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Abstract. High-Performance Computing (HPC) processors are nowa-
days integrated Cyber-Physical Systems requiring complex and high-
performance closed-loop control strategies for efficient power and thermal
management. To satisfy high-bandwidth, real-time multi-input multi-
output (MIMO) optimal power control requirements, high-end proces-
sors integrate on-die Power Controller Systems (PCS). Traditional PCS
is based on a simple microcontroller core supported by dedicated inter-
face logic and sequencers. More scalable and flexible PCS architectures
are required to support advanced MIMO control algorithms required for
managing the ever-increasing number of cores, power states, and process,
voltage, temperature (PVT) variability.
In this paper, we present ControlPULP, a complete, open-source HW/SW
RISC-V parallel PCS platform consisting of a single-core microcontroller
coupled with a scalable multi-core cluster system with a specialized DMA
engine and a fast multi-core interrupt controller for parallel acceleration
of real-time power management policies. ControlPULP relies on a real-
time OS (FreeRTOS) to schedule a Power Control Firmware (PCF) soft-
ware layer. We evaluate ControlPULP design choices in a cycle-accurate,
event-based simulation environment and show the benefits of the pro-
posed multi-core acceleration solution. We demonstrate ControlPULP
in a PCS use-case targeting a next-generation 72-cores HPC processor.
We show that the multi-core cluster accelerates the PCF achieving 4.9x
speedup with respect to single-core execution.

Keywords: RISC-V · HPC Processor · Power and Thermal Control ·
Scalable · Parallel microcontroller.

1 Introduction

After the end of Dennard’s scaling, the increase in power density has become
an undesired but unavoidable collateral effect of the performance gain obtained
with technological scaling. This trend has made the processing elements at the
heart of computing nodes energy, power, and thermally constrained [10]. Modern
high-performance processors feature a large number of cores. The most notable
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examples are AWS Graviton 2 (64 ARM Neoverse N1 cores) [9], Intel Alder
Lake-S Xeon (16 cores, 24 threads) [8], AMD Epyc 7003 Milan (up to 64 Zen 3
cores) [1], SiPearl Rhea Processor (72 ARM Neoverse V1 Zeus cores) [6] and the
NVIDIA Grace CPU Superchip (144 ARM Neoverse N2 cores). Their application
workload requires a dynamic trade-off between maximum performance (fastest
operating point [5]) in CPU-bound execution phases and energy efficiency in
memory-bound execution phases (energy-aware CPU [21]). Hence, all modern
processors integrate on-die Power Controller Subsystems as dedicated hardware
resources co-designed with a Power Control Firmware (PCF) implementing com-
plex MIMO power management policies. Advanced power management involves
embedding and interleaving a plurality of activities in the PCS, namely (i) dy-
namic control of the CPU power consumption with short time constants [16]
to prevent thermal hazards and to meet the TDP limit (power capping [11]),
(ii) real-time interaction with inputs provided by on-die (Operating System -
OS - power management interfaces and on-chip sensors) and off-die (Baseboard
Management Controller - BMC -, Voltage Regulator Modules - VRMs -) units
and (iii) dynamic power budget allocation between general-purpose (CPUs) and
other integrated subsystems, such as graphics processors (GPUs) [21].

Existing on-die PCSs share a common design structure with an integrated
single-core microcontroller 3 supported by dedicated hardware state machines [21]
or more generic accelerators [18] (Sec. 2). The hardware typically takes advantage
of specific software libraries 4,3 to implement the real-time execution environ-
ment required to run power management policies under tight timing constraints.

Many-core power management requires fine-grained control of the operating
points of the processing elements [12] to meet a given processor power consump-
tion setpoint while minimizing performance penalties. Moreover, the control pol-
icy has to provide fast, reactive, and predictable responses to promptly handle
the incoming requests from the OS or BMC and prevent thermal hazards. A
flexible and scalable way to manage these computationally intensive operations
is required to provide a high-quality level of control performance per core and
to support more advanced experimental control policies. This scenario suggests
the need for a performant and capable PCS architecture optimized for handling
a fine-grained, per-core performance state control strategy on a large number of
controlled cores within the required timing deadlines. In this work, we address
the requirement mentioned above and make the following contributions:

1. We design an end-to-end RISC-V parallel PCS architecture named Con-
trolPULP, based on open RISC-V cores and hardware IPs [19]. To the best
of our knowledge, ControlPULP is the first fully open-source 5 (hardware
and software) PCS with a configurable number of cores and hardware re-
sources to track the computational requirements of the increasingly complex
power management policies of current and future high-performance proces-
sors (Sec. 3). ControlPULP integrates a multi-core cluster with per-core

3https://github.com/ARM-software/SCP-firmware
4https://github.com/open-power
5https://github.com/pulp-platform/control-pulp
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FPUs for reactive control policy step computation, without the additional
complexity of floating-point to fixed-point conversion.

2. The cluster integrates a specialized DMA to accelerate the data transfers
from on-chip sensors and off-chip peripherals. It allows data acquisition from
2D strided data access patterns, a crucial capability when reading from pri-
vate, per-core sensors with equally spaced address mapping (Sec. 4.3).

3. We tailor ControlPULP to meet real-time power management requirements.
The architecture achieves low interrupt latency thanks to a platform-level
interrupt controller (RISC-V PLIC [17]) tasked to process the global inter-
rupts associated with OS- and BMC- driven commands and a low latency
predictable interconnect infrastructure (Sec. 4.3).

4. We demonstrate the end-to-end capabilities of ControlPULP with a case
study on the control quality of the PCF, that achieves 6% more precise
setpoint tracking than the only openly documented SoA control policy im-
plemented by the IBM on-chip controller (Sec. 4.5).

2 Related Work

There is little publicly available information on commercial state-of-the-art (SoA)
PCS architectures. To the best of the authors’ knowledge, the main four market-
standard PCS are: Intel Power Control Unit (PCU) introduced with Nehalem
microprocessor [7], the ARM System Control Processor (SCP) [13], the Sys-
tem Management Units (SMU) integrated with AMD Zeppelin, and the IBM
On-Chip Controller (OCC) introduced with Power8 microprocessor.

Intel’s PCU is a combination of dedicated hardware state machines and an
integrated microcontroller [21]. It provides power management functionalities
such as Dynamic Voltage Frequency Scaling (DVFS) through voltage-frequency
control states (P-states and C-states), selected by the HW (Hardware-Managed
P-States, HWP). The PCU communicates with the processing elements with a
specialized link through Power Management Agents (PMAs). Intel’s main control
loop runs at 500µs [22].

AMD adopts a multiple power controller design, with one SMU for each
CPU tile (group of cores). All SMUs act as slave components, monitoring local
conditions and capturing data. One of the SMUs also acts as a master, gathering
all information from the slave components and then choosing the operating point
for each core [4].

ARM implements two independent PCSs based on the ARM Cortex-M7 mi-
crocontroller, SCP and MCP (System and Manageability Control Processor, re-
spectively). The SCP provides power management functionality, while the MCP
supports communications functionality. In ARM based SoCs the interaction with
the OS is handled by the System Control and Management Interface (SCMI)
protocol [2]. SCMI provides a set of OS-agnostic standard SW and HW inter-
faces for power domain, voltage, clock and sensor management through a shared,
interrupt-driven mailbox system with the PCS.

The IBM power controller, called OCC, is composed of 5 units: a central Pow-
erPC 405 processor with 768 KiB of dedicated SRAM and four general-purpose



4 A. Ottaviano et al.

engines for data collection from PVT sensors (GPEs) and performance state
and CPU stop functions control (PGPE and SGPE) respectively. IBM’s main
control loop runs on PowerPC 405 at 250µs [18]. It uses a Frequency Voting Box
to select a frequency for each core conservatively based on the minimum input
- highest Pstate - from several independent power-control (Control Vote) and
temperature-capping (Thermal Control Vote) features. The Thermal Control
Vote consists of one PID with a periodicity of 16ms that reduces the frequency
of each core based on the temperature of the hottest element. Furthermore,
similarly to ARM’s SCMI standard, IBM’s OCC uses a Command Write At-
tention/Interrupt mechanism to notify the PGPE of an incoming asynchronous
command/request to be processed4, for instance, the desired PState. PGPE ar-
bitrates this information with the Voting Box output from the PowerPC 405
according to a minimum PState policy.

Last, it has been shown [3] that a single-core, RISC-V based microcontroller
can execute similar control algorithms with a control loop of 500µs. Neverthe-
less, the underlying PCS architecture did not support an adequate I/O system
infrastructure with on-die and off-die actors, global interrupt lines for OS-based
commands dispatching, and a floating-point unit for the PCF’s workload routine.

All the SoA power controllers lack the flexibility and scalability of a multicore
architecture supported by adequate IO bandwidth and fast interrupt handling
hardware, which is the critical innovation provided by ControlPULP.

3 The ControlPULP platform

ControlPULP extends commercial controllers’ single-core microcontroller struc-
ture, providing the first multi-core RISC-V PCS architecture. In the following,
we detail ControlPULP’s hardware architecture (Sec. 3.1) and its design trade-
offs. To further analyze the benefits of ControlPULP’s design choices with a
control algorithm use-case (Sec. 4), we also describe the PCF software structure
and the surrounding controlled ecosystem in Sec. 3.2.

3.1 System architecture

Fig. 1 provides a block diagram overview of ControlPULP. The top-level sub-
system of the design is the Manager Core, a CV32E40P open-source 6 industry-
grade processor core and a set of System I/O interfaces to interact with periph-
erals and memory-mapped devices (Sec. 3.1). The primary micro-controller-like
subsystem is also present in a similar form in the SoA designs surveyed in Sec.
2.

Real-time and predictability The following architectural design decisions
were taken concerning RAM banking and interrupt processing to make the design
more suitable for real-time workloads.

6https://github.com/openhwgroup/cv32e40p
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Fig. 1: ControlPULP architecture.

L2 memory banks constant access time The L2 RAM, which is the RAM block
connected to the Manager Core and System I/O interfaces, is sized to 512 KiB,
enough to fit the whole firmware binary and data so that no swapping is re-
quired. The L2 RAM comprises six banks. The access time to each bank is
constant when there are no access conflicts. Two of these banks are marked
private to prevent DMA transfers from peripherals and other components from
disturbing the Manager Core’s instruction and data fetching. The Manager Core
has exclusive access to those.

Low constant latency PLIC Interrupt controller We integrate a low and con-
stant latency RISC-V interrupt controller (Platform Level Interrupt Controller,
PLIC) [17] capable of entering the interrupt handler within 46 cycles (Sec. 4.3).
The PLIC can handle up to 144 secure and non-secure global interrupt lines fed
to ControlPULP from the mailbox infrastructure. The PLIC multiplexes them
in the SoC domain Manager Core as external interrupts. The PLIC is paired
with the existing Core Local Interrupt (CLINT) unit in the CV32E40P core,
managing software and timer interrupts. The PLIC/CLINT configuration per-
forms hardware-based priority arbitration with vectored interrupts that helps
reduce the interrupt response latency (Sec. 4), a crucial property to increase
responsiveness on external, agents-driven requests.

Cluster accelerator To meet the computational demands of the control algo-
rithms, especially when scaling to a large number of controlled high-performance
cores and improving the control performance, we opt for a flexible programmable
accelerator, namely a cluster of RISC-V processors. The cluster consists of a team
of CV32E40P cores (workers) tightly coupled to 128 KiB RAM (L1) and a DMA
engine.
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Multi-core computing system Control algorithms (Sec. 3.2) can be parallelized
on the cluster (Sec. 4.2), with a high level of flexibility on the RISC-V cores
to improve and update control algorithms. This is in sharp contrast with hard-
wired control logic featured in SoA controllers (Sec. 2) which lack flexibility.
The Manager Core offloads the control algorithm to the team of workers in the
cluster. Each worker has a private instruction cache that copies the instructions
to be fetched from L2 and accesses L1 through a single-cycle latency logarithmic
interconnect.

In the most straightforward parallelization scheme, a worker computes the
control action (Sec. 3.2) for a subset of the controlled cores. The number of
workers in the cluster is parametric. In the following, we assume it equals 8, a
pretty large configuration, to demonstrate scalability. Each core in the cluster
features an FPU with a configurable number of pipeline stages. In our instantia-
tion, we use one internal pipeline stage, which is sufficient to meet our frequency
target. Furthermore, Montagna et al. [15] show that this configuration achieves
high performance and reasonable area/energy efficiency on a large number of
benchmarks.

2-D DMA transfer engine The cluster domain integrates a multi-channel DMA
with direct access to L1 RAM and low-programming-latency (62 clock cycles,
Sec. 4.3). The DMA’s main task is to provide direct communication between
L2 and L1 memories in parallel and without intervention from the Manager or
cluster cores [20].

We tailored the DMA’s capabilities to suit the control policy use case by
(i) directly routing the cluster DMA to the PVT sensors registers through the
outgoing AXI master interface, which guarantees flexibility by decoupling data
transfers and computation phases, (ii) exploiting 2-D transfers for equally spaced
PVT registers accesses and (iii) increasing the number of outstanding transac-
tions (up to 128) to hide the latency of regular transfers.

Commercial PCS also separate the actual computation from data acquisi-
tion. For instance, IBM OCC employs general-purpose cores (GPEs) tasked to
read the processing elements data and temperatures instead of a data mover en-
gine with a micro-coded programming interface [18]. Our DMA-based solution
achieves higher performance than data-mover cores and reduces hardware cost.

System I/O interfaces

Low latency AXI4 external interfaces ControlPULP features two AXI4 ports,
one Master and one Slave, with 64-bit W/R, 32-bit AW/AR wide channels.
They play a crucial role in the ControlPULP design and guarantee low-latency
communication with the controlled system. The AXI slave maps to a region
of the SoC domain’s L2 SRAM drives the PCS’s booting process, and loads
the PCF binary into L2 SRAM. The AXI master is the transport layer over
which the PCS collects PVT sensors data and power policy target requirements.
It dispatches the optimal frequency operating point during the control policy
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(Sec. 3.2). We internally routed this channel to initiate data transfers from both
the SoC and Cluster domains through the arbitration of fully-connected AXI4
crossbars.

SCMI ControlPULP adopts and implements the ARM standard SCMI protocol
to handle external power, performance, and system management requests. SCMI
allows an OS kernel that supports SCMI to interact with ControlPULP without
needing a bespoke driver directly. Furthermore, the design of the SCMI protocol
reflects the industry trend of delegating power and performance to a dedicated
subsystem [14]. SCMI involves an interface channel for secure and non-secure
communication between a caller (agent, i.e. an HPC processing element) and a
callee (platform, i.e. ControlPULP). The latter interprets the messages delivered
by the former in a shared memory area (mailbox region, Fig. 2a) and responds
according to a specific protocol. The proposed PCS implements a doorbell-based
(interrupt-driven) transport mechanism through the PLIC. In our use case with
72 controlled cores, the platform can process up to 144 secure and non-secure
interrupt notifications.

High latency peripherals ControlPULP integrates a peripheral subsystem in the
SoC domain inherited from the PULP design, where an I/O data engine unit
(µDMA) allows autonomous communication between off-die elements and the
L2 SRAM. In this work, we upgrade the peripheral subsystem to handle off-
die communication services through industry-standard power management in-
terfaces. The PCS integrates 6 AVSBUS and PMBUS interfaces to VRMs and
1 QSPI to external non-volatile memory, while 5 I2C master/slave interfaces
manage the communication with the BMC. The Power Management Bus (PM-
BUS) and Advanced Voltage Bus (AVSBUS) bus protocols extend I2C and SPI
respectively to provide digital monitoring of voltage and power rails, preserving
optimal speed/power consumption trade-off.

3.2 Power Control Firmware

The PCF executes the thermal and power control functions and manages on-die
and off-die communications and data transfers. FreeRTOS, an industry-grade,
lightweight, and open-source operating system for microcontrollers, serves as
the basis for real-time priority-driven scheduling with static tasks priorities and
preemption.

The control routine consists of two periodic tasks characterized by multiple
harmonic frequencies: the Fast Power Control Task (FPCT) (8 kHz) and the
Periodic Control Task (PCT) (2 kHz). Splitting the control routine into two
tasks grants more fine-grained scheduling and helps meet different performance
requirements and sensors-update frequencies. Power has faster changes due to
instruction-level variation of the effective capacitance of the computing unit,
while temperature variations are slower. The control has to handle these widely
split time scales. Furthermore, power sensors (VRMs) generally update more
frequently than temperature sensors.
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(a)

(b)

Fig. 2: (a) PCF inputs and outputs interactions. (b) ControlPULP RTL test-
bench simulation environment.

The PCT is the main control task. It receives the desired operating point
(clock frequency) for each processing element and controls it to meet the physi-
cal and imposed constraints of the system. It executes a two-layer control strat-
egy [3] consisting of a Power Dispatching Layer and a Thermal Regulator Layer.
The PCT control step n consists of 7 phases: (P1) Allocate the controlled clock
frequency computed at step n − 1 to each core; (P2) Read the PVT sensor’s
registers and the workload characteristics from each core for step n + 1; (P3)
Obtain commands and information on the constraints (target frequency, power
budget) from the OS and BMC; (P4) Compute the estimated power for each
core and the total consumed power of the system; (P5) Apply a power capping
algorithm, such as Alpha [3] when the total power exceeds the power budget
constraint; (P6) Further reduce the power of each core through PIDs computa-
tion when the temperature at phase (P2) from step n− 1 exceeds the threshold;
(P7) Compute and dispatch a frequency to apply at (P1) in step n + 1. The
transient data computed in these phases are saved for telemetry purposes.

The FPCT tackles the changes in the power consumption of the system. It
periodically reads the power consumption of the voltage rails from the VRMs,
programs micro-architectural power/instruction throughput capping interfaces
(if supported by the processing element), and modifies the power budget thresh-
old of the PCT as requested by the BMC.

Fig. 2a depicts the real-time inputs and outputs the PCF has to interact with.
‘on-die’ designates any element of the HPC CPU that resides on the chip die,
such as PVT sensors and registers, frequency actuators, and mailboxes. In-band
services refer to SCMI-based interaction and PVT registers data acquisition.
‘Off-die’ indicates VRMs communication and BMC requests through out-of-band
services. Last, we name ‘Control Action’ the computational body of the PCF
execution (P4)-(P7).

4 Experimental Results

In this section, we analyze and characterize both hardware (the ControlPULP
platform) and software (the PCF) layers:
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– We assess and break down ControlPULP’s post-synthesis area and determine
the minimum area overhead (< 1%) with respect to a modern HPC processor
chip (Sec. 4.1).

– We evaluate ControlPULP with a testbench running in a cycle-accurate sim-
ulation environment, depicted in Fig. 2b. The testbench does not emulate
the HPC processor at the RTL level. Instead, we model the closed-loop with
a shared memory region between the PCS platform — the device under test
— and the system under control. The real-time temperature and telemetry
information from the HPC processor are computed beforehand in software
(MATLAB Simulink) and stored in the simulation memory as unfolded in
time. Furthermore, we model the interconnect network (Fig. 2a) latency by
introducing a programmable latency into the AXI4 ports.

– In the described test scenario, we first study the parallelization of the Con-
trol Action (P4)-(P7) on the cluster (Sec. 4.2). We then characterize in-band
transfers, namely strided DMA accesses for data acquisition from PVT reg-
isters and low interrupt latency with SCMI command processing (Sec. 4.3).
Finally, we show the overall performance improvement when accelerating
control tasks in the cluster compared to single-core (Sec. 4.4).

– We evaluate the PCF control policy quality in a pure software-based simula-
tion using MATLAB Simulink. We show that the PCF compares favorably
against the most well documented and open SoA industrial solution on the
market, the IBM OCC (Sec. 4.5).

4.1 Area evaluation

We synthesize ControlPULP in GlobalFoundries 22FDX FD-SOI technology us-
ing Synopsys Design Compiler 2019.12. For this technology, one gate equivalent
(GE) equals 0.199 µm2. The design has an overall area of 9.1 MGE when impos-
ing a system clock frequency of 500 MHz. As from the area breakdown shown
in table 1, the cluster accelerator accounts for about 32% of the design.

The target controlled system die area is assumed comparable to other com-
mercials, multi-core (> 64) server-class processors, such as [9] (about 457 mm2).
By scaling the gate-equivalent count of the HPC CPU die in the same tech-
nology node of this work, ControlPULP would still represent less than 1% of
the available die area7. This first-order estimation makes the design choice of a
parallel PCS valuable since its capabilities are much increased, while the silicon
area cost remains negligible within a high-performance processor die.

4.2 Firmware Control Action

In the following, we analyze the execution of the PCF phases (P4)-(P7) on the
multi-core cluster accelerator. We enforce power capping (Alpha reduction [3])

7This has to be considered a first approximation, since it compares post-synthesis
results with publicly available data of a modern HPC die, nowadays manufactured in
a more advanced technology node.
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Table 1: ControlPULP post-synthesis area breakdown on GF22FDX technology.

Unit Area
[mm2]

Area
[kGE]

Percentage
[%]

Cluster unit 0.467 2336.7 25.5

SoC unit 0.135 675.9 7.39

L1 SRAM 0.119 595.7 6.51

L2 SRAM 1.108 5542.1 60.6

Total 1.830 9150.3 100

to evaluate each computational phase fairly. Each cluster core is responsible for a
subset of the controlled processing elements. The parallelisation is implemented
as a fork-join process where the workload is statically distributed among the
workers. In ControlPULP, the construct is implemented by means of a per-
worker thread id ∈ [0 : Nworkers − 1], and an equally distributed chunk size

where chunk size =
Nctrl cores

Nworkers
. We are interested in extracting performance

figures for the Control Action in a single periodic step n. We execute the PCF
for S steps to amortize the effect of the initially cold instruction cache. Finally,
we perform the arithmetic mean over S to get the mean absolute execution time
for each (P4)-(P7) phase.

We report the execution time τ0 and the multi-core speedup (
τ0,single

τ0,multi
) at

varying number of controlled cores Ncc for each PCF phase in Figs. 3a and 3b
respectively. The total speedup of the full Control Action at fixed Ncc is the
geometric mean over the speedups of each phase. In our use case of 72 controlled
processing elements, ControlPULP executes the Control Action 5.5x faster than
in single-core configuration, reaching 6.5x with 296 controlled cores.

We make the following observations. First, multi-core speedup scales with
the number of controlled cores due to the increased workload and is affected
by the workload characteristics of each phase. Second, the Control Action is
not a fully computational step. In fact, instruction branching associated with
power and frequency bounds checks per-core introduces additional load/store
stalls due to data access contention in multi-core configuration. Finally, the
computational body of (P6) and (P7) can be separated into independent parallel
tasks, and is thus an embarrassingly parallel problem. Instead, (P4) and (P5)
show dependency across the values computed by the workers in the form of
reduction sums, i.e., in (P4) to calculate the total power of the CPU and (P5) to
calculate a normalization base for Alpha power capping [3] and again the total
CPU power. When a reduction sum is needed, we use a hardware barrier to
synchronize the threads and join the concurrent execution on the cluster master
core (core 0), which carries out the reduction. The overhead from synchronization
and single-core reduction accounts for 112 and 24 clock cycles, respectively.

As it can be seen from the above analysis, the increased parallel compute
capability to handle the workload of the control routine, paired with the general
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Table 2: Interrupt latency from interrupt edge to the first instruction in the
interrupt handler in number of cycles.

Location Increment
[cycles]

Sum
[cycles]

PLIC input to output 2 2
CLINT input to core 7 9

Jump in vector table to PLIC handler 2 11
Save caller save regs (addi + 15 regs) 17 28

Claim PLIC interrupt (read id) 8 36
Compute and load PLIC handler address 8 44

Jump to PLIC handler address 2 46
Summary - 46

purpose nature of the accelerator, enable us to (i) improve the control perfor-
mances paving the way to more advanced algorithms and (ii) be fully flexible
when designing the control algorithm.

4.3 In-band Services

PVT sensors To assess in-band services involving PVT physical sensors —
phases (P1) and (P2) —, we measure the transfer time required for reading
data bursts on the AXI master bus with the SoC timer. The exploration is
three-fold: (i) direct data gathering from the ControlPULP cluster’s cores, (ii)
data gathering by offloading the transfers to the DMA in 1-D configuration, and
(iii) DMA offload in 2-D configuration [20]. For (i) and (ii), we investigate the
data collection on either 1-core or 8-cores configurations. The address range is
equally distributed among the issuing cores in the latter scenario. In (iii), one
core performs the read operation to highlight the advantages of offloading a
single, large transfer with non-contiguous but uniformly spaced addresses to the
DMA, which increases the addresses by the selected stride. This configuration
becomes important when atomically gathering PVT information from equally
spaced address locations (HPC PEs) with only one transfer request. As in Sec.
4.2, we use synchronization barriers to coordinate the eight cores. Fig. 3c reports
the execution time τ1 required for data movement when reading from up to 1000
PVT registers (4B each), an estimate bound given the number of processing
elements and the information needed from them (P, V, T, i.e. ≥ 3 lower bound).
Fig. 3c shows that the best DMA-based transfers assuming 1000 PVT registers
(2-D) are 5.3x faster than single-core direct data gathering.

SCMI An interrupt-driven (doorbell) transport regulates the communication in
the agent-platform direction — phase (P3) of the Periodic Control Task. Table 2
gives an overview of the overall PLIC interrupt latency measured as the number
of cycles from the triggering edge in the PLIC to the ISR Handler’s first instruc-
tion. The RTL testbench environment (Fig. 2b) emulates the shared mailboxes.
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Fig. 3: (a)-(b) Firmware Control Action, execution time, and speedup compari-
son between single-core (SoC domain) and 8-cores (Cluster domain). (c) In-band
data acquisition from simulated PVT registers, execution time without and with
DMA in 1-D and 2-D configurations. (d) Execution time in the interrupt han-
dler from the interrupt edge to its completion with a basic SCMI message at
varying interconnect network access latency to the mailbox.

Each global interrupt line is paired with a mailbox that can host one command
message and is associated with a unique agent over an SCMI channel. The min-
imum size of an SCMI message (header and payload) is 32B when employing a
4B payload for platform response according to standard specifications [2]. Fig-
ure 3d shows the execution time of an SCMI command decoding and response
(Base Protocol, protocol id = 0x10, message id = 0x0 [2]) when an external
simulated driver rings a doorbell to the PCS. In the experiment, we emulate
the latency of the interconnect network between ControlPULP and the mailbox
location in the die (Figs. 2a) as described in Fig. 2b. The latency has a large
impact on the load/store access times, thus the time spent in the ISR, which
grows with the interconnect delay size. We address the issue using the FreeRTOS
timer API xTimerPendFunctionCallFromISR() to defer pending interrupts and
keep the ISR time short and insensitive to the CPU interconnect network delay
(Fig. 3d). From Fig. 3d, we see that deferring interrupt handling to a task is
preferable over direct handling, as it is network-latency insensitive and faster
for realistic NoC latencies larger than 50 cycles. Other existing solutions, such
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Table 3: Execution time T of a PCT step, single-core and cluster configurations.
SCMI commands exchange and off-die transfers, handled by the SoC Manager
core, are not included in the comparison since they are a shared overhead.

Firmware phase Time step Execution time [cycles] Speedup

1-core Multi-core

Control Action (P4)-(P7) τ0 61867 11372 5.5x

In-band transfers (P1),(P2) τ1 5463 3523 (DMA) 1.6x

Offload to the Cluster τ2 - 389 -

L2 - L1 transfers τ3 - 434 (DMA) -

L1 - L2 transfers τ4 - 872 (DMA) -

Return from Cluster τ5 - 574 -

Step total time T 67330 13641 4.9x

as ARM SCP firmware, propose a bespoke Deferred Response Architecture 3 to
mark selected requests coming from an agent as pending and defer the platform
response. We instead rely on a trusted scheduler that decouples OS and PCF
driver APIs improving flexibility and portability.

4.4 System-level PCF step evaluation

The standalone evaluations of ControlPULP’s architectural features from the
previous sections need to be finalized with the overall Periodic Control Task
step cycle count comparison between accelerator enhanced and single-core con-
figurations, reported in Table 3 in the case of 72 controlled cores. Table 3 shows a
breakdown of the required actions. The total execution time computation differs
in the two domains. In the single-core case, we execute sequentially with less over-
head (Tsingle = τ0+τ1). In the multi-core case, (Tmulti = max(τ0, τ1)+

∑5
i=2 τi)

we (i) execute the computation τ0 and data acquisition τ1 at step n concurrently,
(ii) rely on τ0,multi ≪ τ0,single, and (iii) introduce an overhead due to additional
data movement involving L1 and L2, which is essential to keep data telemetry
between SoC and cluster domains during the PCT.

Overall, multi-core execution achieves a 4.9x speedup over a single-core con-
figuration. This helps reduce the PCF periodic control policy hyper-period (the
least common multiple of the control tasks’ periods) [16] and increase the avail-
able computation time within the hyper-period, respectively.

4.5 Control-level PCF step evaluation

Control comparison with SoA solutions The control quality of the PCF step
is tightly coupled with the architecture of the system to be controlled. Bench-
marks comparisons concern the overall HPC chip performance and are not fo-
cused on the controller alone. The only commercial solution available for cross-
benchmarking is the IBM OCC (Sec. 2).To enable a meaningful comparison, we
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use MATLAB Simulink to model (i) the HPC die as control target and (ii) the
IBM’s control action excluding few architecture-specific features, and the two-
layer PCF control [3] executed by ControlPULP. The PID-like coefficients of the
IBM control are adapted for the HPC chip model. We assume a constant volt-
age of 0.75V and neither overhead nor delays in the PLLs and VRMs operating
point transitions. The simulation runs for 2s. The HPC chip model consists of a
9-cores tile. Each core executes diverse synthetic8 workloads: Core 1/Core 3 and
Core2/Core 4 execute maximum power (MAX) and low power (LOW) instructions,
respectively. Core 5, 6, and 9 execute heterogeneous mixed instruction (MIX),
while Core 7 and Core 8 are exposed to sharp instruction types switching (FAST)
to stress the power limiter and the shorter timing constants of the tempera-
ture response. The DVFS target frequency for each core is kept constant at the
maximum frequency, while the power budget is changed five times during the
simulation to stress all the elements of the control action.

First, we show that a controller with a multi-core cluster able to deliver higher
computational power is beneficial for the performances of the HPC chip. We
compare the IBM control and a version of it with a per-core temperature PID for
frequency reduction. The comparison highlights the positive effect of having fine-
grained control made possible by the cluster. The performance, measured as the
number of retired instructions, is shown in Figure 4. Using only one temperature
for the whole tile results in an average performance reduction per core of 5.55%,
while Cores executing high-power instructions (Core 1 and Core 3) receive a
performance increase of 4% and 5% respectively. In fact, being the frequency
reduction based on the hotter cores and thus a shared penalty, neighboring cores
get colder, and other cores consume less power during power capping phases,
leaving more power available to boost performances of Core 1 and Core 3. As
from Sec. 2, the IBM control policy considers the maximum temperature among
the processing elements when applying frequency reduction. We conjecture that
this limitation is enforced by the limited control policy complexity that can be
handled by IBM’s OCC. On the other end, ControlPULP enables fine-grained
frequency reduction on a per-core temperature granularity.

Last, we compare the PCF control and the IBM control version with per-
core temperature PIDs. The comparison is used to show the validity of the
considered PCF control as well as how the accelerator allows fine-grain control
decisions by favoring the more demanding workloads. In the latter scenario, the
PCF shows a performance increase in executed instructions that ranges from
+2.75% to +4.97%. This holds true for cores with mixed instructions (+0.1%
to +6.08%) as well, while cores involved in less demanding workloads witness
a decrease between −2.72% and −3.76%. Thus, the modified policy with per-
core temperature PID calculation, enabled by the parallel cluster, can selectively
boost the instructions retired by the critical cores, achieving a higher application
performance on the HPC chip while still meeting the thermal cap.

8In order to assess the controller, the evaluation of a real workload is out of scope
for this work as it requires more complex co-simulation setup. We refer to synthetic
workloads that cover relevant corner cases for the ControlPULP.
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Fig. 4: Performance analysis. Comparison between the original IBM OCC
firmware and modified IBM OCC firmware with per-core temperature PID for
frequency reduction.

5 Conclusion

In this paper, we presented ControlPULP, a complete RISC-V Power Control
System for HPC processors that exploits multi-core capabilities to accelerate con-
trol algorithms and features specialized DMA and fast interrupt handling and
synchronization. This allows us to apply more fine-grained control policies re-
sulting in better control performance. With the proposed architecture, a control
policy step executes 4.9x faster than in single-core configuration. ControlPULP
enables the implementation of more complex control algorithms capable of dis-
patching fine-grained frequency targets with better accuracy.
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