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Abstract—This paper presents a novel real-time implementa-
tion of linear model predictive control (MPC) schemes based on
region-less explicit MPC (RL-EMPC). RL-EMPC is a recently
proposed explicit MPC solution for achieving a low memory
footprint compared to other explicit MPC methods. Thus RL-
EMPC can effectively handle systems with high sampling rates
even for large-size MPC problems, i.e. systems with many states
and/or constraints. An architecture for an implementation on an
FPGA device is presented and validated with two application
examples (buck-boost converter, modular multilevel converter).
Simulation results on FPGA hardware-level demonstrate that
long-horizon linear MPC can be implemented on low-cost FPGAs
with the proposed architecture for various power electronic
systems.

Index Terms—continuous control set (CCS) MPC, modulated
MPC, modular multilevel converter (MMC, M2C), Buck-Boost-
converter

I. INTRODUCTION

Optimal design procedures for power electronic systems are
usually based on the steady-state behaviour (losses, maximum
voltages/currents, voltage/current ripples, etc) of the convert-
ers. There, margins for dynamic control that are added on
top of the steady-state system trajectories can significantly
decrease the power density of the converter. Consequently,
reducing or even omitting these margins can be a crucial factor
to increase the power density and thereby reduce the converter
volume, weight, and cost without a reduction in efficiency.
However, this is not always possible with classical control
methods (e.g. cascaded PI-controllers), because most control
techniques do not take the system constraints into account.
Therefore, both academia and industry have drawn attention to
model predictive control (MPC) for power electronic systems
since the system constraints can be regarded with MPC [1],
[2]. As a result, power converters can be designed optimally
while still exploiting the full dynamic potential to achieve the
fastest possible response to reference changes and disturbances
even for multi-input-multi-output (MIMO) systems. For exam-
ple, in [3] MPC is used to fully exploit the installed energy
storage of a modular multilevel converter (MMC) resulting in
savings of about 40% of the module capacitance value, while
preserving excellent dynamic performance.
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Fig. 1. Typical block diagram of power electronic system with continuous
control set (CCS) explicit model predictive controller (EMPC). The modulator
represents a PWM or SVM modulation. The optimization solving the MPC
problem is computed off-line. This paper deals with the FPGA implementation
of the explicit MPC block marked in red for long horizon MPC for complex
power electronic systems e.g. MMCs (cf. Sec. IV-B).

Recent advances of computational power in embedded sys-
tems further facilitate the utilization of MPC as a promising
method for a wide range of converters. Nonetheless, the
implementation of MPC for power electronic systems is still a
challenging task as an optimization problem has to be solved
within every sampling interval. This is especially problematic
because power electronic applications often require a high
sampling rate. Particularly for systems with tight constraints,
MPC with a long prediction horizon is required to guarantee
performance and stability [4]. Therefore, the computational
burden of the optimization problem can be very demanding.
Indirect MPC, also known as continuous control set (CCS)
MPC, has recently attracted attention in such context. With
CCS-MPC, the converter is modelled with continuous inputs
such that the MPC problem results in a continuous-set op-
timization problem. This not only simplifies the underlying
optimization problem to be solved in real-time, but also allows



the system to operate at a fixed switching frequency as a
modulator is employed to generate switching signals of power
semiconductors. In case of a linear system representation for
the prediction model (linear MPC), the underlying optimiza-
tion problem usually results in a quadratic programming (QP)
problem [2], for which approaches for realizing real-time
implementations exist [5].

The methods for realizing the real-time implementation of
CCS-MPC can be grouped into two sets: implicit MPC and
explicit MPC. Implicit MPC solves the optimization prob-
lem on-line at each sampling instant, whereas explicit MPC
(EMPC) handles the optimization process off-line. Therefore,
EMPC accomplishes a simple on-line computation and can
be implemented even on low-cost embedded systems at very
fast sampling rates. Despite such characteristics make EMPC
very suitable to realize MPC for power converters, EMPC has
been applied to only a few applications [6], [7]. This is because
memory requirements of general EMPC methods grow expo-
nentially with the problem size, limiting the practical usage of
the methods to only small problems.

Recently, the region-less explicit MPC (RL-EMPC) method
is proposed in [8], [9] to overcome the main drawback of
the memory requirements and it shows a possibility to handle
large-size MPC problems with EMPC. However, only few
implementation examples have been demonstrated yet and no
attempts have been made for fast dynamic systems like power
converters. Moreover, none of them investigates implementa-
tions on embedded systems nor analyzes the complexity in
terms of resource usage and on-line evaluation time. Since
RL-EMPC requires more on-line computations to achieve the
low memory requirements, the on-line evaluation time, which
is achievable with reasonable computational resources, is a
critical factor to determine the feasibility of the method.

This paper presents an FPGA implementation of the RL-
EMPC approach to accelerate on-line evaluation processes and
to parallelize access to external memory with high-bandwidth.
With the proposed implementation, the realization of EMPC
can be applied to a broader spectrum of systems, such that
it can even be used for power electronic systems with many
states and/or a large number of constraints (which typically
grow with the prediction horizon). Even though the proposed
method requires more computational power compared to other
EMPC methods, recent advances in FPGA technology enable
the implementation on low-cost FPGA devices. The FPGA im-
plementation is validated with two application examples, and
simulation results on FPGA hardware-level are demonstrated
along with their resource usages and required clock cycles for
the on-line evaluation.

The paper is organized as follows: the general concept of
explicit MPC is reviewed in section II to compare different im-
plementation approaches. Section III presents an architecture
for implementing RL-EMPC on FPGAs. Finally, in section
IV, RTL level simulation results for two power electronic
applications are demonstrated and analyzed before concluding
in section V.

II. EXPLICIT MODEL PREDICTIVE CONTROL

The concept of explicit model predictive control (EMPC) is
proposed in [10] based on multi-parametric quadratic program-
ming (mp-QP) to address linear MPC problems. Nonetheless,
there are several ways to implement EMPC and each method
has different features, such as optimality of control laws,
latency, memory requirement, and scalability. Therefore, in
this section, a formulation of linear MPC and its relation
to mp-QP to pre-compute optimal control laws off-line is
reviewed, followed by representative approaches to implement
the on-line part of EMPC.

A. General Formulation of Linear MPC

MPC computes an optimal control input of a constrained
control problem by solving an optimization problem. When
MPC is applied to linear systems with linear constraints, i.e.,
box-constraints and/or polytopic constraints, the optimization
problem can be written as

min
Uk

Np−1∑
l=0

∥∥xk+l+1 − xref,k+l+1

∥∥2
Q
+
∥∥uk+l − uref,k+l

∥∥2
R

(1a)
s.t. xk+l+1 = Ak+lxk+l +Bk+luk+l, ∀l ∈ I (1b)

umin ≤ uk+l ≤ umax, ∀l ∈ I (1c)
xmin ≤ xk+l+1 ≤ xmax, ∀l ∈ I (1d)

GpUk ≤ wp +KpXk, (1e)

where Uk = [uT
k, · · · , uT

k+Np−1]
T ∈ Rm·Np is the complete

control input vector, Xk = [xT
k, · · · , xT

k+Np
]T ∈ Rn·(Np+1) is

the complete state vector, Np is the prediction horizon, Q ≥ 0
and P ≥ 0 are weighting matrices, I = {0, 1, · · · , Np − 1},
and

∥∥z∥∥2
Q

denotes a 2-norm with the weighting matrix Q.
xref,k+l+1 and uref,k+l are the l-th step reference values for
the states and inputs, and Ak+l and Bk+l are the l-th discrete
state space matrices for general linear systems. Note that the
formulation can be applied to time-varying systems, such as
periodic systems [3], if discrete state-space models can be
achieved.

B. Multi-parametric Quadratic Programming

The given linear MPC can be reformulated as a condensed
quadratic programming (QP) problem by substituting the
future states as a function of the future control inputs and
the current states ( Xk = SkUk + Tkxk) based on the
dynamic model of the linear system [4]. Furthermore, the
optimization problem can be converted to a general mp-QP by
choosing parameters, denoted as θ, such that the optimization
problem can be solved over the domain of the parameters.
For simplicity, subscript k is omitted in the following, and the
multi-parametric optimization can be written as

min
U

1

2
UTHU+ (Fθ+ f)TU (2a)

s.t. GU ≤ w +Kθ. (2b)



The size of the optimization parameters, θ ∈ Rp, depends
on the number of variables that need to be updated at each
sampling time to solve the linear MPC. For example, in
trajectory tracking problems, the references (Xref, Uref) can
be included into θ as well as the current system states (xk) to
track varying references. However, the size of the parameters
is one of the critical factors that determine the complexity
of solving the mp-QP problem. Therefore, if possible, new
representative variables like the power level of the system
should be included in the parameters to represent such varying
reference trajectories with a smaller number of parameters.
This could dramatically reduce the complexity of the mp-QP
problem.

The process of solving the mp-QP problem is conducted off-
line and results in a function of the optimization parameters
(θ). This function is in the form of a piecewise affine (PWA)
function, as follows:

U∗ =


f1(θ) if θ ∈ D1

...
fR(θ) if θ ∈ DR

(3)

where Di are R nonoverlapping regions, i.e., Di ∩ Dj = ∅
for i 6= j. Each region has a different set of active con-
straints and applies a different affine law (fi) [10]. There
are few algorithms to construct the regions and they differ in
approaches to explore what are possible combinations of active
constraints: geometric methodologies, combinatorial methods,
and connected-graph approaches [11]. In the context of MPC,
such an mp-QP solution is equivalent to a feedback control
law and denoted as an explicit MPC solution.

Consider the set of active constraints of the i-th region Ai ⊆
{1, · · · , nc}, where nc is the number of rows of the constraint
matrix G in (2b). Then, the constraint equations can be divided
into two groups,

GU ≤ w +Kθ ⇒

{
GAi

U = wAi
+KAi

θ

GNi
U < wNi

+KNi
θ

,

where GAi is obtained by stacking the rows of G indexed by
Ai and GNi

is the rest of the rows. The relations between
the set of active constraints and the explicit MPC solution can
be demonstrated by applying the Karush-Kuhn-Tucker (KKT)
conditions to (2), such that

HU∗ + (Fθ+ f) +GT
Ai

λ∗ +GT
Ni

µ∗ = 0, (5a)
GAiU

∗ = wAi +KAiθ, (5b)
GNiU

∗ < wNi +KNiθ, (5c)
λ∗, µ∗ ≥ 0, (5d)

λ∗T(GAi
U∗ −wAi

−KAi
θ) = 0, (5e)

µ∗T(GNiU
∗ −wNi −KNiθ) = 0. (5f)

Equation (5c) and (5f) lead to µ∗ = 0, and (5a) as well as
(5b) can be rewritten as

U∗ = −H−1 · (Fθ+ f +GT
Ai

λ∗), (6a)
λ∗ = Q(Ai)θ+ q(Ai), (6b)

where

Q(Ai) = −(GAi
H−1 ·GT

Ai
)−1 · (KAi

+GAi
H−1F),

q(Ai) = −(GAiH
−1 ·GT

Ai
)−1 · (wAi +GAiH

−1f).

As a result, the affine law (fi) is calculated by (6), and the
region (Di) is defined by (5c) and (5d). The main differences
between various implementation strategies result from which
matrices are stored in memory and which computations are
performed on-line to identify the proper region and compute
the optimal control law.

C. Implementation Strategies of Explicit MPC

1) Region-based Method: The most straightforward method
to apply EMPC is region-based EMPC, and both affine laws
and regions are computed thoroughly off-line in a direct affine
function of the optimization parameters (θ). The affine laws
are obtained as

fi = T(Ai)θ+ t(Ai), (8)

where T(Ai) and t(Ai) are achieved by substituting (6b) into
(6a) as

T(Ai) = −H−1 · (F+GT
Ai

Q(Ai)), (9a)

t(Ai) = −H−1 · (f +GT
Ai

q(Ai)). (9b)

The regions are achieved by inserting (6b) and (8) into (5c)
and (5d), resulting in:[

GNi
T(Ai)−KNi

−Q(Ai)

]
︸ ︷︷ ︸

A(Ai)

·θ ≤

[
−GNi

t(Ai) +wNi

q(Ai)

]
︸ ︷︷ ︸

b(Ai)

, (10)

where A(Ai) and b(Ai) form a polyhedral, known also as a
critical region. Consequently, the region-based method stores
the matrices of T(Ai), t(Ai), A(Ai), and B(Ai), and is
realized by checking constraints sequentially to evaluate an
optimal affine control law as

U∗ =


T(A1)θ+ t(A1) if A(A1)θ ≤ b(A1)

...
...

T(AR)θ+ t(AR) if A(AR)θ ≤ b(AR)

. (11)

2) Variations of Region-based Method: The sequential
search of the region-based EMPC method is intuitive, yet it
is not regarded as the most efficient strategy. As can be seen
from the structure of the matrices in (10), the size of each
matrix is equivalent to the number of all constraints. Even
after removing redundant rows to minimize the size of A(Ai)
and b(Ai), the sequential search method results in mainly two
problems. First, the worst-case search time can become very
long since all constraints should be checked for all regions.
Second, the memory requirements for storing all matrices can
be demanding.

Many variations have been proposed to improve such
drawbacks, for example, the binary search tree method [12]
for shorter search time as well as low-complexity methods



[13] for lower memory requirements. Refer to [14] for
a comprehensive comparison between different methods.
However, most methods were developed targeting small
size problems, and the complexity increases exponentially
when the number of constraints and/or the dimension of the
parameters becomes large.

3) Region-less Explicit MPC: The region-less method was
proposed mainly to reduce the burden of memory requirements
at the cost of more demanding on-line computations [8].
Instead of saving all matrices, given in (10), the region-less
method only saves fundamental blocks from the optimization
problem itself, e.g., H−1, F, f , G, w, and K. These blocks can
be re-utilized at all regions to check the region conditions with
(5c) and (5d) and evaluate the affine law with (6) through on-
line computations. Only matrices of duality conditions, Q(Ai)
and q(Ai), are required for each region, thus a huge reduction
of memory requirements can be achieved. Note that the notion
of ”region”, where same active constraints are shared, still
exists in the region-less method, yet it is named as ”region-
less” because it does not require matrices of ”critical regions”
as given in (10).

The biggest advantage of the region-less method is that
it is a general solution to shrink the memory requirements
regardless of the number of constraints or the dimension of
parameters. Therefore, in [9], an implementation of explicit
MPC for a large problem is demonstrated, where the parameter
dimension is θ ∈ R13 and the number of regions is R = 1095.

III. FPGA STRUCTURE FOR REGION-LESS EXPLICIT MPC

Based on the region-based method and its variations, which
are reviewed in the previous section, many implementations
are introduced with detailed embedded architectures (cf. [14],
[15]). For both optimal and sub-optimal solutions, extensive
research has been conducted to realize the explicit controllers
focusing on diverse aspects, from optimality and latency to re-
quired hardware resources. Moreover, toolboxes, e.g., MOBY-
DIC [16], enabled the automatical generation of VHDL files
to realize the efficient implementation of EMPC on FPGAs.
However, in most cases, the implementations were applied in
limited cases, where the dimension of the parameters and/or
the number of the constraints is restricted. This is because a
memory requirement is the bottleneck of the mentioned EMPC
implementations.

As described in the previous section, the region-less MPC
method is an intriguing method to tackle the bottleneck and
realize EMPC for general linear MPC problems. Therefore,
in this section, a detailed system structure is presented to
implement RL-EMPC on FPGAs. First, functional blocks are
introduced to parallelize the computations of the region-less
method. Then, a timing structure for interfacing to external
memory will be illustrated, followed by a method to calculate
timing issues, such as system sampling frequency and worst-
case latency.

Algorithm 1 Lagrangian-Multiplier check (LM in Fig. 2)
// for-loop can be paralleled at a functional level
// arithmetic operations can be paralleled at RTL level
for i ∈ {1, . . . , R} do

Compute λi = Q(Ai)θ+ q(Ai)
if λi ≥ 0 then

Write λi and Ai to FIFO
end if

end for

Algorithm 2 Primal feasibility check (PF in Fig. 2)
// while-loop can be paralleled at a functional level
// arithmetic operations can be paralleled at RTL level
while FIFO 6= ∅ do

Read λi and Ai from FIFO
Compute U = −H−1 · (Fθ+ f +GT

Ai
λi)

if GU ≤ w +Kθ then
U∗ ← U
uk is the first m entries of U∗

return uk
end if

end while

A. Functional blocks and parallelism for FPGAs

In RL-EMPC, two functional blocks are required to evalu-
ate the KKT conditions on-line: Lagrangian-multiplier (LM)
checker and primal feasibility (PF) checker. The LM block,
equivalent to (5c), examines whether the current parameter (θ)
can satisfy a Lagrangian-multiplier condition (dual feasibility)
at a given region, and the PF block, equivalent to (5d), checks
whether all constraints are satisfied in the region with the
calculated Lagrangian multiplier .

These two functional blocks can be computed in parallel
to maximize the advantage of FPGAs using a first-in first-
out (FIFO) block as proposed in Algorithm 1 and 2. While
the PF checker is running for positive results of the LM
checker, the LM checker can already proceed with the next
region. Moreover, further parallelizations can be achieved as a
trade-off between speed (latency) to compute control laws and
resource usages on FPGAs. Two different levels of parallelism
can be carried out. First, at a functional level, multiple
functional blocks (LM and PF checkers) can be employed
in parallel as shown in Fig. 2(a) to perform multiple LM
and PF checks at the same time. Depending on applications,
the complexity of LM and PF differs significantly, and thus
the number of parallel blocks can be adapted flexibly to the
applications and the required sampling rate of the systems.
Note that the number of parallel LM checkers does not have
to be same as the number of parallel PF checkers. Second, at a
register-transfer level (RTL), each block can be realized with a
different amount of resources. For example, one can parallelize
multiplications to speed up the computations inside the LM
and PF checkers depending on available resources on FPGAs.
Proper pipelining can increase the efficiency of resources to
realize blocks, but will also lead to longer computation times.
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Fig. 2. (a) Block scheme of the proposed architecture for RL-EMPC. (b) Timing diagram of the proposed architecture with the external memory. The LM
blocks start to check duality conditions in parallel after an initialization process of reading data (tread). The PF blocks begins to check the constraint conditions
when the FIFO block is filled.

B. Hardware Structures

For systems with a small number of parameters, RL-EMPC
dramatically reduces the memory requirements - see section
IV-A for detailed comparisons. Therefore, all data can be
stored in on-chip memory blocks and the implementation can
be carried out in a simple order. However, when the number
of parameters becomes large or many constraints need to be
applied to the system, embedded memory components cannot
handle all data. Therefore, external memory, such as SDRAM,
could be utilized to solve the problem as shown in Fig. 2(a).
In general, the amount of data required for the PF blocks
is small compared to the LM blocks. Therefore, when RL-
EMPC is initialized, the PF blocks read the complete required
information and save it into the memory blocks in the FPGA.
Unlike that, the LM blocks require a large data, and only a
share of the data is stored temporarily on-chip, and new data
are requested whenever the LM blocks check a specific duality
condition. Fig. 2(b) shows a timing diagram of the complete
process to parallelize access to external memory. Note that
even though the FPGAs can request and access the data from
the external memory in parallel, the overall performance may
be limited by the bandwidth of memory access when the
sampling frequency of the system is very high.

C. System Sampling time and Worst-case Latency

One major advantage of explicit MPC is that the on-line
computation time can be analyzed thoroughly, such that the
system sampling rate can be decided based on the computation
time of the worst-case scenario and the optimality of the
control laws can be guaranteed. In general, the worst-case
computation time can be calculated by summing the required
time of three different functions: data read, LM blocks, and
PF blocks. Even though the LM and the PF blocks operate
in parallel in practice, for the worst-case computation time, it
is assumed that all FIFO blocks might be inserted at the last

part of LM checkers. The worst-case time heavily depends on
the application, and the system sampling rate can be selected
based on the worst-case time by adding additional timing
margins for communication and modulator computation times.

IV. APPLICATION EXAMPLES

In order to demonstrate the effectiveness of the proposed
RL-EMPC on FPGAs, this section compares EMPC solu-
tions and presents simulation results for two power electronic
applications. The first application is a buck-boost converter,
where the system is relatively simple with 2 states and only a
few constraints are applied. Nevertheless, since the required
sampling rate is high (≥ 100 kHz), the implementation of
long-horizon MPC is not trivial especially when using low-
cost FPGA devices. The second system is a modular multilevel
converter, where the system model consists of 11 states and
6 inputs as well as many linear constraints. Such systems are
usually regarded as unpractical/infeasible to apply EMPC.

For both systems, PWM is used to translate control prob-
lems with continuous inputs, and indirect MPC methods are
applied to formulate linear MPC problems. After converting
the linear MPC problems into mp-QP problems, the solutions
of the mp-QP problems are computed with the Multi Para-
metric Toolbox (MPT) [17]. The proposed circuit architecture
is developed with the DSP Builder for Intel FPGAs and
implemented targeting low-cost FPGAs (e.g., Intel Max 10 or
Cyclone V). The circuits are implemented in fixed-point using
the fixed-point converter in Matlab. The HDL co-simulation
was carried out in Matlab/Simulink with Mentor Graphics’
Questa Sim to verify the generated HDL files in a closed loop
manner.

A. Buck-Boost Converter

The non-inverting buck-boost converter is a simple, low
cost, and efficient converter suitable for many DC-DC applica-
tions. However, due to its non-minimum phase characteristic,



designing a high-bandwidth controller can be a troublesome
task to fulfill the desired transient response. Applying MPC
helps to significantly improve the control performance regard-
ing disturbance rejection and reference tracking [6]. Here, the
method described in [6] is utilized, and the same parameters
are used to generate the presented EMPC solutions and sim-
ulation results.

The buck-boost converter has nonlinear dynamics, and
proper modelling is a critical factor for the complexity of the
MPC formulation. In [6], the converter is represented as a
PWA model with 2 states and 1 input given as a function of
the supply voltage as{

xk+1 = Aixk + biuk + f iload

d2,k = ci
, if vs,k ∈ Vi,

where x = [vC, iL]
T, u = d1vs, Ai ∈ R2×2, bi ∈ R2×1,

f ∈ R2×1, and the supply-voltage range is divided into six
intervals given as Vi to decide ci, i ∈ {1, · · · , 6}. By assuming
that the duty-cycle of the boost stage (d2) a piecewise-constant
function, the nonlinear converter dynamics are translated into
a linear model. Note that the supply voltage is assumed to
stay in one interval throughout the prediction horizon, and
thus d2, Ai, and bi are all also assumed to be constant
based on the value of vs,k at each sampling instant. Based
on the linear model, a linear MPC can be formulated with
two box constraints on states, which limit the minimum and
maximum values of the capacitor voltage (vC) and the inductor
current (iL), and one polytopic constraint on the input to limit
the duty cycle of the buck state d1 ∈ [0, 1]. The chosen
buck-boost converter is designed to operate with an arbitrary
supply voltage (vs) and load current (iload) within the operation
range. Therefore, the optimization parameters are chosen as
θ = [vC, iL, iload, vs]

T ∈ R4 to solve the mp-QP problem.

TABLE I
EXPLICIT MPC RESULTS OF BUCK-BOOST CONVERTER

Region-based Binary-tree Region-less

Memory Size
59.52 kB 60.24 kBa 7 kB

(Np = 2, R = 156)

Memory Size
525.36 kB 2.67MBb 80 kB

(Np = 4, R = 1,248)
a : Depth (9), number of nodes (828)
b : Depth (18), number of nodes (45,510)

TABLE II
FPGA RESOURCE UTILIZATION OF RL-EMPCa

ALM [K] Memory [Kb] DSP & Multiplier

LMc 2.20 778 16

PFc 8.5 113 124

Totalb,c
14.82 989 220
(37%) (77%) (88%)

Avaialabled 40 1,290 250
a : Np = 4
b : Three LM blocks and two PF blocks in parallel
c : Numbers for LM and PF taken for a fit of only one LM/PF block
on the whole device. Numbers for Total are the result of compiler/fitter
optimization and smaller than the sum.
d : Intel Max 10 (10M40SAE144C8G), no external memory

The results in Tab. I show the memory requirements of the
EMPC controllers when prediction horizon lengths of 2 and
4 are applied. In this example, the length of the prediction
horizon does not bring substantial performance improvement,
yet it is demonstrated to compare the memory requirements
and the feasibility of the proposed implementation. Based on
the proposed architecture, the RL-EMPC can be implemented
on a low-cost FPGA (Max 10) device for a prediction horizon

LM
 

FI
FO

PF
 

Va
lid

 

Input / output voltage [V]

Load / inductor current [A]

Number of clock cycles for computation

t [ms]
clock cycles

(b)(a)

  Current limit

Fig. 3. (a) RTL level co-simulation results of the buck-boost converter using the RL-EMPC solutions from Tab. I on a Max 10 device. For control performance
and a comparison with a linear controller, refer to [6]. (b) RTL level co-simulation results of the RL-EMPC at t = 0.21ms. The region is detected after
508 clock cycles, when the valid signal becomes high. Note that the complete computation of LM and PF checkers finishes after 609 clock cycles, which is
denoted as the number of clock cycles for computation in (a).



of 4. The resulting resource usage as calculated by the Intel
Quartus Fitter is presented in Tab. II, and simulation results are
shown in Fig. 3. All data is stored in on-chip blocks due to the
low amount of required memory, and the co-simulation results
show that the proposed method can successfully compute
control laws at the sampling rate of 100 kHz with the FPGA
device operating at 125MHz. At the given frequencies, the
simulation results show that the number of clock cycles for
computations (< 800) is much smaller than the maximum al-
lowed clock cycles (1250). When external memory is utilized,
even a longer prediction horizon can be applied.

B. Modular Multilevel Converters (MMC)

Over the last decade, the modular multilevel converter
(MMC) has gained a lot of attention and is used in many
applications at medium and high voltage levels. However,
since the MMC is a multi-input multi-output (MIMO) system
with nonlinear characteristics, controlling the MMC with con-
ventional methods, such as cascaded PI-controllers or resonant
controllers, results in limited transient performance and/or
oversized module capacitors [18]. In [3], a linear MPC method
is proposed to overcome these limitations, such that the MMC
with very small module capacitance (reduced by 40%) can
be operated with a fast transient behavior. Even though the
proposed method has a relatively low sampling rate for power
electronic systems (1 . . . 1.5 kHz), a real-time implementation
of the controller is still a challenging task since the size of the
optimization problem is large with many states and constraints.

In [3], the MMC system is modelled as a periodic-time
varying linear system by linearizing the energy dynamics of
the MMC as[

ik+1

wk+1

]
︸ ︷︷ ︸

xk+1

=

[
Ac 0

Aw(ϕg) 0

]
·
[
ik
wk

]
︸ ︷︷ ︸

xk

+

[
Bc
0

]
·
[
vδe,αβ0,k
vδa,αβ0,k

]
︸ ︷︷ ︸

uk

,

where i ∈ R5 and w ∈ R6 are the current and the energy
states, u ∈ R6 is the control inputs, Ac ∈ R5×5 and

Bc ∈ R5×6 are the time-invariant current system matrices, and
Aw(ϕg) ∈ R6×5 is the periodic time-varying energy matrix
depending on the grid angle (ϕg). In other words, the converter
is represented as a PWA model with 11 states and 6 inputs
as a function of the grid angle (ϕg). The domain of the grid
angle (ϕg) is divided into Ns intervals, where Ns is the number
of samples in one grid-period. Note that the MMC model is
an average model, which is independent of the number of
modules. The balancing of the individual module voltages
can be performed using sorting based PWM methods such
as presented e.g. in [19].

For each interval of the grid angle, the system dynamics are
different and a different linear MPC problem is formulated.
Moreover, since the control of the MMC is a trajectory
tracking problem, references should be included. Instead of
adding all states and input references, the power level of
the system is included to represent the varying references as
shown in [18], such that the complexity of mp-QP problems
can be minimized. The optimization parameters are chosen as
θ = [iT, wT, p]T ∈ R12. In contrast to the solution presented
in [3], the mp-QP problems are formulated only with control
input constraints, such that the number of generated regions
remains reasonable.

The EMPC memory requirements with a prediction horizon
of 5 are given in Tab. III for the same parameters used in
[3]. At each grid angle interval, many regions are generated,
and the whole grid period sums up to an huge number of
regions compared to other applications. Therefore, common
EMPC methods cannot be applied. The region-based method
requires a large amount of memory, and even with an external
memory, the implementation is not feasible. In such situation,
constructing a binary tree is extremely difficult and results in
massive memory requirements, so that the binary tree method
is not considered here. Compared to that, the RL-EMPC
method leads to moderate memory requirements and can be
implemented on a low-cost FPGA (Cyclone V) device with
external SDRAM. The resulting resource usage is presented
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(b)(a)

DC / circulating currents (abc) [A] Inner arm / arm inserted voltages (abc) [kV]

Number of clock cycles for computation [k]
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Fig. 4. (a) RTL level co-simulation results of the MMC using the RL-EMPC solutions from Tab. III on a Cyclone V SoC device. For control performance
and a comparison with a linear controller, refer to [3]. (b) RTL level co-simulation results of the RL-EMPC at t = 0.02ms. The region is detected after 414
clock cycles, when the valid signal becomes high. Note that the complete computation of LM and PF checkers finishes after 19374 clock cycles, which is
denoted as the number of clock cycles for computation in (a).



TABLE III
EXPLICIT MPC RESULTS OF MODULAR MULTILEVEL CONVERTERa

Region-based Region-less
Memory Sizeb

18.50MB 0.67MB
(R = 3, 471)

Memory Sizec
247.15MB 10.35MB

(R = 49, 838)
a : Np = 5, fs = 1.5 kHz
b : Example of one grid angle partition
c : All grid angle partitions with Ns = 30

TABLE IV
FPGA RESOURCE UTILIZATION OF RL-EMPCa

ALM [K] Memory [Kb] DSP & Multiplier

LMc 9 ∼ 0 14

PFc 21 767 468

Totalb,c
33 813 468

(59%) (12%) (100%)

Avaialabled 56 7,025 468
a : Np = 5
b : Two LM block and one PF block in parallel
c : Numbers for LM and PF taken for a fit of only one LM/PF block
on the whole device. Numbers for Total are the result of compiler/fitter
optimization and smaller than the sum.
d : Intel Cyclone V SoC (5CGXFC7D6F31C6) with external memory

in Tab. IV, and simulation results are shown in Fig. 4. The
enlarged simulation result illustrates that the constraints of
keeping the arm inserted voltage lower than the inner arm
voltage are satisfied even when the power flow reverses.
Therefore, the MMC can operate close to its physical limits,
resulting a compact realization of the MMC with a very small
module capacitance value. The co-simulation is carried out at
the sampling rate of 1.5 kHz with the FPGA device operating
at 250MHz. At the given frequencies, the simulation results
show that the number of clock cycles for computations (< 25k)
is much smaller than the allowed clock cycles (166k).

V. CONCLUSION

For power electronic systems, linear MPC is an attractive
solution to exploit components up to their physical limits
and achieve an optimal converter design as well as fast
transient performance. This paper presents a method for a
real-time implementation of linear MPC using FPGA devices
based on RL-EMPC. Two examples are demonstrated to prove
the feasibility of the proposed implementation for general
linear MPC problems along with analyses about their resource
usages and on-line computation times. First, for the buck-
boost converter, RL-EMPC reduces the memory requirements
by 87% compared to the region-based method and realizes
the real-time implementation for a prediction horizon of 4
with an Intel Max 10 device, while other EMPC methods
are limited to a prediction horizon of 2. If external memory
is utilized, RL-EMPC can be realized even for a longer
prediction horizon. Second, for the MMC, RL-EMPC reduces

the memory requirement by 96% compared to the region-
based method and enables a realization based on a Cyclone V
device. This cannot be achieved with other EMPC approaches
and shows the effectiveness of the proposed method. Results
show that the proposed approach allows a simple and low-cost
implementation to compute optimal control laws in real-time
even for larger-size MPC problems.
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