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Estimating the Values of Missing Data Related to
Infrastructure Condition States Using

Their Spatial Correlation
Saviz Moghtadernejad, Ph.D.1; Yuchuan Jin2; and Bryan Tyrone Adey, Ph.D.3

Abstract: Infrastructure managers consistently monitor the condition of their assets to predict their deterioration speed and determine the
optimal time to execute preventive interventions. However, despite the recent progress in more frequent and accurate monitoring of assets and
storage of the related results, in practice, real-world data often contains errors and discrepancies such as missing data or faulty entries. This
problem can happen owing to collection errors during routine inspections or inconsistency of data storage formats in different years. Because
the quality of data plays a significant role in the accuracy of deterioration prediction and the resulting intervention programs, it is important to
improve condition state predictions by imputing the values of missing information. This paper examines the efficiency of different models that
use the spatial correlation of infrastructure assets in predicting the value of missing data. The models include univariate and multivariate
Kriging, a hybrid artificial neural network (ANN)-Kriging model, and the bidirectional long short term memory (bi-LSTM) neural network,
which can model the data with spatial correlation or a sequential relationship. The results confirm that the condition indicator values can be
estimated with reasonably low levels of error.DOI: 10.1061/(ASCE)IS.1943-555X.0000726. This work is made available under the terms of
the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Kriging model; bidirectional long short term memory neural network; artificial neural network-Kriging model;
Insufficient or missing data.

Introduction

Modern societies depend on well-functioning transportation infra-
structure. As infrastructure assets continually deteriorate, decision-
makers have to be able to accurately predict their deterioration
speed to determine the optimal maintenance programs. For this
purpose, they continually inspect the condition of the assets in
a network using the values of condition indicators. Consequently,
the accuracy of deterioration prediction and the resulting interven-
tion decisions depends on the quality of the collected data, which
are usually stored in the form of geographical information system
(GIS) indexed data. However, although technology advances have
facilitated the frequent and accurate monitoring of assets and
storage of the related results, in practice, real-world data is not
always suitable for future predictions, since it often does not exist
in sufficient quantity, is missing information, or contains faulty
entries.

This problem can happen for three major reasons:
1. Errors during the inspection campaigns: for instance, the value

of a condition indicator for one segment is not measured owing
to malfunction in equipment, sensors, etc., or is incorrectly
entered and saved in the repository (Lethanh et al. 2016).

2. Poor planning or coordination in data storage: for example, us-
ing several independent sets of GIS indexed data or dividing
roads/rail tracks into different segments in consecutive years.

3. When maintenance is being done on a road/rail segment dur-
ing an inspection campaign, condition data are generally not
collected on that segment.
Regardless of the reason behind missing the condition indicator

data, it is desirable to be able to estimate these values and create a
complete dataset. For example, when digital tools are used to pre-
dict the evolution of the condition of all assets over time, it is im-
perative to have a complete dataset of the condition of the road/rail
segments at t ¼ 0. If the data are missing because of maintenance
activities being carried out on that road/rail segment, the condition
state of that segment would be restored to the target state according
to the maintenance strategy. However, if the information is missing
for one of the other two reasons, appropriate models should be used
to impute this missing data.

Consequently, when facing missing data, first one should check
the available intervention reports during that year to determine
if the road/rail segments with missing condition indicator data have
undergone some maintenance activities. This may also be verified if
sufficient data are available regarding the historical condition state
of the assets. If it is determined that an intervention has been
executed on the segments with missing data, then the condition
state of the segments would be adjusted either based on the main-
tenance strategy or to the best state to account for the new state of
the segments after the interventions.

In case it is confirmed that no intervention has been executed
on the segments, or there is no information available to make a

1Postdoctoral Fellow, Institute of Construction and Infrastructure
Management, Eidgenössische Technische Hochschule (ETH) Zurich,
Zurich 8093, Switzerland (corresponding author). ORCID: https://orcid
.org/0000-0001-9860-5523. Email: moghtadernejad@ibi.baug.ethz.ch

2Graduate Student, Division of Transport Planning, Kungliga Tekniska
högskolan (KTH) Royal Institute of Technology, Stockholm 114 28,
Sweden. Email: yuchuanj@kth.se

3Professor, Institute of Construction and Infrastructure Management,
Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8093,
Switzerland. ORCID: https://orcid.org/0000-0002-4932-5901. Email: adey@
ibi.baug.ethz.ch

Note. This manuscript was submitted on October 11, 2021; approved on
August 4, 2022; published online on October 20, 2022. Discussion period
open until March 20, 2023; separate discussions must be submitted for in-
dividual papers. This paper is part of the Journal of Infrastructure Sys-
tems, © ASCE, ISSN 1076-0342.

© ASCE 04022041-1 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2023, 29(1): 04022041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
T

H
 Z

ue
ri

ch
 -

 E
T

H
-B

ib
lio

th
ek

 o
n 

11
/0

9/
22

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000726
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9860-5523
https://orcid.org/0000-0001-9860-5523
mailto:moghtadernejad@ibi.baug.ethz.ch
mailto:yuchuanj@kth.se
https://orcid.org/0000-0002-4932-5901
mailto:adey@ibi.baug.ethz.ch
mailto:adey@ibi.baug.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29IS.1943-555X.0000726&domain=pdf&date_stamp=2022-10-20


determination, to be conservative, it may be assumed that the seg-
ments have not undergone maintenance activities, and appropriate
models should be used to estimate the missing condition indicator
values.

There are two general approaches to deal with missing data.
The first approach is possible in the presence of information on
the value of missing data from previous inspection campaigns,
where behavioral models are used to extrapolate the past data
(Anastasopoulos and Mannering 2015; Chu and Durango-Cohen
2007; Nakat and Madanat 2008). This approach has been the main
focus of researchers in the past in managing transportation infra-
structure. For example, Ben-Akiva et al. (1993) and Ben-Akiva
and Ramaswamy (1993) predicted the deterioration of infrastruc-
ture assets using a statistical approach when panel data sets were
incomplete. Chu and Durango-Cohen (2008) suggested using
the auto-regressive integrated moving average (ARIMA) model
and a Kalman filter to deal with missing data related to pavement
condition indicators. Other researchers (Hong and Prozzi 2006;
Kobayashi et al. 2012; Lethanh et al. 2015), estimated the param-
eters of predictive models using Markov models in the absence of
complete data sets.

The second approach is to use techniques to interpolate the
data using the values that have been recorded for the nearby points.
This technique is useful when dealing with rail and road data and is
based on the idea that because road/rail segments are longitudinally
connected if the segments are sufficiently close, the related values
of condition indicators will be spatially correlated. For example,
to find the value of a condition indicator for a road segment, a
weighted mean of the values of the two nearest road segments can
be used, where the weights are negatively correlated with the dis-
tance of the segments to the target segment (Al-Zou’bi et al. 2015).
Research on these approaches is not abundant, however. Notable
work in this area includes that of Farhan and Fwa (2013, 2014,
2015), who used a linear regression model with a stochastic error
term to estimate the missing information using temporally corre-
lated data. Sabillon-Orellana (2021) studied the process of data im-
putation for several popular models including linear interpolation,
moving average models (simple, exponential, and ARIMA), regres-
sion models (mean, deterministic, and stochastic), and spline inter-
polation to determine the best model for pavement texture data
imputation in terms of accuracy and time efficiency. According
to the results, linear interpolation provided the best results, fol-
lowed by moving average models. However, the results by spline
interpolation and regression models were not as satisfactory as the
other models.

Al-Zou’bi et al. (2015) categorized the techniques to estimate
the missing pavement condition indicators into two groups,
namely model-based and model-free techniques. The model-
based techniques, as the name suggests, require a mathematical
model to estimate the missing data. This means that a time- or
parameter-dependent function should be initially defined to use
these techniques, such as the work done by Paterson (1986)
and Stampley et al. (1995). Model-free techniques rely solely
on interpolation techniques such as the work done by Kestler et al.
(1994), who investigated the spatial dependency of falling weight
deflectometer test values at various distances on a road segment
using geostatistical analysis. In another study by Lethanh et al.
(2016), a univariate Kriging model was used to predict the miss-
ing values of road segment condition indicators based on their
spatial correlation.

Despite the merits of the available literature in estimating the
values of missing condition indicator data for transportation infra-
structure, some improvements can be made in the exploitation of
the spatial correlation of data points. For example, although using a

univariate Kriging model has shown relatively high levels of accu-
racy in missing data estimation, research on using the value of other
condition state indicators as assisting information is nonexistent in
dealing with data related to the transportation networks. This may
also be helpful in situations when data on the target condition in-
dicator are insufficient. For this reason, it is interesting to compare
the results of using a multivariate Kriging model (co-Kriging) with
a univariate model. Moreover, the current literature has not com-
pared the efficiency of different linear and nonlinear techniques in
the estimation of spatially correlated data.

In recent years, the application of neural networks in value
prediction and pattern recognition is receiving increasing atten-
tion. Consequently, it is interesting to investigate the efficiency
of combining the Kriging model and an artificial neural network
(ANN) model in the estimation of missing condition indicator val-
ues related to transportation infrastructure. Another possibility
that needs further investigation is using a bidirectional long short-
term memory (bi-LSTM) neural network model, which has
shown great potential in extracting information using the latent
correlation among the target point and its nearby points (Bengio
et al. 1994).

Consequently, this paper advances the current literature by
• Considering the auxiliary variables (values of different condi-

tion indicators) in models to explore their influence on the
estimation of the missing values;

• Proposing a novel hybrid ANN-Kriging model to enhance the
capability of the Kriging-based models in using spatial correla-
tion of condition indicators; and

• Investigating the performance of different models (simple and
complex) in estimating missing data related to infrastructure
assets.
In this investigation, the spatially correlated data from two real-

world case studies are taken to estimate the values of the condition
indicators using four models: univariate Kriging model, co-Kriging
model, ANN-Kriging hybrid model, and bi-LSTM neural network
model. The models are compared, and their merits and limitations
are discussed.

The structure of the rest of the paper is as follows. The “Meth-
odology” section provides the details of different models to esti-
mate the value of missing data. In the next section, the first case
study related to a road network is presented. It includes the data
preparation and processing procedure and the results of estimating
the condition indicator values using the models presented in the
“Methodology” section. The procedure is then repeated for a case
study related to a rail network. The discussion section provides the
overall results and the merits and limitations of the models. Finally,
the conclusions and future research directions are summarized.

Methodology

This section provides a detailed explanation of the models that are
used in this study to estimate the missing condition indicator
values.

Univariate Kriging Model

Kriging is a well-known model that estimates the value of an in-
dicator at a target point using the spatial correlation of the surround-
ing data points. It determines the optimal weights to adjust the
influence of nearby points in estimating the value of the target
point, i.e., it uses a linear combination of the observed values. This
model is widely used in geoscience and was named by the French
mathematician Georges Matheron on the basis of work by Danie G.
Krige (Krige 1951; Lichtenstern 2013; Matheron 1963).

© ASCE 04022041-2 J. Infrastruct. Syst.
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Bennett et al. (1984) reviewed several methods for estimating
the missing information in spatial statistics and concluded that
Kriging models were preferable. Lethanh et al. (2016) implemented
univariate Kriging to estimate the missing data related to pavement
condition indicators using the spatial correlation between the data
points. Shtiliyanova et al. (2017) used a Kriging-based interpola-
tion method to fill data gaps in the temporal dimension of air tem-
peratures. The study suggested that the Kriging model could
successfully extract the information in time-series data, in addition
to geographical spatial data. Yang et al. (2018) proposed a spatio-
temporal Kriging-based data estimation approach that estimated the
missing data from multiple sensors including Bluetooth and remote
traffic microwave sensors. These studies all suggested that they
could estimate the missing data with a relatively high level of
accuracy.

Univariate Kriging models use n observation attributes,
z1; z2; : : : ; zn, and their spatial coordinates, ðx1; y1Þ; ðx2; y2Þ; : : : ;
ðxn; ynÞ, to estimate the attributes z0 at point ðx0; y0Þ. In this model,
it is assumed that the spatial attribute z of an arbitrary point ðx; yÞ in
the space can be represented with the expected attribute of this
point cðx; yÞ and a random error Rðx; yÞ

zðx; yÞ ¼ cðx; yÞ þ Rðx; yÞ ð1Þ

where the expected attribute is represented by a function fkðx; yÞ
and a coefficient ak, such that cðx; yÞ ¼Pm

k¼1 akfkðx; yÞ; and
Rðx; yÞ = random error with a mean equal to 0 and satisfies

Cov½Rðxi; yiÞ;Rðxj; yjÞ� ¼ CðdijÞ

where C = covariance function related to the distance between
point i and j. A commonly used covariance function is indicated
in Eq. (2):

CðdijÞ ¼ expð−ρd2ijÞ ð2Þ

where ρ = scaling coefficient; and dij = Euclidean distance between
ðxi; yiÞ and ðxj; yjÞ. The Kriging model requires the estimated
value ẑ0, which should be the best linear unbiased estimation of
the true value z0. Consequently, the difference between ẑ0 and
z0 should be minimized, and the error is constrained to have a mean
equal to 0. The estimated attribute ẑ0 at point ðx0; y0Þ is shown as
follows:

ẑðx0; y0Þ ¼
Xn
i¼1

wizðxi; yiÞ ¼
Xn
i¼1

wi

"Xm
k¼1

akfkðxi; yiÞ þ Rðxi; yiÞ
#

ð3Þ

From Eqs. (1) and (3), it is inferred that

Xn
i¼1

wi

Xm
k¼1

fkðxi; yiÞ ¼
Xm
k¼1

fkðx0; y0Þ ð4Þ

The minimum estimation of variance is constrained such that

min
λ
Varðẑ0 − z0Þ ¼ min

λ
Var

 Xn
i¼1

wizi − z0

!
ð5Þ

To calculate the optimal λi value, one must convert Eq. (4) into
matrix format. A linear function is used in Eq. (6) for showing the
matrix equation of the univariate Kriging

2
666666666666666664

0 γðd12Þ γðd13Þ γðd1nÞ 1 x1 y1

γðd21Þ 0 γðd23Þ ··· γðd2nÞ 1 x2 y2

γðd31Þ γðd32Þ 0 γðd3nÞ 1 x3 y3

..

. . .
. ..

.

γðdn1Þ γðdn2Þ γðdn3Þ 0 1 xn yn

1 1 1 ··· 1 0 0 0

x1 x2 x3 0 0 0

y1 y2 y3 yn 0 0 0

3
777777777777777775

·

2
666666666666666664

w1

w2

w3

..

.

wn

λ

a1

a2

3
777777777777777775

¼

2
666666666666666664

γðd01Þ
γðd02Þ
γðd03Þ

..

.

γðd0nÞ
1

x0

y0

3
777777777777777775

ð6Þ
where γðdijÞ = semi-variogram model value for distance dij
(see Cressie 1985; Olea 2006; Jian et al. 1996) for more informa-
tion]; dij = distance between point i and j; xi, yi = coordinates of
point i; wi = weight for point i; λ = Lagrange multiplier, which is
used to minimize the estimation error; a1, a2 = coefficients of the
linear expected attributes function; and x0, y0 = coordinates of the
estimated point. When the weights w1;w2; : : : ;wn are calculated,
the values are taken into Eq. (3) to calculate the estimated attribute
value ẑ0.

It is worth mentioning that most Kriging models use the semi-
variogram function instead of the covariance function since γðdÞ ¼
sill − CðdÞ, where the sill = value on the y axis that the semi-
variogram model attains at the range (range is the distance where
the model first flattens out).

Consequently, the steps of the univariate Kriging model are as
follows:
1. Determine the neighbor points (input points) of the target point

(output point);
2. Calculate the distance between all input point pairs and fit the

parameters of the semi-variogram model;
3. Calculate the semi-variogram values among input points and the

semi-variogram values between the target point (output) and all
input points using the fitted model;

4. Calculate the weights [Eq. (6)]; and
5. Calculate the estimated attributed value of the output point

[Eq. (3)].

Co-Kriging Model

Univariate Kriging uses the spatial information of the target data
point and its neighborhood, with respect to one variable. In the real
world, however, there are normally multiple variables (indicators)
that may have correlations. Moreover, in some situations the target
variable has insufficient data and cannot support the estimation
process; hence, variables that have a spatial correlation with the
target variable could be considered to assist the estimation process.
Zarei et al. (2011) claimed that it is necessary to use multivariate
geostatistical models when there are insufficient data related to the
target variable.

Co-Kriging is a multivariate Kriging model that can consider
the influence of auxiliary variables (values of different condition
indicators) to estimate the value of the target point. The application
of co-Kriging has been investigated by several researchers; for
example, Knotters et al. (1995) compared the efficiency of univari-
ate Kriging with co-Kriging and a hybrid Kriging-regression
model, which could consider auxiliary variables, to interpolate
horizon depth with censored observations. Both multivariate mod-
els showed a better performance than univariate Kriging. Yates and
Warrick (1987) used co-Kriging to estimate gravimetric moisture
content with two additional features: namely, the bare soil surface

© ASCE 04022041-3 J. Infrastruct. Syst.
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temperature and the percentage sand content. The results suggest
that using highly correlated auxiliary variables in the co-Kriging
model will significantly improve estimation accuracy, whereas us-
ing poorly correlated auxiliary variables will decrease the perfor-
mance even in comparison with the univariate Kriging model.

The co-Kriging model uses the covariance between two or more
spatially correlated variables within a region. In general, co-Kriging
is used when the investigated indicator variable is sparse, but the
related indicator variables are abundant. The variables used in co-
Kriging should be autocorrelated, and the main variable and assist-
ing variables should be cross-related (Cressie 2015). The matrix
format of a two-variable co-Kriging model can be written as2

66664
GAA GAB 1n 0

GBA GBB 0 1m

1 0
n 0 0 0 0

0 0 1 0
m 0 0

3
77775 −

2
66664
w

η

λ1

λ2

3
77775 ¼

2
66664

γ0A

γ0AB

1

0

3
77775 ð7Þ

where GAA = semi-variogram matrix with shape n × that contains
the values of γAðdÞ calculated from variable A; GAB ¼ G 0

BA is
a cross-variogram matrix (see Cressie 1985; Myers 1982 for more
information) with shape n ×m that contains the values of γABðdÞ
calculated from variables A and B; GBB = semi-variogram matrix
with shapem ×m that contains the values of γBðdÞ calculated from
variable B; 1n and 1m = matrix with all elements equal to 1 with the
shapes n × n and m ×m, respectively; w = column vector with n
weights assigned to variable A; η = column vector with m weights
assigned to variable B; γ0A = column vector with n semi-variogram
values calculated by γAðdÞ, where the distance is from the output
point to all the input points of variable A; γ0AB = column vector
withm cross-variogram values calculated by γABðdÞ, where the dis-
tance is from the output point to all the input points of variable B;
and λ1 and λ2 = column vectors with Lagrange parameter for
variables A and B, respectively.

The estimated attribute ẑ0 at point ðx0; y0Þ for a two-variable
co-Kriging model is as follows:

ẑ0 ¼
Xn
i

wiAi þ
Xm
j

ηjBj ð8Þ

Similar to the univariate Kriging model, the steps of co-Kriging
are as follows:
1. Determine the neighbor points (input points) of the target point

(output point);
2. Calculate the distance between all input point pairs and fit the

parameters of semi-variogram models γAðdÞ and γBðdÞ and
cross-variogram model γABðdÞ;

3. Calculate the semi-variogram values and cross-variogram values
among input points for variables A and B, and calculate the
semi-variogram values and cross-variogram values between out-
put point and all input points for variables A and B using the
fitted model;

4. Calculate the weights based on the co-Kriging formula [Eq. (7)];
and

5. Calculate the estimated attributed value of the output point
[Eq. (8)].

ANN-Kriging

ANNs are analytical models that handle problems whose solutions
are not simply articulated using a mathematical model of how the
output varies with the input. ANN can derive meaning from a com-
plicated data set, which can be very helpful in value prediction and
pattern recognition. Studies suggest that the combination of an
ANN with the Kriging model can improve the capacity for estima-
tion of missing data points. For example, Demyanov et al. (1998)
successfully implemented a two-step algorithm, namely direct neu-
ral network residual Kriging (DNNRK), on climate data. Tapoglou
et al. (2014) combined ANNs, Kriging, and fuzzy logic algorithms
to simulate the distribution of hydraulic head in groundwater using
spatial and temporal attributes. The results suggest that their model
could be successfully implemented in aquifers where geological
characteristics are uncertain. In a recent study, Yasrebi et al. (2020)
compared the accuracy of the ordinary Kriging (OK) model with a
hybrid OK-ANN to estimate elemental distribution based on lith-
ogeochemical data in porphyry deposits. According to the study,
the correlation coefficient between the estimated results and the
raw data was above 84%, which shows the capability of the OK-
ANN technique in the estimation of elemental distribution related
to porphyry deposits using geochemical data.

However, most researchers who have combined ANN and
Kriging did not deeply hybridize the two models; rather they only
stacked them in series, similar to connecting two singular layers. In
this study, however, a deep hybrid ANN-Kriging model is proposed
(Fig. 1) and its application is investigated in the estimation of miss-
ing condition indicators related to road and railway networks.

The proposed hybrid ANN-Kriging model replaces the semi-
variogram fitting in the Kriging with a neural network model that
has great potential for fitting any type of function regardless of
whether it is linear or nonlinear. This model needs two sets of input,
neighborhood points that help in estimating the target point value,
and the basic coordinate and the auxiliary attribute of the target
point. The information from the neighborhood points are converted
to the semi-variogram matrix, and target point information is con-
verted to a semi-variogram value vector. The weight vector related

Fig. 1. ANN-Kriging hybrid model architecture with two auxiliary variables and 10 neighborhoods.

© ASCE 04022041-4 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2023, 29(1): 04022041 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
T

H
 Z

ue
ri

ch
 -

 E
T

H
-B

ib
lio

th
ek

 o
n 

11
/0

9/
22

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



to each neighborhood is calculated based on the results from ANN,
and the final estimated value is calculated by multiplying the
weight vector and the attributes of the neighborhood. When using
multiple auxiliary variables in the ANN-Kriging model, the dimen-
sion of the semi-variogram matrix is the same as that of the co-
Kriging model [Eq. (7)]. However, the 0 and 1 elements in the
semi-variogram matrix in Eq. (7) are ignored in this model, because
they are used in the Kriging and co-Kriging models only to min-
imize the errors.

Bi-LSTM Neural Network

Bi-LSTM is a variant of recurrent neural network (RNN), which
can estimate an unknown value in a sequence by making full
use of its neighborhood. LSTM captures long-time dependencies.
Vanishing or exploding gradient problems may happen in RNNs
when modeling long-time dependencies in sequential data, and
LSTM solves these problems by adding the forget gate, update
gate, and output gate in the recurrent unit. Bi-LSTM is a combi-
nation of a forward LSTM and a backward LSTM and can extract
the information before and after the estimation point in the sequen-
tial data, hence making full use of the neighborhood to estimate the
target point value (Graves et al. 2013).

The model is widely used in areas dealing with sequential data
structures, including speech recognition, text translation, and natu-
ral language processing. For example, Graves et al. (2005) carried
out experiments on the speech corpus with a bi-LSTM network and
compared the performance with unidirectional LSTM and RNN.
The results proved that bidirectional LSTM outperforms on tasks
with sequential structure compared with the other two. Huang et al.
(2015) proposed a bi-LSTM model with a conditional random field
(CRF) layer for sequence tagging and produced state-of-the-art ac-
curacy on this type of task. In a study by Fan et al. (2014), a deep
neural network (DNN) was combined with bi-LSTM to capture the
correlation or co-occurrence information in the speech utterance
sequence. The model outperformed individual DNN and bi-LSTM
and also conventional RNN and LSTM.

The application of bi-LSTM in the estimation of the road/rail
missing data is unprecedented, so it is interesting to test its potential
in capturing sequence characteristics of condition indicators
and finding patterns in the sequences where long roads/rails are
involved.

Fig. 2(a) shows the structure of an LSTM unit and how the cells
are updated in the model. Eqs. (9)–(14) explain the meaning of
notations in the figure

ft ¼ σðWf½ht−1; xt� þ bfÞ ð9Þ

ut ¼ σðWi½ht−1; xt� þ biÞ ð10Þ

ot ¼ σðWo½ht−1; xt� þ boÞ ð11Þ

~ct ¼ tanhðWc½ht−1; xt� þ bcÞ ð12Þ

ct ¼ ft⊙ct−1 þ ut⊙ ~ct ð13Þ

ht ¼ ot⊙ tanhðctÞ ð14Þ
where ft, ut, ot = forget gate, update gate, and output gate, respec-
tively; ~ct = candidate cell state, which is used to update the cell
state; ct = current cell state; ct−1 = previous cell state; ht = current
hidden state; ht−1 = previous hidden cell state; xt = current time step
input; Wf;Wi;Wo;Wc = weighted matrices; bf; bi; bo; bc = bias
terms (all these parameters are trainable); ⊙ = Hadamard product;
σ = sigmoid function; and tanh = hyperbolic tangent function.

The forget gate ft decides the information that is to be dropped
from the previous hidden cell state ht−1 and the current time step
input xt. The update gate ut decides the information that is to be
stored. The candidate cell state ~ct contains new information of the
previous hidden state ht−1 and the current time step input xt.
The updated cell state ct is the sum of the Hadamard product of the
previous cell state ct−1 and the forget gate ft and the Hadamard
product of the candidate cell state ~ct and the update gate ut. The
outputs of the sigmoid function and tanh function are between 0
and 1. They are used to decide the percentage of the input infor-
mation that is to be retained and the percentage of the previous
information that is to be dropped. The updated hidden cell state
ht is the Hadamard product of the output gate ot and the updated
cell state ct. The last hidden cell state is passed to an activation
function to get the final prediction (Bengio et al. 1994; Hochreiter
and Schmidhuber 1997).

Bi-LSTM extracts the previous and later information by
processing the forward and backward directions using two separate
hidden layers and combines the two layers at the corresponding

Fig. 2. Structure of LSTM units: (a) LSTM unit; and (b) bi-LSTM.
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time step to the output layer. Fig. 2(b) shows the structure of

bi-LSTM. In this figure, xt = input sequence; h
→

t = forward hidden

units; h
←

t = backward hidden units; and yt = output sequence. When
calculating the forward hidden layer, bi-LSTM will iterate from
t ¼ 1 to T, and for the backward hidden layer, it will iterate from
t ¼ T to 1. Then, it updates the output layer related to the corre-
sponding time step. Eqs. (15)−(17) illustrate the process

h
→

t ¼ HðW
xh
→xt þW

h
→

h
→h
→

t−1 þ b
h
→Þ ð15Þ

h
←

t ¼ HðW
xh
←xt þW

h
←

h
←h
←

tþ1 þ b
h
←Þ ð16Þ

yt ¼ W
h
→
y
h
→

t þW
h
←
y
h
←

t þ by ð17Þ

where H = hidden layer function, derived from Eqs. (9)−(14);
W

xh
→;W

h
→

h
→;W

xh
←;W

h
←

h
←;W

h
→
y
;W

h
←
y
= weighted matrix related to

each input and hidden unit; and b
h
→; b

h
←; by = bias terms. All these

parameters are trained during the model training process.
Stacking multiple bi-LSTM layers can give a better performance

on the prediction. Assuming the hidden layer functions are the
same for each bi-LSTM layer, using the output from the previous
bi-LSTM layer as the input for the next bi-LSTM layer, one can
build a deep bi-LSTM neural network with n layers as indicated
in Eqs. (18) and (19)

hnt ¼ HðWhn−1hnh
n−1
t þWhnhnhnt−1 þ bnhÞ ð18Þ

yt ¼ WhNyh
N
t þ by ð19Þ

where hnt = hidden vector sequences concatenated by hnt
→

and hnt
←

at each bi-LSTM layer, computed from n ¼ 1 to N and t ¼ 1 to
T iteratively; Whn−1hn ;Whnhn ;WhNyh

N
t = weighted matrix; and bnh;

by = bias terms.
In the following sections, the above models are used in two

separate case studies related to infrastructure networks to estimate
the value of missing condition indicators, and the results are com-
pared. When lacking information on the maintenance activities and
the historical condition state of the assets, in both studies, it is as-
sumed that the missing data related to rail/road segments are not
missing because of maintenance activities being executed on those
segments.

Case Study I: Estimating the Value of Condition
Indicators for Road Segments

This investigation is related to predicting the “surface defect”
values in a road network using the models introduced in “Method-
ology” section. The data used in this study were taken from an in-
spection campaign conducted on a road network in 2009, in which
three road indicators—surface defects and longitudinal and trans-
versal unevenness—were measured. There are 1,290 roads in the
network, and each road is divided into 100-m-long segments. The
surface defects indicator refers to the surface damage without rut
depth. The observations for all indicators were recorded by high-
speed inspection cars, with one value recorded to represent the
average state for each 100-m road segment (Lethanh et al.
2016). The raw collected values were then converted to a continu-
ous value in the range (0, 5), with 0 being the best state. This was
done following the available standards and guidelines, and the
results were stored in an inventory that was used for this study.
The inventory includes information regarding the position (coordi-
nates and the axis distance), the date, and the indicator values

related to inspections for each road segment. Separate columns pro-
vide information on the start and end points of the road segments,
where the difference between the points shows the length of the
segment (100 m). Because the coordinates are one-dimensional,
the estimation results will not be influenced by the choice of the
reference point (start, middle, or end point) as long as the choice
stays consistent. In this study, the start points are used as reference
points for each road segment.

For the univariate Kriging, only the values of the surface defect
in the neighborhood of the target point were considered for the
target value estimation. For the co-Kriging, ANN-Kriging, and
bi-LSTM, two auxiliary variables (longitudinal and transversal un-
evenness) were also used. In imputation of the missing values for
each 100-m segment using the neighboring points, it was assumed
that the traffic loads and surface type were the same on each road in
the network.

The correlation coefficient between surface defects and longi-
tudinal unevenness is 0.159, and the correlation coefficient between
surface defects and transversal unevenness is 0.141. The descriptive
statistics of the variables are shown in Table 1.

Data Processing

In the first step, each road segment was given a unique road ID by
combining two columns that provide information on the road name
and the axis distance. An illustration of the division of a road into
100-m segments and the lanes in both directions of traffic, A and B,
is presented in Fig. 3.

Subsequently, the roads were clustered separately by their
unique ID. This means that only the segment records within a spe-
cific road were used to estimate the value of the condition indicator
for the target segment in that road. The roads that were short and
included a only few segments were removed from the analysis be-
cause they did not provide sufficient information from the neigh-
boring points. In this study, the minimum number of segments was
different for each neighborhood size. Consequently, for neighbor-
hood sizes of 6, 7, 8, 9, and 10, the minimum segments required
were 7, 8, 9, 10, and 11, which resulted in the availability of 736,
619, 551, 491, 426, and 369 roads for the analysis, respectively.

Table 1. Descriptive statistics of the variables

Variables
Data
points Mean

Standard
deviation Min Median Max

Surface defectsa 35,022 1.01 0.46 0 0.8 5
Longitudinal unevenness 35,330 1.52 0.84 0 1.27 5
Transversal unevenness 35,339 0.98 0.92 0 0.75 5
aMain variable.

Fig. 3. Representation of the distance from the road start point
(AxisDist_begin) and the axis distance (SideDist).
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In the next step, to convert the one-directional coordinates into
ðX;YÞ format, the starting point of the road segments was set as X
and the Y value was set as 0, assuming that the road segments
within the same lane (same axis distance) follow a straight line.
Finally, the data points were split into training and test sets with
80% and 20% share of the total data points, respectively. The target
point value was estimated, and the estimation error was calculated
in a rolling process. For example, with a neighborhood size of 4, the
first 5 consecutive road segments were taken, the middle point
(segment) was removed, the remaining points were used to estimate
the value of the middle point, and the estimation error for the
middle point was calculated. Then the first road segment was put
aside, the next five consecutive road segments were taken, and
the process was repeated until the last five consecutive road seg-
ments were reached. Then the estimation errors were averaged
to represent the estimation error for the specific road.

All models were coded in Python from scratch. The implemen-
tation of the univariate Kriging and co-Kriging models followed
guidelines from Spatialanalyst.net (2020a, b). Tensorflow 2.5.0
and Pytorch were used to implement bi-LSTM and ANN-Kriging,
respectively.

In constructing the bi-LSTM model, the number of input neu-
rons was based on the number of target point neighbors. In this
study, two hidden layers were used, with eight and 16 hidden

neurons, respectively. The single output neuron provided the final
prediction of the target value for the road segment.

Results

Figs. 4–6 illustrate the mean squared error (MSE) of the test set in
estimating the value of surface defects for road segments, using four
models: namely, univariate Kriging, co-Kriging, ANN-Kriging, and
bi-LSTM. In univariate Kriging, only the surface defect values for
the neighboring points were considered; thus theMSE values for the
univariate Kriging are the same in all three figures.

In Fig. 4, the values related to the longitudinal unevenness of
the target segment, and the neighboring points are also considered
in the prediction process for co-Kriging, bi-LSTM, and ANN-
Kriging models. As can be observed, the MSE for the co-Kriging
model increases when the values of this condition indicator are con-
sidered. The reason is that surface defects and longitudinal uneven-
ness of the road segments do not have a strong linear correlation.
Bi-LSTM shows a better performance than the univariate and co-
Kriging models, although as the number of the neighborhood
points increases, the performance of the bi-LSTM regresses. The
reason behind this might be related to the insufficiency of the data
related to roads with a large number of segments to train the bi-
LSTM model. Moreover, the efficiency of this model is more

Fig. 4. Mean squared error for estimating the surface defects, using longitudinal unevenness as an auxiliary variable.

Fig. 5. Mean squared error for estimating the surface defects, using transversal unevenness as an auxiliary variable.
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significant in high-dimensional datasets, but the road data used
in this example contain only three features. The ANN-Kriging
model shows significant improvement over univariate Kriging
(around 80%), and its performance improves as the number of
neighborhood points increases.

The situation is the same when transversal unevenness is con-
sidered as an auxiliary variable (Fig. 5). The MSE of the co-Kriging
is higher than the MSE of the univariate Kriging, meaning that the
correlation between the surface defects and transversal unevenness
is not strong enough to improve the estimation accuracy in com-
parison to univariate Kriging.

Fig. 6 illustrates the average MSE for the scenario in which both
the longitudinal and transversal unevenness values are used as aux-
iliary variables to estimate the value of the surface defects in road
segments. The results suggest that considering both of these vari-
ables improves the performance ANN-Kriging model. For the bi-
LSTM, by comparing the results in Fig. 6 with the second scenario
(Fig. 5), whose MSE values are generally lower than the first sce-
nario (Fig. 4), we see an improvement in the results with 5, 6, 7, and
10 neighboring points and a decrease in performance with 8 and 9
neighborhoods. The performance of the co-Kriging model de-
creases even more than when single auxiliary variables are used
(regardless of the neighborhood size), which confirms that using
the values of poorly correlated variables decreases the prediction
performance of co-Kriging models.

Case Study II: Estimating the Value of Condition
Indicators for Railway Track Segments

This case study is related to predicting the condition state of the
track segments in a rail network. An inventory of the network assets
including 23,140 tracks was created in the year 2020, where each
track has several segments. The data contain information related to
track condition states, track material, type, and life cycle informa-
tion (auxiliary variables). The auxiliary variables include renewal,
tamping, grinding, rail replacement, and “other” maintenance re-
quirements, in addition to delay and safety risks. The condition
state of each segment is attributed based on a weighted average
of these auxiliary variables that include the lifecycle expenditures
on different interventions and the related consequences. The range
value of the condition indicators ranges is (1, 5), where 1 represents
the best state and 5 represents the worst. These converted values
were then recorded in an inventory that was used in this study.

In the inventory, the tracks have a unique ID along with the in-
formation related to each particular segment of the track. The ID
and coordinate information of the segments are stored in the col-
umn “Nr./ID” with the format “ID, start point—end point.” The
track segments do not necessarily have the same length. The coor-
dinate of the first segments in tracks start from 0 to the length of the
segment, and the next segment follows that value. For example, the
segment with Nr./ID “110359, 0–13.068” belongs to the track with
the ID 110359; it is the first segment of the track, as it starts from 0,
and it has a length of 13.063 meters, as the end point is 13.068. In
this study, the start points are used as reference points for each track
segment, although as the coordinates are one-dimensional, the es-
timation results are not influenced by the choice of the reference
point as long as it is consistent.

The goal of this study is to compare the efficiency of the pre-
viously introduced models in estimating the value of the condition
states for the track segments. For univariate Kriging, only the val-
ues of condition state indicators in the neighborhood of the target
point are considered; for co-Kriging, ANN-Kriging, and BiLSTM,
the auxiliary variables are also used. The descriptive statistics of the
variables are shown in Table 2.

Data Processing

The tracks were initially clustered separately by their unique track
IDs. This means that only the segment records within a specific
track were used to estimate the value of the condition indicator
for the target segment in that track. The tracks that were short
and included only a few segments were removed from the analysis

Fig. 6. Mean squared error for estimating the surface defects, using longitudinal and transversal unevenness as auxiliary variables.

Table 2. Descriptive statistics of the variables

Variables
Data
points Mean

Standard
deviation Min Median Max

Condition statea 736,249 3.18 1.26 1.2 3.19 5
Renewal requirements 736,249 3.02 1.15 1.06 3.00 5
Tamping requirements 736,249 1.98 1.17 1 1.06 5
Grinding requirements 736,249 2.10 1.32 1 1.58 5
Rail replacement 248,368 3.06 1.90 1 3.37 5
Other maintenance
requirements

736,249 3.88 1.57 1 5.00 5

Delay risks 593,242 2.34 1.75 1 1.00 5
Safety risks 736,249 2.83 1.87 1 1.99 5
aMain variable.
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because they did not provide sufficient information from the neigh-
boring points. Excluding those tracks also eliminated the bias for
comparing the models. The maximum number of neighborhoods to
consider was set as 10; therefore each track needed to have at least
11 records. In total, of 23,140 tracks, 9,031 had more than 11
records and were used in the analysis.

In the next step, the Nr./ID column was split into the track ID
and the track coordinate. The coordinate of the track was normal-
ized to reduce the measurement error when calculating the distance
between the points. Finally, the data points were split into training
and test sets, with 80% and 20% share of the total data points, re-
spectively; the target point value was estimated; and the estimation
error was calculated in a rolling process (as in Case Study I).

In constructing the bi-LSTM model, the number of input neu-
rons was based on the number of target point neighbors. In this
study, two hidden layers were used, with eight and 16 hidden
neurons respectively.

In this study, the number of auxiliary variables used in the co-
Kriging, bi-LSTM, and ANN-Kriging models was decided for each
track separately, such that for each track, the variable combination
with the best performance was selected to calculate the average
MSE. Before testing different variable combinations, the spatial au-
tocorrelation (Moran’s I) and the Pearson correlation coefficient
were calculated to check the sufficiency of the variables. The var-
iables that did not satisfy the requirements (Moran’s I values within
the 95% confidence interval and Pearson coefficients larger than
0.6) were ignored.

Results

The results of the MSE for the test set for each model using differ-
ent neighborhood numbers are shown in Fig. 7. The results suggest
that ANN-Kriging, bi-LSTM, and co-Kriging all outperform uni-
variate Kriging, since the main and auxiliary variables have strong
enough correlations and the models can use the additional informa-
tion from the auxiliary variables. As in the previous case study, bi-
LSTM performs better than co-Kriging because the structure of the
neural network has a stronger ability to extract the potential corre-
lation between the estimation point and its neighborhood, and
ANN-Kriging shows the highest accuracy among the four models.

Regarding the number of neighbors, a trend appears for co-
Kriging and bi-LSTM models where the estimation accuracy

improves with increasing the neighborhood size, while this is
reversed for univariate and ANN-Kriging models.

Discussion

By observing the results from both case studies, the following can
be concluded:
• When using the co-Kriging model, one has to pay attention to

the correlation between the target indicator and the auxiliary
variables, since a low correlation can decrease performance
and make the predictions worse than in a univariate model.
The changes related to the performance of co-Kriging with re-
spect to neighborhood size are case dependent and do not follow
a specific trend.

• ANN-Kriging significantly improves the performance of uni-
variate Kriging, even in situations where the condition indica-
tors are not highly correlated. It seems that the ability of the
ANN model to fit the spatial correlation among neighborhood
points and the target point is more efficient than that of the semi-
variogram model in Kriging.

• In comparison to Kriging models, bi-LSTM can better extract
the hidden relationship between the target point and its neigh-
borhood. The characteristic of bi-LSTM that can deal with
sequential data makes it a suitable model for estimating the
missing indicator values related to the road and track segments.
However, it must be noted that sufficient training data must
be available to exploit the model’s true potential. Moreover,
the efficiency of deep learning models such as bi-LSTM is
more significant in high-dimensional datasets; hence the
second example could better showcase the potential of this
model in capturing sequence characteristics of condition
indicators and finding patterns in the data where long tracks
were involved.

• There is an interesting trend in the changes related to the per-
formance of ANN-Kriging and univariate Kriging with respect
to neighborhood size. If one model’s performance is improved
by increasing the neighborhood size, the other’s performance
will increase and vice versa. This makes sense, of course, since
the hybrid model is a combination of the traditional geostat-
istical model and the NN model. Hence, they share the same
core, although the hybrid model performs remarkably better.

Fig. 7. Mean squared error for estimating the condition state of the track segments for different neighborhood numbers.
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• In both case studies, for simplicity, it was assumed that one seg-
ment within each neighborhood contained missing information,
and a rolling process method, as explained earlier, was used to
estimate the average imputation errors for each road/rail seg-
ment. However, it must be noted that missing data scenarios
can be more complex, and there can be situations where two
or more consecutive segments are missing. Although all four
models can deal with scenarios with multiple missing data
points, the accuracy of the results might be affected depending
on the availability of neighborhood information to impute the
missing data.

Conclusions

In this paper, four different models, univariate Kriging, co-Kriging,
ANN-Kriging, and bi-LSTM, were introduced to investigate the
value of missing condition indicator data in transportation infra-
structure, where the data loss is not due to the execution of main-
tenance activities. The univariate Kriging model exploits the spatial
correlation between data points, while co-Kriging explores both the
spatial correlation and the influence of the correlated auxiliary var-
iables. ANN-Kriging is used to enhance the capability of extracting
the spatial correlation among data points while investigating the
influence of correlated auxiliary variables. Bi-LSTM uses a sequen-
tial data storage structure to extract the potential correlation among
the data points and the correlated auxiliary variables.

The efficiency of these models was investigated in two case
studies. The first case study was related to a road network where
the goal was to estimate the value of surface defects at a target
point, using the values of its neighborhood and two auxiliary var-
iables, longitudinal and transversal unevenness. The goal of the
second case study was to estimate the condition state of the rail
segments that were attributed based on their lifecycle expenditure,
using the value of the neighboring points and seven other auxiliary
variables. The results of both studies suggested that all models
could estimate the value of target points with reasonably high levels
of accuracy. However, the performance of the ANN-Kriging model
was significantly better than the other three models. Bi-LSTM out-
performed the univariate and co-Kriging models, while the perfor-
mance of the co-Kriging model relied on the level of correlation
among the auxiliary variables and the target indicator. As expected,
when this correlation was weak, using the auxiliary variables did
not help the estimation accuracy and even decreased the perfor-
mance in comparison to a univariate model.

The introduced models can be used in practice and help infra-
structure managers in charge of monitoring the condition states of
the road and rail networks to overcome issues related to real-world
data, such as missing data or faulty entries. This will reduce the
prospective costs incurred by having to remeasure the indicator val-
ues at that position. The models are fairly easy to implement and
require only the asset coordinates and the related condition indica-
tor values as input. These models will help in having a complete
and relatively accurate data set and improve the decisions related to
the optimal time to execute corrective interventions on the network
assets.

These models can be used to estimate the missing condition in-
dicator values when it can be confirmed that the missing data is not
related to the execution of maintenance activities on those seg-
ments, or as a conservative decision when there is no information
available to determine that.

A future study should consider maintenance history and com-
bine the temporal and spatial information to improve the estimation

accuracy. Of course, this is possible only when the temporal data
and the maintenance records are available.

Another potential study would be implementing the bi-LSTM
model in a case study with more auxiliary variables, where the geo-
spatial correlations of the assets are available (rather than just
one-dimensional coordinates) and comparing the results with the
proposed ANN-Kriging model, to see if a well-trained bi-LSTM
can outperform the ANN-Kriging model.
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