
ETH Library

User-Side Indoor Localization
Using CSI Fingerprinting

Conference Paper

Author(s):
Kazemi, Parham; Al-Tous, Hanan; Studer, Christoph ; Tirkkonen, Olav

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000580771

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/SPAWC51304.2022.9833973

Funding acknowledgement:
813999 - Integrating wireless communication engineering and machine learning (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8950-6267
https://doi.org/10.3929/ethz-b-000580771
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/SPAWC51304.2022.9833973
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


User-Side Indoor Localization Using CSI
Fingerprinting

Parham Kazemi1, Hanan Al-Tous1, Christoph Studer2, and Olav Tirkkonen1

1Department of Communications and Networking, Aalto University, Espoo, Finland

2Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich Switzerland
e-mail:{parham.kazemi, hanan.al-tous, olav.tirkkonen}@aalto.fi, studer@ethz.ch

Abstract—We consider a scalable User Equipment (UE)-side
indoor localization framework that processes Channel State
Information (CSI) from multiple Access Points (APs). We use
CSI features that are resilient to synchronization errors and
other hardware impairments. As a consequence our method
does not require accurate network synchronization among APs.
Increasing the number of APs considered by a UE profoundly
improves fingerprint positioning, with the cost of increasing
complexity and channel estimation time. In order to improve
scalability of the framework to large networks consisting of
multiple APs in many rooms, we train a multi-layer neural
network that combines CSI features and unique AP identifiers
of a subset of APs in range of a UE. We simulate UE-side
localization using CSI obtained from a commercial raytracer. The
considered method processing frequency selective CSI achieves
an average positioning error of 60 cm, outperforming methods
that process received signal strength information only. The mean
localization accuracy loss compared to a non-scalable approach
with perfect synchronization and CSI is 20 cm.

Index Terms—Channel state information, user equipment
(UE)-side indoor localization, fingerprinting, neural networks.

I. INTRODUCTION

Indoor localization finds widespread use in our everyday
lives and is critical to many industry applications, e.g., robot
navigation and asset tracking [1]. Global Navigation Satellite
Systems (GNSSs), the mainstream technology for outdoor
navigation, do not typically work in indoor environments
due to lacking Line-of-Sight (LoS) connectivity to a suffi-
cient number of satellites. Similarly, distance-based localiza-
tion techniques that leverage Time of-Arrival (ToA), Time-
Difference-of-Arrival (TDoA), or Angle-of-Arrival (AoA) in-
formation perform poorly indoors, as the wireless signals
typically have to propagate through walls [2].

Fingerprint-based localization methods are not restricted to
LoS connectivity. Accordingly, they have gained significant
attention recently [1], [3], [4]. In these methods, a database
containing ground-truth locations and received signal strength
indicators (RSSI) or Channel State Information (CSI) samples
is first constructed. Then, measured RSSI or CSI samples are
matched with the fingerprint database to generate a location
estimate. RSSI-based methods typically perform poorly as
compared to CSI-based approaches which capture fine-grained
channel information at the subcarrier level. Indoor localization

methods based on CSI samples have gradually become more
and more accurate [1], [3], [4].

Localization at the User Equipment (UE)-side has the
advantage that APs can transmit dedicated positioning ref-
erence signals which are used by all UEs to estimate CSI.
Localization accuracy can be improved by processing infor-
mation from multiple APs [5], [6]. If the network of APs is
perfectly synchronized, the relative phase information in CSI
from multiple APs carries relevant positioning information.
Otherwise relative phases are irrelevant, and may be removed
before fusion of multi-AP CSI. It is also crucial to observe
that the delay- or frequency domain CSI estimated by a UE
depends on the synchronization of the UE to the received
signal from an AP.

Mass-market wireless transceivers are cost effective, and
come with non-ideal analog radio frequency (RF) components.
As a consequence, RF-induced phase noise (PN), carrier
frequency offset (CFO), and I/Q-imbalance affect the received
signals [7]. Estimation of impulse responses in Multiple-Input
Multiple-Output Orthogonal Frequency-Division Multiplexing
(MIMO-OFDM) systems in the presence of phase noise and
I/Q imbalance was considered in [8]. A pre-processing method
to clean CSI from phase fluctuations introduced by imperfect
synchronization between the transmitter and the receiver was
considered in [9]. A compressive sensing framework that
recovers the channel delay components and their coefficients
at high resolution under hardware imperfections (i.e., phase
noise) was considered in [10]. This method improves the chan-
nel delay profile resolution, which, in turn, enables improved
localization accuracy.

In this paper, we consider on-device CSI-based indoor
positioning which is robust to timing mismatch and hardware
impairments. For this, we apply CSI features that are resilient
to hardware impairments. We provide a scalable approach for
leveraging CSI for indoor positioning in a network with a
large coverage area and many APs. Scalability is achieved by
two methods. First, the training and localization samples of a
UE at a given location consists of the CSI features of an active
set of P APs with strongest received signal power, together
with the unique identifiers of these APs. Second, the service
area is divided into subareas. In each subarea the union of



the active sets of all sample UEs in the area consists of a
limited set of APs. For each subarea, we train a multi-layer
neural network to perform UE-side indoor positioning. We
show simulation results with realistic channel vectors from a
commercial raytracer.

II. SYSTEM MODEL

We consider the propagation environment between multiple
APs and U single-antenna UEs. Each AP is equipped with M
antennas. The location of UE u is denoted by xu ∈ RD, where
D = 2 or D = 3. Similarly, the location of AP b is xb ∈ RD.
The UE is assumed to be synchronized to one AP. We do not
assume network-level synchronization among APs.

A. Channel Model

The channel between an AP and a UE is assumed to consist
of L multipath components, each with a path gain al ∈ C
and delay τl ∈ [0, τmax], where τmax denotes the maximum
delay spread. The baseband continuous time Channel Impulse
Response (CIR) between a UE and one antenna of an AP is
thus

c(τ) =

L∑
l=1

al δ(τ − τl), (1)

where δ(·) is the Dirac delta function. The Channel Frequency
Response (CFR) is h(f) =

∫
e−j2πfτ c(τ)dτ .

We assume that OFDM is used, and that the AP transmits
pilot signals to the UE over N equi-spaced subcarriers with
subcarrier spacing fs. The subcarriers are indexed by n =
−N−1

2 , . . . , N−1
2 . With f0 the carrier frequency, subcarrier n

has center frequency fn = f0 + nfs and CFR

hn ≜ h(fn) =

L∑
l=1

al e
−j2πfnτl . (2)

The vector h = [h1, . . . , hN ]T of subcarrier channels is the
Discrete Fourier Transform (DFT) of the discrete time Tapped
Delay Line (TDL) channel c = [c1, . . . , cK ]T with K < N
delay taps, after extending c to length N by appending zeroes.
Note that in the discrete time TDL, there would typically be
more than L taps, K being proportional to τmax.

Due to hardware imperfections, and synchronization errors,
the CSI measurements are affected by various timing, phase,
and magnitude distortions. The elements of the estimated CSI
vector ĥ = [ĥ1, . . . , ĥN ]T ∈ CN are modeled as

ĥn = e−jϕnhn + zn, (3)

where ϕn = 2πnfsβ + ψn is a phase distortion term with
time offset β, arising from synchronization error, and ψn a
phase offset arising from other impairments. Estimation noise
is modeled by zn ∈ C, assumed Gaussian and white, which
also is assumed to capture the interference arising from CFO,
I/Q imbalance and phase noise. The DFT of the estimated
CFR gives rise to an estimated TDL ĉ with elements ĉk. We
assume that that effective CIR does not exceed the Cyclic
Prefix (CP) length. For more details on impairment modeling,
see [11], [12].

B. CSI Feature

Since the estimated CSI is affected by phase distortion, it
is not suitable to be directly used as a feature for localization
[13], [14]. The absolute square of the estimated subcarrier
channel can be written as

|ĥn|2 = |hn|2 + z̃n, (4)

where z̃n = h∗ne
jϕnzn + z∗ne

−jϕnhn + |zn|2. The phase
distortion is transformed from a multiplicative factor to an
additive term and the leading term is not affected by phase
errors. The vector of absolute squares of subcarrier channels is
equivalent to the Fourier transform of the CIR autocorrelation
function

r(ζ) = (c⊛ c∗)(ζ) =

L∑
k=1

L∑
l=1

aka
∗
l δ(ζ − (τk − τl)), (5)

where ⊛ denotes a convolution, underlined quantities are time
reversed, the superscript ∗ denotes complex conjugate, and
ζ ∈ [−τmax, τmax].

We shall use the discrete delay domain estimated TDL
autocorrelation as a feature, i.e., the DFT of the vector of
absolute squares of the subcarrier channels [14]:

rκ =
∑
k

ĉk ĉ
∗
k+κ−1, (6)

where κ = 1, . . . ,K and K is the number of delay taps. As
the delay spread of the channel is assumed to be well within
the CP, we have K << N . The TDL autocorrelation thus
has the same information as the vector of |ĥn|2-values, but
in a much lower dimension. This CSI feature is resilient to
synchronization errors and hardware imperfections.

Considering all M antennas of AP b, the CSI features of
UE u are denoted by:

Ru
b = [ru1,b, . . . , r

u
M,b] ∈ CK×M , (7)

where rm,b ∈ CK is the autocorrelation vector of the esti-
mated TDL of antenna m at AP b.

C. Benchmark CSI Features

A variety of features have been used for fingerprinting
indoor positioning. RSSI is frequently used and can be easily
obtained at the receiver. However, due to the complexity of
real-world indoor channels, this feature is unable to provide
high positioning accuracy. RSSI fingerprint based localization
is insensitive to synchronization errors and phase distortion.
We consider RSSI based localization as a benchmark approach
to evaluate the localization accuracy in this paper.

As another benchmark feature we use the full estimated
CSI. Although this feature can provide better accuracy than
RSSI-based approaches, it requires complex algorithms to
estimate and mitigate/cancel the effect of possible impair-
ments, assumes that all UEs apply the same synchronization
algorithm, and are able to perform error free synchronization.
In most of the literature, CSI is assumed to be estimated ac-
curately with perfect synchronizity for localization purposes.



The full complex-valued CIR was considered for fingerprint-
ing in [15]. Here, we consider the magnitude of the discrete
delay domain CIR as a CSI feature to benchmark performance.

III. POSITIONING FRAMEWORK

For each of the CSI features discussed above, a Deep Neural
Network (DNN) is trained to map the feature vector to the
location of a UE. The UE receives the signal of several APs,
and measures the RSSI for each AP. If RSSI-based positioning
is used, a feature containing the measured signal strength of
all APs in the indoor area is fed to the DNN.

For the benchmark full CSI feature, the UE estimates the
CSI of all APs. A feature vector is generated based on
the magnitude of the delay domain channel taps. Then, by
stacking features of different APs into one high dimensional
feature, the DNN takes in the large input feature and learns the
mapping between the CSI feature vector and the UE location.

These methods scale poorly when the environment expands
to cover a large area with a multitude of access points.
Using the CSI from all APs, one can have accurate position
estimation, but the dimension of the input feature as well as
UE complexity and energy consumption will grow linearly
with the number of APs. Also, a UE does not receive a high
quality signal from all APs in a large indoor area.

We thus consider the input features of a UE to be collected
from a UE-location specific active set of APs with the
strongest received power. This enables scaling to larger areas
without undue expansion of UE measurement requirements. A
unique AP identifier is appended to each CSI feature vector
so that the DNN can distinguish between different APs in
the input. Here, for simplicity, we use AP location as an
ID. To reduce DNN complexity we divide the service area
into subareas and train a separate positioning DNN for each
subarea. We assume that there is a classifier which is able
to provide a coarse UE location estimate based on the CSI
feature, i.e., to which room/subarea the UE belongs.

The features resilient to synchronization errors and hard-
ware imperfections are then constructed as follows. The RSSIs
of different APs are first measured at the UE. The P APs
with largest received signal power are chosen to the active
set, and their CSI is estimated. The autocorrelation feature
vectors are then formed from the estimated delay domain
channel taps. The location of the AP is concatenated as IDs
to the corresponding CSI feature vector. Fig. 1 illustrates the
architecture of the considered positioning system.

A. Feature Prepossessing

Since off-the-shelf machine learning frameworks are un-
able to process complex numbers, for further processing we
convert the complex valued autocorrelation features to real-
valued vectors stacking the real and imaginary parts together.
Thus, the MK-dimensional matrix Ru

b of autocorrelations is
converted to a 2MK- dimensional feature vector. We assume
that AP location is available and concatenate it to the received
CSI feature, resulting in

fub = [Re{vec(Ru
b )}T , Im{vec(Ru

b )}T ,xT
b ]

T . (8)

Fig. 1: Block diagram of the positioning system.

The main reason for adding the AP location is to identify
the AP to the DNN. The final feature vector that is input to
the DNN is constructed by stacking the fub from the P best
(strongest) APs in the subarea, i.e.,

fu = [fT1⋆, . . . , fP⋆]
T , (9)

where fTp⋆ is the feature of the pth best AP.

B. Neural Network structure

For the positioning problem, we train a DNN to infer the
location of a UE from the CSI feature. The structure of the
DNN is depicted in Fig. 2. The DNN takes in a CSI feature
and passes it through several fully connected layers until the
output layer. In the figure, the number in each block represents
the number of neurons in that layer. In all layers, the Rectified
Linear Unit (ReLU) is used as the activation function, except
the last layer where linear activation is used to generate the
location of the UE.

In the training phase, the loss function of the predicted
value against the ground truth value is computed. The Mean
Squared Error (MSE) is considered as the loss function. The
trainable parameters are then updated by back propagation. We
use Batch Normalization (BN). All layers are initialized using
the He initializer [16]. The training of the DNN takes place
during an off-line phase with Adam optimizer. We assume
that a dataset containing the CSI feature and corresponding
ground truth location is available.

IV. SIMULATION RESULTS

In our simulations, we consider 2D localization in an indoor
office area with multiple rooms. The area is shown in Fig. 3.

Fig. 2: DNN architecture for subarea/room localization.



Fig. 3: 3D map of the floor plan. The color represents the construction
material. The ceiling is removed for clarity.

We use a range of different materials for the walls. We install
8 APs in the office area, each of which has 4 antennas. The
carrier frequency is 2.4 GHz, the bandwidth is 20 MHz, and
there are 1024 subcarriers. The AP transmit power is 27 dBm.
The thermal noise power spectral density is -174 dBm/Hz, and
the UE noise figure is 9 dB.

We generate a dataset of 17 thousand distinct locations
with the corresponding CSI using the Wireless InSite channel
simulator [17]. We split the dataset to 80% for training and
20% for testing.

We divide the floor plan into two subareas; the upper and
lower subarea. The part of the building extending from the
corridor to the room with metallic walls is in the upper area.

We consider the following positioning approaches:
• RSSI-based positioning: The received signal power from

all 8 APs are measured and used as a feature to train a
DNN for each subarea and then used for positioning.

• Perfect synchronization based positioning: We assume
perfect network synchronization between all APs and all
UEs. The magnitude of the delay domain CIR from all 8
APs is used as a feature to train a DNN for each subarea
and then used for positioning.

• Autocorrelation based scalable positioning: for each UE
we consider the CSI of an active set of the four strongest
APs, i.e., P = 4. A feature vector as mentioned in
Section III-A is constructed and used to train a DNN
for each subarea and then used for positioning.

First we consider the statistics of the Distance Error (DE),
i.e. the difference of the predicted and ground truth locations
in the test set. Fig. 4 shows the CDF of DE obtained for
different approaches for the test data in the upper and lower
subareas. RSSI-based localization shows the worst perfor-
mance, while perfect synchronization method is the best.
The auto-correlation approach performs closer to the ideal
perfect synchronization method than to the RSSI-method.
Recall that the auto-correlation and RSSI based methods are
robust to synchronization and phase error. The 95th percentile
is indicated by the horizontal yellow dashed line.

Table I summarizes the accuracy of these approaches for
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Fig. 4: CDF of the DE in [m] for different approaches. The CDF of
the DE for the upper and lower areas are shown separately, since a
different NN is trained for each area.

the upper and lower subareas. We use the Mean Distance
Error (MDE) and the 95% DE as the performance metrics to
evaluate the accuracy of above discussed approaches. The gain
of the autocorrelation based approach over the RSSI- based is
striking, especially in the 95% accuracy measure. In addition,
we evaluate the effect of wrong strongest AP estimation, by
randomly permuting the order of AP features in the feature
vector. We observe that the MDE is doubled.

It is instructive to analyze the positioning error as a function
of location. In Fig. 5, the heat map of positioning error
is depicted for perfect synchronization and auto-correlation
based approaches for the test data, in the left and right half-
figure, respectively. The location of the APs are also shown.
The APs are installed on the ceiling and are inside the floor
plan, but for readability they are depicted slightly outside of
the area. The dashed white line indicates the split of the floor
plan into two subareas. In most of the locations we have a
good localization accuracy. The accuracy in the upper part of
the corridor is somewhat degraded, since in this area only one
AP has a strong received signal. The corridor is open ended,
i.e., there are no reflections from the end. In this area, the
ranging information available in the perfectly synchronized
system from the weakly received APs in the the other rooms
considerably improves performance as compared to the auto-
correlator method. Also, in the closed room with partially
metallic walls, we see some performance degradation.

TABLE I: Localization performance of fingerprinting positioning
methods for lower and upper areas

Approach MDE 95% DE
Upper Lower Upper Lower

RSSI-based 0.93 0.92 2.82 2.10
Auto-correlation based scalable 0.56 0.60 1.25 1.42
Perfect synchronization based 0.40 0.46 0.95 1.17
Auto-corr - random permutation 1.2 1.4 - -



− 2 0 2 4 6 8 10 12

x [m]

0

5

10

15

20

25

y
 [

m
]

AP 1

AP 2

AP 3

AP 4

AP 5

AP 6

AP 7

AP 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

− 2 0 2 4 6 8 10 12

x [m]

0

5

10

15

20

25

y
 [

m
]

AP 1

AP 2

AP 3

AP 4

AP 5

AP 6

AP 7

AP 8

0.5

1.0

1.5

2.0

2.5

3.0

D
is

ta
n
c
e
 E

rr
o
r 

[m
]

Fig. 5: Heat map of the distance error in [m] for (Left); perfect synchronization based approach (Right); scalable auto-correlation based
approach. The white dashed line indicates the border of the two sub areas.

V. CONCLUSION

In this paper we have considered fingerprint based indoor
localization. The estimated channel state information at the
UE side was affected by synchronization errors and hardware
impairments. A CSI feature resilient to such conditions was
constructed based on the auto-correlation of the delay domain
channel impulse response. We developed a scalable framework
by considering the CSI features of the set of P strongest
APs for each location with unique AP-identifiers. Simulation
results showed that the localization accuracy loss compared
to a non-scalable approach with perfect synchronization and
CSI is only 20 cm.
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