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A B S T R A C T

We investigate phase-field modeling of brittle fracture in a one-dimensional bar featuring a continuous
variation of elastic and/or fracture properties along its axis. Our main goal is to quantitatively assess how
the heterogeneity in elastic and fracture material properties influences the observed behavior of the bar, as
obtained from the phase-field modeling approach. The results clarify how the elastic limit stress, the peak
stress and the fracture toughness of the heterogeneous bar relate to those of the reference homogeneous bar,
and what are the parameters affecting these relationships. Overall, the effect of heterogeneity is shown to be
strictly tied to the non-local nature of the phase-field regularization. Finally, we show that this non-locality
may amend the ill-posedness of the sharp-crack problem in heterogeneous bars where multiple points compete
as fracture locations.
1. Introduction

Although at some scale all materials are heterogeneous, i.e. their
properties vary in space, the adoption of homogeneous effective prop-
erties is often sufficient for mechanical modeling in engineering. How-
ever, the effect of heterogeneity cannot be ignored for a large class
of mechanical problems such as those involving composite materials,
biological tissues and metamaterials. The evolution of cracks in these
materials follows complex patterns that challenge many modeling and
computational approaches.

Phase-field modeling of brittle fracture was proposed by Bourdin
et al. (2000) as the regularization of the variational fracture formu-
lation by Francfort and Marigo (1998) and was later re-interpreted
as a special family of gradient damage models (Pham et al., 2011).
It provides a remarkably flexible variational framework to describe
the nucleation and propagation of cracks with arbitrarily complex
geometries and topologies in two and three dimensions (Ambati et al.,
2015).

The original phase-field modeling approach is based on the assump-
tion of homogeneous elastic and fracture properties of the material
throughout the domain. Previous studies addressing phase-field mod-
eling in heterogeneous materials adopt a pragmatic approach, by sim-
ply substituting the constant fracture toughness of the original model
with a fracture toughness depending on the material point (Natarajan
et al., 2019; Kumar et al., 2021; Hossain et al., 2014; Shen et al.,
2019). Natarajan et al. (2019) propose a phase-field formulation for
fracture in functionally graded materials. The approach is further de-
veloped by Kumar et al. (2021), where it is shown that the peak stress

∗ Corresponding author.
E-mail address: ldelorenzis@ethz.ch (L. De Lorenzis).

of a functionally graded material remains bounded between the values
pertaining to the single constituents in homogeneous conditions. Hos-
sain et al. (2014) propose a technique based on phase-field modeling
to evaluate the effective fracture toughness of heterogeneous media,
while Shen et al. (2019) show that the introduction of a spatially
variable fracture toughness in phase-field models is a promising tool to
model fracture in bones. However, to the best of our knowledge the im-
plications of heterogeneous material properties on the key predictions
of the phase-field model have never been the object of a fundamental
investigation. Thus, the relationship between local material properties
and observed behavior as predicted by the phase-field model remains
unclear, which in turn may prevent the proper calibration of the model
and the proper interpretation of its results.

In this work, we perform such investigation for the one-dimensional
case. We revisit the fundamental mathematical analysis in Pham et al.
(2011) by assuming that the elastic and/or fracture material properties
are heterogeneous with different possible profiles of spatial variations.
We aim at quantitatively assessing how the heterogeneity in the ma-
terial properties influences the observed behavior, and especially the
peak stress and the fracture toughness, in the context of phase-field
modeling.

The paper is structured as follows. Section 2 formulates the one-
dimensional phase-field model of brittle fracture and the related evo-
lution problem. Section 3 defines the classes and profile shapes of
heterogeneity adopted in the subsequent sections. Section 4 briefly
reviews the solution of the evolution problem for the homogeneous
bar. The core of the study is Section 5, where the evolution prob-
lem is solved for the heterogeneous bar. The analysis is first carried
vailable online 18 October 2022
997-7538/© 2022 The Author(s). Published by Elsevier Masson S
http://creativecommons.org/licenses/by/4.0/).
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out in the one-dimensional space and then extended to a bar in the
three-dimensional space. In Section 6, we discuss the consequences of
heterogeneity on the fracture behavior as predicted by the phase-field
approach in contrast to the predictions of the sharp-crack model. The
main conclusions are drawn in Section 7.

In the following, the dependence on the pseudo-time 𝑡 of the quasi-
tatic setting is denoted with the subscript 𝑡, e.g. 𝛼𝑡 is the damage
ariable at pseudo-time 𝑡; the prime symbol denotes the derivative
ith respect to either the spatial coordinate 𝑥, e.g. 𝑢′𝑡 = 𝜕𝑢𝑡∕𝜕𝑥, or

he damage variable 𝛼, e.g. 𝑤′ = 𝑑𝑤∕𝑑𝛼; the symbols ∇(∙) and 𝛥(∙)
epresent respectively the gradient and the Laplacian of the vectorial
uantity (∙) with respect to the spatial coordinates, while the divergence
s indicated as div(∙); the dot symbol denotes the derivative with respect
o the pseudo-time, e.g. �̇�𝑡 = 𝜕𝛼𝑡∕𝜕𝑡; vectors and second-order tensors
re denoted with bold symbols, e.g. 𝒖 is the displacement vector in
hree-dimensions; the 2nd-order identity tensor is indicated with 𝑰
nd the symmetric part of the 4th-order identity tensor with I𝑠; the
uperscript 𝑇 denotes the transpose of a matrix.

. One-dimensional phase-field model for brittle fracture

In this section, we formulate the phase-field model of brittle fracture
or a one-dimensional domain (Fig. 1), along the lines of Pham et al.
2011), Pham and Marigo (2013, 2010a,b) but with some generaliza-
ions to prepare for the later developments. The primary unknowns,
oth functions of the spatial coordinate 𝑥, are the displacement 𝑢 and
he phase-field or damage variable 𝛼. The latter is an internal variable
hich describes the material damage level. Its magnitude is bounded
etween 𝛼 = 0, corresponding to a sound material, and 𝛼 = 1, denoting
fully damaged material.

.1. Energetic quantities

As follows, we introduce some definitions which will be used in
he remainder of this paper, especially concerning important energetic
uantities. The total energy density 𝑊 is defined as

(𝑥, 𝑢′, 𝛼, 𝛼′) ∶= 𝜑𝑒𝑙(𝑥, 𝑢′, 𝛼) + 𝜑𝑑 (𝑥, 𝛼, 𝛼′), (1)

here 𝜑𝑒𝑙 is the elastic energy density and 𝜑𝑑 is the dissipation density.
he elastic energy density is given by

𝑒𝑙(𝑥, 𝑢′, 𝛼) ∶=
1
2
𝐸0(𝑥) 𝑎(𝛼) 𝑢′2, (2)

where 𝐸0 > 0 (considered here as a continuous function of 𝑥 to account
for possible heterogeneity in the elastic properties of the material) is
the undamaged elastic modulus and 𝑎(𝛼) is the degradation function. The
latter describes the degradation of the elastic modulus due to damage,
thus it is a monotonically decreasing function such that 𝑎(0) = 1 and
𝑎(1) = 𝑎′(1) = 0. We also introduce the compliance modulation function
𝑠(𝛼) as the reciprocal of 𝑎(𝛼),

𝑠(𝛼) ∶= 1
𝑎(𝛼)

. (3)

he dissipation density reads

𝑑 (𝑥, 𝛼, 𝛼′) ∶= 𝑤1(𝑥)
(

𝑤(𝛼) + 𝓁2 𝛼′2
)

, (4)

ence it consists of a local term, depending on the damage variable,
nd a non-local term, depending on its spatial derivative. In the local
erm, 𝑤(𝛼) is the local dissipation function, a monotonically increasing
unction of 𝛼 such that 𝑤(0) = 0 and 𝑤(1) = 1. There are two common
ptions for the definition of the functions 𝑎(𝛼) and 𝑤(𝛼) (Pham et al.,

2011; Gerasimov and De Lorenzis, 2019):

𝙰𝚃𝟷 ∶ 𝑎(𝛼) = (1 − 𝛼)2 and 𝑤(𝛼) = 𝛼, (5)

𝙰𝚃𝟸 ∶ 𝑎(𝛼) = (1 − 𝛼)2 and 𝑤(𝛼) = 𝛼2. (6)
2

c

Fig. 1. One-dimensional setting: clamped bar under tension.

Throughout this paper, we will focus on the AT1 model. In the non-
local term, the dependency on the spatial derivative of the damage
variable calls for the introduction of the internal length parameter 𝓁.
The local magnitude of the dissipation density is modulated by a specific
fracture energy 𝑤1, which is considered a continuous function of 𝑥 to
account for possible heterogeneity in the fracture properties of the
material.

The total energy functional reads

(𝑢, 𝛼) ∶= ∫

𝐿

−𝐿
𝑊 (𝑥, 𝑢′(𝑥), 𝛼(𝑥), 𝛼′(𝑥)) 𝑑𝑥 (7)

nd it is the sum of the elastic energy functional 𝑒𝑙(𝑢, 𝛼) and of the
issipation functional (𝛼),

(𝑢, 𝛼) = 𝑒𝑙(𝑢, 𝛼) +(𝛼), (8)

ith

𝑒𝑙(𝑢, 𝛼) ∶=∫

𝐿

−𝐿
𝜑𝑒𝑙(𝑥, 𝑢′(𝑥), 𝛼(𝑥)) 𝑑𝑥

=∫

𝐿

−𝐿

1
2
𝐸0(𝑥) 𝑎(𝛼(𝑥)) 𝑢′(𝑥)2 𝑑𝑥

(9)

nd

(𝛼) ∶=∫

𝐿

−𝐿
𝜑𝑑 (𝑥, 𝛼(𝑥), 𝛼′(𝑥))𝑑𝑥

=∫

𝐿

−𝐿
𝑤1(𝑥)

(

𝑤(𝛼(𝑥)) + 𝓁2𝛼′(𝑥)2
)

𝑑𝑥.
(10)

.2. Evolution problem

Let us now consider a bar clamped at the left end and loaded with
prescribed displacement at the opposite end (Fig. 1),

𝑡 (−𝐿) = 0 and 𝑢𝑡 (𝐿) = 𝑈𝑡, (11)

here 𝑈𝑡 is a positive smooth function of the pseudo-time 𝑡.
At pseudo-time 𝑡, a displacement field 𝑣 and a damage field 𝛽 are

dmissible if they respectively belong to 𝑡 and , with

𝑡 ∶=
{

𝑣 ∶ 𝑣 (−𝐿) = 0, 𝑣 (𝐿) = 𝑈𝑡
}

, (12)

∶= {𝛽 ∶ 𝛽 ∈ [0, 1]} . (13)

more precise definition of these functional spaces is out of the
cope of this work. We limit ourselves to require for them a sufficient
egularity so that the total energy functional remains finite.

The evolution of the system can be studied as a quasi-static process
arameterized through the pseudo-time 𝑡 ≥ 0 and described with the
unction 𝑡 ↦ (𝑢𝑡, 𝛼𝑡) and can be characterized variationally by means of
otal energy minimization. Following the variational approach in Pham
nd Marigo (2013, 2010a,b), the evolution problem is governed by the
rinciples of irreversibility, local stability and energy balance and can be
ormulated as follows:

roblem 1 (Evolution Problem). Given the initial state (𝑢0, 𝛼0) = (0, 0) at
he pseudo-time 𝑡 = 0, find 𝑡 ↦ (𝑢𝑡, 𝛼𝑡) ∈ 𝑡 × fulfilling the following

onditions:
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1. irreversibility: 𝑡 ↦ 𝛼𝑡 is a non-decreasing function,
2. local stability:

∀𝑣 ∈ 𝑡,∀𝛽 ∈  ∶ 𝛽 ≥ 𝛼𝑡,∃ℎ̄ > 0 ∶ ∀ℎ ∈ [0, ℎ̄]

(𝑢𝑡 + ℎ(𝑣 − 𝑢𝑡), 𝛼𝑡 + ℎ(𝛽 − 𝛼𝑡)) ≥ (𝑢𝑡, 𝛼𝑡),
(14)

3. energy balance:

(𝑢𝑡, 𝛼𝑡) = (𝑢0, 𝛼0) + 𝑡, (15)

where

𝑡 ∶= ∫

𝑡

0
𝜎𝑠(𝐿) �̇�𝑠 𝑑𝑠 (16)

is the work made by external actions in the pseudo-time interval
[0, 𝑡].

In Eq. (16), 𝜎𝑠 denotes the Cauchy stress at pseudo-time 𝑠:

𝜎𝑠(𝑥) ∶=
𝜕𝑊 (𝑥, 𝑢′, 𝛼𝑠(𝑥), 𝛼′𝑠(𝑥))

𝜕𝑢′
|

|

|

|

|𝑢′=𝑢′𝑠(𝑥)
= 𝐸0(𝑥) 𝑎(𝛼𝑠(𝑥)) 𝑢′𝑠(𝑥). (17)

2.3. First-order evolution problem

Upon a first-order expansion of Eq. (14) (under the assumption of
sufficient smoothness), an evolution 𝑡 ↦ (𝑢𝑡, 𝛼𝑡) is a solution of Prob-
lem 1 only if it is solution of the first-order evolution problem (Pham
and Marigo, 2013, 2010a,b)

Problem 2 (First-Order Evolution Problem). Given the initial state
(𝑢0, 𝛼0) = (0, 0) at the pseudo-time 𝑡 = 0, find 𝑡 ↦ (𝑢𝑡, 𝛼𝑡) ∈ 𝑡 × 
sufficiently smooth fulfilling the following conditions:

1. irreversibility:

�̇�𝑡 ≥ 0, (18)

2. first-order stability:

 ′(𝑢𝑡, 𝛼𝑡)(𝑣 − 𝑢𝑡, 𝛽 − 𝛼𝑡) ≥ 0, ∀(𝑣, 𝛽) ∈ 𝑡 × ∶ 𝛽 ≥ 𝛼𝑡, (19)

3. energy balance:

 ′(𝑢𝑡, 𝛼𝑡)(�̇�𝑡, �̇�𝑡) = 𝜎𝑡(𝐿) �̇�𝑡, (20)

where  ′(𝑢𝑡, 𝛼𝑡)(𝑣, 𝛽) denotes the directional derivative of  at (𝑢𝑡, 𝛼𝑡) in
the direction (𝑣, 𝛽).

Starting from Problem 2, standard arguments of Calculus of Vari-
ations deliver the equilibrium equation which states that the stress is
constant along the bar (Pham et al., 2011; Pham and Marigo, 2013,
2010a,b):

𝜎′𝑡 (𝑥) = 0 in (−𝐿,𝐿), (21)

as well as a set of Karush–Kuhn–Tucker (KKT) conditions

1. irreversibility :

�̇�𝑡 ≥ 0 in (−𝐿,𝐿), (22)

2. damage criterion:

−1
2
𝐸0 𝑎

′(𝛼𝑡) 𝑢′2𝑡 ≤ 𝑤1 𝑤
′(𝛼𝑡) − 2𝑤1 𝓁

2𝛼′′𝑡 − 2𝑤′
1 𝓁

2𝛼′𝑡

in (−𝐿,𝐿),
(23)

3. loading–unloading conditions:

�̇�𝑡
(1
2
𝐸0 𝑎

′(𝛼𝑡) 𝑢′2𝑡 +𝑤1 𝑤
′(𝛼𝑡) − 2𝑤1 𝓁

2𝛼′′𝑡 − 2𝑤′
1 𝓁

2𝛼′𝑡
)

= 0

in (−𝐿,𝐿),
(24)

long with the natural boundary conditions:
′
𝑡 (−𝐿) ≤ 0, 𝛼′𝑡 (𝐿) ≥ 0, (25)

′ −𝐿 �̇� −𝐿 = 0, 𝛼′ 𝐿 �̇� 𝐿 = 0. (26)
3

𝑡 ( ) 𝑡 ( ) 𝑡 ( ) 𝑡 ( ) s
emark 1. Eqs. (21), (23), (24) involve the spatial derivative of
0(𝑥) and 𝑤1(𝑥) which do not appear in the classical homogeneous

ormulation.

emark 2. The difference between the KKT conditions Eqs. (22)–(24)
or the general case of the heterogeneous bar problem and the analo-
ous conditions for the special case of homogeneous bar is the presence
f the terms containing the spatial derivative 𝑤′

1. This contribution to
he strong form of the governing equations is not included in previous
iterature dealing with heterogeneous materials, see e.g. Natarajan
t al. (2019), Kumar et al. (2021). However, these studies perform
umerical finite element analyses based on the weak form associated to
qs. (22)–(24); in the weak form the term containing 𝑤′

1 is compensated
or by a similar term with opposite sign appearing after integration by
arts, hence it does not influence results. As will be shown later, in the
resent study the same term is essential to understand the role played
y heterogeneity on qualitative and quantitative aspects of the solution
f the evolution problem.

. Homogeneous and heterogeneous bars

Thus far, the local elastic and fracture material properties have been
haracterized through 𝐸0(𝑥) and 𝑤1(𝑥), respectively. In the following,
e distinguish between two cases:

• homogeneous bar : the special case in which 𝐸0 and 𝑤1 are constant
along the bar;

• heterogeneous bar : the more general case in which 𝐸0 and/or 𝑤1
vary along the bar, as described by the functions 𝐸0(𝑥) and/or
𝑤1(𝑥), assumed to be sufficiently regular.

he spatial distribution of the material properties for the heterogeneous
ar problem is further defined as

0(𝑥) = �̄�0 ⋅ 𝑓𝐸 (𝑥) and 𝑤1(𝑥) = �̄�1 ⋅ 𝑓𝑤(𝑥), (27)

here the constants �̄�0 and �̄�1 are reference values of the undamaged
lastic modulus and the specific fracture energy, respectively, and the
unctions 𝑓𝐸 (𝑥) and 𝑓𝑤(𝑥) define the corresponding spatial variation
rofiles. The material with 𝐸0(𝑥) = �̄�0 and 𝑤1(𝑥) = �̄�1 is denoted as the
omogeneous material associated to a given heterogeneous material. In
he following, all the quantities referred to the associated homogeneous
aterial are denoted with a bar.

For the future developments, we now define three shapes of the
eterogeneity profile, denoted by ℎ𝑖(𝑥) with 𝑖 = 𝑙𝑖𝑛, 𝑝𝑎𝑟, 𝑒𝑥𝑝, each of
hich depends on a length 𝓁𝑓 termed the characteristic length of the
eterogeneity (Table 1). The magnitude of 𝓁𝑓 characterizes how rapidly
he material properties vary along the axis of the bar. This variation is
ssociated to the slope of the profile (𝑖 = 𝑙𝑖𝑛), to its curvature (𝑖 = 𝑝𝑎𝑟),
r to both (𝑖 = 𝑒𝑥𝑝).

We also define three classes of heterogeneous materials as summa-
ized in Table 2, each class assigning a profile shape to 𝑓𝑤(𝑥) and/or
o 𝑓𝐸 (𝑥). Accordingly, we distinguish between heterogeneity in the
pecific fracture energy (hw), heterogeneity in the undamaged elastic
odulus (hE) and full heterogeneity (hwE).

emark 3. We assume the material properties to be minimum at the
idpoint cross-section of the bar and we choose symmetric increasing
rofiles of three different shapes (Table 1). As a result, the midpoint
ross-section is the weak location where we expect damage to start and
evelop first. We will compare the behavior of these heterogeneous bars
ith that of homogeneous bars where the properties are everywhere
qual to the minimum values, i.e. �̄�0 = min𝑥 𝐸0(𝑥) and �̄�1 = min𝑥 𝑤1(𝑥).

Finally, we introduce the dimensionless coordinate �̌� ∶= 𝑥∕𝓁. With a

light abuse of notation, we denote ℎ𝑖, 𝑓𝑤, 𝑓𝐸 , 𝛼𝑡 expressed as functions
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Table 1
Shapes of heterogeneity: linear shape, parabolic shape and exponential shape.

Shape Expression Plot

linear ℎ𝑙𝑖𝑛(𝑥) = 1 + |𝑥|
𝓁𝑓

parabolic ℎ𝑝𝑎𝑟(𝑥) = 1 + 𝑥2

𝓁2
𝑓

exponential ℎ𝑒𝑥𝑝(𝑥) = exp
(

|𝑥|
𝓁𝑓

)

Table 2
Classes of heterogeneity: heterogeneity in specific fracture energy (hw), heterogeneity
in undamaged elastic modulus (hE), full heterogeneity (hwE).

Type 𝑓𝐸 (𝑥) 𝑓𝑤(𝑥)

hw 1 ℎ𝑖(𝑥)
hE ℎ𝑖(𝑥) 1
hwE ℎ𝑖(𝑥) ℎ𝑖(𝑥)

with 𝑖 = 𝑙𝑖𝑛, 𝑝𝑎𝑟, 𝑒𝑥𝑝

of �̌� with ℎ𝑖(�̌�), 𝑓𝑤(�̌�), 𝑓𝐸 (�̌�), 𝛼𝑡(�̌�), respectively. In particular, the profile
hapes are written in terms of �̌� as follows:

𝑙𝑖𝑛(�̌�) = 1 + 𝑟 |�̌�| , ℎ𝑝𝑎𝑟(�̌�) = 1 + 𝑟2 �̌�2 , ℎ𝑒𝑥𝑝(�̌�) = exp(𝑟 |�̌�|) (28)

here 𝑟 is the characteristic ratio:

∶= 𝓁
𝓁𝑓

. (29)

The limit case 𝑟 → 0 is obtained for:

• the sharp-crack model: 𝓁 → 0
• the associated homogeneous material: 𝓁𝑓 → ∞

Since we are interested in the diffusive approximation of cracks in het-
erogeneous materials, the relevant range of values for the applications
we have in mind is 0 < 𝑟 < 1, i.e. the variation of the material properties
occurs over lengths that are sufficiently larger than the intrinsic length
scale of the phase-field model. Values of 𝑟 (much) larger than 1 would
represent a variation of material properties occurring at a length scale
below the size of the characteristic length. Due to the nature of the
regularization, such variations would not be ‘‘seen’’ by the model and
are therefore not relevant for the present study.

4. Solution of the evolution problem for the homogeneous bar

In this section, we briefly summarize the solution of the evolution
problem formulated in Section 2 for the special case of homogeneous
bar with undamaged elastic modulus �̄�0 and specific fracture energy
̄ 1. This solution has been thoroughly analyzed in the literature, see
.g. Pham and Marigo (2013, 2010a,b). As mentioned earlier, we limit
urselves to the case of the AT1 model (Eq. (5)). This model satisfies
he strain hardening condition, i.e. −𝑤′ (𝛼) ∕𝑎′ (𝛼) is increasing with
espect to 𝛼 (this implies that the elastic domain in the strain space
xpands for increasing damage), and the stress softening condition,

′ ′
4

i.e. 𝑤 (𝛼) ∕𝑠 (𝛼) is decreasing with respect to 𝛼 for all values of 𝛼 in l
[0, 1] (this implies that the elastic domain in the stress space shrinks
for increasing damage) (Pham et al., 2011).

Let us consider an initially unstrained and undamaged bar, i.e.
(

𝑢0, 𝛼0
)

= (0, 0), loaded with an imposed end displacement 𝑈𝑡 as
introduced in Section 2.2. The starting point of the analysis is the
construction of a homogeneous solution, i.e. a solution characterized
by a constant value of the damage variable along the bar under a
monotonically increasing prescribed displacement. Since the stress is
constant due to equilibrium and the elastic properties are homoge-
neous, the strain field is also constant and given by 𝑢′𝑡 = 𝑈𝑡∕2𝐿. The
bar being initially undamaged, the solution of the evolution problem is
characterized by an initial elastic phase, where the damage criterion in
Eq. (23), which in the case at hand simplifies to

−1
2
�̄�0 𝑎

′(𝛼𝑡) 𝑢′2𝑡 ≤ �̄�1 𝑤
′(𝛼𝑡), (30)

is a strict inequality with 𝛼𝑡 = 0. This phase continues until the applied
displacement 𝑈𝑡 reaches its value at the elastic limit

𝑈𝑒 = 2𝐿

√

−
2 �̄�1 𝑤′(0)
�̄�0 𝑎′(0)

= 2𝐿

√

�̄�1

�̄�0
(31)

corresponding to the elastic limit stress or yield stress

𝜎𝑒 =
√

�̄�0 �̄�1.

We denote the corresponding pseudo-time as 𝑡𝑒. For 𝑡 > 𝑡𝑒 (hence
𝑈𝑡 > 𝑈𝑒), the damage criterion (30) becomes an equality and damage
can grow. For the ensuing homogeneous solution in the damaging phase
the homogeneous value of the damage variable can be computed from
the prescribed displacement 𝑈𝑡 through

𝑡 = 2𝐿

√

−
2�̄�1 𝑤′(𝛼𝑡)
�̄�0 𝑎′(𝛼𝑡)

= 2𝐿

√

�̄�1

�̄�0
(

1 − 𝛼𝑡
) (32)

and the corresponding stress is

𝜎𝑡 =

√

2 �̄�0 �̄�1 𝑤′(𝛼𝑡)
𝑠′(𝛼𝑡)

=
√

�̄�0 �̄�1
(

1 − 𝛼𝑡
)3. (33)

Note that the validity of the strain hardening condition guarantees
that the functional relationship 𝛼𝑡 ↦ 𝑈𝑡 in Eq. (32) is monotonically
increasing, hence there is a unique 𝛼𝑡 solution for a given 𝑈𝑡, whereas
the stress softening property implies that the stress in Eq. (33) decreases
with the damage level and hence with the applied displacement. Thus,
the peak stress of the homogeneous response is reached for 𝛼𝑡 = 0, hence

𝜎𝑝 = 𝜎𝑒 =
√

�̄�0 �̄�1. (34)

Denoting the pseudo-time at peak stress as 𝑡𝑝, for the homogeneous bar
it is thus 𝑡𝑝 = 𝑡𝑒.

A stability analysis (Pham and Marigo, 2013, 2010a,b) demonstrates
that for a sufficiently long bar (2𝐿 ≫ 𝑙) the homogeneous state is
nstable for any 𝑈𝑡 ≥ 𝑈𝑒 and a damage localization necessarily arises
t the end of the elastic phase. In this localized solution, damage is
nly non-zero within an open interval 𝑡 ∈ (−𝐿,𝐿) where the damage

criterion holds as an equality, while it vanishes in the remainder of the
domain. Infinite localized solutions are possible based on the position of
the damage localization region within the domain. Without loss of gen-
erality, we assume here that this region is centered at 𝑥∗ = 0, i.e. at the
midpoint of the bar. A thorough analysis of the localization phase can
be found in Pham and Marigo (2013, 2010a,b) and references therein
and is not repeated here. During localization, the maximum value of the
damage variable, i.e. 𝛼𝑡 (𝑥∗), increases monotonically whereas the stress
ecreases, hence 𝜎𝑝 is the peak stress not only of the homogeneous
esponse but of the overall stress–displacement response. To follow this
hase, control is switched from increasing prescribed displacement to
ecreasing stress or increasing 𝛼𝑡 (𝑥∗), as the corresponding 𝑈𝑡 may no

onger be monotonically increasing depending on the length of the bar.
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At the end of the localization phase, 𝛼𝑡 (𝑥∗) reaches the value 1
leading to failure of the bar. We denote the corresponding pseudo-time
as 𝑡𝑢, at which the stress 𝜎𝑢 = 0 and the fully localized damage profile
𝛼𝑢, symmetric about 𝑥∗ = 0, reads (Gerasimov and De Lorenzis, 2019):

𝛼𝑢(𝑥) =

{

0, in [−𝐿,−𝛿𝑢]
1
4
𝑥2

𝓁2
+ 𝑥

𝓁
+ 1, in

(

−𝛿𝑢, 0
)

,
(35)

here 𝛿𝑢 = 2𝓁 is the half-support width.
The fracture toughness is defined as the dissipated energy at failure:

𝑐 ∶= (𝛼𝑢) (36)

nd in the present case is given by

𝑐 =
8
3
�̄�1 𝓁. (37)

Remark 4. According to Eq. (37), for a given 𝓁, knowledge of the local
quantity �̄�1 is sufficient to determine the global quantity 𝐺𝑐 .

5. Solution of the evolution problem for the heterogeneous bar

In this section, we derive the solution of the evolution problem for
the heterogeneous bar, including the homogeneous and the localized
solutions, and especially focusing on the effect of the heterogeneity on
peak stress and fracture toughness. As in the case of the homogeneous
bar, we carry out the analysis for the AT1 model.

5.1. Governing equations on half domain

We can take advantage of symmetry and study the problem on half
(e.g. on the left half) of the domain. For later reference, we rewrite here
the equilibrium equation

𝜎′𝑡 (𝑥) = 0 in (−𝐿, 0) (38)

and the KKT conditions

1. irreversibility :

�̇�𝑡 ≥ 0 in (−𝐿, 0), (39)

2. damage criterion:

− 1
2
𝐸0 𝑎

′(𝛼𝑡) 𝑢′2𝑡 ≤ 𝑤1 𝑤
′(𝛼𝑡) − 2𝑤1 𝓁

2𝛼′′𝑡 − 2𝑤′
1 𝓁

2𝛼′𝑡

in (−𝐿, 0),
(40)

3. loading-unloading conditions:

�̇�𝑡
( 1
2
𝐸0 𝑎

′(𝛼𝑡) 𝑢′2𝑡 +𝑤1 𝑤
′(𝛼𝑡) − 2𝑤1 𝓁

2𝛼′′𝑡 − 2𝑤′
1 𝓁

2𝛼′𝑡
)

= 0

in (−𝐿, 0).
(41)

The governing equations above do not require the existence of 𝑓 ′
𝑤(0)

but only of the left-hand derivative. The natural boundary conditions
read:

𝛼′𝑡 (−𝐿) ≤ 0, (42)

𝛼′𝑡 (−𝐿) �̇�𝑡 (−𝐿) = 0. (43)

We now need additional boundary conditions at �̌� = 0. These can
e easily retrieved from the variational approach as for the case of
he homogeneous bar (Pham and Marigo, 2013), and read as follows
epending on 𝑡:
′
𝑡 (0) = 0 for 𝑡 ∈ (𝑡𝑒, 𝑡𝑢), (44)

(0) = 1. (45)
5

𝑢

.2. Homogeneous solution

Using Eqs. (5) and (17), the damage criterion Eq. (40) takes the form

1
𝐸0

1
(

1 − 𝛼𝑡
)3

𝜎2𝑡 ≤ 𝑤1
(

1 − 2𝓁2 𝛼′′𝑡
)

− 2𝑤′
1 𝓁

2𝛼′𝑡 in (−𝐿, 0). (46)

With the dimensionless coordinate defined in Section 3, the dimension-
less damage criterion reads

1
𝑓𝐸 (�̌�)

1
(

1 − 𝛼𝑡(�̌�)
)3

�̌�2𝑡 ≤ 𝑓𝑤(�̌�)
(

1 − 2 𝛼′′𝑡 (�̌�)
)

− 2 𝑓 ′
𝑤(�̌�) 𝛼

′
𝑡 (�̌�)

in (−𝐿∕𝓁, 0) ,
(47)

where �̌�𝑡 is the dimensionless stress

�̌�𝑡 ∶=
𝜎𝑡
�̄�𝑒

(48)

and �̄�𝑒 = �̄�𝑝 =
√

�̄�0 �̄�1 is the yield stress, equal to the peak stress, for
the associated homogeneous material.

As in the analysis for the homogeneous bar, we first look for a
homogeneous solution in the elastic phase, where the damage criterion
is satisfied as a strict inequality with 𝛼𝑡 = 0. It is straightforward to
determine the dimensionless elastic limit stress �̌�𝑒 and the position �̌�∗

of the first point of the bar reaching the elastic limit as follows

̌𝑒 = min
�̌�∈[−𝐿∕𝓁,0]

√

𝑓𝐸 (�̌�) ⋅ 𝑓𝑤(�̌�) = 1, (49)

̌∗ = arg min
�̌�∈[−𝐿∕𝓁,0]

√

𝑓𝐸 (�̌�) ⋅ 𝑓𝑤(�̌�) = 0. (50)

Remark 5. According to Eq. (49), the elastic limit stress for the
heterogeneous bar is the same as for the bar made of the associated
homogeneous material and is equal to

𝜎𝑒 = �̄�𝑒 =
√

�̄�0 �̄�1. (51)

Next, we look for a homogeneous solution in the damaging phase,
where the damage criterion is satisfied as an equality with 𝛼𝑡 ≠ 0 and
uniform along the bar. Assuming uniform damage delivers

1
𝑓𝐸 (�̌�)

1
(

1 − 𝛼𝑡(�̌�)
)3

�̌�2𝑡 ≤ 𝑓𝑤(�̌�) in (−𝐿∕𝓁, 0) , (52)

Eq. (52) only admits a solution for the special case where 𝑓𝐸 (𝑥)⋅𝑓𝑤(𝑥) is
onstant along the bar, which is excluded a priori by our choice of the
eterogeneity profiles in Section 3. Hence, the evolution problem for
he general case of a heterogeneous bar does not admit a homogeneous
olution in the damaging phase.

.3. Localized solution

After reaching the elastic limit, i.e. for 𝑡 > 𝑡𝑒, the heterogeneous
ar problem admits only a localized solution with 𝛼𝑡(�̌�) ≠ 0. Hence,
ithin the left half-domain there exists an interval (−𝛿𝑡, 0) where the
amage criterion holds as an equality while the remainder of the bar
s undamaged, i.e.
1
𝑓𝐸

1
(

1 − 𝛼𝑡
)3

�̌�2𝑡 = 𝑓𝑤 ⋅
(

1 − 2 𝛼′′𝑡
)

− 2 𝑓 ′
𝑤 𝛼′𝑡 in

(

−𝛿𝑡, 0
)

,

𝛼𝑡 = 0 in
[

−𝐿∕𝓁,−𝛿𝑡
]

(53)

with 𝛿𝑡 ∶= 𝛿𝑡∕𝓁, where 𝛿𝑡 is the half-support width (a priori unknown) at
pseudo-time 𝑡. The regularity of the functions 𝑎(𝛼) and 𝑤(𝛼) implies that
𝛼𝑡 and 𝛼′𝑡 are continuous within (−𝐿∕𝓁, 0) (Pham and Marigo, 2013),
hence

𝛼𝑡(−𝛿𝑡) = 𝛼′𝑡 (−𝛿𝑡) = 0, (54)

while the boundary conditions Eqs. (44), (45) continue to hold.
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The damage profile 𝛼𝑡(�̌�) is assumed to be monotonically increasing
over (−𝛿𝑡, 0) (an assumption that can be easily verified a posteriori),
therefore the maximum damage value is the value of the damage
variable at �̌�∗ = 0, i.e. 𝛼𝑡(0).

5.3.1. Peak stress and stress–displacement curve during localization
Next, we show that the boundary value problem in 𝛼𝑡 constituted

by Eq. (53) along with the boundary conditions in Eqs. (54), (44) for
𝑡 ∈ [𝑡𝑒, 𝑡𝑢) admits solutions for increasing values of the stress, up to
a peak value that, as in the case of the homogeneous bar, we denote
as the peak stress. After the peak, the stress decreases. As follows, we
devise a semi-analytical scheme to solve the problem and determine
the peak stress.

The boundary value problem can be reformulated as an initial value
problem through the spatial coordinate transformation:

�̃� = �̌� + 𝛿𝑖𝑛𝑡 , (55)

where 𝛿𝑖𝑛𝑡 is a guess for the a priori unknown half-support width 𝛿𝑡. The
damage criterion is rewritten in terms of �̃� as

1
𝑓𝐸

(

�̃� − 𝛿𝑖𝑛𝑡
)

1
(

1 − �̃�𝑡(�̃�)
)3

�̌�2𝑡 = 𝑓𝑤
(

�̃� − 𝛿𝑖𝑛𝑡
) (

1 − 2 �̃�′′𝑡 (�̃�)
)

+

−2 𝑓 ′
𝑤−

(

�̃� − 𝛿𝑖𝑛𝑡
)

𝛼′𝑡 (�̃�) for �̃� ≥ 0,
(56)

here 𝑓 ′
𝑤−(�̌�) is the left-hand derivative of 𝑓𝑤(�̌�) and �̃�(�̃�) is the

unction �̃� ↦ 𝛼𝑡(�̃� − 𝛿𝑖𝑛𝑡 ). The initial conditions of the initial value
roblem stem from Eq. (54):

�̃�𝑡(0) = �̃�′𝑡 (0) = 0. (57)

he initial value problem defined by Eqs. (56), (57) is solved via a
unge–Kutta scheme using the algorithm ODE 45 of Matlab (Shampine
nd Reichelt, 1997) starting from the initial point �̃� = 0 (Fig. 2). The
ntegration is stopped at the target point �̃� = 𝛿𝑜𝑢𝑡𝑡 ≠ 0 such that

�̃�′𝑡 (𝛿
𝑜𝑢𝑡
𝑡 ) = 0 for 𝑡 > 𝑡𝑒. (58)

or a given �̌�𝑡 with 𝑡 > 𝑡𝑒, we assign to 𝛿𝑡 the values corresponding
o the condition 𝛿𝑖𝑛𝑡 = 𝛿𝑜𝑢𝑡𝑡 along the piecewise linear interpolation of
he pairs (𝛿𝑖𝑛𝑡 , 𝛿

𝑜𝑢𝑡
𝑡 ) obtained from Eqs. (56)–(58). When 𝑡 = 𝑡𝑒, the bar

s undamaged and 𝛿𝑡 = 0. For 1 ≤ �̌�𝑡 ≤ �̌�𝑝, two values are assigned
o 𝛿𝑡. The peak stress �̌�𝑝 is found as the stress for which these two
alues coincide (Fig. 3). Details about the numerical implementation
re reported in Appendix A.

Since the computation is based on Eqs. (56)–(58), the result, i.e. the
imensionless peak stress �̌�𝑝, depends on the functions 𝑓𝑤(�̌�) and 𝑓𝐸 (�̌�),
.e. it depends on the heterogeneity class and profile shape and, for a
iven class and profile shape, it depends on the characteristic ratio 𝑟
nly. Results for all the considered heterogeneity classes and profile
hapes are illustrated in Fig. 4.

emark 6. For the heterogeneous bar, the peak stress 𝜎𝑝 is larger than
he elastic limit stress 𝜎𝑒 (Fig. 4). This is due to the presence of a short
ardening phase during the initial damage localization process.

Computing the support extension for different values of �̌�𝑡 with
∈ [𝑡𝑒, 𝑡𝑢) enables also the definition of the full stress–displacement

urve during the damage localization phase. In this case, the numerical
ntegration is performed via the stiff equation solver ODE 23 s of
atlab (Shampine and Reichelt, 1997), see Appendix A for the detailed

lgorithm. To each 𝛿𝑡 we can associate a damage profile 𝛼𝑡(�̃�), its
aximum 𝛼∗𝑡 = �̃�𝑡(𝛿𝑡), and the stress �̌�𝑡. Also, recalling Eq. (17), by

knowing the current dimensionless stress �̌�𝑡 and the damage profile
𝛼𝑡, the dimensionless applied displacement 𝑈𝑡∕2𝐿 can be computed
through the integral

𝑈𝑡
2𝐿

= �̌�𝑡
𝓁
𝐿

√

�̄�1

�̄�0 ∫

0

−𝐿∕𝓁

1
𝑎(𝛼𝑡(�̌�)) 𝑓𝐸 (�̌�)

𝑑�̌�. (59)

Sorting these quantities based on an ascending order of 𝛼∗𝑡 yields the
stress–displacement curve during the localization phase (Fig. 5).
6

Fig. 2. Schematic representation of the procedure that returns a value 𝛿𝑜𝑢𝑡𝑡 for any
𝛿𝑖𝑛𝑡 . The blue and red lines represent the profile shape ℎ𝑖 and the damage variable 𝛼𝑡,
respectively. Numerical integration starts from �̃� = 0 and is stopped at �̃� = 𝛿𝑜𝑢𝑡𝑡 . (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Representation of the piecewise linear interpolation of pairs (𝛿𝑖𝑛𝑡 , 𝛿
𝑜𝑢𝑡
𝑡 ) for

ncreasing values of �̌�𝑡 starting from �̌�𝑒 = 1 (dotted lines). The plot is obtained for
he hE class with profile shape 𝑓 (�̃�) = 1 − 𝑟 ⋅ (�̃�− 𝛿𝑖𝑛𝑡 ). Points e and p correspond to the
olutions for pseudo-times 𝑡 = 𝑡𝑒 and 𝑡 = 𝑡𝑝, respectively.

emark 7. In the spirit of previous studies on phase-field modeling
f brittle fracture (Pham et al., 2011; Miehe et al., 2010) and in com-
liance with the 𝛤 -convergence arguments at the root of the approach,
e performed here path-independent energy minimization, i.e. we do
ot account for the irreversibility condition. As noted in Pham and
arigo (2013), the solution stemming from an incremental procedure

nd compatible with the irreversibility condition corresponds to the
pper envelope of the set of localization profiles obtained for 𝑡 ∈ (𝑡𝑒, 𝑡𝑢].

.3.2. Fracture toughness
The fracture toughness is defined as the dissipated energy at failure,

nd its determination requires the computation of the fully localized
amage profile. At 𝑡 = 𝑡𝑢 it is 𝜎𝑡 = 0 and the damage criterion within
he half-support width reads

𝛼′′𝑢 (�̌�) + 2
𝑓 ′
𝑤(�̌�)

𝑓𝑤(�̌�)
𝛼′𝑢(�̌�) = 1 in (−𝛿𝑢, 0). (60)

It is immediate to notice that, since function 𝑓𝐸 is only contained in
the stress term which is now zero, the damage profile at 𝑡 = 𝑡𝑢 for
the heterogeneous bar only depends on function 𝑓𝑤. This implies that
the fracture toughness for classes hw and hwE depends on the profile
shape of the heterogeneity and on the characteristic ratio 𝑟, whereas a
heterogeneity of class hE leaves the fracture toughness unchanged.

As follows, we exemplify the computations for the linear hetero-
geneity profile shape, whereas the analogous computations for the
parabolic and exponential profile shapes follow similar lines and are
reported in Appendix C and Appendix D, respectively. For the linear
profile shape, Eq. (60) becomes

2 𝛼′′𝑢 (�̌�) − 2
(

𝑟
)

𝛼′𝑢(�̌�) = 1 in (−𝛿𝑢, 0). (61)

1 − 𝑟 �̌�
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Fig. 4. Dimensionless peak stress vs. characteristic ratio for different heterogeneity classes and profile shapes.
Fig. 5. Stress–displacement diagram for 𝓁∕2𝐿 = 10−1,
√

�̄�1∕�̄�0 = 1 for hw class with linear profile shape (a). For the case 𝑟 = 0.5, points e and p corresponding respectively to
he pseudo-times 𝑡 = 𝑡𝑒 and 𝑡 = 𝑡𝑝 are indicated. Damage profile at 𝑡 = 𝑡𝑒 (b). Damage profile at 𝑡 = 𝑡𝑝 (c).
he analytical solution for 𝛼𝑢 depends on the unknown coefficients 𝑐1
nd 𝑐2:

𝑢(�̌�) =
𝑟 �̌�

(

− 2 + 𝑟 �̌�
)

+
(

−2 + 𝑐1 ⋅ 8 𝑟
)

log
(

1 − 𝑟 �̌�
)

8𝑟2
+ 𝑐2

in (−𝛿𝑢, 0).
(62)

The two unknown coefficients can be obtained as functions of the
unknown 𝛿𝑢 combining Eq. (62) with the boundary conditions Eq. (54)
leading to

𝑐1 = −1
4
𝛿𝑢

(

2 + 𝑟 𝛿𝑢
)

, (63)

𝑐2 =
−𝑟 𝛿𝑢

(

2 + 𝛿𝑢 𝑟
)

+ 2
(

1 + 𝑟 𝛿𝑢
)2 log

(

1 + 𝑟 𝛿𝑢
)

8 𝑟2
. (64)

y the following substitutions

= 8 𝑟2 − 1
exp(1) and 𝜏 = 8 𝑟2 − 1

(1 + 𝑟 𝛿𝑢)2
(65)

and using Eqs. (62), (63), (64), we can rewrite the remaining boundary
condition Eq. (45) as Appendix E

𝑧 = 𝜏 ⋅ exp(𝜏). (66)

Eq. (66) has solution

𝜏 = 𝑊𝑘(𝑧), (67)

here 𝑊𝑘 is the Lambert function whose definition is provided in
7

ppendix B.
Substituting backwards and prescribing 𝛿𝑢 ≥ 0 we find

𝛿𝑢 =
1
𝑟

⎧

⎪

⎨

⎪

⎩

exp
⎡

⎢

⎢

⎢

⎣

1 +𝑊0

(

8 𝑟2−1
exp(1)

)

2

⎤

⎥

⎥

⎥

⎦

− 1

⎫

⎪

⎬

⎪

⎭

(68)

which gives the half-support width 𝛿𝑢 as a function of the characteristic
ratio 𝑟 (Fig. 6(a)).

The dimensionless fracture toughness �̌�𝑐 , defined as

�̌�𝑐 =
𝐺𝑐

�̄�𝑐
, (69)

where �̄�𝑐 = 8∕3𝓁 �̄�1 is the fracture toughness for the associated
homogeneous material, can be obtained recalling Eqs. (36) and (10)
as

�̌�𝑐 =
3
4 ∫

0

−𝛿𝑢
𝑓𝑤(�̌�)

(

𝛼𝑢(�̌�) + 𝛼′𝑢(�̌�)
2) 𝑑�̌�. (70)

Combining Eq. (62) with Eqs. (63) and (64) and using 𝑓𝑤(�̌�) = ℎ𝑙𝑖𝑛(�̌�)
in Eq. (28)1, �̌�𝑐 can be expressed in terms of 𝛿𝑢 as

�̌�𝑐 =
3

256 𝑟3

{

− 3 − 4
(

1 + 𝑟 𝛿𝑢
)2 [

− 1 + 2 log
(

1 + 𝑟 𝛿𝑢
)

]

+

+
(

1 + 𝑟 𝛿𝑢
)4 [ − 1 + 4 log

(

1 + 𝑟 𝛿𝑢
)

]

}

.
(71)

A further substitution of Eq. (68) in Eq. (71) leads to an analytical
expression for �̌�𝑐 that is plotted as solid line in Fig. 6(b).

The expression for �̌�𝑐 can be simplified using the polynomial ap-
proximation of the Lambert function proposed by Veberič (2012) along

with a Taylor expansion about 𝑟 = 0. Although the approximation order
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Fig. 7. Damage profile at failure 𝛼𝑢 for different values of the characteristic ratio for
𝑤 with linear shape.

an be freely selected Appendix F, here the Veberič approximation is
runcated at order 6 and the Taylor expansion at order 5 giving

̌𝑐 ≈ 1 + 1
2
𝑟 − 2

15
𝑟2 + 16

135
𝑟3 − 46

315
𝑟4 + 608

2835
𝑟5 + 𝑜

(

𝑟5
)

. (72)

he exact dimensionless fracture toughness (Eq. (71)) and its poly-
omial approximation (Eq. (72)) are compared in Fig. 6(b). Finally,
ombining Eqs. (62), (63), (64), (68) we can plot the damage profile
t failure, 𝛼𝑢, for different values of the characteristic ratio 𝑟 (Fig. 7).

The results on the dimensionless fracture toughness for the three
ifferent profile shapes are summarized in Fig. 8.

emark 8. For the heterogeneous bar, the damage profile at failure is
arrower and the fracture toughness 𝐺𝑐 is larger than for the bar made
f the associated homogeneous material (Figs. 7, 8).

.4. Extension to heterogeneous bars in three dimensions

In this subsection, we extend the previous one-dimensional analysis
o the case of bars with properties varying along the longitudinal axis
mbedded in the three-dimensional space. The main aim is to investi-
ate the effects of this more realistic setting on the peak stress and frac-
ure toughness and highlight the differences with the one-dimensional
8

ase (Sections 5.3.1 and 5.3.2).
.4.1. Problem setting
Fig. 9 illustrates the geometry and the boundary conditions of

he problem. The bar has length 2𝐿 and square cross-section with
imensions 2𝐻 × 2𝐻 , and a monotonically increasing displacement 𝑈𝑡
s prescribed at 𝑥 = 𝐿. Homogeneous Neumann boundary conditions
re enforced to the damage variable on the whole boundary.

The three-dimensional version of the total energy functional in
q. (7) reads

(𝒖, 𝛼) = ∫𝛺

[

1
2
𝑎(𝛼)C0𝜺(𝒖) ⋅ 𝜺(𝒖) +𝑤1

(

𝑤(𝛼) + 𝓁2
|∇𝛼|2

)

]

𝑑𝒙, (73)

where 𝒖 is the displacement vector, C0 is the undamaged 4th-order
elasticity tensor for linear elastic isotropic materials, 𝜺(𝒖) = 1

2 (∇𝒖+∇
𝑇 𝒖)

is the 2nd-order infinitesimal strain tensor, 𝛺 is the spatial domain and
𝒙 = {𝑥, 𝑦, 𝑧} is the spatial coordinate vector with 𝑥 corresponding to the
longitudinal axis of the bar.

The distribution of the elastic and fracture properties along the
major axis is defined again through the functions 𝑓𝐸 and 𝑓𝑤 as

C0(𝒙) = C̄0 ⋅ 𝑓𝐸 (𝑥) and 𝑤1(𝒙) = �̄�1 ⋅ 𝑓𝑤(𝑥), (74)

where C̄0 and �̄�1 are independent of 𝒙. In Appendix G it is shown
that, for isotropic material properties, Eq. (74) implies a heterogeneous
distribution of the undamaged elastic modulus, namely 𝐸0(𝒙) = �̄�0 ⋅
𝑓𝐸 (𝑥), and a homogeneous Poisson’s ratio 𝜈(𝒙) = �̄�.

The main hypotheses adopted in the one-dimensional case are pre-
erved. In particular, we perform a path-independent energy minimiza-
ion (Remark 7), we introduce the dimensionless spatial coordinate
ector �̌� = 𝒙∕𝓁 and the dimensionless stress tensor �̌�𝑡 = 𝝈𝑡∕

√

�̄�1 �̄�0.
We limit the analysis to a linear type of heterogeneity with slope 𝑟
(Table 1).

Equilibrium prescribes div(�̌�𝑡) = 𝟎, while the damage criterion is
written as
1
𝑓𝐸

1
(

1 − 𝛼𝑡
)3

Š0�̌�𝑡 ⋅ �̌�𝑡 = 𝑓𝑤 ⋅
(

1 − 2𝛥𝛼𝑡
)

− 2
𝜕𝑓𝑤
𝜕�̌�

𝜕𝛼𝑡
𝜕�̌�

in ̌𝑡, (75)

where ̌𝑡 is the support of the damage variable. Š0 is the dimensionless
4th-order undamaged compliance tensor, which reads

Š0 = �̄�0 C̄−1
0 = (1 + 𝜈) I𝑠 − 𝜈 𝑰 ⊗ 𝑰 (76)

and depends on the Poisson’s ratio 𝜈 only. Note that Eq. (75) depends
exclusively on the parameters 𝑟 and 𝜈 and on the class of heterogeneity
(hw, hE, hwE). Thus, in a three-dimensional setting the damage crite-
rion depends on the Poisson’s ratio and the criterion defining the elastic
limit 𝑡 becomes max (Š �̌� (�̌�) ⋅ �̌� (�̌�)) = 1.
𝑒 �̌� 0 𝑒 𝑒



European Journal of Mechanics / A Solids 97 (2023) 104826F. Vicentini et al.

5

H
c

⟨

w
𝑎
o
s

⟨

Fig. 8. Dimensionless fracture toughness vs. characteristic ratio for different heterogeneity classes and profile shapes.
Fig. 9. Geometry and boundary conditions in three dimensions.
.4.2. Peak average stress
In three dimensions the stress can vary within the cross-section.

owever, equilibrium imposes a constant axial force, hence a constant
ross-sectional 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 normal stress ⟨𝜎⟩𝑡, which is defined as

𝜎⟩𝑡 =
1

4𝐻2 ∫

𝐻

−𝐻 ∫

𝐻

−𝐻
𝜎𝑥𝑥𝑡 𝑑𝑦 𝑑𝑧, (77)

here 𝜎𝑥𝑥𝑡 is the 𝑥𝑥-component of the Cauchy stress tensor 𝝈𝑡 =
(𝛼𝑡)C0𝜺(𝒖𝑡). Therefore, in the three-dimensional context the concept
f peak stress used in Section 5.3.1 is replaced by the average peak
tress ⟨𝜎⟩𝑝 = sup𝑡⟨𝜎⟩𝑡.

Thus, let us study the peak average dimensionless stress ⟨�̌�⟩𝑝 =

𝜎⟩𝑝∕
√

�̄�1�̄�0. We perform a series of numerical experiments for dif-
ferent value of 𝑟 ∈ [0, 1] and four values of the Poisson’s ratio 𝜈 =
{0, 0.15, 0.3, 0.45}. We assume to have a long bar with 𝐿∕𝓁 = 15, aspect
ratio 𝐿∕𝐻 = 6.25, 𝓁 = 0.1, �̄�0 = 1 and �̄�1 = 1. The finite element
analyses are carried out with our code GRIPHFiTH (Carrara et al.,
2022) using a structured mesh with 8-node brick elements. Along 𝑦
and 𝑧, the mesh size is 0.02. The mesh is refined in the central zone
along the 𝑥-axis for a length of 4𝓁, i.e. where the damage is expected to
localize. In this central region, the element size is 0.01, while outside it
is 1.3∕7. The load 𝑈𝑡 is applied in steps with increments of 𝛥𝑈𝑡 = 5⋅10−4.
The non-negativity of the damage variable is enforced through the
penalty method proposed by Gerasimov and De Lorenzis (2019) and the
problem is solved by means of an alternate minimization scheme (Bour-
din, 2007) which is stopped when the norm of the residuals becomes
lower than a predefined tolerance of 10−4.

The results in terms of ⟨�̌�⟩𝑝 for the three classes of heterogeneity
are summarized in Fig. 10 and are qualitatively very similar to those
obtained in the one-dimensional setting, showing an increase of the
peak stress with the characteristic ratio 𝑟.

Quantitatively we observe that the values obtained for 𝜈 = 0 overlap
with those of the one-dimensional bar (as expected), while increasing
the Poisson’s ratio leads to an increase of the peak average stress ⟨�̌�⟩𝑝.
For the classes hE and hwE, this is due to a varying lateral contraction
9

introduced by the Poisson’s effect whose magnitude is modulated by the
elastic modulus along the bar. As a consequence, a necking deformation
is introduced already in the elastic regime whose magnitude varies
along the 𝑥-axis and has its maximum in correspondence of the mini-
mum value of �̄�0(𝒙). It is worth noting that this necking deformation is
not present in homogeneous bars, at least before the onset of the failure
after reaching the peak stress 𝜎𝑝 = 𝜎𝑒. The change in lateral contraction
introduces parasitic shear stresses that break up the uniaxial stress
state, leading to a variation of the term Š0�̌�𝑡(�̌�) ⋅ �̌�𝑡(�̌�) within the cross-
section and, thus, to a point-wise different local elastic limit. This effect
is more pronounced for larger values of the Poisson’s ratio and is further
exacerbated by the progressive evolution of the damage during the
hardening regime (see Section 5.3.1), which makes the heterogeneity in
the elastic parameters more pronounced. As a result of this mechanism
the damage does not evolve homogeneously within the cross-section,
and this ultimately leads to an increase of the peak average stress with
respect to the one-dimensional case.

Although to a limited extent, this effect is also observed in absence
of heterogeneity in the elastic properties, as demonstrated by the results
for class hw (Figs. 10 and 11(a)). In this case, the elastic limit is the
same for all the points within the cross-section where localization is
expected, however the uniaxial stress state is altered by the evolution
of the damage during the hardening regime, which promotes a spatial
variation of the elastic parameters and an inhomogeneous distribution
of the damage variable within the cross-section (Fig. 11(b)).

5.4.3. Fracture toughness
At failure, the left-hand side of Eq. (75) vanishes since 𝝈𝑢 = 𝟎, thus,

the dependence of the problem on the Poisson’s ratio disappears and
the three-dimensional problem simplifies in a scalar one-dimensional-
like problem. As a consequence the dimensionless fracture toughness
depends only on 𝑟 and on the function 𝑓𝑤 and the same observations
reported in Section 5.3.2 apply also here.

This result is also verified numerically. After the peak load, the
system enters a softening branch characterized by a snap-back where
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Fig. 10. Peak average dimensionless stress vs. characteristic ratio for different values of the Poisson’s ratio 𝜈 and different classes of heterogeneity with linear profile shape.
Fig. 11. Necking of a bar with 𝑟 = 0.5, 𝜈 = 0.3 and class hw at the last time step before failure. The necking is due to the localization of the damage 𝛼𝑡. In order to emphasize
the necking effect, we only visualize the central portion of the bar from 𝑥 = −2𝓁 to 𝑥 = 2𝓁 (a). Inhomogeneous damage field over the cross-section at 𝑥 = 0 (b).
Fig. 12. Damage at failure along 𝑥 obtained for the three-dimensional bar with 𝑟 = 0.5, 𝜈 = 0.3 and class hw using the finite element method (FEM). The numerical damage profile
overlaps with the analytical profile derived for the one-dimensional bar.
the damage evolves abruptly until reaching the complete failure of the
bar, i.e. 𝛼𝑢 = 1 at 𝑥 = 0. At this point the damage is homogeneous
within the cross-section and its profile obtained numerically coincides
with the analytical result derived in the one-dimensional case (Fig. 12).

5.5. Discussion

In this subsection we discuss some implications of the obtained
results.

5.5.1. Non-locality
In the present section we have investigated how heterogeneity in the

elastic and fracture material properties affects the observed behavior
of a bar. We have assumed the material properties to be minimum
at the midpoint cross-section of the bar (we have taken these as
reference material properties). As a result, the midpoint cross-section is
the location where the elastic limit is reached first and around which
10
damage localization starts and develops, finally leading to failure of the
bar.

We have concluded that, for a bar with a given heterogeneity class
and profile shape, the peak stress 𝜎𝑝 and the fracture toughness 𝐺𝑐 can
be expressed as

𝜎𝑝 = �̄�𝑝 ⋅ 𝑝(𝑟), 𝐺𝑐 = �̄�𝑐 ⋅ 𝑔(𝑟), (78)

where �̄�𝑝 and �̄�𝑐 denote the peak stress and the fracture toughness of
the bar made of the homogeneous reference material, and 𝑝(𝑟) ∶ 𝑟 ↦ �̌�𝑝
and 𝑔(𝑟) ∶ 𝑟 ↦ �̌�𝑐 have been determined to be always larger than 1
and increasing with 𝑟. Thus the peak stress and fracture toughness of
the heterogeneous bar are both larger than those of the homogeneous
reference bar. This increase is a non-local effect resulting from the
elastic modulus and/or the specific fracture energy being larger than
those of the reference homogeneous material in the neighborhood of
the midpoint cross-section, thus it is a consequence of the choice made
for the reference homogeneous material. The non-locality is naturally
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induced by the phase-field model through its intrinsic length scale,
so that the macroscopic behavior of the bar does not simply result
from the local properties at the midpoint cross-section but involves
its neighborhood. Accordingly, the increase in peak stress and fracture
toughness is a function of the ratio 𝑟 between the internal length of the
hase-field model and the length characterizing the speed of variation
f the material properties. The non-local effect vanishes, i.e. 𝑝(𝑟) and
(𝑟) approach 1, when the limit case 𝑟 → 0 is approached, i.e. for the
harp-crack model (or, trivially, for homogeneous material properties).

.5.2. Model calibration
For calibration of the phase-field model, different options are pos-

ible depending on which properties can be realistically assumed to be
nown. Let us assume that the shape of the heterogeneity in the ma-
erial properties is known upfront, e.g. through computed tomography
y correlation with the density profile. This is a common practice in
any fields, e.g. bone biomechanics (Currey, 1988; Katz et al., 2019)

however correlation is typically assumed between the density and the
alue of the elastic modulus, whereas the analogous correlation with
he specific fracture energy is less investigated). Under this assumption,
𝑓 is also known. To fix ideas, let us further assume that the hetero-
eneity shape corresponds to one of the profile shapes we considered
n this study. Quantities which can be realistically measured on the bar
eometry are the initial stiffness 𝑘0, the elastic limit stress 𝜎𝑒 and the

peak stress 𝜎𝑝. The initial stiffness can be expressed as

𝑘0 =
1

∫ 𝐿
−𝐿 𝐸0(𝑥)−1𝑑𝑥

(79)

from which the value of the elastic modulus at the midpoint cross-
section, �̄�0, can be deduced. From Eq. (51), �̄�1 can be computed
from the measurement of 𝜎𝑒. Finally, from the measurement of 𝜎𝑝,
the intrinsic length 𝓁 of the phase-field model can be calibrated using
Eq. (78)1 and recalling that �̄�𝑝 = �̄�𝑒 = 𝜎𝑒.

. Sharp-crack model vs. phase-field model

Let us now explore further the consequences of the non-local nature
f the phase-field model, as opposed to the locality of the sharp-crack
odel, in bars made of heterogeneous materials.

.1. Sharp-crack model

The sharp-crack model, put forth by Francfort and Marigo (1998) as
variational reformulation of Griffith’s brittle fracture criterion, relies

n the global minimization of a total energy functional. In the one-
imensional case, this functional can be expressed as Gerasimov and
e Lorenzis (2019)

𝚜𝚌(𝑢, 𝛤𝑐 ) ∶= ∫𝛺⧵𝛤𝑐

1
2
𝐸0 𝑢

′2 𝑑𝑥 + ∫𝛤𝑐
�̄�𝑐 𝑓𝑤(𝑥)H0(𝑑𝑥), (80)

where 𝛺 is the problem domain, 𝛤𝑐 is the crack set, i.e. the set including
the cracked points of the bar, and H0(𝛤𝑐 ) is its Hausdorff measure
which, in the one-dimensional case, returns the number of points
belonging to 𝛤𝑐 . The product �̄�𝑐 𝑓𝑤(𝑥) can be regarded as the specific
fracture energy for the sharp-crack model. Accordingly, also in this case
𝑓𝑤(𝑥) plays the role of spatial variation profile of the fracture property
and �̄�𝑐 represents the minimum value of the specific fracture energy.

While the phase-field model is based on local energy minimization
(see the local stability condition in Problem 1), the sharp-crack model
needs the minimization of the total energy functional to be global, oth-
erwise crack nucleation would not be predicted since the undamaged
elastic solution is always locally stable. Within this global minimization
framework, an initially uncracked bar under tension remains sound
until the creation of a crack becomes energetically more convenient
than the storage of additional elastic energy. At critical conditions, the
stored elastic energy is released completely and the fracture energy
11
takes the value corresponding to a single crack formed in correspon-
dence of the minimum value of 𝑓𝑤(𝑥) (Francfort and Marigo, 1999). As
claimed in Francfort and Marigo (1998), this result marks a contrast
with classical fracture mechanics based on Griffith’s criterion, as it
amends its inability to predict crack initiation.

6.2. Multiple minima for 𝑓𝑤

An interesting benchmark showcasing the differences between
sharp-crack and phase-field models is the case of bars where multiple
points compete as initiation sites, namely when multiple minima for
𝑓𝑤(𝑥) are present. In the following, we present two different examples,
one with two equal minima and one with two different minima.

6.2.1. Two equal minima for 𝑓𝑤
We consider heterogeneity in specific fracture energy with a profile

𝑓𝑤(𝑥) possessing two equal minima in 𝑥1 and 𝑥2. We further assume that
the profile can be split into two parts, one symmetric about 𝑥1 and the
other symmetric about 𝑥2, and we consider linear and parabolic profiles
as in Fig. 13. We also introduce the function 𝑓𝑤,1(𝑥−𝑥1) describing the
right-half of the first part of the profile and 𝑓𝑤,2(𝑥 − 𝑥2) describing the
right-half of the second part of the profile. For the examples in Fig. 13,
we have:

linear
{

𝑓𝑤,1(𝑥) = 1 + 𝑥
𝑓𝑤,2(𝑥) = 1 + 1

2 𝑥
, parabolic

{

𝑓𝑤,1(𝑥) = 1 + 𝑥2

𝑓𝑤,2(𝑥) = 1 + 1
4 𝑥

2
. (81)

Let us first study this problem using the sharp-crack model. Gerasi-
ov et al. (2020) showed that, for this profile, the problem with the

harp-crack model is ill-posed due to the competition between the two
ossible crack locations 𝑥1 and 𝑥2. They proposed a stochastic relax-
tion to transform the ill-posed deterministic problem into a well-posed
tochastic problem formulated in terms of fracture probability. The
tochastic solution was found by introducing a random perturbation
o the specific fracture energy profile, in form of a white noise with
agnitude controlled by the small parameter 𝜂 > 0, and then letting 𝜂

pproach 0. Denoting with 𝑃𝑖 the probability that the crack forms at 𝑥𝑖
𝑖 = 1, 2), it was concluded that, for the linear and parabolic examples
n Fig. 13, 𝑃1 = 1∕3 and 𝑃2 = 2∕3 (Gerasimov et al., 2020).

In Gerasimov et al. (2020), the mentioned probabilities are cal-
ulated numerically but it is possible to obtain the same results in
losed form. For a given parameter 𝜂 controlling the magnitude of the
oise, the number of favorable cases for fracture at 𝑥𝑖 is proportional
o 𝑓−1

𝑤,𝑖(1 + 𝜂), whereas the number of possible cases is proportional to
2
𝑗=1 𝑓

−1
𝑤,𝑗 (1 + 𝜂). Therefore,

𝑖 = lim
𝜂→0

𝑓−1
𝑤,𝑖(1 + 𝜂)

∑2
𝑗=1 𝑓

−1
𝑤,𝑗 (1 + 𝜂)

, (82)

q. (82) can be easily extended to the case where the profile is not
ymmetric and to an arbitrarily large number of minima. Both for linear
nd parabolic examples, Eq. (82) together with Eq. (81) yields 𝑃1 = 1∕3
nd 𝑃2 = 2∕3 which coincide with the results in Gerasimov et al. (2020).

Let us now solve the same problem using the phase-field modeling
pproach. Exploiting the results in the present study, it is straightfor-
ard to demonstrate that the problem becomes well-posed. For the
rofiles in Fig. 13, for a given value of 𝓁, the characteristic ratio 𝑟1
bout 𝑥1 is larger than the characteristic ratio 𝑟2 about 𝑥2. Therefore,
ccording to the result in Fig. 4, fracture at 𝑥1 requires a larger stress

than fracture at 𝑥2, hence, fracture can only occur at 𝑥2.
This is confirmed by a one-dimensional finite element analysis

performed assuming 𝓁 = 0.1, �̄�0 = 1, �̄�1 = 1 and no heterogeneity in
the elastic modulus. We use a uniform mesh with linear elements of size
𝓁∕30. At every time step, the prescribed end displacement is increased
by a constant increment 𝛥𝑈𝑡 = 0.1. Irreversibility is enforced through
the penalty method (Gerasimov and De Lorenzis, 2019) and the same

alternate minimization scheme mentioned in the three-dimensional
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Fig. 13. Linear (a) and parabolic (b) examples of heterogeneity profile with two equal
minima at 𝑥1 and 𝑥2. The profiles can be split into a first part symmetric about 𝑥1 and

second part symmetric about 𝑥2.

Fig. 14. Phase-field damage profile for the linear and parabolic profile examples (with
= 0.1). In both cases, a crack at 𝑥2 is predicted.

analysis is adopted. In Fig. 14, the results at failure are shown. As
expected, in both cases the crack forms at point 𝑥2.

Thus, in this example the non-local regularization inherent to the
hase-field model amends the ill-posedness of the problem. Since the
on-local model ‘‘sees’’ not only the minimum in the specific fracture
nergy but also its neighborhood, equal minima surrounded by dif-
erent neighborhoods (which reflects in unequal values of 𝑟) lead to

different peak stresses and the phase-field regularized problem becomes
well-posed.

6.2.2. Two different minima for 𝑓𝑤
Let us now study an example with two different minima at 𝑥1 and

𝑥2 (Fig. 15). This time, according to the sharp-crack model the problem
is well-posed. Indeed, the crack is predicted to initiate at 𝑥1, at which
𝑓𝑤(𝑥) possesses its global minimum (Francfort and Marigo, 1999).

In order to solve this problem with the phase-field approach, we
assume that the material is heterogeneous in 𝑤1 only and that 𝓁 = 0.1.
Accordingly, 𝑟1 = 0.5 and 𝑟2 = 0.1125. We can then estimate the peak
stress for a fracture at 𝑥𝑖 with the relationship 𝜎𝑝𝑖 = �̌�𝑝𝑖

√

�̄�0 �̄�1 𝑓𝑤(𝑥𝑖),
here �̌�𝑝𝑖 is the dimensionless peak stress for linear shape and class

w extracted from Fig. 4 at 𝑟 = 𝑟𝑖. We find that 𝜎𝑝1 ≃ 1.08
√

�̄�0 �̄�1 is

lower than 𝜎𝑝2 ≃ 1.11
√

�̄�0 �̄�1 and hence fracture is predicted at 𝑥2. To
further demonstrate the validity of this result, we perform the finite
element analyses illustrated in Section 6.2.1 with the same numerical
and material parameters as in the analytical computations. The finite
12
Fig. 15. Example of heterogeneity profile with two minima at 𝑥1 and 𝑥2 with two
different values 𝑓𝑤(𝑥1) = 1 and 𝑓𝑤(𝑥2) = 1.1. The profile can be split into a first part
symmetric about 𝑥1 and a second part symmetric about 𝑥2.

Fig. 16. Results for the example with two different minima: the sharp-crack model
predicts a crack at 𝑥1, the phase-field model (with 𝓁 = 0.1) predicts a crack at 𝑥2.

Fig. 17. Peak stresses for fracture at 𝑥1 (blue curve) and at 𝑥2 (red curve) vs. internal
length 𝓁 for the example with two different minima. The actual peak stress corresponds
to the minimum among these two options and fracture occurs at the respective point.
There is a value of length 𝓁∗ which marks a transition in the predicted failure location,
from the one of the sharp-crack model 𝑥1 (𝓁 < 𝓁∗) to the other one 𝑥2 (𝓁 > 𝓁∗).

element results, given in Fig. 16, are in agreement with the theoretical
prediction of a crack at 𝑥2.

Further, Fig. 16 illustrates the normalized peak stresses correspond-
ing to the two minima as functions of the regularization length of the
phase-field model 𝓁. As 𝓁 decreases, the two normalized peak stresses
decrease at a different rate, so that below a threshold value 𝓁∗ ≃ 0.056
the failure location is shifted from 𝑥2 to 𝑥1, i.e. to the location predicted
by the sharp-crack approach.

Thus, in this example the non-local regularization inherent to the
phase-field model may lead to different predictions on the failure
location than the sharp-crack model, for which only the minimum value
of the specific fracture energy counts. The predicted failure location of
the phase-field model depends not only on the minimum value but also
on the characteristics of its neighborhood (embodied in the parameter
𝑟). The amount of sampled neighborhood depends on the value of 𝓁,
and the predicted failure location shifts to the one of the sharp-crack
model as 𝓁 becomes sufficiently small. Interestingly, in this case it is
the phase-field approach to be ill-posed for 𝓁 = 𝓁∗ (see Fig. 17).
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7. Conclusions

We investigated phase-field modeling of brittle fracture in a het-
erogeneous one-dimensional bar. We assumed the material properties
to be minimum at the midpoint cross-section (taking these minimum
values as reference material properties), and chose continuously and
symmetrically increasing profiles of different shapes along the axis of
the bar. Our main goal was to quantitatively assess how the heterogene-
ity in elastic and fracture material properties influences the observed
tensile strength and fracture toughness of the bar, as obtained from the
phase-field modeling approach.

The main findings can be summarized as follows:

• The elastic limit stress for the heterogeneous bar is the same as
for the bar made of the reference homogeneous material;

• The evolution problem for the heterogeneous bar does not admit
a homogeneous solution in the damaging phase;

• Heterogeneous bars show a hardening branch after the elastic
limit that leads to a peak stress larger than the elastic limit
stress. The value of the peak stress is influenced by both elastic
and fracture properties; for a given class and profile shape of
heterogeneity, it only depends on the ratio between the internal
length of the phase-field model and the length characterizing the
speed of variation of the material properties (characteristic ratio);

• The fracture toughness for the heterogeneous bar is larger than
for the bar made of the reference homogeneous material and is
influenced by the fracture properties only; for a given profile
shape of heterogeneity, it only depends on the characteristic ratio.

• The results obtained in the one-dimensional space are also valid
for the bar embedded in the three-dimensional space. The only
difference is that in the three-dimensional case the peak stress of
the bar is also influenced by the Poisson’s ratio, with a larger Pois-
son’s ratio making the effect of heterogeneity more pronounced.

The observed effects of heterogeneity are direct consequences of the
non-local nature of the phase-field model. This becomes evident
through the comparison between sharp-crack and phase-field model
predictions. Within the sharp-crack modeling framework, fracture in
bars with heterogeneous specific fracture energy featuring multiple
equal minima is an ill-posed problem and can only be addressed via
stochastic relaxation. However, the same problem becomes well-posed
with phase-field modeling if the heterogeneity profile features different
values of the characteristic ratio at the equal minima. It is also shown
that more complex cases of heterogeneity can be easily addressed
by directly exploiting the findings in this study. In particular, the
critical location among competing minima corresponding to ‘‘defects’’
of different sizes can be easily identified, which seems very relevant to
the study of fracture in heterogeneous materials.
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Appendix A. Numerical solution of the localization problem

Algorithm 1 illustrates the determination of the peak stress, whereas
Algorithm 2 is used to plot the stress–displacement curve during the
damage localization phase. In both, we collect the input lengths 𝛿𝑖𝑛𝑡 in
a vector �̌�𝒊𝒏 and the corresponding output lengths 𝛿𝑜𝑢𝑡𝑡 for a given �̌�𝑡 in
a vector �̌�𝒐𝒖𝒕. Eqs. (56)–(58) provide the function �̌�𝒐𝒖𝒕 ← 𝙸𝚅𝙿𝜎𝑡 (�̌�𝒊𝒏) for
each �̌�𝑡. In Algorithm 1, 𝑞 is the number of points along the piecewise
linear interpolation of (�̌�𝒊𝒏, �̌�𝒐𝒖𝒕) satisfying the condition 𝛿𝑜𝑢𝑡𝑡 = 𝛿𝑖𝑛𝑡
(Fig. 3).

Algorithm 1: Determination of the peak stress
Data: The function IVP�̌�𝑡 , the stress increment 𝛥�̌� = 10−5, the

half-support width increment 𝛥𝛿𝑡 = 10−2 and the maximum
half-support width 𝛿𝑚𝑎𝑥 = 3

Result: The dimensionless peak stress �̌�𝑝
�̌�𝒊𝒏 ← [1 ∶ 𝛥𝛿 ∶ 𝛿𝑚𝑎𝑥] ; /* Vector of the input lengths */
̌ 𝑡 ← 1 − 𝛥�̌� ;
repeat

�̌�𝑡 ← �̌�𝑡 + 𝛥�̌� ;
�̌�𝒐𝒖𝒕 ← IVP�̌�𝑡 (�̌�𝒊𝒏) ; /* Vector of the output lengths */
𝑞 ← Intersection(�̌�𝒊𝒏, �̌�𝒐𝒖𝒕) ; /* Find the number 𝑞 of
intersections between the piecewise linear
interpolation of points (�̌�𝒊𝒏, �̌�𝒐𝒖𝒕) and the
straight line 𝛿𝑜𝑢𝑡𝑡 = 𝛿𝑖𝑛𝑡 */

until 𝑞 = 0 ;
�̌�𝑝 ← �̌�𝑡

Algorithm 2: Determination of the stress-displacement curve during
damage localization
Data: The function IVP�̌�𝑡 , the stress increment 𝛥�̌� = 10−2, the

half-support width increment 𝛥𝛿 = 10−1, the maximum
half-support width 𝛿𝑚𝑎𝑥 = 3, the ratios 𝓁∕2𝐿 and

√

�̄�1∕�̄�0
esult: The displacement-stress sequence (𝑼 𝑡∕2𝐿, �̌�𝑡) during the

damage localization phase
̌𝒊𝒏 ← [1 ∶ 𝛥𝛿 ∶ 𝛿𝑚𝑎𝑥] ; /* Vector of the input lengths */
�̌�𝑡 ← 0 ;

← [ ] ; /* Empty matrix */
epeat

�̌�𝑡 ← �̌�𝑡 + 𝛥�̌� ;
�̌�𝒐𝒖𝒕 ← IVP�̌�𝑡 (�̌�𝒊𝒏) ; /* Vector of the output lengths */
�̌�, 𝑞 ← IntersectionPoints(�̌�𝒊𝒏, �̌�𝒐𝒖𝒕) ; /* Find the
points (�̌�, �̌�) of intersection between the
piecewise linear interpolation of points
(�̌�𝒊𝒏, �̌�𝒐𝒖𝒕) and the straight line 𝛿𝑜𝑢𝑡𝑡 = 𝛿𝑖𝑛𝑡 and their
multiplicity 𝑞 */
for 𝛿 𝒊𝒏 �̌� do

[𝛼∗𝑡 , 𝑈𝑡, �̌�𝑡] ← IntegrateDC(𝛿) ; /* Integrate the
damage criterion using 𝛿 as input length of
the semi-support and collect the maximum
value of the damage, the applied
displacement and the stress in a row vector
*/

𝑸 ← Append
(

[𝛼∗𝑡 , 𝑈𝑡∕2𝐿, �̌�𝑡]
)

; /* Append [𝛼∗𝑡 , 𝑈𝑡∕2𝐿, �̌�𝑡]
to the matrix 𝑸 as new row */

end
ntil 𝑞 = 0;
𝜶 ← SortRows(𝑸) ; /* Sort rows of 𝑸 in ascending
order based on the value of the 𝛼∗𝑡 -column and save
the new matrix as 𝑸𝜶 */
𝑼 𝑡∕2𝐿, �̌�𝑡) ← PlotDS(𝑸𝜶) /* Plot (𝑈𝑡∕2𝐿, �̌�𝑡) with the

order in 𝑸𝜶 */
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Fig. B.18. Real branches of the Lambert function.

Appendix B. Lambert function

The Lambert function 𝑊𝑘(𝑧) is defined as (Corless et al., 1996):

𝜏 = 𝑊𝑘(𝑧), 𝑘 ∈ Z such that 𝜏 ⋅ exp(𝜏) = 𝑧. (B.1)

This function has two real branches. The first one, termed fundamental
branch, is associated to 𝑘 = 0, while the second one, denoted as
secondary branch, is associated to 𝑘 = −1. The branch point 𝜏0 =
−exp(−1) is the meeting point of the two real branches (Fig. B.18).

Appendix C. Fracture toughness for 𝒇𝒘 with parabolic profile

For 𝑓𝑤 with the parabolic profile shape, the dimensionless damage
criterion at 𝑡 = 𝑡𝑢 within the half-support width reads

2 𝛼′′𝑢 (�̌�) + 4
(

𝑟2 �̌�
1 + 𝑟2 �̌�2

)

𝛼′𝑢(�̌�) = 1 in (−𝛿𝑢, 0). (C.1)

he analytical solution for the above differential equation depends on
he unknown coefficients 𝑐1 and 𝑐2,

𝑢(�̌�) =
�̌�2

12
+ 𝑐1

arctan
(

𝑟�̌�
)

𝑟
+

log
(

1 + 𝑟2�̌�2
)

6𝑟2
+ 𝑐2, (C.2)

′
𝑢(�̌�) =

�̌�
6
+ 𝑐1

1
1 + 𝑟2 �̌�2

+ �̌�
3
(

1 + 𝑟2 �̌�2
) . (C.3)

n order to find the two unknown coefficients as functions of the
nknown half-support width we impose the two boundary conditions
n Eq. (54), obtaining

1 =
1
6
𝛿𝑢

(

3 + 𝑟2 𝛿2𝑢
)

, (C.4)

𝑐2 = −
𝛿2𝑢
12

+
𝛿𝑢

(

3 + 𝑟2 𝛿2𝑢
)

arctan
(

𝑟 𝛿𝑢
)

6 𝑟
−

log
(

1 + 𝑟2 𝛿2𝑢
)

6 𝑟2
. (C.5)

Numerically, we can find 𝛿𝑢 by enforcing the remaining boundary
condition Eq. (45).

Eq. (70) yields the dimensionless fracture toughness

�̌�𝑐 =
1

720 𝑟3

[

− 𝛿𝑢 𝑟
(

60 + 25 𝛿2𝑢 𝑟
2 + 3 𝛿4𝑢 𝑟

4)+

+15
(

1 + 𝛿2𝑢 𝑟
2)2 (4 + 𝛿2𝑢 𝑟

2) arctan
(

𝛿𝑢 𝑟
)

]

.
(C.6)

Combining the numerical solution for 𝛿𝑢 and Eq. (C.6) we obtain the
curve of the dimensionless fracture toughness vs. the characteristic
ratio in Fig. C.19.
14
Fig. C.19. Dimensionless fracture toughness vs. characteristic ratio for 𝑓𝑤 with
parabolic shape.

In order to obtain a polynomial expansion of �̌�𝑐 as a function of 𝑟
we perform a second order Taylor expansion of Eq. (45) about 𝑟 = 0.
This leads to the following fourth-order polynomial equation in 𝛿𝑢:

1
4
𝛿2𝑢 +

𝑟2

12
𝛿4𝑢 = 1. (C.7)

Since 𝛿𝑢 must be real and non-negative for 𝑟 > 0, the solution is unique
nd equal to

̌𝑢 =

√

−3 +
√

3 (3 + 16 𝑟2)
√

2 𝑟
. (C.8)

ombining Eqs. (C.6) and (C.8) and taking again the second-order
xpansion about 𝑟 = 0, we obtain (Fig. C.19)

̌𝑐 = 1 + 2
5
𝑟2 + 𝑜

(

𝑟2
)

. (C.9)

Appendix D. Fracture toughness for 𝒇𝒘 with exponential profile

For 𝑓𝑤 with the exponential profile shape, the dimensionless dam-
ge criterion at 𝑡 = 𝑡𝑢 within the half-support width reads

2 𝛼′′𝑢 (�̌�) − 2 𝑟 𝛼′𝑢(�̌�) = 1 in (−𝛿𝑢, 0). (D.1)

The analytical solution for the above differential equation depends on
the unknown coefficients 𝑐1 and 𝑐2,

𝛼𝑢(�̌�) = −𝑐1
exp(𝑟 �̌�)

𝑟
− �̌�

2 𝑟
+ 𝑐2, (D.2)

𝛼′𝑢(�̌�) = − 1
2𝑟

− 𝑐1 exp(𝑟 �̌�). (D.3)

The two unknowns are expressed as functions of the unknown half-
support width through the two boundary conditions in Eq. (54)

𝑐1 = −
exp(𝑟 𝛿𝑢)

2 𝑟
and 𝑐2 = −

𝛿𝑢
2 𝑟

− 1
2 𝑟2

. (D.4)

We can find 𝛿𝑢 by enforcing the remaining boundary condition in
Eq. (45), which yields

exp(𝑟 𝛿𝑢) = 𝑟 𝛿𝑢 + 1 + 2 𝑟2. (D.5)

Through the substitution 𝜏 = −
(

𝑟 𝛿𝑢+1+2 𝑟2
)

and 𝑧 = −exp
(

−
(

1+2 𝑟2
))

,
this equation becomes

𝑧 = exp(𝜏) ⋅ 𝜏, (D.6)

hence (Section 5.3.2)

𝜏 = 𝑊 (𝑧). (D.7)
𝑘
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Fig. D.20. Dimensionless fracture toughness vs. characteristic ratio for 𝑓𝑤 with
exponential shape.

Substituting backward and since 𝛿𝑢 > 0, the solution reads

𝛿𝑢 = −1
𝑟

[

1 + 2 𝑟2 +𝑊−1
(

− exp
(

−
(

1 + 2 𝑟2
) ))

]

. (D.8)

Combining Eqs. (70) and (D.8), the dimensionless fracture toughness is
written in terms of the characteristic ratio (Fig. D.20)

�̌�𝑐 =
3

16 𝑟3

{

1 − 4 𝑟2 +𝑊−1
(

−exp
(

−1 − 2 𝑟2
))

[

2+

+𝑊−1
(

−exp
(

−1 − 2 𝑟2
))

]

}

.
(D.9)

e simplify the expression for the dimensionless fracture toughness �̌�𝑐
sing the approximation of the Lambert function proposed by Veberič
2012) and the Taylor expansion about 𝑟 = 0. Veberič’s approximation
s truncated at order 6 Appendix F and the Taylor expansion at order

(Fig. D.20)

̌𝑐 ≈ 1 + 1
2
𝑟 + 2

15
𝑟2 − 2

135
𝑟3 − 5381

1260
𝑟4 − 16147

2835
𝑟5 + 𝑜

(

𝑟5
)

. (D.10)

ppendix E. Non-linear equation for the half-support width for
inear specific fracture energy

Eq. (45) yields a non-linear equation in 𝛿𝑢 that reads

−𝑟 𝛿𝑢
(

2 + 𝛿𝑢 𝑟
)

+ 2
(

1 + 𝑟 𝛿𝑢
)2 log

(

1 + 𝑟 𝛿𝑢
)

= 8 𝑟2. (E.1)

Through the substitutions 𝑦 = 1+ 𝑟 𝛿𝑢 and 𝐶 = 8 𝑟2−1, the equation can
be rewritten as

𝑦2
(

2 log(𝑦) − 1
)

= 𝐶, (E.2)

that can be rearranged as follows:

𝐶
exp(1) = 𝐶

𝑦2
exp

(

𝐶
𝑦2

)

. (E.3)

Proceeding with the further substitutions 𝑧 = 𝐶
exp(1) and 𝜏 = 𝐶∕𝑦2 we

retrieve Eq. (66).

Appendix F. Veberič approximation of the Lambert function

Veberič (2012) proposes an approximation of the two branches of
the Lambert function about the branch point 𝜏0, based on the Taylor
xpansion of the inverse of the Lambert function

0,−1(𝑧) ≈
𝑛
∑

𝑚𝑖 ⋅ 𝑏
𝑖
±(𝑧) with 𝑏±(𝑧) = ±

√

2
(

1 + exp(1) ⋅ 𝑧
)

, (F.1)
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𝑖=0
Table F.3
Coefficients for Veberič’s approxi-
mation.
𝑖 𝑚𝑖

0 −1

1 1

2 − 1
3

3 11
72

4 − 43
540

5 − 769
17280

6 − 221
8505

where + is referred to 𝑘 = 0 and − is associated to 𝑘 = −1. The first
coefficients 𝑚𝑖 are reported in Table F.3.

Here we present only 7 coefficients but it is possible to compute
an arbitrary amount of coefficients following the procedure outlined
in Veberič (2012).

Appendix G. Material parameters

The undamaged elasticity tensor depends on the two undamaged
Lamé parameters 𝜆0(𝒙) and 𝜇0(𝒙) as

C0(𝒙) = 𝜆0(𝒙)𝑰 ⊗ 𝑰 + 2𝜇0(𝒙)I𝑠, (G.1)

ence,

0(𝒙) = �̄�0 ⋅ 𝑓𝐸 (𝑥) and 𝜇0(𝒙) = �̄�0 ⋅ 𝑓𝐸 (𝑥), (G.2)

here �̄�0 and �̄�0 are independent of 𝒙. From the Lamé parameters, the
ndamaged elastic modulus 𝐸0 and the Poisson’s ratio 𝜈 are derived as

0(𝒙) =
𝜇0(𝒙)

(

3𝜆0(𝒙) + 2𝜇0(𝒙)
)

𝜆0(𝒙) + 𝜇0(𝒙)
and 𝜈(𝒙) =

𝜆0(𝒙)
2
(

𝜆0(𝒙) + 𝜇0(𝒙)
) . (G.3)

Therefore,

𝐸0(𝒙) = �̄�0 ⋅ 𝑓𝐸 (𝑥) and 𝜈(𝒙) = �̄� (G.4)

with �̄�0 =
�̄�0 (3 �̄�0+2 �̄�0)

�̄�0+�̄�0
and �̄� = �̄�0

2 (�̄�0+�̄�0)
.
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