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Abstract

In pediatric neurorehabilitation, children and adolescents with congenital and acquired
illnesses and injuries of the developing brain are treated and cared for. These patients often
present neuromotor impairments that result in difficulties in executing everyday life motor
activities, such as walking or grasping an object. They undergo intensive therapy programs
with an emphasis on reducing these limitations and fostering their functional independence
in everyday life. To assess the patients’ progress during rehabilitation, usually, motor capacity
(i.e., what a child can do in a standardized environment) is measured at the clinic. However,
after discharge, motor performance (i.e., what a child does do in its habitual environment)
becomes more important and it remains unclear whether children and adolescents can
translate their improvements during rehabilitation into everyday life at home or school.

Wearable inertial sensors provide a promising solution to overcome this limitation. Tech-
nological progress has made these sensors small-sized, lightweight, energy-efficient, and
thus applicable for unobtrusive long-term measurements of motor activities in the patients’
habitual environment. However, to derive meaningful outcome measures of everyday life
motor activities, the unlabeled raw data generated by these sensors needs to be analyzed by
appropriate data processing algorithms. Over the last decade, many algorithms have been
developed that were predominantly designed for adult patient populations and rarely for pe-
diatric populations. Hence, existing algorithms needed to be adapted to the needs of pediatric
rehabilitation and validated in children and adolescents with neuromotor impairments.

Therefore, the primary aim of this thesis was to develop and validate a data processing algo-
rithm that derives clinically meaningful motor performance measures about the daily motor
activities of children and adolescents with neuromotor impairments based on data from a
wearable inertial sensor system. The secondary aim was to apply this new technology to
pediatric patients to measure their motor performance after rehabilitation and investigate if
children and adolescents can translate their motor capacity achieved during rehabilitation
into daily life.

The thesis began with a systematic review to get an overview of the technological possibilities
of wearable inertial sensors to quantify everyday life motor activities in people with mobility
impairments. This part was followed by summarizing the mobility and self-care goals of
children and adolescents undergoing rehabilitation and conducting an international survey
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Abstract

with pediatric health professionals to identify the needs of pediatric rehabilitation. The
findings of these studies led to the development of an algorithm that determines functional
hand use with wrist sensors; the duration of lying, sitting, and standing positions with a trunk
and a thigh sensor; the distance and speed of self-propelled wheeling periods with a wrist and
a wheel sensor; and the duration, distance, and speed of walking periods with an ankle sensor.

As a next step, the algorithm was validated in the target population by three studies. The first
study analyzed the accuracy of posture and mobility-related measures. It showed that the
algorithm’s measurement error in estimating the duration of lying, sitting, standing, self-pro-
pelled wheeling, and walking was less than 10%. The second study investigated the validity
of the functional hand use measures. The correlation coefficient between the sensor-based
and video-based measures was 0.7. The third study determined the accuracy of sensor-based
gait speed estimations. It revealed that the algorithm’s measurement error is small enough
to detect clinically important changes of 0.1 m/s. These validity studies showed that the
newly developed algorithm derives valid estimates of the children’s and adolescents’ motor
performance.

In the final study of this thesis, children and adolescents with neuromotor impairments
wore the sensors in their habitual environment after rehabilitation. This study revealed that
children and adolescents with neuromotor impairments are less active on weekends than on
school days and that their daily performed motor activities varied substantially between days.
Consequently, we recommend measuring everyday life motor activities on seven consecutive
days in future applications of the sensor system. This measurement protocol covers school
days and weekend days, and the number of measurement days is sufficient to obtain reliable
estimates of the children’s and adolescents’ motor performance. The study also showed that
children and adolescents were willing to wear the sensors for a week in daily life.

Additionally, the same study investigated if children and adolescents with neuromotor im-
pairments can translate their motor capacity achieved during rehabilitation into daily life by
comparing their motor performance in daily life with their motor capacity assessed at the
clinic. The capacity of children and adolescents explained only 13% to 58% of their motor
performance in daily life. These weak correlations showed that motor assessments conducted
at the clinic only partially reflect the patient’s performance at home and school. This confirms
that capacity and performance are two different constructs and underpins the need to com-
plement clinical assessments with performance measures conducted in the patients’ habitual
environment. Moreover, it confirms that wearable sensors and the algorithm developed in
this thesis capture essential information about the patients’ functioning in daily life, which
adds value to clinical practice and rehabilitation research.



Zusammenfassung

In der padiatrischen Neurorehabilitation werden Kinder und Jugendliche mit angeborenen
und erworbenen Erkrankungen und Verletzungen des sich entwickelnden Gehirns behandelt
und betreut. Diese Patienten weisen hdufig neuromotorische Beeintrdachtigungen auf, die
zu Schwierigkeiten bei der Ausfiihrung motorischer Alltagsaktivitdten fithren, wie z. B. beim
Gehen oder Greifen eines Gegenstandes. Sie durchlaufen intensive Therapieprogramme, die
darauf abzielen, diese Einschrankungen zu verringern und ihre Selbstédndigkeit im Alltag zu
férdern. Um die Fortschritte der Patienten wéahrend der Rehabilitation zu erfassen, wird in der
Regel die motorische Leistungsfihigkeit (d. h. was ein Kind in einer standardisierten Umge-
bung tun kann) in der Klinik gemessen. Nach dem Austritt gewinnt jedoch die motorische
Leistung (d. h. was ein Kind in seiner gewohnten Umgebung tut) an Bedeutung, und es bleibt
unklar, ob Kinder und Jugendliche ihre Fortschritte wihrend der Rehabilitation in den Alltag
zu Hause oder in der Schule tibertragen konnen.

Tragbare Inertialsensoren bieten eine vielversprechende Losung zur Bewiltigung dieser Pro-
blematik. Der technologische Fortschritt hat diese Sensoren klein, leicht und energieeffizient
gemacht, so dass sie fiir unaufdringliche Langzeitmessungen von motorischen Aktivitdten in
der gewohnten Umgebung der Patienten geeignet sind. Um relevante Messwerte der moto-
rischen Alltagsaktivitdten zu generieren, miissen die Rohdaten von diesen Sensoren jedoch
mit geeignete Algorithmen analysiert werden. Im letzten Jahrzehnt wurden viele Algorithmen
entwickelt, die tiberwiegend fiir erwachsene Patienten und nur selten fiir Kinder konzipiert
wurden. Daher mussten die bestehenden Algorithmen an die Bediirfnisse der padiatrischen
Rehabilitation angepasst und bei Kindern und Jugendlichen mit neuromotorischen Beein-
trachtigungen validiert werden.

Das primére Ziel dieser Doktorarbeit war es daher, einen Algorithmus zu entwickeln und
zu validieren, der, basierend auf Daten von tragbaren Inertialsensoren, klinisch relevante
Messwerte der motorischen Alltagsaktivitdten von Kindern und Jugendlichen mit neuromoto-
rischen Beeintrdachtigungen generiert. Das sekundére Ziel war es, diese neue Technologie bei
pédiatrischen Patienten anzuwenden, um deren motorische Leistung nach der Rehabilitation
zu messen und zu untersuchen, ob Kinder und Jugendliche ihre wihrend der Rehabilitation
erreichte motorische Kapazitit im Alltag umsetzen kénnen.

Die Doktorarbeit begann mit einer systematischen Literaturrecherche, um einen Uberblick
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tiber die technologischen Moglichkeiten von tragbaren Inertialsensoren zur Quantifizierung
motorischer Alltagsaktivitdten von Personen mit eingeschrénkter Mobilitédt zu erhalten. An-
schlieflend wurden die Mobilitdts- und Selbstversorgungsziele von Kindern und Jugendlichen,
die eine Rehabilitation durchliefen, zusammengefasst und eine internationale Umfrage unter
Gesundheitsfachpersonen durchgefiihrt, um die Bediirfnisse der pddiatrischen Rehabilitation
zu ermitteln. Die Ergebnisse dieser Studien fiihrten zur Entwicklung eines neuen Algorith-
mus. Dieser berechnet den funktionellen Handeinsatz mit Handgelenksensoren; die Dauer in
liegender, sitzender und stehender Position mit einem Oberkorper- und einem Oberschenkel-
sensor; die Distanz und Geschwindigkeit wihrend dem aktiven Rollstuhlfahren mit einem
Handgelenk- und einem Rollstuhlsensor sowie die Dauer, Distanz und Geschwindigkeit von
Gangaktivititen mit einem Kno6chelsensor.

In einem nédchsten Schritt wurde der Algorithmus in der Zielgruppe durch drei Studien vali-
diert. Die erste Studie analysierte die Genauigkeit von haltungs- und mobilitdtsbezogenen
Messwerten. Es zeigte sich, dass der Messfehler des Algorithmus bei der Bestimmung der
Dauer des Liegens, Sitzens, Stehens, aktiven Rollstuhlfahrens und Gehens weniger als 10%
betrug. Die zweite Studie untersuchte die Validitdt der Messung des funktionellen Handge-
brauchs. Der Korrelationskoeffizient zwischen den sensor- und videobasierten Messwerten
betrug 0.7. Die dritte Studie ermittelte die Genauigkeit der sensorbasierten Bestimmung der
Gehgeschwindigkeit. Es stellte sich heraus, dass der Messfehler des Algorithmus klein genug
ist, um klinisch relevante Verdnderungen von 0.1 m/s zu detektieren. Diese Validitdtsstudien
zeigten, dass der neu entwickelte Algorithmus valide Messwerte der motorischen Leistung
von Kindern und Jugendlichen liefert.

In der letzten Studie dieser Doktorarbeit haben Kinder und Jugendliche mit neuromotori-
schen Beeintrachtigungen die Sensoren nach der Rehabilitation in ihrer gewohnten Um-
gebung getragen. Diese Studie ergab, dass Kinder und Jugendliche mit neuromotorischen
Beeintrachtigungen an Wochenenden weniger aktiv sind als an Schultagen und dass ihre
tdglich ausgefiihrten motorischen Aktivitdten stark von Tag zu Tag variieren. Daher empfehlen
wir, bei kiinftigen Anwendungen des Sensorsystems die motorischen Alltagsaktivitdten an
sieben aufeinanderfolgenden Tagen zu messen. Dieses Messprotokoll beinhaltet Schultage
und Wochenendtage, und die Anzahl der Messtage ist ausreichend, um reliable Messwerte
tiber die motorische Leistung von Kindern und Jugendlichen zu erhalten. Die Studie zeigte
auch, dass die Kinder und Jugendlichen bereit waren, die Sensoren eine Woche lang im Alltag
Zu tragen.

Die gleiche Studie untersuchte zudem, ob Kinder und Jugendliche mit neuromotorischen
Beeintrachtigungen ihre wihrend der Rehabilitation erreichte motorische Kapazititin den
Alltag iibertragen kdnnen, indem ihre motorische Leistung im Alltag mit ihrer in der Klinik
erfassten motorischen Leistungsfdahigkeiten verglichen wurde. Die motorische Leistungsfahig-
keit von Kindern und Jugendlichen erklarte nur 13% bis 58% ihrer motorischen Leistung im
Alltag. Diese geringen Zusammenhénge zeigen, dass die in der Klinik durchgefiihrten motori-
schen Tests die motorische Leistungen der Patienten zu Hause und in der Schule nur teilweise

Xii
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widerspiegeln. Dies bestétigt, dass Leistungsfahigkeit und Leistung zwei unterschiedliche
Konstrukte sind, und unterstreicht die Notwendigkeit, klinische Tests mit Messungen in der
gewohnten Umgebung der Patienten zu ergidnzen. Dartiiber hinaus bestitigt es, dass tragbare
Sensoren und der in dieser Doktorarbeit entwickelte Algorithmus wesentliche Informationen
tiber die Funktionsfahigkeit der Patienten im Alltag erfassen, was einen Mehrwert fiir den
klinischen Alltag und die Rehabilitationsforschung bringt.

Xiii
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Chapter 1. General introduction

1.1 Pediatric neurorehabilitation

Approximately 7% of all children have some form of moderate disability, and 0.7% have a
severe disability, with neurological disorders being the major cause of disability in childhood
(deSousa and Rattue, 2004; Kurtz and Stanley, 1995). These children often present neurological
impairments that result in difficulties in executing everyday life motor activities, such as
walking or grasping an object. They undergo intensive therapy programs as in- or out-patients
with the emphasis on reducing these limitations and fostering their functional independence
in everyday life.

1.1.1 Children and adolescents with neuromotor impairments

The two most common health conditions leading to rehabilitation admission in children are
cerebral palsy and acquired brain injury, which are briefly described in the following sections.

Cerebral palsy is defined as ‘a group of permanent disorders in the development of movement
and posture, causing activity limitations that are attributed to non-progressive disturbances
that occurred in the developing fetal or infant brain. The motor disorders of cerebral palsy are
often accompanied by disturbances of sensation, perception, cognition, communication, and
behavior, by epilepsy, and by secondary musculoskeletal problems” (Rosenbaum et al., 2007). It
is the most common motor disability in childhood (Graham et al., 2016), with a prevalence of
roughly 2 cases per 1’000 live births (Surveillance of Cerebral Palsy in Europe (SCPE), 2002).
Among children with cerebral palsy, 28% cannot walk and 16% walk with assistance (Novak
et al., 2012), 41% have apparent difficulties in stair climbing (Wichers et al., 2009), and 60%
have more than minor problems with hand function (Arner et al., 2008). Besides these activity
limitations, children with cerebral palsy often experience pain, fatigue, and social exclusion,
which all affect their well-being and quality of life (Lindsay, 2016).

Acquired brain injury is defined as "an overarching term applied to describe insults to the
brain that are not congenital or perinatal in nature” (Campbell, 2004). The mechanism of
injury can be traumatic (e.g., falls or motor vehicle accidents) or non-traumatic (e.g., infections,
strokes, or neoplasms). Acquired brain injuries are the leading cause of disability in children
after infancy (Forsyth and Kirkham, 2012), with traumatic brain injuries being more common
than non-traumatic brain injuries (Bedell, 2008; Moreau et al., 2013). The annual incidence of
traumatic brain injuries requiring hospitalization is roughly 70 per 100’000 children, with a
prevalence of long-term impairment and disability in 20% of the cases (Thurman, 2016). These
children have difficulties in self-care, mobility, and social activities, even after rehabilitation
and their functional recovery depends on many factors such as the severity of the injury or the
age at injury (Galvin et al., 2010). Moreover, there is increasing evidence that children with an
acquired brain injury have participation restrictions at home, at school, and in the community
van Tol et al. (2011), which is related to decreased quality of life (King et al., 2003).

2



1.1. Pediatric neurorehabilitation

Besides cerebral palsy and acquired brain injury, there are other congenital or acquired injuries
or illnesses of the nervous system leading to rehabilitation admission. Typical examples are
spina bifida, Duchenne muscular dystrophy, peripheral neuropathy, and traumatic spinal cord
injury. In this thesis, we used the umbrella term children and adolescents with neuromotor
impairments to summarize this heterogeneous pediatric population. In this term, adolescents
represent young people between 13 and 18 years of age. However, to increase the readability of
the thesis, we often just wrote children instead of children and adolescents. Therefore, we want
to point out that the word children also includes adolescents unless it is specified differently.

1.1.2 The aim of pediatric rehabilitation

The overall goal of pediatric rehabilitation is to foster the children’s and adolescents’ function-
ing in everyday life and improve the quality of life for the whole family. The process to achieve
this goal is best understood in the context of the International Classification of Functioning,
Disability, and Health (ICF) (Noetzel and Dosenbach, 2017). The ICF provides a standard
language and a framework to describe functioning and disability as the interaction between
the children’s impairments on the level of body functions and body structures (e.g., muscle
paresis or spasticity), their ability to execute a task or an action on the activity level (e.g.,
walking or eating), and their involvement in a life situation on the participation level (e.g.,
attending school or playing cards with family and friends) (World Health Organization, 2001).
Moreover, these levels are influenced by the child’s personal and environmental factors (e.g.,
accessibility of school buildings or attitudes of family members). Disability can be influenced
on any of these levels, and rehabilitation can be targeted to improve the children’s abilities
or make changes to their environment depending on individual needs (World Health Orga-
nization, 2011). An interdisciplinary team of physicians, nurses, therapists, psychologists,
and teachers gathers these needs at the beginning of rehabilitation and establishes a tailored
rehabilitation program. In pediatric rehabilitation, the inclusion of parents in this process
is widely advocated nowadays (An and Palisano, 2014; King and Chiarello, 2014). Thereby,
the focus shifts from reducing impairments on the level of body functions to the children’s
participation in everyday life activities (Brogren Carlberg and Lowing, 2013; Law and Darrah,
2014).

1.1.3 Motor assessments in pediatric rehabilitation

Motor assessments have become an integral part of pediatric neurorehabilitation. They quan-
tify the patients’ functional abilities, and the outcomes are essential for setting goals, moni-
toring the children’s progress over time, and evaluating therapeutic interventions (Schadler
et al., 2006). Examples of widely-used motor assessments are the 10-meter walk test and
the Gross Motor Function Measure to assess lower limb activities (Ammann-Reiffer et al.,
2014; Avery et al., 2003; Graham et al., 2008) and the Melbourne Assessment to assess upper
limb activities (Gerber et al., 2016; Randall et al., 2014). During the 10-meter walk test, a
therapist records the time patients need to cover the middle 10 m of a 14 m long walkway:.
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The estimated walking speed serves as a surrogate to assess the children’s walking abilities.
The Gross Motor Function Measure contains 88 standardized tasks related to lying, sitting,
crawling, standing, and walking. Here, the therapist rates the children’s ability to complete
these tasks. Similarly, the Melbourne Assessment comprises 14 unimanual tasks involving
reaching, grasping, releasing, and manipulating objects. In this assessment, the therapist rates
the children’s movement range, accuracy, dexterity, and fluency in executing these tasks.

In these examples, but also generally in inpatient rehabilitation, the assessments are predom-
inantly conducted at the clinic in a standardized environment and under ideal conditions.
During the 10-meter walk test for example, children walk on a flat surface, without distraction
by other persons, and with ideal lighting conditions. Standardized settings have the advantage
of increasing the comparability between patients and the reliability of repeated measures
because the assessments are completed under the same conditions. Moreover, patients have
the possibility to demonstrate what they can do without getting challenged or distracted by the
environment. According to the ICE these assessments measure the patients’ highest probable
level of functioning, which is referred to as their motor capacity (World Health Organiza-
tion, 2002). In other words, capacity measures reflect what a child can do in a standardized
environment (Holsbeeke et al., 2009).

However, in daily life, the children interact with their social and physical environment, and
their capacity might not reflect how they perform in their habitual environment. Going back
to the example of the 10-meter walk test, children might show significant improvements in this
standardized test during the course of rehabilitation. However, in everyday life, the children
might still have difficulties walking on uneven surfaces, passing curbs, getting around in a
crowded area, or going home at dawn. Moreover, the children might rarely use their regained
walking abilities because of social exclusion or parents driving them by car. This example
demonstrates the relevance of considering contextual factors in assessing the patients’ func-
tional abilities. In practice, we can incorporate these contextual factors by assessing what a
child does do in his or her habitual environment (Holsbeeke et al., 2009) which, according
to the ICE is referred to as motor performance (World Health Organization, 2002). Hence,
without assessing performance, it remains unclear whether children can translate their im-
provements in capacity into everyday life at home or school. Therefore, assessing the children’s
motor capacity should be complemented by assessments of their motor performance to get a
comprehensive view of their functional abilities.

In current clinical practice, motor performance is predominantly assessed with self- or
proxy-report questionnaires such as the Functional Mobility Scale (Ammann-Reiffer et al.,
2014; Graham et al., 2004) or the Pediatric Motor Activity Log (Gerber et al., 2016; Uswatte
et al., 2012). In the Functional Mobility Scale, parents rate their child’s usual walking ability
at home, at school, and in the community. Likewise, in the Pediatric Motor Activity Log, the
parents rate how well and how often their child uses the more affected hand in activities of
daily living. These questionnaires rely on the subjective perception of families and are prone
to recall or proxy bias (Clanchy et al., 2011a; Holsbeeke et al., 2009). Consequently, there is a
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need for objective alternatives to assess motor performance in pediatric rehabilitation.

1.2 Measuring performance with wearable sensors

1.2.1 Sensor technology

Technological progress in the field of microelectromechanical systems enabled the develop-
ment of small-sized, lightweight, and energy-efficient sensor modules (Garofalo, 2012). As a
result, the sensor modules have become wearable, and their extended battery life allows for
long-term measurements over multiple days. Therefore, wearable sensors provide a promising
solution to assess motor performance objectively by enabling long-term measurements of
motor activities in the children’s habitual environment (Lang et al., 2020; Leuenberger and
Gassert, 2011).

Accelerometers and pedometers are the most commonly used wearable devices to measure
everyday life motor activities in patients with neuromotor impairments (Ainsworth, 2009;
Cervantes and Porretta, 2010). Conventional outcomes of accelerometers are activity counts
as well as intensity levels and energy expenditure estimations based on cut-points of these
counts (Hey et al., 2014). However, even though these measures provide valid estimates
about whole-body physical activity, they do not contain any information about the type
and quality of performed activities (Bonomi and Westerterp, 2012; Rachele et al., 2012). In
contrast, pedometers would be specific to walking activities and count the number of daily
steps. However, they reveal reduced accuracy in people with altered gait patterns and slow
walking speeds (Ainsworth, 2009; Melanson et al., 2004).

In contrast, combining accelerometers with gyroscopes and magnetometers to an inertial
sensor module and placing these modules on different body segments would allow for more
accurate and comprehensive measurements of the children’s movements (Garofalo, 2012).
Moreover, processing these sensor data with activity recognition algorithms enables determin-
ing the type, quantity, and quality of motor activities (Dobkin, 2013). For example, walking
periods have been discriminated from other motor activities with sensor modules placed on
each ankle before determining the covered distance and the limb asymmetry during these
walking periods (Dobkin et al., 2011). Besides, inertial sensors can be complemented with
other sensor technology such as temperature or barometric pressure sensors to gain further
details about the children’s activities (Lowe and Olaighin, 2014). Barometric pressure sensors,
for example, can be used to measure altitude changes and discriminate between standing and
using an elevator or between level walking and stair climbing (Massé et al., 2015). Hence, we
concluded that these wearable sensor modules are ideal for measuring everyday life motor
activities in children and adolescents with neuromotor impairments.

In this thesis, we used a sensor module called ZurichMOVE. It was developed in a joint project
of the Rehabilitation Engineering Laboratory and the Institute for Bliomechanics at ETH Zurich
and the Spinal Cord Injury Center at the Balgrist University Hospital. The module has been
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continuously improved and currently consists of a 3-axis accelerometer, a 3-axis gyroscope, a
3-axis magnetometer, and an altimeter (Popp et al., 2019). The internal storage capacity and
the battery life of the sensor modules allow for continuous recordings of roughly 72 & at a
sampling frequency of 50 Hz. The sensor modules have the size of a watch, are waterproof,
and are made of biocompatible materials. These characteristics make the sensor modules
suitable to be worn by patients in their everyday life. We use hook-and-loop straps of various
lengths to place the sensor modules on the patient’s trunk or limbs and adapters to attach the
sensor modules to assistive devices (see Figure 1.1).

”~ -

Figure 1.1 - Exemplary illustration of a wrist-worn ZurichMOVE sensor module and a second
sensor module attached to the spokes of the wheel (created by Rehabilitation Engineering
Laboratory, ETH Zurich).

1.2.2 Data processing algorithms

The analysis of the tremendous amount of data generated by these sensor modules requires
appropriate data processing algorithms to determine clinically meaningful and valid per-
formance measures of the patients’ daily motor activities (Dobkin, 2013). Examples of such
performance measures are the number of daily climbed stairs (Leuenberger et al., 2014), the ra-
tio between active and passive wheelchair propulsion (Popp et al., 2016), and an index of hand
use laterality (Leuenberger et al., 2017). The algorithms that determine these performance
measures were developed in former theses of our research group and have been validated in
adult patient populations.

However, the application of these sensor modules in a pediatric population is new, and we
expected that existing algorithms could not be directly used in children and adolescents with
neuromotor impairments for three main reasons. First, essential performance measures for
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children might not be covered by algorithms designed for adults because children are also
engaged in child-specific and age-dependent activities, such as playing or school activities.
Second, the magnitude of the acceleration signal is lower in children with small body sizes
and short levers than in adults. Therefore, algorithms trained with data from adults might
not reveal accurate results when applied to children with smaller body sizes than the subjects
of the training data. Third, children and adolescents with neuromotor impairments present
complex and heterogeneous motor disorders that result in a variety of altered movement
patterns (Armand et al., 2016). However, existing algorithms are usually designed for a specific
adult patient population; thus, they might not be robust or adaptive enough to deal with
the full spectrum of movement patterns presented in a pediatric population. Consequently,
we expected that existing algorithms must be adapted to children and adolescents with
neuromotor impairments to derive meaningful and valid performance measures for our target
population.

1.2.3 Number and placement of sensor modules

The measurement of motor performance with wearable sensors depends not only on the
availability of the sensor technology and the validity of the derived performance measures but
also on the children’s and adolescents’ willingness to wear the sensors in daily life. Previous
studies have shown that wearable sensors need to be comfortable, discreet, and unobtrusive
to be accepted by the end-users (Bergmann and McGregor, 2011; Dan, 2020; Mackintosh et al.,
2019). In our case, we expected that the small-sized and lightweight sensor modules fulfill
these requirements and that the acceptance depends mainly on the number and placement of
sensors. Consequently, there is a need to minimize the number of body-worn sensors.

In contrast, increasing the number of sensors would enable a more detailed analysis of ev-
eryday life motor activities and increase the accuracy of the performance measures (Dan,
2020; Ahmadi et al., 2018). For example, a single sensor is sufficient to count the number of
steps during walking periods (Paraschiv-lonescu et al., 2019), while determining stride time
and stride length would require four sensors placed on the lower extremities (Carcreff et al.,
2018). Likewise, a single wrist sensor is enough to measure daily hand use (Leuenberger et al.,
2017), while explicitly counting the number of reaching activities would require a sensor on
the trunk, the upper arm, and the forearm (van Meulen et al., 2016). Therefore, selecting the
best sensor configuration is a trade-off between maximizing information gain and minimizing
the number of sensors (Lang et al., 2020).

This introduction demonstrated the importance of assessing motor performance in pediatric
neurorehabilitation, showed the lack of objective performance measures in current clinical
practice, and provided a promising solution to overcome this limitation by measuring perfor-
mance with wearable inertial sensors. Accordingly, this thesis aimed to apply this technology
in children and adolescents with neuromotor impairments, adapt it to the needs of pediatric
neurorehabilitation, and use it to investigate the role of personal and environmental factors in



Chapter 1. General introduction

translating rehabilitation progress into daily life.

1.3 Objectives of this thesis

The first goal of this thesis was to develop a data processing algorithm that derives clinically
meaningful and valid motor performance measures about the daily motor activities of children
and adolescents with neuromotor impairments based on data from a wearable inertial sensor
system.

We expected the development process to be a trade-of between maximizing the number
and accuracy of performance measures and minimizing the number of required sensors and
thus the burden on children’s and families’ everyday lives. Consequently, we aimed to get
an overview of existing algorithms, the derived performance measures, and the underlying
sensor placements to get a thorough understanding of what is technologically feasible. Then,
we aimed to identify the needs of families and pediatric health professionals to estimate
what is clinically desirable. Eventually, we intended to adapt existing algorithms to the needs
of pediatric rehabilitation and optimize the number of required sensors. In this thesis, we
focused on school-aged children and adolescents because we expected that younger children
and infants would have different needs regarding the performance measures and the size,
weight, and placement of the sensor modules. Moreover, they represent the largest age group
at our rehabilitation center.

Next, we planned to validate the new algorithm in children and adolescents with neuromotor
impairments. Since there are many applications of wearable sensor systems in adult patient
populations (Dobkin and Martinez, 2018), we expected the new algorithm to be composed
of sub-algorithms that have been validated in adults. Further, we expected that these sub-al-
gorithms might not reveal valid estimates in a pediatric population because of the children’s
smaller body sizes and because they present a variety of altered movement patterns (Ar-
mand et al., 2016), which is a challenge for data processing algorithms (Albert et al., 2017b;
Dobkin, 2017). Hence, we intended to use the results of this validation process to improve our
algorithm’s accuracy and, eventually, derive valid estimations of motor performance.

The second goal of this thesis was to apply the new technology in children and adolescents
with neuromotor impairments to measure their motor performance after rehabilitation. We
planned that children and adolescents wear our sensor system in their habitual environment
for multiple days. With this, we aimed to estimate the day-to-day variability of the children’s
and adolescents’ motor activities, which would allow for a recommendation on how many
measurement days are needed to obtain reliable estimates of their motor performance. More-
over, this project should reveal if children and adolescents are willing to wear the sensor
system in daily life. Finally, we intended to compare the children’s and adolescents’ motor
performance to their level of motor capacity and to identify personal and environmental fac-
tors that explain the difference between capacity and performance. Identifying these factors
would be an essential milestone in improving the translation of rehabilitation progress into
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daily life and the children’s and adolescents’ independence in executing everyday life motor
activities.

1.4 Thesis outline

This thesis is mainly composed of research articles that have already been published or
submitted for publication. These articles were structured into four parts.

Part I: Technological possibilities To determine what is technologically feasible, we con-
ducted a systematic review on the application of wearable inertial sensors to quantify everyday
life motor activities in people with mobility impairments. We extracted the investigated activi-
ties and the performance measures used to quantify these activities. Moreover, we provided
an overview of the underlying data processing algorithms and the required sensor placements.
We published the protocol of this systematic review before the narrative synthesis of the re-
view’s results. We chose this two-stage publishing process to improve the quality of the search
strategy, the selection process, and the data extraction before conducting the final literature
search. The protocol of this systematic review is thoroughly described in Chapter 2, while the
review’s results are presented in Chapter 3.

Part II: Clinical needs In this part, we identified the needs of families and pediatric health
professionals with two complementary projects. First, we investigated the mobility and
self-care goals of children undergoing rehabilitation and provided a detailed priority list of
motor activities in Chapter 4. Second, we conducted an international survey with doctors,
nurses, and therapists; presented them with the performance measures extracted from the
systematic review; and asked them to rate the clinical relevance of these measures for pediatric
rehabilitation (Chapter 5). Finally, in Chapter 6, we merged the results of both projects,
identified the clinically most relevant activities and performance measures, and developed an
algorithm that estimates these measures with data of wearable inertial sensors. The latter was
a trade-off between maximizing information gain and minimizing the number of required
Sensors.

Part I1I: Algorithm validation As a next step, we investigated the accuracy of our algorithm
and determined the validity of the performance measures in three studies. Two studies used
the same data. In these studies, children and adolescents with neuromotor impairments
completed an activity circuit at the clinic while wearing our sensor system, and we made video
recordings as a reference. The first study analyzed the accuracy of posture and mobility-related
measures (Chapter 7), and the second study investigated the validity of hand use measures
(Chapter 8). The third study required additional data collection since we determined the
accuracy of sensor-based gait speed estimations by comparing them to the gait speed estima-
tions of a pressure-sensitive walkway (Chapter 9). Eventually, we summarized the algorithm’s

9



Chapter 1. General introduction

validity in Chapter 10.

Part IV: Clinical application The preceding validity studies were conducted in supervised
experiments at the clinic to allow for the inclusion of criterion measures. However, we aimed
to develop a tool that will be used in the children’s and adolescents’ habitual environment.
In this real-world setting, other factors such as the acceptance to wear the sensors, the com-
pleteness of data, and the naturally occurring day-to-day variability of motor activities must
be considered.

Therefore, we evaluated the factors mentioned above in Chapter 11. In this study, children
and adolescents with neuromotor impairments wore our sensor system for seven consecutive
days in their habitual environment after rehabilitation. This enabled the recommendation of
how many measurement days are needed to obtain reliable estimates of the children’s and
adolescents’ motor performance. Moreover, we determined if the children and adolescents
were willing to wear the sensors throughout the recommended measurement period.

The same study investigated if children and adolescents with neuromotor impairments can
translate their rehabilitation progress into daily life (Chapter 12). Besides motor performance,
we also measured the participants’ motor capacity with motor assessments at the clinic and
the participant’s personal, social, and environmental factors with a series of questionnaires.
Eventually, we investigated which of these contextual factors played a crucial role in translating
capacity into performance after rehabilitation.
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Chapter 2. Protocol of a systematic review on the application of wearable inertial sensors

2.1 Abstract

Background People with mobility impairments may have difficulties in everyday life motor
activities and assessing these difficulties is crucial to plan rehabilitation interventions and
evaluate their effectiveness. Wearable inertial sensors enable long-term monitoring of motor
activities in a patient’s habitual environment and complement clinical assessments which
are conducted in a standardised environment. The application of wearable sensors requires
appropriate data processing algorithms to estimate clinically meaningful outcome measures,
and this review will provide an overview of previously published measures, their underlying
algorithms, sensor placement, and measurement properties such as validity, reproducibility,
and feasibility.

Methods We will screen the literature for studies which applied inertial sensors to people
with mobility impairments in free-living conditions, described the data processing algorithm
reproducibly, and calculated everyday life motor activity related outcome measures. Three
databases (MEDLINE, EMBASE, and SCOPUS) will be searched with terms out of four different
categories: Study population, measurement tool, algorithm, and outcome measure. Abstracts
and full texts will be screened independently by the two review authors and disagreement will
be solved by discussion and consensus. Data will be extracted by one of the review authors
and verified by the other. It includes the type of outcome measures, the underlying data
processing algorithm, the required sensor technology, the corresponding sensor placement,
the measurement properties, and the target population. We expect to find a high heterogeneity
of outcome measures and will therefore provide a narrative synthesis of the extracted data.

Discussion This review will facilitate the selection of an appropriate sensor setup for future
applications, contain recommendations about the design of data processing algorithms as
well as their evaluation procedure, and present a gap for innovative, new algorithms and
devices.

Systematic review registration International prospective register of systematic reviews
(PROSPERO): CRD42017069865.
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2.2 Background

People with mobility impairments may have difficulties in executing activities of daily living
(Activity Limitations), or they may experience problems in involvement in life situations
(Participation Restrictions) (World Health Organization, 2002). Rehabilitation services aim
to improve these people’s abilities or make changes to their environment (World Health
Organization, 2011), to achieve a high level of independence and eventually increase the
quality of life. Clinical assessments to estimate patients’ abilities and their rehabilitation
progress are generally conducted in a standardised environment at a single time. Thus, they
do notincorporate environmental and cognitive challenges of a patient’s habitual environment
(Del Din et al., 2016¢) and might be inaccurate when the symptoms of the patient fluctuate over
time (Del Din et al., 2016b). Recent advances in wearable sensor technologies enable objective
and long-term monitoring of motor activities in a patient’s habitual environment. They
provide an opportunity to overcome the aforementioned limitations of clinical assessments
and complement their outcome measures.

Accelerometers and pedometers are the most commonly used wearable devices to quantify
everyday life motor activity in clinical trials and clinical practice (Ainsworth, 2009; Cervantes
and Porretta, 2010). Conventional outcome measures of accelerometers are activity counts as
well as intensity levels and energy expenditure estimations based on cut points of these counts
(Hey et al., 2014). These measures provide relevant information about whole body physical
activity, but they are non-specific and cannot determine movement patterns and types of
activities performed (Bonomi and Westerterp, 2012). Pedometers recognize walking activities
and count the number of steps during a day. However, they reveal reduced accuracy in people
with altered gait patterns and slow walking speeds (Ainsworth, 2009; Melanson et al., 2004).

In contrast, using a combination of several inertial sensors, such as accelerometers and gyro-
scopes, together with sophisticated data processing algorithms allows estimating the quantity
and quality of everyday life motor activities (Garofalo, 2012). Additional sensor technology
such as magnetometers, barometers, wearable cameras, and heart rate monitors measure
environmental factors or physiological responses to motor activities and can be combined
with inertial sensors to gain further details about patients’ activities (Dobkin, 2013; Lowe
and Olaighin, 2014). Technological progress in the field of microelectromechanical systems
has made these devices small-sized, cost-effective, energy-efficient, and thus applicable for
continuous long-term monitoring in unsupervised, free-living conditions (Garofalo, 2012).
However, the analysis of this tremendous amount of unlabelled raw data requires appropriate
data processing algorithms to determine clinically meaningful outcome measures of everyday
life motor activity. Examples of such measures are a hand use laterality index (Brogioli et al.,
2016), a ratio between active and passive wheelchair propulsion (Popp et al., 2016), and a
number of daily climbed stairs (Leuenberger et al., 2014).

The relevance of these outcome measures depends on end users’ perspectives and may
be different for people with mobility impairments compared to non-disabled individuals.
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For example, the amount of limping, use of assistive devices, and daily activity of affected
limbs are more relevant to the first population. Altered movement patterns can also be a
challenge for data processing algorithms (Albert et al., 2017b; Dobkin, 2017) and thus the
transferability of algorithms which were evaluated in non-disabled individuals to people with
mobility impairments could be limited. Therefore, this review will focus on the application of
inertial sensor technologies to quantify everyday life motor activity in people with mobility
impairments. It will provide an overview of existing outcome measures and their underlying
data processing algorithms. Specifically, the following research questions will be addressed:

1. Which outcome measures have been used to quantify everyday life motor activity of
people with mobility impairments under free-living conditions and what are their
corresponding data processing algorithms?

2. Which inertial sensor technology (accelerometer or gyroscope), possibly in combination
with additional wearable sensor technology, is required to assess these measures?

3. Where need inertial sensors be placed to assess these measures and minimally restrict
activities of daily living?

4. In which patient populations were these measures applied and were they evaluated in
terms of validity, reproducibility, or feasibility?

2.3 Methods/Design

This protocol was registered with the International prospective register of systematic reviews
(PROSPERO) in June 2017 (registration number: CRD42017069865). The development and
reporting of this protocol are in accordance with the checklist of the Preferred Reporting Items
for Systematic Review and Meta-Analysis Protocols (PRISMA-P) (Shamseer et al., 2015).

2.3.1 Eligibility criteria

We will include full text articles written in English or German if they meet all of the following
eligibility criteria. There will be no restrictions on year of publication:

Measurement tool The described system incorporates an accelerometer, a gyroscope, or
both, and can optionally include additional sensors such as a magnetometer, a barometer, a
wearable camera, a heart rate monitor, etc. All required devices must be body worn or attached
to assistive devices (e.g. wheelchair). If the system relies on data from external (e.g. a smart
home environment) or implanted devices (e.g. instrumented prosthesis), the article will be
excluded.
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Algorithm The algorithm describes the data processing of recorded raw data up to the
resulting outcome measure. The algorithm must be described reproducibly in the article
or references providing this information must be cited and publicly available. In addition,
the algorithm must be applicable to unlabelled data of unrestricted, unsupervised long-term
measurements. If an algorithm only works with predetermined movement recordings and
thus with labelled data, such as in clinical gait analysis, the corresponding article will not be
included in this review.

Outcome measure The output of the data processing algorithm must be a measure that
quantifies an aspect of everyday life motor activity (e.g. number of reaching activities, gait
symmetry, or use of assistive devices). Whole body activity counts and step counts, as well as
physical activity levels and energy expenditure based on thresholds of these counts, will not
be considered for this review, as they have already been well investigated (Jeran et al., 2016;
Van Remoortel et al., 2012) and provide no innovation compared to the current clinical state of
the art. Metrics that quantify an emergency situation (e.g. epileptic seizure or fall detection), a
non-mobility related activity (e.g. sleep or food intake), or a disease-specific motor behaviour
(e.g. freezing of gait in Parkinson’s disease) will be excluded as well.

Study population We will include all articles that analysed data from children, adolescents,
or adults with a diagnosed orthopaedic or neurological mobility impairment (e.g. cerebral
palsy, stroke, osteoarthritis, etc.) or from those who need assistive devices in their daily
life activities (e.g. crutches, wheelchairs, etc.). Study populations with mental or visual
impairments as well as patients suffering from cardio-respiratory conditions will not be
considered, as we assume that these populations do not present an altered movement pattern
in everyday life motor activities compared to healthy controls. Infants will be excluded since
they pose different requirements to a monitoring device for motor activities. Exceptions are
possible if an article introduces a novel algorithm with highly relevant outcome measures
for people with mobility impairments, but only preliminary data with healthy subjects are
available.

2.3.2 Search strategy

We will conduct a systematic search of the literature in three databases: MEDLINE via the
Ovid search engine including in-process and other non-indexed citations as well as EMBASE
and SCOPUS via Elsevier’s search engine. A preliminary search was conducted in July 2017
and will be repeated before completion of the review article.

The selected search terms can be grouped into five categories: (1) study population, (2)
measurement tool, (3) data processing algorithm, (4) free-living condition, and (5) terms
which incorporate categories three and four. The first category limits the search results to
articles with a clinical application. It comprises both general terms (e.g. "patient", "disease",
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"rehabilitation", etc.) as well as specific health conditions ("spinal cord injury", "stroke",
etc.). The second category includes the most frequently used synonyms of inertial sensors
("accelerometer”, "gyroscope", "inertial measurement unit", etc.). The third category restricts
the search results to articles containing a description of the data processing algorithms with
terms such as "algorithm", "signal processing", "pattern recognition", etc. The search terms of
the fourth category were selected to find algorithms that are applicable in free-living conditions
(e.g. "everyday life", "daily living", etc.). The last category comprises two terms "activity
classification" and "activity recognition". An OR operator will be used to link search terms
within categories, while an AND operator will be used between categories. The final search
strategy combines the categories as follows: [(1) AND (2) AND (3) AND (4)] OR [(1) AND (2)
AND (5)]. Search fields will be used to restrict the search to title, abstract, and keywords. If
applicable, medical subject headings (MeSH) and terms of the Emtree thesaurus will be used
in the corresponding search engines. The complete list of search terms and the syntax of the

search strategy are provided in Appendix A.

2.3.3 Selection process

Titles and abstracts of all articles retrieved using the search strategy described above will be
screened by the two review authors independently to identify articles that potentially meet
the eligibility criteria. The full text of these potentially eligible studies will be retrieved and
independently assessed for eligibility by the same review authors. Disagreements will be
resolved by discussion and consensus. For the data management of the selection process we
will use Covidence, a Cochrane technology platform (http://www.covidence.org).

2.3.4 Data extraction

Data extraction from all included articles will be conducted by one of the review authors and
checked by the other. Extracted information will include: outcome measures and method of
the underlying data processing algorithm, type and placement of required sensor technology,
study design and evaluation of the outcome measures, as well as study population. Discrepan-
cies will be identified and resolved through discussion and consensus. Missing data will be
requested from the authors of the respective article.

2.3.5 Data synthesis

The purpose of this review is to provide an overview of all published outcome measures that
quantify everyday life motor activity. Most likely, they will be grouped in activity-independent
(e.g., hand use laterality) and activity-dependent measures, which could be further subdivided
into quantity (e.g., duration of sitting activities, number of climbed stairs) and quality measures
(e.g., symmetry index of walking activities). We will conduct a narrative synthesis of the
methods that were used to assess these outcomes. This will include the type and placement

18


http://www.covidence.org

2.4. Discussion

of required sensor technologies and a brief description of the underlying data processing
algorithms. Further, we will provide an overview of how these measures were evaluated.
This will cover the study population, the study design, and the type of analysis (e.g., validity,
reproducibility, or feasibility). Our systematic review will provide readers with extensive
information about measurement of everyday life motor activities in patient populations
with wearable sensors and the presentation of the information will be divided into several
categories, like outcome measures, sensor setup and technology, diagnosis, and study type.

2.4 Discussion

We expect to find a high heterogeneity of outcome measures to quantify everyday life motor
activity and different study designs to evaluate them. Our preliminary search revealed that
there would be mainly four different types of studies in our review: (1) Case-control studies
that assessed the discriminant validity of its outcome measures, (2) clinical validity studies that
correlated their outcome measures with a standardized clinical assessment in a specific patient
population, (3) studies that evaluated the activity classification accuracy of their algorithm,
and (4) concurrent validity studies that investigated the error of their outcome measures
by comparing the outcomes of the wearable sensor technology with a reference method.
These study types reveal different test statistics and cannot be compared with each other.
The comparison between studies will be further complicated since they include different
study populations. All this impedes a quantitative synthesis of the study results. Therefore,
the primary purpose of this systematic review will be to provide a comprehensive overview
of the methods of previous studies instead of synthesizing their results. Accordingly, it will
grant researchers quick access to all studies that evaluated a specific outcome measure in a
particular patient population.

Advances in wearable sensor technology enable long-term monitoring of everyday life motor
activities in people with mobility impairments. This monitoring potentially provides impor-
tant information to the rehabilitation process, as it describes the patient’s motor abilities in
his/her habitual environment. Many different devices and corresponding data processing
algorithms have been developed over the last decade, and this review will provide an overview
of these methods with a focus on outcome measures and clinical applications. It will facilitate
the selection of an appropriate sensor setup for future applications and present a gap for
innovative, new algorithms and devices.

19






8] Systematic review on the application
of wearable inertial sensors to quan-
tify everyday life motor activity in
people with mobility impairments

Fabian M. Rast and Rob Labruyere

Published in Journal of NeuroEngineering and Rehabilitation, 2020.

Authors’ contributions: FR and RL developed the search strategy for this review and screened the search hits for
eligibility. FR extracted and synthesized the relevant data and wrote the first draft of this review. Both authors

contributed to the manuscript revision and read and approved the final manuscript.

Funding: This review was supported by the Walter Muggli Fund of the ACCENTUS Foundation, the Anna Mueller
Grocholski Foundation, and the CRPP Neuro-Rehab of the Medical Faculty of the University of Zurich, Switzerland.
The funders did not have any role in the design of the study and collection, analysis, and interpretation of data and

in writing the manuscript.

This chapter is the accepted manuscript version of the following article: Rast, E M., & Labruyere, R. (2020). Sys-
tematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people
with mobility impairments. Journal of NeuroEngineering and Rehabilitation, 17(1), 148. https://doi.org/10.1186/
$12984-020-00779-y.

©2020, The Author(s). This manuscript version is made available under the CC BY 4.0 license.

http://creativecommons.org/licenses/by/4.0/

21


https://doi.org/10.1186/s12984-020-00779-y
https://doi.org/10.1186/s12984-020-00779-y
http://creativecommons.org/licenses/by/4.0/

Chapter 3. Systematic review on the application of wearable inertial sensors

3.1 Abstract

Background Recentadvancesin wearable sensor technologies enable objective and long-term
monitoring of motor activities in a patient’s habitual environment. People with mobility
impairments require appropriate data processing algorithms that deal with their altered move-
ment patterns and determine clinically meaningful outcome measures. Over the years, a large
variety of algorithms have been published and this review provides an overview of their out-
come measures, the concepts of the algorithms, the type and placement of required sensors
as well as the investigated patient populations and measurement properties.

Methods A systematic search was conducted in MEDLINE, EMBASE, and SCOPUS in Octo-
ber 2019. The search strategy was designed to identify studies that (1) involved people with
mobility impairments, (2) used wearable inertial sensors, (3) provided a description of the
underlying algorithm, and (4) quantified an aspect of everyday life motor activity. The two
review authors independently screened the search hits for eligibility and conducted the data
extraction for the narrative review.

Results Ninety-five studies were included in this review. They covered a large variety of
outcome measures and algorithms which can be grouped into four categories: (1) maintaining
and changing a body position, (2) walking and moving, (3) moving around using a wheelchair,
and (4) activities that involve the upper extremity. The validity or reproducibility of these
outcomes measures was investigated in fourteen different patient populations. Most of the
studies evaluated the algorithm’s accuracy to detect certain activities in unlabeled raw data.
The type and placement of required sensor technologies depends on the activity and outcome
measure and are thoroughly described in this review. The usability of the applied sensor
setups was rarely reported.

Conclusion This systematic review provides a comprehensive overview of applications of
wearable inertial sensors to quantify everyday life motor activity in people with mobility
impairments. It summarizes the state-of-the-art, it provides quick access to the relevant
literature, and it enables the identification of gaps for the evaluation of existing and the
development of new algorithms.

22



3.2. Background

3.2 Background

The protocol of this systematic review was published in advance (Rast and Labruyere, 2018),
and the following introduction is an adapted and extended version of the introduction of that
protocol.

People with mobility impairments may have difficulties in executing activities of daily living
(activity limitations), or they may experience problems in involvement in life situations (partic-
ipation restrictions) (World Health Organization, 2002). Rehabilitation services aim to improve
these people’s abilities or make changes to their environment (World Health Organization,
2011), to achieve a high level of independence and eventually increase the quality of life. Clini-
cal assessments to estimate patients’ abilities and their rehabilitation progress are generally
conducted in a standardized environment at a single time. Thus, they do not incorporate
environmental and cognitive challenges of a patient’s habitual environment (Del Din et al.,
2016¢) and might be inaccurate when the symptoms of the patient fluctuate over time (Del Din
et al., 2016b).

Recent advances in wearable sensor technologies enable objective and long-term monitoring
of motor activities in a patient’s habitual environment. They provide an opportunity to over-
come the aforementioned limitations of clinical assessments and complement their outcome
measures. Accelerometers are the most commonly used wearable devices to quantify every-
day life motor activity in clinical trials and clinical practice (Ainsworth, 2009; Cervantes and
Porretta, 2010). Conventional outcome measures of accelerometers are activity counts as well
as intensity levels and energy expenditure estimations based on cut-points of these counts
(Hey et al., 2014). These measures provide relevant information about whole-body physical
activity, but they are non-specific and cannot determine movement patterns and types of
activities performed (Bonomi and Westerterp, 2012). In contrast, using a combination of sev-
eral inertial sensors, such as accelerometers and gyroscopes, together with sophisticated data
processing algorithms, allows estimating the quantity and other characteristics of everyday
life motor activities (Garofalo, 2012). Additional sensor technology such as magnetometers,
barometers, wearable cameras, and heart rate monitors measure environmental factors or
physiological responses to motor activities and can be combined with inertial sensors to
gain further details about patients’ activities (Dobkin, 2013; Lowe and Olaighin, 2014). Tech-
nological progress in the field of micro-electromechanical systems has made these devices
small-sized, cost-effective, energy-efficient, and thus applicable for continuous long-term
monitoring in unsupervised conditions (Garofalo, 2012). However, continuous long-term
monitoring generates a tremendous amount of unlabeled data that requires appropriate data
processing algorithms to determine clinically meaningful outcome measures of everyday life
motor activity. Typically, these algorithms detect a certain activity in unlabeled data as a first
step (e.g., walking bouts or grasping an object) and then determine a measure to quantify
the previously detected activity as a second step (e.g., walking speed or number of grasping
activities).
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The relevance of these outcome measures depends on end-users’ perspectives and may be
different for people with mobility impairments compared to non-disabled individuals. For
example, the amount of limping, use of assistive devices, and daily activity of affected limbs are
more relevant to the former population. Altered movement patterns can also be a challenge
for data processing algorithms (Albert et al., 2017b; Dobkin, 2017) and thus the transferability
of algorithms which were evaluated in non-disabled individuals to people with mobility im-
pairments could be limited. Therefore, this review focused on the application of inertial sensor
technologies to quantify everyday life motor activity in people with mobility impairments and
provides an overview of existing outcome measures as well as their underlying data processing
algorithms. Specifically, the following research questions were addressed: (1) Which outcome
measures have been used to quantify everyday life motor activity of people with mobility
impairments under free-living conditions, and what are their corresponding data processing
algorithms? (2) Which inertial sensor technology (accelerometer or gyroscope), possibly in
combination with additional wearable sensor technology, is required to assess these measures?
(3) Where need inertial sensors be placed to assess these measures and minimally restrict
activities of daily living? (4) In which patient populations were these measures applied, and
were they and the required sensor system evaluated in terms of validity, reproducibility, or
usability?

3.3 Methods

The detailed protocol of this review was published in advance (Rast and Labruyere, 2018) and
its method section is roughly summarized in the following paragraphs.

The systematic search was conducted in three databases: MEDLINE, EMBASE, and SCOPUS.
The selected search terms can be grouped into five categories: (1) study population (e.g.,

” o« »

“patient”, “stroke”, etc.), (2) measurement tool (e.g., “accelerometer”, “gyroscope’, etc.), (3) data
processing algorithm (e.g., “algorithm”, “signal processing’, etc.), (4) free-living condition (e.g.,
“everyday life”, “daily living”, etc.), and (5) two terms which incorporate categories three and
four (“activity classification” and “activity recognition”). A first search was conducted in July

2017 and repeated in October 2019.

Title and abstracts (first step), as well as full-text articles (second step) were screened by the
two review authors independently to identify articles that met the following eligibility criteria:
(1) The study population involved children, adolescents, or adults with a diagnosed orthopedic
or neurological mobility impairment or people who need assistive devices in their daily life
activities, (2) the article used a measurement tool that incorporates a wearable accelerometer,
gyroscope, or both, i.e., inertial measurement unit (IMU), and optionally includes additional
sensors, (3) the article described the underlying data processing algorithm reproducibly or
cited a publicly available reference, and (4) the output of the algorithm is a measure that
quantifies an aspect of everyday life motor activity. Whole-body activity counts, as well as
physical activity levels and energy expenditure based on thresholds of these counts, were
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not considered for this review, as they have already been well investigated (Jeran et al., 2016;
Van Remoortel et al., 2012).

The used outcome measures and the method of the underlying data processing algorithm, the
type and placement of required sensor technology, the study population as well as the study
design were extracted from all included articles. Some studies investigated more than one
sensor setup and data processing algorithm. In that case, only the method with the best per-
formance or the recommended method was included in this review. If the outcome measures
were not explicitly mentioned or described in the article, which was often the case in activity
classification studies, it was assumed that activity detection enables to determine the duration
of the activity or count the number of repetitions. The measures were then retrospectively
grouped into four categories: (1) Maintaining and changing a body position, (2) walking
and moving, (3) moving around using a wheelchair, and (4) activities that involve the upper
extremity. The sensor placements were simplified by assigning the exact positions to one of
the following body segments: head, trunk, upper arm, forearm, hand, pelvis, thigh, shank, foot,
and assistive devices. Thus, sensors that were placed above the lateral malleoli and on the
fifth lumbar vertebra were assigned to the shank and pelvis segment, respectively. To address
the second part of the fourth research question, the study designs were allocated to one or
several of seven different categories: Classification accuracy studies investigated the perfor-
mance of the algorithm to recognize activities, while technical validity studies determined
the accuracy of activity-related measures, both with regard to a reference method. Clinical
validity studies correlated the outcome of the sensor system with the outcome of a clinical
assessment. Between-day reliability studies investigated the consistency of the outcome when
measuring it on two different days. Case/control studies compared the outcome between the
target population and a control group. Interventional studies used the outcome to evaluate
the effectiveness of an intervention, and observational studies incorporated different designs
such as analyzing the changes of the outcome over time or comparing several outcomes within
the same subject. Besides, it was determined if the studies assessed the usability of the sensor
systems.

3.4 Results

3.4.1 Overview

The systematic search revealed 2272 hits, of which 31 were added retrospectively through
reference screening of the included articles. After title and abstract screening, 473 articles
remained for full-text screening, and, eventually, 95 articles fulfilled the predetermined eligi-
bility criteria. The complete flow diagram of the screening procedure is shown in Figure 3.1.
The main reason for exclusion was the study population, with 46% of all excluded articles.
Many research projects developed a new algorithm to monitor motor activities in daily life
and conducted a preliminary study with healthy subjects. These studies were not considered
in this review, except for one study that recruited able-bodied individuals which performed
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an activity circuit in a wheelchair (Leving et al., 2018). The second most frequent exclusion
criterion was the algorithm with 26%. It was either not described reproducibly (e.g., in cases
of proprietary algorithms of commercial parties) or not applicable to unlabeled data.

Records identified through
database searching: Additional records
NMedine = 796 identified through
c Nembase = 1368 reference screening
o
2 Nscopus = 1159 (n=31)
E‘E Niotal = 3323
s
c
]
z
A4
Records after duplicates removed
(n=2272)
0 v
'g Records screened N Records excluded
[ (n = 2272) (nirre\evant = 1799)
3
A 4
Full-text articles assessed Full-text articles excluded,
for eligibility with reasons
(n=473) Npopulation = 173
E Nalgorithm = 98
r:_Jo Nno full-text = 63
E Noutput = 37
Nmeasurement tool = 5
Nianguage = 2
Nexcluded = 378
3
g Included studies
Té (n=95)

Figure 3.1 - Flow diagram according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) (Moher et al., 2009).

An overview of the used sensor technologies, the body segments on which sensors were
placed, the study population in which the sensors were applied, and the used study designs
for evaluating the outcome measures is provided in Figure 3.2. Note that most of the studies
were allocated to several of the chosen categories.

Sensor technologies

All studies used an accelerometer, a gyroscope, or both (inclusion criteria) with a clear prefer-
ence for accelerometers. These sensor technologies were combined with a barometric pressure
sensor to detect changes in altitude, a magnetometer to measure the orientation relative to
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Sensor technology

Accelerometer
Gyroscope
Barometer
Magnetometer

Reed switch

Sensor placement

Trunk
Pelvis
Forearm
Shank
Thigh
Upper arm

Foot

92
44

10

31
30

22
18
12
11

Assistive devices 7

Head 3

Study population
Stroke
Parkinson's disease
Spinal cord injury
Arthritis
Fallers
Amputees
Cerebral palsy
Others*

Study design
Classification accuracy 68
Case/control 17
Technical validity 16
Clinical validity 8
Observational 7
Between-day reliability 4
Interventional 2
0 20 40 60 80 100

Number of studies

*Able-bodied wheelchair users (n=1), chronic pain (n=2), Duchenne
muscular atrophy (n=1), frailty (n=2), multiple sclerosis (n=1), post-surgery
(n=2), risk of falling (n=1), rotator cuff syndrome (n=2, and miscellaneous
(n=6).

Figure 3.2 - Frequency distribution of the used sensor technologies, of the body segments on
which sensors were placed, of the study population in which the sensors were applied, and of
the used study designs to evaluate the outcome measures.
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the earth’s magnetic field, and a reed switch on the spokes of the wheelchair to determine
revolutions of the wheel. Six studies used an instrumented insole with force-sensitive sensors
(Fulk et al., 2012; Fulk and Sazonov, 2011; Hegde et al., 2017; Pappas et al., 2001; Sazonov et al.,
2009; Zhang et al., 2013), and two studies used a first-person camera (Zhan et al., 2015; Zhang
et al., 2019), all in combination with inertial sensors. These eight studies were not further
considered in this review since they did not use inertial sensors as their primary measurement
tool.

Sensor placement

The sensors were most frequently placed on the trunk, the pelvis, and the forearm but also
on other body segments and on assistive devices. The frequency of chosen sensor positions
depended mainly on the outcome measures. Studies that used outcomes related to body
positions preferred a sensor on the trunk or a combination of trunk and thigh sensors. In
contrast, studies that used outcomes related to activities of the upper extremities (incl. wheel-
ing) placed the sensors on the arms with a clear preference of wrist sensors. There was no
clear preference for sensor placement in studies with gait-related outcomes. Sensors were
placed on the trunk, the pelvis, the shanks, and the feet. The sensor placement, in general, is
strongly related to the underlying algorithm and, therefore, more thoroughly described in the
subsequent chapters.

Study populations

Wearable inertial sensors were most frequently applied in stroke survivors, in patients with
Parkinson’s disease, and in patients with spinal cord injury. Fourteen different study popu-
lations were identified, which highlights the wide range of applications of wearable inertial
sensors to quantify everyday life motor activity in people with mobility impairments.

Study designs

In terms of validity, the majority of the included studies evaluated the algorithm’s activity
classification accuracy. The methods of these studies differed considerably. Measurements
were conducted under laboratory or free-living conditions. The number of sensors ranged
from 1 to 17 and the number of classes/activities from 1 to 11. Moreover, the methods to split
the data into training and testing samples varied, and the studies used inconsistent metrics
to report their results. Technical and clinical validity studies were conducted less frequently.
Technical validity studies determined predominantly the accuracy of gait parameters. Sen-
sor-based outcome measures were compared to those of pressure-sensitive walkways, video
recordings, stopwatches, or other validated sensor systems. In contrast, the clinical validity
studies compared their sensor-based outcome measures to those of clinical assessments.
These comparisons were unique for each clinical validity study of this review. Clinical studies
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were less frequent than validity studies. Here, sensor-based outcome measures were often
applied in case/control studies, followed by observational and interventional studies. In terms
of reproducibility, four studies determined the between-day reliability of their outcome mea-
sure. All of them evaluated gait-related outcomes, but they differed considerably in the chosen
setting. Two studies assessed the usability of a sensor system by reporting inconvenience
(Jeannet et al., 2011) and adverse events (Moore et al., 2017), respectively, while eight studies
reported the wearing time of the sensors in daily life (Brodie et al., 2015; Brogioli et al., 2016;
Coley et al., 2008b; Gerber et al., 2019a; Held et al., 2018; Popp et al., 2016; Razjouyan et al.,
2018; Verlaan et al., 2015).

Outcome measures and underlying algorithms

All outcomes, as well as the underlying type and placement of sensors, are thoroughly de-
scribed in the subsequent chapters. Each chapter is complemented with a table that provides
alist of all outcome measures and how they were investigated in terms of study populations
and study designs (Table 3.1, Table 3.2, Table 3.3, Table 3.4). The underlying data processing
algorithms to detect activities in unlabeled data of this review followed either a biomechanical
or a statistical machine learning approach. The former approach uses explicit, and a priori de-
fined features that are specific to certain activities (e.g., the orientation of thigh during sitting).
The concepts of this approach are described in the following chapters. The latter approach
uses many unspecific features in combination with standard machine learning algorithms. A
description of these algorithms is provided elsewhere (Preece et al., 2009), and the detected
activity classes, as well as the used sensor type and placement, are listed in Table 3.5.

3.4.2 Maintaining and changing a body position
3.4.2.1 Activities and outcome measures

The studies of this review often detected lying (Andreu-Perez et al., 2017; Albert et al., 2017a;
Capela et al., 2015, 2016; Cheng et al., 2018; Feldhege et al., 2015; Jalloul et al., 2016; Jeannet
et al., 2011; Kiani et al., 1997, 1998; Massé et al., 2015; O’Brien et al., 2017; Razjouyan et al.,
2018; Salarian et al., 2007; Sok et al., 2018; Zwartjes et al., 2010), sitting (Andreu-Perez et al.,
2017; Albert et al., 2017a, 2012; Capela et al., 2015, 2016; Cheng et al., 2018; Coley et al., 2008a,b;
Feldhege et al., 2015; Jalloul et al., 2016; Jeannet et al., 2011; Kiani et al., 1997, 1998; Massé
etal., 2015; Lonini et al., 2016; O’Brien et al., 2017; Razjouyan et al., 2018; Recher et al., 2018;
Rodriguez-Martin et al., 2013a; Roy et al., 2009; Salarian et al., 2007; Sok et al., 2018; Teknomo
and Estuar, 2015; van Meulen et al., 2016; Verlaan et al., 2015; Wade et al., 2015; Zwartjes
et al., 2010), and standing positions (Ahmadi et al., 2018; Andreu-Perez et al., 2017; Albert
etal, 2017a, 2012; Capela et al., 2015, 2016; Cheng et al., 2018; Coley et al., 2008a,b; Feldhege
et al., 2015; Gerber et al., 2019a; Jalloul et al., 2016; Jeannet et al., 2011; Kiani et al., 1997, 1998;
Lipperts et al., 2017; Massé et al., 2015; Lonini et al., 2016; O’Brien et al., 2017; Razjouyan et al.,
2018; Recher et al., 2018; Rodriguez-Martin et al., 2013a; Salarian et al., 2007; Sok et al., 2018;
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van Meulen et al., 2016; Verlaan et al., 2015; Wade et al., 2015; Zwartjes et al., 2010) and, thus,
estimated how long patients with mobility impairments maintain these positions in daily life.
Some studies combined lying and sitting positions as sedentary behavior (Ahmadi et al., 2018;
Garcia-Masso et al., 2015; Gerber et al., 2019a; Lipperts et al., 2017). One study included a
measure to assess the knee angle during these positions (Feldhege et al., 2015). Instead of
quantifying the duration of body positions, it is also common to count the transitions between
these positions. The transition between sitting and standing was frequently investigated
(Andreu-Perez et al., 2017; Ejupi et al., 2017; Ganea et al., 2012; Hemmati and Wade, 2016;
Massé et al., 2014; Najafi et al., 2013; Nguyen et al., 2017, 2018; Paraschiv-Ionescu et al., 2004;
Pham et al., 2018; Recher et al., 2018; Rodriguez-Martin et al., 2013a,b, 2015; Roy et al., 2009;
Salarian et al., 2007; Zwartjes et al., 2010), while only three studies detected the transition
between lying and sitting (Andreu-Perez et al., 2017; Paraschiv-Ionescu et al., 2004; Roy et al.,
2009). Three of these studies further discriminated between transitions and bending forward
(Rodriguez-Martin et al., 2013a,b, 2015), and two additional studies specifically detected
sit-to-walk transitions since they aimed to compare the timed up and go test with transitions
in daily life (Bernad-Elazari et al., 2016; Iluz et al., 2016). Standing up was further analyzed
in terms of speed (Bernad-Elazari et al., 2016; Ejupi et al., 2017; Ganea et al., 2012; [luz et al.,
2016; Najafi et al., 2013; Nguyen et al., 2017; Pham et al., 2018; Zwartjes et al., 2010), range
of motion (Bernad-Elazari et al., 2016; Ejupi et al., 2017; Ganea et al., 2012; Tluz et al., 2016;
Zwartjes et al., 2010), and smoothness (Bernad-Elazari et al., 2016; Iluz et al., 2016). Only one
study detected transfers (i.e., moving from one surface to another without changing body
position) (Garcia-Masso et al., 2015).

3.4.2.2 Description of algorithms and sensor placement

Activity classification algorithms in the literature detected either body positions directly or
the transitions between them. Both approaches are widely used and, eventually, enable to
determine how long a specific position was maintained and to count the number of transitions.

Detection of body positions based on sensor orientation

The orientation of different body parts are distinct characteristics of different body positions
(e.g., the orientation of the thigh is vertical during standing, while it is horizontal during lying
and sitting). Estimating the orientation of body-worn sensors and applying predefined thresh-
olds is a common approach to discriminate between body positions in daily life. The sensors
were placed on the thigh to distinguish between sitting and standing positions (Feldhege
et al., 2015; Lipperts et al., 2017; van Meulen et al., 2016; Verlaan et al., 2015; Zwartjes et al.,
2010) as well as on the trunk (Zwartjes et al., 2010) or shank (Feldhege et al., 2015; van Meulen
et al., 2016) to separate lying from the remaining positions. One study used the orientation of
the pelvis to classify all three positions with a single sensor (Capela et al., 2016). Algorithms
to estimate the sensor’s orientation have already been summarized (Picerno, 2017) and are,
therefore, not part of this review.
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Detection of transitions based on trunk inclination

Standing up or sitting down is usually performed by leaning forward to maintain the center
of mass over the feet. This characteristic and the trunk inclination angle can be used to
detect transitions between sitting and standing in daily life. The challenge is to discriminate
between sit-to-stand and stand-to-sit transitions. This distinction was accomplished by
pattern recognition (Ganea et al., 2012; Jeannet et al., 2011; Rodriguez-Martin et al., 2013a,b,
2015; Salarian et al., 2007), by the orientation of the pelvis after the transition (Bernad-Elazari
et al., 2016; Iluz et al., 2016), by the orientation change of the thigh during the transition
(Hemmati and Wade, 2016; Nguyen et al., 2017, 2018; Paraschiv-Ionescu et al., 2004), and by
estimating the difference in elevation with double integration of the acceleration signal in
vertical direction (Coley et al., 2008b,a; Najafi et al., 2013; Paraschiv-Ionescu et al., 2004; Pham
et al., 2018; Razjouyan et al., 2018) or with a barometric pressure sensor (Ejupi et al., 2017;
Massé et al., 2014, 2015). Lying was often detected via the orientation of the trunk, as described
above. Detecting lying and the transitions between sitting and standing requires only a single
sensor on the trunk such as on the sternum (Coley et al., 2008a,b; Ejupi et al., 2017; Ganea
etal, 2012; Jeannet et al., 2011; Massé et al., 2014, 2015; Najafi et al., 2013; Paraschiv-Ionescu
et al., 2004; Razjouyan et al., 2018; Salarian et al., 2007), the waist (Rodriguez-Martin et al.,
2013a,b, 2015), or the fifth lumbar vertebra (Bernad-Elazari et al., 2016; Iluz et al., 2016; Pham
et al.,, 2018). Other studies used a trunk and a thigh sensor (Gerber et al., 2019a; Nguyen et al.,
2017, 2018; Paraschiv-lonescu et al., 2004) or just a thigh sensor (Hemmati and Wade, 2016),
while the latter cannot discriminate between lying and sitting positions.

Measures to quantify body positions and transitions

The knee angle during lying, sitting, and standing was estimated with the differential signal
of two sensors that were placed on the thigh and the ipsilateral shank (Feldhege et al., 2015).
No other measures were used in the literature to assess specific characteristics of different
postures in daily life. Standing up, however, was more thoroughly analyzed. The start and end
point of this transition were defined as the minima before and after peak trunk inclination.
These points reveal the duration and with it a measure to quantify how fast patients are
standing up. Five studies used a sensor on the sternum (Ejupi et al., 2017; Ganea et al., 2012;
Najafi et al., 2013; Nguyen et al., 2017; Zwartjes et al., 2010) and three a sensor on the fifth
lumbar vertebra (Bernad-Elazari et al., 2016; Iluz et al., 2016; Pham et al., 2018) to measure
trunk inclination. Moreover, peak trunk inclination (Ejupi et al., 2017; Ganea et al., 2012), peak
trunk acceleration (Zwartjes et al., 2010), the range of acceleration (Bernad-Elazari et al., 2016;
Ganeaetal., 2012; lluz et al., 2016; Zwartjes et al., 2010), and gyroscope signals (Bernad-Elazari
etal., 2016; [luz et al., 2016), as well as measures for smoothness (Bernad-Elazari et al., 2016;
[luz et al., 2016) were used to quantify standing up in daily life.
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Chapter 3. Systematic review on the application of wearable inertial sensors

3.4.3 Walking and moving
3.4.3.1 Activities and outcome measures

The studies included in this review most frequently covered detecting walking bouts in every-
day life of people with mobility impairments (Ahmadi et al., 2018; Albert et al., 2012, 2017a;
Andreu-Perez et al., 2017; Barth et al., 2015; Brodie et al., 2015, 2016; Capela et al., 2015, 2016;
Coley et al., 2008a,b; Cheng et al., 2018; Del Din et al., 2016a; El-Gohary et al., 2013; Feldhege
etal., 2015; Gerber et al., 2019a; Godfrey et al., 2016; Hester et al., 2006a,b; Ihlen et al., 2016a,b;
Jalloul et al., 2016; Jeannet et al., 2011; Kiani et al., 1997, 1998; Laudanski et al., 2015; Leuen-
berger et al., 2014, 2017; Lipperts et al., 2017; Lonini et al., 2016; Mancini et al., 2018; Massé
et al., 2015; Moore et al., 2017; Najafi et al., 2013; Nguyen et al., 2017, 2018; O’Brien et al., 2017;
Paraschiv-lonescu et al., 2004, 2019; Popp et al., 2019; Razjouyan et al., 2018; Rodriguez-Martin
et al., 2013a; Roy et al., 2009; Salarian et al., 2007; Sok et al., 2018; Teknomo and Estuar, 2015;
Terrier et al., 2017; van Meulen et al., 2016; Verlaan et al., 2015; Wade et al., 2015; Wu et al.,
2016; Xu et al., 2011; Zwartjes et al., 2010), followed by more specifically detecting turning
periods while walking (Cheng et al., 2018; El-Gohary et al., 2013; Hester et al., 2006a,b; Mancini
et al., 2018; Nguyen et al., 2017, 2018; Pham et al., 2017) and stair climbing (Albert et al.,
2017a; Capela et al., 2015, 2016; Coley et al., 2005; Hester et al., 2006a,b; Laudanski et al., 2015;
Leuenberger et al., 2014; Lipperts et al., 2017; Lonini et al., 2016; Massé et al., 2015; O’Brien
etal,, 2017; Recher et al., 2018; Sok et al., 2018; Teknomo and Estuar, 2015; Wade et al., 2015).
Other, less frequently detected activities were walking sideways (Recher et al., 2018), walking
while carrying an object (Hester et al., 2006a,b), walking on sloping surfaces (Capela et al.,
2015; Hester et al., 2006a,b), and running (Cheng et al., 2018; Teknomo and Estuar, 2015).
Several studies detected and counted steps during walking and stair climbing periods (Barth
et al., 2015; Brodie et al., 2015; Del Din et al., 2016a; El-Gohary et al., 2013; Feldhege et al.,
2015; Gerber et al., 2019a; Godfrey et al., 2016; Jeannet et al., 2011; Lipperts et al., 2017; Moore
et al., 2017; Najafi et al., 2013; Paraschiv-Ionescu et al., 2019; Razjouyan et al., 2018; Terrier
et al., 2017; Verlaan et al., 2015). This in turn enables the estimation of step frequency and
cadence. Walking bouts were further analyzed in terms of temporo-spatial gait parameters
(Ahmadi et al., 2018; Brodie et al., 2015; Del Din et al., 2016a; Gerber et al., 2019a; Ihlen et al.,
2016a,b; Moore et al., 2017; Paraschiv-Ionescu et al., 2004; Terrier et al., 2017; van Meulen et al.,
2016; Xu et al., 2011; Zwartjes et al., 2010), and joint kinematics (i.e. knee angle) (Feldhege
etal., 2015; Gerber et al., 2019a). Turning periods were further analyzed in terms of duration
(EI-Gohary et al., 2013; Hester et al., 2006a,b; Mancini et al., 2018; Nguyen et al., 2017, 2018;
Pham et al., 2017), turning angle (El-Gohary et al., 2013; Mancini et al., 2018; Pham et al.,
2017), turning speed (El-Gohary et al., 2013; Mancini et al., 2018), smoothness (Mancini et al.,
2018), mediolateral range of trunk acceleration (Mancini et al., 2018), and number of steps to
complete a turn (El-Gohary et al., 2013). Stair climbing was often subclassified in ascending
and descending (Albert et al., 2017a; Coley et al., 2005; Hester et al., 2006a,b; Laudanski et al.,
2015; Leuenberger et al., 2014; Lipperts et al., 2017; Lonini et al., 2016; Massé et al., 2015;
O’Brien et al., 2017), and one study developed an algorithm that recognized if stairs were
climbed with a step-by-step or a step-over-step pattern (Laudanski et al., 2015).
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3.4.3.2 Description of algorithms and sensor placement

The following chapters describe the concepts of the underlying algorithm and the used sensor
placement to detect and quantify walking, turning, and stair climbing activities. Details
about the detection of walking sideways, walking while carrying an object, walking on sloping
surfaces, and running as well as stair climbing with a step-by-step or step-over-step can be
found in Table 3.5.

Walking bouts and gait parameters

Detection of walking bouts Two approaches have been used in the studies included in this
review to detect walking bouts of people with mobility impairments in unsupervised datasets.
The first approach uses the signal magnitude or variance to discriminate walking from static
activities such as sitting and standing. The data is labeled as walking if the signal exceeds a
predefined threshold for a certain duration. For this purpose, studies used the acceleration
signal of the pelvis (Del Din et al., 2016a; Thlen et al., 2016a,b; Moore et al., 2017), thigh (Godfrey
etal., 2016), shank (Nguyen et al., 2017, 2018), thigh and shank (Feldhege et al., 2015), or the
angular rate of the pelvis (El-Gohary et al., 2013; Mancini et al., 2018). Some studies introduced
additional criteria to avoid confusion with other activities. During valid walking bouts, the
orientation of the pelvis (Del Din et al., 2016a; Moore et al., 2017) or thigh sensor (Godfrey
et al., 2016) needs to be vertical or the hip angle, derived from the differential signal between
the pelvis and the thigh sensors, needs to be in an extended position (Nguyen et al., 2017,
2018). The second approach more specifically detects steps in the signal, and a number of
consecutive steps are seen as a walking bout. The initial contact of each step leads to a peak in
the signals and these peaks appear with a certain frequency that is specific to walking. Thus,
peak detection and optionally verifying if they appear within a predefined frequency band is
a common method to detect steps in unlabeled data. This method has been implemented
with the acceleration signal of the trunk (Brodie et al., 2015, 2016; Coley et al., 2008a,b; Massé
et al., 2015; Najafi et al., 2013; Paraschiv-lonescu et al., 2004, 2019; Razjouyan et al., 2018),
pelvis (Del Din et al., 2016a; Moore et al., 2017; Paraschiv-Ionescu et al., 2019), thigh (Godfrey
et al., 2016; Lipperts et al., 2017; Verlaan et al., 2015), ankle (Xu et al., 2011) or foot sensor
(Zwartjes et al., 2010), as well as the gyroscope signal of the shank (Gerber et al., 2019a; Jeannet
et al., 2011; Paraschiv-Ionescu et al., 2004; Salarian et al., 2007) or foot sensor (El-Gohary
etal., 2013). Again, to reduce false-positive rates, peak detection has been combined with the
vertical orientation of the trunk and thigh sensors while walking (Zwartjes et al., 2010). Another
method to detect steps is to assess the similarity of the signal to pre-established templates.
The similarity was assessed with dynamic time warping of the feet’s gyroscope signal (Barth
etal., 2015) and with cross-correlation of the shank’s acceleration signal (Feldhege et al., 2015).
A third method used the fact that the left and right foot are alternatively active and stationary
during walking. Active and stationary phases were detected with a zero-velocity algorithm and
by fusing the accelerometer and gyroscope signal of the feet sensors (van Meulen et al., 2016).
Some studies used the first approach to detect walking bouts and the second to detect steps
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within these walking bouts, while two studies combined both approaches to detect walking
bouts more specifically (Rodriguez-Martin et al., 2013a; Terrier et al., 2017). The detection of
walking bouts enables to measure the number and duration of walking activities in everyday
life, while the detection of steps, further, enables to count daily steps as well as to determine
the cadence (Brodie et al., 2015, 2016; Jeannet et al., 2011; Paraschiv-Ionescu et al., 2019;
Verlaan et al., 2015), stride time (Xu et al., 2011), and stride time variability (Brodie et al., 2015,
2016) of individual walking bouts. Besides, the cadence was also determined by frequency
analysis of the acceleration signal without detecting each step individually (Paraschiv-lonescu
et al., 2019; Terrier et al., 2017).

Determination of gait parameters Deriving temporal gait parameters from previously de-
tected walking bouts, such as the duration of stance, swing, and double support phase requires
a segmentation of the gait cycle by identifying the initial and final contact of the feet with the
ground. Three different approaches were used in the literature to identify these gait events
in people with mobility impairments. The first approach assumes that the lower leg rotates
forwards during the stance phase and backwards during the swing phase. Zero-crossings of
the feet’s gyroscope signal around the mediolateral axis before and after maximal backward
angular rate (i.e., swing phase) were, therefore, detected to estimate the timing of the final
and initial contacts, respectively (El-Gohary et al., 2013). As an alternative to zero-crossings,
the maxima of forward angular rate were detected to estimate the timing of the gait events.
This algorithm was applied to the gyroscope signal of the feet (Zwartjes et al., 2010) or the
ankle sensors (Gerber et al., 2019a; Paraschiv-lonescu et al., 2004). The second approach
used distinct features of the pelvis’ acceleration signal in a vertical direction. It was assumed
that the initial contact corresponds to peak deceleration, while the final contact does to peak
acceleration gain (Del Din et al., 2016a; Moore et al., 2017). The third approach determines
the start and end points of the stationary phase (i.e., stance phase) of the feet sensors (van
Meulen et al., 2016). Again, the stationary phase was detected with a zero-velocity algorithm.

Walking speed was derived directly by estimating the stride length and divide it by the stride
time or indirectly by identifying a surrogate that correlates with walking speed. The stride
length was determined with biomechanical models and kinematic chains to estimate the
distance between the two feet, or with the inverted pendulum model in which the stride length
can be derived from the height change of the center of mass, or with double integration of
the feet’s horizontal acceleration (Zwartjes et al., 2010). The biomechanical models required
IMUs on both thighs and shanks (Gerber et al., 2019a; Paraschiv-lonescu et al., 2004) as
well as additionally on the pelvis and the feet (van Meulen et al., 2016), while the inverted
pendulum model only needs the vertical acceleration signal of the pelvis (Del Din et al., 2016a;
Moore et al., 2017). Several surrogates that are supposed to correlate with walking speed were
described in the studies of this review. Namely, the root mean square of the acceleration signal
at the pelvis (Terrier et al., 2017), or of the vertical velocity of the trunk (Brodie et al., 2015,
2016) as well as the stride time (Xu et al., 2011). Moreover, one study recognized comfortable
and brisk walking as two distinct classes, which enables a dichotomous analysis of slow and

36



3.4. Results

fast walking speed (Ahmadi et al., 2018). Walking bouts were further analyzed regarding
stability, foot clearance, and joint kinematics. Gait stability as a measure for risk of falling was
determined with local dynamic stability (Thlen et al., 2016a; Terrier et al., 2017) and entropy
measures ([hlen et al., 2016b) of the pelvis’ acceleration signal. The knee angle was measured
with the differential signal between the thigh and ankle sensors (Gerber et al., 2019a; Feldhege
et al., 2015). And one study estimated the foot clearance with the position of the foot sensor
(van Meulen et al., 2016).

Turning

Turns during walking bouts were detected whenever the turning angle or angular velocity
around the vertical axis exceeded a predetermined threshold. The turning angle was derived
from the trunk (Nguyen et al., 2017, 2018) or the pelvis sensor (Cheng et al., 2018; El-Gohary
etal., 2013; Mancini et al., 2018; Pham et al., 2017). The detection of turns enables to count
the number of turns in daily life. However, to derive other measures, the start and end point of
these turns need to be detected, too. These time points were defined when the angular velocity
of the pelvis sank below a predetermined threshold (El-Gohary et al., 2013; Mancini et al.,
2018), or at the minima before and after peak turning angular velocity of the trunk (Nguyen
etal, 2017, 2018), or at the minimum and maximum of the pelvis’ turning angle (Pham et al.,
2017). Knowing the start and end point of turning periods enables to determine its duration
(EI-Gohary et al., 2013; Mancini et al., 2018; Nguyen et al., 2017, 2018; Pham et al., 2017),
turning angle (El-Gohary et al., 2013; Mancini et al., 2018; Pham et al., 2017), and turning
speed (El-Gohary et al., 2013; Mancini et al., 2018) as well as the smoothness (Mancini et al.,
2018), mediolateral range of trunk acceleration (Mancini et al., 2018), and the number of steps
to complete a turn (El-Gohary et al., 2013).

Stair climbing

The range of motion at the hip joint is higher during stair climbing compared to level walking.
This characteristic was used in two studies to recognize stair climbing activities in daily life.
One study used the orientation of the thigh sensor to discriminate between stair climbing and
level walking (Lipperts et al., 2017), while another one used the variance of the acceleration
signal at the hip (Capela et al., 2015). A further distinct characteristic of stair climbing is the
change in altitude. Several studies used a barometric pressure sensor to measure the altitude
change during locomotion and discriminated between going up and down stairs as well as
level walking (Leuenberger et al., 2014; Massé et al., 2015; O'Brien et al., 2017). Usually, the
shank is rotating forward during the stance phase of walking trials. However, while ascending
a flight of stairs, there is a period during the stance phase, in which the shank is rotating
backward. One study used this fact to specifically recognize stair ascending periods with the
gyroscope signal of the shank sensor (Coley et al., 2005). And lastly, one article used the timing
of peak occurrence in the acceleration signal of the thigh sensor to discriminate between
ascending and descending stairs (Lipperts et al., 2017).
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Chapter 3. Systematic review on the application of wearable inertial sensors

3.4.4 Moving around using a wheelchair
3.4.4.1 Activities and outcome measures

The included articles in this review either specifically detected active self-propulsion of wheel-
ing activities (Kooijmans et al., 2014; Popp et al., 2018) or discriminated between active
self-propulsion and being pushed passively (Brogioli et al., 2016; Ding et al., 2011; Fortune
et al., 2019; Garcia-Masso et al., 2015; Hiremath et al., 2015; Leving et al., 2018; Popp et al.,
2016). Studies that did not distinguish between active and passive wheeling bouts were not
included in this review since they did not specifically address a motor activity. Active wheeling
was further analyzed in terms of covered distance (Brogioli et al., 2016; Popp et al., 2016),
speed (Brogioli et al., 2016; Leving et al., 2018) as well as the number of strokes and stroke
frequency (Ojeda and Ding, 2014). Moreover, three studies allocated wheeling bouts either to
maneuvering or covering longer distances (Brogioli et al., 2016; Leving et al., 2018; Popp et al.,
2016), five studies differentiated between hand use during self-propulsion and other activities
of daily living (Brogioli et al., 2016; Ding et al., 2011; Fortune et al., 2019; Garcia-Masso et al.,
2015; Hiremath et al., 2015), and one study detected playing basketball (Hiremath et al., 2015).

3.4.4.2 Description of algorithms and sensor placement

Many studies used a statistical machine learning approach and are already depicted in Ta-
ble 3.5. The remaining concepts of the underlying algorithms and used sensor placements are
described in the following section.

Wheeling bouts were detected by measuring the rotation of the wheel and setting predefined
thresholds. The rotation of the wheel was measured with a gyroscope (Brogioli et al., 2016;
Popp et al., 2016) or a reed switch (Ojeda and Ding, 2014) on the spokes of the wheelchair.
The distinction between maneuvering and longer wheeling bouts was accomplished with
two different approaches. The first approach simply defined wheeling bouts that are shorter
than 5.12 s as maneuvering and the remaining bouts as longer wheeling bouts (Popp et al.,
2016). The second approach used the acceleration signal of the wheel sensor and predefined,
incremental thresholds to distinguish between non-wheeling bouts, maneuvering, as well as
normal speed and high-speed bouts (Leving et al., 2018). Two studies separated active from
passive wheeling propulsion whenever the acceleration signal of the wrist sensor exceeded a
predefined threshold (Kooijmans et al., 2014; Leving et al., 2018). Another study specifically
counted the number of strokes within wheeling activities and, with it, estimated the stroke
frequency by means of peak detection of the acceleration signal of the upper arm, wrist, or
wheelchair sensor (Ojeda and Ding, 2014). Besides, the speed and distance of active wheeling
bouts were estimated by measuring the angular velocity and the radius of the wheel (Brogioli
et al., 2016; Popp et al., 2016).
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Chapter 3. Systematic review on the application of wearable inertial sensors

3.4.5 Upper extremities
3.4.5.1 Activities and outcome measures

The measures to quantify hand and arm use in daily life that were used in the studies of this
review were allocated to one of the following three categories: (1) Non-specific hand and
arm use regardless of the underlying activity, (2) specific hand and arm movements such as
reaching, and (3) specific hand and arm activities that require a combination of movements
(e.g., eating activity involves reaching, cutting, and lifting movements). The first category
includes measures to quantify the amount (Bochniewicz et al., 2017; Capela et al., 2015, 2016;
Coley et al., 2008b; Leuenberger et al., 2017; Zambrana et al., 2019; Zwartjes et al., 2010) and
diversity (Hurd et al., 2013) of hand and arm use as well as the range of motion of shoulder
(Coley et al., 2008a; Derungs et al., 2018; Held et al., 2018; van Meulen et al., 2016), elbow
(Held et al., 2018; van Meulen et al., 2016), and hand movements (Rowe et al., 2014). The
second category contains reaching (Biswas et al., 2014, 2015a,b, 2017; Held et al., 2018; Nguyen
et al., 2018; van Meulen et al., 2016), lifting (Biswas et al., 2014, 2015a,b, 2017; Roy et al., 2009),
and pouring (i.e. pro- and supination) movements (Biswas et al., 2014, 2015a,b, 2017), while
reaching was further analyzed in terms of reaching distance (Held et al., 2018; van Meulen
et al., 2016) and reaching direction (Nguyen et al., 2018). And the activities of the last category
were writing and reading (Jalloul et al., 2016), opening a door (Hester et al., 2006a,b), hair
combing (Lemmens et al., 2015; Roy et al., 2009), eating (Jalloul et al., 2016; Lemmens et al.,
2015; Seiter et al., 2015), and drinking (Lemmens et al., 2015) as well as tooth brushing, shirt
buttoning, pant lifting, and food cutting (Roy et al., 2009).

3.4.5.2 Description of algorithms and sensor placement
Non-specific hand and arm use

Hand and arm use in daily life is often measured with activity counts that are derived from
the accelerometer signal of the wrist sensors. Applying a sensor on either side enables to
estimate the hand use laterality, which is particularly relevant for people with unilateral
impairments. Studies that based their outcomes solely on activity counts were not included in
this review since they do not provide innovation to the state-of-the-art and are already well
investigated and reviewed in the literature (Lang et al., 2013; Braito et al., 2018). Instead of
measuring the amount of hand and arm use, one study included in this review developed an
algorithm do determine the diversity of hand and arm movements by calculating the sample
entropy of the upper and lower arm acceleration signals (Hurd et al., 2013). Still, the signals of
sensors worn at the upper extremities are biased by movements of the lower extremity (e.g.,
walking leads to large numbers of activity counts at the wrists even though the arms are not
actively used) and three approaches are described in the literature to overcome this issue. The
first approach stratifies hand and arm use according to the underlying activity of the lower
extremities (e.g., hand and arm use during sitting, standing, and walking). This enables the
exclusion of passive arm swing while walking (Capela et al., 2015, 2016; Coley et al., 2008b;
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Zwartjes et al., 2010). The second approach directly discriminates between functional and
non-functional hand and arm use. This distinction was implemented by training a classifier
with machine learning techniques (see Table 3.5 for details about sensor type and placement)
(Bochniewicz et al., 2017; Zambrana et al., 2019) and by limiting the range of functional
hand movement (Leuenberger et al., 2017). Here, functional hand movement was defined
whenever the orientation of the hand was within +30° from the horizontal, and the range of
hand movement in this section exceeded 30° in a 2 s period. The orientation of the hand was
determined with an IMU on the wrist. And lastly, the third approach estimated the movement
of specific joints of the upper extremities. Shoulder movement was determined by calculating
the angle between the trunk and the upper arm sensor (Held et al., 2018; van Meulen et al.,
2016), by estimating the arm elevation with the orientation of the upper arm sensor (Coley
et al., 2008a), and by assessing the spatial distribution of the elbow position with a kinematic
model and the orientation of the upper arm sensor (Derungs et al., 2018). Likewise, the elbow
movement was determined by calculating the angle between the upper and lower arm sensors
(Held et al., 2018; van Meulen et al., 2016), while the wrist and finger movements were detected
with an IMU (incl. magnetometer) on the wrist and magnet on the index finger (Rowe et al.,
2014).

Specific hand and arm movements

A more sophisticated approach to discriminate between functional and non-functional hand
and arm use is to detect particular movement primitives such as reaching an object. One
research group developed an algorithm that distinguishes between reaching, lifting, and
pouring movements while making a cup of tea by using a single wrist sensor (Biswas et al.,
2014, 2015a,b, 2017). Another study specifically detected lifting food towards the mouth (Roy
etal., 2009), and three studies detected reaching movements (Held et al., 2018; Nguyen et al.,
2018; van Meulen et al., 2016). These studies used a whole-body IMU system with up to 17
sensors, which raises questions about its applicability for long-term measurements in daily
life. Reaching movements were further analyzed by measuring its range and direction with
the difference between the hand and trunk positions (Held et al., 2018; van Meulen et al.,
2016) and by classifying the movement into upwards, mid, and downwards reaching directions
(Nguyen et al., 2018).

Specific hand and arm activities

All but one study and most of the activities of this category were detected with a statistical
machine learning approach. The details about sensor placement are presented in Table 3.5.
One study used a pattern recognition approach with template matching to discriminate
between hair combing, eating, and drinking (Lemmens et al., 2015). The templates were based
on the signals of seven IMUs (incl. magnetometer), and they were placed on the trunk as well
as on the upper arm, forearm, and hand of each side.
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3.5 Discussion

This systematic review focused on the application of inertial sensor technologies to quantify
everyday life motor activity in people with mobility impairments and provides an overview
of existing outcome measures. It, further, describes the concepts of the underlying data
processing algorithms as well as the types and placements of required sensors to derive these
measures and, eventually, lists the designs and populations of all studies that evaluated the
measures in terms of validity, reproducibility, and usability.

The included studies of this review covered a large variety of outcome measures and underlying
data processing algorithms which can be grouped into four categories: (1) maintaining and
changing a body position, (2) walking and moving, (3) moving around using a wheelchair, and
(4) activities that involve the upper extremity. The validity or reproducibility of these outcomes
measures was investigated in fourteen different patient populations, of which the majority
comprised stroke survivors, patients with Parkinson’s disease, and patients with spinal cord
injury. Most of the studies evaluated the algorithm’s accuracy to detect certain activities in
unlabeled raw data, while others evaluated the outcome measures in terms of concurrent
validity, discriminant validity, or reproducibility or applied them in an interventional or
observational study. The type and placement of required sensor technologies depends on the
activity and outcome measure and are thoroughly described in this review. The reproducibility
of the outcome measures and the usability of the applied sensor setups were rarely reported.

This review is limited to applications of wearable inertial sensors that were optionally com-
bined with other sensor technology. However, among the included articles, there were two
measurement tools that have the potential to monitor everyday life motor activities without
combining it with inertial sensors: insoles with force-sensitive sensors (Fulk and Sazonov,
2011; Fulk et al., 2012; Hegde et al., 2017; Pappas et al., 2001; Sazonov et al., 2009; Zhang
et al., 2013) and first-person cameras (Zhan et al., 2015; Zhang et al., 2019). Even though
instrumented insoles are reliable gait phase detectors (Pappas et al., 2001), their applicability
for long-term measurements in daily life is limited since the user might change or take off
the footwear during the measurement period, which in turn would lead to biased outcome
measures. First-person cameras might be superior to inertial sensors from a technological
perspective since they also provide information about the user’s environment and social
interactions (Tong et al., 2020). However, the application of wearable cameras in daily life also
raises ethical questions, and it remains to be seen whether this technology will be accepted
by the end-users and the community. Other technologies, such as external cameras, pres-
sure-sensitive walkways, or instrumented furniture, could be used to quantify motor activities
in daily life. Even though these technologies would allow for an in-depth analysis of motor
activities, they are all limited to a specific area and, therefore, not feasible to monitor the
patients’ activities throughout the day. Consequently, we are still convinced that wearable
inertial sensors are the preferred measurement tool to monitor everyday life motor activities
in patients with mobility impairments. Amongst wearable sensors, accelerometers were the
preferred technology in the articles of this review. Compared to gyroscopes, accelerometers
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do have a considerably lower power consumption (Leuenberger and Gassert, 2011) and are
not susceptible to drift (Lowe and Olaighin, 2014), which might explain their preference for
unobtrusive long-term measurements in daily life.

The search strategy and eligibility criteria of this review were designed to get an overview of all
reproducibly described algorithms that process unlabeled raw data of everyday life measure-
ments into clinically meaningful outcome measures. Despite this systematic search, there are
three reasons why the algorithms and outcome measures of this review are incomplete. First,
proprietary algorithms of commercial devices and insufficiently described algorithms were
not considered in this review, even though they might determine clinically meaningful out-
come measures. Transparency of scientific methods (including the data processing algorithm)
enables other researchers to interpret the results, to validate the method, and to replicate the
study, which is essential to the development and evolution of science (National Academies
of Sciences, Engineering, and Medicine, 2019). We, therefore, encourage the scientific com-
munity to use open-source algorithms or at least describe the used algorithm reproducibly.
Second, only algorithms that are applicable to unlabeled raw data were included in this review,
and, especially in the field of gait analysis, there are many algorithms available that determine
a clinically meaningful outcome measure out of labeled walking trials (Vienne et al., 2017).
These algorithms could be combined with an activity/walking detection algorithm and, thus,
extend the variety of outcome measures to quantify everyday life motor activities. And third,
algorithms that were evaluated in healthy subjects were not considered in this review, but
might as well provide clinically meaningful outcome measures. However, whether these algo-
rithms also work correctly in patients with mobility impairments, has to be shown in future
research.

Neither a quality assessment of the included studies nor a meta-analysis regarding the accu-
racy or reproducibility of the described algorithms and outcome measures were conducted
in this review. Although we acknowledge the benefit of these analyses, they are not feasible
for the current review due to missing standards to assess the quality of activity classification
studies and due to the large heterogeneity of the methods and data reporting of the studies.
For example, we included two studies that evaluated an algorithm to detect walking and stair
climbing in stroke survivors (Capela et al., 2016; Leuenberger et al., 2014). Even though these
studies had a similar study population and study design, their algorithms’ performance is
still not comparable since their algorithms detected three and six activities, respectively, and
the authors chose different metrics to report their results. One study reported sensitivity and
specificity, while the other study reported F-scores. This example demonstrates the difficulty
of determining which algorithms are superior, and the comparability between studies is even
more complicated when the study population and study designs differ. We, therefore, encour-
age the scientific community to develop a standard to conduct such studies and to report
the results consistently. We suggest that the study protocol either contains observations of
the patients’ daily motor activities in their habitual environment or an activity circuit that
resembles everyday life and comprises activities not classified by the algorithm. We further
recommend that the confusion matrix is reported, which allows determining a large variety of
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statistical measures to quantify the algorithm’s performance. Moreover, we would like to point
out the difference between measurement error and activity classification accuracy. Detecting
sitting position with an accuracy of 90%, for example, does not necessarily mean that the
error of estimating the sitting duration of a 24-hour measurement is 10%. In fact, a balanced
occurrence of false positive and false negative detections would lead to a much smaller error.
Although the measurement error is essential for future applications of the algorithm to daily
life data, it is rarely reported in the literature. Therefore, we recommend future studies to
determine the measurement error of their outcome measures instead of just reporting the
activity classification accuracy.

The usability of wearable inertial sensors was hardly ever assessed or at least not reported
in the studies of this review article. This finding is somewhat surprising since the end user’s
compliance and acceptance to wear the sensors throughout the measurement period is crucial
to get comprehensive and unbiased data of the end user’s motor activities in daily life. We
believe that the usability of the sensor system depends predominantly on the number and
size of sensors, on the location of sensor placement, and on how the sensors are attached to
the body. Moreover, low usability of the sensor system might also interfere with the end-user’s
behavior in daily life. However, this has yet to be shown, and we, therefore, recommend that
future studies consequently report the wearing time and the obtrusiveness of their sensor
system.

3.6 Conclusions

This systematic review provides a comprehensive overview of applications of wearable inertial
sensors to quantify everyday life motor activity in people with mobility impairments. It
lists activities and outcome measures that have been covered in the literature and describes
the concepts of the underlying data processing algorithms as well as the required sensor
technologies. It, further, tabulates the study populations and the study designs of the included
articles. This review, therefore, summarizes the state-of-the-art of existing sensor applications,
it provides quick access to the relevant literature to the reader that is interested in quantifying
certain activities in a specific patient population, and it enables the identification of gaps for
the evaluation of existing and the development of new algorithms.

The studies of this review had a large methodological heterogeneity and reported their results
inconsistently. This made it impossible to quantify and compare the validity, reproducibility,
and usability of different sensor technologies, its underlying algorithms, and their outcome
measures. Thus, this review neither provides recommendations about the favored type and
placement of sensor technologies, nor a synthesis about the performance of different algo-
rithms. Therefore, we recommend that future studies follow a standardized protocol and use
consistent metrics to report their results.

In the literature, wearable inertial sensors are the preferred technology to monitor everyday
life motor activities in patients with mobility impairments. We further expect the use of this
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technology to evolve substantially as more and more valid algorithms become available for
patient populations that can capture different facets of everyday life, as can be seen in the
healthy population.
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Chapter 4. Mobility and self-care goals of a heterogeneous pediatric population

4.1 Abstract

Aim To devise a detailed priority list of family-centered rehabilitation goals on the activity
level within the International Classification of Functioning, Disability and Health (ICF)-chap-
ters “d4 Mobility” and “d5 Self-care” in a pediatric population with a broad range of health
conditions.

Method Twenty-two months after implementing a systematic family-centered goal-setting
process, rehabilitation goals of 212 inpatients were retrospectively allocated to the most
detailed level of ICF categories by two independent researchers. The overall frequencies of
these goals were calculated and stratified by health condition, functional independence, and
age.

Results Ninety-three girls and 119 boys were included. Their mean age was 10 years and
9 months (SD: 4 years and 5 months). The five most frequent rehabilitation goals were “d4500
(ICF code) Walking short distances” (11%), “d4200 Transferring oneself while sitting” (9%),
“d5400 Putting on clothes” (7%), “d451 Going up and down stairs” (6%), and “d4153 Maintaining
a sitting position” (5%). These top goals varied in subgroups regarding the underlying health
condition, functional independence, and age.

Interpretation The findings of this study are not generalizable due to the large heterogeneity
in priorities. However, they can be used to incorporate families’ needs into future research
designs and the development of new technologies.
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4.2 Introduction

The International Classification of Functioning, Disability, and Health (ICF) serves as a frame-
work for describing functional health as the interaction between a person’s physical or mental
condition (level of body functions and body structures) and their ability to master everyday
activities (activity level) as well as their involvement in life situations (participation level).
Thus, disability and functioning are seen as an interactive and developing process that can
be influenced on any of these levels (World Health Organization, 2001). In a rehabilitation
context, the ICF framework can also be used for goal-setting, which is known to be effective
for both understanding and changing human behavior (Eccles and Wigfield, 2002; Locke
and Latham, 2002; Ostensjo et al., 2008). Furthermore, clear and functional goals enhance
motivation and lead to improved outcomes (Eccles and Wigfield, 2002; Locke and Latham,
2002). In pediatric rehabilitation, collaborative goal-setting as part of a family-centered ap-
proach is widely advocated nowadays (An and Palisano, 2014; Nijhuis et al., 2008; King and
Chiarello, 2014) and with it, the focus shifts from reducing impairments on the level of body
functions to the children’s participation in everyday activities (Brogren Carlberg and Lowing,
2013; Law and Darrah, 2014). This shift can also be seen in inpatient rehabilitation, where
the emphasis now lies on reducing activity limitations with an effort to improve participation
rather than on the body functions/structures level (Rosenbaum and Gorter, 2012). The main
goal of inpatient rehabilitation is the increase of independence, a key to which are primarily
those activities concerning mobility (ICF-chapter: d4) and self-care (ICF-chapter: d5) (Smits
etal., 2019). Goals set within these ICF-chapters and their achievement might be an essential
prerequisite for tackling goals at the participation level (Park and Kim, 2015), but can also
positively affect the body functions/structures level (“backwards direction of connections”)
(Rosenbaum and Gorter, 2012). But what are relevant goals in this area in the heterogeneous,
clinical pediatric population that we see in our rehabilitation centers? There are a number
of publications describing the priorities and needs on the ICF-levels activity and participa-
tion among families of children with cerebral palsy (Chiarello et al., 2010; Law et al., 1998;
Ostensjo et al., 2008) and of children with a broad range of health conditions (Verkerk et al.,
2006). However, they mostly report their results on the superordinate ICF chapter-level (e.g.,
self-care, mobility, communication, etc.) or block-level (e.g., for the chapter “d4 Mobility”:
Changing and maintaining body position; Carrying, moving and handling objects; Walking
and moving; Moving around using transportation). The primary aim of this study was to
devise a detailed priority list of family-centered rehabilitation goals on the activity level within
the ICF-chapters “d4 Mobility” and “d5 Self-care” in a pediatric population with a broad range
of health conditions. The secondary aim was to investigate how this priority list depends on
the children’s health condition, level of functional independence, and age.

4.3 Method

In 2017, a systematic, family-centered goal-setting process was implemented at our reha-
bilitation center. Families visit our facilities before admission of the child/adolescent, and
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preliminary, attainable goals are discussed between families and a physician. At admission,
families’ needs and expectations are inquired during an interview with a standardized form.
This form covers each domain of the ICE and rehabilitation goals are formulated if appropriate.
The results of this interview serve as a basis for establishing a tailored rehabilitation program.
After approximately one week, an interdisciplinary team of physicians, nurses, therapists,
psychologists, and teachers determines the final rehabilitation goals by incorporating families’
needs and expectations, predetermined goals of the referring physician, medical history of
the patient as well as observations and assessments during the first days of rehabilitation.
Goal formulation follows specific, measurable, assignable, realistic, and time-related (SMART)
criteria (Doran, 1981), uses positive language and considers resources and economic per-
spectives. For each patient, long-term goals are defined on the ICF participation level, which
guide the subsequent goal-setting process. Middle-term and short-term goals are set on
activity and body functions/structures levels, respectively. This study specifically addressed
the middle-term goals on the activity level regarding mobility and self-care. Every other week,
all rehabilitation goals are appraised by an interdisciplinary team and updated if necessary.
Moreover, further interviews between families and health professionals can be demanded by
both stakeholders to adapt rehabilitation goals accordingly. All personnel were trained in the
implementation of the standardized goal-setting process.

4.3.1 Study population

Rehabilitation goals from all inpatients that stayed at the Rehabilitation Center for Children
and Adolescents in Affoltern am Albis, Switzerland between January 2017 and October 2018
were retrospectively examined. Severe disability, surgery, or deteriorating functioning are
exemplary reasons for inpatient rehabilitation at our center. Only infants and those without a
signed consent were excluded from this study. Medical diagnoses were coded according to the
WeeFIM II® impairment groups (e.g., stroke, brain dysfunction, neurological disorders, etc.)
of the Uniform Data System for Medical Rehabilitation (UDSMR) (Uniform Data System for
Medical Rehabilitation, 2016) by a trained research nurse. These impairment groups reflect
the patients’ primary health condition that led to rehabilitation admission. Brain dysfunction
includes traumatic and non-traumatic acquired brain injuries and will be termed accordingly
in this article. At admission, the functional independence of all participants was assessed with
the Functional Independence Measure for Children (WeeFIM II®) by a trained nurse. The
WeeFIM II® is an 18-item instrument to measure the daily life performance of children in three
domains (self-care, mobility, and cognition). Each item is rated from 1 = total assistance to
7 = complete independence. The total score was normalized with the corresponding age-based
normative score to obtain the Developmental Functional Quotient (WeeFIM_DFQ) (Tailor
etal., 2013). Age-appropriate functioning is, therefore, reflected with a score of 100%.
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4.3.2 Data processing

Two independent researchers coded all rehabilitation goals according to the ICF-blocks as
well as the second and third levels of the ICF list of activities. The English version of the ICF
2018 was used as a reference with two additional sets of categories: (1) “d410 Changing a body
position“ was coded by determining both the starting and end position (e.g., “d4108 Sitting <=>
standing“); (2) “d415 Maintaining a body position“ was subclassified into “active” (e.g., sitting
at the edge of the bed for 30 s) and “passive” (e.g., finding a comfortable sitting position in the
wheelchair that can be maintained for four hours). Further, there is an overlap between the ICF
categories “d4500 Walking short distances*, “d4501 Walking long distances®, and “d460 Moving
around in different locations“. Walking short and long distances are not only distinguished
by the distance itself (the cut-off is at one kilometer) but also by the environment. Walking
within a building belongs to walking short distances. Likewise, walking outdoors is part of
walking long distances. Environmental aspects were, therefore, already covered by using these
two categories and “d460 Moving around in different locations“ was strictly ignored in this
study. Disagreements between the two researchers were resolved through discussion and
consensus. Finally, the frequencies of rehabilitation goals were counted for the overall study
population as well as separately for children and adolescents with cerebral palsy and those
with an acquired brain injury. Differences between these two subgroups regarding gender
distribution, age at admission and duration of stay, as well as their WeeFIM_DFQ scores were
statistically analyzed with the Fisher’s exact test, the two-sample t-test, and the Wilcoxon
rank-sum test. Besides, the whole study population was divided into subgroups regarding
their level of functional independence (WeeFIM_DFQ < 50%, WeeFIM_DFQ > 50%) and age
(<6 years, 6-11 years, and >12 years). The WeeFIM_DFQ and a cutoff of 50% were chosen to
make an age-independent distinction between high and low levels of functioning. The age
groups were chosen to ensure comparability with previous research (Chiarello et al., 2010).
The frequencies of rehabilitation goals were obtained for each subgroup. Descriptive statistics
were used to explore the influence of the children’s health condition, level of functional
independence, and age on the priority of rehabilitation goals. This study was approved by the
local ethics committee (BASEC Nr. 2018-01406).

4.4 Results

Two hundred eighty inpatients were screened for eligibility, and 196 fulfilled the inclusion
criteria. Sixty-seven inpatients did not provide a signed consent, seven were younger than two
years old, and ten did not stay long enough to complete the goal-setting process. Sixteen of the
included inpatients completed two rehabilitation programs within the specified period, which
resulted in a total of 212 cases. Their mean age was 10 years and 9 months (SD: 4 years and
5 months). The distribution of gender, age at admission, duration of stay, health condition,
and WeeFIM_DEFQ of the study population are illustrated in Figure 4.1.
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Gender Age at admission Duration of stay
(vears) (months)
T 45%
T18
(I:' 93 girls
11 26%
0,
= 119 boys 3 16% 139
e 01|12 |23 >3
Health condition
@ Cerebral Palsy
@ Acquired Brain Injury
@ Orthopaedic Conditions
@ Developmental Disabilities
® Congenital Disorders
Others
WeeFIM_DFQ
T T T T 100%
60%
T T | 20%
Total Self-care Mobility Cognition

Figure 4.1 - The distribution of gender, age at admission, duration of stay, health condition,
and WeeFIM_DFQ of the study population. WeeFIM_DFQ, age-normalized measure of func-
tional independence for children (values >100% are possible and mean that children exceed
the expected score for their age).

Overall, 784 rehabilitation goals were allocated to 63 different ICF categories and the five most
frequent categories were “d4500 Walking short distances” (11%), “d4200 Transferring oneself
while sitting” (9%), “d5400 Putting on clothes” (7%), “d451 Going up and down stairs” (6%),
and “d4153 Maintaining a sitting position” (5%). The percentage reflects the number of goals
in a specific category in relation to the total number of goals. It does not correspond to the
percentage of children that had a goal in a specific category since children had three to four
goals on average, and in some cases, more than one goal in the same category. The frequencies
of all rehabilitation goals regarding mobility and self-care are visualized in Figure 4.2. The two
largest subgroups regarding health condition were cerebral palsy and acquired brain injury
comprising 38% and 16% of all children and adolescents, respectively. Their characteristics
are shown in Table 4.1, while their top goals and those of the different subgroups regard-
ing functional independence and age are depicted at the bottom of Figure 4.2. A complete
list of all ICF categories and the corresponding number of rehabilitation goals is provided
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1Maintaining a standing position, Maintaining a sitting position, Crawling, Hand and arm use, unspecified, Hand and arm use, other & Walking, other specified.
2Walking short distances & Going up and down stairs.
WeeFIM_DFQ = age-normalized measure of functional independence for children.

Figure 4.2 — The overall frequency distribution of all rehabilitation goals. The inner circle
of the pie chart corresponds to the block categories of the International Classification of
Functioning, Disability, and Health (ICF), while the mid and outer circle correspond to the
second and third level of the ICE respectively. The missing labels of the pie chart are listed in
Appendix B. The table shows the top five goals of all children, children with cerebral palsy and
those with an acquired brain injury as well as top three goals of three different age groups and
two levels of functional independence.
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in Appendix B. There are a few ICF categories of which the content is quite broad, but the
allocated goals of the current study population were very specific. “d4450 Hand and arm
use, other specified“ contains goals exclusively to improve the ability to use the more-af-
fected hand in bimanual activities. This rehabilitation goal was the most frequent goal of the
ICF-block “Carrying, moving and handling objects®. “d465 Moving around using equipment*
and “d4750 Driving human-powered transportation“ predominantly contain rehabilitation
goals to improve wheelchair skills and riding a bicycle, respectively. And finally, goals of
the category “d599 Self-care unspecified were formulated as improving independence in
activities of daily living without specifying the activity itself.

Table 4.1 — Characteristics of the subgroups cerebral palsy and acquired brain injury as well as
a between-group comparison.

Cerebral palsy (n=81) Acquired brain injury (n=34) p-value

Girls / boys 42 /39 8/26 0.012
Age: mean + SD 10yand 9 mo + 4 yand 2 mo 9yand9mo+4yand7mo 0.25P
Duration of stay: mean + SD 42 + 20 days 97 + 99 days <0.01P
WeeFIM_DFQ

Total: median [iqr] 53% [61%)] 74% [53%] 0.03¢
Self-care: median [igr] 44% [67%] 79% [67%)] 0.03¢
Mobility: median [iqr] 35% [55%)] 73% [72%) 0.01¢
Cognition: median [iqr] 72% [58%] 74% [53%] 0.30¢

Between-group difference: 2Fisher’s exact test, bTwo—sample t-test, “Wilcoxon rank-sum test; SD, standard
deviation; y, year; mo, month; WeeFIM_DFQ, age-normalized measure of functional independence for
children (values >100% are possible and mean that children exceed the expected score for their age); iqr,
interquartile range.

4.5 Discussion

This study provides a detailed priority list of family-centered rehabilitation goals on the activ-
ity level regarding mobility and self-care in a heterogeneous pediatric inpatient population.
Walking was the most frequent goal with walking short distances having a higher priority than
walking long distances. The second most frequent goal was actively maintaining a body posi-
tion with standing and sitting having the highest priority within this category. Dressing was
far more frequent than other self-care activities, and putting on clothes had the third-highest
priority of all categories. Transfers and stair climbing were the fourth and fifth most frequent
categories, respectively. Moving around using transportation as well as carrying, moving,
and handling objects were the two ICF-blocks with the lowest priority in our study popula-
tion. Rehabilitation goals were defined on 63 different activities, and the percentage of the
most frequent goals was not greater than 11%. This demonstrates the large heterogeneity of
rehabilitation goals and underlines that goals need to be assessed individually for each child.
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4.5.1 Cerebral palsy and acquired brain injury

Children and adolescents with cerebral palsy had similar priorities compared to the overall
pediatric population, which is most likely due to the large sample size of this subgroup. Still,
other walking activities appeared in the top five goals of children with cerebral palsy, while stair
climbing did not. Rehabilitation goals that were allocated to “d4508 Walking other, specified”
consisted of the improvement of the gait pattern (e.g., walking with an upright posture) as
well as walking safely with and without assistive devices. Walking short distances had the
highest priority in both children with cerebral palsy and those with an acquired brain injury.
Apart from that, top goals differed remarkably between these two groups. Stair climbing was
one of the top five goals in children with an acquired brain injury while it did not appear in
the top goals of children with cerebral palsy. The opposite holds for the goals to improve
in transferring and standing. However, these differences are rather explained by the level
of functional independence than the underlying health condition, since the acquired brain
injury group presented significantly higher levels of functional independence at admission
compared to the cerebral palsy group. Further, there was a notable difference in self-care goals
between these groups in our study population. Improving the ability to put on clothes was a
top goal of children with cerebral palsy, while children with an acquired brain injury had the
increase of independence in a broader range of self-care activities as one of their top goals.
This might highlight the desire of families to regain the same level of independence in all
self-care activities as before the brain injury. Dressing being the most frequent self-care goal in
children with cerebral palsy was also observed in a previous study and might be explained by
the time-consuming aspect of this activity in the daily routine of these families (Chiarello et al.,
2010). Nonetheless, the differences found in this study, were not tested statistically and could
also be explained by other factors that were not included in our analysis, and incorporating
environmental factors (e.g., family support) or body functions (e.g., pain) might have led to
different interpretations.

4.5.2 Functional independence and age

In our study population, we observed that the top three goals varied concerning the children’s
level of functional independence and age. It appears that the abilities to maintain a sitting
and standing position are more important in young patients with low levels of functional
independence, while walking and stair climbing seems to be prioritized in older patients
with higher levels of functional independence. The priority list could be influenced by the
children’s ability to express their priorities. There is growing evidence that children above
five years of developmental cognitive age have this ability (Costa et al., 2017), and this might
partially explain the age group difference in this study. Another explanation of the age- and
functioning-dependent priority differences could be the fact that the ability to sit and stand
freely facilitates daily routines which are more often carried out by parents and caregivers
in young and more severely affected patients. Dressing was a top goal of children with high
levels of functional independence under 12 years of age, while it was not in the other groups.
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Typically developing six-year-old children are often able to dress themselves independently
(Summers et al., 2008), and the gained independence of typically developing peers might
explain the increased priority of putting on clothes at that age. This age-dependency was
also observed in a previous study that investigated family priorities of self-care activities in
children with cerebral palsy (Chiarello et al., 2010). The frequency of goals to improve transfers,
however, seems to be related to the level of functional independence rather than age. Still,
transferring had the second-highest priority in older children with high levels of functional
independence. We expect that the number of children that use a wheelchair to cover longer
distances and are ambulatory at home increases with age and might explain this finding. The
group consisting of young patients with high levels of functional independence had only a
small sample size (n=11) and this, therefore, limits the external validity of their top goals.
Again, the differences found in this study are observational, and future studies tackling this
subject would profit from rigorous statistical testing.

4.5.3 Limitations and outlook

One limitation of the current study is the fact that the frequency of rehabilitation goals depends
heavily on the specificity of the ICF categories. For example, dressing and eating are activities
on the second ICF-level, and dressing contains five explicit sub-categories while eating is
not further subclassified. Moreover, putting on clothes and taking them off was often part
of the same goal expression and consequently allocated to both sub-categories. This, in
turn, led to twice as many goals in the dressing category as there would have been without
the existence of sub-categories. However, we chose to use the ICF as a framework for our
study since it is a standardized and widely-used classification system. Still, we added two
sets of categories that are described in the method section. These changes reduced the
frequency of the sub-categories for the same reason as described above, but we are convinced
that these changes improved the clinical meaningfulness of our results, since the categories
are more precise. Furthermore, the linking of rehabilitation goals to the corresponding ICF
category depends on the person that conducts the linking. We, therefore, recommend using
published linking rules (Cieza et al., 2019) in future studies. Another issue in patients with
longer durations of inpatient rehabilitation is that goals could have changed over time, and
we decided to include these changes as separate goals in our study. Hence, a single patient
could have had several goals in the same category, which in turn increased the frequency of
that category. The impact of rehabilitation duration on the priority list requires statistical
analysis and should be addressed in future research with larger sample sizes. And lastly, the
current study only addressed ICF-chapters mobility and self-care. We, therefore, recommend
that future research should investigate family priorities on the remaining chapters of the ICF
activity level and incorporate potential confounders, such as pain, cognitive functions and a
variety of environmental barriers and facilitators, to get a comprehensive understanding of
families’ expectations and goals of pediatric rehabilitation.
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4.5.4 Conclusion

This study provides a detailed priority list of mobility and self-care goals in a pediatric popu-
lation undergoing inpatient rehabilitation. The results demonstrate a large heterogeneity of
rehabilitation goals, and underline that goals need to be assessed individually for each child,
irrespective of the health condition or factors like age or functional independence. And still,
the findings of our study can be used to incorporate families’ need into the design of future
research projects and the development of new technologies.
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Chapter 5. Survey with health professionals

5.1 Abstract

In combination with appropriate data processing algorithms, wearable inertial sensors enable
the measurement of motor activities in children’s and adolescents’ habitual environments
after rehabilitation. However, existing algorithms were predominantly designed for adult
patients, and their outcomes might not be relevant for a pediatric population. In this study,
we identified the needs of pediatric rehabilitation to create the basis for developing new algo-
rithms that derive clinically relevant outcomes for children and adolescents with neuromotor
impairments. We conducted an international survey with health professionals of pediatric
neurorehabilitation centers, provided them a list of 34 outcome measures currently used in
the literature, and asked them to rate the clinical relevance of these measures for a pediatric
population. The survey was completed by 62 therapists, 16 doctors, and 9 nurses of 16 different
pediatric neurorehabilitation centers from Switzerland, Germany, and Austria. They had an
average work experience of 13 + 10 years. The most relevant outcome measures were the
duration of lying, sitting, and standing positions; the amount of active self-propulsion during
wheeling periods; the hand use laterality; and the duration, distance, and speed of walking
periods. The health profession, work experience, and workplace had a minimal impact on the
priorities of health professionals. Eventually, we complemented the survey findings with the
family priorities of a previous study to provide developers with the clinically most relevant out-
comes to monitor everyday life motor activities of children and adolescents with neuromotor
impairments.
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5.2 Introduction

In pediatric neurorehabilitation, children and adolescents with congenital and acquired ill-
nesses and injuries of the developing brain are treated and cared for. These children and
adolescents often present neurological impairments that result in difficulties in executing ev-
eryday life motor tasks, such as walking to school, grasping a glass of water, or transferring from
awheelchair to a car seat. They undergo intensive therapy programs as in- or out-patients with
the emphasis on reducing these limitations and fostering their functional independence in
everyday life. Here, motor assessments are essential for developing a patient-centered therapy
plan, monitoring the children’s progress over time, and providing families with objective infor-
mation. These assessments are usually conducted at the clinic in a standardized environment.
However, after discharge (in-patients) or between therapy sessions (out-patients), the chil-
dren’s social and environmental factors become more important. Hence, it remains unclear
whether children can translate their improvements during rehabilitation into everyday life
at home or school. Assessing the children’s motor performance by measuring what children
actually do in their habitual environment would overcome this limitation (Holsbeeke et al.,
2009). Consequently, there is a need for scientifically sound tools to measure performance in
children and adolescents with neuromotor impairments.

Today, motor performance is predominantly assessed with self- or proxy-report question-
naires, which are prone to recall or proxy bias (Clanchy et al., 2011a). Activity counts derived
from body-worn accelerometers have been used as an objective and unbiased alternative
to assess performance. While these counts provide valid estimates of total energy expendi-
ture (Clanchy et al., 2011b) or non-specific hand use (Rast and Labruyere, 2022), they do not
capture information about the type of performed activities (Rachele et al., 2012). In contrast,
the use of multiple state-of-the-art motion sensor modules in combination with appropriate
data processing algorithms would allow for the determination of activity-specific outcome
measures (e.g., the time a child spent in a sitting position, the child’s self-selected speed of
walking periods, or how often a child was grasping an object in daily life, etc.). Over the
years, a large variety of algorithms deriving different aspects of everyday life motor activi-
ties of people with mobility impairments have been developed (Rast and Labruyere, 2020c).
However, the outcomes of these algorithms were predominantly designed for adult patient
populations which triggers the question whether these outcomes are also relevant for children
and adolescents with neurological impairments?

Even though it is technologically feasible to measure activity-specific outcomes with wearable
sensor modules, it still requires the children’s and adolescents’ willingness to wear these
devices in daily life. On the one hand, wearable sensors need to be comfortable, discreet, and
unobtrusive to not affect daily behavior and to be accepted by the end-user (Bergmann and
McGregor, 2011; Dan, 2020; Mackintosh et al., 2019). Consequently, there is a need to minimize
the number of body-worn sensors. On the other hand, the amount of detail and accuracy of
the sensor data correlates with the number of sensors that are worn in daily life (Dan, 2020;
Ahmadi et al., 2018). Therefore, there is a trade-off between maximizing information and

69



Chapter 5. Survey with health professionals

minimizing the number of sensors (Lang et al., 2020).

Developers of new algorithms that generate meaningful outcomes for children and adolescents
with neurological impairments need to know the clinical needs of pediatric neurorehabil-
itation. With this information, developers can make decisions about the abovementioned
trade-off. To determine the needs of children and families, we investigated their mobility and
self-care rehabilitation goals on an activity level according to the International Classification of
Functioning, Disability, and Health. The results of this study have been published elsewhere,
and the five most frequent rehabilitation goals were walking short distances, transferring
oneself while sitting, putting on clothes, going up and downstairs, and maintaining a sitting
position (Rast and Labruyere, 2020a). In the current study, we aimed to complement the
families’ needs with the opinion of pediatric health professionals. We conducted a survey
with doctors, nurses, and therapists of pediatric neurorehabilitation centers, provided them
a list of outcome measures currently used in the literature (Rast and Labruyere, 2020c), and
asked them to rate the clinical relevance of these measures for children and adolescents with
neuromotor impairments. We aimed to provide a priority list of sensor-based outcomes for
pediatric rehabilitation.

5.3 Materials and methods

5.3.1 Development and description of the survey

The survey comprised 34 items, each representing an outcome measuring the quantity or
quality of a motor activity performed in daily life (Table 5.1). The items were derived from a
systematic review providing an overview of all sensor-based outcome measures applied in
people with mobility impairments (Rast and Labruyere, 2020c). Related items were grouped
into categories, and each category contained a brief description of the outcomes and, if
applicable, a graphical visualization of a fictitious measurement. An example of such a
measurement is provided in Figure 5.1. At the end of each category, there was an open-ended
question asking about possible other relevant outcomes not covered by the survey.

Transitions between sitting and standing can be detected in everyday life. Then, the
quantity (e.g. number of repetitions or duration) or also the quality (e.g. forward tilt of
the upper body or flow of movement) can be determined.

Repetitions: Forward tilt:

14# 23° 4 5°

Duration: Flow of movement:
1.55s+0.6s 34 m/s3 £ 7 m/s3

Figure 5.1 - An example of the presentation of two survey items: the quantity and quality of
sit-to-stand transitions. The illustration was designed using resources from freepik.com.
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Table 5.1 — Description and categorization of all 34 survey items.

ID Item

Description

Arm and hand use
1  Hand use (laterality)
2 Hand use (uni-/bimanual)
3 Hand use (diversity)

Upper limb movements can be measured separately for the left and right arm.
This enables the quantification of the hand use laterality, the amount of
unimanual and bimanual activities, and the diversity of upper limb
movements.

Joint movement

4 Shoulder abd/add
Elbow flex/ex
Forearm pro/sup
Wrist flex/ex
Finger flex/ex
Knee flex/ex

© oo w»

Joint angles can also be measured. This can be used to quantify the number
of repetitions and the range of motion of individual joints in everyday life.

Reaching & grasping
10  Reaching (repetitions)
11  Reaching (range)

Reaching and grasping movements can be detected and evaluated in
everyday life. This allows quantifying the number of repetitions as well as the
range of reaching forward and sideward relative to the trunk.

Maintaining a body position
12 Lying, sitting & standing
13 Lying (prone/supine)
14  Standing (upright/bent)

Lying, sitting and standing can be recognized in everyday life and the
duration a child spends in these body positions is measured. Lying can be
subclassified as prone, supine, and side lying, and standing as upright,
bending forward, or bending sideward.

Changing a body position
15  Standing up (quantity)
16  Standing up (quality)

Transitions between sitting and standing can be detected in everyday life.
Then, the quantity (e.g. number of repetitions or duration) or also the quality
(e.g. forward tilt of the upper body or flow of movement) can be determined.

Walking activity
17 Walking (duration)
18  Walking (distance/speed)

Walking can be distinguished from other activities, and the daily walking
activity can be divided into individual walking bouts. Then, the duration,
distance and speed of these bouts can be determined.

Gait parameters
19  Walking (gait parameters)

Walking can be segmented into gait cycles which allows quantifying gait
parameters such as step length, duration of the stance phase or step
symmetry.

Risk of falling
20  Risk of falling

From walking activities, different measures can be calculated that predict a
child’s risk of falling.

Walking (turning)
21 Walking (turning)

Obstacles or a side road can force a change of direction during walking
activities. These turns can be analyzed regarding speed, angular change,
number of steps, etc.

Walking (slope)
22 Walking (slope)

The slope of covered walking routes can be measured which allows
determining whether a child can walk in steep 