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Summary 

The human genome contains an estimated one million enhancers. With this significant 

number of enhancers, they make up an essential part of our genome. Enhancers are 

regulatory elements that interact with their target promoters through transcription 

factors that regulate the transcription process and thus have a significant impact on 

gene expression. Active enhancers, which are under strict spatial and temporal control, 

can be characterized by enhancer RNAs (eRNAs). eRNAs are 200-500 base pairs long RNA 

molecules and can be identified with 5’-based RNA sequencing. The activity of 

enhancers contributes significantly to cell type differentiation since a cell’s function and 

identity are determined by its gene expression. Because the brain is one of the most 

complex organs with remarkable cellular diversity, elucidating the functions of 

enhancers is essential to understanding brain development. Because most cell types of 

a mature brain arise from the same precursor cells, it exhibits surprising cellular diversity 

and complexity.  

The objective of this thesis was to investigate enhancers that contribute to the 

differentiation of brain cells. Since enhancers interact with promoters, this study aimed 

to elucidate the biological function of the enhancers based on their interaction with 

their target promoters. We used brain organoids, which are 3D cellular structures that 

can recapitulate regions of a brain. We analyzed brain organoids at 40, 80, and 120 days 

using 5’-based single-cell RNA sequencing. Our data showed that the cell type diversity 

increased with increasing cultivation time, and the cells also differentiated into more 

mature cells. Initially, radial glia progenitor cells accounted for 20% of the cells, while 

after 120 days of culture, this population decreased to less than 5%. 

Furthermore, the organoids from day 40 to day 120 had gene expression profiles similar 

to those of human embryonic brains at post-conception week 12. Since the different 

stages of cellular differentiation processes are precisely regulated by specific sets of 

transcription factors, we next investigated the transcription factor signatures during 

brain development. The transcription factor motifs we detected supported our 
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observation that the cells in the brain organoids had undergone a similar differentiation 

process from progenitor cells to more mature cells to that of a human brain.  

In the second part of the thesis, the purpose was to determine biologically and 

functionally relevant enhancer-promoter pairs. Enhancers interact with promoters to 

regulate biological processes by forming chromatin loops that bring them to close 

proximity. Using the 5’-based sequencing method combined with the SCAFE tool, we 

aimed to identify active enhancers with increased sensitivity compared to previous 

studies. SCAFE detects genuine enhancers utilizing logistic regression. We initially 

discovered 15,306 potential enhancer elements with SCAFE, of which about 50% were 

novel. Next, we identified approximately 50,000 robust enhancer-promoter pairs, from 

which 1627 showed a cell-type-specific expression. Finally, after integrating public HiC 

data, we identified 52 pairs with known genomic interaction, supporting the validity of 

these interactions. 

Our data show that brain organoids represent an almost ideal model for studying brain 

development. With the increasing need for better characterization and identification of 

enhancers, our study contributes to the understanding of gene regulation. This work 

extends current resources with biologically relevant and functional enhancer-promoter 

pairs.  
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Zusammenfassung 

Das menschliche Genom enthält schätzungsweise eine Million Enhancer. Mit dieser 

Anzahl machen Enhancer einen wesentlichen Bestandteil unseres Genoms aus. 

Enhancer fungieren mit Transkriptionsfaktoren als regulatorische Elemente, die den 

Transkriptionsprozess beeinflussen, und steuern damit die Genexpression. Die Aktivität 

von Enhancern steht unter strikter räumlicher und zeitlicher Kontrolle. Charakteristisch 

für aktive Enhancer sind Enhancer-RNAs (eRNAs). eRNAs sind 200-500 Basenpaare lange 

RNA-Moleküle und können mit einer 5‘-basierten RNA-Sequenzierung identifiziert 

werden. Die Aktivität von Enhancern trägt massgeblich zur Entstehung der Vielfalt von 

Zellarten bei. Da die Funktion und Identität einer Zelle durch ihre Genexpression 

festgelegt wird, haben Enhancer einen großen Einfluss auf die Eigenschaften einer Zelle. 

Das Gehirn ist eines der komplexesten Organe mit der größten Zellvielfalt. Obwohl die 

meisten Gehirnzellarten eines Erwachsenen aus ein und derselben Gehirnvorläuferzelle 

entsteht, weist das Gehirn eine erstaunliche zelluläre Vielfalt und Komplexität auf. Diese 

Studie zielt darauf ab, Enhancer, die zur Differenzierung von Gehirnzellen beitragen, zu 

untersuchen. Da Enhancer mit Promotoren wechselwirken, sollte im Rahmen dieser 

Studie die biologische Funktion der Enhancer anhand der Wechselwirkung mit 

Promotern herausgefunden werden. Hierfür wurden Gehirn-Organoide, 3D-Modelle, 

die verschiedene Regionen des Gehirns nachbilden können etabliert und die 

Genexpression dieser Gehirn-Organoide nach 40, 80 und 120 Tagen mithilfe von 5‘-

basierter Einzelzell-RNA-Sequenzierung aufgeschlüsselt. Unsere Daten zeigen, dass mit 

zunehmender Kultivierungszeit sowohl eine Zunahme von Zellarten entstand, und dass 

die Zellen auch eine höher entwickelte Form von Gehirnzellen annahmen. Zunächst 

machten radiale Gila Vorläuferzellen 20% der Zellen aus, während nach 120 Tagen 

Kultivierung der Anteil auf 5% sank. Weiterhin wiesen die Organoide von 40 bis 120 

Tagen, ein ähnliches Genexpressionsprofil wie menschliche Gehirne im embryonalen 

Entwicklungsstand der 12. Embryonalwoche. Da die Teilnahme von 

Transkriptionsfaktoren zur Differenzierung von Zellen beiträgt, untersuchten wir in 

unserem Modell als nächstes die Aktivität von Transkriptionsfaktoren anhand von ihren 

Motiven. Die Transkriptionsfaktor-Motivaktivitätsanalyse zeigte, dass die Zellen einen 
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Entwicklungsprozess von Vorläuferzellen zu mehr ausgereiften Zellen durchlaufen 

hatten.  

Im Rahmen des zweiten Projektes wurden die funktionellen Enhancer mit Promotoren 

verknüpft. Enhancer interagieren mit Promotoren, um biologische Prozesse zu 

regulieren. Die Verwendung der 5‘-basierten Sequenzierungsmethode in Kombination 

mit dem aktuellen SCAFE-Algorithmus bietet eine empfindlichere Möglichkeit als 

bisherige Technologien, um funktionelle Enhancer zu identifizieren. SCAFE bestimmt 

„echte“ eRNAs mit Hilfe von logistischen Regressionen. Wir entdeckten zunächst 15‘306 

potenzielle Enhancer-Elemente. Ca. 50% der Enhancer wurden in unserer Studie 

erstmals beschrieben. Als nächstes identifizierten wir ca. 50‘000 robuste Enhancer- 

Promoter-Paare, von denen 1627 einen Promoter, der Zelltyp-spezifisch exprimiert war, 

aufwiesen. Nach Einbindung von öffentlichen HiC Daten fanden wir 52 Paare mit 

genomischen Interaktionen, welche auf eine Enhancer-Promoter Wechselwirkung 

hindeuten.  

Zusammengefasst zeigen unsere Daten, dass Gehirn-Organoide ein nahezu ideales 

Modell für die Untersuchung der Gehirnentwicklung darstellen. Mit dem steigenden 

Bedarf an besserer Charakterisierung und Identifizierung von Enhancern trägt unsere 

Studie zum Verständnis der Genregulation bei. Diese Arbeit erweitert aktuelle 

Ressourcen mit biologisch relevanten und funktionalen Enhancer-Promoter-Paaren.  
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1 Introduction 

1.1 History of enhancers 

1.1.1 The first discovery of an enhancer 

Starting from the first discovery of enhancers as transcriptional regulators in 1983 

(Mercola et al. 1983), the definition of an enhancer has varied over time. The first 

reported enhancer sequence was described as a cis-regulatory and non-coding 

sequence that could enhance the expression of a gene. This finding soon became the 

object of interest in many biological fields. However, unlike genes, enhancers could not 

solely be identified by transcriptomic sequencing, and they lacked a defined grammar 

that supported their assignment as being functional.  

 

1.1.2 Current understanding of enhancers and enhancer RNAs 

The human genome carries around one million enhancers (Dunham et al., 2012). An 

enhancer is a regulatory DNA segment of about 200 base pairs that can strongly 

stimulate or inhibit the transcription of a promoter (Figure 1). Enhancers govern the 

transcription from upstream or downstream of the site of transcription initiation. Most 

functionally validated enhancers act in cis (Walters et al. 1996) and are composed of 

multiple binding sites for transcriptional activator proteins (Spitz and Furlong 2012; Visel 

et al. 2009). However, some studies support the hypothesis that enhancers can function 

in trans (Müller and Schaffner 1990; Mattioli et al. 2020; Bateman, Johnson, and Locke 

2012). They are critical gene-regulatory elements that govern cell-type-specific 

spatiotemporal gene expression by physically contacting genes through long-range 

chromosomal interactions. Enhancers can be distal to their interacting promoter and 

regulate more than one promoter. They generally function independently of orientation 

and at various distances from their target promoters. Enhancers can be very far away 

from their regulating promoter and often have several modes of action. Despite our long 

history of enhancer research, the current definition of enhancers is not definite and is 

the subject of ongoing research.  
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Figure 1. Functional role of enhancer RNAs (eRNAs) during the transcriptional process. eRNAs emerge from the 
translation of the enhancer. (A) Interaction of eRNA with cohesion leads to chromatin looping. (B and C) Interaction 
of eRNA with CBP and BRD4 facilitates histone acetylations. (D) Interaction of eRNA with the transcription factor YY1 
leads to transcription factor trapping. (E) Interaction of the eRNA with P-TEFb leads to phosphorylation of POL II. 
Illustration from Syed and Hon (2021). 

 

In two independent discoveries in 2010, De Santa et al. and Kim et al. could show that 

enhancer regions are actively transcribed into enhancer RNAs (De Santa et al. 2010; Kim 

et al. 2010). The surprising product of this transcription, termed “enhancer RNA” or 

“eRNA,” has subsequently been a subject of controversy, and not every enhancer was 

shown to produce eRNAs. De Santa et al. suggested that the transcription of enhancers 

could be a byproduct of a leaky transcription process. However, with the rise of 

perturbation studies, eRNAs have proven to lead the functional role of the enhancer-

promoter interaction in the gene regulation process (Li et al. 2013; Aguilo et al. 2016; 

Hsieh et al. 2014). Furthermore, these studies have shown that eRNAs are involved in 

diverse aspects of cell functions and are therefore unlikely to be a random byproduct of 

transcription. 

Pnueli et al. also suggested that eRNAs are necessary for stabilizing the enhancer-

promoter loop (Pnueli et al. 2015) and therefore have a supporting function in the 

enhancer activity. Additional studies have shown that overexpression of eRNAs leads to 
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an increase in their promoter targets (Shii et al. 2017; Jiao et al. 2018; Alvarez-

Dominguez et al. 2017). These studies have further proven that eRNAs play a functional 

role in the enhancer to promoter interaction. However, it remains unclear how 

generalizable these characteristics are on a global view of enhancers. Thus, more 

important than if eRNAs have a biological role is the question of which eRNAs are 

functional and how we can infer their activity. The field of enhancer-promoter 

relationship needs further studies to obtain a more comprehensive profile of how and 

when enhancers interact with promoters. 

 

1.1.3 Accessible versus transcribed enhancers 

Enhancers can be identified using different technologies (Table 1), each technology 

capturing a distinct feature of our current enhancer definition.  

Enhancers can be identified by open-chromatin regions (Creyghton et al. 2010; Thurman 

et al. 2012; Rivera and Ren 2013). Active enhancers are identified by open-chromatin 

regions that carry an epigenetic mark, such as methylation or acetylation. Epigenetic 

marks contribute to chromatin formation changes and the function of enhancers.  

Another approach utilized enhancer RNAs to identify active enhancers (Djebali et al. 

2012; Andersson et al. 2014; Arner et al. 2015; Li, Notani, and Rosenfeld 2016; Wang et 

al. 2011). Enhancer RNA is produced when the enhancer is looping to its target gene. 

The enhancer region gets into proximity to the polymerase and leads to the transcription 

of the enhancer region, thus characterizing an active enhancer. Several studies show 

that transcribed enhancer regions are more likely to be involved in looping and DNA-

DNA interactions than enhancer regions that are not transcribed.  
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Table 1. Technologies to identify the most common features of enhancers. ChIP-seq can detect a wide range of 
enhancer features, such as histone modification H3K4me1 and H3K27Ac, as well as binding of transcription actors. 
Adapted from Lewis, Li, and Franco (2019). 

 
 

Both methods are currently used to identify active enhancers. A study in 2013 found 

that eRNAs are more accurate than chromatin accessibility in identifying enhancers (Zhu 

et al. 2013). This study created a regression model to understand the relationship 

between enhancer RNAs and chromatin modifications. Interestingly, the authors 

concluded that enhancer RNAs are more indicative of enhancer activity than chromatin 

modifications. Similar conclusions were made from a study looking at an enhancer 

regulating the MAPK/ERK pathway (Tyssowski et al. 2018). The authors found that the 

eRNA was repressed as expected upon inhibition of the MAPK/ERK pathway, but 

acetylation was still accumulating at the enhancer region. These studies suggest that 

eRNA transcription is a more sensitive marker for enhancer activation than histone 

modifications.  

 

1.1.4 Cell type specificity of enhancer RNAs 

While the human body consists of hundreds of cell types, the genome of each cell is the 

same. However, every cell type is characterized by a distinct gene expression profile. 

Coordinating this variety of gene expression for each cell type needs precise control in 

a time- and environment-specific manner. Previous studies have shown that enhancers 

in combination with transcription factors play a vital role in this regulation. While 

Feature Commonly used methods for detection

Chromatin accessibility DNase-seq, ATAC-seq, and FAIRE-seq

Histone modification H3K4me1 ChIP-qPCR, ChIP-chip, ChIP-seq

Histone modification H3K27Ac ChIP-qPCR, ChIP-chip, ChIP-seq

Enhancer-promoter looping 3C, 4C, HiC, and Hi-ChIP

Binding of transcription factors ChIP-qPCR, ChIP-chip, and ChIP-seq

Production of eRNAs GRO-seq, CAGE, PRO-seq
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enhancers are critical to all cell types, enhancer activity varies dramatically across tissues 

(Nord et al. 2013). The FANTOM5 project identified immune cells, neural tissues and 

hepatocytes among those with the highest abundance of cell-specific enhancers, a 

higher ratio of enhancers to genes, and high enhancer transcription (Andersson et al. 

2014). In this study, eRNAs were used to identify active enhancers. Indeed, studies in 

neurons, macrophages, and other immune cells are prominent among those 

contributing to our understanding of enhancers and active enhancers. In contrast, 

smooth muscle cells, fibroblasts, and epithelial cells utilize enhancers with less cell-

specificity and lower enhancer to gene ratio (Andersson et al. 2014). This diversity of 

enhancer utilization likely reflects each cell type’s unique roles and needs to respond 

dynamically to its environment.  

Previous studies identified millions of enhancers in the human genome, but only a 

subset of enhancers are activated at a time. Enhancers can interact with transcription 

factors to regulate gene expression (Arnold, Wells, and Li 2020; Michida et al. 2020; 

Palstra 2012; Spitz and Furlong 2012). Transcription factors are proteins that bind to 

specific DNA sequences and motifs to activate or repress gene transcription. 

Transcription factors can operate alone or with other proteins in a complex. Studies 

have shown that enhancers distal to their regulating promoter can interact with their 

promoter by recruiting transcription factors that initiate the looping of the DNA, 

bringing the enhancer close to the interacting promoter (Rhee et al. 2016). As enhancer 

activities undergo progressive changes during cell type differentiation, the interaction 

with transcription factors is dynamic. Transcription factors function in complex 

combinatorial and regulatory patterns to secure precise gene regulation.  

 

1.1.5 Identification of enhancers and their regulating gene 

From previous studies, we know that enhancers regulate the transcriptional process by 

interaction with the promoter of that gene (Figure 2). However, there is no gold 

standard yet to identify this enhancer-promoter interaction. There are many obstacles 

to overcome in identifying and characterizing enhancer-promoter pairs. First of all, 

enhancers are distributed across 99% of the non-coding region of the genome, and 
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enhancer sequence codes are poorly understood if we compare the well-annotated 

sequence code of protein-coding genes. Thus, enhancers cannot be identified by 

sequence only. Instead, we rely on epigenetic marks or eRNAs to elucidate the function 

of an enhancer.  

Because the location of enhancers to their target gene is variable, the distance from 

enhancer to promoter cannot be used as a characteristic to define an enhancer. In 

addition, there is no universal rule that enhancers must be upstream, downstream, or 

within a gene body. Having multiple variables makes identifying the target gene of 

enhancers challenging. 

 

 
Figure 2. Current understanding of the enhancer-promoter interaction. The target gene can be located far from the 
enhancer. Changes in the chromatin loop and higher-order chromatin structure can facilitate the enhancer to come 
to proximity to the target promoter. The changes in chromatin structure are initiated by transcription factors, which 
recruit chromatin remodeling enzymes, histone enzymes, and the RNA polymerase II complex. Transcription of 
enhancers results in enhancer RNAs (eRNAs).  

 

However, continuous research has shown that different methods can overcome these 

obstacles. There are several ways of inferring enhancers to target gene interactions 

(Hariprakash and Ferrari 2019; Wang, Hu, and Li 2020; Jing, Zhang, and Zhang 2020; Yang 

Yang et al. 2017; Zhao, Li, and Hu 2016; S. Liu et al. 2020).  

One method of inferring enhancer-promoter pairs uses HiC data, representing a whole-

genome pull-down of all genomic regions interacting with each other. Therefore, HiC is 

widely accepted for identifying available enhancer-promoter pairs since this method 

proves physical contact. Common approaches to identify enhancer-promoter pairs 
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include taking the nearest protein-coding gene to the enhancer or setting a defined 

range. However, with the emergence of eRNAs, correlating the eRNA expression pattern 

with promoters has become an alternative way of predicting enhancer-promoter pairs. 

Even though the low eRNA expression levels complicate this method, recent studies 

showed that eRNA transcription and induction of mRNA transcription at neighboring 

genes are correlated (Arner et al. 2015; Andersson et al. 2014; Kouno et al. 2019; Li et 

al. 2013; Kim et al. 2010).  

Other approaches include transcription factor binding site motif analysis, as 

transcription factors are known to be involved in the enhancer-promoter interaction. 

Transcription factors are specialized proteins that can facilitate the binding of the 

enhancer or recruit other proteins to aid the enhancer to promoter interaction. 

Transcription factors recognize specific DNA sequences called motifs. Therefore, 

transcription factors can be used to identify enhancers and promoters that carry the 

same motif.  

Recent publications show that the successful identification of enhancer-promoter pairs 

remains a challenging and ongoing process but have demonstrated that bioinformatics 

approaches are powerful in predicting enhancer-promoter pairs on a genome-wide 

scale (Gao and Qian 2019; Hait et al. 2018; Hwang et al. 2015). Using in silico methods 

enables inferring enhancer-promoter pairs on a large scale and reduces the 

experimental workload while saving resources. Therefore, having a reliable way to infer 

enhancer-promoter pairs is the first step toward finding functional pairs with biological 

relevance.  

 

1.1.6 Further characteristics of enhancers  

As we are uncovering the true nature of enhancers, resources and individual studies add 

to our growing understanding of enhancers.  

Although most described enhancers have one promoter they interact with, there have 

been studies that prove that enhancers can also act in groups of super-enhancers (Hnisz 

et al. 2013; Su et al. 2015; Luo et al. 2016). One enhancer can interact with multiple 
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genes or vice versa. Super-enhancer regions are usually 600-1400 base pairs long 

(Whyte et al., 2013). Complex interactions are challenging to study because the 

contribution of every single enhancer is unclear. Several studies have investigated the 

effect of individual enhancers in a super-enhancer hub (Xie et al. 2017; Kai et al. 2021). 

However, there is no consensus in predicting the enhancer with the most functional role 

in a super-enhancer hub. Predicting the active enhancer in a super-enhancer hub is 

beneficial when we want to understand the function of the super-enhancer. 

Bioinformatic approaches can reduce the experimental time to test every single 

enhancer from a super-enhancer hub by predicting the importance of the enhancer 

based on previous studies or characteristics of the enhancer.  
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1.2 Human brain organoids 

1.2.1 Early model systems to study brain development 

The brain is a complex tissue with many cell types and each performing a distinct 

function in space and time (Stiles and Jernigan 2010). Unfortunately, there has been a 

shortage of possibilities in human brain developmental model systems due to technical 

restrictions (Farahany et al. 2018). Limitations include accessibility to samples and the 

lack of cellular heterogeneity in model systems. 

A significant amount of our current knowledge is based on mice and other non-human 

species (Y. E. Li et al. 2021; Gorkin et al. 2020). Animal models serve as an essential 

source for studying the function of the brain. Mice studies are highly valued due to the 

availability of the model system and flexibility. However, findings in mice might be 

limited to mice due to species differences and mice-only features (Hodge et al. 2019). 

Given the limitation of the mouse system, researchers have been working on alternative 

model systems to study the brain.  

With the rapid progress in stem cell technologies (Takahashi et al. 2007; Takahashi and 

Yamanaka 2006), stem cells have become a widely used model system for generating 

neuronal cells in a dish (Shimojo et al. 2015; Pistollato et al. 2017). Studying neuronal 

cells became available on a large scale with the development of differentiation protocols 

into key neuronal cell types. However, commonly used 2D cultures are designed for 

culturing a few cell types at a time. This results in morphological and cell-to-cell 

interaction constraints because neurons function in neurological networks. With the 

discovery of new cell types, more and more sophisticated model systems are required 

to study the biological functions of these cell types (Masland 2004; Zeng and Sanes 2017; 

Sanes and Masland 2015). The number of currently known radial glia cells increased 

from appr. 12 to appr. 30 as more advanced technologies became available. 2D model 

systems are limited in their capabilities to mimic the microenvironment of the brain, and 

the lack of a multi-cell type model system is a significant bottleneck in advancing human 

brain developmental studies. However, studying the interplay of cell types at early 

developmental stages on a large scale became possible with the rise of brain organoids. 
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In 2014, Lancaster and Knoblich introduced the first human brain organoid platform that 

overcomes parts of previously mentioned challenges.  

 

1.2.2 Current human brain organoid protocols 

In brief, brain organoid protocols depend on the self-assembling power of stem cells. 

These cells can be embryonic pluripotent stem cells or induced pluripotent stem cells 

(Figure 3). Putting these cells in close proximity allows them to self-assemble into a tight 

aggregation of cells, often referred to as embryonic bodies or spheres. There are various 

culturing methods, but they share the common goal of mimicking certain brain regions 

or specific functions of the brain. Specifically, the priming medium in the early stages of 

brain organoid development initiates the lineage specification of the brain organoids. 

Recent advances have led to protocols that allow brain organoids' efficient and rapid 

formation.  

 

 
Figure 3. Guided and unguided protocol to generate brain organoids. Unguided approaches (top) depend on the 
intrinsic self-assembly of stem cells and spontaneous differentiation into neuronal cells. The resulting cerebral 
organoid carries cell types from various regions of the brain. The guided approach utilizes small molecules and growth 
factors to generate brain region-specific spheroids. By patterning the stem cell from an early time point, the cells are 
primed towards a specific progenitor fate leading to a particular cell tissue. Two spheroids can be fused together to 
mimic interactions between different brain regions, resulting in an assembloid. Adapted from Sozen et al. (2018). 
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Brain organoid protocols are broadly classified into either a guided or non-guided 

approach. The first brain organoid protocol from Lancaster et al. used the intrinsic 

property of human-induced pluripotent stem cells to differentiate the cells toward the 

neuroectodermal lineage under serum-free conditions (Lancaster et al. 2013). This 

protocol did not display a specific regional identity but broadly contained clusters of cells 

representing the regions of diverse brain regions. Non-guided protocols result in brain 

organoids giving rise to various rostral forebrain cell types. Large-scale single-cell RNA 

sequencing revealed cellular diversity, maturity, and heterogeneous neural networks in 

the Lancaster protocol (Quadrato et al. 2017). In addition, optimization of maintaining 

the brain organoids has improved neuronal survival and outgrowth in these brain 

organoids (Giandomenico et al. 2019). 

After the cerebellar brain organoid protocol, several brain region-specific protocols and 

multi-brain region co-culturing protocols provide promising results for further 

translational applications (Qian et al. 2016; Ozone et al. 2016; Sakaguchi et al. 2015; 

Muguruma et al. 2015; Monzel et al. 2017). For improving the survival of neuronal 

progenitors, lipids, serum, heparin, and Matrigel were included in the media, supporting 

the survival of neuronal progenitors (Kadoshima et al. 2013). The Pasca group used 

growth factors during neuronal differentiation to improve cortical lamination and 

functional synaptogenesis. Growth factors support lineage commitment and organoid 

morphogenesis (Birey et al. 2017; Pasca et al. 2015). This method was also used to 

generate cortical organoids (Madhavan et al. 2018) and to establish oscillatory networks 

in these organoids under long-term culture with additional nutrients (Trujillo et al. 2019). 

Xiang et al. (2017) used a guided approach to generate the dorsal forebrain using a 

cocktail of WNT, BMP, and TGFb inhibitors without Matrigel, while inhibiting the sonic 

hedgehog (SHH) pathway (Fiddes et al. 2018) generated dorsal cortical organoids.  

Taken together, currently, two main brain organoid protocols are being used, leading to 

brain organoids with a region-specific brain organoid or general cerebral structure. 

Despite the differences in media formulation, both protocols use the intrinsic self-

assembling attribute of stem cells (Figure 4).  
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Figure 4. General current protocol of brain organoids. After the 2D culture of the stem cell, cells are transferred to a 
round ultra-low-attachment plate where the cells self-assemble and form embryonic bodies. After priming cells 
towards a general neuronal progenitor identity, the embryonic body is encapsulated in Matrigel and cultured on an 
orbital shaker to improve oxygen flow. Matrigel provides support for the tissue in the initial stages. The brain organoid 
eventually will outgrow the Matrigel. The figure was adapted from Liu et al. (2019).  

 

1.2.3 Brain organoids as a model system to study brain development and brain 

diseases 

Brain organoid model systems are based on previous work on the culture of spheres and 

embryonic bodies. Next to the extraordinary accomplishment of the generation of 

organoids, the therapeutic purpose of organoids has tremendous potential. Brain 

organoids hold the unique possibility of understanding how viruses affect the 

development of the human brain (Zhang et al. 2018) or as an oncology model system 

(da Silva et al. 2018).  

Especially in combination with the technology of induced pluripotent stem cells, brain 

organoids can be used to study genetic disorders from patient-derived tissue (Allende 

et al. 2018). Allende et al. generated brain organoids from patients suffering from 

Sandhoff disease. Sandhoff disease is characterized by a progressive loss of nerve cells 

in the brain and spinal cord. It belongs to the family of rare inherited disorders. Because 

it affects early children, access to samples is challenging. Therefore, brain organoids are 

an excellent model system to study diseases with early-onset or biological processes in 

early developmental stages.  
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1.2.4 Importance of enhancers and eRNAs in the human brain 

Enhancers play a crucial role in regulating cell type-specific gene expression patterns, 

and several enhancer features are associated with the brain's developmental process 

(Nord et al. 2013). Furthermore, brain development is a dynamic process in which gene 

expression needs to adapt fast to the changing environment of the cells (Stiles and 

Jernigan 2010b; Tierney and Nelson 2009). Therefore, disturbing the enhancer activity 

during the cell differentiation process affects the lineage specification leading to 

impaired brain development that can manifest into severe brain diseases (Yousefi et al. 

2021).  

Nord et al. (2013) demonstrated that the enhancer activity is a stage-specific process 

during mouse forebrain development. Active enhancers were identified using H3K27 

acetylation by performing Chromatin Immunoprecipitation sequencing (ChIP-Seq). 85% 

of their identified enhancers showed temporally specific enhancer activity depending 

on the time point they sampled the mouse forebrain. Furthermore, they confirmed that 

the specific spatiotemporal activity of the enhancers is reflected in the tissue-specific 

gene expression of the interacting gene. Nord et al. identified enrichment of 

neurodevelopmental transcription factors in early active enhancers, whereas 

transcription factors associated with neuron-specific functions were enriched in delayed 

active enhancers. Dickel et al. (2018) showed that impairment of an enhancer regulating 

the ARX gene results in a decrease of neurons. ARX was first described as a gene involved 

in non-syndromic X-linked mental retardation disease (Bienvenu et al. 2002) and X-

linked West syndrome (Strømme et al. 2002). Since then, ARX has been implicated in 

multiple phenotypes associated with brain-related malformations (Kitamura et al. 2009; 

Kato et al. 2004; Guerrini et al. 2007). These studies highlight the importance of highly 

controlled enhancer activity during development and the requisite of understanding the 

regulatory role of enhancers during brain development to prevent malformations. 

Over the past decade, genomic sequencing efforts confirmed that single nucleotide 

polymorphisms (SNPs) in the brain could lead to neuropsychiatric diseases (Dong et al. 

2018; Hnisz et al. 2013; Li et al. 2019; Kim et al. 2012). These predictions afforded a 

better understanding of the pervasiveness of mutations in distant cis-regulatory 
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elements underlying brain diseases. In an early demonstration of this, Soldner et al. 

(2016) found one single nucleotide polymorphism (SNP) in a distal enhancer region of 

SNCA, a marker gene for Parkinson’s disease. This study highlights the impact of one 

SNP on the function of the enhancer activity. Although it is unknown how many of the 

enhancers which carry one SNP are functionally affected, the functional characterization 

of putative disease-causing regulatory mutations is essential to understand the 

underlying cause of the disease. Experimental strategies involve reporter assays and 

knock-out studies. Genetic variation in distant enhancers has been linked to several 

human disorders. Given the broad abundance of enhancers in the genome, further 

studies focusing on the functional relevance of SNPs in enhancer regions are crucial.  
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1.3 5’ single-cell RNA sequencing 

1.3.1 First single-cell RNA seq platforms 

RNA sequencing is a powerful technology to capture the transcriptome of the cell. RNA 

sequencing is widely used due to its reliability, reproducibility, and easiness of use. 

However, bulk RNA sequencing leads to averaged expression of highly heterogeneous 

cell types and states. Our current understanding of one cell type is restricted by 

technology, and the rise of advanced technologies results in a progressive definition of 

cell types. For example, studies have shown that cancerous cells are a mixture of cells in 

different states, although commonly referred to as one cell population (Meacham and 

Morrison 2013). Another study revealed the heterogeneous effect of drug treatment on 

breast cancer cells (Hoffman et al. 2020). Recognizing cell to cell differences is crucial to 

understanding a drug's effectiveness and preventing side effects. Therefore, developing 

a technique to study the transcriptome of a single cell was essential. 

With the advancement of droplet technologies and next-generation sequencing (NGS), 

measuring the gene expression profiles of thousands of single cells became possible, 

which significantly increased the sensitivity of our transcriptomic understanding in a 

single cell. Since the first demonstration of single-cell RNA seq in the human oocytes 

(Tang et al. 2009), the field of single-cell RNA sequencing applications has been 

increasing. Although the technology was once considered exclusive and expensive, it 

soon became the technology of choice for many areas of biology (Svensson, da Veiga 

Beltrame, and Pachter 2020). Capturing cellular differences on a single cell level pushed 

the boundaries and enhanced our understanding of cell populations.  
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Figure 5. Trends in single-cell RNA sequencing publications and platforms. The upper panel shows the number of 
single-cell transcriptomics studies published per month. The lower panel shows the number of single-cell RNA seq 
studies published per month color-coded by the used method. Adapted from Svensson, da Veiga Beltrame, and 
Pachter (2020).  

 

1.3.2 3’ vs. 5’ RNA sequencing  

In recent years, single-cell studies of the brain have been rapidly growing (Figure 5). 

These studies were conducted using ex vivo samples of brain organoids. However, most 

studies are conducted based on 3’ based sequencing methods, leaving behind the 

advantage of using 5’ end sequencing to more sensitively detect enhancer RNAs. Most 

studies are conducted using 3’ sequencing methods, as this was the more sensitive 

method regarding gene detection. This drawback has changed with advanced 

technologies, and now, 3’ and 5’ detection sensitivities are similar. However, although 

both technologies are identical, when using the 3’ sequencing, we capture the read from 

the 3’ end of the transcript. Therefore, we do not capture the genuine transcription start 

site of the transcript. This is especially important as our annotation of enhancers is still 

incomplete. 

Consequently, we could miss out on these elements when we have to infer the 

transcription start site from transcripts based on current annotations. There have been 

efforts to provide a more comprehensive annotation of enhancers using CAGE 
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Figure 1. Studies over time. (Upper) The number of single-cell transcriptomics studies published per month. (Lower) The number of scRNA-seq
studies published per month stratified by method.

Table 1. Single-cell study trends (left) Number and size of single-cell transcriptomics studies in 2019. (middle) Most common

tissue investigated with single-cell transcriptomics. (‘Culture’ refers to in vitro studies of cell lines). (right) Journals which have

published most single-cell transcriptomics studies. (‘bioRxiv’ means the study is so far only available on bioRxiv).

Monthly statistics Top tissues Top journals

Month Studies Median cells Tissue Studies Journal Studies

0 November 2019 12 39,895 Brain 171 bioRxiv 136
1 December 2019 29 15,601 Culture 107 Nature 82
2 January 2020 57 35,173 Blood 35 Cell 73
3 February 2020 50 36,044 Pancreas 33 Nat Commun 70
4 March 2020 68 31,514 Lung 32 Cell Reports 66
5 April 2020 38 30,396 Heart 25 Science 48
6 May 2020 13 22,000 Bone marrow 22 Cell Stem Cell 28

Table 2. Top citation summary, a) Top cited tissues. b) Single-cell studies most cited by other single-cell studies.

DOI Citations Shorthand Date

10.1016/j.cell.2015.05.002 190 Macosco et al. Cell 2015-05
10.1038/nbt.2859 124 Trapnell et al. NBT 2014-03
10.1038/nbt.3192 114 Satija et al. NBT 2015-04
10.1038/ncomms14049 107 Zheng et al. NComm 2017-01
10.1016/j.cell.2015.04.044 77 Klein et al. Cell 2015-05
10.1038/nmeth.2639 72 Picelli et al. NMeth 2013-09
10.1126/science.aad0501 72 Tirosh et al. Science 2016-04
10.1126/science.aaa1934 57 Zeisel et al. 2015-02
10.1038/nature12172 54 Shalek et al. Nature 2013-05
10.1038/nmeth.2645 54 Brennecke et al. NMeth 2013-09

Discussion
The curated database described here is hosted at https:
//www.nxn.se/single-cell-studies. It has been designed for
easy access to the underlying data and for in depth analysis
in Python or R. The database was designed to facilitate

access to published single-cell research, so that, for exam-
ple, a researcher can find all single-cell studies of the
pancreas to explore the results and analyse public data.
We found that analysis of other aspects of the studies
described in the papers, namely attributes such as type of
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sequencing (Shiraki et al. 2003; Andersson et al. 2014; Arner et al. 2015). CAGE captures 

the 5’ end and has thus a significant advantage over the 3’ back in detecting enhancer 

RNAs. Capturing the precise transcription start site makes the detection of novel eRNAs 

more robust than using the 3’ end of the transcript. This means that if a promoter and 

enhancer have the same 3’ end, we would not be able to distinguish if this transcript 

resulted from a promoter or enhancer. Many enhancers are also considered alternative 

promoters (Kowalczyk et al. 2012) and therefore, this is one of the primary bottlenecks 

when we want to identify enhancers using enhancer RNAs.  

We utilized a 5’ based single-cell RNA sequencing method to identify cell-type-specific 

enhancers combined with a template-switching oligonucleotide (TSO) technology 

(Zheng et al. 2017). TSO plays a vital role in completing the cDNA amplification step 

(Figure 6). It binds to the C overhang the reverse transcriptase created and adds a 

common 5’ sequence to the final cDNA.  

 

 

 
Figure 6. Difference between 3’ and 5’ based RNA sequencing methods. 5’ and 3’ based single-cell RNA sequencing 
methods capture different ends of the transcript. Although both methods use the Template Switching Oligonucleotide 
technology, in the 3’ technology, Read 1 captures the poly-A tail of the transcript. 5’ based technologies capture the 
Transcription Start Site of the transcript. BC: cell barcode, UMI: unique molecular identifier, cDNA: complementary 
DNA, TSO: template-switching oligonucleotide, R1: read 1, R2: Read 2. This figure was adapted from Moody et al. 
(2021).  

 

1.3.3 Technologies to capture enhancers 

Although there are multiple described technologies to capture distinct features of 

enhancers (Table 1), technologies for capturing cell-type-specific enhancers on a single 

cell level are still unfolding. Since the first scRNA-seq method was published in 2009, 
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many other single-cell RNA-seq approaches have been developed. These scRNA-seq are 

similar at the core. However, their technologies differ in one of the following aspects: 

cell isolation, cell lysis, reverse transcription, amplification, transcript coverage, strand 

specificity, or unique molecular identifiers (UMI), which are molecular tags. UMIs are 

used to detect and quantify individual transcripts.  

 

Table 2. Current technologies to capture enhancers. Each technique highlights another studied aspect, capturing a 
distinct feature of enhancers. While each technology represents one aspect of enhancers, a technology combining 
multiple characteristics would maximize the use of each technology. Adapted from Weber et al. (2016). 
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Compared to 3’ or 5’ based protocols, full-length scRNA-seq methods have unique 

advantages in isoform and allelic expression detection. This is due to their superiority in 

transcript coverage. For example, one study showed that full-length scRNA-sequencing 

approaches are more sensitive than 3’ sequencing methods (Ziegenhain et al. 2017) in 

detecting lowly expressed transcripts. Notably, droplet-based technologies (Macosko et 

al. 2015), InDrop (Klein et al. 2015), and Chromium (Zheng et al. 2017) can generally 

provide a more significant throughput of cells and a lower sequencing cost per cell 

compared to whole transcript scRNA-seq. Thus, droplet-based protocols are suitable for 

processing large amounts of cells to identify the cell subpopulations of complex tissues. 

 

1.3.4 Enhancers as alternative promoters 

As previously discussed, enhancers can be at various genome locations, including close 

to a transcription start site. The proximity to a transcription start site makes it 

challenging to distinguish alternative promoters from enhancer regions (Kowalczyk et al. 

2012; Dao and Spicuglia 2018). Human protein-coding genes are estimated around 

20,000 (Salzberg 2018; Piovesan et al. 2019). In contrast, simpler organisms such as 

Drosophila melanogaster are fewer with around 13,000 genes (Misra et al. 2002). Given 

that mammalian genomes have roughly 40% more genes than Drosophila melanogaster, 

it is generally believed that the phenotypic complexity of higher organisms is achieved 

not only by higher gene numbers but also by multiple proteins encoded by a single gene 

and by the number of protein-protein interactions. Alternative splicing is the most well-

described mechanism that produces multiple protein isoforms from a single gene locus. 

It has been estimated that 35-50% of all human genes give rise to alternatively spliced 

mRNAs (Jiang and Chen 2020). An increase in the number of recent studies reporting 

the existence of alternative promoters for genes demonstrated that this phenomenon 

is another important source for generating protein and regulatory diversity.  

No variation in the resulting proteins has been reported for many genes for which 

multiple promoters have been documented. However, even in the absence of protein 

isoforms, the mRNA variants differ in their transcriptional patterns and translational 
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efficiencies. These alternative promoters have different tissue specify, developmental 

activity, expression levels, or variant 5’ untranslated regions (UTRs), which might differ 

in their secondary structure and affect translation (Figure 7). A well-documented 

example of a human gene with tissue-specific expression governed by the usage of 

alternative promoters in the CYP19 gene (Singer et al. 2008; Demircioğlu et al. 2019). 

This gene encodes the aromatase P450 protein, which converts C19 steroids to C18 

estrogens, and gonadal and brain-specific promoters in humans direct the tissue-

restricted expression of CYP19. Alternative promoters display tissue-specific regulation 

and impact isoform diversity. These characteristics of alternative promoters are similar 

to enhancer RNAs and can cause misinterpretation of an enhancer region as an 

alternative promoter or vice versa. Therefore, we need technologies to precisely detect 

the transcription start site to prevent miss annotation of an alternative promoter as an 

enhancer. However, there have also been cases where an intragenic enhancer can 

function as an alternative promoter (Kowalczyk et al. 2012). As the number of such cases 

is low, it remains unclear if this is a rare case or if more enhancers serve as an alternative 

promoter. 

 

1.3.5 Analysis tools for single-cell RNA sequencing 

With the rise of single-cell RNA sequencing data, there was a need for more 

sophisticated bioinformatics tools to discover new biological insights from single-cell 

data. Monocle is a highly used analysis tool to understand the differentiation process 

and enhancer-promoter pairs (Trapnell et al. 2014).  

Single-cell trajectory analysis is a computational approach that orders cells along a 

pseudo time axis. This approach models transitional processes such as cell type 

differentiation during development. Pseudo time positions the cells along a trajectory 

that quantifies the relative progression of the underlying differentiation process, and it 

measures the cells’ progress through the transition phase. Pseudo time is considered a 

unit of progress along the trajectory and represents the distance between a cell and the 

start of the trajectory. Cell types emerge from progenitor cells and transition from one 

state into another to differentiate into their mature form. 
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Figure 7. Enhancers as alternative promoters. Promoters are regions that initiate gene transcription and enhancers 
are regulatory elements that can regulate the expression of the promoter. Despite our common definition, intragenic 
enhancers can behave as alternative promoters resulting in messenger RNAs (meRNAs). During transcription, the 
promoter results in mRNAs, while enhancers produce enhancer RNAs (eRNAs). Adapted from Kowalczyk et al. (2012). 

 

Pseudo time catches single cells in that transitional state and aligns them on a trajectory 

(Trapnell et al. 2014; Traag, Waltman, and van Eck 2019; Qiu et al. 2017). Current studies 

use trajectory analysis to identify marker genes that drive the lineage specification. This 

method is used to quantify the relative gene expression changes along the maturation 

process of the cells. In addition, this approach has been used to identify cell type-specific 

transcription factors or key gene regulators for various biological processes. Monocle is 

a powerful tool to unravel the changes every single cell undergoes on a pseudo time 

scale.  
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2 Aims of the Thesis 

With the rise of brain organoids, studying brain development and the brain 

microenvironment has become possible on a large scale which was restricted by 

accessibility previously. Because brain organoids can facilitate an environment to mimic 

the microenvironment of the human brain, they represent a unique model system to 

study the distinct cell types in the brain during brain development. However, most of 

the work to date has focused on the protein-coding genes using the 3’ based sequencing 

methods, and only a subset of the studies has concentrated on gene regulatory 

elements such as enhancers. Therefore, this study aims to identify the cell type-specific 

enhancer-promoter pairs essential in brain development and disease. 

In the first phase of this project, we modify the Lancaster brain organoid protocol and 

successfully grow brain organoids, profiling them at three different developmental 

stages to identify the emergence and maturation of different brain cell types. At each 

stage, we generate the sequencing libraries from the organoids and perform 5’ single-

cell RNA sequencing to reveal the formation of more complex cell type combinations as 

development progresses. To this end, we annotate the cells using marker genes for the 

corresponding developmental stages from the literature. Next, we investigate the 

molecular cell type differentiation process in brain organoids over time by aligning the 

cells on a pseudo time using the R package monocle. Based on the detected cell types in 

our data, we choose seven main cell types which emerge during human brain 

development, such as glial cells and cortical neurons. We then perform differential 

expression analysis on a subset of cell types to identify cell type-specific genes. As the 

brain functions in circuits as a network, we assess whether the brain organoids 

recapitulate a cellular network by generating the transcription factor activity networks 

driving the cellular activities between cell types. Finally, to understand which human 

developmental stage the brain organoids represent, we compare the human brain 

organoid transcriptome to publicly available human fetal brain developmental 

transcriptome data. These findings will reveal what cell types the brain organoids consist 

of and which developmental stage our brain organoids represent.  
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The second part of the thesis aims to identify cell-type-specific enhancer-promoter pairs 

using 5’ based scRNA sequencing. Current approaches in transcriptomic profiling utilize 

3’ based methods due to the robustness of the 3’ based methods. However, as enhancer 

RNAs can be close to promoter regions, using the 5’ based detection method serves as 

a more sensitive tool to identify the transcription start site of enhancers than 3’ based 

sequencing methods. Therefore, we first determine how many enhancers RNAs the 5’ 

technology can capture compared to previously used methods and integrated public 

datasets. Next, we link the enhancers to their target promoters and elucidate their 

biological functions using Cicero, an R package that infers enhancer-promoter pairs from 

transcriptomics data. We also integrate public HiC data to assess whether the identified 

enhancer-promoter pairs have genomic interaction. Finally, we search for single 

nucleotide polymorphisms (SNPs) and expression quantitative trait loci (eQTL) in our 

enhancer-promoter pairs to further validate their functional linkage.  
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3 Materials and Methods 

3.1 Experimental Procedures 

Human-induced pluripotent stem cell culture and passaging 

All human induced pluripotent stem cells (hiPSCs) were maintained in a 5% CO2 

incubator at 37℃. Standard procedures were used to culture and split hiPSCs. In brief, 

hiPSCs were cultured on iMatrix-511Ô (NippiÒ) coated six-well plates with 1.5 ml 

Stemfit media (AjinomotoÒ). Six-well plates were coated with 0.5 μg/cm2 iMatrix-511Ô 

(NippiÒ) in 1.5 ml of PBS for an hour at 37℃. The coating was replaced with culture 

media before usage. Media were changed every day. Cells were split when reaching 80% 

confluence. For the passaging, cells were washed with 1.5 ml PBS, and 1.5 ml AccutaseÔ 

(Sigma) was added. Cells were incubated at 37℃ for 5 min. Accutase was inactivated by 

adding an equal amount of StemFitÔ plus ten μM ROCK inhibitor (FUJIFILM Wako). Cells 

were spun down at 800 x g, 3 min, and resuspended in StemFitÔ plus ten μM ROCK 

inhibitor (FUJIFILM Wako). We maintained a seeding density of 4,000 cells/cm2.  

 

Brain organoid generation  

To generate human cerebral organoids (COs), we modified a previously published 

method (Lancaster and Knoblich 2014). Briefly, when hiPSCs reached 80%, confluent 

cells were washed with 1.5 ml PBS and dissociated into single cells with 1.5 ml 

AccutaseÔ at 37℃ for 5 min. Accutase was inactivated by adding an equal amount of 

StemFitÔ plus ten μM ROCK inhibitor (FUJIFILM Wako). Cells were spun down at 800 x 

g, 3 min, and resuspended in StemFitÔ plus ten μM ROCK inhibitor (FUJIFILM Wako). 

Cells were counted using the CountessÔ II Automated Cell Counter (Thermo Fisher). 

Nine thousand hiPS cells were seeded per 96 wells in an ultra-low attachment plate 

(Corning) in StemfitÔ media plus 10 µM ROCK inhibitor. 100 µl media was replaced 

every other day with new media. On day 6, the embryonic bodies were transferred to a 

24-well ultra-low attachment plate (Corning) using a cut 200 µl tip. The embryonic 

bodies were cultured in 0.5 ml neural induction media (DMEM-F12 with 1% (vol/vol) N2 

supplement, 1% (vol/vol) GlutaMAX supplement and 1% (vol/vol) MEM-NEAA). On day 
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8, 0.5 ml neural induction medium was added. On day 10, the embryonic bodies were 

embedded in 35 µl growth factor-reduced Matrigel (Corning) and transferred to an 

ultra-low attachment six-well plate containing 4 ml cerebral media without vitamin A 

(for 125 ml of DMEM-F12 add 100% (vol/vol) Neurobasal medium, 1% (vol/vol) of N2 

supplement, 62.5 μl of insulin, 2% (vol/vol) of GlutaMAX supplement, 1% (vol/vol) of 

MEM-NEAA, 2% (vol/vol) of penicillin-streptomycin, 8 μl of 2-mercaptoethanol, and 2% 

(vol/vol) of B27 without vitamin A supplement). A sterile parafilm was put on top of a 

tip box for the embedding, and gentle dimples were created. This parafilm was put into 

a 10 cm dish, and embryonic bodies were put into those dimples using a cut 200 µl tip. 

Excess media was removed before Matrigel was added. The dish was incubated for 

30 min at 37℃, 5% CO2 before transferring it to media without vitamin A using a sterile 

spoon. On day 10, the media was changed to 4 ml cerebral media containing vitamin A 

(for 125 ml of DMEM-F12, add 100% (vol/vol) Neurobasal medium, 1% (vol/vol) of N2 

supplement, 62.5 μl of insulin, 2% (vol/vol) of GlutaMAX supplement, 1% (vol/vol) of 

MEM-NEAA, 2% (vol/vol) of penicillin-streptomycin, eight μl of 2-mercaptoethanol, and 

2% (vol/vol) of B27 with vitamin A supplement) and transferred to an orbital shaker. COs 

were maintained in cerebral media from day ten onwards with medium changes every 

four days.  

 

Single-cell dissociation  

COs were transferred to an Eppendorf tube and washed twice in 1.5 ml PBS, followed 

by incubation in 1.5 ml AccutaseÔ solution at 37℃ for 45 min. COs were gently pipetted 

using a wide bore tip every 10 minutes. After 45 min, COs were pipetted using a wide 

bore tip until completely dissociated into a single cell solution. The single-cell suspension 

was filtered through a 35 µm filter and washed with 1.5 ml of 0.1% bovine serum 

albumin (Invitrogen) solution in PBS solution. Cells were washed twice, and cell number 

and viability were measured using the CountessÔ II Automated Cell Counter (Thermo 

Fisher). Only samples with cell viability > 80% were used for library preparation. Samples 

were kept on ice until processed on the 10x Chromium machine (10x Genomics). GEM 

emulsion was generated following the standard protocol of 10x Genomics.  
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Library preparation 

For all samples, 1 million cells were taken from the single-cell suspension, and volume 

was adjusted to a final of 1 ml with a final cell concentration of 1000 cells/µl. The target 

cell number was 4000 cells for the 40 day time point. For days 80 and 120, we set 6000 

as the target cell number. In brief, the single-cell suspension was mixed with the Single 

Cell Master Mix using the oligo (dt) Reverse transcription primer 

(AAGCAGTGGTATCAACGCAGAGTACGAGAC–T(30)–VN) (10x Genomics, PN – 10000151) 

and loaded on the Chromium Controller (10x Genomics) to generate single-cell gel beads 

in emulsion according to manufacturer’s instructions. Following PCR reactions were 

conducted using a VeritiÔ Thermal Cycler (Applied Biosystems). Libraries were 

generated using the Chromium Single Cell 5’ Library & Gel Bead Kit (10x Genomics, PN-

1000014) by following the manufacturer’s instructions for the library preparation. We 

applied the following changes to the recommended protocol. cDNA amplification PCR 

was set to 16 cycles. All libraries were indexed using the Chromium i7 Multiplex Kit (10x 

Genomics PN-120262). The size of the libraries was confirmed using the BioanalyzerÔ 

(Agilent) followed by a quantification step using KAPAÔ Library Quantification kit (Kapa 

Biosystems). For each timepoint, libraries were pooled based on their molar 

concentration and sequenced on HiSeqÔ 2500 (Illumina) in rapid mode with the 50 bp 

paired-end configuration.  
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3.2 Bioinformatic pipeline 

 

All following analyses were performed using R studio 4.0.3.  

 

Genome version  

Human genome assembly version hg38 was used for all analyses of this study. Integrated 

datasets were first converted to hg38 using liftover (http://genome.ucsc.edu) if the 

initial study was conducted on hg19.  

 

De novo peak calling and peak annotation 

Raw base call files were preprocessed (alignment and quantification) using the 

CellRanger v2.1.1. Pipeline (10x Genomics) functions "cellranger mkfastq” and 

“cellranger count” with default options. We used the GRCh38 reference genome. We 

used SCAFE (Moody et al. 2021) to identify novel enhancer peaks from the “cellranger 

count” output folder on the bam file. We generate a custom genome for the annotation 

using the “scafe.tool.cm.prep_genome” function from SCAFE. We used the hg38 fasta 

file from UCSC (https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz) 

and the FANTOM6 transcript gtf file (Hon et al. 2017). “scafe.workflow.sc.solo” was 

performed for each sample. The output count table format from “scafe.workflow.sc.solo” 

uses cis-regulatory-element ID (CREID) as an annotation instead of gene names. To unify 

the detected CREID across all samples, we used the “scafe.workflow.sc.pool” function 

with default options on all count matrix folders from “scafe.workflow.sc.solo”. 

“scafe.workflow.sc.pool” generates a count matrix for each input sample with unified 

CREIDs which was used for downstream analysis. Metadata annotation of CREID was 

added based on the FANTOM6 annotation files (Hon et al. 2017). 

 

Cluster annotation 

The “scafe.workflow.sc.pool” (Moody et al. 2021) output count matrix was used as input 

for the Seurat package 4.0.4 (Hao et al. 2021). We used Seurat to cluster the data, 
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followed by Harmony 0.1.0 (Korsunsky et al. 2018) for batch correction. We generated 

a cell data set for each time point and merged the three timepoints. We next filtered 

the data set, removing any cells with less than 500 CREIDs and any CREID expressed in 

less than three cells. We then identified the group of most variable genes across the 

entire dataset. We used them to estimate the most significant principal components 

(PCs) after batch correction and unique molecule identifier (UMI) correction. Unbiased 

uniform manifold approximation and projection (UMAP) (McInnes, Healy, and Melville 

2020) clustering identified 34 clusters originating from all the samples. Differential 

expression analysis between individual clusters and the other clusters highlighted a set 

of marker genes for each cluster. We used published datasets of cell markers from 

single-cell RNA-seq studies of fetal brain samples to annotate our clusters.  

 

Integration of public human fetal brain tissue data 

We used publicly available human fetal brain transcriptomic data (Camp et al. 2015) to 

elucidate which human brain development stage the brain organoids represent. We 

downloaded the fetal neocortex data from 12 weeks post-conception and generated a 

count matrix. Using cor (R package stats, version 4.3.0), we tested the correlation of 

marker gene expression among the same cell types from our brain organoid data and 

the available human fetal brain data.  

 

Cell trajectory analysis. 

We used Monocle 3 package 1.0.0 (Cao et al. 2019) to predict the pseudo time. In brief, 

we extracted the count matrix for the Radial Glia Cell cluster and the cell cluster of 

interest from the Seurat object. We created a new object using Monocle3. We used 

principal component analysis (PCA) as our preprocessing method and chose UMAP as 

the reduction method. We next performed cluster_cells and learn_graph on default 

settings. In the oder_cells, we chose Radial Glia Cells as our starting cell cluster. We used 

the graph_test to identify differentially expressed genes across the pseudo time. To 

determine five prominent expression profiles across the pseudo time, we binned the 
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modules of genes. The dynamic gene expression patterns of each trajectory were 

plotted using pheatmap.  

 

Motif enrichment and motif discovery analysis  

We used MARA to identify the motif activity (Suzuki et al. 2009; Balwierz et al. 2014). 

This was performed in three steps. All steps were performed for each lineage. First, we 

generated a profile using “makeProfile” on the default option. Second, we used 

“assoTfbs” to associate the transcription factors. Finally, we used “CalcMotifAct” to 

calculate the motif activity.  

 

Network construction 

Using the transcription factors from the MARA analysis, we constructed a network using 

Cytoscape v.3.8.1 (Shannon et al. 2003; Maere, Heymans, and Kuiper 2005; Bindea et al. 

2009; Smoot et al. 2011). Using the genes of the TFs, we first correlated the mRNA 

expression of the TFs with the motif activity, resulting in a weighted expression matrix. 

Then, this matrix was used as input to create the network in Cytoscape.  

 

Enhancer and promoter co-expression during lineage commitment 

We used the object generated from the cell trajectory analysis for this analysis. First, we 

used the expression profile of the five bins and calculated the average expression level 

for each compartment. This was performed for each enhancer and promoter in each 

lineage. Next, we correlated enhancer expression and promoter mRNA expression along 

the pseudo time using Pearson correlation for each lineage. Finally, we used the R 

package pheatmap to generate the heatmap visualization. 

 

Enhancer–promoter pairs 

To identify enhancer-promoter pairs, we used the Cicero version 1.2.4.11 package 

(Pliner et al. 2018), which aims to identify all co-accessible sites using the graphical 
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LASSO method (Friedman, Hastie, and Tibshirani 2008). Cicero estimates the correlation 

matrix and generates a score that penalizes pairs of distant sites more than proximal 

sites. As Cicero predicts all combinations of input CREIDs, we selected enhancer-

promoter co-accessible pairs for downstream analysis. We applied a co-accessibility > 

0.3 cut-off for pairs with a distance < 10-kilo base pairs and a co-accessibility > 0.1 cut-

off for distances> 10 kilobase pairs to remain distant pairs.  

 

Integration of enhancer atlases  

We downloaded data from EnhancerAtlas (Gao and Qian 2020), SuperEnhancers (Khan 

and Zhang 2016), and UCSC (Fishilevich et al. 2017; Stelzer et al. 2016) to validate our 

enahncers. Data was first liftover to hg38 and intersected with our enhancer set. We 

also downloaded ChIP-seq data from Encode (Dunham et al. 2012; Davis et al. 2018) to 

ascertain if our enhancer set showed epigenetic enhancer marks.  

 

Integration of HiC data 

For the functional annotation of enhancer-promoter pairs, we integrated the public HiC 

data (Kim et al. 2021). In brief, this dataset was first lifted over to hg38 using LiftOver 

(Kent et al. 2002). We next used bedtools v2.30.0 (Quinlan and Hall 2010) to identify 

enhancer-promoter pairs overlapping with HiC interaction pairs.  

 

Integration of dataset containing human-specific regions 

Human-specific genomic regions were obtained from Reilly et al. (2015). Datasets were 

converted to hg38 using liftover (http://genome.ucsc.edu). Regions were ranked based 

on fold change and p-value. To be considered as a human gained region, that region has 

to show an increase in signal in the human sample (Benjamini-Hochberg (Benjamini and 

Hochberg 1995) method p-value £ 0.001 and fold increase ³ 1.5) compared to mice and 

rhesus macaques.  
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Integration of Genome-Wide Association Studies data  

To obtain a set of trait-associated variants, we followed the processing methods from 

Moody et al. (2021). Genome-wide association study (GWAS) summary statistics were 

obtained from UK biobank (Bulik-Sullivan et al. 2015), the Price group 

(https://alkesgroup.broadinstitute.org/), and the Japanese encyclopedia of genetic 

associations (JENGER, http://jenger.riken.jp/). JENGER was pre-processed using 

“munge_sumstats.py” scripts from the LDSC software (Bulik-Sullivan et al. 2015). To 

obtain the candidate gene for the trait-associated variants, lead variants with (p < 5x10-

8) were taken from GWASdb (M. J. Li et al. 2016) and NHGRI-EBI GWAS Catalog (Buniello 

et al. 2019). Lead variants were searched within their linkage disequilibrium block of 

variants using PLINK v1.9 (Purcell et al. 2007) in a matched population of the 1000 

Genomes Project (Leeuw et al. 2015).  

 

Integration of eQTL data  

We integrated expression quantitative trait locus (eQTL) data from the GTEx database 

(Keen and Moore 2015). Data were pre-processed as described in Yip et al. (2022).  

Variant-gene associations and the interacting eGene were taken from 49 tissues with a 

q-value < 0.25. The genomic location of the enhancer-promoter pairs was intersected 

with the GTEx data.  

 

Integration of disease-associated genes  

To understand the relevance of our enhancers in disease, we integrated data from the 

gene-disease association database https://www.disgenet.org/downloads (Bauer-

Mehren et al. 2010; Piñero et al. 2020; Bauer-Mehren et al. 2011). Association of the 

gene to a disease infers the regulatory role of the enhancer in that disease. DisGeNET is 

a contains gene-disease associations, that are collected from different data sources. We 

included gene-disease association which are seen in at least two independent studies.  
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We used the R package ggplot2 and R studio 4.0.3. for visualizations if not otherwise 

stated.  
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4 Results 

4.1 Characterization of human brain organoids 

4.1.1 Brain organoids show brain sub-type-specific cell types 

We performed 5’ based single-cell RNA sequencing (scRNA-seq) during brain organoid 

development at 40, 80, and 120 days (Figure 8 A-C). We harvested RNA from two 

organoids for each time point and generated two scRNA-seq libraries, except for day 40, 

represented by one library. A total of 9778 cells passed the initial quality control, and 

after preprocessing (see methods), we identified an increase in the number of cell 

clusters from 8 (40 days) to 14 cell clusters (120 days) (Figure 8 A-C). We used K-nearest 

neighbor graph-based clustering approach (Dong, Moses, and Li 2011). We reason that 

the maturation of brain organoids gave rise to more specialized cell types resulting in 

more cell clusters. For downstream analysis, we integrated the timepoints into one 

UMAP (see methods) to identify cell-type-specific differences (Figure 8 D).  

Next, we assigned cell type identities to clusters by identifying cluster-specific markers 

across all timepoints. One cluster is a group of cells with a similar transcriptomic profile. 

We first looked at the 20 most differentially expressed genes obtained for each cluster 

by comparing a given cluster to all other clusters. For example, neuronal Progenitor Cells 

show high expression of proliferating genes, whereas astrocytes and oligodendrocytes 

show more glia-specific genes. This indicates that induced pluripotent stem cells-derived 

brain organoids recapitulate crucial marker genes' expression for brain subtype-specific 

cell types.  

Comparison of the three time points (40, 80, and 120 days) indicateed time-dependent 

transcriptomic changes. For example, next to the Radial Glia Cells (in yellow) are the 

proliferating cell types such as neuronal progenitor cells. In contrast, we found more 

differentiated cell types as Inhibitory Interneurons further away from Radial Glial Cells. 

This also highlights cell type heterogeneity of brain organoids from early rising neuronal 

cells such as neuronal progenitor cells to specialized cell types such as astrocytes, which 

occur at later stages of neurodevelopment. Interestingly, in our 120 days organoids, 50% 

are Inhibitory Interneurons. Inhibitory Interneurons are a heterogeneous population of 
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neurons essential for firing properties and synaptic connectivity (Swanson and Maffei 

2019). We suggest that our organoids begin expressing marker genes indicating their 

functional phenotype starting from day 80.  

As some clusters showed similar expression patterns for the marker genes (Figure 9 C), 

we combined these clusters into more broad clusters, yielding seven main cell clusters 

(Figure 9 A-B). The high number of subclusters in the Interneuron cluster shows that 

these cells are in a wide range of developmental stages, indicating dynamic differences 

within the cell type. In addition, the Interneuron cluster shows the highest percentage 

increase compared to all other cell types by making up to 60% of the cell number of the 

120 days organoids. 

 

4.1.2 Brain organoids and human fetal brain show similar transcriptomic profile 

Next, we wanted to understand which human brain developmental stage the organoids 

resemble. Therefore, we integrated a publicly available human fetal brain transcriptome 

dataset (Polioudakis et al. 2019) and correlated their expression profiles with the 

identified cell clusters (Figure 9 D). As a result, we observed that the brain organoid 

Inhibitory Interneuron Cluster shows the same marker genes as the MGE Inhibitory 

Neuron cells from the fetal brain tissue. Similarly, the Neuronal Progenitor Cells in brain 

organoids shared expression profile with dividing cells and MGE progenitor cells in the 

human fetal brain data set. This suggests that although the organoids were only cultured 

for a short period, the organoids can capture transcriptomic profiles similar to those of 

the human fetal brain.  
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Figure 8. Cell type clustering of iPSCs derived from human brain organoids. Cell clusters were based on 
a graph-based clustering using the K-nearest neighbor graph. With increasing cultivation time, the number 
of cell types increased. The cell types also transitioned into more mature cell types and depleted 
progenitor cells. Cell type clustering is shown at: (A) 40 days, (B) 80 days, and (C) 120 days. (D) Combined 
cell clustering color-coded by each cluster of each time point. 40D: 40 days, 80D: 80 days, 120D: 120 days. 
NPC: Neuronal Progenitor Cells, RGC: Radial Glial Cells, AP/A: Astrocyte Progenitors/Astrocytes, OP/O: 
Oligodendrocyte Progenitors/Oligodendrocytes. IN: Inhibitory Interneurons, PN: Projection Neurons, IP: 
Intermediate Progenitors, NEC: Neuroepithelial Cells, CP: Choroid Plexus, MH: Midbrain Hindbrain, RPC: 
Retinal Progenitor Cells, M: Mesenchymal Cells.  

 

4.1.3 Neuronal maturation in brain organoids by motif analysis 

Next, we checked if our brain organoid model can recapitulate the maturation of human 

brain development in brain organoids using monocle software. Cells transition from a 

progenitor-like state to a more differentiated cell type during development. Monocle is 

a tool that quantifies at which cell transition state the cells are and projects them onto 

a pseudo time. This concept can help identify changes in gene expression while the cells  

 Figure 1. Characterization of human brain organoids using SCAFE annotation. A) Combined UMAP of all detected cell

clusters. B) Dynamic changes of cell cluster proportions during brain organoid development. C) Cluster specific marker

genes we used to annotate the cell clusters. D) Benchmarking scRNA-seq with published RNA-seq data of human fetal

brain. E) Overlap of cell type with an AI model, generated using the published data. F) Highlight detected cluster

specific genes and enhancer by 5’ scRNA-seq.
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Figure 9. Comparing human iPSC-derived brain organoids with human fetal brain transcriptomic data. 
(A) UMAP shows broad clustering of the fine clustering from Figure 8. We used broad clustering to further 
analyze the main cell types from our organoids. (B) Changes in cell-type proportions over time. (C) Dot 
plot showing the top 20 differentially expressed genes for each lineage by broad clustering. (D) Correlation 
of gene expression of human iPSC-derived brain organoids to human fetal brain tissue (Polioudakis et al. 
2019). 40D: 40 days, 80D: 80 days, 120D: 120 days. NPC: Neuronal Progenitor Cells, RGC: Radial Glial Cells, 
AP/A: Astrocyte Progenitors/Astrocytes, OP/O: Oligodendrocyte Progenitors/Oligodendrocytes. IN: 
Inhibitory Interneurons, PN: Projection Neurons, IP: Intermediate Progenitors, NEC: Neuroepithelial Cells, 
CP: Choroid Plexus, MH: Midbrain Hindbrain, RPC: Retinal Progenitor Cells, M: Mesenchymal Cells, MGE: 
Medial Ganglionic Eminence, oRG: outer Radial Glia Cells.  

 

transition from stem cells into specialized neuronal cells. After selecting the start point 

of maturation to be Radial Glia Cells, we explored transcriptional changes of selected 

Figure 1. Characterization of human brain organoids using SCAFE annotation. A) Combined UMAP of all detected cell

clusters. B) Dynamic changes of cell cluster proportions during brain organoid development. C) Cluster specific marker

genes we used to annotate the cell clusters. D) Benchmarking scRNA-seq with published RNA-seq data of human fetal

brain. E) Overlap of cell type with an AI model, generated using the published data. F) Highlight detected cluster

specific genes and enhancer by 5’ scRNA-seq.
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genes (Figure 10 A) along the pseudo time towards more specialized cell types for seven 

cell types of interest (Figure 10 B). We defined Radial Glia Cells as the starting point of 

the transition. Then, we identified the differentially expressed genes along the pseudo 

time using monocle. To classify the dynamic patterns, we binned the differentially 

expressed genes into five distinct active groups visualizing the change of gene 

expression along the pseudo time in each lineage (Figure 10 C). 

Using the upregulated genes of each lineage, we thus analyzed if these genes show a 

common transcription factor motif associated with that cell type. Transcription factors 

(TFs) are sequence-specific DNA binding proteins controlling the process of transcription. 

TFs often form a complex gene regulatory network to guarantee cell type-specific and 

time-dependent regulation of their target genes while becoming essential gatekeepers 

for cell fate decisions and lineage commitment (Kim et al. 2021). By identifying motifs 

among the upregulated genes, we aim to support the hypothesis that brain organoids 

recapitulate part of the human brain’s cellular heterogeneity and cell maturation. We 

identified a list of enriched motifs, which we then used to estimate the motif activity 

and overlay the motif with the actual TF expression for each lineage (Figure 10 D). Our 

analysis showed that the TF activity overlaps with the expression level of the TF. This 

analysis underlines the power of transcriptomic data to infer motif activity and, 

therefore, dynamic changes in a cell population. In addition, we identified cell-type-

specific TFs for each lineage that showed the same gene expression and motif activity 

dynamics.  

 

4.1.4 Building a neuronal network using lineage-specific transcription factors 

Following the motif activity analysis, we next wanted to know if our human brain 

organoids recapitulate a transcription factor gene regulatory network. We used the 

Cytoscape software (Shannon et al. 2003; Smoot et al. 2011) to visualize the neuronal 

gene regulatory network in brain organoids for each lineage based on the gene activity 

analysis from MARA (Figure 11). Motif activity response analysis (MARA) profiles (Suzuki 

et al. 2009) revealed potential regulatory functions of SMAD4, SMAD9, and ZNF143.  
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Figure 10. Motif activity and gene expression overlap in neuronal lineages. Each row represents one 
lineage. (A) Selected marker genes for each lineage. (B) Radial Glia Cells in yellow were chosen as starting 
point for each lineage. (C) Binned gene expression heatmap for each lineage. White means no expression, 
and black means high expression. Genes were binned into five dynamic classes. Each bin contains gene 
with a similar dynamic expression pattern. (D) Correlation of gene expression with motif activity of 
selected cluster-specific transcription markers over pseudotime. RGC: Radial Glial Cells, AP: Astrocytes, 
OP: Oligodendrocytes. IN: Inhibitory Interneurons, PN: Projection Neurons, IP: Intermediate Progenitors, 
CP: Choroid Plexus, MH: Midbrain Hindbrain. 
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Figure 2. Lineage specifications in human brain organoids A) Cartoon shwoing neuronal differentiaion in vivo. B)
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motifs after MARA analysis. E) Overlay of transcription factor expression and motif enrichment after MARA analysis. F)
Neuronal network in cytoscape using the MARA output. G) Enriched ontology terms of the trajectory. F) Enriched
pathways of that trajectory.
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The SMAD signaling pathway was functional in developmental processes such as 

proliferation and differentiation (Blank and Karlsson 2011; Fernandes, Antoine, and 

Hébert 2012). A recent study showed that the SMAD signaling pathway is also associated 

with improved neurogenesis in an Alzheimer’s disease model (Wu et al. 2021). SMAD4, 

in particular, is essential for cerebellar development by driving subtypes of neurons 

(Fernandes, Antoine, and Hébert 2012). 

ZNF143 is a mediator for a promoter-enhancer pair for murine hematopoietic stem and 

progenitor cell function (Bailey et al. 2015; Zhou et al. 2021). This TF is known to connect 

enhancers with its target gene by modulating chromatin interactions. Transcription 

factors can facilitate the looping of chromatin by recruiting proteins that induce or 

stabilize the folding of the DNA and thus make the interaction of the enhancer with its 

distal promoter possible. Moreover, it was shown that the modulating chromatin 

interaction alone was insufficient to mediate the promoter-enhancer interaction, yet 

ZNF143 TF was crucial for this interaction.  

  



 51 

 
Figure 11. Transcription factor network in human brain organoids. Colors represent the lineages. Green: Choroid 
plexus. Blue: Progenitor cells. Red: Astrocytes. Pink: Oligodendrocytes. Brown: Inhibitory Interneurons. Blue: 
Projection Neurons. Branches of certain colors stemming from a given transcription factor mean that this 
transcription factor regulates the development of the corresponding cell lineage. SMAD1 is an important transcription 
factor for choroid plexus. However, our data suggest it also regulates astrocytes.  
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4.2 Identification of enhancer-promoter pairs  

4.2.1 Enhancer definition and detection are highly platform-dependent. 

eRNAs are relatively lowly expressed and display poor sequence conservation than 

protein-coding genes. These features hamper the discovery of eRNAs transcription start 

sites, ultimately leading to their inadequate genomic and functional annotations. To 

increase the sensitivity of eRNAs identification, we used a recently published tool called 

SCAFE (Moody et al. 2021), which is especially suitable for identifying putative enhancer 

peaks. SCAFE outperforms previous tools by utilizing a logistic regression to identify 

genuine enhancers. We detected 15,306 non-coding transcripts using SCAFE compared 

to 20,904 for coding regions. Such detection rates align with expectations of the roughly 

equal number of coding and non-coding transcripts originating from the human genome. 

We then investigated how many of the detected potential enhancer elements overlap 

with previously identified enhancers from the literature and how many of our enhancers 

show epigenetic marks. However, most of our enhancers (9146, 59%) are not defined 

by other resources (Figure 12 A) nor show a DNA hypersensitive site (Figure 12 B). We 

suggest that the enhancers we detected are unique to the 5’ single-cell RNA seq 

technology. This could infer that RNA sequencing can capture enhancers without DNA 

hypersensitive sites. 

Next, we used the FANTOM collection of enhancer annotations (Forrest et al. 2014; 

Andersson et al. 2014; Arner et al. 2015). Surprisingly, we found many eRNAs which are 

absent from the FANTOM set (Figure 12 C). The second largest group overlapped with 

long non-coding RNAs. This can be explained by the fact that enhancers and long non-

coding RNA both belong to the category of non-coding RNAs (Hou, Zhang, and Sun 2019).  
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Figure 12. Detection of and characteristics of enhancers in human brain organoids. (A) Validation of 
enhancers using public datasets. The majority of our enhancers (9146) are only detected in our dataset (a 
total of 15,306). Next, our dataset showed the most considerable overlap with EnhancerAtlas (4170), 
followed by SuperEnhancer (1089). From the three integrated databases, our data shows the least overlap 
with GeneHancer enhancers (116). (B) Gene classification is based on DNA hypersensitive sites (DHS). DHS 
is a characteristic of active enhancers and we conclude that enhancers from transcriptomic data do not 
show DHS with our experimental conditions. (C) Using the FANTOM CAT annotation, we aimed to 
elucidate if our enhancers showed overlapping annotation with long-non-coding RNAs (lncRNAs). (D) 
eRNAs with bi-directional expression show more enhancer motifs than uni-directional expressed eRNAs.   

 

Next, we wanted to know if eRNAs in our data show distinctive characteristics of 

enhancers with bi-directional expression profiles (Figure 12 D). Interestingly, when we 

compared the motif signature of unidirectional compared to bi-directional eRNAs, we 
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observed that > 50% of the bi-directional eRNAs show an enhancer signature in the ChIP-

seq data. In contrast, only 35% of the unidirectional enhancers show an enhancer like a 

signature. Our results support that bi-directional expression of eRNAs can be used to 

infer functional enhancers more likely than unidirectional eRNAs. It also suggests that 

the overlap of enhancer identification across different approaches is low, as previously 

reported (Benton et al. 2019).  

 

4.2.2 Enhancer-promoter pairs are co-expressed in early brain development 

Predicting the target genes of enhancers remains a significant challenge. Enhancer-

promoter interactions are mainly inferred from Assay for Transposase-Accessible 

Chromatin (ATAC) or RNA sequencing data, where enhancers are defined based on the 

open chromatin regions or their eRNA expression. However, some studies have reported 

the inability of open chromatin regions to infer the activity of enhancers (Carullo et al. 

2020). Upon perturbation of the enhancer, the chromatin remained open while the 

eRNA expression was decreased.  

Here we hypothesize that enhancer-promoter pairs can be inferred from the 5’-end 

single-cell RNA sequencing data by co-expression and co-accessibility of the eRNAs and 

their cognate RNA promoters. Assuming enhancer-promoter pairs from transcriptomic 

data harbors unique advantages, as the enhancer's transcription as eRNA can prove 

enhancer activity. Using the pseudo time of monocle, we correlated the eRNA clusters' 

expression with the promoter clusters' expression along the pseudo time. Each cluster 

represents a set of enhancers or promoters with similar dynamics along the pseudo time 

(Figure 13). This result highlights enhancer clusters in the early phase of the pseudo time 

cluster with early promoter clusters. This could infer that enhancer and promoter 

expression levels are especially co-expressed in early biological stages like Radial Glial 

Cells. On the other hand, enhancer-promoter pairs show less co-expressed correlation 

toward more differentiated cells.  
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Figure 13. Identification of enhancer-promoter pairs by correlating the expression level of enhancer 
RNA with promoters by pseudo time. Expression of early enhancer RNA and early promoter showed the 
highest correlation, indicating that enhancers are more active in early developmental stages. Enhancer 
clusters and promoter clusters are derived from the trajectory analysis (Figure 10 C).  

 

4.2.3 Co-accessible enhancer-promoter pairs 

Next, we used cicero software to calculate the co-accessibility of enhancer-promoter 

pairs. Cicero is based on the probability of two elements being nearby based on the 

transcriptomic similarity of the cell and generates a co-accessible score. After calculating 

the co-accessibility scores of all pair combinations, we selected the 49,403 enhancer-

promoter pairs for downstream analysis. As cicero imposes a penalty on scoring distant 

enhancer-promoter pairs, we corrected that by setting different co-accessibility cut-offs 

depending on the enhancer-promoter distance. We set a co-accessibility cut-off of 0.3. 

However, for pairs where the enhancer is further away than 10,000 base pairs from the 

promoter, we set a 0.1 co-accessibility cut-off. By including this distance correction, we 

retain distant pairs. This resulted in 4417 pairs filtering out 91% of the initial pairs (Figure 

14). Additionally, we selected pairs with the enhancer and promoter expressed in the 

same pseudo time trajectory, resulting in over 3000 of the 4417 pairs being expressed 

in only one trajectory, indicating a cell-type-specific expression (Figure 15 B).  
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Figure 14. Selection flowchart for a robust set of enhancer-promoter pairs. Cicero output generated 209526 pairs 
which we filtered for enhancer-promoter pairs. Cicero calculates all possible interactions, including promoter-
promoter and enhancer-enhancer interactions. The filtering showed that appr. 25 % of the detected pairs were 
enhancer-promoter pairs. Distance correlated filtering identified 4417 robust enhancer-promoter pairs (appr. 10%) 
with a high co-accessibility score. Cicero penalizes distant pairs with low scores. To include distant enhancer-promoter 
pairs we set a lower cut-off for pairs where the enhancer and promoter are > 10000 base pairs apart.  

 

4.2.4 Cell type-specific enhancer-promoter pairs during brain development 

Transcribed enhancers have cell-type-specific expression profiles (Nott et al. 2019). We 

thus hypothesized that 5’ based enhancers would contain cell-specific enhancers during 

brain organoid development. However, as enhancers are generally very lowly expressed, 

methods utilizing the differences in expression level between cell types to calculate cell-

type specificity are not suitable.  

We, therefore, explored alternative ways of defining enhancer specificity. First, we 

described an enhancer as cell type-specific if its target protein-coding gene was cell type-

specific and differentially expressed (average log2 fold change > 0.25). Collectively we 

identified 1627 cell-type-specific enhancer-promoter pairs (Figure 15 A). Next, we 

investigated in which trajectory the pairs are expressed. We observed that most pairs 

are expressed in the Projection Neuron Cluster, which has the highest number of sub-

clusters (Figure 15 C). This could indicate that Projection Neuron Cells are intrinsically 

more heterogeneous and potentially undergo a longer differentiation process than 

other cell types, resulting in more intermediate stages represented by a higher number 

of clusters.  
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Figure 15. Enhancer-gene and enhancer-promoter characteristics. (A) Heatmap with integrated metadata for pairs, 
enhancers, and genes. Red means positive, and grey means negative. Each column represents one feature. Cell-class 
specific, HiC data, and eQTL data represent pairs, affecting the enhancer and the promoter. These features support 
the discovered enhancer-promoter pairs. GWAS and human-specific affect the enhancer. Enhancers have been 
associated with a disease or carry a human-specific region. Disease-associated means that the promoter of that pair 
is linked to a gene associated with a disease. (B) The number of trajectories enhancers, promoters, or pairs is 
expressed in. (C) In which trajectories are enhancers, promoters, and pairs are expressed. AP: Astrocytes, CP: Choroid 
Plexus, IN: Inhibitory Interneurons, IP: Intermediate Progenitors, MH: Midbrain/Hindbrain, OP: 
Oligodendrocytes, PN: Projection Neurons.  

 

Our analysis captured two previously described brain-specific enhancer-promoter pairs 

(Figure 16). ARX is a gene known to regulate synaptic strength and plasticity (Dickel et 

al. 2018). Dickel et al. have identified two enhancers of ARX, which upon knock-out in 

mice result in depletion of neurons. ARX and its enhancer are mainly expressed in the 

Interneuron cell cluster indicating the cell-type-specific function of this gene and its 

enhancer.  

Furthermore, we detected a novel enhancer-promoter pair which showed a cell-type-

specific expression pattern (Figure 16). PMP2 is a gene that has been associated with 

myelination and astrocytes before (Matejuk and Ransohoff 2020; Hong et al. 2016). In a 

study from Pantera et al. (2018), they detected a super-enhancer region 90-120 kilobase 

pair upstream of PMP2, whereas the enhancer we identified is 60 kilobase pair upstream 

Figure 3. eRNA-promoter pairs during brain organoid development. A) Raw cicero derived pairs. B) Characteristics of
cicero derived pairs. B) Identifying functional eRNA-promoter pairs by integraton of public HiC and eQTL data. C)
Motif enrichment in functional eRNA-promoter pairs vs. non-functional. D) Lineage-specificity of funtional eRNA-
promtoer pairs.
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of PMP2. Although enhancers of PMP2 have been described before, we identified an 

additional enhancer of PMP2.  

 

 
Figure 16. Selected examples for cell-type-specific enhancer-promoter pairs. The left panel showed the enhancer-
gene pair on a UMAP plot, indicating the expression of enhancer and gene in the same cell cluster. The color scale 
indicates the log2 count values. On the right panel, the color of the dot plot depicts the scaled average expression 
level of the enhancer or promoter. The size of the circle represents the percentage of cells expressing the enhancer 
or promoter. 

 

4.2.1 Functional enhancer-promoter pairs 

Next, we aimed to identify functional enhancer-promoter pairs. Distal enhancers with 

their target gene by looping to their interacting gene. This looping is facilitated by 

transcription factors and structural proteins leading to a genomic interaction with the 

promoter. HiC can capture this interaction. Genomic interaction of enhancers with 

promoters is used to identify which promoter the enhancer is regulating. We explored 

whether our enhancer-promoter pairs show genomic interactions by integrating Hi-C 

data. The intersection of transcriptomic-based enhancer-promoter pairs with HiC-based 

enhancer-promoter pairs identified 53 pairs from 1627 pairs to show a genomic 

interaction. Although enhancers interact with promoters through looping and genomic 

interaction, our data captured more diverse cell types compared to the integrated HiC 

data. Thus, we suggest that our of enhancer-promoter pairs are robust but not active in 

Figure 3. eRNA-promoter pairs during brain organoid development. A) Raw cicero derived pairs. B) Characteristics of
cicero derived pairs. B) Identifying functional eRNA-promoter pairs by integraton of public HiC and eQTL data. C)
Motif enrichment in functional eRNA-promoter pairs vs. non-functional. D) Lineage-specificity of funtional eRNA-
promtoer pairs.
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the integrated HiC data set, resulting in only a subset of our enhancer-promoter pairs 

showing genomic interactions.  

Besides genomic interaction, we aimed to identify enhancer-promoter pairs associated 

with an expression quantitative trait loci (eQTL). eQTLs link single nucleotide 

polymorphisms (SNP) to a transcript and enhancers are known to harbor SNPs. By 

intersecting our enhancer-promoter pairs, we identified two pairs that carry an eQTL. 

WDR47, one of the pairing genes, has been associated with brain development before 

(Kannan et al. 2017). The eQTLs that overlap with our data were identified in brain 

samples.  

Our data identified 53 cell-type-specific enhancer-promoter pairs with genomic 

interaction support. Furthermore, two of these pairs carry an eQTL. These examples 

indicate that we can use brain organoids to study cell-type-specific genetic variations.  
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5 Discussion 

Most currently available brain organoid sequencing data is based on 3’ sequencing. 

Despite 3’ based sequencing being a powerful tool to study gene expression, it does not 

capture the transcription start site and therefore can miss enhancer RNAs. To precisely 

and sensitively capture enhancer RNA, we utilized the strength of 5’ based RNA 

sequencing in combination with the novel SCAFE tool. Using logistic regression, SCAFE 

outperforms previous tools to annotate genuine enhancers (Moody et al. 2021). 

Enhancers are non-coding elements involved in gene regulation. They interact with 

transcription factors to activate gene expression through interaction with a promoter. 

We aimed to identify cell-type-specific enhancers and unrevealed their biological 

importance by identifying their regulating promoter. With 98% of our genome being 

non-coding, studies have suggested that they might contribute to regulatory functions 

(Perenthaler et al. 2019). 

We successfully established the brain organoid protocol in our lab. Following 5’ based 

single-cell sequencing captured a transcriptomic profile similar to fetal human brain 

development. Based on the molecular footprint, we suggest that our brain organoids 

partially recapitulate human brain development at post-conception week 12. 

Differential expression analysis revealed that brain organoids capture marker genes of 

major neuronal cell types such as astrocytes. Furthermore, we detected upregulation of 

cell type-specific transcription factors indicating the lineage commitment of the main 

neuronal cell types. Finally, network analysis showed an interplay of cell type-specific 

transcription factors inferring transcription factors to gene relations during brain 

development.  

Although brain organoids provide an excellent model system to study gene regulation 

at an early developmental stage, brain organoids show limitations in the growth and 

complexity of the growing complexity of the human brain (Qian, Song, and Ming 2019; 

Benito-Kwiecinski and Lancaster 2020). Our findings show that brain organoids with 120 

days of culture can recapitulate human brain development of post-conception week 12. 

We captured progenitor cells and distinct mature cells of the human brain. Despite this, 
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the lack of intrinsic vascularization and spontaneous differentiation of microglial cells 

remains a significant challenge in the field of brain organoids. Vasculature supports the 

continuous growth of tissue and, therefore, the emergence of more mature cells of the 

human brain. Studies have shown the incorporation of vasculature into brain organoids 

(Cakir et al. 2019; Matsui et al. 2021). However, these studies are sparse, indicating 

technical challenges and a need for better-defined protocols. An alternative approach 

to overcome this shortage is by restricting the growth of the brain organoid to a smaller 

size and using directed brain organoid protocols which result in one central area of the 

brain (Monzel et al. 2017). However, gaining more control and reproducibility by using 

a directed differentiation protocol means loss of molecular heterogeneity and, 

therefore, the neuronal network, which is one of the compelling advantages of 

organoids. In addition, providing a 3D structure enables different cell types to interact 

in a unique environment leading to a more complex transcriptome. Finding the balance 

between heterogeneity and reproducibility will remain a challenge. 

Brain networks represent the interaction of brain regions by showing their functional 

connectivity (Summers et al. 2022). Especially transcription factors are essential players, 

as they drive cell differentiation and have unique functions for cell fate decisions. 

Modeling this network of transcription factors in-silico enables us to study regulatory 

elements in a developing system on a large scale. MARA stands for motive activity 

response analysis and is a powerful tool for elucidating the role of transcription factors 

for a cell type. This tool deduces which transcription factors have a role in certain 

expression profiles by linking the motifs and their activities to the transcription factor 

that binds to them. Our analysis showed a great correlation between the motif activity 

and transcription factor expression levels across all trajectories. Because we used cell 

type-specific transcription factors, the network analysis reflects the interaction of cell 

types, which can be used to study the differences between organoids based on their 

transcription factor activity. Brain organoids could serve as a model system to identify 

novel motifs during early brain development. 

In the second part of the thesis, we identified novel enhancers and cell-type-specific 

enhancer-promoter pairs using 5’ based single-cell RNA sequencing. Many of the 
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enhancers from our study have not been described before. Although we included 

various quality control metrics to obtain a robust set of enhancers, this difference could 

result from the different technologies used. Previous resources and atlas papers have 

concluded that enhancer detection varies across different platforms due to protocol 

differences and the unique characteristic each platform uses to identify enhancers 

(Benton et al. 2019; Inoue and Ahituv 2015). Although our results align with previous 

studies, there is room for improvement in unifying the gap between technologies. Each 

platform has its unique features, and finding a way to combine each feature from each 

platform would provide an advanced resource and high-quality enhancers. Several 

resources have facilitated the integration of different characteristics to define a 

complete annotation of identified enhancers (Pennacchio et al. 2006; Gao and Qian 

2020). 

On the flip side, the reason why we detect more enhancers than other platforms could 

mean that RNA sequencing is more sensitive to capturing active enhancers using eRNAs 

as a surrogate marker compared to other platforms. Although they might not all be 

functional due to environmental and dynamic reasons, this data provides an excellent 

resource for in silico detection of enhancers using eRNAs.  

By the definition of being cell-type specific, the same enhancer is not active in every cell 

type. Investigating functional enhancers requires experimental validations or data 

retrieved from various cell types to investigate the true functional nature of enhancers. 

A state-of-the-art method to identify eRNA would be the first step toward a full 

enhancer annotation set.  

Going forward, the reliable detection of functional enhancers is crucial. However, the 

bottleneck is a reliable characteristic of enhancers by which enhancers can be defined. 

Our current knowledge of enhancers is based on studies highlighting distinct enhancer 

characteristics. However, these previous investigations contradict and highlight 

opposing features of enhancers leading to an incomplete understanding of enhancers 

(Zhu et al. 2013; Thurman et al. 2012). One way of addressing this challenge is to 

introduce a better catalog of enhancers by deeply characterizing enhancers. We might 

use the term enhancers in a broad context and therefore miss the distinct differences 
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between different enhancer categories. To accelerate ongoing experimental enhancer 

validations, recent studies have employed machine learning approaches (Wolfe et al. 

2021; Rajpurkar et al. 2021). Wolfe et al. have used deep learning approaches to 

generate a model that can accurately predict enhancers in Drosophila. Deep learning 

uses algorithms and neural networks to train a model. Generating high-quality input 

data to generate an advanced model could expedite current enhancer validations. 

Another critically discussed feature of eRNAs is their polyadenylation. There have been 

studies supporting the idea of polyadenylated eRNAs (Andersen et al. 2014; Santa et al. 

2010), whereas other studies have also found non-polyadenylated eRNAs (Flynn et al. 

2011; Lubas et al. 2015). Based on our experimental design, our study only captured 

enhancers that are characterized by polyadenylated eRNA. Despite this, polyadenylation 

might be a functional attribute to the eRNA, inferring that these eRNAs need to be active 

for a prolonged time. In contrast, non-polyadenylated eRNAs are only required for a 

short period.  

The current trend in the medical field shows a considerable interest in understanding 

the molecular footprint of transcriptomics on a single cell level since our understanding 

of tissue grows, and literature has demonstrated that bulk expression can often 

overshadow lowly expressed genes that are otherwise lost. Although single-cell RNA 

sequencing might be nosier, it also provides the excellent potential to discover new 

regions that bulk studies could not access so far. Single-cell data enable us to study the 

concept of single-cell stage vs. cell type. When cells undergo a developmental process 

they differentiate from one cell type into a more developed cell type during which the 

cell is in a transient state. Single-cell gene expression studies facilitate profiling 

transcriptional regulation in complex biological processes and highly heterogeneous cell 

populations. These studies simplify the discovery of cell-type-specific genes of a 

particular cell type from a mix of heterogeneous cell types, mark intermediate states 

during a natural process, and bifurcate between two alternative cellular fates. The 

current study provided insight into novel cell-type-specific enhancers and cell-type-

specific enhancer-promoter pairs, underlying the importance of single-cell studies.  
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6 Conclusion and Outlook 

Our understanding of enhancers is a dynamic process. With the rise of more sensitive 

approaches to capture enhancers, the identification and characterization of enhancers 

have been under massive studies.  

This thesis aimed to identify cell type-specific enhancer-promoter pairs essential in brain 

development. Our analysis showed that brain organoids have an excellent potential for 

modeling human brain development. The diversity of cell types we obtained from our 

experiments confirmed that organoids undergo a maturation process recapitulating 

human fetal brain development. The transcriptomic profile showed that our model 

system represents the human fetal brain of post-conception week 12. Furthermore, we 

identified a robust set of active and cell type-specific enhancers. By linking the 

enhancers to promoters, we elucidated their biological function. Finally, by integrating 

HiC and eQTL data, we further assessed the functional role of enhancers during brain 

development.  

In conclusion, this work identified cell type-specific enhancers from human-induced 

stem cell-derived brain organoids. We highlighted the purpose and usage of 5’ based 

transcriptomic approaches. 5’ based sequencing approaches are not as common as 3’ 

based approaches. However, enhancers and alternative promoters can be distinguished 

by capturing the 5’ end of the transcript, emphasizing the value of 5’ based sequencing 

approaches. Our analysis extends the current understanding of enhancer-promoter 

pairs in the brain. We identified a set of novel cell types specific pairs that have not been 

described yet. We suggest that these pairs are important during brain development, 

affecting cell type differentiation. 

Many of the identified enhancers are not seen in other studies, providing a unique 

platform to identify novel regulatory regions. However, with this uncertainty comes the 

lack of support for the novel enhancers, and only functional analysis or experimental 

validation will prove these as genuine enhancers. Clustered regularly interspaced short 

palindromic repeats (CRISPR) applications are widely used to study the function of 

enhancers (Fulco et al. 2019; Li et al. 2020). Thus, capturing the transcription start site 
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is a significant advantage when considering perturbation studies using CRISPR 

interference. Furthermore, it is known that CRISPR applications are most efficient when 

targeting the transcription start of their element of interest (Yang et al. 2021). Therefore, 

our data aids to design better gRNAs compared to common 3’ based sequencing data.  

Current studies attempt to integrate multiple technologies to identify the most robust 

set of enhancers. By integrating multiple technologies, one decreases the chances of 

falsely annotated enhancers. Whereas single studies lack the consensus on enhancers, 

integrating atlases into one resource can unite our expertise to interpret the function of 

enhancers during brain development. The definition of an active enhancer on a global 

scale is yet to be defined. However, with currently ongoing approaches and integrating 

various datasets, resources are becoming more defined and taking our understanding 

of enhancers one step further. 
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