ETH zürich

Comprehensive morphological characterisation of arthritis in animal models by micro-CT

Conference Poster

Author(s):

Steiner, Thomas H.; Choo, Ryan J.; Quintin, A.; Villarreal, Ana; Firminger, Colin R.; <u>Müller, Ralph</u> ; Koller, B.; Zulliger, M.A.; Nesic, D.; Stok, Kathryn S.

Publication date: 2012

Permanent link: https://doi.org/10.3929/ethz-a-007365416

Rights / license: In Copyright - Non-Commercial Use Permitted

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs FDEA **Commission for Technology and Innovation CTI** Innovation Promotion Agency

CTI Medtech Event 2012

Swiss Confederation

Comprehensive morphological characterisation of arthritis in animal models by micro-CT

¹Steiner, T.H., ¹Choo, R.J., ²Quintin, A., ¹Villarreal, A., ¹Firminger, C., ¹Müller, R., ³Koller, B., ³Zulliger, M.A., ²Nesic, D., ¹Stok, K.S.

1 Institute for Biomechanics, ETH Zurich, Zurich, Switzerland 2 Department of Clinical Research, University of Bern, Bern, Switzerland

3 SCANCO Medical AG, Brüttisellen, Switzerland

Project Nr. 9853.1

Project objectives:

This project aims to **develop a quantitative** 3D imaging methodology (QIM) for measurement and morphological analysis of osteoarthritic joints.

Scientific and technological objectives:

- Develop protocols for processing of intact animal joints for μ CT: dissection, preservation, and staining of the tissues. \Rightarrow Figure 1
- Develop µCT protocols for quantitative morphometric characterisation of relevant bone and cartilage structures. \Rightarrow Figure 2
- Establish the correlation between µCT data with histomorphology analyses. \Rightarrow Figure 3

Figure 2: Morphometric characterisation of the joint tissues involves three scans: (a) an initial prescan, and (b-c) two scans with different contrast agents. The final segmented tissues can be seen in d, where bone is white and cartilage is red.

Obtain a comprehensive 3D evaluation of macroscopic and microscopic changes in the morphometry and composition of the bone and cartilage components of the joint. \Rightarrow Figure 4

Business objectives:

- Training of clientele in protocols for processing of intact animal joints.
- Training of clientele in protocols for quantitative morphometric characterisation.
- Commercialisation of a software add-on to the spectrum of current possibilities in μ CT imaging, i.e. new standards for quantitative imaging of OA.
- Validation and reference data packages for calibration of disease models.

Implementation & perspectives:

- Close collaboration with industry and academic partners provided a platform for creating new tools and add-ons for existing technologies by supplying:
- an accurate and superior QIM relative to existing histological methods,
- a precise and statistically powerful QIM for use in experimental settings.
- The analysis algorithms will be packed into • existing software and sold to new customers with enhanced analysis options.

Changes in joint geometry alter loading conditions

CONTACT AREA:

Distance changes **TILT:** Alignment with disease and changes between affects joint geometry femur & tibia.

JOINT SPACE:

Altered loading leads to bone remodelling.

OSTEOPHYTE:

THICKNESS: OA progression leads to degeneration

3D CARTILAGE

Figure 4: Comprehensive 3D analyses of the tibio-femoral joint. a) The full 3D dataset allows investigation of cartilage degeneration and subchondral bone remodelling in any orientation, and (b) a selection of characteristic metrics used to describe OA.

VARUS-VALGUS

Acknowledgements:	Project details:	
Thanks to Andreas Trüssel for his assistance with the registrations.	Main applicant:	Department of Clinical Research University of Bern PD. Dr. Dobrila Nesic
Thanks to Dr. Markus Wilke for performing the animal	Industrial partner:	SCANCO Medical AG Dr. Bruno Koller
surgeries.	Start date: April 2009	Duration: 42 months