement activates the engagement of 
the treads located at the base of the stair with the wall-tread socket, the y 
and z components of the contact forces in the socket increase, and there 
is an increment of the torsional moment. At a certain height in stair 
(45th tread for case “C” and 65th tread for case “D”), the induced set-
tlement stop propagating, and the torsional moment stays unchanged. 

Fig. 22. a) Bending and torsional moment values in the entire staircase for case “i1a” with friction angle equal to 30̊. b) Magnitude of the ring forces (z component 
acting at the top and the bottom of each tread). c) Magnitude of the resultant wall forces (z component acting at the top and the bottom of each tread). 
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3.5. Shear and tensile stress and strength 

All of the analyses conducted considering the various contact con-
ditions, geometrical imperfections and vertical settlements have shown 
a maximum value of the torsional moment equal to 3.05 kN-m for case 
“A” with no clearance and friction angle equal to 30̊. However, this value 
is reached only by a few treads at the bottom of the staircase, while more 
than 90 % of the treads have a torsional moment lower than 2 kN-m. 
Even the precarious contact conditions due to imperfections did not 
generate values higher than case “A”, and when cantilever behaviour 
occurred for models “i1a”, “i1b” and “i1c”, the torsional moment 
approached zero. Instead, the bending moment reaches its maximum 
value. 

Shear and tensile strength values are needed to evaluate the capacity 
of the stair treads to resist these internal forces. [5] assumed shear and 
tensile strength values of τ = 25 MPa and σt = 16 MPa. Meanwhile, 
Willoughby [34] used material test data from a few different stone 
materials to define relationships between the density (an easy to mea-
sure property) and other mechanical parameters, such as Poisson’s ratio, 
Young’s modulus and flexural strength. These relations can provide a 
helpful rule approximation to evaluate the strength of the tread mate-
rial. The density-shear strength relation described by Willoughby [34] 
is: 

τ = 0.018ρ − 32.926 (5)  

where τ is the shear strength, and ρ is the density of the material. For ρ =
2700 kg/m3, τ = 15.7 MPa, which is below the material shear strength 
specified by De Serio et al. [5]. 

In this work, the shear stress has been approximated by considering 
the cross-section with the smallest area as a right isosceles triangle (see 
Fig. 24), with the two equal sides of length 0.175 m, as: 

τ = (18.05 * Mt)/a3 = (18.05 * 3.1 kN − m)/
(
0.0054 m3) = 10.4 MPa

(6)  

where Mt is the torsional moment and a is the length of the two equal 
sides of the isosceles triangle (Fig. 24). The value of 10.4 MPa is rela-
tively large but is below the material’s shear strength. If we consider the 
cases with clearance in the wall-tread socket and friction angle equal to 
20̊, the maximum torsional moment is approximately 1.5 kN-m, which 
corresponds to shear stress equal to 5 MPa. Finally, the cases with 
clearance and friction angle equal to 30̊ have shown a maximum torque 
value of approximately 1.0 kN-m, corresponding to shear stress equal to 
3.3 MPa. 

To evaluate how the maximum torsional moment values are related 
to the material’s density, keeping the same geometry, case “A” and “D” 
have also been analysed with a density equal to 2000 kg/m3 and 2500 
kg/m3. The values obtained have been used to calculate the shear stress 
caused by the torsion using (6) and are plotted in Fig. 25 below. In both 
cases, “A” and “D”, there is a linear relationship between the density and 
the shear stress, but with a different slope. For the same density values, 
the shear/tensile strength of the material has been calculated using (5). 
The comparison shows that the torsional moment values reached by the 
structure in case “D” are below the strength of the material calculated 
using relation (5) for the three density values, while the values reached 

Fig. 23. Torsional moment values in the whole staircase after the vertical settlement of the central support: a) Cases “C” with 0, 1, 2, and 3 mm displacement. b) 
Cases “D” with 0, 2, 4, and 6 mm displacement. 

Fig. 24. Triangular cross section used for the calculation of the shear stress due 
to the torsional moment. 
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by case “A” are above the shear strength for a density equal to 2000 kg/ 
m3. Looking at the distance between the shear/tensile strength line and 
the two stress lines, this comparison gives an idea of the margin of safety 
of the analysed stair. 

Regarding the tensile stress due to bending moment, the maximum 
value reached is 3 kN-m in the first tread of the case “A”, which is 
influenced by the effect of the boundary conditions, while the maximum 
value reached by the rest of the staircase is 1.5 kN-m. These values, 
which correspond to a tensile stress of respectively 0.374 MPa and 
0.187 MPa, are quite low compared to the material’s tensile strength. 

In the case of geometrical imperfections, the imperfect contact con-
ditions in the tread-tread area caused, in cases “i1a”, “i1b”, and “i1c”, a 
few cantilever situations where the bending moment reaches high 
values. Obviously, the bending moment value also depends on the 
height of the tread in the staircase: lower treads have more treads above, 
causing a higher load and bending moment. The maximum bending 
moment at the tread-socket interface, caused by imperfections, was 12.2 
MPa, which corresponds to a tensile stress of 1.5 MPa. This value is 

below the tensile strength of the material, but the randomness of im-
perfections, additional loads on the treads, and the location of the tread 
in the staircase could generate higher values of the bending moment. For 
this reason, the tread-tread area is a delicate area that needs attention 
during assessment and refurbishment, as specified in the next 
paragraph. 

This section has evaluated the magnitude of the internal forces with 
respect to the strength of the stairs, to gain a perspective on the stability. 
Of course, the combination of stresses within a tread would need to be 
evaluated for a detailed evaluation of failure, but the relative magnitude 
of stresses is sufficient for the discussion here. 

3.6. Comparison with overlapping treads 

As described in Section 2.2, the structure analysed in this work 
presents gaps between the treads, which overlap only towards the inner 
ring. This geometrical feature is not common in URM spiral staircases, 
which usually have treads overlapping for a few centimetres along their 

Fig. 25. Comparison between the maximum value of the shear stress calculated for case “A” and “D” with density equal to 2000, 2500 and 2700 kg/m3, the shear/ 
tensile strength calculated using (5) for same density values, and shear and tensile strength specified by De Serio et al. [5] for the material used in the analyses. 

Fig. 26. Digital model of the treads overlapping on the entire length.  
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full length or gaps filled with mortar. To clarify the influence of a full- 
length contact on the mechanical behaviour of spiral staircases, the 
same staircase analysed previously has been modelled with overlapping 
treads, using a hypothetical overlap of 2 cm, Fig. 26. 

The investigation has been conducted on three different cases, using 
a friction angle equal to 30̊:  

- A_over - no gaps in the wall-tread socket (same as case A, Fig. 8a);  
- E_over - gaps at the top and sides of the wall-tread socket (same as 

case E, Fig. 8e);  
- i1a_over - A_over with geometrical imperfections applied (same 

ranges as in Set1, Table 1). 

Cases A_over and E_over represent the extreme conditions the wall- 
tread socket could experience in the case of perfect digital geometry. 
Instead, the case with geometrical imperfections i1a_over, applied to 
case A_over, simulates more realistic conditions where small deviations 
compromise the precision of the contacts in the wall-tread socket and 
between the treads. Furthermore, as already seen in Section 3.3, the case 
with geometrical imperfections also helps understand the effect of 
eventual cantilever situations on the mechanical behaviour. 

3.7. Effect of the overlap on the mechanical behaviour 

The analyses conducted on the model with overlapping treads have 
shown similar results, in terms of torsional moment values, as for the 
previous case with gaps, except for the case A_over with no clearance in 
the wall-tread socket, Fig. 28a. Fig. 27, which represents, on average, 
the position of the contact forces transmitted on a tread by the tread 
above, clarifies the results obtained. As already mentioned in Section 
1.1, a variation in the position of the point of application of the contact 
forces implies a variation of the moment arm lengths with respect to the 

barycentric axis (torsional moment) and the wall axis (bending 
moment). Fig. 27a shows that the force experienced by the tread, in the 
case A, has a bigger distance from the barycentric axis than in cases E 
and i1a, resulting in higher values of the torsional moment as described 
in Fig. 16a. In Fig. 27b, instead, which shows the case with overlapping 
treads, the point of application of the force transmitted by the tread 
above, for the case A_over with no clearance, is situated closer to the 
middle length of the tread and at a bigger distance from the barycentric 
axis. 

It can be noticed that the position of the contact force in the case 
A_over is outside the overlapping area. This is due to the calculation of 
the resultant force acting between the treads, which considers the 
convex hull of all the vertices at the boundaries of the overlapping area. 
The larger distance of the point of application of the contact force in the 
case A_over results in higher values of the torsional moment, as illus-
trated in Fig. 28a, which are quite similar to the values obtained by De 
Serio et al. [5] applying Heyman’s approach to the staircase here under 
investigation, Fig. 2. The torsional moment values calculated indeed are 
high, and correspond to shear stresses not compatible with the strength 
of the material. However, the analysis with clearance in the wall-tread 
socket (case E_over) results in lower torsional moment values almost 
identical to case E. Indeed, Fig. 27b shows that the slight movements 
allowed by the clearance move the point of application of the force 
acting on the top of the tread, almost at the same location as for case E 
(Fig. 27a), with similar values of the torsional moment for the entire 
staircase Fig. 28a. 

In the case of geometrical imperfections (i1a_over), the presence of 
the overlapping area slightly moves the point of application of the force 
transmitted by the tread above, closer to the wall axis. Fig. 27b, which 
compares the bending and torsional moment values calculated in cases 
i1a and i1a_over, shows the differences mainly in the bending moment 
values caused by the position of the force. Indeed, at the locations where 

Fig. 27. Positions of the points of application of the forces transmitted by the tread above: a) Cases A, E and i1a (model with gaps between the treads); b) Cases 
A_over, E_over, i1a_over (model with overlapping treads). 
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geometric deviations generate cantilevering, the structure experiences 
lower bending moment values than i1a, where the point of application of 
the force reaches the maximum distance at the inner ring, Fig. 27a. 

3.8. General remarks and assessment strategies 

From all the analyses conducted, the main concern for the stability of 
spiral staircases derives from the shear and tensile stresses that could 
arise from the torsional moment, and in some specific cases, from the 
bending moment acting on the treads. 

The parametric analysis highlights that the factors that have an in-
fluence on the torsional moment are:  

1. Imperfect contact conditions between the treads;  
2. Imperfect contact conditions between the tread and the wall;  
3. Contact friction angle combined with tolerances in the wall-tread 

sockets. 

From a risk perspective, since factor 1 could locally produce high 
torque values or bending moments due to geometrical deviations, the 
assessment should first verify the contact conditions between the treads, 
identifying all the locations where the treads are not entirely in contact. 
The refurbishment at these locations could prevent live loads or further 
small displacements from increasing shear or tensile stresses in the 
treads. A second step in the assessment should check the wall-tread 
socket conditions (factor 2). However, the analyses indicate that at 
this location intervention may not be necessary, unless the wall area 
around the socket presents significant damage. Further, an increase in 
the service loads of the stair does not necessarily require the refurbish-
ment of the wall-tread socket or the filling of potential gaps in between 
the tread and the wall. These conclusions can be extended also at the 
case with treads overlapping along their full length, which in case of no 
clearance in the wall-tread socket could experience higher values of the 
torsional moment than the case with gaps between the treads. 

Historical masonry structures have stood for centuries, and they have 
found their equilibrium through small displacements, which occur just 
after construction due to consolidation and settlement, or continuously 
throughout their life due to environmental or use changes. The work in 
De Serio et al. [5] shows how the structure minimises its potential en-
ergy through small displacements of the treads. The present work, which 
shows the reduction of torsional moment caused by introducing toler-
ances in the wall-tread sockets, demonstrates that the refurbishment of 
the wall-tread sockets should not over-constrain the treads. Indeed, 
small displacements in the wall-tread connection help the structure 
adapt to different boundary conditions without increasing the internal 
forces. 

Finally, if not perfect contact conditions between the treads cause 
cantilever situations, the refurbishment should always proceed from the 
bottom to the top of the staircase, since lower “cantilever” treads 
experience higher torsional moment due to the higher number of treads 
above. 

4. Conclusions 

This work investigates the structural behaviour of a 3D digital model 
of an unreinforced masonry spiral staircase based on the geometry of the 
stair inside the convent of San Domingo de Bonaval, located in Santiago 
de Compostela, in Spain. Digital models of the staircase have been 
analysed using the Discrete Element Modelling software 3DEC by Itasca. 
The treads and the wall surrounding the staircase have been modelled 
using 3D solid meshes. This allowed investigation of several wall-tread 
contact conditions by modelling the clearance between the tread and 
the socket in the wall, rather than making assumptions on the stiffness of 
the wall-tread connections. Unlike other studies available in the litera-
ture on this topic, the methodology adopted in this work allows for the 
investigation of a wide range of structural behaviours possible between 
the fixed and simply supported conditions of the treads. The 3DEC re-
sults have been post-processed and visualised using custom Python- 

Fig. 28. A) Torsional moment values in the entire staircase for the cases A, E, A_over, E_over; b) Bending and torsional moment values in the entire staircase for case 
i1a and i1a_over. 
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based functions. Afterwards, the contact forces calculated from 3DEC 
results were used to evaluate the internal forces. 

The results show that assuming perfect contact conditions between 
the treads and the wall leads to a conservative prediction of the torsional 
moment values in the treads, while gaps and imperfections in the wall 
sockets allow small displacements of the treads, which reduce the torque 
and increase the compression force in the inner helical ring of the stair. 
This suggests that filling possible gaps in the wall-tread socket could 
potentially have a negative effect on the internal forces. If new load 
conditions or variations of the boundary conditions happen, the tread 
will not accommodate any small displacement, and internal forces such 
as torsional and bending moment could increase. 

Cantilever behaviour or an increase of the bending moment can still 
arise in the case of imperfect contact conditions, especially between the 
treads. The bending moment arising from potential cantilever situations 
will reach higher values if the tread cantilevering from the wall is 
located at the bottom of the stair since more treads rest on it. Conse-
quently, the tread-tread contact area should be the first location to 
assess. In case of poor contacts, live load conditions could affect the 
torsional and bending moment, so the contacts should be restored, 
spreading the contact area. 

The investigation of friction showed that structures with friction 
angles around 20̊ could experience higher values of the torsional 
moment. However, it has been seen that slight geometrical deviations, 
which belong to every real structure, mitigate the influence of a low 
friction angle, keeping the torsional moment values similar to the case 
with friction angles equal to 30̊ or 40̊. 

The simulation of vertical settlements located in the central area of 
the tower (“free end” of the treads) caused a local change in behaviour, 
but did not show a significant increase of the maximum torsional 
moment experienced by the worst-case tread. The effect of the vertical 
settlement is clearly related to the tolerances in the wall-tread connec-
tion. With a tighter socket, the displacement due to the settlement 
generates higher values of the torsional moment in a more confined area 
at the bottom of the stair, since the smaller clearance works to prevent 
the propagation of the displacement up the stair and fewer treads are 
affected. 

Since the case study considered in this work presents a geometrical 
feature uncommon among the existing unreinforced masonry spiral 
staircases, namely the partial gaps between the treads, a model with 
treads overlapping along the full length has been analysed to identify the 
differences in the structural behaviour. The investigation has shown that 
in the presence of tolerances or geometrical deviations, both models 
experienced similar internal forces. At the same time, the case with tight 
wall-tread socket conditions reached torsional moment values incom-
patible with the strength of the material, implying the infeasibility of 
such a condition. 

For the assessment and refurbishment of historic unreinforced spiral 
staircases, it is worth noting that we should not forget that these struc-
tures have existed for centuries and they have likely moved throughout 
the years by small displacements in response to varying boundary con-
ditions. This paper demonstrates how the structure could respond to 
these variations in order to inform a refurbishment strategy that is 
appropriate. 
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