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Abstract

This thesis investigates some geometric properties of representation schemes
of associative unital algebras, broadly speaking schemes whose geometric
points correspond to equivalence classes of finite-dimensional representa-
tions of the chosen algebra. These schemes provide insights into “noncom-
mutative geometry”, in that they reflect many structures or properties of the
algebra to analogous structures or properties of the representation schemes
(‘Kontsevich-Rosenberg principle’), e.g. associated vector bundles, symplec-
tic and Poisson structures. However, the translation of noncommutative
structures on algebras into commutative structures of their representation
spaces seems to work correctly only when the algebras are smooth, a prob-
lem which seems to be related with the nonexactness of the representation
functor, and consequently can be approached by introducing a refined de-
rived version of the functor, using techniques from homological algebra
(enrichment to differential graded objects and exploitation of their model
structures). The thesis consists of two papers:

• Derived representation schemes and Nakajima quiver varieties.
The first aspect to be explored is the relationship between derived
representation schemes and symplectic resolutions of a more classical
nature (GIT quotients) in the case of Nakajima quiver varieties, which
are representation spaces for framed, preprojective algebras of quivers.
An explicit model for the derived representation scheme is exhibited,
via a minimal cofibrant resolution of the afore-mentioned preprojec-
tive algebra. The main conceptual result of the paper is a necessary
and sufficient condition for the two resolutions to be equivalent. The
equivalence of the two resolutions yields several interesting results, e.g.
the cohomologies of tautological sheaves on Nakajima varieties can be
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computed as the isotypical components of the derived representation
schemes. The push-forward in K-theory towards a point of the above-
mentioned equalities has as a very simple corollary some integral
formulas which have appeared numerous times in the mathematical
(Jeffrey-Kirwan residue formulas) and physical (Nekrasov partition
function, the instanton part of the Seiberg-Witten prepotential for N
= 2 supersymmetric 4-dimensional and 5-dimensional quiver gauge
theories) literature in recent years.

• Noncommutative derived Poisson reduction.
The paper deals with aspects of noncommutative Poisson and Hamil-
tonian geometry which come play a role in the framework of Nakajima
quiver varieties. More specifically, a procedure of ‘noncommutative de-
rived Poisson reduction’ is formalized, in the form of a functor which,
via the representation functor, yields commutative derived Poisson
reduction. The final result is a noncommutative version of the quotient
stack of derived representation schemes under their natural action of
the associated general linear groups. Some classes of examples are
explicitly explained, in particular one of them seems to give more
insight into some combinatorial conjectures involving the scheme of
commuting matrices of size n×n and similar, providing a simplified
proof of a conjecture for the case n = 2.



iv

Riassunto

Questa tesi investiga alcune proprietà geometriche degli schemi di rappre-
sentazioni di algebre associative unitali, in linea generale degli schemi i cui
punti geometrici corrispondono a classi di equivalenza di rappresentazioni
finito-dimensionali dell’algebra scelta. Questi schemi forniscono intuizioni
sulla "geometria noncommutativa", in quanto riflettono molte strutture o
proprietà dell’algebra a strutture o proprietà analoghe degli schemi di rap-
presentazione (‘principio di Kontsevich-Rosenberg’), per esempio fibrati
vettoriali associati, strutture di Poisson e simplettiche. Tuttavia la traduzione
di strutture noncommutative su algebre in strutture commutative dei loro
spazi di rappresentazione sembra funzionare correttamente soltanto nel
caso in cui le algebre sono lisce, un problema questo che sembra essere
relazionato con la non esattezza del funtore di rappresentazione, e di con-
seguenza può essere risolto con l’introduzione di una versione più raffinata
del funtore, utilizzando tecniche di algebra omologica (arricchimento ad
oggetti differenziali graduati e sfruttamento delle loro strutture modello).
La tesi consiste di due articoli:

• Derived representation schemes and Nakajima quiver varieties.
Il primo aspetto ad essere esplorato è la relazione tra schemi di rapp-
resentazioni derivati e risoluzioni simplettiche di natura più classica
(quozienti GIT) nel caso delle varietà dei quiver di Nakajima, che
sono spazi di rappresentazioni di algebre preproiettive con ‘incorni-
ciatura’ di quiver. Viene esibito un modello esplicito per lo schema di
rappresentazione derivato, tramite una risoluzione cofibrante minima
dell’algebra preproiettiva con framing del quiver. Il principale risul-
tato concettuale dell’articolo è una condizione necessaria e sufficiente
affinché le due risoluzioni siano equivalenti. L’equivalenza delle due
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risoluzioni produce numerosi risultati interessanti, per esempio le
coomologie dei fasci tautologici sulle varietà di Nakajima possono
essere calcolati come le componenti isotipiche degli schemi di rappre-
sentazione derivati. Il push-forward in K-teoria verso il punto delle
eguaglianze di cui sopra ha come semplice corollario alcune formule
integrali che sono apparse numerose volte nella letteratura matematica
(formule dei residui di Jeffrey-Kirwan) e fisica (funzione di partizione
di Nekrasov, la parte di istantonni del prepotenziale di Seiberg-Witten
per teorie di dimensioni 4 e 5 supersimmetriche di gauge di quiver
per N = 2) degli ultimi anni.

• Noncommutative derived Poisson reduction.
L’articolo tratta di aspetti di geometria noncommutativa di Poisson e
Hamiltoniana che giocano un ruolo nel quadro delle varietà di quiver
di Nakajima. Più precisamente viene formalizzata una procedura di
‘riduzione derivata noncommutativa di Poisson’, nella forma di un fun-
tore che, tramite il funtore di rappresentazione, produce la riduzione
derivata commutativa di Poisson. Il risultato finale è una versione
noncommutativa di stack quoziente degli schemi di rappresentazione
derivati sotto la loro naturale azione dei gruppi generali lineari as-
sociati. Alcune classi di esempi vengono esplicitamente spiegate, in
particolare una di loro sembra dare maggiore comprensione di alcune
congetture combinatoriche che riguardano schemi di matrici n×n che
commutano e simili, fornendo una dimostrazione semplificata di una
congettura per il caso n = 2.
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Chapter 1 1

Chapter 1

Introduction

1.1 Few words on notation and some general con-
ventions

The word that appears most frequently in this thesis is ‘algebra’, so it seems
appropriate to start there. By algebra we always mean an associative and
unitary algebra, i.e. an object A of a monoidal category (V,⊗, 1) (in most
cases of our interest V = Vectk is the category of vector spaces over a field
k) endowed with morphisms:

m : A⊗A→ A, e : 1→ A (1.1.1)

which satisfy the properties of associativity and unity:{
m ◦ (m⊗ idA) = m ◦ (idA ⊗m) ,
m ◦ (e⊗ idA) = idA = m ◦ (idA ⊗ e) ,

(1.1.2)

having implicitly used the associator and unitors in the above equations.
Categories are usually written in the mathematical monospace font, for

example Sets, Grp, Ab are the categories of sets, groups and abelian groups,
while generic categories are written in the calligraphic font, for example
A,B,C, and so on. For a category A and two objects X, Y ∈ A we denote by
either HomA(X, Y) or A(X, Y) the collection of morphisms between them,
and such collection is usually a set as most of our categories are assumed to
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be locally small. An adjunction between functors F : A→ B and G : B→ A,
with F left adjoint to G, is denoted by F a G.

1.2 Geometry and algebra

There is a series of results of the type of (anti)equivalence of categories that
we can say falls under the generic name of duality between geometry and
algebra. It is difficult to argue that instances of this duality are among the
most profound results in the history of mathematics, up to the present day.

The duality often associates to a geometric space some algebra of func-
tions on it, and conversely constructs a geometric space whose points
correspond to ideals or subalgebraic structures of some kind. Exactly what
kind of functions are considered depends on the geometric context, but
typically, the collection of functions inherits algebraic structure from the
algebraic structure of the object in which the functions have values, via
pointwise defined operations.

More specifically, but still informally: there is a category of geometric
objects G and a category of algebraic objects of some kind A, with a specific
object A that lives1 both in G and in A. The representable presheaf G(−, A) :
Gop → Sets can in fact, due to the algebraic structure on A, be lifted to a
functor G(−, A) : Gop → A. For a simple reason of conventions we consider
the opposite functor:

G(−, A)op : G→ Aop , (1.2.1)

which is often the duality between geometry and algebra we are looking for.
It follows that if we consider a category A of algebraic structures whose

product is commutative, we obtain commutative algebraic structures on the
set of functions, and indeed this is the form in which most classical dualities
between geometry and algebra take shape. A few examples include:

• G = TopHaus, cpt is the category of Hausdorff, compact topological
spaces, A = C∗-Algcomm

C
is the category of commutative, unital C*-

1One precise way of saying this is that both categories G and A have a forgetful functor
towards Sets and that A really is a set with specific lifts to both categories. Another
possibility is that A is an algebra of type A in the category G (provided that G has the
necessary categorical properties needed to define the axiom of algebras of type A in it).
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algebras over the complex numbers. The equivalence is given by
Top(−, C)op and goes by the name of Gelfand duality ([28]).

• G = Mfld is the category of smooth manifolds and A = CommAlgR

is the category of commutative algebras over the real numbers. The
functor Mfld(−, R)op is fully faithful by Milnor’s exercise ([48, Problem
1-C], proof in [39, Corollary 35.9]), hence it defines an equivalence of
categories once we restrict it to land in its essential image.

• G = Aff is the category of affine schemes, as a full subcategory of the
category of locally ringed topological spaces, and A = CommRing is
the category of commutative rings. The equivalence of categories is
realised by the global sections functor Γop ∼= Aff(−, A1

Z)
op, and by the

Zariski spectrum in the other direction.
• ([45], [35], [3]) G = Topsober is the category of sober topological spaces,

and A = Frm is the category of frames (distributive lattices with infinite
joins, satisfying the infinite distributive law: x∧ (∨iyi) = ∨i(x∧ yi)).
We denote by S = {0, 1} the Sierpiński space, the topological space
with only proper nonempty open subset {1}, and also a frame with
only nontrivial relation 0 6 1. The functor Top(−,S)op : Topsober →
Locale := Frmop is the functor that sends a topological space to the
locale corresponding to the frame of open subsets (a continuous func-
tion f : X→ S is uniquely defined by the open f−1(1)), and it is fully
faithful. Hence it gives an equivalence of categories once we restrict
it to land in its essential image (the category of ‘locales with enough
points’).

The last example is perhaps the least known, however it is in some sense the
most fundamental, and it also provides an explanation as to why algebraic
structures corresponding to ‘classical’ geometric spaces are commutative.
In fact, if by ‘classical’ geometric spaces we mean topological spaces plus
additional structure, then we find out that commutativity corresponds to the
elementary property that the intersection of open subsets is commutative:
U∩ V = V ∩U (intersection is the product in the frame of open subsets).

The skeptical reader might object that this case has little to do with the
other geometric examples discussed above, and might ask, for example, how
is this last example connected to classical algebraic geometry? It is a fact that
every affine scheme is a sober topological space, hence the spectrum Spec(R)
of a ring R is uniquely determined (modulo isomorphism) as a topological
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space by the corresponding frame of opens. There is a construction, due to
A. Joyal ([36]), that exploits this idea and presents the spectrum of a ring as
a frame, precisely as the frame generated by the symbols D(f) with f ∈ R,
and relations:

D(0) = 0, D(1) = 1, D(f+ g) 6 D(f)∨D(g), D(fg) = D(f)∧D(g) .
(1.2.2)

One should in some sense interpret D(f) as the fundamental open in the
Zariski topology defined by {p ∈ Spec(R) | f /∈ p}. The last equation shows
why any attempt of producing a similar construction out of an arbitrary
non(-necessarily)-commutative ring will fail. In fact, even if the product of
two elements is not commutative, this would not be detectable at the level
of fundamental opens:

D(fg) = D(f)∧D(g) = D(g)∧D(f) = D(gf) , (1.2.3)

as a result, making topology an inadequate tool of study of such structures.

1.3 Noncommutative geometry and representation
schemes

In the last section we learned that if we want to consider geometric spaces
corresponding to noncommutative algebraic structures of some kind we
probably need to forget about classical topology. Noncommutative geom-
etry is the study of categories of supposedly noncommutative geometric
spaces, in the sense that they have some duality with categories of algebraic
objects that are not necessarily commutative. The above folkloric definition
of noncommutative geometry can in fact be specialised to definitions of
appropriate categories of noncommutative spaces.

For example one can define a category of noncommutative Hausdorff
compact topological spaces as NTopHaus,cpt := C∗-Algop

C
, the opposite category

of the category of all unital C*-algebras over the complex numbers. The case
of most interest for us is affine algebraic geometry, so we give the definition
of noncommutative affine schemes (and noncommutative affine schemes
over a field k) as:

NAff := Ringop (NAffk := Algopk ) , (1.3.1)
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the opposite category of rings (and algebras over k).
Now that we have at least a reasonable formal definition of basic objects

of noncommutative algebraic geometry we are tempted to try and give other
meaningful reasonable geometric definitions on them. For example, what
should a vector bundle on X ∈ NAffk be? What about differential forms? Or
a Poisson/symplectic structure? To answer these questions it is opportune
to introduce the main objects of study of the thesis: representation schemes.

Let us first look back at the geometry of the spectrum of a commutative
algebra R ∈ CommAlgk. The k-points of the affine scheme Spec(R) are:

Affk(Spec(k), Spec(R)) ∼= CommAlgk(R,k) , (1.3.2)

homomorphisms of k-algebras R → k, also known as 1-dimensional rep-
resentations of the algebra R. When R is replaced by an arbitrary alge-
bra A ∈ Algk with a non-necessarily commutative product, it is not rea-
sonable to expect that the geometry of whatever its associated space is
X = "Specnc(A)" ∈ NAffk, is determined by the same set of 1-dimensional
representations. In fact all these representations factor through the ideal of
commutators of the algebra, and we would simply obtain the spectrum of
the abelianisation Aab ∈ CommAlgk. We have a better hope of understanding
the noncommutative geometry of A by considering the spaces of all finite
dimensional representations, for each n > 1:

Repn(A) := "Algk(A, Matn×n(k))" , (1.3.3)

because Matn×n(k) is a noncommutative algebra for n > 1.
The reason why we write the right-hand side of (1.3.3) in quotation

marks is that really this set has the structure of an affine scheme over k,
which is what we want to denote by the symbol Repn(A) ∈ Affk. Its ring of
functions is given by the representation functor

(−)n = ORepn : Algk → CommAlgk , (1.3.4)

which is left adjoint to the matrix functor Matn×n(−) : CommAlgk → Algk.
The idea that the noncommutative geometry of A is encoded in the family
of representation schemes was formalised by M. Kontsevich and A. Rosen-
berg, who suggested the following informal definition of noncommutative
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geometric structures ([41]):

MetaDefinition. ("Kontsevich-Rosenberg principle") Any noncommuta-
tive geometric structure on A should induce the corresponding commutative
geometric analogue on each representation scheme Repn(A), for all n > 1.

Let us show a possible instance of the above MetaDefinition. The cate-
gory of quasi-coherent sheaves on an affine scheme Spec(R) is, by the affine
Serre’s theorem:

QCoh(Spec(R)) ∼= R-Mod . (1.3.5)

equivalent to the category of R-modules, via the global sections functor. Let
us now consider a smooth algebra2 A ∈ Algk, and the corresponding Van
den Bergh’s functor ([69, Sections 2.1 and 3.3]):

(−)n : A-Bimod→ An-Mod . (1.3.7)

The notation is justified by the fact that the Van den Bergh’s functor, applied
to the algebra A viewed as a bimodule over itself, recovers An = ORepn(A)
the ring of functions on the representation scheme, as a module over itself.

It follows that, according to the Kontsevich-Rosenberg princple, the
category of bimodules is a reasonable candidate for a category of noncom-
mutative quasi-coherent sheaves, because the Van den Bergh’s functor:

(−)n : QCohnc("Specnc(A)")→ QCoh(Repn(A)) (1.3.8)

now would send a noncommutative quasi-coherent sheaf on A to a quasi-
coherent sheaf on Repn(A), for all n > 1.

The above construction has, as a requirement, the smoothness of the
algebra A, and this is not a special feature of this example. What often

2An algebra is called smooth if it is finitely generated and formally smooth. The property
of formal smoothness, or equivalently infinitesimal lifting property, is the noncommutative
version of its commutative counterpart (which is equivalent to smoothness of the corre-
sponding affine scheme). Namely, an algebra A is formally smooth if for any algebra B and
any 2-sided nilpotent ideal I ⊂ B, the map induced by the projection B→ B/I:

Algk(A,B)→ Algk(A,B/I) (1.3.6)

is surjective.
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happens when the algebra is not formally smooth is that the resulting repre-
sentation schemes are singular, hence the translation of geometric structures
from A to Repn(A) starts to fail. A possible solution was firstly suggested
in [9] with the introduction of a derived version of representation schemes
DRepn(A), which makes use of the dg-enhancement of the representation
functor and the projective model structure on dg-algebras.

In Chapter 2 we study derived representation schemes for a family
of framed, preprojective quiver path algebras which classically produce
Nakajima quiver varieties. We relate these derived resolutions with the
usual symplectic resolutions of affine Nakajima quiver varieties via GIT
quotients, and prove a series of equalities between invariants coming from
the two different approaches.

In Chapter 3 we formalise a noncommutative procedure of derived
Poisson reduction, in the spirit of the Kontsevich-Rosenberg principle. We
define a category of noncommutative Hamiltonian spaces as double Poisson
algebras with an extra property that guarantees that the natural action of
the general linear group on the representation scheme is Hamiltonian. For
algebras in this category we define a noncommutative counterpart of the
Chevalley-Eilenberg complex of the Koszul complex of the representation
scheme. We show various examples of the above constructions, in particular
the motivating example, which is the one of quiver varieties.

1.4 Derived Representation Schemes and Naka-
jima Quiver Varieties

This section is not intended to be a summary of Chapter 2, but rather an
explanation of how this research project came about. In fact, we simply
want to show a toy example of the fundamental result, which is hopefully
understandable even without many prerequisites, and whose generalisation
was then the main motivation for the project.

Let us consider symplectic reduction of the cotangent bundle X =
T∗C2 with respect to the Hamiltonian action of C× induced by the linear
representation of G = C× on C2 with weights (−1,−1) (dually on the ring
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of functions weight (1, 1)). Explicitly we have a moment map:

µ : X→ g∗ ∼= C

(i, j) 7−→ i1j1 + i2j2
(1.4.1)

where j ∈ C2, while i plays the role of the cotangent vector, after the obvious
trivialisation of the cotangent bundle. There is an additional 3-dimensional
torus T = (C×)2×C× acting via the standard representation of (C×)2 on C2

(hence on its cotangent bundle) plus an additional rescaling of the cotangent
fiber. We give directly the (dual) action on the generators of the ring of
functions:

(tα,  h) · (iα, jα) = ( htαiα, t−1
α jα) (α = 1, 2) . (1.4.2)

The torus T is useful because it commutes with the G-action, hence it
provides multi-gradings for the formulas we want to compute, both for X
and for its symplectic reduction.

The affine symplectic reduction is the affine algebro-geometric quotient
of the preimage of zero via the moment map for the action of G:

M0 := µ−1(0)/G = Spec(O(µ−1(0)G) ∼= Spec(C[a,b, c]/(a2 + bc)) . (1.4.3)

a,b, c are the generators of the G-invariant functions, respectively a = i1j1,
b = i1j2, and c = i2j1, hence they carry weights of T as follows:

a 7→  ha

b 7→  h t1t2b

c 7→  h t2t1c

(1.4.4)

This last identification provides an easy computation of the Hilbert-Poincaré
series of O(M0) as:

chT (O(M0)) =
1 + h

(1 −  h t1t2 )(1 −  h t2t1 )
, (1.4.5)

corresponding to the decomposition O(M0) ∼= C[b, c]⊕C[b, c]a. Another
way of obtaining the same result, without explicitly finding the generators
of the invariant ring, is using Weyl’s integral formula:

chT (O(M0)) = chT (O(µ−1(0))G) =
∫
U(1)

chT×G(O(µ−1(0)))
dx

2πix
. (1.4.6)
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Because the zero locus of the moment map is a complete intersection, the
Hilbert-Poincaré series of its ring of functions is given by the series of the
corresponding Koszul complex:

chT×G(O(µ−1(0))) = chT×G(O(X)⊗O(g∗) O(pt)) =

chT×G(O(X)⊗LO(g∗) O(pt)) =
(1 −  h)

(1 −  hx−1t1)(1 −  hx−1t2)(1 − xt−1
1 )(1 − xt−1

2 )
,

(1.4.7)
which once plugged in equation (1.4.6) and computed via residues gives
back (1.4.5).

The quasi-projective symplectic reduction is the GIT quotient, which
once chosen a nontrivial character χ : G → C× can be identified with the
cotangent bundle of the projective line:

M := µ−1(0)/χG ∼= {(i, j) | j 6= 0, i1j1 + i2j2 = 0}/G ∼= T∗P1 . (1.4.8)

There is a proper morphism p :M→M0 which is a symplectic resolu-
tion of singularities. The Hilbert-Poincaré series of the ring of functions on
M can be computed via pushforward in T -equivariant K-theory, because
higher cohomologies of the structure sheaf vanish. In turn, such pushfor-
ward can be computed using localisation formula:

chT (M) =
∑
m∈MT

1
chT (Λ−1T∗mM)

. (1.4.9)

Because of the nontrivial rescaling of the cotangent direction, fixed points
can be only in the base P1, and the generic cotangent fiber of M at a point
m ∈ P1 ⊂M is:

T∗mM = T∗m(T
∗P1) ∼= T∗mP1 ⊕TmP1 , (TmP1 = HomC(m, C2/m)) .

(1.4.10)
Fixed points in this case are only two, the "north pole" and the "south
pole" n, s ∈ P1 ⊂ T∗P1, which as T -modules have characters, respectively,
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chT (n) = t1, chT (s) = t2, hence:

chT (Λ−1T∗nM) =

(
1 −

t1
t2

)(
1 −  h

t2
t1

)
chT (Λ−1T∗sM) =

(
1 −

t2
t1

)(
1 −  h

t1
t2

)
⇒ chT (O(M)) =

1(
1 − t1

t2

)(
1 −  h t2t1

) +
1(

1 − t2
t1

)(
1 −  h t1t2

) =

= · · · = chT (O(M0)) .

(1.4.11)

In conclusion we have two resolutions of the singular affine scheme M0:
the classical symplectic resolution via GIT M, and the derived resolution via
Koszul complex (see (1.4.7)). All of them have the same ring of functions,
as explicitly shown in the previous computations (this is an instance of
Theorem 2.4.3.1). Now we can observe that M0 is the character scheme
of the representation scheme of a certain algebra A: the path algebra of
the quiver with two vertices v,w and two arrows j : v → w, i : w → v,
modulo the noncommutative counterpart of the Hamiltonian relation ij = 0
(with dimensions 1 and 2 for v and w respectively). The Koszul complex
is the ring of functions on the derived representation scheme, and it is
quasi-isomorphic to the zero locus. Hence we have the following picture:

M
p−→M0 = Rep1,2(A)/G

'−→ DRep1,2(A)/G , (1.4.12)

where p is a classical symplectic resolution of singularities and the other
morphism is a quasi-isomorphism between the characters scheme and its
derived version. A similar result holds also when we substitute the structure
sheaf with other appropriate quasi-coherent sheaves on M and on the other
hand the ring on functions on the derived representation scheme with the
corresponding isotypical component (Theorem 2.4.4.1).

The simple quiver we mentioned has nothing special, and in fact an
analogous result holds true for all framed quivers that produce the classes
of symplectic resolutions M→M0 known as Nakajima quiver varieties. It is
formalising and exploiting these ideas that motivated the project in Chapter
2.
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1.5 Noncommutative derived Poisson reduction

The research project in Chapter 3 is born from the observation that derived
Poisson reduction of representation schemes under the natural action of the
general linear group can be already formalised at the level of noncommu-
tative structures. We briefly describe the procedure in the case of algebras
over a field k, which is then formalised and extended in Chapter 3.

The conjugation action

The representation functor (−)n = ORepn : Algk → CommAlgk is a left adjoint,
hence it preserves all small colimits. In particular it sends cogroups to
cogroups (dually, affine algebraic groups in NAffk to affine algebraic groups
in Affk). The simplest and most notable example of this correspondence
being the affine algebraic group GLn(k), which is the representation scheme
of the algebra U = k[g±1] with cogroup structure:

∆ :k[g±1]→ k〈g±1
1 ,g±1

2 〉
g 7−→ g1g2

S :k[g±1]→ k[g±1]

g 7−→ g−1
ε :k[g±1]→ k

g 7−→ 1
(1.5.1)

Left adjointness of the representation functor also implies that cogroup
coactions on algebras correspond to group actions on the representation
schemes. In particular the action by conjugation GLn(k)yRepn(A) can be
seen as the coaction:

α :A→ A〈g±1〉
a 7−→ gag±1 (1.5.2)

Poisson structures and Hamiltonian actions

It was W. Crawley-Boevey ([20]) who first introduced a noncommutative
structure on algebras that induces a Poisson structure on the moduli space
of representations Repn(A)/GLn(k). In Chapter 3 we call this structure an
H0-Poisson structure because essentially it is a Lie structure on the zeroth
Hochschild homolology HH0(A) = Acyc = A/[A,A] (with an additional
lifting property encoding the derivation property of Poisson structurees).
It was then M. Van den Bergh who introduced a notion of double Poisson
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structures ({{−,−}} : A⊗2 → A⊗2), which are the appropriate notion to
induce Poisson structures on the representation schemes Repn(A). The
group U = k[g±1] has a ‘noncommutative’ Lie algebra k[x], with double
Poisson structure on generators: {{x, x}} = x⊗ 1 − 1⊗ x. This induces the
standard Poisson structure on

Sym(gln(k))
∼= O(gl∗n(k))

∼= O(Repn(k[x])) . (1.5.3)

Suppose now that we have a noncommutative Poisson scheme meaning,
dually, an algebra A and a double Poisson structure on it. As a consequence
every representation scheme Repn(A) is a Poisson scheme, and it is natural
to ask when the action of GLn(k) is Hamiltonian (admits a (co)moment
map). Because everything has a noncommutative origin (both the group
action and the Poisson structure) it is to be expected that also the answer
can be formulated at the noncommutative level. A comoment map for this
action would be a Poisson morphism:

O(Repn(k[x]))→ O(Repn(A)) , (1.5.4)

hence induced by a double Poisson morphism k[x]→ A, which is nothing
else than an element δ ∈ A (the image of x) with the property that {{δ, δ}} =
δ⊗ 1 − 1⊗ δ. The Hamiltonian property becomes that δ acts on all of A as
the universal double derivation (which is the noncommutative counterpart
of the infinitesimal conjugaction action on representation schemes):

{{δ,a}} = a⊗ 1 − 1⊗ a , ∀a ∈ A . (1.5.5)

Classical and derived Poisson reduction

The zero locus of the moment map is the pullback of the moment map
µ : Repn(A)→ gl∗n(k) with the zero value 0 : pt→ gl∗n(k):

Repn(A)×gl∗n(k)
pt = Spec(An ⊗Sym(gln(k))

k) . (1.5.6)

The initial object in the category of algebras k ∈ Algk obviously has repre-
sentation schemes Repn(k) = pt for every n, meaning that the above ring
of functions on the zero locus can be written also as:

An ⊗(k[x])n kn
∼= (Aqk[x] k)n = ORepn(Aqk[x] k) . (1.5.7)
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In other words the zero locus is the representation scheme of a ‘noncommu-
tative zero locus’ Aqk[x] k ∼= A/〈δ〉. Classical Poisson reduction is then just
the character scheme of the noncommutative zero locus:

µ−1(0)/GLn(k) = Repn(A/〈δ〉)/GLn(k) . (1.5.8)

Derived Poisson reduction consists in replacing the zero locus with a
derived zero locus:

Repn(A)×
R
gl∗n(k)

pt ∼= Spec(An ⊗LSym(gln(k))
k) , (1.5.9)

and the quotient with a derived quotient (derived intersection of quotient
stacks):

[Repn(A)/GLn(k)]×R[gl∗n(k)/GLn(k)] [pt/GLn(k)] (1.5.10)

Both procedures have a noncommutative counterpart, respectively a de-
rived noncommutative intersection in the form of a generalised Shafarevich
complex, and a noncommutative version of the Chevalley-Eilenberg com-
plex. It is formalising the above ideas and constructions and working out a
few examples (such as various versions of quiver varieties) that motivated
the research project in Chapter 3.
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Chapter 2

Derived Representation Schemes
and Nakajima Quiver Varieties

Mathematics Subject Classification Primary 14D21 • 16G20;
Secondary 16E05 • 16E45 • 19L47.

Abstract

We introduce a derived representation scheme associated with a quiver,
which may be thought of as a derived version of a Nakajima variety. We
exhibit an explicit model for the derived representation scheme as a Koszul
complex and by doing so we show that it has vanishing higher homology if
and only if the moment map defining the corresponding Nakajima variety
is flat. In this case we prove a comparison theorem relating isotypical
components of the representation scheme to equivariant K-theoretic classes
of tautological bundles on the Nakajima variety. As a corollary of this result
we obtain some integral formulas present in the mathematical and physical
literature since a few years, such as the formula for Nekrasov partition
function for the moduli space of framed instantons on S4. On the technical
side we extend the theory of relative derived representation schemes by
introducing derived partial character schemes associated with reductive
subgroups of the general linear group and constructing an equivariant
version of the derived representation functor for algebras with a rational
action of an algebraic torus.
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2.1 Introduction

Nakajima quiver varieties are certain Poisson varieties constructed from
linear representations of a quiver. They were firstly introduced by Naka-
jima ([54], [53]) as a geometric tool to study representations of Kac-Moody
algebras. They are also interesting from a purely geometric point of view,
being a large class of examples of algebraic symplectic manifolds, many of
which have been objects of study on their own (for example flag manifolds,
framed moduli spaces of torsion free sheaves on P2, or a Lie algebra version
of the character variety of a Riemann surface — see [5]). More recent studies
have also supported the idea that symplectic resolutions, and in particu-
lar hyperkähler reductions such as Nakajima quiver varieties, provide a
bridge between enumerative geometry, representation theory and integrable
systems ([1], [57], [58], [60], [61]).

Quiver varieties are varieties of representations of a quiver: one fixes a
vector space on each vertex of the quiver and then consider the linear space
of representations obtained by associating to each arrow of the quiver a
linear map. Kronheimer and Nakajima ([42]) have first introduced a framed
version, which amounts to doubling the set of vertices and drawing a
new arrow from each new vertex to its corresponding old one. One of the
reasons for considering framed representations is that they appear naturally
in the ADHM construction ([4]) of solutions of self-dual or antiself-dual
Yang-Mills equations on S4. They are also interesting from the point of
view of representation theory of Lie algebras because dimension vectors of
the framed vertices appear as highest weights of the representations ([52]).
The framing is equivalent to a simpler operation of adding just one vertex
with dimension vector 1, together with as many arrows to each vertex as
the framing dimension (as pointed out in [19]), however in this paper we
consider the framed version of Nakajima quiver varieties.

The framed quiver is then doubled, which means that each arrow gets
doubled by an arrow that goes in the opposite direction: the linear space
of representations becomes now a linear cotangent bundle M(Q, v,w) :=
T∗L(Qfr, v,w) (where v,w are dimension vectors for, respectively, the origi-
nal and framing vertices). The gauge group is a general linear group on the
original vertices G = Gv and there is a moment map

µ :M(Q, v,w)→ g∗
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in the form of a generalised ADHM equation. Nakajima quiver varieties
are defined as Hamiltonian reductions of this action GyM(Q, v,w): either
affine Hamiltonian reductions, M0(Q, v,w) = µ−1(0)�G, or quasi-projective
Mχ(Q, v,w) = µ−1(0) �χ G, with the usual tools of geometric invariant
theory ([50]). For each choice of a (nontrivial) character χ : G→ C× there is
a proper Poisson morphism

p : Mχ(Q, v,w)→M0(Q, v,w) , (2.1.1)

which is often, but not always, a symplectic resolution of the singularities of
M0.

2.1.1 Outline and results

In this paper we link these varieties with some (derived) representation
schemes. The idea of considering representation schemes is certainly not
new, in fact it is motivated by the very first algebraic origin of these varieties
(see, for example, representation schemes of preprojective algebras in [21]
and [24]). However the derived version of representation schemes introduces
some new invariants in a natural way.

The theory of representation schemes is recalled in detail in § 2.2.1. To a
(unital, associative) algebra A ∈ Algk one associates RepV(A), the scheme
of finite dimensional representations into a fixed vector space V . There
is a relative version in which the algebra A comes with a fixed structure
ι : S → A of algebra over another algebra S with a fixed representation
ρ : S → End(V) and it is natural to define RepV(A) as the scheme of only
those finite dimensional representations which are compatible with ρ.

General definitions and results on representation schemes work well
over any field k of characteristic zero, but it is necessary to specialise to
k = C in order to relate them to (Nakajima) quiver varieties, which are
algebraic varieties over the complex numbers. The (complex) linear space
of representations of a quiver Q is a representation scheme of the form
RepV(A), where A = CQ is the path algebra of the quiver. This fact is a
consequence of one of the basic results in the theory of representations of
quivers:

There is an equivalence of categories between the category of C-linear
representations of a quiver Q and the category of left CQ-modules.
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The construction can be easily adapted to include the framing and
the doubling of the quiver, and also the operation of taking the fiber of
zero through the moment map. In other words it is possible to write the
scheme µ−1(0) as a representation scheme for the path algebra of the framed,
doubled quiver, modulo the ideal Iµ defined by the moment map:

µ−1(0) = RepCv⊕Cw(A), A = CQfr/Iµ ,

where Cv = ⊕aCva is the direct sum of the vector spaces placed on the
original vertices of the quiver and Cw = ⊕aCwa is the one on the framing.
We denote this representation scheme also simply by Repv,w(A). The gauge
group by which we take the quotient is G = Gv :=

∏
a GLva(C) ⊂ Gv ×Gw.

This group also arises naturally in the context of representation functors. It
is possible to construct an invariant subfunctor by the group G and by doing
so we obtain the affine Nakajima variety as the partial character variety

M0(Q, v,w) = µ−1(0)�G = RepGv,w(A) .

Now that we have such a model for this singular scheme we can try to
resolve it using the machinery of model categories and in particular the
theory of derived representation schemes ([7], [9]): we consider the derived
scheme

DRepv,w(A)
∼= Repv,w(Acof) ,

where Acof
∼
� A is a cofibrant replacement in the category of differential

graded algebras. It is (the homotopy class of) a differential graded scheme
of the form X = (X0,OX,•), where X0 ∼= M(Q, v,w) is the vector space of
linear representations of the framed, doubled quiver, and OX,• is a sheaf of
dg-algebras whose zero homology gives:

π0(X) = Spec
(
H0(OX,•)

)
= µ−1(0) .

We exhibit an explicit (minimal) resolution Acof
∼
� A for which this derived

representation scheme is a well-known object when it comes to studying
resolutions of a singular locus:

Theorem (2.3.5.2 in § 2.3.5). There is a cofibrant resolution Acof
∼
� A ∈ DGAS

which gives a model for the derived representation scheme as the (spectrum of the)
Koszul complex on the moment map:

DRepv,w
(
A
)
∼= Repv,w

(
Acof) = Spec

(
O(M(Q, v,w))⊗Λ•g

)
. (2.1.2)
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A somewhat natural question is whether or not there is any relationship
between Nakajima resolutions (2.1.1) and these derived schemes, and if it is
possible to obtain informations about one of the two from the other:

Quiver Q
Affine Nakajima

variety M0 =
µ−1(0) � G Derived represen-

tation schemes

GIT Nakajima
varieties Mχ

geometric
resolution

algebraic
resolution

Relationship?

(2.1.3)
A first answer is a close relationship (an equivalence) between the

condition of flatness for the moment map (which assures that Mχ → M0

is indeed a resolution, for well-behaved characters χ), and the vanishing
condition for higher homologies of derived representation schemes:

Theorem (2.4.1.4 in § 2.4.1). The derived representation scheme DRepv,w
(
A
)

has vanishing higher homologies if and only if µ−1(0) ⊂M(Q, v,w) is a complete
intersection, which happens if and only if the moment map is flat.

We remark that in general it might not be easy to compute homologies
of derived representation schemes, and even just to predict until which
degree the homology is nontrivial. Nevertheless, in this special situation it
is possible to give a sufficient and necessary condition for the vanishing of
higher homologies based on a geometric property (flatness) of the moment
map. The importance of Theorem 2.1.1 is that there is a combinatorial
criterium on the dimension vectors v,w (proved by Crawley-Boevey, [19],
based on the canonical decomposition of Kac, [37]) for the flatness of the
moment map for representations of quivers.

A second answer to the question in (2.1.3) comes when we compare
some invariants associated with the derived representation schemes with
others associated with the varieties Mχ. A natural choice is to consider
tautological sheaves on the GIT quotient Mχ constructed with the usual
machinery developed by Kirwan (§ 2.4.2). Because of reductiveness of the
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gauge group G we restrict to consider only tautological sheaves of the form
Vλ induced from irreducible representations Vλ of G. The push-forward of
these sheaves in the K-theory of the affine Nakajima variety through the
map (2.1.1) computes their (T -)equivariant Euler characteristics:

χT (M
χ,Vλ) ∈ KT (M0) , (2.1.4)

where T = Tw× T h is the product of the standard maximal torus in the other
general linear group on the framing vertices Tw ⊂ Gw and a 2-dimensional
torus T h rescaling the symplectic form and the cotangent direction.

On the other hand also the representation homology H•(A, v,w) (the
homology of the derived representation scheme) is naturally a G-module
and therefore decomposes into the direct sum of its isotypical components:

H•(A, v,w) =
⊕
λ

HomG

(
Vλ, H•(A, v,w)

)
⊗ Vλ . (2.1.5)

The isotypical components HomG(Vλ, H•(A, v,w)) are modules over
the G-invariant zeroth homology H0(A, v,w)G = O(µ−1(0))G and therefore
their Euler characteristics define invariants in

χλT (A, v,w) =
∑
i>0

(−1)i
[
HomG(Vλ, Hi(A, v,w))

]
∈ KT (M0) . (2.1.6)

It is tempting to compare the invariants defined in (2.1.4) and (2.1.6),
and the main results of this paper go in this direction. First of all, when we
consider the trivial representation Vλ = C, we prove that if the moment map
is flat, then the two invariants are indeed equal:

Theorem (2.4.3.1 in § 2.4.3). Let v,w be dimension vectors for which the moment
map is flat and let χ such that Mχ(Q, v,w) is a smooth variety (and therefore a
resolution of M0(Q, v,w)). Then we have

p∗
(
[OMχ(Q,v,w)]

)
= [OM0(Q,v,w)] = χ

G
T (A, v,w) ∈ KT (M0(Q, v,w)) . (2.1.7)

When we consider the Hilbert-Poincaré series of (2.1.7) we obtain an
integral formula for the T -character of the ring of functions on the GIT
quotient Mχ, that has the following form
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chT (O(Mχ)) = chT (O(M0)) =
1
|W|

∫
Tv

∏
i(1 −  h1 h2ri)∏
j(1 − sj)

∆(x)dx , (2.1.8)

where ri = ri(x) and sj = sj(x, t) are characters for Tv and Tv × T ,
respectively, ∆(x) is the Weyl factor for Gv and the integration is over the
compact real form of Tv (see § 2.4.3 for a more detailed explanation).

Integral formulas of similar flavours already appear under different
names, both in the mathematical literature (Jeffrey-Kirwan integral/residue
formula for GIT quotients — [34]) and in the physical literature (integral
formula for Nekrasov partition function — [55], [56] — proven, for example,
in Appendix A in [25]). We could say that this is not a coincidence, in
fact recognising the right-hand side of (2.1.8) in the known example of the
Jordan quiver (Nekrasov partition function) as the Euler characteristic of
the representation homology was one of the motivations of this project.

For what concerns other tautological sheaves Vλ an equality of the same
flavour of (2.1.7) is true only for large enough λ, where the definition of
largeness depends on the quiver, the dimension vectors v,w and, perhaps
more importantly, also on the GIT parameter χ (see § 2.4.4):

Theorem (2.4.4.1 in § 2.4.4). Let v,w be dimension vectors for which the moment
map is flat, and χ a character for which Mχ(Q, v,w) is smooth. For λ large enough
(Definition 2.4.4.1) we have

p∗([Vλ]) = [H0(Mχ(Q, v,w),Vλ)] = χλ
∗
T (A, v,w) ∈ KT (M0(Q, v,w)) .

(2.1.9)

Once again by taking the Hilbert-Poincaré series of (2.1.9) we obtain a
second integral formula for tautological sheaves on the GIT quotient:

chT (χT (Mχ,Vλ)) = chT (H0(Mχ,Vλ)) =
1
|W|

∫
Tv

∏
i(1 −  h1 h2ri)∏
j(1 − sj)

fλ(x)∆(x)dx ,

(2.1.10)
where fλ(x) = chTv(Vλ) is a product of Schur polynomials.
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2.1.2 Layout of the paper

In § 2.2 we introduce the general theory of (derived) representation schemes
of an algebra. First we recall the theory of representation schemes with
some examples, in particular the linear space of representations of a quiver
as a representation scheme for its path algebra. Then we recall the derived
version introduced by [9] and [7]. We introduce a more general way to take
invariant subfunctors and an equivariant version of derived representation
schemes for an action of an algebraic torus which is useful for our purposes.
We decompose the representation homology in isotypical components and
define new invariants in the K-theory of the classical character scheme.

In § 2.3 we recall the construction of Nakajima quiver varieties and we
show how to view the affine Nakajima variety M0 as a partial character
scheme (a quotient of a representation scheme) for the algebra A := CQfr/Iµ.
We construct the derived scheme associated to it and we use the invariants
defined in § 2.2 to decompose the representation homology into classes in
the K-theory of M0. In § 2.3.4 we construct an explicit cofibrant resolution
Acof

∼
� A that gives a concrete model for the derived representation scheme

as the (spectrum of the) Koszul complex on the moment map. Therefore
we recall some classical properties of the Koszul complex and commutative
complete intersections.

In § 2.4 we explain the main results of this paper. First we observe that,
using the model found in § 2.3.4, the derived representation scheme has
vanishing higher homologies if and only if the moment map is flat, which is
a combinatorical condition on the dimension vectors of the quiver ([19]). We
recall the definition of tautological sheaves on GIT quotients by the Kirwan
map and prove results that compare them with the isotypical components
of the representation homology ((2.1.7) and (2.1.9)). In particular we obtain
some interesting integral formulas ((2.1.8) and (2.1.10)).

In § 2.5 we show some concrete examples, such as the quiver A1 for
which Nakajima varieties are cotangent spaces of Grassmannians, the Jordan
quiver for which we obtain framed moduli space of torsion free sheaves on
P2, and the quiver An−1 with some special dimension vectors for which we
obtain the symplectic dual (T∗Pn−1)ˇ, and compute some of the integral
formulas that we proved before.

In Appendix A we construct a model structure on equivariant dg-
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algebras that we need in § 2.2.5, and in Appendix B we recall the theory
of irreducible representations for a product of general linear groups as
multipartitions, and set some notation that we need in § 2.4.4.

Notation. Throughout the paper we denote categories by the standard
monospace font: Sets, Grp, Vectk, Algk, . . . The notation used is often both
standard and self-explanatory, and when this is not the case we usually
recall it in the main body of the paper.
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2.2 Derived representation schemes of an algebra

The family of schemes of finite dimensional representations {Repn(A)}n>1
of an algebra A has been object of study for many years (see for example the
early work of Procesi, [62]). With the development of noncommutative ge-
ometry, they have been seen in a new light when Kontsevich and Rosenberg
([41]) proposed the following principle:

“Any noncommutative structure of some kind on A should give an analogous
commutative structure on all the representation schemes Repn(A), n > 1”.

This principle seems to work well for (formally) smooth algebras, for which
the representation schemes are smooth, but fails in general. The solution
proposed in [9] is to find a smoothening of representation schemes by
extending representation schemes to differential graded algebras, and using
the general machinery of model categories to derive them. The purpose
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of this section is to recall in main details the construction of this derived
version of representation schemes from [9] and [7], and describe some
generalisations that are useful to our purposes.

2.2.1 Classical representation schemes

Let k be an algebraically closed field of characteristic zero (later we fix
k = C). Let A ∈ Algk be a unital, associative algebra and V ∈ Vectk a finite
dimensional vector space. We consider the functor on unital commutative
algebras:

RepV(A) : CommAlgk(= Affopk )→ Sets

B 7−→ HomAlgk

(
A, End(V)⊗k B

)
.

(2.2.1)

This functor is (co)-representable, by the commutative algebraAV :=
(
V
√
A
)
\\

.
The two functors V

√
− and (−)\\ are, respectively, the matrix reduction func-

tor and the abelianisation functor, which are left adjoints to the followings:

Algk

V
√
− //
⊥ Algk

End(V)⊗k(−)
oo , Algk

(−)\\ //
⊥ CommAlgk
U

oo . (2.2.2)

Explicit formulas for them are V
√
A =

(
End(V) ∗k A

)End(V) and (C)\\ = C/
〈[C,C]〉, where 〈[C,C]〉 is the 2-sided ideal generated by the commutators.
By combining the two adjunctions in (2.2.2) we get an adjunction for the
representation functor:

Algk

(−)V //
⊥ CommAlgk

End(V)⊗k(−)
oo , (2.2.3)

so that the commutative algebra AV is uniquely defined by the natural
isomorphisms:

HomCommAlgk(AV ,B) ∼= HomAlgk(A, End(V)⊗k B), ∀B ∈ CommAlgk .
(2.2.4)
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Definition 2.2.1.1. The affine scheme associated to AV ∈ CommAlgk is the
representation scheme RepV(A) = Spec(AV) ∈ Affk (strictly speaking we
identify it with its functor of points as we originally defined it RepV(A) ∈
Fun(Affopk , Sets) in (2.2.1)). We recover AV = O(RepV(A)) as the algebra of
functions on the representation scheme.

We can assume that V = kn and write simply Repn(A) = Spec(An)
instead of RepV(A) = Spec(AV). Let us show some examples:

Examples 1. (0) If A ∈ CommAlgk ⊂ Algk is a commutative algebra then
clearly from (2.2.4):

A1 = A ↔ Rep1(A) = Spec(A) .

1. The free algebra in m generators A = Fm = k〈x1, . . . , xm〉 has no
relations and therefore Repn(Fm) is the scheme of m-tuples of n×n
matrices:

Repn(Fm) =Mn×n(k)
m .

2. The polynomial algebra A = k[x1, . . . , xm] can be expressed as the free
algebra in m generators modulo the ideal generated by all commuta-
tors [xi, xj], therefore its representation scheme is the closed subscheme
of m-tuples of n×n matrices that pairwise commute:

Repn(A) = C(m,n) :=
{
(X1, . . . ,Xm) ∈Mn×n(k)

m | [Xi,Xj] = 0∀i, j
}

.

3. The algebra of dual numbers A = k[x]/(x2) gives the scheme of square-
zero matrices:

Repn(A) =
{
X ∈Mn×n(k) |X

2 = 0
}

.

4. The algebra of differential operators on the affine line A = Diff(A1
k) =

k〈x,d〉/([d, x] = 1) has no finite-dimensional representations because
if X,D ∈ Mn×n(k) are matrices satisfying [D,X] = 1n, then taking
traces we would get 0 = n, which is absurd:

Repn
(
Diff(A1

k)
)
= ∅ .
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5. The algebra of Laurent polynomials in m variables A = k[t±1
1 , . . . , t±1

m ]
is similar to the example of commuting matrices, except that now the
matrices are required to be invertible:

Repn(A) =
{
(X1, . . . ,Xm) ∈ GLn(k)m | [Xi,Xj] = 0∀i, j

}
.

6. More generally writing any finitely generated algebra as a free algebra
modulo some relations

A = Fm/〈r1, . . . , rs〉 , r1, . . . , rs ∈ Fm = k〈x1, . . . , xm〉 ,
then its representation scheme is identified with the closed subscheme

Repn(A) =
{
(X1, . . . ,Xm) ∈Mn×n(k)

m | ri(X1, . . . ,Xm) = 0 ∀i
}
⊂

⊂ Repn(Fm)

of m-tuples of n×n matrices defined by the equations r1, . . . , rs.

Another fundamental example is that of path algebras of (finite) quivers.
These algebras come with an additional structure of algebras over the
finite dimensional algebras of their empty paths on the vertices, which
is crucial when considering their representations, therefore we need to
consider a relative version of representation schemes. Formally we fix an
algebra S ∈ Algk and we consider the under category S ↓ Algk (also denoted
by AlgS following the notation of [7] and [9]) which is the category of
algebras A ∈ Algk together with a fixed morphism S → A. We also fix a
representation ρ : S→ End(V).

With these ingredients it is natural to consider only those representations
A → End(V) that agree with ρ on S. In terms of functor of points this
corresponds to

RepV(A) : CommAlgk → Sets

B 7−→ HomAlgS

(
A, End(V)⊗k B

)
.

(2.2.5)

This functor is also (co)representable, by the commutative algebra AV de-
fined as before except for ∗k substituted by ∗S, the coproduct in AlgS. Letting
A vary we obtain a relative version of the representation functor (−)V , and
a similar adjunction

AlgS

(−)V //
⊥ CommAlgk

End(V)⊗k(−)
oo . (2.2.6)
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Example 2 (Path algebra of a quiver). Let Q be a finite quiver and A =
CQ ∈ AlgC its path algebra over the complex numbers. What follows works
well for any field k of characteristic zero but later we are interested only
in k = C. We recall that the path algebra is the free vector space on the
admissible paths in the quiver, with product given by concatenation of paths.
It has a set of orthogonal idempotents {ei}i∈Q0 ⊂ A:

eiej = δijej ,

which are the empty paths on the vertices, and their sum is the unit of the
algebra:

∑
i∈Q0

ei = 1 ∈ A. We can then consider the subalgebra generated
by these idempotents

S = 〈ei〉i∈Q0 = SpanC{ei}i∈Q0 ,

with the natural inclusion ι : S→ A. We now fix a dimension vector v ∈NQ0

and we consider the linear space of representations of the quiver Q with
the complex vector space Cvi placed at the vertex i ∈ Q0:

L(Q, v) :=
⊕
γ∈Q1

HomC

(
Cvs(γ) , Cvt(γ)

)
. (2.2.7)

where s, t : Q1 → Q0 are the source and target maps of the quiver. From the
algebraic point of view we fix the following representation of S in the vector
space Cv := ⊕iCvi :

ρ = ρv :S→ ⊕iEndC(C
vi) ⊂ EndC(C

v)

ei 7−→ Ei := 0⊕ · · · ⊕ 1Cvi︸︷︷︸
i-th factor

⊕ · · · ⊕ 0 . (2.2.8)

Proposition 2.2.1.1. The linear space of representations of the quiver Q with fixed
dimension vector v is isomorphic to the (relative) representation scheme of its path
algebra:

L(Q, v) ∼= RepCv(CQ) . (2.2.9)

Proof. Let us consider the complex vector space with basis given by the
set of arrows of the quiver M := SpanC{xγ}γ∈Q1 . It has the structure of an
S-bimodule, and its tensor algebra is the path algebra of the quiver:

A = CQ = TSM := S⊕M⊕ (M⊗SM)⊕ . . . .
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For a dimension vector v ∈ NQ0 we consider the graded vector space
Cv = ⊕iCvi , whose endomorphism algebra EndC(C

v) is an S-bimodule via
the map (2.2.8). By the universal property of the tensor algebra, giving a
representation TSM → EndC(C

v) that agrees with ρ on S, is equivalent to
give a S-bimodule map M→ EndC(C

v):

HomAlgS(A, EndC(C
v)) ∼= HomS−Bimod(M, EndC(C

v)) ∼=

∼=
⊕
γ∈Q1

HomC

(
Cvs(γ) , Cvt(γ)

)
= L(Q, v) .

2.2.2 Derived representation schemes

As already anticipated in the introduction of this section, the noncommuta-
tive geometry principle of transferring a geometric property on an algebra
A (e.g. complete intersection, Cohen-Macaulay, etc.) on the corresponding
commutative one on RepV(A) might fail when A is not a (formally) smooth
algebra. This seems to be related to the fact that the functor RepV(−) is not
exact.

We discuss the following derived version of representation schemes
firstly introduced in [9]. The idea is to “resolve” the singularities of the
representation schemes by using the tools of homological algebra, in the
sense of Quillen’s derived functors on model categories.

We enlarge the category of algebras to the one of differential graded
algebras DGAk (in our conventions differentials have always degree −1), and
as before we consider the under category DGAS := S ↓ DGAk of dg-algebras A
with a fixed morphism S→ A.

We also fix a differential graded vector space V ∈ DGVectk of finite total
dimension, and denote by End(V) ∈ DGAk the differential graded algebra of
endomorphisms, with differential

df = dV ◦ f− (−1)if ◦ dV , f ∈ End(V)i . (2.2.10)

Moreover we need to fix a representation of S in V , that is a dga morphism ρ :
S→ End(V), which makes End(V) an object of DGAS. With these ingredients
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we can define a differential graded version of the representation functor for
A ∈ DGAS as the functor from commutative dg-algebras:

RepV(A) : CDGAk → Sets
B 7−→ HomDGAS(A, End(V)⊗k B) .

(2.2.11)

Remark 2.2.2.1. We use the same notation as in the non-graded case because
in the particular case of S,A,V being concentrated in degree zero we recover
the same functor as before (when restricted to Algk ⊂ DGAk).

This functor is also (co)-representable, by the object AV :=
(
V
√
A
)
\\

constructed in the same way as before, with

V
√
A = (End(V) ∗S A)End(V) , (2.2.12)

where ∗S is the free product over S, the categorical coproduct in DGAS. As
before we obtain a pair of adjoint functors

DGAS
(−)V //
⊥ CDGAk

End(V)⊗k(−)
oo . (2.2.13)

These categories have model structures for which this adjunction is a
Quillen adjunction, and therefore produces a total right-derived functor
R
(
End(V)⊗k (−)

)
, but more importantly a left-derived functor L(−)V that

we use to define the derived representation scheme.
We consider on DGAk and CDGAk the so-called projective model structures

for which weak equivalences are quasi-isomorphisms of complexes and
fibrations are degree-wise surjective maps (Theorem 4 in [7]). It is useful for
later purposes to consider also the categories DGA+k and CDGA+k , which are the
categories of non-negatively graded differential graded and commutative
differential graded algebras, respectively, and with their projective model
structures with the only difference that now fibrations are degree-wise
surjective maps in all (strictly) positive degrees. All these categories are
fibrant (every object is fibrant), with initial object k and final object 0.

The category DGAS is an example of an under category (category in
which objects are objects of the original category coming with a fixed
morphism from the object S in this case). As such it comes with a forgetful
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functor DGAS → DGAk and the model structure on DGAS is the one in which
weak-equivalences, fibrations and cofibrations are exactly the maps which
are sent to weak-equivalences, fibrations and cofibrations via the forgetful
functor. Clearly also the under category DGAS is fibrant, with final object still
0 (viewed as an object of DGAS via the unique map S→ 0), and initial object
S (viewed as an object of DGAS via the identity map idS : S→ S).

For a model category C, we denote by Ho(C) its homotopy category and
by γ : C→ Ho(C) the canonical functor.

Theorem 2.2.2.1 (Theorem 7 in [7]). (i) The pair of functors in (2.2.13) form
a Quillen pair.

(ii) The representation functor (−)V has a total left derived functor given by

L(−)V : Ho(DGAS)→ Ho(CDGAk){
A 7−→

(
Acof

)
V

γf 7−→ γ(f̃)V

(2.2.14)

where Acof
∼
� A is a cofibrant replacement in DGAS, and for a morphism

f : A → B, the morphism f̃ : Acof → Bcof is a lifting of f between the
cofibrant replacements.

(iii) For any A ∈ DGAS and any B ∈ CDGAk there is a canonical isomorphism:

HomHo(CDGAk)(L(A)V ,B) ∼= HomHo(DGAS)(A, End(V)⊗k B) . (2.2.15)

Definition 2.2.2.1. For S ∈ Algk concentrated in degree 0, the following
composite functor

AlgS → Ho(DGAS)
L(−)V−−−−→ Ho(CDGAk)

A L(A)V
(2.2.16)

is called derived representation functor. The homology of the (homotopy class
of the) commutative differential graded algebra L(A)V ∈ Ho(CDGAk) depends
only on A ∈ AlgS and V . It is called the representation homology of A with
coefficients in V :

H•(A,V) := H•(L(A)V) . (2.2.17)

Remark 2.2.2.2. By its definition, the zero-th homology recovers the classical
representation scheme (see Theorem 9 in [7]):

H0
(
A,V) ∼= AV = O

(
RepV(A)

)
. (2.2.18)
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As we anticipated before, we are interested in a slightly different version
of this story: if we start from a vector space V concentrated in degree 0 and
S ∈ Algk then the previous pair (2.2.13) restricts to a pair of functors

DGA+S

(−)V //
⊥ CDGA+k

End(V)⊗k(−)
oo , (2.2.19)

which is still a Quillen pair, and the analogous result of Theorem 2.2.2.1
holds. We give a second definition of:

Definition 2.2.2.2. The derived representation functor is the following functor:

AlgS → Ho(DGA+S )
L(−)V−−−−→ Ho(CDGA+k ) . (2.2.20)

The representation homology of the relative algebra A ∈ AlgS is the homology
of L(A)V ∈ Ho(CDGA+k ).

Remark 2.2.2.3. Definition 2.2.2.1 and 2.2.2.2 are not really different. In fact,
there is an adjunction between the categories DGA+S and DGAS

DGA+S
ι //
⊥ DGAS
τ

oo , (2.2.21)

where the functor ι is the obvious inclusion and the functor τ is the one that
sends an unbounded differential graded algebra A ∈ DGAS to its truncation:

τ(A) = [· · · → A2
d2−→ A1

d1−→ ker(d0)] ∈ DGA+S .

It is straightforward to see that τ preserves fibrations and weak equivalences,
and dually the map ι preserves cofibrations and weak equivalences, in
particular it sends cofibrant objects to cofibrant objects. Now let A ∈ AlgS
and choose a cofibrant replacement Q ∼

� A ∈ DGA+S . A priori this map is
only surjective in positive degrees, but because A is concentrated in degree
0, we have A = H0(A), and the isomorphism in homology H0(Q) ∼= H0(A)
proves that it is surjective also in degree 0, so still a fibration in DGAS. In
other words the cofibrant replacementQ ∼

� A is still a cofibrant replacement
in DGAS and therefore it can be used to compute the derived representation
functor (2.2.16), showing that Definition 2.2.2.1 is equivalent to Definition
2.2.2.2.
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Remark 2.2.2.4 (The dual language of dg-schemes). Another reason for
considering the category CDGA+k instead of CDGAk is that it is anti-equivalent
to the category of differential graded schemes, as introduced by Ciocan-
Fontanine and Kapranov in [18]. We recall their definition of dg-schemes
(over k) as a pair X = (X0,OX,•), where X0 is an ordinary scheme over k and
OX,• is a sheaf of non-negatively graded commutative dg-algebras on X0 such
that the degree zero is OX,0 = OX0 the structure sheaf of the classical scheme
X0 and each OX,i is quasicoherent over OX,0. A morphism of dg-schemes over
k is just a morphism of dg-ringed spaces f : X = (X0,OX,•)→ Y = (Y0,OY,•),
and this makes DGSchk into a category. A dg-scheme X is called affine if the
underlying classical scheme X0 is affine. The full subcategory of dg-affine
schemes DGAffk ⊂ DGSchk is antiequivalent to the category CDGA+k , via the
the equivalence of categories:

DGAffopk

Γ(−) //
⊥ CDGA+k

Spec
oo , (2.2.22)

where Γ(−) is the functor taking a dg-affine X into the global sections
of the sheaf OX,• (degreewise), and Spec is the dg-spectrum sending a
commutative dg-algebra A to the classical scheme X0 = Spec(A0) together
with the quasicoherent sheaves OX,i associated to the modules Ai via the
correspondence QCohX0

∼= ModA0 . These names are motivated by the fact that
the previous equivalence restricts to the classical equivalence of categories

Affopk

Γ(−) //
⊥ CommAlgk
Spec

oo . (2.2.23)

This definition of dg-affine schemes coincides with Toën-Vezzosi’s definition
of derived schemes d Affopk = sCommAlgk as simplicial commutative algebras
([66]) because over a field k of characteristic zero they are equivalent to
commutative dg-algebras.

The equivalence of categories (2.2.22) can be trivially used to transfer
the projective model structure on commutative dg-algebras to the category
of dg-affine schemes. Obviously the pair (Γ(−), Spec) becomes a Quillen
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equivalence, i.e. an equivalence on the homotopy categories:

Ho(DGAffopk )

LΓ(−) //
⊥ Ho(CDGA+k )

RSpec
oo . (2.2.24)

Moreover because every object in CDGA+k is fibrant, the derived spectrum
RSpec actually coincides with the underived Spec on the objects.

Definition 2.2.2.3. The derived representation scheme of the relative algebra
A ∈ AlgS in a vector space V is the object DRepV(A) ∈ Ho(DGAffk) obtained
applying to A the following composition of functors:

DRepV(−) : AlgS → Ho(DGA+S )
L(−)V−−−−→ Ho(CDGA+k )

RSpec
−−−→ Ho(DGAffk) .

(2.2.25)

This definition differs from the one given in [9] and [7] only from the
last composition with the derived spectrum functor. The reason we do so is
to be consistent with the notation for the classical representation scheme
RepV(A) ∈ Affk.

Remark 2.2.2.5. Because every object in CDGA+k is fibrant, the derived repre-
sentation scheme DRepV(A) is simply

DRepV(A) = RSpec(L(A)V) = Spec(L(A)V) = Spec((Acof)V) = RepV(Acof) ,
(2.2.26)

where Acof
∼
� A ∈ DGA+S is a cofibrant replacement. Different choices of

cofibrant replacements give different models to DRepV(A), which are weakly
equivalent to each other. In what follows we choose one specific model for
DRepV(A) obtained through a choice of a preferred cofibrant replacement.
Strictly speaking in (3.3.22) we should write DRepV(A) = γRepV(Acof) ∈
Ho(DGAffk) to remember that we are considering the homotopy class, but
we make an abuse of notation by dropping γ.

Examples 3. In the following examples we describe explicit cofibrant resolu-
tions for some of the algebras in the Examples 1 and give a model for their
derived representation schemes with value in a vector space V concentrated
in degree 0 (therefore we still use the notation DRepn(−) = DRepV(−) for
V = kn).
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1. The free algebra in m generators A = Fm is already a cofibrant object
in DGA+k because it is free, therefore

DRepn(Fm) ∼= Repn(Fm) ∼=Mn×n(k)
m .

2. The commutative algebra in two variables A = k[x,y] is not cofibrant
because of the relation [x,y] = 0. It turns out that it suffices to add one
variable ϑ in homological degree 1 that kills this relation (dϑ = [x,y])
to obtain a cofibrant replacement:

Acof := k〈x,y, ϑ〉 ∼
� A = k[x,y] ,

and therefore the derived representation scheme is the nothing else
but the (spectrum of the) Koszul complex for the scheme of n× n
commuting matrices:

DRepn(A) ∼= Repn(Acof) = Spec
(
k[xij,yij, ϑij]ni,j=1

)
,

dϑij =
∑
k

xikykj − yikxkj .

3. Calabi–Yau algebras of dimension 3 (see [29, § 1.3]). Consider the
free algebra Fm and its commutator quotient space of cyclic words:
(Fm)cyc = Fm/[Fm, Fm]. M. Kontsevich introduced linear maps ∂i :
(Fm)cyc → Fm for each i = 1, . . . ,m which we can use, together with a
potential Φ ∈ (Fm)cyc, to define the algebra

A = U(Fm,Φ) := Fm/(∂iΦ)i=1,...,m , (2.2.27)

which is the quotient of the free algebra Fm by the two-sided ideal
generated by the partial derivatives of the potential Φ. For example
when m = 3, F3 = k〈x,y, z〉 and observe that the partial derivatives
for the potential Φ = xyz − yxz give the commutators, therefore
A = k[x,y, z] is the polynomial ring in 3 variables. For an algebra
defined by a potential as above in (2.2.27) we define the following
dg-algebra:

D(Fm,Φ) := k〈x1, . . . , xm, ϑ1, . . . , ϑm, t〉 ,

(deg(xi, ϑi, t) = (0, 1, 2)) dϑi = ∂iΦ, dt =

m∑
i=1

[xi, ϑi] .
(2.2.28)
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Ginzburg explains in [29] how Calabi–Yau algebras of dimension 3 are
all of the form (2.2.27) and they are exactly those for which a suitable
completion of D(F,Φ) is a cofibrant resolution. This is in particular
true for the example of polynomials in 3 variables (see example 6.3.2.
in [7]), for which no completion is needed and:

DRepn(k[x,y, z]) ∼= Repn(k[x,y, z, ξ, ϑ, λ, t]) =

= Spec
(
k[xij,yij, zij, ξij, ϑij, λij, tij]ni,j=1

)
,

where the variables ξ, ϑ, λ are the ones we called ϑ1, ϑ2, ϑ3 in (2.2.28).

2.2.3 G-invariants and isotypical components

On the (derived) representation scheme there is a natural action of the
general linear group GL(V) by which one can consider the associated
character scheme of invariants. Later we consider only invariants by a
subgroup G ⊂ GL(V), therefore we propose the following theory of partial
invariant subfunctors by G that generalises the theory introduced in [9,
§ 2.3.5] and in [7, § 3.4] in the absolute case S = k. However we point out
that the results of this section are strongly inspired by [9] and [7], which
already contain most of the material needed.

Suppose that both V and S are concentrated in degree 0, ρ : S→ End(V)
is a fixed representation and consider

GS := {g ∈ GL(V) |g−1ρ(s)g = ρ(s) ∀s ∈ S} ,

the subgroup of ρ-preserving transformations. Observe that in the absolute
case S = k then GS = GL(V). Now consider any reductive subgroup G ⊂ GS,
whose right action on End(V) extends to the functor1:

End(V)⊗k (−) : CDGAk → DGAS
1We recall the notion of a categorical group action. Let G be a group (in the category

of sets) and X ∈ A be an object of an essentially small category. A categorical (left)
group action of G on X, denoted by GyX, is a morphism of groups ρ : G → AutA(X)
(while a right group action is a left action of the opposite group Gop). If we apply this
definition to the category A = Fun(C, cD) of functors between two categories (and natural
transformations), then a group action on a functor X is a family of categorical group actions
{ρ(·)c : G → AutcD(Xc)}c∈C with the property that for any morphism f : c → c ′, the
induced morphism Xf : Xc→ Xc ′ is a G-equivariant morphism.
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(for this we need that G consists of transformations which all preserve ρ).
Consequently we obtain a left action on (−)V : DGAS → CDGAk and we can
consider the invariant subfunctor

(−)GV : DGAS → CDGAk
A 7−→ AGV .

(2.2.29)

As explained in [9], unlike (−)V , the functor (−)GV does not seem to have
a right adjoint, so we cannot prove that it has a left derived functor from
Quillen’s adjunction theorem. Nevertheless we can prove that such a left
derived functor exists:

Theorem 2.2.3.1. (a) (−)GV : DGAS → CDGAk has a total left derived functor
L(−)GV .

(b) For every A ∈ DGAS there is a natural isomorphism:

H•[L(A)GV ] ∼= H•(A,V)G . (2.2.30)

To prove this theorem it is convenient to recall a few notions/results.
Let Ω = k[t] ⊕ k[t]dt be the algebraic de Rham complex of the affine
line A1

k (in our conventions differentials have degree −1 and therefore dt
has the wrong degree |dt| = −1). We define a polynomial homotopy between
f,g : A→ B ∈ DGAS as a morphism h : A→ B⊗Ω ∈ DGAS, such that h(0) = f
and h(1) = g, where for each a ∈ k, h(a) is the following composite map:

h(a) : A
h−→ B⊗Ω π−→ B⊗Ω/(t− a) ∼= B⊗ k = B .

The reason why polynomial homotopy is equivalent to the homotopy equiv-
alence relation in DGAS is explained in Proposition B.2. in [9].

Lemma 2.2.3.1. Let h : A → B⊗Ω ∈ DGAS be a polynomial homotopy between
f,g : A→ B. Then:

1. There is a homotopy hV : AV → BV ⊗Ω ∈ CDGAk between hV(0) = fV and
hV(1) = gV .

2. hV restricts to a morphism hGV : AGV → BGV ⊗Ω ∈ CDGAk.
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Remark 2.2.3.1. It is important to observe that, despite the misleading
notation, the map hV in part (1) is not the map obtained applying the functor
(−)V to the map h. The latter would in fact be a map AV → (B⊗Ω)V 6=
BV ⊗Ω. The same thing applies for the map hGV in part (2), which is not the
map obtained applying the functor (−)GV to the map h.

Proof. We omit the proof because it is analogous to the proof of Lemma 2.5
in [9].

Proof of Theorem 2.2.3.1. The same proof used in Theorem 2.6 in [9] works,
using Lemma 2.2.3.1 instead of Lemma 2.5.

An analogous result holds also for the functor restricted on non-negatively
graded objects, and it can be actually obtained as a corollary of Theo-
rem 2.2.3.1:

Corollary 2.2.3.1. (a) (−)GV : DGA+S → CDGA+k has a total left derived functor
L(−)GV .

(b) For every A ∈ DGA+S there is a natural isomorphism:

H•[L(A)GV ] ∼= H•(A,V)G . (2.2.31)

Proof. Using Brown’s lemma we just need to prove that (−)GV sends a trivial
cofibrations between cofibrant objects A ∼

↪→ B to weak equivalences. We
consider the following commutative diagram:

DGA+S CDGA+k

DGAS CDGAk

(−)GV

ι ι

(−)GV

(2.2.32)

and observe that ι(A ∼
↪→ B) is still a trivial cofibration between cofibrant

objects in DGAS, according to Remark 2.2.2.3. Now we can use the proof of
Theorem 2.2.3.1 to conclude that the functor (−)GV : DGAS → CDGAk sends this
map to a weak equivalence:

(ιA)GV = ι(AGV )
∼→ (ιB)GV = ι(BGV ) ∈ CDGAk .
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Finally from the very construction of ι we have that this map is a weak
equivalence if and only if the map AGV

∼→ BGV ∈ CDGA+k is a weak equiv-
alence. This concludes the proof of (a), while (b) follows from (a) as in
Theorem 2.2.3.1.

Now we derive also the other isotypical components of the representa-
tion functor. Let us fix any irreducible, finite-dimensional representation Uλ
of the reductive group G. We consider the following functor:

(−)Gλ,V : DGAS → DGVectk

A 7−→
(
U∗λ ⊗k AV

)G .
(2.2.33)

which is the invariant subfunctor of the functor (−)λ,V := U∗λ ⊗k (−)V . Then
we can prove the following analogue to Theorem 2.2.3.1:

Theorem 2.2.3.2. (a) The functor (2.2.33) has a total left derived functor L(−)Gλ,V .
(b) For every A ∈ DGAS there is a natural isomorphism:

H•[L(A)Gλ,V ]
∼=
(
U∗λ ⊗H•(A,V)

)G . (2.2.34)

To prove it we need the following analogue of Lemma 2.2.3.1:

Lemma 2.2.3.2. Let h : A → B⊗Ω ∈ DGAS be a polynomial homotopy between
f,g : A→ B. Then:

1. There is a homotopy hλ,V : Aλ,V → Bλ,V ⊗Ω ∈ DGVectk between hλ,V(0) =
fλ,V and hλ,V(1) = gλ,V .

2. hλ,V restricts to a morphism hGλ,V : AGλ,V → BGλ,V ⊗Ω ∈ DGVectk.

Proof. It is essentially a corollary of Lemma 2.2.3.1. In fact, we can define
hλ,V to be

hλ,V : Aλ,V = U∗λ ⊗AV
idU∗

λ
⊗hV

−−−−−−→ U∗λ ⊗BV ⊗Ω = Bλ,V ⊗Ω ,

where hV is the map from part (1) of Lemma 2.2.3.1. The map hV was
G-equivariant, and therefore also hλ,V = idU∗λ ⊗ hV , from which part (2)
follows.
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Proof of Theorem 2.2.3.2. The proof works exactly as the proof of Theorem
2.2.3.1, using Lemma 2.2.3.2 instead of Lemma 2.2.3.1.

The analogous results in the non-negative case also hold:

Corollary 2.2.3.2. (a) The functor (−)Gλ,V : DGA+S → DGVect+k has a total left
derived functor L(−)Gλ,V .

(b) For every A ∈ DGA+S there is a natural isomorphism:

H•[L(A)Gλ,V ]
∼=
(
U∗λ ⊗H•(A,V)

)G . (2.2.35)

Proof. The proof follows from Theorem 2.2.3.2 in the same way as the proof
of Corollary 2.2.3.1 followed from Theorem 2.2.3.1.

2.2.4 K-theoretic classes

We use the classical G-invariant subfunctor (−)GV : AlgS → CommAlgk to
define

Definition 2.2.4.1. The partial character scheme of an algebra A ∈ AlgS in a
vector space V , relative to a subgroup G ⊂ GS, is the affine quotient of the
representation scheme:

RepGV (A) := RepV(A)�G = Spec(AGV ) ∈ Affk . (2.2.36)

The name is motivated by the fact that in the absolute case S = k

and G = GL(V) the full group, we would obtain the classical scheme of
characters RepGL(V)

V (A). The derived version is:

Definition 2.2.4.2. The derived partial character scheme of A ∈ AlgS in a vector
space V , relative to a subgroup G ⊂ GS, is the affine quotient of the derived
representation scheme:

DRepGV (A) := DRepV(A)�G = RSpec
(
L(A)GV

)
∈ Ho(DGAffk) . (2.2.37)

Let us recall that the obvious inclusion Schk → DGSchk has for right
adjoint the truncation functor π0 : DGSchk → Schk that associates to a dg-
scheme X = (X0,OX,•) the closed subscheme π0(X) := Spec(H0(OX,•)) ⊂ X0:

Schk
//

⊥ DGSchk
π0

oo . (2.2.38)
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Because the differential d : OX,i → OX,i−1 is OX0-linear, the homologies
Hi(OX,•) are quasicoherent sheaves on X0, and also on the closed subscheme
π0(X) ⊂ X0. We can put these data together in a dg-affine scheme:

Xh :=
(
π0(X), H•(OX,•)

)
∈ DGAffk ,

which in the affine case X = Spec(A) is nothing but Spec(H•(A)).

Definition 2.2.4.3 (Definition 2.2.6. in [18]). A dg-scheme X is of finite type if
X0 is a scheme of finite type and each OX,i is a coherent sheaf on X0.

Let now come to the case of our interest, a dg-affine scheme of finite
type X = Spec(B), for which the sheaves Hi(OX,•) are coherent both over X0
and over π0(X) = Spec(H0(B)), therefore they define a class in the algebraic
K-theory2

[Hi(OX,•)] ∈ K(π0(X)) . (2.2.39)

We first consider the derived scheme X = DRepV(A). Let us assume that A
is an algebra such that, for each vector space V , the following two conditions
are satisfied:

1. The derived representation scheme X = DRepV(A) is of finite type.

2. The structure sheaf OX,• of the derived representation scheme is
bounded, in the sense that OX,i = 0 for i� 0.

This is true for all algebras that we consider in this article, as we show
in § 2.3.4 and § 2.3.5. The truncated scheme obtained from the derived
representation scheme is the classical representation scheme, as explained
in Remark 2.2.2.2:

π0(DRepV(A)) = RepV(A) .

By condition (1) each homology defines a coherent sheaf on π0(X) =
RepV(A) and therefore a class[

Hi(A,V)
]
∈ K(RepV(A)) .

By condition (2) there is only a finite number of them nonzero, therefore in
particular the following definition makes sense, because the sum in (2.2.40)
is bounded:

2By algebraic K-theory of a scheme we mean the Grothendieck ring of the abelian
category of coherent sheaves on it.
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Definition 2.2.4.4. The virtual fundamental class — or Euler characteristic
— of the derived representation scheme X = DRepV(A) is the following
invariant in the K-theory of the classical representation scheme:

[X]vir = χ(A,V) :=
∞∑
i=0

(−1)i
[
Hi(A,V)

]
∈ K(RepV(A)) = K(π0(X)) .

(2.2.40)

This virtual fundamental class carries an action of the group G, which
is reductive, and therefore it decomposes into a direct sum of its irreducible
components. To formalise this we first consider the quotient by derived
partial character scheme XG = DRepGV (A), whose truncation is π0(X

G) =

RepGV (A). For each finite-dimensional irreducible representation Uλ of G we
proved the existence of the derived functor of the corresponding component
L(−)Gλ,V : Ho(DGA+S )→ Ho(DGVect+k ) and observed that

Hi

(
L(A)Gλ,V

)
∼=
(
U∗λ ⊗Hi(A,V)

)G ∈ ModH0(A,V)G ,

and therefore they define coherent sheaves on RepGV (A).

Definition 2.2.4.5. The Euler characteristic of the Uλ-irreducible component
of the derived partial character scheme is

χλ(A,V) :=
∞∑
i=0

(−1)i[Hi(L(A)
G
λ,V)] ∈ K(RepGV (A)) . (2.2.41)

We observe that the irreducible component corresponding to the trivial
representation U0 = k is the virtual fundamental class of the derived partial
character scheme, which we denote by

χG(A,V) =
∞∑
i=0

(−1)i[Hi(A,V)G)] = [XG]vir ∈ K(RepGV (A)) .

2.2.5 T-equivariant enrichment

So far we have worked only with a group G ⊂ GS ⊂ GL(V) that acts on the
representation scheme RepV(A) because of the standard action on the vector
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space V . However, often the algebra A itself comes with an action of some
algebraic torus T which helps when calculating its invariants (for example
the corresponding decomposition of A might consist of finite dimensional
weight spaces, allowing a graded dimensions count). In this section we ex-
plain how such an action TyA induces a well-defined group scheme action
TyDRepV(A), in the sense that different models for the derived represen-
tation scheme are linked by T -equivariant quasi-isomorphism, and therefore
their homologies (and all the other invariants, as the Euler characteristics
introduced in § 2.2.4) carry a well-defined induced T -action.

First we give a notion of a rational T -action, for an algebraic group
T ∈ Grpk on any (dg,commutative) algebra.

Definition 2.2.5.1. Let C be any of the following categories: DGVectk, DGAS,
CDGAk or their non-negatively graded versions. A rational action of an al-
gebraic group T over k on an object A ∈ C is a morphism of groups
ρ : T → AutC(A) with the additional property that every element a ∈ A is
contained in a finite dimensional T -stable vector subspace a ∈ V ⊂ A on
which the induced action T → GLk(V) is a morphism of algebraic groups
over k. We denote by CT the category with objects the objects in C with a
rational T -action and morphisms the equivariant morphisms.

This definition is motivated by the fact that the equivalence of cate-
gories (2.2.22) enriches to an equivalence of categories between (CDGA+k )

T

and the (opposite) category of dg-affine schemes with a group scheme action
of T .

Remark 2.2.5.1. If we denote by a monospace font T the one-object groupoid
associated to the group T , then a rational action on an object in C is just
a functor T → C with some additional properties, and a T -equivariant
morphism is a natural transformation of functors. Another way to say
this is that we can view the category CT ⊂ [T, C] as a full subcategory of
the category of functors. If C, D are two among the categories mentioned
in 2.2.5.1, and F : C→ D is any functor between them, then we can consider
the induced functor on the functor categories F∗ = F ◦ (−) : [T, C]→ [T, D]. If
this induced functor sends objects of CT ⊂ [T, C] into objects of DT , then it
restricts to a functor that we denote by FT : CT → DT . This is true whenever F
is defined purely in “algebraic terms”3, which is the case of all the functors

3We leave intentionally this as an intuitive, not well-defined, notion.
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we considered so far. The induced functor FT is an enrichment of the functor
F in the sense that we can recover F under the natural forgetful functors:

CT DT

C D

FT

U U

F

(2.2.42)

It is easy to see from the definition of the representation functor that
a rational action TyA induces (as explained in Remark 2.2.5.1), an ac-
tion TyAV which is still rational, and therefore a group scheme action
TyRepV(A). To summarise the adjunction (2.2.19) enriches to an adjunc-
tion: (

DGA+S
)T (−)V //

⊥
(
CDGA+k

)T
End(V)⊗k(−)
oo . (2.2.43)

We do not add a superscript (−)T to the enriched functors in this diagram
in order to avoid confusion with the same symbols used with a different
meaning in § 2.2.3.

From now on we restrict ourselves to the case of our interest in this
paper of an algebraic torus T = (k×)r. To do what we promised to do
in the beginning of this section we need to prove that, roughly speaking,
any T -equivariant algebra admits an equivariant cofibrant replacement in
the model category DGA+S , and that any two such equivariant cofibrant
replacements produce quasi-isomorphic representation schemes. To do it
we introduce a model structure on the category (DGA+S )

T compatible with
the model structures on DGA+S under the forgetful functor (in the following
Theorem we explain in which sense these model structures are compatible).
We recall that DGA+S is equipped with the projective model structure in which
weak equivalences are quasi-isomorphisms and fibrations are surjections in
positive degrees. We also observe that actually the category of T -equivariant
dg-algebras over S is (DGA+S )

T = S ↓ (DGA+k )
T nothing else but the under

category of T -equivariant dg-algebras over k receiving a map from S if
we give S the trivial action, and therefore we only need to give a model
structure in the absolute case S = k.
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Theorem 2.2.5.1. There exists a model structure on (DGA+k )
T with the following

properties:

1. Weak equivalences / fibrations are exactly the maps that are weak equivalences
/ fibrations under the forgetful functor U : (DGA+k )

T → DGA+k (and cofibrations
are the maps with the left-lifting property with respect to acyclic fibrations
defined in this way).

2. The forgetful functor preserves cofibrations.

Proof. We refer the reader to Appendix A for the proof of this Theorem.

As a corollary of this result we can naturally equip the derived repre-
sentation scheme of a T -equivariant algebra with a group scheme action
of T . In fact, let S ∈ Algk and (A ∈ AlgS)

T = S ↓ (Algk)T be a T -equivariant
algebra.

Corollary 2.2.5.1. There is a well-defined action TyDRepV(A) which is com-
patible with the one on RepV(A) ∼= π0(DRepV(A)) induced by TyA.

Proof. First of all, we can pick up a T -equivariant cofibrant replacement
Q

∼
� A ∈ (DGA+S )

T using the model structure we just defined. Because
of Theorem 2.2.5.1 (1) and (2), when we forget the T -action we still have
a cofibrant replacement for A, therefore we can use this Q as a model
for DRepV(A) = RepV(Q). There is a natural T -action on this dg-scheme
induced by TyQ, which is compatible with the one on its truncation
π0(RepV(Q)) ∼= RepV(A).

To prove that the previous definition is well posed, we show that if
Q ′

∼
� A is any another T -equivariant cofibrant replacement, then there is a

T -equivariant quasi-isomorphisms of dg-schemes RepV(Q) ∼→ RepV(Q
′). In

fact by the general machinery of model categories we can lift the identity
map 1A : A → A to a T -equivariant (weak equivalence) between the two
cofibrant replacements f : Q ∼→ Q ′. When we forget the T -action, this is still
a weak equivalence, therefore giving an isomorphism γf in the homotopy
category Ho(DGA+S ) and therefore L(γf)V is an isomorphism in Ho(CDGA+k ).
But because both domain and codomain are cofibrant, L(γf)V = γfV , and
therefore fV : QV → (Q ′)V is a T -equivariant isomorphism of commutative
dg-algebras, which dually gives the desired T -equivariant map RepV(Q) ∼→
RepV(Q

′).
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As a final consequence, the representation homology of a T -equivariant
algebra, and all the other invariants defined in § 2.2.4, enrich to T -equivariant
invariants. For example we can define the T -equivariant virtual fundamental
class of the derived representation scheme X = DRepV(A) as the following
object in the equivariant K-theory4 of the classical representation scheme:

[X]vir = χT (A,V) :=
∞∑
i=0

(−1)i[Hi(A,V)] ∈ KT (RepV(A)) , (2.2.44)

and also all the other Uλ-irreducible components for a reductive group G
by which we take the quotient (see § 2.2.4) as

χλT (A,V) :=
∞∑
i=0

[Hi(L(A)
G
λ,V)] ∈ KT (RepGV (A)) = KT (RepGV (A) . (2.2.45)

In particular for U0 = k the trivial representation, we obtain an equivariant
version of the virtual fundamental class of the derived partial character
scheme XG = DRepGV (A), which we denote by:

χGT (A,V) =
∞∑
i=0

[Hi(A,V)G] = [XG]vir ∈ KT (RepGV (A)) . (2.2.46)

2.3 The case of Nakajima quiver varieties

In this section we first recall the construction of Nakajima quiver varieties
and secondly we construct some derived representation schemes related to
them.

2.3.1 Nakajima quiver varieties

We already recalled in Example 2 that a finite quiver is a finite directed
graph defined by its sets of vertices and edges Q = (Q0,Q1) with two maps
(source and target of an arrow) s, t : Q1 → Q0.

4By equivariant K-theory of a scheme X with an algebraic group action TyX we mean
the Grothendieck ring of the abelian category of T -equivariant coherent sheaves on X.
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We first frame the quiver, this means that we add a new vertex for
each old one with a new arrow from the new to the old. Then we double
the framed quiver, in order to obtain a cotangent (symplectic) space when
we consider its representations. We denote this quiver by Qfr. To consider

• v

x

Jordan quiver

• v

x

y

�w

ij

Figure 2.1: Example: framing and doubling the Jordan quiver. The framed
vertices are usually denoted by a square symbol.

representations of a framed (doubled) quiver, we need to fix two dimension
vectors v,w ∈ NQ0 , and usually one assumes that (at least one of the
components of) the framing vector is nonzero: w 6= 0.

Notation. We denote the linear representations of the doubled, framed
quiver by

M(Q, v,w) := L
(
Qfr, v,w

)
∼= T∗L

(
Qfr, v,w

)
. (2.3.1)

Explicitely it is the following cotangent linear space:

M(Q, v,w) = T∗

⊕
γ∈Q1

HomC(C
vs(γ) , Cvt(γ))⊕

⊕
a∈Q0

HomC(C
wa , Cva)

 .

(2.3.2)
We denote elements of this space by quadruples (X, Y, I, J) = (Xγ, Yγ, Ia, Ja)γ,a,
where Xγ, Ia ∈ L(Qfr, v,w) are elements of the representation space of the
framed quiver, and (Yγ, Ja) are cotangent vectors to them. The gauge group
is the general linear group on the set of vertices of the original quiver Q:

G = Gv :=
∏
a∈Q0

GLva(C) ⊂ GL(Cv ⊕Cw) , (2.3.3)
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which acts by conjugation in a Hamiltonian fashion on M(Q, v,w). The
moment map for this action is

µ :M(Q, v,w)→ g∗v
∼= gv (via trace)

(X, Y, I, J) 7−→ [X, Y] + IJ ,
(2.3.4)

where in the above equation [X, Y] + IJ is a shortened symbol for

[X, Y] + IJ =

 ∑
γ:t(γ)=a

XγYγ −
∑

γ:s(γ)=a

YγXγ + IaJa


a∈Q0

∈
⊕
a∈Q0

glva(C) = gv .

(2.3.5)
Nakajima varieties are defined as symplectic reductions of M(Q, v,w) by
this action. The affine Nakajima quiver variety is the geometric quotient:

M0(Q, v,w) := µ−1(0)�G = Spec
(
O(µ−1(0))G

)
. (2.3.6)

The GIT Nakajima variety is instead given by the choice of a character
χ ∈ HomGrpC

(G, C×) as the proj of the graded ring of χ-quasiinvariant
functions on µ−1(0):

Mχ(Q, v,w) = µ−1(0)�χ G = Proj
(
O(µ−1(0))G,χ) (2.3.7)

(elements of degree n > 0 of O(µ−1(0)G,χ) are functions f ∈ O(µ−1(0))
with the property f(g · p) = χn(g)f(p) for all g ∈ G and p ∈ µ−1(0)). The
inclusion of G-invariant functions as degree zero elements of the graded
ring of χ-quasiinvariant functions O(µ−1(0))G ⊂ O(µ−1(0))G,χ induces a
projective morphism:

p : Mχ(Q, v,w)→M0(Q, v,w) , (2.3.8)

which is often a symplectic resolution of singularities. Sometimes we denote
these varieties simply by Mχ,M0 implicitly fixing the quiver Q, and the
dimension vectors v,w.

2.3.2 Derived representation schemes models

In Proposition 2.2.1.1 we showed how the linear space of representations
of a quiver is isomorphic to the representation scheme for its path algebra.
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The same thing holds for the doubled, framed quiver so that

M(Q, v,w) = L
(
Qfr, v,w

)
∼= Repv,w

(
CQfr

)
. (2.3.9)

To obtain the zero locus of the moment map, we consider the 2-sided ideal
Iµ ⊂ CQfr generated by the |Q0|-elements of the path algebra described
in (2.3.4), and consider the quotient algebra

A := CQfr/Iµ ∈ AlgS , (2.3.10)

relative to the subalgebra S ⊂ A of idempotents, with fixed representation
ρ = ρv,w : S → EndC(C

v ⊕Cw) (as in (2.2.8)). The following result is an
immediate consequence of the fact that taking the quotient by some ideal
amounts simply to impose these new relations in the representation scheme
(see Examples 1.(6)):

Proposition 2.3.2.1. The zero locus of the moment map µ is the (relative) repre-
sentation scheme for the path algebra of the framed, doubled quiver, modulo the
Hamiltonian relation:

µ−1(0) ∼= Repv,w
(
CQfr/Iµ

)
. (2.3.11)

Notation. We denote the corresponding derived representation scheme and
representation homology by:

DRepv,w(A) = Spec
(
L
(
A
)
v,w

)
∈ Ho(DGAffC) ,

H•(A, v,w) = H•
(
L
(
A
)
v,w

)
∈ CDGA+

C
.

(2.3.12)

The representation homology H•(A, v,w) is a graded commutative algebra,
so when we view it in CDGA+

C
we mean that the differential is zero.

Remark 2.2.2.2, together with Proposition 2.3.2.1 tells us that the π0 of
this derived scheme X = DRepv,w(A) is the zero locus of the moment map:

π0(X) = Spec
(
H0
(
A, v,w

))
∼= µ−1(0) . (2.3.13)

In particular when we consider the invariant subfunctor only by the gauge
group on the original vertices G (2.3.3):
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Corollary 2.3.2.1. The π0 of the partial character scheme XG = DRepGv,w(A) is
the affine Nakajima variety M0:

π0(X
G) = π0(DRepGv,w(A))

∼= M0 . (2.3.14)

Proof. It follows directly from the previous observation (2.3.13) and the
Theorem 2.2.3.1. More precisely:

π0(X
G) ∼= Spec

(
H0(A, v,w)G

)
∼= Spec

(
O(µ−1(0))G

)
= µ−1(0)�G = M0 .

2.3.3 K-theoretic classes in the affine Nakajima variety

In § 2.3.4 we describe an explicit cofibrant resolution for our algebra
A = CQfr/Iµ, Acof

∼
� A and therefore a model for the derived repre-

sentation scheme DRepv,w
(
A
)
= Repv,w

(
Acof

)
, but we can already use

Corollary 2.3.2.1 to define some meaningful invariants in the K-theory of
M0 = RepGv,w(A). Throughout this section we denote by X = DRepv,w(A)

the derived representation scheme and by XG = DRepGv,w(A) the correspond-
ing partial character scheme, whose π0(X

G) = M0 is the affine Nakajima
variety.

There is a torus, the (standard) maximal torus of the gauge group
on the framing vertices Tw ⊂ Gw acting on the linear space of repre-
sentations Repv,w(A), and therefore as explained in § 2.2.4 it induces
an action TwyDRepv,w(A) and on its quotient by the gauge group Gv:
TwyDRepGvv,w(A). There is an additional (2-dimensional) torus

T h = (C×)2 yA

acting rationally on the path algebra of the doubled framed quiver. This
action can be described by assigning, respectively, the following Z2-weights
to the arrows (xγ,yγ, ia, ja) (see § 2.3.1 to recall the name of the arrows):
(1, 0), (0, 1), (1, 1), (0, 0), or explicitly as

xγ 7→  h1xγ , yγ 7→  h2yγ , ia 7→  h1 h2ia , ja 7→ ja .
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As explained in § 2.2.5, also this torus induces actions T hyDRepv,w(A),
DRepGvv,w(A). In other words, the whole torus T := Tw × T h acts on the
derived representation scheme X = DRepv,w(A) and its partial character
scheme XGv = DRepGvv,w(A).

Using the definitions we gave in § 2.2.4 and § 2.2.5 we obtain the
following invariants in the (equivariant) K theory of the affine Nakajima
variety M0 = RepGvv,w(A), for example the virtual fundamental class

[
XGv

]vir
=

∞∑
i=0

(−1)i
[
Hi(A, v,w)Gv

]
∈ KT

(
M0) . (2.3.15)

More generally for each irreducible representation Uλ of Gv, the Euler
characterstic of the corresponding isotypical component as

χλT (A, v,w) =

∞∑
i=0

(−1)i
[
Hi(L(A))

Gv
λ,v,w

]
∈ KT

(
M0) . (2.3.16)

2.3.4 Explicit cofibrant resolution

In this section we describe an explicit cofibrant resolution for the S-algebra
A constructed in the previous section. Let us recall that

A = CQfr/Iµ ∈ AlgS ↪→ DGA+S , (2.3.17)

where S is the subalgebra generated by the idempotents of the path algebra
of the framed quiver. The main obstruction for this object to be cofibrant is
the Hamiltonian relation described by the ideal Iµ. The simplest idea is then
to add one more variable for each of the generating relations in Iµ which
kills the relation itself. This technique in general might not work due to
higher homologies, but we prove that this case is one of the well-behaved
cases. We construct the following quiver Qϑ, which is obtained by adding to
the framed, doubled quiver Qfr, one loop called ϑa on each original vertex
a ∈ Q0.

In the path algebra CQϑ we assign homological degree 0 to the original
arrows, and homological degree 1 to the new arrows ϑa. The differential is
induced by the moment map (equations as in (2.3.5))

dϑa = µa(x,y, i, j) .
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We denote the resulting differential graded algebra by

Acof := (CQϑ,d) ∈ DGA+
C

. (2.3.18)

It sits in the following diagram

S

Acof A

ι
ϕ

π

(2.3.19)

where π is the composition of the following two obvious projections:

π : Acof → (Acof)0 = CQfr → CQfr/Iµ = A .

Theorem 2.3.4.1. Acof is a cofibrant replacement for A in DGA+S .

This amounts to prove that, in the diagram (2.3.19), the map π is an
acyclic fibration, and ι is a cofibration.

Lemma 2.3.4.1. The map π : Acof → A is an acyclic fibration in DGA+
C

.

Proof. We need to prove that:

(i) π is degreewise surjective in degrees > 1 (this is obvious, because A is
concentrated in degree 0).

(ii) Hi(π) : Hi(Acof) → Hi(A) is an isomorphism for each i > 0, which
becomes proving that{

H0(π) : H0(Acof)
∼−→ A ,

Hi(Acof) = 0, i > 1 .

H0(π) is an isomorphism, this is evident from the construction of Acof. We
are left to prove that Acof has no higher homologies.

Using the orthogonal idempotents {ea}a∈Qϑ0
we decompose Acof as a

direct sum of the dg-submodules of paths starting and ending at fixed
vertices:

Acof =
⊕

a,b∈Qϑ0

Pa,b , Pa,b = eb ·Acof · ea . (2.3.20)
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Let us introduce also Ãcof = CQ̃ϑ, where Q̃ϑ is the quiver obtained
from Q by only adding one loop of degree zero ca (instead of the pair
of arrows ia, ja) and one loop ϑa of degree 1 on each vertex a ∈ Q0. The
differential on this new graded algebra is given by the analogous formula
obtained by substituting in the previous formula the product iaja with ca:
“dϑ = [x,y] + c” (componentwise). We can also decompose this dg-algebra
in analogous dg-submodules

Ãcof =
⊕
a,b∈Q0

P̃a,b , (2.3.21)

only that this time the direct sum runs over pairs of vertices in the quiver
Q̃ϑ, which are the same as the vertices of the original quiver Q.

Claim: If Hi(Ãcof) = 0 for all i > 0, then also Acof has no higher
homologies.

Proof of the claim: The decompositions (2.3.20) and (2.3.21) are decomposi-
tions in dg-submodules, therefore also the homologies decompose accord-
ingly. For a vertex a ∈ Q0 we denote by a ∈ Qϑ0 the corresponding framing
vertex. For a,b ∈ Q0, we have four cases:

Pa,b ∼= P̃a,b

Pa,b = jb · Pa,b ∼= Pa,b(∼= P̃a,b)

Pa,b = Pa,b · ia ∼= Pa,b(∼= P̃a,b)

Pa,b = jb · Pa,b · ia ∼= Pa,b(∼= P̃a,b)

(2.3.22)

The first isomorphism is realised by sending the cycles of the form isjs to
the loops cs. This is possible because Pa,b is made of paths starting and
ending at vertices of the original quiver, therefore the only form in which
is or js can appear is through their product isjs. Analogous considerations
show the other three cases. The claim then follows, because Ãcof has no
higher homologies if and only if all the dg-submodules P̃a,b have no higher
homologies, and by the previous isomorphisms, which are isomorphisms of
dg-vector spaces, neither Acof does.

To prove the lemma we are left to show that all the P̃a,b have no higher
homology. We consider the following filtration:

Fp(P̃a,b) := SpanC{ paths in P̃a,b with #x+ #y > 2p} .
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Remember that the differential has the form “dϑ = [x,y] + c”, so that the
associated graded has differential of the form “dgrϑ = c”, which involves
only loops on the vertices a ∈ Q0.

Claim 2: The associated graded has no higher homologies.

Proof of claim 2: We denote by Ga,b the associated graded of P̃a,b under the
afore-mentioned filtration. We consider the linear map π : Ga,b → Ga,b that
sends a path γ to the path π(γ) which is obtained by substituting any cs or
ϑs with es, the idempotent of the corresponding vertex. If we denote by Γa,b
the set of paths in Ga,b containing only x’s and y’s, then we can decompose:

Ga,b =
⊕
w∈Γa,b

Gw , Gw = π−1(Cw) .

An easy inspection shows that the differential preserves this decomposition,
and that each Gw is isomorphic, as a dg-vector space, to a tensor product of
elementary dg-algebras of the form

Gw ∼= L⊗(length(w)+1) , L =
(
C〈ϑ, c〉,dϑ = c

)
,

where length(w) is the number of collective x’s and y’s present in w. Finally
we observe that L has no higher homologies5, and this concludes the proof
of claim 2.

The lemma then follows.

Lemma 2.3.4.2. ι : S → Acof is a cofibration in DGA+
C

, or equivalently Acof is a
cofibrant object in DGA+S .

Proof. We need to prove that ι has the left lifting property with respect to
acyclic fibrations.

S B

Acof C

ι ∼
∃ (2.3.23)

5An elementary argument is to observe that the derivation defined by the formula
h(c) = ϑ and h(c) = 0, is a homotopy between the 0 map and the map length(−) · Id, which
is an isomorphism in (homological) degrees > 1. This implies that Hi(L) = 0 for i > 1.
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Let us observe that because Acof = CQϑ is the (dg) path algebra of a quiver
with idempotents S, we can view Acof = TSM := S⊕M⊕ (M⊗SM) . . . as
the tensor algebra of the S-(dg)bimodule

M := SpanC

{
arrows in Qϑ

}
.

But then find a lifting in the diagram (2.3.23) amounts to simply give
a (linear) lifting of the (dg) vector space M, which is possible for the
surjectivity of the map B ∼

� C (acyclic fibrations are surjective in every
homological degree).

2.3.5 Koszul complex and complete intersections

Theorem 2.3.4.1 tells us that a model for the derived representation scheme
for the algebra A is the representation scheme of the cofibrant replacement
Acof. In this section we recognise it as the Koszul complex for the moment
map, and in order to do so, we first recall a few classical notions and results
about the latter.

The Koszul complex can be thought of as one of the main examples
of derived intersections of subschemes of a scheme. Classically, affine va-
rieties are the simplest examples of intersections, being zero loci of some
simultaneous polynomial equations f1, . . . , fm ∈ O(An

C) = C[x1, . . . , xn]:

(X,O) = Spec
(
R/(f1)⊗R · · · ⊗R R/(fm)

)
, R = C[x1, . . . , xn] . (2.3.24)

Then the associated derived intersection can be defined as the derived scheme

(X,O•) = Spec
(
R/(f1)⊗LR · · · ⊗LR R/(fm)

)
, (2.3.25)

where ⊗LR is the derived tensor product of R-modules. The algebra of func-
tions on this derived scheme is the Koszul complex:

K = R/(f1)⊗LR · · · ⊗LR R/(fm) ∈ CDGA+
C

.

A more concrete way to describe it is the following: we can view the
collection of functions f = (f1, . . . , fm) as a map of affine schemes

f : An
C → V := Am

C ,
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and consider its dual map

O(f) : O(V) = Sym(V∗)→ O(An
C) = R .

Then the Koszul complex is the commutative dg-algebra K = (R⊗CΛ
•(V∗),d),

where R is in homological degree 0, the vector space V∗ is in homological
degree 1, and the differential

d := O(f)|V∗ : V
∗ ↪→ Sym(V∗)→ R .

An useful classical result on the Koszul complex is

Theorem 2.3.5.1 ([46]). The following are equivalent:

1. dimC(Spec(H0(K))) = n − m.

2. The sequence f1, . . . , fm ∈ R is a regular sequence.

3. H1(K) = 0.

4. Hi(K) = 0 for all i > 1.

Let us turn back to the case of our interest, in which we want to recognise

(Acof)v,w = (CQϑ)v,w

as the Koszul complex on the moment map. We recall that the quiver Qϑ is
constructed from the quiverQfr by adding a new loop in homological degree
1 on each of the original vertices of the quiver Q. Therefore, a representation
of the path algebra CQϑ is just a representation of the subalgebra CQfr

(an element of the vector space M(Q, v,w)), together with a family of
endomorphisms

Θ = (Θa)a∈Q0 ∈
⊕
a∈Q0

glva(C) = gv

in homological degree 1. Putting everything together we obtain

(CQϑ)v,w = O(M(Q, v,w))⊗C Λ
•gv ∈ CDGA+

C
,
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which is nothing else but the Koszul complex for the zero locus defined by
the moment map

µ :M(Q, v,w)→ g∗v .

Its spectrum is a model for our derived representation scheme, as the
derived intersection of the moment map equations:

Theorem 2.3.5.2. The cofibrant resolution Acof
∼
� A in DGA+S gives a model for

the derived representation scheme as the (spectrum of the) Koszul complex on the
moment map:

DRepv,w
(
A
)
∼= Repv,w

(
Acof) = Spec

(
O(M(Q, v,w))⊗Λ•g

)
. (2.3.26)

In particular we can observe that this is a derived scheme of finite type
(Definition 2.2.4.3) and that the Koszul complex is bounded, Therefore all the
invariants defined in § 2.3.3 ((2.3.15), (2.3.16)) make sense, because the sums
are bounded (by the dimension of the Lie algebra dimC gv = v

2 = v · v).

Remark 2.3.5.1. In § 2.3.4 we gave a self-contained proof of why the reso-
lution provided by the path algebra of the quiver Qϑ obtained by adding
one loop on each vertex in which the corresponding component of the
moment map is considered (i.e. the original vertices) works. In § 2.3.5 we
explained why the resulting representation scheme is the Koszul complex
on the moment map. We remark that the same results can be explained in a
slightly different flavour through the theory of noncommutative complete
intersections (NCCI) and partial preprojective algebras ([21], [24]).

2.4 Comparison theorems and integral formulas

2.4.1 Flat moment map and vanishing representation ho-
mology

In this section we recall some classical results on the flatness for the moment
map of Nakajima quiver varieties which are useful for our purposes. We
show how flatness is equivalent to the condition of vanishing of higher
representation homologies for the corresponding algebra.

Remember that for each quiver Q and for each fixed dimensions v,w ∈
NQ0 we have the corresponding Nakajima varieties M0 (affine) and Mχ
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(quasiprojective), where χ ∈ HomGrpC
(Gv, C×) is a given (nontrivial) char-

acter. We also recall that the group of all characters of the gauge group
G = Gv =

∏
a∈Q0

GLva(C) is isomorphic to the lattice

ZQ0 ∼= HomGrpC
(G, C×) ,

via the assignment
θ 7→ χθ(g) =

∏
a∈Q0

det(ga)θa .

In this section we use the parameter θ for the characters and denote Mχθ

simply by Mθ.
We recall that the Cartan matrix of the quiver Q is the matrix CQ =

2 · Id −AQ, where AQ is the adjacency matrix of the doubled quiver Q. For
a fixed dimension vector v ∈NQ0 , a vector θ ∈ ZQ0 is called v-regular, if for
each α ∈ ZQ0\{0} such that CQα · α 6 2 and 0 6 α 6 v (component-wise)
then ∑

i∈Q0

θiαi 6= 0 .

The subset of RQ0 of v-regular vectors is the complement of some hyper-
planes. Its connected components are called chambers, and the variety Mθ

depends only on the chamber of θ.

Theorem 2.4.1.1 (Theorem 5.2.2. in [30]). Let v ∈NQ0 be a dimension vector
and θ ∈ ZQ0 be v-regular, then any θ-semistable point in µ−1(0) is θ-stable and
Mθ is a smooth, connected, complex symplectic variety of dimension

dimMθ = 2v ·w−CQv · v ,

(with the convention that Mθ = ∅ when this dimension is negative).

Remark 2.4.1.1. Observe that the dimension counting is what we would
expect. In fact

dim(M(Q, v,w)) = 2v ·w+AQv · v = 2v ·w−CQv · v+ 2v · v .

When we take the zero locus by µ we expect to decrease the dimension by
the number of equations of µ, which is v · v and then again by v · v when
taking the Gv-quotient.
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Let us consider for some v-regular θ the natural affinisation morphism

ϕ : Mθ → Spec
(
O(Mθ)

)
. (2.4.1)

This morphism is a Poisson morphism6 (obviously, because ϕ∗ is the iden-
tity) and it is a resolution of singularities (i.e. projective and birational)
([12]). The variety Mθ depends, a priori on the chamber of θ, but actually
its affinisation Spec(O(Mθ)) is independent of the choice of v-regular θ. We
can call this variety simply M and we obtain a diagram of the following
form

Mθ

M M0

ϕ
p

ψ

(2.4.2)

which is the so-called Stein factorisation ([65]) of the proper morphism p.
The pre-image of the point 0 ∈ M0 through ψ is always 0 ∈ M. In partic-
ular the fiber p−1(0) is equal to the central fiber ϕ−1(0) of the affinisation
morphism

p−1(0) = (ψ ◦ϕ)−1(0) = ϕ−1(ψ−1(0)) = ϕ−1(0) ,

and therefore is a homotopy retract of the variety Mθ.

Theorem 2.4.1.2 ([12]). If the moment map µ :M(Q, v,w)→ g∗v is flat, then ψ
is an isomorphism, and in particular O(Mθ) ∼= O(M0).

The combinatorial criterium for the flatness of the moment map proved
in [19] is given in the setting of a non-framed quiver Γ . For any dimension
vector α ∈ NΓ0 we consider the linear space of representations of the
doubled quiver L(Γ ,α). The gauge group acting a priori in a non-trivial way
is now Gα/C× because, without the framing, the diagonal torus C× ⊂ Gα
acts trivially on the linear space of representations. The Lie algebra of this
group can be identified with the subalgebra g\α ⊂ gα = ⊕iglαi(C) of matrices

6The Poisson structure on Nakajima varieties comes from the general formalism of
Hamiltonian reduction, and coincides with the one induced by the symplectic form on the
regular locus.
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with sum of their traces equal to zero (the notation g\α is borrowed from
[24]). The moment map is now

µα :L(Γ ,α)→ g\α

x 7−→ [x, x∗] .

Let us denote by p the following function

p : NΓ0 → Z , p(α) := 1 +
∑
γ∈Γ1

αs(γ)αt(γ) −α ·α .

Theorem 2.4.1.3 (Theorem 1.1 in [19]). The following are equivalent:

1. µα is a flat morphism.

2. µ−1
α (0) has dimension α ·α− 1 + 2p(α) (= dimL(Γ ,α) − dim g\α).

3. p(α) >
∑r
t=1 p(β

(t)) for each decomposition α = β(1) + · · ·+ β(r) with
each β(t) positive root.

4. p(α) >
∑r
t=1 p(β

(t)) for each decomposition α = β(1) + · · ·+ β(r) with
each β(t) ∈NΓ0\{0}.

In a remark in § 1 in [19], Crawley-Boevey explains how to adapt this
setting to the situation of a framed quiver. From a quiver Q and a framing
vector w we can construct a new quiver Γ := Q∞, which is obtained by
adding only one new vertex, denoted by ∞, together with a number of
wa arrows towards each vertex a ∈ Q0. If we fix now a dimension vector
v ∈NQ0 and define the new vector α := (v, 1) ∈NΓ0 , then

L(Γ ,α) ∼= L
(
Qfr, v,w

)
=M(Q, v,w) , (2.4.3)

by splitting the va ×wa matrices in M(Q, v,w) in columns and the wa × va
matrices in rows. The two gauge groups are also isomorphic: Gα/C× ∼= Gv,
and under this isomorphism their actions on L(Γ ,α) ∼=M(Q, v,w) are the
same. Therefore also the moment maps are identified:

L(Γ ,α) g\α

M(Q, v,w) gv

µα

∼ ∼

µ

(2.4.4)
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and we have the following criterium:

Corollary 2.4.1.1. Consider the quiver Qfr with dimension vectors v,w ∈NQ0 ,
and the quiver Γ = Q∞ with α = (v, 1). Then the following are equivalent:

1. µ is flat.

2. µα is flat.

For the condition (2) now we can use the combinatorical test given
by Theorem 2.4.1.3, and using this result, we can prove that the derived
representation scheme has vanishing higher homologies if and only if the
moment map µ is flat:

Theorem 2.4.1.4. The representation homology H•(A, v,w) for the algebra A as
in (2.3.17) vanishes if and only if the moment map µ is flat.

Proof. Because of the diagram (2.4.4) the moment map µ is flat if and only
if µα is flat and by Theorem 2.4.1.3, condition (2), this happens if and only if

dimµ−1(0) = dimµ−1
α (0) = dimL(Γ ,α) − dim g\α =

= dimM(Q, v,w) − dim gv .
(2.4.5)

The representation homology is the homology of the Koszul complex

H•(A, v,w) = H•
(
O
(
M(Q, v,w)

)
⊗Λ•gv

)
,

and therefore, by Theorem 2.3.5.1, it vanishes in degrees i > 1 if and only if
the dimension condition (2.4.5) is satisfied.

In the following examples we use Theorem 2.4.1.3 for some quivers
and we find the combinatorical condition on the dimension vectors for
the moment map to be flat. It is convenient to observe that for the quiver
Γ = Q∞ the map p is, for vectors of the form (β, 1) or (β, 0) (that is the only
type of vectors that we need to decompose the dimension vector α = (v, 1)):

p(β, 1) =
∑
γ∈Q1

βs(γ)βt(γ) +β ·w−β ·β ,

p(β, 0) = p(β, 1) + 1 .
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Examples 4. 1. The first example is that of a single-vertex quiver Q = A1
with no arrows, whose Γ = Q∞ becomes a quiver with 2 vertices and
w arrows going from one to the other. We need to test for which v it
holds that for each decomposition

(v, 1) = (β0, 1) + (β1, 0) + · · ·+ (βr, 0) , βt > 0 .

the following inequality holds:

v(w− v) > β0(w−β0) + r−β
2
1 − · · ·−β2

r .

We can observe that actually all β1, . . . ,βr > 1 and therefore the
function r−β2

1 − · · ·−β2
r reaches its maximum for β1 = · · · = βr = 1

for which it is 0. So we just need to test that

v(w− v) > β0(w−β0), ∀β0 = 0, . . . , v− 1

The inequality can also be rewritten as

�����(v−β0)w >�����(v−β0)(v+β0) , ∀β0 = 0, . . . , v− 1 ⇔ w > 2v− 1 .

2. The second example is a quiver with one vertex and m loops (m > 1).
In particular the Jordan quiver for m = 1 described in Figure 2.1. We
show that for each choice of v > 0 and w > 1 the moment map is flat.
The quiver Γ = Q∞ still has 2 vertices, the first one with m loops and
w arrows connecting the 2nd to the 1st, so that:

p(α1,α2) = 1 +mα2
1 +wα1α2 −α

2
1 −α

2
2 .

We need to test that for each decomposition

(v, 1) = (β0, 1) + (β1, 0) + · · ·+ (βr, 1), β1, . . . ,βr > 1 ,

the following inequality holds

(m− 1)v2 + vw > (m− 1)β2
0 +β0w+ r+ (m− 1)(β2

1 + · · ·+β2
r) ,

which is actually true component-wise because{
(m− 1)v2 > (m− 1)(β2

0 + · · ·+β2
r)

vw = (β0 + · · ·+βr)w > β0w+ rw > β0w+ r .

Therefore the moment map is always flat.
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3. The third example is the quiverQ = An−1 with the following particular
choice of vectors v = (1, . . . , 1) and wa = δa,1 + δa,n−1 (for which the
Nakajima variety is the symplectic dual of T∗Pn−1, as explained in the
next section). The resulting quiver Γ = Q∞ is the cyclic quiver with n
vertices and dimension vector α = (1, . . . , 1) constant to 1, for which it
is easy to check that the moment map is flat. In fact p(α) = 1 while
for any other β ∈Nn, 0 6= β 6= α we have p(β) 6 0 so that condition
(4) of Theorem 2.4.1.3 is satisfied.

2.4.2 Kirwan map and tautological sheaves

Let Mχ = Mχ(Q, v,w) be a smooth Nakajima quiver variety (so χ = χθ with
θ being v-regular, see Theorem 2.4.1.1), then the locus of χ-semistable points
coincides with the locus of χ-stable points, on which the action is free, and

Mχ = µ−1(0)�χ G = µ−1(0)χ-st/G .

The equivariant Kirwan map (in cohomology) is the map

κT : H•G×T
(
µ−1(0)

)
→ H•T (M

χ) , (2.4.6)

obtained by composing the natural pullback for the inclusion µ−1(0)χ-st ι
⊂

µ−1(0) with the isomorphism H•G×T
(
µ−1(0)χ-st) ∼= H•T (M

χ) due to the fact
that the G-action on the χ-stable locus is free:

H•G×T
(
µ−1(0)

)
ι•−→ H•G×T

(
µ−1(0)χ-st

)
∼= H•T

(
µ−1(0)χ-st/G

)
= H•T (M

χ) .

McGerty and Nevins have recently shown that the Kirwan map (2.4.6) is
surjective ([47, Corollary 1.5]), and that the same holds for other generalised
cohomology theories such as K-theory and elliptic cohomology. We are
particularly interested in the K-theory, so the Kirwan map is

κT : KG×T
(
µ−1(0)

)
→ KT (Mχ) . (2.4.7)
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Moreover the zero locus of the moment map µ−1(0) is equivariantly con-
tractible7:

KG×T
(
µ−1(0)

)
∼= KG×T (pt) = R(G× T) ∼= R(G)⊗R(T) ,

where R(−) is the representation ring (over C), so the Kirwan map has the
form:

κT : R(G)⊗R(T)→ KT
(
Mχ
)

, (2.4.8)

and it is a surjective map of R(T)-modules. KT (Mχ) is therefore generated
by tautological classes, because they come from classes of topologically trivial
vector bundles: if U is a G× T -module, and [U] ∈ R(G× T) is its class, then

κT ([U]) =
[(
µ−1(0)χ-st ×U

)
/G
]
∈ KT

(
µ−1(0)χ-st/G

)
= KT (Mχ) . (2.4.9)

Moreover the map (2.4.8) is a map of R(T)-modules, so the only non-trivial
part consist in its image on vector spaces U that are only representations of
G. For U = Vλ irreducible representation of G, we denote by a calligraphic
Vλ the sheaf whose K-theoretic class is [Vλ] = κT ([Vλ]) ∈ KT (Mχ). We can
use these tautological classes to define invariants in the K-theory of the
affine Nakajima variety by using the pushforward under the map p:

R(G)⊗R(T)
κT−→ KT (M

χ)
p∗−→ KT (M

0) . (2.4.10)

It is important to recall that in general the push-forward of a proper map p
in K-theory is given by the alternate sums of right-derived functors of p∗. In
this particular case the target variety M0 is affine, therefore this alternate
sum calculates the Euler characteristic of a sheaf F on Mχ, under the natural
identifications:

p∗([F]) = χT (M
χ,F) ∈ KT (O(M0) − Mod) ∼= KT (M

0) . (2.4.11)

The structure of O(M0)-module comes from the fact that the cohomologies
Hi(Mχ,F) have a structure of O(Mχ)-modules and the map p : Mχ →M0

gives to the latter a structure of O(M0)-module.

7This is because the moment map is equivariant and given by a homogeneous equation
(in this particular case of degree 2, but the degree does not matter). Hence one can define
an equivariant algebraic homotopy between the zero locus and the point 0 ∈ µ−1(0).
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For an irreducible representation U = Vλ of G the composition (2.4.10)
gives the Euler characteristic of the corresponding tautological sheaf Vλ:

p∗
(
κT ([Vλ])

)
= p∗

(
[Vλ]

)
= χT (M

χ,Vλ) ∈ KT (M0) . (2.4.12)

The notable special case of U = V0 the trivial 1-dimensional representation
of G, has image under the Kirwan map the (K-theoretic class of the) sheaf
of functions on the GIT quotient V0 = OMχ , and its Euler characteristic:

p∗(κT ([V0])) = p∗([OMχ ]) = χT (M
χ,OMχ) ∈ KT (M0) . (2.4.13)

2.4.3 Comparison theorem and first integral formula

In § 2.3.3 we defined the virtual fundamental classes of the isotypical
components of the derived character scheme

χλT (A, v,w) =

∞∑
i=0

(−1)i
[
(V∗λ ⊗Hi(A, v,w)])G

]
∈ KT (M0) , (2.4.14)

and in particular for Vλ = V0 = C:

χ0
T (A, v,w) = χGT (A, v,w) =

∞∑
i=0

(−1)i
[
Hi(A, v,w)G

]
∈ KT (M0) . (2.4.15)

Theorem 2.4.3.1. Let v,w be dimension vectors for which the moment map is flat,
and let χ = χθ with θ v-regular, so that Mχ(Q, v,w) is smooth. Then we have the
following equality in the equivariant K-theory of the affine Nakajima variety :

p∗([OMχ(Q,v,w)]) = [OM0(Q,v,w)] = χ
G
T (A, v,w) ∈ KT

(
M0(Q, v,w)

)
.

(2.4.16)

Proof. The first equality is a somewhat classical result. Firstly, the (derived)
pushforward in K-theory coincides with the underived pushforward

p∗([OMχ ]) = χT (M
χ,OMχ) =

∑
i>0

(−1)i[Hi(Mχ,OMχ)] =
[
OMχ

]
∈ KT (M0) ,
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because of the vanishing of higher cohomologies. In fact Mχ is a smooth
complex symplectic variety (Theorem 2.4.1.1), therefore the top-power of the
symplectic form is nowhere-vanishing and it provides a trivialisation of the
canonical sheaf KMχ ∼= OMχ . Hence the Grauert-Riemenschneider theorem,
saying that higher direct images of the canonical bundle under a proper
birational morphism vanish, can be applied (see [33] or [43, Theorem 4.3.9.]
for the Grauert-Riemenschneider theorem8). Moreover when the moment
map is flat and Mχ is smooth we can use Theorem 2.4.1.2:[

OMχ

]
= [OM0 ] ∈ KT (M0)

Finally by Theorem 2.4.1.4 the representation homology H•(A, v,w) van-
ishes in positive degrees, so that the Euler characteristic of its G-invariant
part (2.4.15) is:

χGT (A, v,w) = [H0(A, v,w)G]
Cor 2.3.2.1

= [OM0 ] .

Remark 2.4.3.1. In light of the previous explanations that we gave during
the course of the paper, the result stated in Theorem 2.4.3.1 is not entirely
surprising:

1. On one hand we have a symplectic resolution of singularities p : Mχ →
M0 therefore it is expected that functions on the smooth variety Mχ

are equal to functions on the singular M0.

2. On the other hand µ−1(0) is a complete intersection in the linear
space of representations M(Q, v,w), therefore the Koszul complex
O(DRepv,w(A))

∼= O (M(Q, v,w))⊗Λ•gv is a resolution of O(µ−1(0)):

Hi(A, v,w) =

{
O(µ−1(0)) , i = 0
0 , i > 1(

=⇒ χT (A, v,w) = O(µ−1(0))
) (2.4.17)

8Or [30, proof of Proposition 1.2.2.] and [12, Corollary 2.4.(1)] for the application of
Grauert-Riemenschneider in this specific situation.
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and the subcomplex of G-invariants is a resolution of the functions on
M0:

Hi(A, v,w)G =

{
O(µ−1(0))G , i = 0
0 , i > 1(

=⇒ χGT (A, v,w) = O(M0)
)

.
(2.4.18)

As a corollary of Theorem 2.4.3.1, we can take Hilbert-Poincaré series
(character for the torus) of the equality in (2.4.16) and obtain a equality
between numerical (power) series counting the graded dimensions. Formally,
if M0 were compact, the Hilbert-Poincaré would be the pushforward to the
point: chT : KT (M0) → KT (pt) = R(T), instead in general we land in the
field of fractions (see, for example, §4 in [55])

chT : KT (M0)→ Frac(R(T)) =: Q(T) .

Remark 2.4.3.2. If we consider the only fixed point for the torus action
0 ∈M0, and denote its inclusion by ι0 : {0}→M0, then by functoriality we
have chT = (ι0,∗)

−1, and this tells us that is not really necessary to invert all
non-zero elements in R(T), but only the ones of the form 1− tβ for non-zero
weights β, so that we actually land in the following smaller localisation (see
§2.1 and §2.3 in [59]):

R(T),loc := C

[
tα,

1
1 − tβ

]
,

where α,β run over all weights of T and β 6= 0.

Let us denote by x ∈ Tv ⊂ G the variables in the maximal torus of the
gauge group (Kähler variables) and by t = (a,  h) ∈ T = Tw× T h the equivariant
variables. Then we have, by Weyl’s integral formula:

chT
(
χGT (A, v,w)

)
=

1
|G|

∫
G

chG×T (χT (A, v,w)) (g, t)dg =

=
1
|W|

∫
Tv

chTv×T (χT (A, v,w)))(x, t)∆(x)dx ,
(2.4.19)
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(W is the Weyl group of G, ∆(x) is the Weyl factor,
and integrations are over the compact real forms of G, Tv)

Moreover, because the Euler characteristic of the homology of a complex is
equal to the Euler characteristic of the complex itself, we have

chTv×T (χT (A, v,w)) = chTv×T
(
O(M(Q, v,w))⊗Λ•g

)
=

∏
i(1 −  h1 h2ri)∏
j(1 − sj)

.

(2.4.20)
where sj are the weights of M(Q, v,w)∗ and ri are the weights of g:

chTv×T (M(Q, v,w)) =
∑
j

s−1
j , chTv(g) =

∑
i

ri .

To summarise:

Corollary 2.4.3.1. Under the same conditions of Theorem 2.4.3.1, and with the no-
tation used in the previous equations (in particular (2.4.20)), we have the following
equality of Poincaré-Hilbert series in the field of fractions Q(T):

chTO(Mχ(Q, v,w)) = chTO(M0(Q, v,w)) =
1
|W|

∫
Tv

∏
i(1 −  h1 h2ri)∏
j(1 − sj)

∆(x)dx .

(2.4.21)

We calculate the above expression (2.4.21) in some concrete examples in
§ 2.5.

Remark 2.4.3.3. The right-hand side of (2.4.21) does not depend on the GIT
parameter χ, while the left-hand side a priori does. By picking different
v-regular χ,χ ′ we obtain a combinatorical identity

chTO(Mχ(Q, v,w)) = chTO(Mχ ′(Q, v,w)) ,

which we will show to be non-trivial, also in simplest quiver cases (see § 2.5,
specifically Remark 2.5.1.1 in § 2.5.1).
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2.4.4 Other isotypical components and second integral for-
mula

In this section we prove a result similar to Theorem 2.4.3.1 to relate other
tautological sheaves with the corresponding isotypical components.

Let us recall that to define Mχ we fixed a character χ ∈ HomGrpC
(G, C×).

This character defines a 1-dimensional representation Cχ of G, whose image
under the Kirwan map is the Serre twisting sheaf

κT ([Cχ]) =
[
OMχ(1)

]
∈ KT (Mχ) . (2.4.22)

For each Vλ irreducible representation of G, we have a tautological sheaf Vλ
in the K-theory of Mχ. By Serre vanishing theorem when we twist

Vλ(m) := Vλ ⊗OMχ(m) , (2.4.23)

by a sufficiently large powerm� 0 of the twisting sheaf, higher cohomology
vanish, so that

χT (M
χ,Vλ(m)) = H0(Mχ,Vλ(m)) . (2.4.24)

Moreover, more or less by definition of the GIT quotient Mχ, this is equal to
the G-invariant global sections of the trivial vector bundle Vλ ⊗Cχm over
the stable locus:

H0(Mχ,Vλ(m)) = Γ
(
µ−1(0)χ-st,Vλ ⊗Cχm

)G
. (2.4.25)

Finally for m� 0 large enough, the following natural restriction map be-
comes an isomorphism (see for example the proof of Lemma 3 in Appendix
A of [1]):

Γ
(
µ−1(0),Vλ ⊗Cχm

)G ∼−→ Γ
(
µ−1(0)χ-st,Vλ ⊗Cχm

)G
, (2.4.26)

but the left-hand side is nothing else but

Γ
(
µ−1(0),Vλ ⊗Cχm

)G
=
(
O(µ−1(0))⊗ Vλ ⊗Cχm

)G
. (2.4.27)

It is worth noticing at this point that irreducible representations Vλ of G are
labelled by collections of partitions λ = (λ(1), . . . , λ(n)) and that the represen-
tation Vλ ⊗Cχm is still a irreducible representation of G, corresponding to
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the shifted collection of partitions:

Vλ ⊗Cχm = V
λ̃

, λ̃ := λ+mθ = (λ(1) +mθ1 , . . . , λ(n) +mθn) (χ = χθ) ,
(2.4.28)

(see Appendix B for the notation). We give the following definition:

Definition 2.4.4.1. We say that an irreducible representation V
λ̃

is large
enough if λ̃ = λ+mθ (see (2.4.28)) with m� 0 large enough for both (2.4.24)
and (2.4.26) to be true. This notion depends on the quiver Q, on the dimen-
sion vectors v,w and on the v-regular χ = χθ.

Denoting by λ̃∗ the partition corresponding to the dual representation,
we can continue equation (2.4.27) to recognise:(

O(µ−1(0))⊗ V
λ̃

)G
=
(
O(µ−1(0))⊗ V∗

λ̃∗

)G
= H0(A, v,w)G

λ̃∗
, (2.4.29)

the isotypical component of λ̃∗ of the (zeroth) representation homology.
Finally if we observe that with flat moment map, higher homologies vanish,
we obtain the following result:

Theorem 2.4.4.1. Let v,w be dimension vectors for which the moment map
is flat, and fix χ = χθ with θ v-regular. For λ large enough (in the sense of
Definition 2.4.4.1) we have

p∗([Vλ]) = [H0(Mχ,Vλ)] = χλ
∗
T (A, v,w) ∈ KT (M0(Q, v,w)) . (2.4.30)

The analogous integral formula to obtained by taking characters is

Corollary 2.4.4.1. Under the same conditions of Theorem 2.4.4.1, and with the
notation used in (2.4.20), we have the following equality of Poincaré-Hilbert series
in the field of fractions Q(T):

chT (χT (Mχ,Vλ)) = chT (H0(Mχ,Vλ)) =
1
|W|

∫
Tv

∏
i(1 −  h1 h2ri)∏
j(1 − sj)

fλ(x)∆(x)dx .

(2.4.31)
where fλ(x) = chTv(Vλ) (it is the product of Schur polynomials associated to the
partitions in λ).



70 § 2.5

2.5 Examples

In this section we explain some concrete examples, mainly from the easiest
quivers already considered in the previous sections. We see how such
elementary quivers still produce varieties of great interest in various fields
of mathematics.

2.5.1 Cotangent bundle of Grassmannian

The quiver Q = A1 with only one vertex and no arrows. The framed,
doubled quiver has two vertices and two arrows connecting them in opposite
directions.

• v

Single-vertex quiver

• v

�w

ij

Figure 2.2: Framing and doubling the single-vertex quiver.

Therefore:

µ−1(0) = {(I, J) ∈ HomC(C
w, Cv)⊕HomC(C

v, Cw) | I ◦ J = 0} .

Because we have only one vertex we have to choose the GIT parameter θ ∈ Z,
and it is easy to check that the v-regularity condition means simply θ 6= 0
(independently from v). For θ 6= 0 we have the following identifications of
the semistable locus:

θ-semistable points =

{
J injective, θ < 0
I surjective, θ > 0

and the GIT quotient is isomorphic to the cotangent bundle T∗Gr(v,w) of
v-planes in Cw in the case θ < 0 and to T∗Gr(w− v,w) in the case θ > 0.
The two varieties are isomorphic to each other, but we have the following
different identifications of the points in the Grassmannian:

θ < 0: im(J) ∈ Gr(v,w) ,
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θ > 0: ker(I) ∈ Gr(w− v,w) .

The affine quotient can be identified (using some version of the fundamental
theorem of invariant theory):

M0 = Spec
(
O(µ−1(0))GLv

)
∼= {A ∈Mw×w(C) |A2 = 0, rk(A) 6 v} ,

where A represents the composition J ◦ I : Cw → Cw. The condition on
the rank is due to the fact that A : W → V → W factorises through V ,
but sometimes it is superfluous. In fact in general A2 = 0 forces already
rk(A) 6 bw/2c. The moment map is flat if and only if 2v − 1 6 w (see
Examples 4), and only in this cases the projective morphism

p : T∗Gr(v,w)→M0

is a resolution of singularities.

p

Mθ
∼= T∗P1 M0 ∼= Spec

(
C[a,b,c]
(a2+bc)

)

Figure 2.3: The (real) picture of the case (v,w) = (1, 2): this is also known as
Springer resolution of the nilpotent cone of sl2(C).

In this case in the torus T = Tw × T h only the product  h1 h2 appears
and we denote it by  h. We can use (2.4.21) for χ = χ−1 for which Mχ =
T∗Gr(v,w) and obtain a formula for the character of the ring of functions
on the cotangent bundle of Grassmannian:

chT (O(T∗Gr(v,w))) =

=
1
v!
·
∮
|xα|=1

∏
α,β(1 −  hx−1

α xβ)∏
α,γ(1 −  hx−1

α aγ)(1 − xαa
−1
γ )
·

∆(x)︷ ︸︸ ︷∏
α6=β

(1 − x−1
α xβ)

dx︷ ︸︸ ︷∏
α

dxα

2πixα
,

(2.5.1)
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where in the above x = (xα) = (x1, . . . , xv) and a = (aγ) = (a1, . . . ,aw).

The integral in the right-hand side can be computed by iterated residues,
and by doing so we can recognise the localisation formula in equivariant
K-theory as a sum over the fixed points p ∈ (T∗Gr(v,w))T of the inverse of
the K-theoretic Euler class of the tangent space at that point:

chT (O(T∗Gr(v,w))) =
∑

B⊂{1,...,w}
#B=v

1∏
β∈B
γ/∈B

(
1 −

aβ
aγ

)(
1 −  h

aγ
aβ

) =

=
∑

p∈(T∗Gr(v,w))T

1
chT
(
Λ−1T∗p (T

∗Gr(v,w))
) .

(2.5.2)

For what concerns other sheaves, let us consider the standard representation
V = Cv of G = GLv(C). The associated tautological sheaf V on Mχ−1 =
T∗Gr(v,w) is indeed the usual tautological sheaf of rank v. Irreducible
representations are labelled by Schur functors Vλ = Sλ(V) where λ = (λ1 >
· · · > λv) is a integer partition of v parts, and we consider the corresponding
tautological sheaves Vλ. For example the (standard) tautological sheaf itself
is V = V(1,0,...,0), or powers of the Serre twisting sheaf are:

OT∗Gr(v,w)(m) = det−m(V) = V(−m,...,−m) . (2.5.3)

A partition λ becomes large (Definition 2.4.4.1) in the sense that we can apply
Theorem 2.4.3.1 when all its components are negative enough (because the
character χ = χ−1 is negative), and it turns out that it suffices to have λ1 6 0,
that is equivalent to say that the partition is made of non-positive terms
(an example is (2.5.3), in which for m > 0 the partition is negative and the
corresponding sheaf has vanishing higher cohomologies). In this range we
have

chTH0(T∗Gr(v,w),Vλ
)
=

1
v!
·
∮
|x|=1

(∏
α,β(1 −  hx−1

α xβ)
)
sλ(x)∏

α,γ(1 −  hx−1
α aγ)(1 − xαa

−1
γ )
·
∏
α6=β

(1 − x−1
α xβ)

∏
α

dxα

2πixα
,

(2.5.4)

where sλ(x) = chTv(Vλ) is the Schur polynomial associated to the partition
λ. Again, the integral in the right-hand side can be computed by means
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of iterated residues, giving the localisation formula for the corresponding
tautological sheaf:

chTH0(T∗Gr(v,w),Vλ
)
=

∑
B⊂{1,...,w}

#B=v

sλ(aB)∏
β∈B
γ/∈B

(
1 −

aβ
aγ

)(
1 −  h

aγ
aβ

) =

=
∑

p∈(T∗Gr(v,w))T

chT (Vλ)|p
chT
(
Λ−1T∗p (T

∗Gr(v,w))
) ,

(2.5.5)

where the expression sλ(aB) means that we are evaluating the Schur poly-
nomial sλ(x1, . . . , xv) in the point x = (aβ)β∈B.

Remark 2.5.1.1. As already observed in Remark 2.4.3.3 the right-hand side
of the integral formula (2.4.21) does not depend on the character χ, while a
priori the left-hand side does. In (2.5.1) we used the character χ = χ−1 for
which Mχ = T∗Gr(v,w). If we use χ ′ = χ1 we have Mχ ′ = T∗Gr(w− v,w).
The fixed point formula for the first variety (2.5.2) can be compared with the
one for the second variety, and it gives a non-trivial combinatorical identity:∑

B⊂{1,...,w}
#B=v

1∏
β∈B
γ/∈B

(
1 −

aβ
aγ

)(
1 −  h

aγ
aβ

) =
∑

B⊂{1,...,w}
#B=v

1∏
β∈B
γ/∈B

(
1 −

aγ
aβ

)(
1 −  h

aβ
aγ

) .

(2.5.6)

2.5.2 Framed moduli space of torsion free sheaves on P2

This is the case of the Jordan quiver, the quiver with one vertex and one loop
(Figure 2.1). Therefore zero locus of the moment map µ−1(0) is identified
with quadruples satisfying the ADHM equation:

{(X, Y, I, J) ∈ EndC(C
v)⊕2⊕HomC(C

w, Cv)⊕HomC(C
v, Cw)

∣∣ [X, Y]+ IJ = 0} .

For GIT paramater θ ∈ Z:

θ-semistable points =

=

{
@0 6= S ⊂ V s.t. C〈X, Y〉(S) ⊂ S and S ⊂ ker(J), θ < 0
@S ( V s.t. C〈X, Y〉(S) ⊂ S and im(I) ⊂ S, θ > 0
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In both cases we have an identification between the Nakajima variety Mθ

and M(w, v), the (framed) moduli space of torsion free sheaves on CP2 of
rank w, second Chern class c2 = v, and fixed trivialisation at the line at∞. The affine Nakajima variety is M0 ∼=M0(w, v) the framed moduli space
of ideal instantons on S4 = C2 ∪ {∞}. The map p : M(w, v) → M0(w, v) is
always a resolution of singularities because the moment map is always flat.

When the framing is w = 1 we obtain the Hilbert-Chow morphism from
the Hilbert scheme of v points on C2 to the symmetric v-power:

p : Hilbv(C2)→ Symv(C2) .

For general v and w the integral formula looks like:

chTO(M(w, v)) =
1
v!
·
∮
|x|=1

I(x,a,  h) ·
∏
α6=β

(1 − x−1
α xβ)

∏
α

dxα

2πixα
, (2.5.7)

where
I(x, t,  h) =

=

∏
α,β(1 −  h1 h2x

−1
α xβ)∏

α,β(1 −  h1x
−1
α xβ)(1 −  h2x

−1
α xβ) ·

∏
α,γ(1 −  h1 h2x

−1
α tγ)(1 − xαt

−1
γ )

,

and it is also known as the integral formula for Nekrasov partition function
(proved for example in Appendix A of [25]).

For other isotypical components, let us say that we fixed χ = χ1. Again
we have a tautological sheaf of rank v, V, and other sheaves associated to
irreducible representations are labelled by Schur functors Vλ where λ is
an integer partition of v parts. In this case the largeness condition indeed
means that the partition is big enough, and it turns out that it suffices for it
to be non-negative λ1 > · · · > λv > 0. In this range we have:

chTH0(M(w, v),Vλ) =
1
v!

∮
|x|=1

I(x,a,  h) · sλ(x) ·
∏
α6=β

(1 − x−1
α xβ)

∏
α

dxα

2πixα
.

(2.5.8)
For λ > 0 the Schur polynomial sλ(x) is indeed an actual polynomial (and
not a Laurent polynomial), and therefore with (2.5.8) we recover the integral
formula for Nekrasov partition function with matter fields (the matter field
is represented by the sheaf Vλ in this case) which was proved for example
in [49].
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2.5.3 Symplectic dual of T∗Pn−1

X = T∗Gr(k,n) has a symplectic dual9, Xˇ, which for the choice of pa-
rameters 2k 6 n can be shown to be also a Nakajima quiver variety ([63]).
Specifically it is the Nakajima variety associated to the following An−1
quiver, with dimension vectors:

v = (1, 2, . . . , k− 1, k, . . . ,k︸ ︷︷ ︸
(n−2k+1)-times

,k− 1, . . . , 2, 1) ,

w = (w1, . . . ,wn−1) wi = δi,k + δi,n−k .

We restrict to the case k = 1, for which dimension vectors are{
v = (1, . . . , 1) ,
w = (1, 0, . . . , 0, 1) ,

(2.5.9)

and the corresponding Nakajima quiver variety is the symplectic dual of
T∗Pn−1. For n = 2 we go back to the A1 case with dimensions v = 1 and
w = 2, so we find that T∗P1 is symplectic dual to itself. Let us study the
other cases n > 3 which are different.

As usual we denote the arrows in the quiver by x1, . . . , xn−2, their dual
by y1, . . . ,yn−2 and then we have i1, j1 and in−1, jn−1 because of the non-
trivial framing at the vertices 1 and n− 1. The zero locus of the moment
map is the following algebraic variety in a 2n-dimensional affine space

µ−1(0) ∼= Spec
(

C[x1,y1, . . . , xn−2,yn−2, i1, j1, in−1, jn−1]

i1j1 = x1y1 = x2y2 = · · · = xn−2yn−2 = −in−1jn−1

)
.

The gauge group is a n− 1-dimensional torus Gv = GL1(C)n−1 = (C×)n−1,
and the affine Nakajima variety is identified with the ADE singularity of
type An−1:

M0 ∼= Spec
(

C[x,y, z]
xy = zn

)
∼= C2/Zn , (2.5.10)

where x = x1 · · · xn−2i1jn−1, y = y1 · · ·yn−2in−1j1, z = x1y1. We recall that
the action ZnyC2 that gives the corresponding ADE singularity of type

9We do not give a definition of symplectic dual because it is beyond the scope of this
thesis. We refer the interested reader to [14].
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An−1 is given by the embedding Zn ⊂ SL2(C) in which a n-th root of unity
ξ ∈ Zn becomes the matrix diag(ξ, ξ−1) ∈ SL2(C).

We fix GIT parameter χ = χθ+ with θ+ = (1, 1, . . . , 1). The corresponding
smooth Nakajima quiver variety is a consecutive (n− 1 times) blowup of
the singular point x = y = z = 0 in (2.5.10):

p : Mχ+ = C̃2/Zn −−−→M0 = C2/Zn , (2.5.11)

with exceptional fiber p−1(0) given by n− 1 copies of Riemann spheres P1

intersecting in such a way that their underlying intersection graph is An−1
(see [22]), as shown in Figure 2.4.

Figure 2.4: Every sphere is replaced by a vertex and two vertices are linked
by as many arrows as intersection points of the corresponding spheres.

The associated derived representation scheme is

DRepv,w = Spec (C[x1,y1, x2,y2, . . . , xn−2,yn−2, i1, j1, in−1, jn−1, ϑ1, . . . , ϑn−1]) ,

where ϑi have homological degree 1 and differential
dϑ1 = −y1x1 + i1j1 ,
dϑk = xk−1yk−1 − ykxk , (k = 2, . . . ,n− 2) ,
dϑn−1 = xn−2yn−2 + in−1jn−1 ,

(2.5.12)

and they are invariants under the gauge group Gv = GLn−1
1 , so that the

associated character scheme is simply

DRepGvv,w
∼= Spec

((
C[x,y, z1, . . . , zn−2, zn−1, zn]

xy = z1 · · · zn

)
[ϑ1, . . . , ϑn−1]

)
,
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where x,y are the same classes as before in (2.5.10), zk = xkyk for k =
1, . . . ,n − 2, zn−1 = i1j1, zn = in−1jn−1. We denote the variables in the
equivariant torus T = Tw × T h by (a, ã,  h1,  h2) (where a is on the vertex 1
and ã on the vertex n− 1) and we have:

chTO
(

C̃2/Zn

)
= chTO

(
C2/Zn

)
=

= chT
(
χT (DRepGvv,w)

)
=

1 +  h1 h2 · · ·+  hn−1
1

 hn−1
2(

1 −  hn−1
1

 h2
a
ã

)(
1 −  h1 h

n−1
2

ã
a

) .
(2.5.13)
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Chapter 3

Noncommutative Derived Poisson
Reduction

Mathematics Subject Classification Primary 53D30; Secondary 14A22.

Abstract

In this paper we propose a procedure for a noncommutative derived Poisson
reduction, in the spirit of the Kontsevich-Rosenberg principle: “a noncommu-
tative structure of some kind on A should give an analogous commutative
structure on all schemes Repn(A)”. We use double Poisson structures as non-
commutative Poisson structures and noncommutative Hamiltonian spaces
— as first introduced by M. Van den Bergh — to define (derived) zero loci of
Hamiltonian actions and a noncommutative Chevalley-Eilenberg and BRST
constructions, showing how we recover the corresponding commutative
constructions using the representation functor. In a dedicated final short
section we highlight how the categorical properties of the representation
functor lead to the natural introduction of new interesting notions, such as
noncommutative group schemes, group actions, or Poisson-group schemes,
which could help to understand the previous results in a different light, and
in future research generalise them into a broader, clearer correspondence
between noncommutative and commutative equivariant geometry.
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3.1 Introduction

A known principle in noncommutative geometry ([41]) says that every geo-
metrically meaningful structure on an (associative, unital) algebra A ∈ Algk
should induce the corresponding geometric structure on the scheme of
representations Repn(A) in a n-dimensional vector space. Noncommutative
Poisson geometry was worked out first by W. Crawley-Boevey who defined
a Poisson structure on the character scheme Repn(A)� GLn through his def-
inition of H0-Poisson structures ([20]) and then by M. Van den Bergh in [68],
who made the observation that a Poisson bracket on the full representation
scheme Repn(A) shall be defined on the generators {aij,bkl}, and because it
depends on four indices, it is natural to assume that it comes from a double
bracket {{−,−}} : A⊗A→ A⊗A, with some properties that ensure that the
induced bracket on the representation scheme is indeed a Poisson bracket.

M. Van den Bergh also defined, using double Poisson structures, a
noncommutative version of Hamiltonian spaces, essentially double Poisson
algebras with a distinguished ‘gauge’ element δ ∈ A that acts via the double
Poisson bracket as the universal derivation on the algebra (3.3.19). This
ensures that the corresponding action of the gauge group GLnyRepn(A)
on the representation scheme is a Hamiltonian action, with moment map
µn : Repn(A)→ gl

(∗)
n described as the evaluation of a representation on the

element δ. One can define a noncommutative version of Poisson reduction
then, by considering the quotient algebra A/〈δ〉 by the two sided ideal
generated by δ, which is a noncommutative counterpart of the zero locus:
Repn(A/〈δ〉) = µ−1

n (0), so that its GLn-quotient is the Poisson reduction
µ−1
n (0) � GLn. These ideas appear in various forms in the first papers on

noncommutative symplectic and Poisson geometry, such as [40, 32, 13, 31,
21, 24, 68, 69].

In this paper, we elaborate an idea from V. Ginzburg (who first defined
some ‘noncommutative BRST complexes’ in [29]) and we work out in details
a possible procedure to do noncommutative Poisson reduction in a derived
fashion: we add variables in positive homological degrees to kill relations
instead of considering quotients, and we add other variables in negative
homological degrees as some sort of Chevalley-Eilenberg generators instead
of considering invariants. In order to clarify our definitions involved in this
‘derived Poisson reduction’ in the noncommutative world, it is conveninet to
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first recall briefly the commutative construction of derived Poisson reduction,
in the style of [16, 64].

We start from a Poisson algebra B, a Hamiltonian group scheme action
of a reductive group GyX = Spec(B), with (co)moment Poisson map:
Sym(g) → B (the Poisson structure on Sym(g) is the natural extension of
the Lie bracket). We first define the derived zero locus of the corresponding
map of schemes µ : X → g∗ as the homotopy pull-back in the category of
dg schemes (dually, the homotopy push-out diagram in the category of
commutative dg algebras over):

B⊗LSym(g) k
(
↔ X×hg∗ pt

)
. (3.1.1)

We then apply the Chevalley-Eilenberg functor C(g,−) = Homk(Sym(g[1]),−)
to the derived zero locus and obtain the classical BRST complex

C(g,B⊗LSym(g) k) ' C(g,B)⊗LC(g,Sym(g)) C(g,k)(
↔ [X/G]×h[g∗/G] [pt/G]

) (3.1.2)

as a derived model for the algebra of functions on the reduced space
µ−1(0)�G.

3.1.1 Summary of results

In the noncommutative context we consider a dg algebra A ∈ DGAS over
S, a finite dimensional algebra of orthogonal idempotents S = kI (path
algebra of a quiver with vertex set I and no arrows). When we consider
representations over S in a vector space V we need to specify a dimension
vector n ∈ NI (of total dimension = dimV) or in other words fix the
representation ρn : S → End(V) sending the i-th orthogonal idempotent
to the corresponding one according to the decomposition given by the
dimension vector n. The representation functor has the form:

(−)n : DGAS → CDGAk
A 7−→ An = ORepn(A) ,

(3.1.3)

where Repn(A) denotes the scheme of representations of A that agree with
ρn through the structure map S→ A. When A is equipped with a double
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Poisson algebra structure, there is an induced Poisson structure on An
defined on its generators by:

{aij,bkl} = {{a,b}} ′kj{{a,b}} ′′il . (3.1.4)

In other words the representation functor enriches to a functor between the
categories of (dg) double Poisson algebras, and commutative (dg) Poisson
algebras:

(−)n : DGPPAS → CDGPAk . (3.1.5)

Let now A ∈ PPAlgS be a (ungraded) double Poisson algebra. The repre-
sentation scheme Repn(A) comes with a natural action GSyRepn(A) of
the gauge group of S-preserving automorphisms GS ⊂ GL(V), which in
this case is just a product of general linear groups GLn :=

∏
i GLni . The

corresponding Lie algebra g = gln can be obtained as the representation
scheme of the path algebra of a quiver with vertex set I and one loop ti on
each vertex, TS(L) (L is the linear span of the loops). As it turns out there is
a natural double Poisson structure on TS(L) such that the induced Poisson
structure on

(TS(L))n = O(gln) = Sym(gl∗n)
∼= Sym(gln) (3.1.6)

is the standard extension of the Lie algebra structure on gln (where in the
last identification we used the canonical isomorphism induced by the trace).
Once we know this, we see that the action GLnyRepn(A) is Hamiltonian
exactly when A comes with a morphism of double Poisson algebras TS(L)→
A, with the additional property that the image of a loop ti 7→ δi has Poisson
bracket with any a ∈ A:

{{δi,a}} = aei ⊗ ei − ei ⊗ eia , (3.1.7)

(the i-th component of the universal derivation). In other words it is possible
to define of a category of noncommutative Hamiltonian spaces as a full
subcategory (objects with structure map having the property (3.1.7)) of the
under category PPAlgHTS(L) ⊂ DGPPATS(L) in such a way that:

Theorem (§3.4.2). The representation functor enriches to a functor between the
category of noncommutative Hamiltonian spaces and commutative Hamiltonian
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gln-spaces:

PPAlgHTS(L) CPAlgHSym(gln)

DGATS(L) CDGASym(gln)

(−)n

(−)n

(3.1.8)

where the vertical functors forget the Poisson structures and view the algebras as
dg algebras placed in degree zero. Moreover the representation functor at the level
(−)n : DGATS(L) → CDGASym(gln)

is cocontinuous (preserves small colimits), so in
particular it preserves coproducts.

Once this is clear it is natural to give the necessary definitions and a
procedure to do noncommutative derived Poisson reduction, simply by
substituting the constructions in (3.1.1) and (3.1.2) by the corresponding
noncommutative ones.

The noncommutative analogue of the zero locus of the Poisson moment
map is the coproduct over TS(L) of the Hamiltonian algebra TS(L)→ A and
S (viewed as a TS(L)-algebra via the standard projection that sends L to
zero):

A/〈L〉 = AqTS(L) S
(−)n7−−−→ An ⊗Sym(gln)

k . (3.1.9)

We can therefore define a noncommutative derived zero locus substituting
the coproduct with the derived coproduct, in such a way that we recover
the classical derived zero locus:

Theorem (§3.4.2). The following model of noncommutative derived zero locus
corresponds, under the representation functor, to the classical derived zero locus -
the Koszul complex:

AqLTS(L) S
∼= AqS TS(L[1])

(−)n7−−−→ An ⊗LSym(gln)
k ∼= An ⊗k Sym(gln[1]) .

(3.1.10)

We denote this specific model for the noncommutative derived zero
locus by Sh(A) = AqS TS(L[1]), because it is some sort of a generalised
‘Shafarevich complex’. The next step for doing Poisson reduction is a non-
commutative Chevalley-Eilenberg construction, which we define to be the
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following coproduct (with twisted differential, as in the commutative case —
details in §3.3.4):

CE : DGPPATS(L) → DGATS(L⊕L∗[−1])

A 7−−−→ AqTS(L) TS(L⊕ L
∗[−1]) .

(3.1.11)

The reader who is wondering why we momentaneously forget the Poisson
structure is encouraged to read the details of this construction in §3.3.4,
especially Remark 3.3.4.1. When we start from a noncommutative Hamilto-
nian space A ∈ PPAlgHTS(L) and apply the Chevalley-Eilenberg construction
to the Shafarevich complex we obtain a noncommutative version of the
BRST complex:

BRST(A) := CE(Sh(A)) ∼= AqS TS(L[1]⊕ L∗[−1]) , (3.1.12)

now equipped with the natural double Poisson structure which comes from
A and the natural pairing between L,L∗. We obtain the following result:

Theorem (§3.4.3). There is a commutative diagram between the noncommutative
and the commutative BRST construction:

PPAlgHTS(L) CPAlgHSym(gln)

DGPPATS(L⊕L[1]⊕L∗[−1]) CDGPASym(gln⊕gln[1]⊕gl∗n[−1])

(−)n

BRST BRST
(−)n

(3.1.13)

We conclude this introduction by providing a ‘dictionary’, a summary of
the above-mentioned noncommutative constructions and their commutative
counterparts.
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Table 3.1: Dictionary between noncommutative and commutative geometry
(g = gln in the table).

‘Dictionary’ Noncommutative
geometry(op) Commutative geometry(op)

Base scheme S k

Derived
affine

schemes
DGAS CDGAk

Derived
Poisson
schemes

DGPPAS CDGPAk

Gauge
algebra TS(L) Sym(g)

Hamiltonian
spaces PPAlgHTS(L) ⊂ DGPPATS(L) CPAlgHSym(g) ⊂ CDGPASym(g)

Derived zero
locus (Koszul

complex)
AqLTS(L) S

∼= AqS TS(L[1]) B⊗LSym(g) k
∼= B⊗k Sym(g[1])

Quotient
stack

(Chevalley-
Eilenberg
complex)

TS(L
∗[−1])qS − Homk(Sym(g[1]),−)

Derived
Poisson

reduction
(BRST

complex)

TS(L
∗[−1])qS(

AqLTS(L) S
)

Homk

(
Sym(g[1]),B⊗LSym(g) k

)

After the theoretical part, we show the details of noncommutative de-
rived Poisson reduction for some concrete well-known algebras such as
cotangent bundles of smooth algebras, and in particular path algebras of
doubled quivers, obtaining a BRST model for Nakajima-type quiver varieties.



86 § 3.1

We give a proof of the somewhat classical result that the (commutative)
BRST homology is the tensor product of the GLn-invariant homology of the
corresponding Koszul complex with the Lie algebra (co)homology of gln:

Theorem (§3.5.1). Let A be a noncommutative Hamiltonian space and, for a fixed
dimension n, let Bn(A),Kn(A) the associated (commutative) BRST and Koszul
complexes, respectively. Then we have

H•(Bn(A)) ∼= H•(Kn(A))GLn ⊗k H−•(gln,k) . (3.1.14)

Then we show a couple of examples of path algebras of quivers such
as the quiver with one vertex and g loops, corresponding to a Lie algebra
version of the character variety of a Riemann surface of genus g, and in
particular the commuting scheme for g = 1. Finally we pick two more
examples different from path algebras of a quiver, which correspond to a
Lie group-Lie algebra and a Lie group-Lie group version of the commuting
scheme (which would be the case Lie algebra-Lie algebra).

3.1.2 Layout of the paper and instructions for the reader

§3.2 explains the theory of double Poisson algebras (as introduced by M. Van
den Bergh), with a particular emphasis on the differential graded case and
a categorical meaning of these structures. In §3.3 we formalise the construc-
tions contained in the noncommutative side of the ‘dictionary’ (Figure 3.1)
together with a few structural results that these definitions are indeed well-
posed and well-behaved. In §3.4 we prove our main results, showing in
which sense the noncommutative side of the ‘dictionary’ corresponds to
the commutative side. In §3.5 we discuss the large class of examples of
cotangent bundles, in particular path algebras of doubled quivers (together
with a computation of the commutative BRST homology in this context)
and various versions of the commuting scheme. In the last, short §3.6 we
introduce the notions of noncommutative analogues of more general group
schemes, group actions and Poisson-group schemes, which are a possible
direction in which we can generalise the results of the paper.
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Notations and conventions

k denotes an algebraically closed field of characteristic zero. We denote
categories by the standard monospace font: Vectk, Algk, DGAk, . . . We always
work in chain complexes, so for us a differential graded object (algebra,
vector space, . . . ) has differential of degree −1, differential graded is often
shortened by “dg”, and commutative differential graded by “cdg”. For a
category C and an object S ∈ C we denote by S ↓ C the under category (in the
case of dg algebras we denote this also by S ↓ DGAk = DGAS). The coproduct
in the under category S ↓ C is the push-out in C of diagrams • ← S→ •, and
denoted by −qS −. Left and right derived functors of a functor between
model category F : C→ D, when they exist, are denoted by L(F), R(F) and by
them we mean the total left/right derived functors between the homotopy
categories. In the case of schemes, we denote the derived pull-back also by
the more traditional symbol: X×RZ Y = X×hZ Y (‘h’ stands for ‘homotopy’
pull-back).
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3.2 Double Poisson algebras

In [68] M. Van den Bergh introduced double Poisson brackets as the
main candidates for noncommutative Poisson structures according to the
Kontsevich-Rosenberg principle (indeed if one wants a Poisson bracket
on representation schemes, needs a bracket with values in A⊗A). In this
Section we recall the main definitions and results from M. Van den Bergh in
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order to set up the notation and adapt them slightly to better suit our pur-
poses. Mainly we discuss the differential graded version of double Poisson
brackets (which is already sketched in [68], and studied in [27] in relation to
cyclic A∞-algebras) and by doing so we consider the category of dg double
Poisson algebras, which is the natural category in which we should do
derived Poisson reduction. Finally we introduce a special class of dg double
Poisson algebras whose differential is given by the induced single Poisson
bracket with a distinguished (double) Maurer-Cartan element which we call
“noncommutative charge”, because the induced differential on representa-
tion schemes is obtained as the Poisson bracket by the trace of this element.
The expert reader can skip this Section entirely, or just come back when
some notion from this Section is used in the following part of the paper.

3.2.1 Graded objects

Let DGAk be the category of differential graded algebras over k (the differ-
entials have degree −1 in our conventions). We recall that for a differential
graded algebra A, the tensor product A⊗A has two natural graded bimod-
ule structures over A:

(outer) a · (u⊗ v) · b := au⊗ vb ,
(inner) a ∗ (u⊗ v) ∗ b := (−1)|a||b|+|a||u|+|b||v|ub⊗ av .

The two structures commute with each other (with a sign):{
a · (a ′ ∗ (u⊗ v) ∗ b ′) · b = (−1)|a||a

′|+|b||b ′|a ′ ∗ (a · (u⊗ v) · b) ∗ b ′ ,
a ′ ∗ (a · (u⊗ v) · b) ∗ b ′ = (−1)|a||a

′|+|b||b ′|a · (a ′ ∗ (u⊗ v) ∗ b ′) · b .
(3.2.1)

For each n = 1, 2, . . . and each permutation σ ∈ Σn we denote by
τσ : A⊗n → A⊗n the isomorphism:

τσ(a1 ⊗ · · · ⊗ an) = (−1)saσ−1(1) ⊗ · · · ⊗ aσ−1(n) ,

where s is the sign that counts all the swappings involved in σ:

s =
∑
i<j:

σ−1(i)>σ−1(j)

|aσ−1(i)||aσ−1(j)| .
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The permutation (−)◦ := τ(12) : A
⊗2 → A⊗2 intertwines the two bimodule

structure: {
(a · (u⊗ v) · b)◦ = a ∗ ((u⊗ v)◦) ∗ b ,
(a ∗ (u⊗ v) ∗ b)◦ = a · ((u⊗ v)◦) · b .

(3.2.2)

For a graded object A (a dg algebra, a graded vector space, . . . ) and an
integer m ∈ Z we denote its m-shifted object by A[m]:

(A[m])i := Ai−m , (3.2.3)

so that if A is concentrated in degree zero, then A[m] is concentrated in
degree m, and a homogeneous map A→ A[m] is a map Ai → Ai−m (shifted
of degree −m).

3.2.2 Multi-brackets on differential graded algebras

Definition 3.2.2.1. An n-bracket on a differential graded algebra A ∈ DGAk is
a map {{−, . . . ,−}} : A⊗n → A⊗n (of degree 0) with the following properties:

1. (derivation) The map {{a1, . . . ,an−1,−}} : A→ A⊗n is a graded deriva-
tion (for the outer bimodule structure on A⊗n) of degree p := |a1|+
· · ·+ |an−1|, that is

{{a1, . . . ,an−1,bc}} = {{a1, . . . ,an−1,b}} · c+ (−1)|b|pb · {{a1, . . . ,an−1, c}} ,
(3.2.4)

2. (cyclic invariance)

{{−, . . . ,−}} = (−1)n+1τ(12...n) ◦ {{−, . . . ,−}} ◦ τ−1
(12...n) , (3.2.5)

3. (compatibility between bracket and differential)

d ◦ {{−, . . . ,−}} = {{−, . . . ,−}} ◦ d . (3.2.6)

Definition 3.2.2.2. If A ∈ DGAS := S ↓ DGAk is a dg algebra over S, then an
n-bracket is called S-linear if it vanishes when its last argument is in the
image of S under the structure map S→ A (and consequently, by the cyclic
invariance, if any argument is in the image of S).
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Remark 3.2.2.1. There is a more general notion of (−m)-shifted n-bracket
which is a bracket {{−, . . . ,−}} : A⊗n → A⊗n[m] which satisfies the corre-
sponding shifted properties analogous to (1),(2),(3) (see [27]). All the results
in this Section hold also for m-shifted brackets, however, in this paper we
do not need these structures, therefore we discuss only the 0-shifted (ho-
mogeneous) case, which shortens the length of the signs involved in the
formulas.

In the particular cases n = 2 and n = 3 such a structure is called,
respectively, a double or a triple bracket. A double bracket is a map that
satisfies

1. {{a,bc}} = {{a,b}} · c+ (−1)|a||b|b · {{a, c}} ,

2. {{a,b}} = −(−1)|a||b|{{b,a}}◦ ,

3. d{{a,b}} = {{da,b}}+ (−1)|a|{{a,db}} ,

and, because of (3.2.2), once property (1) is fixed, property (2) is equivalent
to ask that the bracket is a (graded) derivation in the first argument, for the
inner bimodule structure:

(2∗) {{ab, c}} = a ∗ {{b, c}}+ (−1)|b||c|{{a, c}} ∗ b .

Given a binary operation {{−,−}} (which does not have to be necessarily a
double bracket) we define the following operation A⊗3 → A⊗3:

{{a,u⊗ v}}L := {{a,u}}⊗ v , (3.2.7)

and using this we define the following triary operation

{{a,b, c}} := {{a, {{b, c}}}}L + (−1)|a|(|b|+|c|)τ(123){{b, {{c,a}}}}L
+ (−1)|c|(|a|+|b|)τ(132){{c, {{a,b}}}}L ,

(3.2.8)

or more abstractly

{{−,−,−}} =

2∑
i=0

τi(123) ◦ {{−, {{−,−}}}}L ◦ τ
−i
(123) , (3.2.9)

which makes it clear that it is cyclically invariant. Moreover one can prove
that if {{−,−}} is a double bracket, then it is also a graded derivation in its
last argument, so that:
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Lemma 3.2.2.1 ([68]). If {{−,−}} is a double bracket then the associated triary
operation {{−,−,−}} is a triple bracket.

Proof. Let us show the super-derivation property in its last argument. The
same calculations of the ungraded version of this Lemma ([68, Proposition
2.3.1]), if we keep track of signs, yield for the three summands of {{a,b, cc ′}}:

{{a, {{b, cc ′}}}}L︸ ︷︷ ︸
=: 1

+(−1)s1τ(123){{b, {{cc ′,a}}}}L︸ ︷︷ ︸
=: 2

+(−1)s2τ(132){{cc
′, {{a,b}}}}L︸ ︷︷ ︸

=: 3

,

where s1 = |a|(|b|+ |c|+ |c ′|) and s2 = (|c|+ |c ′|)(|a|+ |b|).

1 = {{a, {{b, c}}}}L · c
′ + (−1)|b||c|{{a, c}} · {{b, c}}+ (−1)(|a|+|b|)|c|c · {{a, {{b, c ′}}}}L ,

2 = (−1)s1+|b||c|c · τ(123){{b, {{c ′,a}}}}L+

(−1)s1+|a||c ′|τ(123){{b, {{c,a}}}}L · c
′ +−(−1)|b||c|{{a, c}} · {{b, c ′}} ,

3 = (−1)s2c · τ(132){{c
′, {{a,b}}}}L + (−1)|c|(|a|+|b|)τ(132){{c, {{a,b}}}}L · c

′ ,

where, in lines 1 and 2, by (x⊗ y) · (u⊗ v) we mean x⊗ yu⊗ v. Summing
the three expressions we obtain

{{a,b, cc ′}} = {{a,b, c}} · c ′ + (−1)(|a|+|b|)|c|c · {{a,b, c ′}} .

As for the compatibility between {{−,−,−}} and the differential, this follows
from the fact that both

{{−, {{−,−}}}}L = (1A ⊗ {{−,−}}) ◦ ({{−,−}}⊗ 1A)

and τσ, for any permutation σ, commute with the differential.

3.2.3 Double Poisson brackets

Definition 3.2.3.1 ([68]). A double bracket {{−,−}} on a dg algebra A ∈ DGAS
is called a double Poisson bracket if the associated triple bracket is zero:
{{−,−,−}} = 0. The identity {{a,b, c}} = 0 is called (graded) double Jacobi
identity. The pair (A, {{−,−}}) is called a differential graded double Poisson
algebra.
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Definition 3.2.3.2. A morphism of differential graded double Poisson alge-
bras is a morphism ϕ : A→ B of dg algebras over S, such that the induced
map ϕ⊗2 : A⊗2 → B⊗2 intertwines the two double Poisson structures. We
denote the (so obtained) category of dg double Poisson algebras by DGPPAS.

Remark 3.2.3.1. Differently from DGAS = S ↓ DGAk which denotes the under
category, the category of dg double Poisson algebras over S is not the
under category DGPPAS 6= S ↓ DGPPAk (with S equipped with the zero double
Poisson structure). In fact an object of the former has the property that the
bracket with any element in the image of S vanishes, while for an object of
the former the bracket vanishes a priori only if both variables belong to the
image of S.

Notation. We denote the full subcategory of dg double Poisson algebras
consisting of algebras concentrated in degree zero by PPAlgS ⊂ DGPPAS.

Let us denote the multiplication map by m : A⊗2 → A and, given a
double bracket {{−,−}}, let us consider the associated single bracket

{−,−} : A⊗2 {{−,−}}−−−→ A⊗2 m−→ A .

Proposition 3.2.3.1 ([68]). If {{−,−}} is a double bracket then the following equa-
tion holds in A⊗2:

{a, {{b, c}}}− {{{a,b}, c}}− (−1)|a||b|{{b, {a,b}}} =

= (m⊗ 1){{a,b, c}}− (−1)|a||b|(1⊗m){{b,a, c}} ,
(3.2.10)

where {a,−} acts on tensors u⊗ v by {a,u⊗ v} = {a,u}⊗ v+ (−1)|a||u|u⊗ {a, v}.

Proof. With a few intermediate calculations one proves that

{a, {{b, c}}} = (m⊗ 1){{a, {{b, c}}}}L + (−1)|b||c|(1⊗m)τ(123){{a, {{c,b}}}}L ,

{{{a,b}, c}} = −(−1)|c|(|a|+|b|)(m⊗ 1)τ(132){{c, {{a,b}}}}L+

(−1)|a||b|+|b||c|+|a||c|(1⊗m)τ(132){{c, {{b,a}}}}L ,

{{b, {a, c}}} = −(−1)|a||c|(m⊗ 1)τ(123){{b, {{c,a}}}}L + (1⊗m){{b, {{a, c}}}}L ,

from which equation (3.2.10) follows.
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Let us denote by [A,A] ⊂ A the linear subspace spanned by graded
commutators and the quotient by A\ = A/[A,A]. For an element a ∈ A we
denote by a ∈ A\ its class modulo [A,A].

Lemma 3.2.3.1 ([68]). Let {{−,−}} be a double bracket. Then the associated single
bracket {−,−} : A⊗2 → A has the following properties:

1. {[A,A],−} = 0 ,

2. {a,−} is a graded derivation of degree |a| ,

3. {a,b} = −(−1)|a||b|{b,a} ,

4. d ◦ {−,−} = {−,−} ◦ d ,

5. If {{−,−}} is a double Poisson bracket, then the following “Leibniz property”
(a version of the Jacobi identity) holds in A:

{a, {b, c}} = {{a,b}, c}+ (−1)|a||b|{b, {a, c}} . (3.2.11)

Proof. Using the super-derivation property in the first argument:

{{[a,b], c}} = a ∗ {{b, c}}− (−1)|a|(|b|+|c|){{b, c}} ∗ a+
+ (−1)|b||c|({{a, c}} ∗ b− (−1)|b|(|a|+|c|)b ∗ {{a, c}}) ,

and in general for a ∈ A and ω ∈ A⊗2: m(a ∗ω) = (−1)|a||ω|m(ω ∗ a), from
which (1) follows:

{[a,b], c} = m{{[a,b], c}} = 0 .

(2) is obvious. For (3) it is enough to observe that for any α ∈ A⊗2, m(α−
α◦) ∈ [A,A], and apply this to α = {{a,b}}. (4) is:

d ◦ {−,−} = d ◦m ◦ {{−,−}} = m ◦ d ◦ {{−,−}} = m ◦ {{−,−}} ◦ d = {−,−} ◦ d ,

where by the same symbol d we mean both the differential on A and the
induced one on A⊗2. (5) follows from applying the multiplication map
to (3.2.10).
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By (1) and (2) the map {−,−} induces a well-defined map {−,−}\ : A
⊗2
\ →

A\ which, by properties (3) (4) and (5), makes A\ into a differential graded
Lie algebra (A\, {−,−}\) ∈ DGLAk:

Lemma 3.2.3.2. If (A, {{−,−}}) is a double Poisson algebra, the induced bracket
{−,−}\ on A\ makes it a differential graded Lie algebra.

Proof. Indeed if we use antisymmetry of the induced bracket on A\, the
Leibniz identity (3.2.11) becomes the (graded) Jacobi identity in its usual
form:

(−1)|a||c|{a, {b, c}\}\ + (−1)|a||b|{b, {c,a}\}\ + (−1)|b||c|{c, {a,b}\}\ = 0 .

The compatibility between the differential and {−,−}\ follows from the
compatibility between the differential and {−,−} and the projection A →
A\.

The bracket {−,−}\ is slightly more than simply a (dg) Lie structure,
in fact for each element a ∈ A, the map {a,−}\ : A\ → A\ is induced by
a (graded) derivation (of degree |a|) ∂a = {a,−}. This is what is called a
(differential graded) H0-Poisson structure on A:

Definition 3.2.3.3 ([20] — ungraded version). A (differential graded) H0-
Poisson structure on a (differential graded) algebra A ∈ DGAS is a (differential
graded) Lie bracket {−,−}\ on A\ with the property that for each homo-
geneous element a ∈ A, the map {a,−}\ is induced by a graded, S-linear
derivation ∂a : A → A of degree |a|. We call the pair (A, {−,−}\) an H0-
Poisson algebra (over S).

Definition 3.2.3.4. A morphism of H0-Poisson algebras is a morphism ϕ :
A→ B of dg algebras over S such that the induced map ϕ\ : A\ → B\ is a
morphism of dg Lie algebras. We denote the (so obtained) category of dg
H0-Poisson algebras by DGPAS.

Lemma 3.2.3.3. There is a natural forgetful functor DGPPAS → DGPAS which sends
a double Poisson algebra (A, {{−,−}}) to the H0-Poisson algebra (A, {−,−}\), where
{−,−}\ is the bracket on A\ induced by the single bracket associated to {{−,−}}.
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Remark 3.2.3.2. H0-Poisson structures were first introduced by W. Crawley-
Boevey in [20]. They are the natural structure to consider if one wants
an induced ordinary Poisson structure on the GLn-invariant part of the
representation scheme AGLnn . In fact one proves that there is only one
induced Poisson structure on AGLnn with the property that the trace map
tr : A\ → AGLnn is a map of dg Lie algebras:

tr{a,b} = {tr(a), tr(b)} . (3.2.12)

The reason why such a ‘single’ noncommutative Poisson structure is enough
if one wants a Poisson structure on the GLn-invariant subalgebra is that
the latter is generated by traces, therefore actually the Poisson structure
depends only on 2 indices, and not 4. If one wants a Poisson structure on
the whole An, is forced to consider double Poisson structures.

3.2.4 Building new double Poisson structures from old

Proposition 3.2.4.1 ([68]). If (A, {{−,−}}A) and (B, {{−,−}}B) are double Poisson
algebras over S, their free product A ∗S B (coproduct in the category of dg algebras
over S) has an induced natural double Poisson structure over S, defined uniquely
by the formulas:

{{a,b}} := 0 , {{a,a ′}} := {{a,a ′}}A , {{b,b ′}} := {{b,b ′}}B , (3.2.13)

for each a,a ′ ∈ A and b,b ′ ∈ B.

Proof. As the ungraded version of this Proposition ([68, Proposition 2.5.1])
the proof is left to the reader, because fairly easy. In fact the induced
structure on the coproduct does not mix the two structures, therefore its
properties (super-derivation, cyclic invariance, compatibility with the dif-
ferential) follow from the corresponding properties of the double Poisson
brackets on A and B.

Proposition 3.2.4.2. The free product construction in Proposition 3.2.4.1 is the
coproduct in the category DGPPAS. The algebras S and 0, both with zero double
Poisson structure, are respectively, the inital and final object in DGPPAS.
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Proof. Let C ∈ DGPPAS and ϕ : A → C, ψ : B → C morphisms of DGPPAS.
Because morphisms of dg double Poisson are morphisms of dg algebras
with additional properties, in particular we have a unique morphism of dg
algebras F : A ∗S B→ C that extends ϕ and ψ. The fact that F⊗2 commutes
with the double Poisson bracket defined in (3.2.13) can be easily tested on
the generators:

F⊗2({{a,b}}) = 0 = {{ϕ(a),ψ(b)}} = {{F(a), F(b)}} ,

F⊗2({{a,a ′}}) = ϕ⊗2({{a,a ′}}A) = {{ϕ(a),ϕ(a ′)}}A = {{F(a), F(a ′)}} ,

F⊗2({{b,b ′}}) = ψ⊗2({{b,b ′}}B) = {{ψ(b),ψ(b ′)}}B = {{F(b), F(b ′)}} .

The fact that S and 0 are the initial and final objects in DGPPAS follows from
the fact that they are such objects in DGAS and that for any A ∈ DGPPAS the
initial and terminal map S→ A→ 0 are maps of double Poisson algebras
(because of the assumption of S-linearity on the double Poisson bracket on
A).

Another construction that will be useful later is the particular case of
differential graded algebras A with a double Poisson bracket and such that
their differential is of the very special form

d = {γ,−}

where {−,−} is the associated single bracket on A. If we start simply from a
graded algebra with a double Poisson bracket without differential we give
the following definition:

Definition 3.2.4.1. Let A be a graded algebra and {{−,−}} a double Poisson
bracket on it. We call an element γ of degree |γ| = −1 a noncommutative
charge if the single bracket of it by itself lies in the (graded) commutators
subspace: {γ,γ} ∈ [A,A].

Proposition 3.2.4.3. If γ is a noncommutative charge on (A, {{−,−}}), then d =
{γ,−} is a differential on A which is compatible with the double Poisson bracket, so
it gives A the structure of a differential graded double Poisson algebra.

Proof. Obviously d is a linear map of degree −1 satisfying d(ab) = d(a)b+
(−1)|a|ad(b) (from Lemma 3.2.3.1, (2)). If we apply the Leibniz property
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(Lemma 3.2.3.1, (5)) to a = b = γ we obtain:

d2 =
1
2
{{γ,γ},−} ,

so that d2 = 0 follows from {γ,γ} ∈ [A,A] (because of Lemma 3.2.3.1, (1)).
From Proposition 3.2.3.1 applied to a = γ we have

d{{b, c}} = {{db, c}}+ (−1)|b|{{b,dc}} ,

which is the desired compatibility between the bracket and the differential.

3.3 Derived noncommutative Poisson reduction

The aim of this Section is to introduce the noncommutative constructions
mentioned in the left side of the ‘dictionary’ (Figure 3.1), together with some
proofs of a few structural results that these definitions are well-behaved
and satisfy some good properties. The impatient reader who wants to know
why we give such definitions is encouraged to jump from time to time from
this Section to §3.4, which hopefully clarifies everything.

3.3.1 Crash course in noncommutative geometry

This first Section is a crash course in noncommutative geometry. We recall
a few definitions and basic results in the theory, but we try to stick to the
minimum required in order to understand the following parts of the paper.
There is obviously much more to be said, and the interested reader can
consult the more foundational references [21, 31, 32].

Throughout this Section we consider algebras A ∈ AlgS for which the
structure map i : S → A is injective. The space of noncommutative 1-
forms, or Kähler differentials, is the A-bimodule Ω1

SA := ker(m), kernel of
m : A⊗S A → A, the multiplication map (over S). The universal (S-linear)
derivation is the map d ∈ DerS(A,Ω1

SA) defined by

d(a) = a⊗ 1 − 1⊗ a . (3.3.1)
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The couple (Ω1
SA,d) is a universal A-bimodule equipped with a derivation

in the sense that for each A-bimodule M, there is a natural isomorphism

DerS(A,M)
∼−→ HomA−Bimod(Ω

1
SA,M) , ∂ 7→ ϕ∂ , (3.3.2)

where ϕ∂ is the only morphism such that ϕ∂ ◦ d = ∂. Because Ω1
SA is

spanned by the elements adb, for a,b ∈ A, we have ϕ∂(adb) = a∂(b).
Let us consider the contravariant (duality):

(−)ˇ := HomA−Bimod(−,A⊗A) : A− Bimod→ A− Bimod , (3.3.3)

where we view A⊗A with the outer A-bimodule structure, but the inner
structure survives and gives, for each M ∈ A− Bimod, the above-claimed A-
bimodule structure on Mˇ. In particular if we consider M = Ω1

SA we obtain,
by (3.3.2), a natural isomorphism between the noncommutative vector fields
Θ1
SA := (Ω1

SA)ˇ and the space of double (S-linear) derivations:

DerS(A) := DerS(A,A⊗A) ∼= HomA−Bimod(Ω
1
SA,A⊗A) =: Θ1

SA (3.3.4)

Definition 3.3.1.1. The noncommutative cotangent bundle of A is the tensor
algebra of theA-bimodule of noncommutative vector fields, and it is denoted
by

T∗A := TA

(
Θ1
SA
)
= TA (DerS(A)) . (3.3.5)

Remark 3.3.1.1. This could be considered either as graded algebra or as an
ungraded algebra placed all in degree zero. In the first case if we apply the
representation functor to it we obtain the shifted cotangent bundle of the
representation scheme of A, and in the second case the ordinary (unshifted)
cotangent bundle. In this paper we consider mainly the second version
(the ungraded one), for which we reserve the symbol T∗A(= TADerS(A)),
while when we really want to specify the graded version, we write T∗oddA(=
TA(DerS(A)[1])).

The setting in which later we do noncommutative Poisson reduction is
the case in which the algebra S is the vector space generated by a finite set
S = kI, consisting of orthogonal idempotents: eiej = δijej. In this case we
can define the following distinguished double derivation ∆ ∈ DerS(A):

∆(a) =
∑
i

(aei ⊗ ei − ei ⊗ eia) , (3.3.6)
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which is a preferred lifting of the universal derivation in the sense that
d = π ◦∆, where π : A⊗A→ A⊗S A denotes the canonical projection. This
distinguished double derivation can be divided into its components over I:

∆ =
∑
i

∆i, ∆i(a) = aei ⊗ ei − ei ⊗ eia . (3.3.7)

3.3.2 Natural double Poisson structure on cotangent bun-
dles

M. Van den Bergh introduced a natural (−1)-shifted (see Remark 3.2.2.1)
graded double Poisson structure on T∗oddA which is called double Schouten-
Nijenhuis structure ([68, §3.2]). In this Section we recall his construction and
we show that the same definition (on generators) actually gives (0-shifted)
double Poisson structure on T∗A, which — with a minus sign — is the one
we are interested in.

Throughout this Section we suppose that A is finitely generated (all the
examples we want to consider in this paper are of this form). In this case
there is a natural identification between triple derivations and the tensor
product of double derivations with A itself:

DerS(A)⊗A
∼−→ DerS(A,A⊗3)

∂⊗ a 7−→ Ψ∂⊗a(b) = ∂(b)
′ ⊗ a⊗ ∂(b) ′′ ,

(3.3.8)

where we use the (sumless) Sweedler notation for ∂(b) = ∂(b) ′⊗∂(b) ′′. This
follows from the identification between derivations and bimodules (3.3.2)
and the finitely generatedness condition. Because of the form of (3.3.8), if
we start from a triple derivation Ψ ∈ DerS(A,A⊗3) and we compose it with
either τ(23) or τ(12) we obtain, respectively:

τ(23) ◦Ψ ∈ DerS(A)⊗A ,

τ(12) ◦Ψ ∈ A⊗DerS(A) .
(3.3.9)

Proposition 3.3.2.1 ([68, §3.2]). Let δ,∂ ∈ DerS(A). Then

{{δ,∂}}∼l := (δ⊗ 1A) ◦ ∂− (1A ⊗ ∂) ◦ δ ,
{{δ,∂}}∼r := (1A ⊗ δ) ◦ ∂− (∂⊗ 1A) ◦ δ = −{{∂, δ}}∼l ,

(3.3.10)

define elements of DerS(A,A⊗3).
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When we compose them with the above-mentioned permutations ((3.3.9))
we can view them as elements of

{{δ,∂}}l := τ(23) ◦ {{δ,∂}}∼r ∈ DerS(A)⊗A ⊂ (T∗A)⊗2 ,

{{δ,∂}}r := τ(12) ◦ {{δ,∂}}∼r ∈ A⊗DerS(A) ⊂ (T∗A)⊗2 ,
(3.3.11)

and they are related one to the other by swapping the first and the second
component: {{δ,∂}}r = −{{∂, δ}}◦l .

Theorem 3.3.2.1 ([68, Theorem 3.2.2]). There is a natural (−1)-shifted graded
double Poisson structure (over S) on the noncommutative cotangent bundle T∗oddA

of a finitely generated algebra A, called double Schouten-Nijenhuis structure. It is
defined uniquely by the formulas:

{{a,b}} = 0 , {{δ,a}} = δ(a) , {{δ,∂}} = {{δ,∂}}l + {{δ,∂}}r , (3.3.12)

for a,b ∈ A, δ,∂ ∈ DerS(A).

Proposition 3.3.2.2. The same definitions on the generators give a 0-shifted double
Poisson structure on the ungraded cotangent bundle T∗A, which — with a minus
— we call the “natural” double Poisson structure:

{{a,b}} = 0 , {{δ,a}} = −δ(a) , {{δ,∂}} = −{{δ,∂}}l − {{δ,∂}}r . (3.3.13)

Proof. Let us consider the following general situation. Let A ∈ AlgS and
a bimodule D ∈ A− Bimod consider its tensor algebra in the two follow-
ing versions: odd TA(D[1]) and even TAD. A (−1)-shifted double Poisson
bracket on TA(D[1]) is uniquely determined by giving:

{{a,b}} = 0 , {{δ,a}} ∈ A⊗2 , {{δ,∂}} ∈ D⊗A+A⊗D ,

for a,b ∈ A, δ,∂ ∈ D with the following properties:

1. {{δ,−}} : A → A⊗2 is a double (S-linear) derivation in the second
argument and it is compatible with the A-bimodule structure in the
first argument.

2. {{δ,∂}} = −{{∂, δ}}◦ for each δ,∂ ∈ D.
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3. The double Jacobi identity is satisfied on the generators, and this can
be tested only in the following two situations:

(i) two elements of D and one of A:

{{δ,∂,a}} = {{δ, {{∂,a}}}}L + τ(123){{∂, {{a, δ}}}}L + τ(132){{a, {{δ,∂}}}}L = 0 .

(ii) three elements of D:

{{δ,∂,d}} = {{δ, {{∂,d}}}}L + τ(123){{∂, {{d, δ}}}}L + τ(132){{d, {{δ,∂}}}}L = 0 .

The crucial observation is that the signs involved in the properties to be
tested on the generators are the same as in the ungraded case (essentially
because we only need to test them on particular choices of elements of
degree zero and one). Therefore the same definitions actually give a (0-
shifted) double Poisson structure on TAD which coincides with the (−1)-
shifted on TA(D[1]) on the generators. Now we apply this in the case of D =
DerS(A) with the natural A-bimodule structures and definitions (3.3.12)
which, by [68, Theorem 3.2.2], define a (−1)-shifted double Poisson structure
on T∗oddA.

3.3.3 Noncommutative Hamiltonian spaces

In this Section we restrict to the case S = kI, a finite dimensional algebra
made of orthogonal idempotents. We want to define a noncommutative ver-
sion of Hamiltonian spaces, and in order to do so we should first introduce
a noncommutative version of the Lie algebra gln.

We consider the path algebra of the quiver with vertices I and with
simply one loop ti on each vertex i ∈ I. It is the tensor algebra over S
of the S-bimodule L = Spank{ti} (isomorphic to S itself, but obviously we
call its basis elements with different names to distinguish them from the
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orthogonal idempotents ei ∈ I in the path algebra):

TS(L) = PathAlgk


1 2 · · · |I|

t1 t2 t|I|


. (3.3.14)

It has a natural double Poisson structure defined uniquely by

{{ti, tj}} = δij(ti ⊗ ei − ei ⊗ ti) . (3.3.15)

The verification that (3.3.15) actually defines a double Poisson is straightfor-
ward.

As explained in the introduction the role of TS(L) in the noncommutative
world is analogous to the one played by the Lie algebra of the gauge group
gln = Lie(GLn) acting on representation schemes (in fact the standard
Poisson structure on Sym(gln) is the one induced by the above-mentioned
double Poisson structure). Any double Poisson algebra A ∈ PPAlgS with a
map TS(L)→ A, has an induced map Sym(gln)→ An via the representation
functor, which is a Poisson morphism guaranteed that the map TS(L)→ A is
a map of double Poisson algebra. In order to obtain a Hamiltonian space An,
we need a compatibility condition between the gln-action and the induced
Poisson bracket on An, and this is given by the condition (3.1.7).

Definition 3.3.3.1. Let A ∈ PPAlgS a double Poisson algebra over S. A
noncommutative Hamiltonian action on it is a morphism f : TS(L) → A of
double Poisson algebras, such that, for each i ∈ I and for each a ∈ A:

{{f(ti),a}} = aei ⊗ ei − ei ⊗ eia (= ∆i(a)) . (3.3.16)

We call such a double Poisson A equipped with a noncommutative Hamil-
tonian action a noncommutative Hamiltonian space.

Remark 3.3.3.1. This definition agrees with [68, Definition 2.6.4.] of Hamil-
tonian algebra. The map TS(L)→ A is also called a noncommutative moment
map.
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Definition 3.3.3.2. A morphism of noncommutative Hamiltonian spaces is just a
morphism of double Poisson algebras A→ B compatible with the structure
maps TS(L) → A,B. We denote the category of noncommutative Hamilto-
nian spaces by PPAlgHTS(L).

Remark 3.3.3.2. In other words the category of noncommutative Hamil-
tonian spaces can be seen as a full subcategory of the under category
PPAlgHTS(L) ⊂ DGPPATS(L) := TS(L) ↓ DGPPAS (with an abuse of notation with
respect to the previous notation DGPPAS which was not the under category
of DGPPAk with respect to S).

Notation. From now on we will often denote the images of the loops under
a Hamiltonian action TS(L)→ A by the symbols:

ti 7−→ f(ti) = δi ∈ A , (3.3.17)

where the choice of the letter (small) ‘delta’ is motivated by the fact that their
Poisson brackets on A give the action of the (big) deltas, the components of
the chosen lifting of the universal derivation:

{{δi,a}} = aei ⊗ ei − ei ⊗ eia = ∆i(a) . (3.3.18)

We also denote their sum by δ =
∑
i δi and observe that a Hamiltonian

action is nothing else but a choice of a diagonal element δ ∈ ⊕ieiAei such
that

{{δ,a}} =
∑
i

aei ⊗ ei − ei ⊗ eia = ∆(a) . (3.3.19)

The elements {δi} play the role of noncommutative gauge elements.

If we consider the two-sided ideal generated by the image of the Hamil-
tonian action I = 〈δ〉 ⊂ A, we obtain as a quotient the noncommutative
analogue of the zero locus of the Hamiltonian map: A/I. We can also view
it as the coproduct A/I = A qTS(L) S ∈ AlgTS(L), where S is viewed as a
TS(L)-algebra through the obvious projection TS(L)→ S that sends L to zero.

Definition 3.3.3.3. The noncommutative zero locus of a Hamiltonian space
A ∈ PPAlgHTS(L) is the algebra A/I = AqTS(L) S ∈ AlgTS(L).
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Remark 3.3.3.3 (Poisson structure on the zero locus). As for the Poisson
structure, the double Poisson structure on A does not descend on the zero
locus, however it is easy to verify that the following formula defines an
induced H0-Poisson structure on A/I:

(A/I)⊗2
\

{−,−}\−−−−→ (A/I)\

a+ I⊗ b+ I 7−→ {a,b}+ I

where a+ I ∈ (A/I)\ denotes the class modulo commutator of the element
a+ I ∈ A/I, and for a,b ∈ A, {a,b} ∈ A is the single bracket associated to
the double Poisson structure on A.

Following the construction done in the commutative setting we define a
derived version of the zero locus by using the total left-derived functor of
the coproduct (we refer the interested reader to Appendix C for explanations
on the derived coproduct).

Definition 3.3.3.4. The derived noncommutative zero locus of a Hamiltonian
space A ∈ PPAlgTS(L) is the (homotopy class of the) dg algebra

AqLTS(L) S ∈ Ho(DGATS(L)) . (3.3.20)

In what follows however, we will often consider a specific model for
it, obtained by choosing the following cofibrant replacement of S in the
category DGATS(L) (see Appendix C on why we can replace only one and not
both variables of the coproduct) as the Shafarevich complex:

TS(L)↪→TS(L⊕ L[1])
∼
� S ,

where the differential in TS(L⊕ L[1]) is dϑi = ti (ϑi ∈ L[1] basis).

Lemma 3.3.3.1. The projection map TS(L⊕ L[1])→ S is a quasi-isomorphism.

Proof. For any s ∈ Swe denote the corresponding elements in L,L[1] by ts, ϑs,
respectively. We define a super derivation h : TS(L⊕ L[1])• → TS(L⊕ L[1])•+1
on the generators of the algebra by:

h(s) = 0 , h(ts) = ϑs , h(ϑs) = 0 .
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Then h is an homotopy between the zero map and the ‘length’ map l:

dh+ hd = l ,

where on elementary monomial words w ∈ TS(L⊕ L[1]), l(w) = #(w)w is
the word itself multiplied by its length (in the natural grading give by the
tensor algebra, so it is counting only the number of t and ϑ in the word w).
The map l is an isomorphism in homological degrees > 1, and this proves
that H>1(TS(L⊕ L[1])) = 0.

Thus a model for the noncommutative zero locus is a sort of generalised
Shafarevich complex

AqLTS(L) S
∼= AqTS(L) TS(L⊕ L[1]) ∼= AqS TS(L[1]) , dϑi = δi . (3.3.21)

Notation. We denote this complex by Sh(A) := AqS TS(L[1]).

Remark 3.3.3.4. The zero-th homology of the derived zero locus recovers
the underived zero locus

H0 (Sh(A)) ∼= AqTS(L) S .

If the higher homologies vanish we could say that the couple (A, J) is a
generalised noncommutative complete intersection (see [EG, 7] for the case
of noncommutative complete intersection of the form A = TkV a tensor
algebra). Suppose that this is true and, in addition, the structure map
S↪→A is a cofibration. In this case the Shafarevich complex is a cofibrant
resolution of the underived zero locus A/J in the category DGAS and it
can be used to compute the derived representation functor at the level
L(−)n : Ho(DGAS)→ Ho(CDGAk),

L(A/J)n ∼= (AqS TS(L[1]))n = An ⊗k Sym(gln[1]) . (3.3.22)

We direct the interested reader to [7, 9] for details on the derived represen-
tation scheme and to § 2.3.4 and § 2.3.5 for details on its relationship with
the Koszul complex. In particular Theorem 2.3.5.2 shows (3.3.22) for par-
tial preprojective algebras corresponding geometrically to Nakajima quiver
varieties.
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One particular class of examples of Hamiltonian spaces are cotangent
bundles: T∗A = TADerS(A). In (3.3.6) we defined the distinguished double
derivation ∆ ∈ DerS(A) which is our preferred lifting of the universal
derivation d : A → Ω1

SA. The elements obtained by decomposing it as a
direct sum of its I-graded components (3.3.7):

∆i = ei∆ei ∈ T∗A , (3.3.23)

are the natural candidate as gauge elements (with a minus sign):

Lemma 3.3.3.2. With the double Poisson structure on T∗A given in Proposi-
tion 3.3.2.2, the map

TS(L)→ T∗A

ti 7−→ δi := −∆i
(3.3.24)

is a noncommutative Hamiltonian action.

Proof. We need to show that for any i ∈ I and any ω ∈ T∗A, we have

{{δi,ω}} = ωei ⊗ ei − ei ⊗ eiω ,

or equivalently, denoting by {{−,−}}odd the double Schouten-Nijunhuis
bracket on T∗oddA, that:

{{∆i,ω}}odd = ωei ⊗ ei − ei ⊗ eiω . (3.3.25)

This can be tested only on the generators of T∗A, that is either elements a ∈
A or double derivations ∂ ∈ DerS(A). For elements a ∈ A, equation (3.3.25)
is exactly the definition of the double Poisson bracket on T∗oddA. So we only
need to prove that

{{∆i,∂}}odd = ∂ei ⊗ ei − ei ⊗ ei∂ ∈ (T∗A)⊗2 .

This is the content of [68, Proposition 3.3.1].

3.3.4 Noncommutative Chevalley-Eilenberg and BRST

In this last Section we define a noncommutative version of the Chevalley-
Eilenberg functor and BRST complex needed for the derived Poisson reduc-
tion.

For the moment we start simply from an object in the under category
A ∈ DGPPATS(L) (we do not require the action to be Hamiltonian) and define
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Definition 3.3.4.1. The noncommutative Chevalley-Eilenberg complex is

CE(A) := AqTS(L) (TS(L⊕ L
∗[−1])) ∼= AqS TS(L∗[−1]) , (3.3.26)

equipped with the following twisted differential (on the generators a ∈ A
and ηi ∈ L∗[−1]): {

da = dolda− [
∑
i ηi,a] ,

dηi = −η2
i = −1

2 [ηi,ηi] ,
(3.3.27)

where dold is the original differential on A.

In fact, we can write the differential on the Chevalley-Eilenberg complex
as the sum of two super-commuting differentials (Lemma 3.3.4.1):

d = dold + dCE , (3.3.28)

where dold is the old differential on A extended to zero elsewhere and dCE is
the Chevalley-Eilenberg differential on TS(L∗[−1]) (dCEηi = −η2

i ) extended
by commutators as indicated in (3.3.27) on A.

Lemma 3.3.4.1. The two maps dold, dCE defined in (3.3.28) are indeed (super-
commuting) differentials on CE(A). This proves that d = dold + dCE is also a
differential.

Proof. It is obvious that (dold)
2 = 0 because it is just the old differential,

extended to zero elsewhere. For what concerns dCE, let us call η =
∑
i ηi,

and observe that on the generators d2
CE = 0:

d2
CE(a) = dCE (−[η,a]) = [η2,a] − [η, [η,a]] =

1
2
[[η,η],a] − [η, [η,a]] = 0 ,

d2
CE(ηi) = dCE(−η

2
i ) = ηiη

2
i − η

2
iηi = 0 .

Moreover the two differentials super-commute with each other:

(dolddCE + dCEdold)(a) = dold(−[η,a]) − [η,dolda] = [η,dolda] − [η,dolda] = 0 ,

(dolddCE + dCEdold)(ηi) = dold(−η
2
i ) = 0 .

If follows that also d = dold + dCE is a differential:

d2 = d2
old + d2

CE + (dolddCE + dCEdold) = 0 .
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For the moment we could view this Chevalley-Eilenberg construction as
a functor:

CE : DGPPATS(L) → DGATS(L⊕L∗[−1]) , (3.3.29)

where we momentarily forget the double Poisson structure.

Remark 3.3.4.1. In the commutative case, the Chevalley-Eilenberg complex
C(g,M) can be defined for any g-module M, without any requirement
of a algebra structure on M, nor a Poisson structure on M compatible
with the g action. However we are interested only in the class of examples
of M = O(X), where X is a Hamiltonian g-space, so there is a moment
map X → g∗ with dual map a Poisson morphism Sym(g) → O(X), so that
the action of x ∈ gyM is the Poisson bracket in M with the element
x ∈ g ⊂ Sym(g)→M.

Analogously, in the noncommutative case we can define a more general
Chevalley-Eilenberg complex for objects A which do not have necessarily a
algebra structure, nor a double Poisson structure (essentially only a TS(L)-
bimodule structure), but we are only interested in this case for derived
Poisson reduction.

When we start from a noncommutative Hamiltonian spaceA ∈ PPAlgHTS(L)
and we apply the Chevalley-Eilenberg construction to the Shafarevich model
for the derived zero locus (3.3.21) we obtain a noncommutative version of
the BRST complex:

CE(Sh(A)) ∼= AqS TS(L[1]⊕ L∗[−1]) . (3.3.30)

which now we can equip with a natural double Poisson structure. It is the
free product of the double Poisson structure on A together with the obvious
one on TS(L[1]⊕ L∗[−1]) (with only non-trivial double brackets between
generators {{ϑi,ηj}} = δijei ⊗ ei).

Definition 3.3.4.2. We define the noncommutative BRST construction as the
functor:

BRST : PPAlgHTS(L) → DGPPATS(L⊕L[1]⊕L∗[−1])

A 7−→ AqS TS(L[1]⊕ L∗[−1]) .
(3.3.31)
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Remark 3.3.4.2. Analogously to the commutative case, the differential on
BRST(A) is induced by the following noncommutative charge (in the sense
of Definition 3.2.4.1)

γ =
∑
i

ηiδi︸ ︷︷ ︸
γHam

−
∑
i

η2
iϑi︸ ︷︷ ︸

γCE

. (3.3.32)

where the term γHam ∈ L∗[−1]⊗A represents the Hamiltonian action, or
Shafarevich differential L[1] → A, and the term γCE ∈ L∗[−1]⊗2 ⊗ L[1]
represents the multiplication map S ⊗ S → S (once we identify L ∼= S

and shift the degrees). Indeed one can easily verify that {γ,γ} lies in the
commutators subspace and that the differential is obtained by taking the
single Poisson bracket with γ:

dBRST = {γ,−} . (3.3.33)

We conclude this Section with a remark that there are natural maps of dg
algebras linking the objects involved in the 2-step derived noncommutative
Poisson reduction (from the zero locus to the derived zero locus to the BRST
complex):

BRST(A)
evη=0−−−→ Sh(A)� A/I , (3.3.34)

where the map evη=0 is the map sending all the Chevalley-Eilenberg
generators ηi → 0, and the map Sh(A) � A/I is the map sending first
the Shafarevich generators ϑi → 0 and then taking the quotient by the
two-sided ideal I generated by their differentials (dϑi = δi). The fact that
the map evη=0 is a map of dg algebras follows essentially from the fact that
once we set ηi = 0 the Chevalley-Eilenberg differential becomes just the old
differential on Sh(A).

3.4 Representation schemes

In this section we want to show that when we apply the (opportune version
of the) representation functor to the various objects that we defined in
Section 3.2 and 3.3 we obtain the corresponding objects in the commutative
world, therefore justifying our definitions (Hamiltonian spaces, derived zero
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loci, Chevalley-Eilenberg functor, . . . ) according to the general Kontsevich-
Rosenberg principle ([41]). The ground algebra is always S = kI, a finite
dimensional algebra of orthogonal idempotents. We fix a dimension vector
n = (ni)i∈I and consider the representation ρn : S → En := End(kn),
n =
∑
i ni, corresponding to the S-bimodule structure

(En)ij = Homk(k
ni ,knj) .

Notation. Because now we need another set of indices running from 1 to n,
to avoid confusion we denote by i, j ∈ I, and by r, s,u, v, (. . . ) ∈ {1, . . . ,n}.

Given A ∈ DGAS, we denote by Repn(A) ∈ DGAffk the differential graded
affine scheme of S-representations of A in kn, and by An = ORepn(A) ∈
CDGAk its commutative graded algebra of global functions. There is a group
scheme action on the representation scheme Repn(A) by the group of
automorphisms of kn which preserves the representation ρn : S → En,
which in this case

GS := {g ∈ Aut(kn) |gρn(s) = ρn(s)g ∀s ∈ S} ∼=
∏
i∈I

GLni =: GLn ,

is a product of general linear groups.
We recall that An is linearly spanned by elements ars, with a ∈ A, and

indices r, s = 1, . . . ,n, with relations:

(ab)rs =

n∑
u=1

arubus , (λa+ µb)rs = λars + µbrs , (λ,µ ∈ k) . (3.4.1)

A more abstract way to view An is An ∼= ( n
√
A)\\ (see for example [7, 9], or

§ 2.2.1), where

n
√
A =

(
En ∗S A

)En = {x ∈ En ∗S A | x · e = e · x ∀e ∈ En}

and ( n
√
A)\\ = ( n

√
A)/〈[ n

√
A, n
√
A]〉 is the commutative dg algebra obtained

when taking the quotient by the two-sided ideal generated by (graded)
commutators.
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3.4.1 Representation schemes of double Poisson algebras

If A is a double Poisson algebra and we regard En as a double Poisson
algebra with the zero bracket, we have an induced free product double
Poisson structure on En ∗S A, which restricts to a double Poisson structure
on n
√
A (easy to verify), and descends to a well-defined double Poisson

structure on An (see [68]). In terms of the generators {ars}:

Theorem 3.4.1.1 ([68]). If A ∈ DGPPAS, the algebra of functions on its representa-
tion scheme An has a natural induced double Poisson bracket, which is defined on
its generators by

{{ars,buv}} = {{a,b}} ′us ⊗ {{a,b}} ′′rv . (3.4.2)

Remark 3.4.1.1. Let us denote the trace map by:

tr : A\ = A/[A,A]→ A
GLn
n . (3.4.3)

In the special double Poisson algebras with differential d = {γ,−} given by
a noncommutative charge, the induced differential on An is obtained as
the Poisson bracket with the trace of the charge: d = {tr(γ),−}. This can be
easily verified on the generators:

d(ars) = (da)rs = ({γ,a})rs = ({{γ,a}} ′{{γ,a}} ′′)rs =

=
∑
u

{{γ,a}} ′ru{{γ,a}} ′′us =
∑
u

{γuu,ars} = {tr(γ),ars} .

The natural question after reading Theorem 3.4.1.1 is whether a mor-
phism of double Poisson algebras induces a Poisson morphism between the
induced structures on representation schemes, and the answer is yes:

Theorem 3.4.1.2. If f : A → B is a morphism of double Poisson algebras, the
induced map fn : An → Bn is a morphism of double Poisson algebras.

Proof. It is straightforward to prove on the generators ars ⊗ a ′uv ∈ A⊗2
n :

f⊗2
n

(
{{ars,a ′uv}}

)
= f⊗2

n

(
{{a,a ′}} ′us ⊗ {{a,a ′}} ′′rv

)
= f({{a,a ′}} ′)us ⊗ f({{a,a ′}} ′′)rv =

{{f(a), f(a ′)}} ′)us ⊗ {{f(a), f(a ′)}} ′′rv = {{f(a)rs, f(a ′)uv}} = {{fn(ars), fn(a ′uv)}} .
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Theorem 3.4.1.1 and 3.4.1.2 prove that the representation functor at
the level of double Poisson algebras is indeed a functor. Because in the
commutative world we are interested only in the single Poisson structure, we
can view this ‘Poisson representation functor’ as a functor (−)n : DGPPAS →
CDGPAk, an enrichment of the classical (dg)-representation functor:

DGPPAS CDGPAk

DGAS CDGAk

(3.4.4)

(the vertical arrows are the natural forgetful functors).

Remark 3.4.1.2. A natural question that arises in the mind of the reader
who knows that the classical representation functor (−)n : DGAS → CDGAk
has a total left derived functor L(−)n : Ho(DGAS)→ Ho(CDGAk) (see [9, 7] or
§ 2.2.2) is whether or not also the functor at the level of double Poisson
algebras can be derived. As pointed out by Y. Berest, it is not known whether
such categories of noncommutative Poisson algebras (double Poisson in our
case, H0-Poisson in the case of [6]) have a model structure compatible with
the standard (projective) model structure on dg algebras. We can make the
following observations

1. It is possible to define a “homotopy category” Ho∗(DGPPAS) with objects
the double Poisson algebras which are also cofibrant as dg algebras
over S, and morphisms the homotopy classes of morphisms (where
the notion of homotopy is a double Poisson version of polynomial
homotopy of dg algebras, as explained in [6, Remark 5.1.1]). With these
definitions the representation functor at the level of double Poisson
algebras preserves polynomial homotopies, and therefore admits a
total left derived functor

L(−)n : Ho∗(DGPPAS)→ Ho(CDGAk) ,

which is computed as L(A)n = (QA)n, where S↪→QA ∼
� A is a cofi-

brant replacement in the category of dg algebras over S and the maps
are all maps of double Poisson algebras.
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2. Analogously to what suggested in [6] for H0-Poisson algebras one
could consider first the infinite-dimensional limit (to eliminate the
dependence on the dimension vector n):

(−)∞ : DGAS → CDGAk ,

which has a total left derived functor L(−)∞, and use the construction
of homotopy pull-back of model categories along functors with total left
derived functors (see [67]) — in this case along the forgetful functor
CDGPAk → CDGAk — to obtain a model category DGAS ×hCDGAk CDGPAk,
which because of the diagram (3.4.4) comes with a functor from double
Poisson algebras:

DGPPAS → DGAS ×hCDGAk CDGPAk ,

which is homotopy invariant and conjecturally it induces an equiva-
lence of categories: Ho∗(DGPPAS)→ Ho(DGAk ×hCDGAk CDGPAk). We do not
know whether this is true or not, and it could be part of future work.

3.4.2 Hamiltonian spaces

In this Section we show how we obtain classical Hamiltonian gln-spaces by
applying the representation functor to noncommutative Hamiltonian spaces
defined in §3.3.3. Let us start by considering the algebra TS(L) from (3.3.14),
a free product over S of copies of polynomials in 1 variable, with double
Poisson structure:

{{ti, tj}} = δij(ti ⊗ ei − ei ⊗ ti) . (3.4.5)

For some dimension vector n, the representation scheme of TS(L) is just
a product of general linear algebras, in fact:

Repn(TS(L)) ∼=
∏
i∈I

Repn(k[ti]) ∼=
∏
i∈I

HomS−Bimod(k · ti, gln) ∼=

∼=
∏
i∈I

glni(k) =: gln .
(3.4.6)

We identify its algebra of functions with O(gln) = Sym(gl∗n)
∼= Sym(gln)

using the trace and we can show that the Poisson bracket induced from
the double Poisson bracket on TS(L) is the natural Poisson structure on
Sym(gln):
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Proposition 3.4.2.1. The induced Poisson structure on Sym(gln)
∼= TS(L)n is the

natural extension of the Lie bracket.

Proof. Because of the decomposition in (3.4.6) we can just prove the case
with one vertex: |I| = 1. This case is explained in [68, Example 7.5.3.].

From now on we will make implicit use of the trace isomorphism and
therefore identify TS(L)n ∼= Sym(gln) without saying it explicitly again.
Other examples of interest later are when we shift the S-bimodule L to
either L[1] or L[−1]. In this case we obtain:

TS(L[1])n = O(gln[−1]) ∼= Sym(gln[1]) ,

TS(L[−1])n = O(gln[1]) ∼= Sym(gln[−1]) ,
(3.4.7)

where Sym(−) : DGVectk → CDGAk is the graded commutative one, so it
gives the symmetric algebra for even degrees and the antisymmetric algebra
for odd degrees Sym(V) = S(Veven)⊗Λ(Vodd).

Now let us consider a noncommutative Hamiltonian spaceA ∈ PPAlgHTS(L),
whose structure map TS(L)→ A induces a GLn-equivariant map of Poisson
algebras Sym(gln)→ An. Because of the property (3.3.16) this corresponds
to the infinitesimal action of gln coming from the natural action of GLn by
conjugation — this is essentially [68, Proposition 7.11.1] — so that An is a
Hamiltonian gln-space. Dually, the map of schemes µn : Repn(A)→ gl∗n is a
Poisson moment map for the canonical action of GLnyRepn(A). In other
words, we obtain the following enriched version of the diagram (3.4.4):

Theorem 3.4.2.1. The representation functor enriches to a functor between non-
commutative Hamiltonian spaces and commutative Hamiltonian spaces:

PPAlgHTS(L) CPAlgHSym(gln)

DGATS(L) CDGASym(gln)

(−)n

(−)n

(3.4.8)

where the vertical arrows are the natural forgetful functors. Moreover, the represen-
tation functor (−)n : DGATS(L) → CDGASym(gln)

is cocontinuous, so in particular it
preserves coproducts.
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Proof. The previous considerations prove the upper part of the diagram.
As for the cocontinuity, it is a simple consequence of the fact that it is the
“under category version” of the cocontinuous functor (−)n : DGAS → CDGAk
and, the fact that colimits in the under category are computed in the original
category.

If we denote by I the two-sided ideal in A of the image of the Hamil-
tonian action TS(L) → A, it follows from the property of cocontinuity of
the representation functor (in particular, coproducts) that the zero locus
A/I = A qTS(L) S corresponds to the classical zero locus of the induced
moment map µn : Repn(A)→ gl∗n:

TS(L) S

A AqTS(L) S

(−)n→

Sym(gln) k

An An ⊗Sym(gln)
k = O(µ−1

n (0))

(3.4.9)

Remark 3.4.2.1 (Poisson structure on the zero locus). As for the Poisson
structure we observe that, by Remark 3.3.3.3, A qTS(L) S has an induced
H0-Poisson structure, which induces (Remark 3.2.3.2) a Poisson structure
on the ordinary Poisson reduction

Repn(A/I)� GLn = Spec(O(µ−1
n (0))GLn) .

Finally when we consider the specific chosen model representing the
derived zero locus as the Shafarevich complex Sh(A) = AqTS(L) TS(L⊕ L[1])
we obtain:

Lemma 3.4.2.1. The Shafarevich complex (a chosen model for the noncommutative
derived zero locus) is sent under the representation functor to the standard model
for the commutative derived zero locus, the Koszul complex:

(Sh(A))n ∼= An ⊗Sym(gln)
Sym(gln ⊕ gln[1]) = An ⊗k Sym(gln[1]) . (3.4.10)

Notation. For a noncommutative Hamiltonian space A, we denote the
associated commutative Koszul complex of dimension n by

Kn(A) := (Sh(A))n ∼= An ⊗ Sym(gln[1]) . (3.4.11)



116 § 3.4

Last but not least — because it represents the largest class of examples
of Hamiltonian spaces — we show the correspondence between noncom-
mutative and commutative cotangent bundles:

Theorem 3.4.2.2. If A is smooth, there is a natural isomorphism between the
representation scheme of the noncommutative cotangent bundle of A and the
ordinary cotangent bundle of the representation scheme of A:

Repn(T
∗A) ∼= T∗Repn(A) . (3.4.12)

The Poisson structure induced on T∗Repn(A) by the double Poisson structure on
T∗A is the Poisson structure coming from its standard symplectic structure.

Proof. Let us consider the Van den Bergh’s functor (−)n : A − Bimod →
An − Mod, which has the property that for D ∈ A− Bimod and any positive
shifting r = 0, 1, . . . :

(TAD[r])n ∼= SymAn
(Dn[r]) .

When algebra A is smooth, the Van den Bergh’s functor sends the A-
bimodule of double derivations to theAn-module of its derivations: DerS(A)→
Der(An) ([69, Proposition 3.3.4]). As a consequence the representation func-
tor sends odd and even cotangent bundle to the odd and even cotangent
bundles of the representation scheme:

(T∗oddA)n
∼= SymAn

(Der(An)[1]) = O(T∗[−1]Repn(A)) ,

(T∗A)n ∼= SymAn
(Der(An)) = O(T∗Repn(A)) .

[68, Proposition 7.6.1] proves that the induced bracket on T∗[−1]Repn(A)
is the Schouten-Nijenhuis bracket. But then, because of the relationship
between the natural Poisson structure on T∗Repn(A) and the Schouten-
Nijenhuis one (it is — with a minus sign1 — the same on the generators),
and the relationship between the double Poisson structures on T∗oddA and
T∗A (Theorem 3.3.2.1 and Proposition 3.3.2.2) the result follows.

1This depends also on the conventions on what is the ‘natural symplectic form on a
cotangent bundle’. Here we take the one for which the Poisson bracket {x,y} = 1 if x
denotes a coordinate on the basis and y on the fiber.
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3.4.3 Chevalley-Eilenberg and BRST

In this Section we complete the last step of the two-step derived Poisson
reduction by considering the Chevalley-Eilenberg functor and its composite
with the derived zero locus, the BRST construction. We show that the
noncommutative definitions in §3.3.4 give the corresponding one in the
commutative world.

Let us start from the Chevalley-Eilenberg functor (3.3.26) which is the
coproduct over TS(L) with TS(L⊕ L∗[−1]), with a twisted differential. By
the discussion in (3.4.7) this differential graded algebra (dηi = −η2

i ) is sent
under the representation functor to the commutative Chevalley-Eilenberg
complex for the module Sym(gln):

TS(L⊕ L∗[−1])n ∼= Sym(gln)⊗k Sym(gl∗n[−1]) = C(gln, Sym(gln)) , (3.4.13)

As a consequence (using the monoidal properties of the representation
functor) it is easy to see that for any noncommutative Hamiltonian space
A ∈ DGPPATS(L) the Chevalley-Eilenberg complex corresponds to the usual
one:

CE(A)n ∼= An ⊗k Sym(gl∗n[−1]) = C(gln,An) . (3.4.14)

In fact the twisted differential on C(gln,An) is obtained by adding the terms
commutators of Chevalley-Eilenberg generators with elements of An, and
it is induced exactly from the twisting defined on the noncommutative
Chevalley-Eilenberg complex (3.3.27).

In other words we have the following result:

Lemma 3.4.3.1. There is a commutative diagram

DGPPATS(L) CDGPASym(gln)

DGATS(L⊕L∗[−1]) CDGAC(gln,Sym(gln))

(−)n

CE C(gln,−)

(−)n

(3.4.15)

As a consequence also the noncommutative BRST construction in (3.3.31)
becomes the commutative one:

(BRST(A))n = (AqS TS(L[1]⊕ L∗[−1]))n ∼= An ⊗k Sym(gln[1]⊕ gl∗n[−1]) .
(3.4.16)
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The double Poisson structure on BRST(A) (free product of the one on A
and the canonical one on TS(L[1]⊕ L∗[−1])), induces the Poisson structure
on (3.4.16) which is the tensor product of the one on An and the canonical
Poisson structure on Sym(gln[1] ⊕ gl∗n[−1]) (the extension of the natural
pairing gln ⊗ gl∗n → k).

Theorem 3.4.3.1. There is a commutative diagram between the noncommutative
and the commutative BRST constructions:

PPAlgHTS(L) CPAlgHSym(gln)

DGPPATS(L⊕L[1]⊕L∗[−1]) CDGPASym(gln⊕gln[1]⊕gl∗n[−1])

(−)n

BRST BRST
(−)n

(3.4.17)

Notation. For a noncommutative Hamiltonian space A, we denote the
associated commutative BRST complex of dimension n (the object obtained
in the right-bottom side of the diagram (3.4.17) by following either of the
two paths):

Bn(A) := BRST(A)n ∼= An ⊗ Sym(gln[1]⊕ gl∗n[−1]) . (3.4.18)

Remark 3.4.3.1. Remember that the differential on the noncommutative
BRST complex is induced by a charge dBRST = {γ,−} (Remark 3.3.4.2). As
a consequence the induced differential on the commutative BRST complex
Bn(A) is also induced by a charge, obtained as the trace of the noncommu-
tative charge (see Remark 3.4.1.1):

dBn(A) = {tr(γ),−} .

It is easy to verify that this is indeed the usual BRST charge associated to
the gln action on An.

Finally, we notice that from the noncommutative dg algebra maps (3.3.34)
linking the BRST complex, the Shafarevich complex and the zero locus, we
obtain the analogous well known (commutative) dg algebra maps:

Bn(A)
(evη=0)n−−−−−→ Kn(A)� O(µ−1

n (0)) . (3.4.19)
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3.5 Some homological computations and examples

We devote this last Section to some homological computations (commutative
BRST homology) and some examples, such as noncommutative cotangent
bundles of path algebras of quivers, and in particular the example of the Jor-
dan quiver — the scheme of commuting matrices — and similar associated
schemes.

3.5.1 Computation of the Chevalley-Eilenberg (co)homology

In this Section we compute the (commutative) Chevalley-Eilenberg homol-
ogy for representation algebras. Let us recall first that in our conventions
(differentials of degree −1) the Chevalley-Eilenberg complex for a g-module
M is the following chain complex concentrated in non-positive degrees:

C(g,M) := Homk(Sym(g[1]),M) = [M −→ g∗ ⊗M −→ Λ2g∗ ⊗M −→ . . . ] .
(3.5.1)

Its homology is essentially the Lie algebra cohomology (the cohomology of
the usual cochain complex version of Chevalley-Eilenberg):

H•(C(g,M)) = H−•(g,M) .

Let us start from a double Poisson algebra A ∈ DGPPATS(L) and, for a
dimension vector n, the induced Poisson morphism Sym(gln) → An and
the associated Chevalley-Eilenberg complex:

C(gln,An) .

The calculation of its homology is a somewhat classical result:

Theorem 3.5.1.1. Let A ∈ DGPPATS(L) and n a dimension vector. The Chevalley-
Eilenberg homology of the gln-module An is

H•(C(gln,An)) ∼= H•(An)GLn ⊗H−•(gln,k) . (3.5.2)

Proof. We recall that the Chevalley-Eilenberg complex for An is obtained ap-
plying the representation functor to the noncommutative one: C(gln,An) ∼=
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(CE(A))n. The differential on C(gln,An) is the sum of the two super-
commuting differentials (induced from the two super-commuting differen-
tials (3.3.28)):

d = d1 + d2 ,

where d1 is the old differential on An extended to zero elsewhere and d2 is
the Chevalley-Eilenberg differential extended to commutators on An (the
gln action on An induced from GLnyAn). To compute the homology we
can use the ‘classical’ technique consisting of the following steps:

1. We consider the filtration

C(gln,An) = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ FN ⊃ FN+1 = 0 ,(
N = dim(gln) =

∑
i

n2
i

)
where Fp is the linear span of monomials containing at least p terms η,
and consider the associated spectral sequence {Erp,q}.

2. The differential on the associated graded (zero page) contains only d1,
therefore:

E1 ∼= Sym(gl∗n[−1])⊗H•(An) = C
(
gln, H•(An)

)
.

with d(1) : E1 → E1 being the Chevalley-Eilenberg differential for the
gln graded module H•(An) (now without differential).

3. Because gln is a finite dimensional reductive Lie algebra, the Chevalley-
Eilenberg homology of the graded module H•(An) is

E2 ∼= H•(An)GLn ⊗H−•(gln,k) .

4. By (bi)degree inspection the differential on the second page is zero
d(2) = 0. Therefore the sequence collapses at E2 = E3 = · · · = E∞ and
the second page computes the homology.
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Now let us start from a noncommutative Hamiltonian space A ∈
PPAlgHTS(L), and consider for some dimension n the associated commutative
BRST complex, which is the Chevalley-Eilenberg complex for the Koszul
complex:

BRST(An) = Bn(A) = C(gln,Kn(A)) . (3.5.3)

As a corollary of the previous Theorem (using Sh(A) instead of A):

Corollary 3.5.1.1. Let A ∈ PPAlgHTS(L). The homology of the BRST complex for
An is the tensor product of the GLn-invariant homology of the Koszul complex
with the Lie algebra (co)homology of gln:

H•(Bn(A)) ∼= H•(Kn(A))GLn ⊗H−•(gln,k) . (3.5.4)

The goal would be to actually compute H•(Kn(A))GLn which in fact,
even in the easier cases is not known. For example when S = k (one vertex),
and A = T∗k[x] ∼= k〈x,y〉, the zero locus A/I = k〈x,y〉/〈[x,y]〉 = k[x,y] is a
polynomial algebra in two variables, and the homology H•(Kn(A))GLn is the
GLn-invariant part of the Koszul homology for the scheme of commuting
matrices. There is a conjecture ([8, Conjecture 1]) saying that the following
diagonal restriction map is an isomorphism:

H•(Kn(A))GLn = H• (k[xuv,yuv, ϑuv])
GLn → k[xu,yu, ϑu]Sn .

We are not able to fully compute the homology H•(Kn(A))GLn but, using
the Poisson structure on Bn(A) and trace maps, we can give another proof
to a decomposition of H•(Kn(A))GLn which was not previously known to
us. We postpone the result to §3.5.4, after we have introduced the class of
examples which are cotangent bundles of quiver path algebras.

3.5.2 Path algebras of quivers

In this Section we work out derived noncommutative Poisson reduction for
cotangent bundles of path algebras of quivers T∗kQ. The reader who wants
to have a more detailed introduction on the noncommutative geometry of
quiver path algebras can read the main references [21],[24].
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We fix S = kI and we consider the path algebra kQ of a quiver Q =
(Q0 = I,Q1) with vertex set I. Path algebras are the simplest examples of
algebras over S, because they are in fact free algebras over S, as we can write

kQ = TS(M) ,

where M = kQ1 is the S-bimodule which, as a vector space, is freely
generated by the arrows. The space of double derivations for kQ is rather
easy to compute. For each arrow of the quiver x ∈ Q1 we consider the
following double derivation ∂x ∈ DerS(kQ) defined on generators by

∂x(y) = δx,yet(x) ⊗ es(x) , (3.5.5)

where s, t : Q1 → I are, respectively, the source and target map (we use the
convention of concatenation of paths from right to left). It is easy to check that
DerS(kQ) is the free kQ-bimodule with generators {∂x}x∈Q1 . We recall that
the kQ-bimodule structure on DerS(kQ) is induced by the inner bimodule
structure on (kQ)⊗2, explicitely:

(a · ∂ · b)(c) = a ∗ (∂(c)) ∗ b, a,b, c ∈ A,∂ ∈ DerS(kQ) .

Because S ⊂ kQ we can view DerS(kQ) also as a S-bimodule, that is a
I× I-graded vector space, and it is easy to see that for each arrow x ∈ Q1
going from i = s(x) to j = t(x), the double derivation ∂x ∈ DerS(kQ)ji is an
“arrow” going in the opposite direction, from j to i, in fact:

(ek ·∂x ·el)(y) = ek ∗ (δx,yej⊗ei)∗el = δx,yejel⊗ekei = δjlδik∂x(y) , ∀y ∈ Q1 .
(3.5.6)

If we consider the doubled quiver Q, obtained from Q by adding for each
arrow x ∈ Q1 a dual arrow x∗ going in the opposite direction, we have:

Proposition 3.5.2.1. There is a natural isomorphism between the noncommutative
cotangent bundle of kQ, and the path algebra of the double quiver kQ, given by:

kQ
∼−→ T∗ (kQ) = TkQ(DerS(kQ)){

x 7−→ x ,
x∗ 7−→ ∂x .

(3.5.7)
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We remark that the above isomorphism is an isomorphism of kQ-
bimodules, and in particular of S-bimodules, that is I× I-graded vector
spaces (as shown in (3.5.6)). In terms of the kQ-bimodule basis {∂x}x∈Q1 ⊂
DerS(kQ), the distinguished derivation is

∆ =
∑
x∈Q1

[∂x, x] . (3.5.8)

In fact it is sufficient to prove the equality (3.5.8) on each arrow y ∈ Q1 of
the quiver:∑

x∈Q1

[∂x, x](y) =
∑
x∈Q1

∂x(y) ∗ x− x ∗ ∂x(y) =

= (et(y) ⊗ es(y)) ∗ y− y ∗ (et(y) ⊗ es(y)) = y⊗ es(y) − et(y) ⊗ y = ∆(y) .

By the general construction explained in §3.3.2, the cotangent bundle
T∗(kQ) carries a natural double Poisson structure.

Proposition 3.5.2.2. Under the isomorphism (3.5.7) the induced double Poisson
structure on the path algebra of the doubled quiver kQ with only non-zero brackets
the one pairing an arrow x and its dual x∗ by:

{{x, x∗}} = es(x) ⊗ et(x) ,
(
{{x∗, x}} = −et(x) ⊗ es(x)

)
. (3.5.9)

The noncommutative moment map TS(L) → kQ is the one sending ti 7→ δi =
ei (
∑
x[x, x∗]) ei.

Proof. Given x,y ∈ Q1 we have to show that the double bracket {{∂x,∂y}}
given in (3.3.12) is zero. This follows from the fact that any elementary
double derivation ∂x sends any arrow z ∈ Q1 into S⊗ S, therefore the triple
derivation

{{∂x,∂y}}∼l = (∂x ⊗ 1) ◦ ∂y − (1⊗ ∂y) ◦ ∂x
vanishes on the arrows, and so it vanishes everywhere.

Remark 3.5.2.1. The double Poisson on kQ induces a H0-Poisson structure
on (kQ)\ (the space of "cyclic paths"), which is the well-known Necklace Lie
algebra structure ([13]).
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The noncommutative zero locus is:

T∗(kQ)/〈δ〉 ∼= kQ/
〈∑
x∈Q1

[x, x∗]
〉

=: Π(Q) , (3.5.10)

the so called preprojective algebra of the quiver Q. The Shafarevich complex is

Sh(kQ) ∼= kQqS TS(L[1]) ∼= kQϑ , (3.5.11)

where we denote by Qϑ the quiver obtained from the doubled quiver Q by
adding a new loop (ϑi) in homological degree 1 on each vertex, and kQϑ is
its (graded) path algebra. The BRST complex becomes

BRST(kQ) ∼= kQ ∗S TS(L[1]⊕ L∗[−1]) ∼= kQ̂ , (3.5.12)

the path algebra of Q̂, which is the quiver obtained from the doubled quiver
Q adding two new loops on each vertex, one in homological degree 1 (ϑi)
and one in degree −1 (ηi). The BRST differential is, on the generators:

dx = − [η, x] , (η =
∑
i ηi)

dx∗ = − [η, x∗] ,
dϑi = δi − [ηi, ϑi] ,
dηi = −η2

i = −1
2 [ηi,ηi] .

(3.5.13)

3.5.3 The scheme of commuting matrices and similar

Let us consider one particular class of examples of path algebras where the
quiver has only one vertex. In this case we can only have arrows that are
loops on this vertex, so the quiver is uniquely determined by the number of
loops, and we denote by Qg the quiver with g loops. We denote by x1, . . . xg
its loops and by y1, . . . ,yg their dual loops, so that its cotangent bundle is a
free algebra on 2g generators.

kQg = k〈x1,y1, . . . , xg,yg〉 .

The image of t under the moment map k[t] → kQg is δ =
∑
a[xa,ya].

Underived commutative Poisson reduction gives the affine GLn-quotient of
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the zero locus of the moment map µn : (gln)
×2g → gl

(∗)
n :

µ−1
n (0)� GLn = Repn

(
kQg/I

)
� GLn =

=

{
(Xa, Ya) ∈ (gln)

×2g |
∑
a

[Xa, Ya] = 0

}
� GLn ,

(3.5.14)

a linearised (Lie algebra) version of the GLn-character variety of a Riemann
surface of genus g: HomGrp(π1(Σg), GLn)� GLn. The noncommutative Sha-
farevich complex and the BRST complex are, respectively:

Sh(kQg) = k〈x1,y1, . . . , xg,yg, ϑ〉, , dϑ =
∑
a

[xa,ya] ,

BRST(kQg) = k〈x1,y1, . . . , xg,yg, ϑ,η〉 , d = dSh + dCE .

For g > 2 the scheme (3.5.14) is a complete intersection in (gln)
×2g, so

that the homology of the Koszul complex is only in degree zero, and the
homology of the commutative BRST complex is essentially just the ring of
functions on (3.5.14):

H•(Bn(kQg)) ∼= H•(Kn(kQg))GLn ⊗H−•(gln,k) =

= O(µ−1(0))GLn ⊗H−•(gln,k) ,

(considering that H−•(gln,k) = k[tr(η), tr(η3), . . . , tr(η2n−1)] is an exterior
algebra, so essentially ‘invertible’).

The case g = 1 instead corresponds to the scheme of commuting ma-
trices, for which the homology of the Koszul complex in concentrated in
degrees 0, 1, . . . ,n, and it is not known. There is a conjecture ([8, Conjec-
ture 1]), that the diagonal restriction to multisymmetric polynomials is a
quasi-isomorphism:

(Kn(kQ1))
GLn = k[xij,yij, ϑij]GLn → k[xi,yi, ϑi]Sn . (3.5.15)

Using (3.5.4) we can rewrite this conjecture by saying that the following
map is an isomorphism

H•(Bn(kQ1)) = H•(k[xij,yij, ϑij,ηij])→ k[xi,yi, ϑi]Sn [tr(η), . . . , tr(η2n−1)] .
(3.5.16)

We conclude this Section with two more examples similar to the com-
muting scheme:
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1. First we consider the cotangent bundle of the ring of Laurent poly-
nomials: A = T∗B = T∗(k[x±1]). Any double derivation B → B⊗ B is
uniquely determined by its value on x, and by using the B-bimodule
structure we can obtain any value starting from the following deriva-
tion ∂x(x) = 1⊗ 1. Der(B) is a free B-bimodule generated by ∂x, which
we call y, and we obtain:

A = T∗B ∼= k〈x±1,y〉 , {{x,y}} = 1⊗ 1 ,

It is easy to verify on the generators that the gauge element in T∗B
is still δ = xy− yx = [x,y], so that the zero locus is A/〈δ〉 = k[x±1,y],
and the corresponding commutative zero locus is a group-Lie algebra
version of the commuting scheme:

Repn(A/〈δ〉) = {(X, Y) ∈ GLn × gln | [X, Y] = 0} .

The Shafarevich complex is obtained by adding one more variable ϑ
whose differential is [x,y]. However we can observe that in this case,
because x is invertible, we can rewrite [x,y] = (xyx−1 − y)x and at the
level of matrices XYX−1 = AdX(Y) is the adjoint action of GLn on gln.
Thus the Koszul complex, which a priori is the following homotopy
pull-back diagram:

Spec(Kn(A)) GLn × gln

pt gln
0

(dΘ = [X, Y])

can be rewritten in a more intrinsic way as the following homotopy
pull-back diagram, generalisable to other Lie algebras:

gln ×h(gln×gln) (GLn × gln) GLn × gln

gln gln × gln

(Ad,1)

diag

(dΘ = AdX(Y) − Y)

We could write an analogous conjecture to the Lie algebra-Lie algebra
case by saying that:
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Conjecture 3.5.3.1. The following diagonal restriction map is a quasi-
isomorphism:

k[xij,yij, ϑij, det(X)−1]GLn ∼→ k[x±i ,yi, ϑi]Sn . (3.5.17)

2. Next we consider the following example A = k〈x±1,y±1〉, which is
not a cotangent bundle. However we can still define a double Poisson
structure by setting {{x,y}} = 1⊗ 1. We can easily verify on the gen-
erators that the element δ = [x,y] defines a Hamiltonian action, that
is:

{{δ,a}} = a⊗ 1 − 1⊗ a, ∀a ∈ A .

The zero locus is A/〈δ〉 = k[x±1,y±1], and the corresponding commu-
tative zero locus is a group-group version of the commuting scheme:

Repn(A/〈δ〉) =
{
(X, Y) ∈ GL×2

n | [X, Y] = 0
}

.

As in the previous example, using that now both matrices are invertible,
we can rewrite the relation as xyx−1y−1 = 1, so that we can identify the
Hamiltonian reduction with the GLn-character variety of the Riemann
surface with genus g = 1:

Repn(A/〈δ〉)� GLn ∼= HomGrp(π1(Σ1), GLn)� GLn . (3.5.18)

Remark 3.5.3.1 (The Poisson structure on the character variety is
not the standard one). We need to remark that the above identifi-
cation (3.5.3.1) holds only at the level of affine schemes while the in-
duced Poisson structure that we have on Repn(A/〈δ〉)� GLn does not
coincide with the one on the character variety of Σ1. In fact, the latter
is obtained by quasi-Hamiltonian reduction of the quasi-Hamiltonian
space GLnyGL×2

n , equipped with the canonical 2-form ω on the
double of a Lie group ([2]), which is different from the one induced
by GL×2

n ⊂ gl×2
n

∼= gln × gl∗n
∼= T∗gln. If we would like to obtain the

standard Poisson structure on the character variety we would need a
noncommutative analogue of the quasi-Hamiltonian formalism and
Lie-group valued moment maps of [2], which at least in the case of
the standard action of GLn by conjugation was developed in [69].
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The corresponding conjecture relating the corresponding Koszul com-
plex with its diagonal part would be (and it already appears in [11,
Conjecture 1]):

Conjecture 3.5.3.2. The following diagonal restriction map is a quasi-
isomorphism:

k[xij,yij, ϑij, det(X)−1, det(Y)−1]GLn ∼→ k[x±i ,y±1
i , ϑi]Sn . (3.5.19)

3.5.4 Decomposition of the homology of the commuting
scheme

Let A = k〈x,y〉. Consider the following maps on the BRST complex Bn(A) =
k[xij,yij, ϑij,ηij]:

ϕ• = {tr(η),−} : Bn(A)• → Bn(A)•−1 ,
ψ• = tr(ϑ) · (−) : Bn(A)• → Bn(A)•+1 .

(3.5.20)

Proposition 3.5.4.1. The following relations are satisfied:

ϕ•+1ψ• +ψ•−1ϕ• = n1 , ϕ•−1ϕ• = 0 , ψ•+1ψ• = 0 . (3.5.21)

Moreover the maps ϕ•,ψ• preserve boundaries and cycles of the BRST differential,
so they induce maps on the homology H•(Bn(A)), satisfying the same relations.

Proof. For any element α ∈ Bn(A) we have:

{tr(η), tr(ϑ)α} = {tr(η), tr(ϑ)}α− tr(ϑ){tr(η),α} = tr{η, ϑ}α− tr(ϑ){tr(η),α} =
tr1α− tr(ϑ){tr(η),α} = nα− tr(ϑ){tr(η),α} ,

which proves the first relation. The second follows from the Jacobi iden-
tity and the fact that {tr(η), tr(η)} = tr({η,η}) = tr(0) = 0. The third one is
because tr(ϑ) is an odd element, therefore tr(ϑ)2 = 0. They preserve bound-
aries and cycles essentially because the differentials dϑ = [x,y] − [η, ϑ] and
dη = −1

2 [η,η] are commutators, therefore dtr(ϑ) = dtr(η) = 0.
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Moreover in the decomposition H•(Bn(A)) ∼= H•(Kn(A))GLn⊗H−•(gln,k)
they preserve the submodule H•(Kn(A))GLn ⊂ H•(Bn(A)), and we denote
by the same symbol the induced maps on the Koszul homology:

ϕ• : H•(Kn(A))GLn → H•−1(Kn(A))
GLn ,

ψ• : H•(Kn(A))GLn → H•+1(Kn(A))
GLn ,

(3.5.22)

which satisfy the same relations (3.5.21). From which it follows that:

Corollary 3.5.4.1. The Koszul homology decomposes as two copies of the same
graded module which are obtained one from the other by a degree 1 shift, as follows:

H•(Kn(A))GLn = ker(ϕ•)︸ ︷︷ ︸
•=0,1,...,n−1

⊕ im(ψ•−1)︸ ︷︷ ︸
•=1,2,...,n

, (3.5.23)

and the isomorphism is provided by ψ•|ker(ϕ•)
: ker(ϕ•)

'→ im(ψ•).

Proof. This follows precisely from the relations that the induced maps (3.5.22)
satisfy (which are the same as (3.5.21)). In fact from the first and the sec-
ond equation we have that any homology class α ∈ H•(Kn(A))GLn can be
written as a sum of two elements:

α =
1
n
(ϕ•+1ψ•)︸ ︷︷ ︸
∈ker(ϕ•)

+
1
n
(ψ•−1ϕ•)︸ ︷︷ ︸
∈im(ψ•−1)

.

The intersection of the two submodules is zero because if α = ψ•−1β and
ϕ•α = 0, by the third property:

nα = ϕ•+1ψ• α︸︷︷︸
ψ•−1β

+ψ•−1ϕ•α = 0 .

Finally ψ•|ker(ϕ•)
is injective because it is the left inverse of (n times) the

identity: ϕ•+1ψ•|ker(ϕ•)
= n1, and it is surjective on im(ψ•) because ψ• is

zero on the complement of ker(ϕ•).

Remark 3.5.4.1. The decomposition (3.5.23) can be explained also without
using the trace maps in the following way. The homology of the Koszul
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complex Kn(A) is essentially only due to the diagonal elements ([x,y]ii),
because the other ones form a regular sequence ([38]). Moreover of these
diagonal elements one is superfluous, because their sum is zero:

tr([x,y]) =
∑
i

[x,y]ii = 0 .

It follows that the homology decomposes as the tensor product of the
reduced homology (the one obtained by removing the superfluous element
tr(ϑ)) and the antisymmetric algebra on the 1-dimensional vector space
generated by tr(ϑ):

H•(Kn(A)) = H̃• ⊕ H̃•−1 · tr(ϑ) .

This decomposition is the same as (3.5.23) so, incidentally, we find another
interpretation of the reduced Koszul homology of the commuting scheme
as H̃• ∼= ker(ϕ•): the classes whose Poisson bracket with tr(η) vanishes.

3.6 Noncommutative group actions and Poisson-
group schemes

In this final, short section we formalise the notions of noncommutative
analogues of group schemes, group actions and Poisson-group schemes.
The purpose is two-fold:

• On the one hand these seems to be rather natural definitions that,
at least to our knowledge, did not appear yet in the literature and
can help understand from a more intrinsic, coordinate-free way, many
results in the paper.

• On the other hand these notions could be used to define generalisations
of the above story for noncommutative Hamiltonian actions different
from the standard one (that induces the ordinary conjugation action
of GLn).

3.6.1 Noncommutative group schemes and actions

First we recall a couple of general notions about categorical groups (and
cogroups), associated functors, and categorical group actions.
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Groups: To a cartesian monoidal category C (category with binary prod-
ucts and terminal object 1C ∈ C), we can associate the category Grp(C) of
group objects in C: quadruples (G,m, ι, e) with G ∈ C an object, a ‘multipli-
cation morphism’ m : G×G→ G, an ‘inverse morphism’ ι : G→ G, and a
‘unit morphism’ e : 1C → G satisfying the group axioms – and morphisms
the morphisms of underlying objects preserving multiplication. A (inter-
nal) group action G

αyX of a group G ∈ Grp(C) on X ∈ C is a morphism
α : G×X→ X satisfying the usual two conditions of group actions. We can
define a category of actions on C, which we denote by (a perhaps uncon-
ventional notation) Act(C): objects are group actions GyX, and morphisms

from G
αyX to H

β
y Y are couples (ϕ, f) consisting of a morphism of groups

ϕ : G → H and a morphism f : X → Y such that β ◦ (ϕ× f) = f ◦ α. We
can also fix the group G (and ϕ = idG) and consider only the category of
G-equivariant objects, which we denote by ActG(C). To a cartesian functor
F : C→ D between cartesian monoidal categories we have induced functors
between all the categories introduced above:

1. Grp(F) : Grp(C)→ Grp(D)

2. Act(F) : Act(C)→ Act(D)

3. ActG(F) : ActG(C)→ ActF(G)(D)

Cogroups: If A has binary coproducts and initial object ∅A ∈ A (that is, Aop

is cartesian monoidal), then we can define the category CoGrp(A) of cogroup
objects in A: quadruples (A,∆,S, ε) with A ∈ A an object, a ‘comultiplication’
∆ : A→ A

∐
A, a ‘coinverse’ S : A→ A, and a ‘counit’ ε : A→ ∅A satisfying

the cogroup axioms – and morphisms the comultiplication preserving ones.
Obviously CoGrp(A) ∼= (Grp(Aop))op. Dualising the previous constructions
we can define the category of cogroup coactions CoAct(A) (∼= (Act(Aop))op)
and for some fixed cogroup A ∈ CoGrp(A), the category of A-coequivariant
objects CoActA(A) (∼= (ActAop(Aop))op). To any cocartesian functor F : A→ B
we have induced three functors:

1. CoGrp(F) (∼= Grp(Fop)op) : CoGrp(A)→ CoGrp(B)

2. CoAct(F) (∼= Act(Fop)op) : CoAct(A)→ Act(B)
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3. CoActA(F) (∼= ActAop(Fop)op) : CoActA(A)→ CoActF(A)(B)

Example 5. Let C = Affk the category of affine k-schemes. The category
Grp(Affk) is the category of affine group schemes over k (we denote it
simply by Grpk), Act(Affk) is the category of affine group scheme actions
(we denote it by Actk), and ActG(Affk) the category of G-equivariant affine
schemes over k (we denote it by G− Affk).

Example 6. (= Example 5op). A = CommAlgk = Affopk . The category

CoGrp(CommAlgk) ∼= CHopfk

is the category of commutative Hopf algebras over k (notice, in fact, that
the antipode map of a Hopf algebra is in general an antihomomorphism
of algebras, but when they are commutative, it is a homomorphism, and
it corresponds to the coinverse of the cogroup structure). The category
CoAct(CommAlgk) is the category of coactions of commutative Hopf algebras
on commutative algebras over k, and CoActA(CommAlgk) the category of
A-coequivariant commutative algebras over k.

Definition 3.6.1.1 (Noncommutative version of Example 5). The category of
noncommutative affine group schemes is the category of group objects in the
cartesian monoidal category of noncommutative affine schemes NAffk :=
Alg

op
k . We denote it by NGrpk := Grp(NAffk). The category of noncommutative

affine group scheme actions is the category of actions on noncommutative
affines: NActk := Act(NAffk). For a fixed noncommutative affine group
scheme Q we denote the category of Q-equivariant objects by Q− NAffk :=
ActQ(NAffk).

Proposition 3.6.1.1. The (opposite) representation functor Repn = (−)
op
n :

NAffk → Affk is a cartesian functor, therefore it induces the following three
functors, which by an abuse of notation we denote by the same symbol:

1. Repn : NGrpk → Grpk , which enriches the usual one Repn : NAffk → Affk
in the sense that there is a commutative diagram linking these two functors
under the natural forgetful functors NGrpk → NAffk, Grpk → Affk.

2. Repn : NActk → Actk ,
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3. Repn : Q− NAffk → Repn(Q) − Affk ,

therefore justifying Definition 3.6.1.1, according to the Kontsevich-Rosenberg prin-
ciple.

Remark 3.6.1.1. For an algebra A ∈ Algk we denote by Sp(A) ∈ NAffk
the corresponding object in the opposite category (and analogously for
A ∈ CoGrp(Algk) we denote by Sp(A) ∈ NGrpk the corresponding noncom-
mutative affine group scheme). If we do so the notation we used for the
functor Repn in the previous Proposition is in slight contradiction with the
previous notation that we used in the introduction of the paper, in which
we evaluated Repn(A) on algebras A. Now instead, to be precise, we should
(and will) say Repn(Sp(A)).

Example 7 (Noncommutative additive group NGa). This is NGa := Sp(k[x]),
where the cogroup structure on k[x] is:

∆ :k[x]→ k〈x1, x2〉
x 7−→ x1 + x2

S :k[x]→ k[x]

x 7−→ −x

ε :k[x]→ k

x 7−→ 0

The corresponding (abelian) affine group scheme is Repn(NGa) ∼= gln(k)
(with respect to the sum).

Example 8 (Noncommutative multiplicative group NGm). This is NGm :=
Sp(k[g±1]), where the cogroup structure on k[g±1] is:

∆ :k[g±1]→ k〈g±1
1 ,g±1

2 〉
g 7−→ g1g2

S :k[g±1]→ k[g±1]

g 7−→ g−1
ε :k[g±1]→ k

g 7−→ 1

It is interesting to observe that every noncommutative affine scheme X =
Sp(A) has a somewhat natural NGm-action (the precise statement is that
this gives a functor γ : NAffk → NGm − NAffk), described dually as the
coaction:

α :A→ A ∗k k[g] = A〈g〉
a 7−→ gag−1

The corresponding action of the affine group scheme Repn(NGm) ∼= GLn(k)
on Repn(X) is the standard conjugation action on representations. The
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composition of the functor associating to each X the natural NGm-action
and the representation functor of Proposition 3.6.1.1(3) is a factorisation
of the representation functor with target category the GLn(k)-equivariant
affine schemes:

NAffk NGm − NAffk GLn(k) − Affk

Repn

γ Repn

Remark 3.6.1.2. As anticipated in the beginning of this section, the explana-
tion of the ordinary GLn-action in these new terms tells us what we should
do in case we would like to consider different actions of GLn: we consider
simply Repn : NGm − NAffk → GLn(k) − Affk, without precomposing it
with the functor γ. This means that we start from a space Sp(A) with a
NGm-action that is not necessarily the usual one, and in this way obtain
all possible actions of GLnyRepn(A) that arise from noncommutative
geometry.

3.6.2 Noncommutative Poisson-group schemes

First we give the definition of affine Poisson-group schemes, which is the
obvious algebro-geometric notion analogous to the differential-geometric
one of Poisson-Lie groups ([17]). First we recall that the category CPAlgk of
commutative Poisson algebras over k has binary coproducts (the underlying
algebra is the tensor product) and initial object the algebra k with trivial
Poisson structure. Dually the category of affine Poisson schemes PAffk :=
CPAlgopk is a cartesian monoidal category with final object ∗ = Spec(k) the
point. Recall that we have two forgetful functors PAffk → Affk, Grpk → Affk:
one forgets the Poisson structure and the other the group structure.

Definition 3.6.2.1. The category PGAffk of (affine) Poisson-group schemes (over
k) is the full subcategory of the pullback2 category PAffk×Affk Grpk consist-
ing of those objects whose multiplication map is a Poisson map.

2We mean the strict pullback in the 1-category of categories Cat. In other words an
object in PAffk ×Affk Grpk is a pair of a Poisson scheme and a group scheme which are
equal under the forgetful functors, which is just a fancy way of saying that we have an
affine scheme equipped with a group structure as well as a Poisson structure.
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Remark 3.6.2.1. We remark that this is not the same as the category of group
objects in Poisson schemes Grp(PAffk). In fact objects of this category are
Poisson schemes equipped with a group structure for which multiplication,
inverse, and unit are all Poisson maps, while PGAffk only requires the multi-
plication to be a Poisson map. Moreover, one can show that a Poisson-group
schemes has inverse map being a antiPoisson-homomorphism, therefore
every group object in Poisson schemes has trivial (zero) Poisson structure,
in other words Grp(PAffk) ∼= Grpk is trivially just the category of group
schemes.

Now we have everything we need to define the noncommutative ana-
logues of such structures. First we recall that the category PPAlgk of double
Poisson algebras over k has binary coproducts (Proposition 3.2.4.2) and
initial object the algebra k with trivial double Poisson structure. Dually,
the category of noncommutative affine Poisson schemes NPAffk := PPAlgopk is
a cartesian monoidal category with final object ∗ = Sp(k), the ‘point’. We
have two forgetful functors NPAffk → NAffk, NGrpk → NAffk: one forgets
the (double) Poisson structure and the other the group structure.

Definition 3.6.2.2. The category NPGAffk of noncommutative (affine) Poisson-
group schemes (over k) is the full subcategory of the pullback category
NPAffk ×Affk NGrpk consisting of those objects whose multiplication map is
a Poisson map.

Remark 3.6.2.2 (Dually, algebraic side). A noncommutative (affine) Poisson-
group scheme X = Sp(A) ∈ NPGAffk is, dually, an algebra A equipped
with a double Poisson structure and a cogroup structure for which the
comultiplication map ∆ : A→ A ∗k A is a double Poisson map.

Remark 3.6.2.3. We have the following ingredients:

(i) Repn : NAffk → Affk, the ordinary representation functor.
(ii) Repn : NPAffk → PAffk, enriching (i) under the natural forgetful

functors (3.4.4).
(iii) Repn : NGrpk → Grpk, enriching (i) under the natural forgetful functors

(Proposition 3.6.1.1(1)).

It follows that we have an induced pullback functor:

Repn : NPAffk ×Affk NGrpk → PAffk ×Affk Grpk (3.6.1)
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Theorem 3.6.2.1. The functor (3.6.1) restricts to the full subcategories of noncom-
mutative Poisson-group schemes and Poisson-group schemes, respectively. In other
words we have a factorisation:

NPGAffk PGAffk

NPAffk ×Affk NGrpk PAffk ×Affk Grpk

Repn

Repn

(3.6.2)

justifying, once again, Definition (3.6.2.2).

Proof. Dually, we need to show that if A is a double Poisson algebra with a
cogroup structure such that the comultiplication map ∆ : A→ A ∗k A is a
morphism of double Poisson algebras, then the induced comultiplication
∆n : An → (A ∗k A)n ∼= An ⊗k An is a morphism of Poisson algebras. This
is granted once we show that the equality (A ∗k A)n ∼= An ⊗k An holds not
only at the level of algebras, but also at the level of double Poisson algebras,
or in other words that the functor Repn : NPAffk → PAffk (Remark 3.6.2.3(ii))
is a cartesian functor. This follows straightforwardly from the identification
(A ∗k B)n ∼= An ⊗k Bn and the trivial verification of the equality of the two
Poisson structures on the generators.
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Appendix A

Projective model structure on
T -equivariant dg-algebras

In this Appendix we give a proof of Theorem 2.2.5.1 that gives a projective-
like model structure on the category of T -equivariant dg-algebras (DGA+k )

T ,
for an algebraic torus T = (k×)r. We use the same strategy used in [10], in
which the authors prove that the category of bigraded dg-algebras BiDGAk
has a projective-like model structure1. The key observation is to recognise
that BiDGAk being the category of dg-algebras with an additional non-
negative (polynomial) compatible grading, is equivalent to the category of
T -equivariant dg-algebras with a polynomial torus action (i.e. weight spaces
are only for non-negative weights), and that the polynomial condition can
be dropped, and substituted by the rational condition, in which weights can
be arbitrary integers.

More precisely, weight spaces for a torus T = (k×)r are r-tuples of
integers n ∈ Zr, and we observe that the category of dg-algebras with
a rational T -action (DGA+k )

T is equivalent to the category of dg-algebras
A ∈ DGA+k with:

1. An additional grading of the underlying chain complexA = ⊕n∈ZrA(n).
This means that each A(n) is a complex of vector spaces preserved by
the differential in A: dA(n) ⊂ A(n).

1Which ultimately follows the explicit proofs of the existence of the projective model
structure on DGA+k by [51] or [26].
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2. The grading is compatible with the multiplication in A: A(n) ·A(m) ⊂
A(n+m).

In fact, on one hand if A ∈ (DGA+k )
T then for n ∈ Zr we define

A(n) = {a ∈ A | t · a = tna, ∀t ∈ T }

as the corresponding weight space and the above 2 conditions are satisfied
thanks to the rationality of the action (recall, Definition 2.2.5.1). On the other
hand, obviously if we have such a decomposition we define the T -action on
A accordingly by t · a :=

∑
n t
na(n), where a =

∑
n a(n), and the resulting

T -action is rational.
The observation that (DGA+k )

T is equivalent to the category of dg-algebras
with an additional grading as described above will be also useful later, and
we will use indifferently one or the other property, according to what is
more convenient from time to time.

Let us also denote by k[T ] = O(T), a Laurent polynomial ring in r

variables and observe that

Lemma A.0.0.1. The forgetful functor U : (DGA+k )
T → DGA+k is left-adjoint to the

“free T -equivariant extension” functor:

(DGA+k )
T

U //
⊥ DGA+k

k[T ]⊗(−)
oo . (A.0.1)

Proof. The adjunction is given by the natural isomorphisms:

HomDGA+k
(UA,B) ∼= Hom(DGA+k )

T (A,k[T ]⊗B) ,

where to a T -equivariant morphism ϕ : A→ k[T ]⊗B we assign the compo-
sition with the evaluation map at 1 ∈ T :

A
ϕ−→ k[T ]⊗B ev1⊗1B−−−−→ k⊗B ∼= B .

Conversely if we start from a map f : UA → B which is not necessarily
T -equivariant, we can construct a T -equivariant map ϕ : A → k[T ]⊗ B by
decomposing:

ϕ :
⊕
n∈Zr

A(n)→
⊕
n∈Zr

B · tn ,

and defining ϕ|A(n)
: A(n)→ B · tn as f|A(n)

(−) · tn.
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In order to prove Theorem 2.2.5.1 we need a few definitions and lemmas.
Throughout this section of the Appendix we denote by C = DGA+k and by
CT = (DGA+k )

T .

Notation. We denote by Cof ,WE,Fib the collection of cofibrations, weak
equivalences, and fibrations in the projective model structure on C. So Fib
are surjective maps in positive homological degrees, WE are the quasi-
isomorphisms, and Cof = �(WE∩Fib), where �(−) denotes the collection of
morphisms with the left lifting property with respect to another collection of
morphisms. Finally recall that a fibration which is also a quasi-isomorphism
is actually surjective in all homological degrees, so that WE∩Fib consists of
surjective quasi-isomorphisms.

Definition A.0.0.1. A morphism i : S → R ∈ CT is a T -equivariant noncom-
mutative Tate extension (also simply a Tate extension) if there is a (possibly
infinite) sequence V(0) ⊂ V(1) ⊂ V(2) ⊂ . . . of (homologically) graded,
T -equivariant vector spaces such that

1. Each S ∗k T(V(i)) has a differential and a compatible embedding S ∗k
T(V(i)) ⊂ R such that at the limit V = ∪iV(i):

S ∗k TV = lim
−→i

S ∗k T(V(i)) = R .

2. Each differential has the property that d(V(i)) ⊂ S ∗k T(V(i−1)) (and for
i = 0, d(V(0)) ⊂ S).

We denote the collecion of such morphism by TE ⊂Mor(CT ).

Lemma A.0.0.2. (i) Every morphism S → A in CT has a factorisation of the
form S

i−→ R
p−→ A where i ∈ TE and p ∈ U−1(WE ∩ Fib) (is a surjective

quasi-isomorphism).

(ii) Every Tate extension has the left lifting property with respect to morphisms
that are surjective quasi-isomorphisms: TE ⊂ �(U−1(WE∩Fib)).

For the proof one can check that the proof of Proposition 3.1 (which relies
on Proposition 2.1(ii)) of [26] can be used also in this case of T -equivariant
(i.e. additionally graded) objects.
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Now let x be a variable of positive homological degree as well as of
some weight n ∈ Zr for the torus T , and set Vx := [0→ k · x→ k · dx→ 0],
and its tensor algebra T(Vx) ∈ CT . Extensions by objects of this form play
another important role:

Definition A.0.0.2. A morphism in CT of the form S → S ∗k
∐
i∈I T(Vxi),

where I is any, possibly uncountably infinite, indexing set, is called a special
extension. We denote the collection of special extensions by SE ⊂Mor(CT ).

Lemma A.0.0.3. (i) Every morphism S → A in CT has a factorisation of the
form S

i−→ R
p−→ A where i ∈ SE and p ∈ U−1(Fib).

(ii) SE ⊂ �(U−1(Fib)).

(iii) SE ⊂ U−1(WE).

Proof. (i) It suffices to consider the set of elements of A of positive homo-
logical degrees as well as of some weight for the torus action: I := {a ∈
A(n)i |n ∈ Zr, i > 0}. For each a ∈ I we consider the obvious TVxa

pa−→ A

given by pa(xa) = a (and consequently pa(dxa) = da). Then

S
i−→ S ∗k

∐
a∈I
T(Vxa)

f∗k
∐
a∈I

pa

−−−−−−→ A

is the desired factorisation. (ii) and (iii) are quite obvious.

Now we have everything we need to prove that the following definition
yields the desired model structure on CT :

Definition A.0.0.3. We define weak equivalences, fibrations and cofibrations
in CT as:

WET := U−1(WE) , FibT := U−1(Fib) ,

Cof T := �(WET ∩FibT ) = �(U−1(WE∩Fib)) .
(A.0.2)

We observe that, by Lemma A.0.0.2(ii), Tate extensions are cofibrations:
TE ⊂ Cof T , and by Lemma A.0.0.3, special extensions are acyclic cofibrations:
SE ⊂WET ∩ Cof T . In fact, it is useful to observe that
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Proposition A.0.0.1. Every acyclic cofibration in CT is a retract of a special
extension.

Proof. Let i : A → B be an acyclic cofibration and let us factor it as A ĩ−→
R

q−→ B where ĩ is a special extension and q is a fibration, according to
Lemma A.0.0.3(i). q is also a weak equivalence, because of the 2-out-of-3
property (see (MC2) in the proof of the next Theorem), therefore it is an
acyclic fibration, and we can find a lift of the diagram:

A R

B B

ĩ

i q

1B

∃l (A.0.3)

which proves that i is a retract of the special extension ĩ:

A A A

B R B

1A

i

1A

ĩ i

l

1B

q

(A.0.4)

Theorem (2.2.5.1). 1. Definition A.0.0.3 defines a model structure on CT .

2. The forgetful functor U : CT → C preserves cofibrations.

Proof. (1) (MC1) (notation of Definition 3.3 of [23]): finite limits and col-
imits exist in CT because equalizers, coequalizers, finite product and finite
coproducts exist (the same constructions as in C work in the equivariant
setting). (MC2) WET has the 2-out-of-3 property because it is U−1(WE) with
WE having the 2-out-of-3 property. (MC3) WET and FibT are closed under
retracts because, again, defined as U−1 of classes closed under retracts. Cof T

are closed under retracts because they are defined as the morphisms with
the left lifting property with respect to some class �A , and this is always
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closed under retracts (it does not matter what A is). (MC4) We need to prove
that for a diagram in CT of the following form:

A C

B D

f

i p

g

(A.0.5)

a lift exists in the following situations: (i) i is a cofibration and p is an
acyclic fibration, (ii) i is an acyclic cofibration and p is a fibration. (i) is
obviously true by the definition of cofibrations. To prove that a lift exists in
the case (ii), thanks to Proposition A.0.0.1 we only need to find a lift when
i is a special extension, but this is true by Lemma A.0.0.3(ii). (MC5) We
need to prove that each morphism S → A in CT has factorisations of the
form: (i) cofibration followed by an acyclic fibration, (ii) acyclic cofibration
followed by a fibration. (i) follows from Lemma A.0.0.2(i), and (ii) follows
from Lemma A.0.0.3(i).

(2) This follows from the fact that U is left adjoint to k[T ]⊗ (−) (Lemma
A.0.0.1), and the latter preserves weak equivalences and fibrations, therefore
U preserves cofibrations.
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Appendix B

Representation theory of G = Gv

In this Appendix we recall the theory of irreducible representations of
(a product of) general linear groups and we fix the notation. Polynomial
irreducible representations of GLv(C) are labelled by ordinary (non-negative)
partitions λ = (λ1, . . . , λv). More precisely, they are obtained by applying
the Schur functors Sλ(−) : VectC → VectC to the standard representation
V = Cv:

Sλ(V) . (B.0.1)

Their characters, the Schur polynomials, form a linear basis of the ring of
symmetric polynomials in v variables:

sλ(x) := ch(Sλ(V)) ∈ Z[x1, . . . , xv]Σv . (B.0.2)

Examples are

1. V = Cv itself is S(1,0,...,0)(V) and s(1,0,...,0)(x) = x1 + · · ·+ xv.

2. More generally S(d,0,...,0)(V) = Symd(V) and s(d,0,...,0)(x) = hd(x) the
complete symmetric polynomial.

3. For λ = (1, 1, . . . , 1, 0, . . . 0) with 1 repeated d-times, Sλ(V) = Λd(V)
and sλ(x) = ed(x) the elementary symmetric polynomial.

4. 1-dimensional representations are given by m := (m,m, . . . ,m), for
which Sm(V) = det(V)m, and sλ(x) = ev(x)m = xm1 · · · xmv .
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If we shift a partition λ to λ+m := (λ1 +m, . . . , λv +m) we have

Sλ+m(V) = Sλ(V)⊗ det(V)m , (B.0.3)

which allows to extend the definition of Schur functors to partitions made
possibly of some negative parts λ ∈ Pv := {λ ∈ Zv | λ1 > · · · > λv} as

Sλ(V) := Sλ−λv(V)⊗ det(V)λv . (B.0.4)

All irreducible rational representations of GLv(C) are of the form (B.0.4) for
some integer-valued partition λ ∈ Pv. Their characters are generalised Schur
polynomials and they form a linear basis of the ring of symmetric Laurent
polynomials in v variables:

sλ(x) = ch(Sλ(V)) ∈ Z[x1, x−1
1 , . . . , xv, x−1

v ]Σv . (B.0.5)

If now v = (v1, . . . , vn) is a dimension vector and Gv =
∏
i GLvi(C) is a

product of general linear groups, then its irreducible rational representations
are labelled by n-tuples of partitions λ = (λ(1), . . . , λ(n)) ∈

∏
i Pvi , as the

external tensor product of Schur modules:

Vλ := Sλ(1)(C
v1)� · · ·� Sλ(n)(C

vn) . (B.0.6)

Their characters are products of (generalised) Schur polynomials and we
denote them by (the same notation as in (2.4.31)):

fλ(x) := ch(Vλ) = sλ(1)(x
(1)) · · · sλ(n)(x

(n)) , (B.0.7)

where x = (x(1), . . . , x(n)) and each x(i) is a set of vi variables: x(i) =

(x
(i)
1 , . . . , x(i)vi ).
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Appendix C

Derived coproducts

Let C be a model category and S ↓ C the under category with respect to a
fixed object S. The natural forgetful functor is right adjoint to the coproduct
by S:

C
Sq− //
⊥ S ↓ C
U

oo .

The model structure on S ↓ C is the one with cofibrations, weak equivalences,
and fibrations the preimage of the corresponding classes under the forgetful
functor (therefore making the pair (Sq−,U) a Quillen pair). The initial
object in S ↓ C is S with identity map as structure map S → S, while the
final object is the final object in C, with structure map the unique map S→ ∗.
Push-outs and pull-backs in S ↓ C are computed as in C (with structure maps
coming from the additional structure maps in the push-out/pull-back data).
In particular the coproduct in S ↓ C is the push-out in C of the diagram
• ← S→ •, and we denote this coproduct by the standard symbol AqS B.
The coproduct in a model category (in this case S ↓ C) is left adjoint to the
diagonal functor:

(S ↓ C)×2
−qS− //
⊥ S ↓ C
∆

oo , (C.0.1)

which obviously preserves all classes of maps (cofibrations, weak equiv-
alences, fibrations). As a consequence the above pair is a Quillen pair
and the coproduct has a total left derived functor, which we denote by
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L(− qS −) = − qLS −, and is a priori computed by picking cofibrant re-
placements for both variables. However, in the case of a left proper model
category (weak equivalences are preserved by pushout along cofibrations)
ordinary pushouts along cofibrations compute homotopy pushouts ([44,
Proposition A.2.4.4.(ii)]), therefore the derived coproduct is computed by
picking a cofibrant replacement of only one of the two variables:

AqLS B ∼= AqLS QB , (C.0.2)

where QB is a cofibrant replacement of B in the under category S ↓ C,
or equivalently, a diagram S↪→QB ∼

� B in C. Finally we remark that the
categories we are interested in, such as dg algebras or commutative dg
algebras over a field C = DGAk, CDGAk (with coproduct being, respectively, the
free product and the tensor product) are left proper model categories (see
[15, Remark 2.15]).
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