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Abstract

Densely annotating LiDAR point clouds remains too ex-
pensive and time-consuming to keep up with the ever grow-
ing volume of data. While current literature focuses on
fully-supervised performance, developing efficient methods
that take advantage of realistic weak supervision have yet
to be explored. In this paper, we propose using scribbles
to annotate LiDAR point clouds and release ScribbleKITTI,
the first scribble-annotated dataset for LiDAR semantic seg-
mentation. Furthermore, we present a pipeline to reduce
the performance gap that arises when using such weak
annotations. Our pipeline comprises of three stand-alone
contributions that can be combined with any LiDAR se-
mantic segmentation model to achieve up to 95.7% of the
fully-supervised performance while using only 8% labeled
points. Our scribble annotations and code are available at
github.com/ouenal/scribblekitti.

1. Introduction
With the increase of LiDAR’s popularity on autonomous

vehicles, data acquisition has significantly ramped up.
However, it is very hard to keep pace with the volume of
data, as the dense data annotation process is very expensive
and time-consuming for large scale datasets, especially in
3D where the navigation of the annotation tool is not trivial.
Even with powerful annotation tools [5] that allow labeling
of superimposed LiDAR frames, a single 100m by 100m tile
can take up to 4.5 hours for an experienced annotator [5].

In stark contrast to the 2D cases [1,14,24,31], current ef-
forts in 3D semantic segmentation mainly focus on design-
ing networks for densely annotated data (e.g. [41,45,57]), as
opposed to developing efficient methods for creating more
labels or learning from cheap/weak supervision. It is clear
that only by doing the latter, the scaling of 3D semantic seg-
mentation can keep up with the growth of applications and
data volume. In this paper, we present a method for this
very purpose, by firstly introducing a new annotation strat-
egy and later developing a pipeline to directly exploit such
annotations.

Figure 1. Example of scribble-annotated LiDAR point cloud
scenes of a single frame (top) and superimposed frames (bottom).
Compared are the proposed ScribbleKITTI (left) with the fully la-
beled counterpart from SemanticKITTI [5] (right).

Using scribbles as annotations has proven to be a popu-
lar and effective method for 2D semantic segmentation [7,
22, 24]. The weak annotation method allows annotators to
simply mark object centers, avoiding the time consuming
task of determining class boundaries.

We adopt this idea for LiDAR point clouds to supervise
3D semantic segmentation. As opposed to 2D images, 3D
point clouds preserve the metric space and therefore things
and stuff follow highly geometric structures. To accompany
this, we propose using the more geometric line-scribble to
annotate LiDAR point clouds. Compared to free-formed
scribbles, annotators only need to determine the start and
end points of a line annotation. This allows faster labeling
of classes that span large distances (e.g. roads, buildings,
fences), while also providing as sufficient information for
smaller object classes (e.g. cars, trucks), as short lines and
free-formed scribbles become less distinguishable.

We provide scribble-annotations for the train-split of Se-
manticKITTI [5] for 19 classes. The resulting scribble-
annotated data, which we call ScribbleKITTI, contains 189
million labeled points corresponding to 8.06% of the total
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point count. Fig. 1 shows an example from ScribbleKITTI.
Furthermore, in this paper we develop a novel learn-

ing method for 3D semantic segmentation that directly
exploits scribble annotated LiDAR data. Learning from
scribble annotations provides a unique challenge as no su-
pervision/regularization is available from unlabeled points,
which form the majority of the training data. A performance
gap between scribble-supervised and fully supervised train-
ing could be very large if no special methods are designed
for the former. To tackle this issue, we introduce three
stand-alone contributions that can be combined with any 3D
LiDAR segmentation model: a teacher-student consistency
loss on unlabeled points, a self-training scheme designed
for outdoor LiDAR scenes, and a novel descriptor that im-
proves pseudo-label quality.

Specifically, we first introduce a weak form of super-
vision from unlabeled points via a consistency loss. Sec-
ondly, we strengthen this supervision by fixing the confi-
dent predictions of our model on the unlabeled points and
employing self-training with pseudo-labels. The standard
self-training strategy is however very prone to confirmation
bias due to the long-tailed distribution of classes inherent in
autonomous driving scenes and the large variation of point
density across different ranges inherent in LiDAR data. To
combat these, we develop a class-range-balanced pseudo-
labeling strategy to uniformly sample target labels across
all classes and ranges. Finally, to improve the quality of our
pseudo-labels, we augment the input point cloud by using a
novel descriptor that provides each point with the semantic
prior about its local surrounding at multiple resolutions.
In summary, our contributions are as follows:

• We present ScribbleKITTI, the first scribble-annotated
LiDAR semantic segmentation dataset.

• We propose class-range-balanced self-training to com-
bat the inherent bias towards dominant classes and
close ranged dense regions in pseudo-labels.

• We further improve the pseudo-labeling quality by
augmenting the input point cloud with a pyramid lo-
cal semantic-context descriptor.

• Putting these two contributions along with the
mean teacher framework, our scribble-based pipeline
achieves up to 95.7% relative performance of fully su-
pervised training while using only 8% labeled points.

Our contributions remain orthogonal to the development of
better neural network architectures and can be combined
with any 3D LiDAR segmentation model.

2. Related Work
LiDAR Semantic Segmentation: As point clouds are ir-
regular geometric data structures, current literature for 3D
semantic segmentation mainly focuses on identifying and
understanding various representation strategies amongst:
operating directly on point coordinates [17, 20, 35, 36, 44,

45], projecting the LiDAR scene onto images and employ
2D architectures [3, 12, 30, 47, 48, 50], utilizing sparse 3D
voxel grids [11,25,41,53,57], or utilizing multiple represen-
tations [2, 51, 55]. All of these models are developed under
the fully-supervised framework, which requires densely an-
notated LiDAR point clouds that are time-consuming and
tedious to acquire. In this work, our focus is different
and our contributions are complementary. Our developed
pipeline can be used with any such network in order to
reduce the performance gap between fully-supervised and
scribble-supervised training.

2D Scribble-supervised Semantic Segmentation: To alle-
viate the strenuous task of dense data annotation, two train-
ing methods can be used: weakly-supervised [21,22,24,29,
32, 37], where only a subset of points are labeled on ev-
ery frame, and semi-supervised [13, 16, 23, 33], where only
a subset of frames are labeled within the dataset. Scrib-
bles have been adopted as a user-friendly form of weak su-
pervision [24]. The common approach when dealing with
such weak annotations is to either employ online labeling
through a consistency check using mean teacher [9, 26, 40,
43, 54], or to employ a self-training scheme where data is
iteratively processed by generating offline target pseudo-
labels and retraining [7, 22, 24, 38]. However, the naive ap-
proach of self-training on all predictions can introduce con-
firmation bias [4]. To combat this, threshold-based filtering
can help reduce possible errors by only sampling confident
predictions [8, 49, 58]. When facing long tailed distribu-
tions, CB-ST [59] uses class-balanced sampling to avoid the
domination of head classes in the pseudo labels. DARS [16]
extends CB-ST by re-distributing biased pseudo labels af-
ter thresholding. We extend the previously available meth-
ods to also include balancing against range to avoid under-
sampling points from distant, sparser regions of the LiDAR
point cloud.

Incomplete Supervision in 3D Semantic Segmentation:
In contrast to 2D, incomplete supervision for point clouds
have remained underexplored. When tackling semi-
supervised segmentation on LiDAR point clouds, Semi-
sup [18] implements a pseudo-label guided point con-
trastive loss to extend supervision to unlabeled frames. Li et
al. [23] and SSPC [10] employ self-training to achieve the
same goal. Xu et al. [52] compares semi-supervised train-
ing to weakly-supervised on point clouds and argues that
under a fixed labelling budget, weak supervision performs
better for semantic segmentation. PSD [56] uses consis-
tency check across perturbed branches to utilize unlabeled
points in weakly supervised learning. However, the weak
labels from existing methods [52,56] are generated through
offline uniform sampling from dense annotations which
cannot be easily adopted during the dense labeling itself. In
this work, we tackle a form of weakly-supervised segmen-
tation based on line-scribbles. Instead of using simulated
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Figure 2. Number of points labeled in ScribbleKITTI (α = 1)
visualized against SemanticKITTI (α = 0.5) in log-scale.

weak labels, we provide a human annotated dataset to re-
alistically validate our method. Compared to uniform sam-
pled labels, scribbles vitally do not provide any information
on class boundaries and appear only in scribble-clusters, i.e.
are much less spatially distributed within a scene.

3. The ScribbleKITTI Dataset
While LiDAR point cloud semantic segmentation has

gained popularity over the past years, the number of large-
scale datasets still remains low due to the complexity and
time consumption of the data annotation process. Inspired
by 2D scribble annotations [24] that are efficient and easy
to generate, we propose using line-scribbles to annotate Li-
DAR point clouds for semantic segmentation and release
ScribbleKITTI, the first scribble-annotated LiDAR point
cloud dataset.

We annotate the train-split of SemanticKITTI [5] based
on KITTI [15] which consists of 10 sequences, 19130
scans, 2349 million points. ScribbleKITTI contains 189
million labeled points corresponding to only 8.06% of the
total point count. We choose SemanticKITTI for its cur-
rent wide use and established benchmark. We retain the
same 19 classes to encourage easy transitioning towards re-
search into scribble-supervised LiDAR semantic segmenta-
tion. The class-wise label distribution is visualized in Fig. 2.

When annotating, we use line-scribbles rather than free-
forming scribbles. LiDAR point clouds preserve the metric
space and therefore things (e.g. car, truck) and stuff (e.g.
terrain, road) mostly follow highly geometric structures.
While both drawings are valid approaches, we found that
line scribbles allow faster labeling of such geometric classes
that span large distances (e.g. roads, sidewalks, buildings,
fences), as annotators only need to provide two clicks (start
and end) to annotate an entire segment. We illustrate this by
showcasing an example annotated tile in Fig. 3.
Data Annotation: We use the help of student annotators.
Following Behley et al. [5], we initially screen the anno-
tators until they are comfortable navigating within the 3D
space to ensure good results. We subdivide a sequence of
superimposed point clouds into 100m by 100m tiles and
label on a per-tile basis. We generate scribble annota-
tions through line drawings using an adapted point labeling

Figure 3. Line-annotation process illustrated on a 100m by 100m
tile. Classes that span large distances such as building (yellow)
and road (pink) can be annotated with only two clicks. As the
tile is annotated using 2D lines projected onto the 3D surface,
scribbles may become indistinguishable once the viewing angle
changes (e.g. bottom right).

tool1 [5]. We overlap neighboring tiles to allow labeling
consistency across the entire sequence. Finally, we do a
comparison to SemanticKITTI to stay consistent with their
class definitions. We provide further information in the sup-
plementary materials on the labeling process.

An annotator needs on average 10-25 minutes per tile de-
pending on the contents (e.g. highway vs. city) as opposed
to the reported 1.5-4.5 hours for full annotations [5]. This
corresponds to roughly a 90% time saving, which can ac-
count to over a thousands hours for large scale datasets [5].

4. Scribble-Supervised LiDAR Segmentation
The naive approach of tackling scribble-supervised se-

mantic segmentation is to treat the problem similarly to any
fully supervised task and employ a loss H (typically cross-
entropy) on the available labeled points.

We define a LiDAR point cloud P as the set of points
P = {p | p = (x, y, z, I) ∈ R4} with (x, y, z) denoting the
3D coordinates and I the reflectance intensity. We further
define S ⊆ P as the set of labeled points. The objective
function over F frames can therefore be formulated as:

min
θ

F∑
f=1

|Pf |∑
i=1

1(pf,i ∈ S)H(ŷf,i|θ, yf,i) (1)

with ŷf,i|θ denoting the predicted class distribution for the
point pf,i ∈ Pf of frame f given the network parameters θ,
and yf,i denoting the ground truth label.

1https://github.com/jbehley/point labeler, MIT License
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Figure 4. Illustration of the proposed pipeline for scribble-supervised LiDAR semantic segmentation comprising of three steps: training,
pseudo-labeling, distillation. During training, we preform pyramid local semantic-context (PLS) augmentation before training the mean
teacher model on the available scribble-annotations. During pseudo-labeling, we generate target labels in a class-range-balanced (CRB)
manner. Finally during distillation, we retrain the mean teacher on the generated pseudo-labels. LS and LU denote the losses applied to
the supervised- and unsupervised set of points respectively. Gray arrows propagate label information.

In this baseline approach the unlabeled points which
contain vital boundary information are not used. Further-
more due to the sheer lack of labeled data points, perfor-
mance degradation is unavoidable, as confidence on long
tailed object classes suffer due to the reduced supervision.

In the following sections, we address these issues by in-
troducing three stand-alone methods that utilize unlabeled
points and expand the annotated dataset: partial consistency
loss with mean teacher (Sec. 4.1), class-range-balanced
self-training (Sec. 4.2), and pyramid local semantic-context
(Sec. 4.3). Our overall pipeline can be seen in Fig. 4.

4.1. Partial Consistency Loss with Mean Teacher

Firstly, we introduce further weak supervision to the un-
labeled set of points via a consistency loss applied using
mean teacher. The mean teacher framework is formed of
two models, namely the student, parametrized by θ, and the
teacher, parametrized by θEMA [43]. Unlike the student net-
work, which is traditionally trained using gradient descent,
the teacher weights are computed as the exponential mov-
ing average (EMA) of successive student weights, resulting
in the update function:

θEMA
t = αθEMA

t−1 + (1− α)θt (2)

for time step t, with α denoting the smoothing coefficient
which determines the update speed. Stochastic averaging of
weights has been shown to yield more accurate models than
using the final training weights directly [34, 43], allowing
the teacher predictions to be used as a form of weak super-
vision for the student under varying small perturbations.

We further define U as the set of unlabeled points, i.e.
P \S. We introduce a consistency loss between the student
and teacher networks, but unlike Tan et al. [40], we restrict
the consistency loss to only unlabeled points p ∈ U . This

allows a sharper supervision on labeled points in S by elimi-
nating the teacher injected uncertainties, while retaining the
unlabeled supervision that takes advantage of the more ac-
curate teacher predictions. This restriction is more in align-
ment with the applications of the mean teacher framework
in semi-supervised tasks [19, 43, 46].

We extend our objective function (Eq. 1) to include su-
pervision on unlabeled points as:

min
θ

F∑
f=1

|Pf |∑
i=1

Gi,f =

{
H(ŷf,i|θ, yf,i) if pf,i ∈ S

log(ŷf,i|θ)ŷf,i|θEMA if pf,i ∈ U

(3)
with ŷf,i|θ denoting the predicted class distribution for the
point pf,i given the network parameters θ, y denoting the
ground truth label. To reduce the Shannon mutual infor-
mation, i.e. to increase the training signal from the con-
sistency loss, we apply a heavier augmentation the student
input in the form of global rotation, translation, random flip
and white Gaussian noise [6, 28, 39].

While mean teacher introduces supervision on unlabeled
points, the information gain is limited by the teachers per-
formance. Even if the teacher predicts the correct label for
a point, due to the soft pseudo-labeling, the confidences on
other classes will continue to guide the student’s output.

4.2. Class-range-balanced Self-training (CRB-ST)

To combat this uncertainty injection and more directly
utilize the confident predictions of unlabeled points, we ex-
pand the annotated dataset and employ self-training. Our
goal by introducing self-training alongside mean teacher, is
to keep the soft pseudo-label guidance of the mean teacher
for uncertain predictions while hardening the pseudo-labels
of certain predictions. Using the teacher’s most confident
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predictions, we generate target labels for a subset of unla-
beled points. We define this set of pseudo-labeled points as
L and later retrain our network on S ∪ L.

Formally, we extend our objective function (Eq. 3) to
also learn target labels as hidden variables:

min
θ,ŷ

F∑
f=1

|Pf |∑
i=1

[
Gi,f − (log(ŷf,i|θEMA) + k) ŷf,i

]

Gi,f =

{
H(ŷf,i|θ, yf,i) if pf,i ∈ S ∪ L

log(ŷf,i|θ)ŷf,i|θEMA if pf,i ∈ U \ L

(4)

where ŷf,i = [ŷ
(1)
f,i , . . . , ŷ

(C)
f,i ] ∈ {{e|e ∈ R

C} ∪ 0} is
the pseudo-label vector, e denoting a one-shot vector, C de-
noting the number of classes and k denoting the negative
log-confidence threshold. The generated pseudo-label set
is given by L = {pf,i | ŷf,i ̸= 0, ∀f, i}. To exploit the in-
creased performance generated from stochastic weight av-
eraging, we sample labels from the teacher’s output (θEMA).

We initialize the optimization of Eq. 4 by setting the la-
tent variable ŷ = 0 for all points, i.e. by only selecting
the scribble-annotation (L = ∅). The self-training protocol
from pseudo-labels can then be summarised in two steps:

1. Training: We fix ŷ and optimize the objective function
with respect to θ.

2. Pseudo-labeling: We fix θ (and effectively θEMA) and
optimize the objective function with respect to ŷ. We
update L given ŷ.

The two steps can be repeated to take advantage of the
improved representation capability of the model through
pseudo-labeling.

While self-training with pseudo-labels has been proven
to be an effective strategy in scribble-supervised semantic
segmentation [24, 38], the class distribution in autonomous
driving scenes are inherently long tailed, which may result
in the gradual dominance of large and easy-to-learn classes
on generated pseudo-labels. CB-ST [59] proposes to sam-
ple labels while retaining the overall class distribution by
setting thresholds in a class-wise manner. While this is suf-
ficient in the 2D setting, we observe that 3D LiDAR data
presents an additional unique challenge.

Due to the nature of the LiDAR sensor, the local point
density varies based on the beam radius, as sparsity in-
creases with distance. This results in sampling of pseudo-
labels mainly from denser regions, which tend to show a
higher estimation confidence. To reduce this bias in the
pseudo-label generation, we propose a revised self-training
scheme that not only balances based on the overall class-
wise distribution, but also on range. We call our method
class-range-balanced (CRB) pseudo-labeling and provide a
visual sample in Fig. 5 comparing it to CB-ST.

We initially coarsely divide the transverse plane into R
annuli of width B centered around the ego-vehicle. In

a

b

Figure 5. Visual comparison of (50%) (a) class-balanced pseudo-
labeling [59] and (b) proposed CRB. As seen right, generated
pseudo-labels lack distant sparse region representation when bal-
ancing solely on class. Red lines For the quantitative analysis, see
Tab. 4.

Fig. 5.b we illustrate the first three in red dashed lines.
Each annulus contains points that fall between a range of
distances, from which we pseudo-label the globally high-
est confident predictions on a per-class basis. This ensures
that we obtain reliable labels while distributing them pro-
portionally across varying ranges and across all classes.

We redefine the self-training objective function (Eq.4) to
include CRB as:

min
θ,ŷ

F∑
f=1

|Pf |∑
i=1

[
Gi,f −

C∑
c=1

R∑
r=1

Fi,f,c,r

]

Fi,f,c,r =


(log(ŷ

(c)
f,i |θEMA) + k(c,r))ŷ

(c)
f,i ,

if r = ⌊||(px,y)f,i||/B⌋
0, otherwise

(5)

with k(c,r) denoting the negative log-threshold for a class-
annulus pairing. To solve the nonlinear integer optimization
task, we employ the following solver:

ŷ
(c)∗
f,i =


1, if c = argmax ŷf,i|θEMA ,

ŷf,i|θ > exp(−k(c,r))

with r = ⌊||(px,y)f,i||/B⌋
0, otherwise

(6)

When determining k(c,r), we take the maximum out-
put probability of each point, i.e. the networks confidence
for the predicted label, and store the confidence values of
all points in all frames for each class-annulus pairing in
a global vector. Each vector is then sorted in descending
order. We define a hyperparameter β which determines
the percentage of pseudo-labels to be sampled, and find a
threshold confidence for each vector by taking the value at
index β times the vectors length. k(c,r) is set as the nega-
tive logarithm of the threshold confidence. The process is
summarized in Algorithm 1.
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Algorithm 1: Determination of k in CRB
Input: Dataset containing F point clouds, trained

neural network ϕ, annulus count R, portion
β of selected pseudo-labels

1 for f = 1 : F do
2 value, class = max(ϕ(Pf ), axis=0)
3 B = max(

√
Pf [:, 0]2 + Pf [:, 1]2) / R

4 range =
√
Pf [:, 0]2 + Pf [:, 1]2 // B

5 for c = 1 : C do
6 maskc = (class == c)
7 for r = 1 : R do
8 maskr = (range == r)
9 M(c,r,f) = value[maskc & maskr]

10 M(c,r) = [M(c,r), M(c,r,f)]

11 for c = 1 : C do
12 for r = 1 : R do
13 M(c,r) = sort(M(c,r), order=descending)
14 thresh = β· length(M(c,r))
15 k(c,r) = -log(M(c,r)[:thresh])

Return: k = [k(0,0), . . . , k(c,r)]

4.3. Pyramid Local Semantic-context (PLS)

With self-training, the performance of the final network
(Sec. 4.2, training) is highly reliant on the pseudo-label
quality. To ensure higher quality pseudo-labels, we further
introduce a novel descriptor to enrich the features of the ini-
tial points by utilizing available scribbles.

We make the following two observations for the distri-
bution of semantic classes in 3D space: (1) There exists a
spatial smoothness constraint, i.e. a point in space is likely
have the same class label as at least one of its neighbors
since objects have nonzero dimensions; (2) There exists a
semantic pattern constraint, i.e. a set of complex high-level
rules governing inter-class spatial relations. For example, in
outdoor autonomous driving scenes, vehicles lie on ground
classes such as roads and parking areas, pedestrians often
appear on sidewalks, buildings and vegetation outline roads.

We therefore argue that a local semantic prior can be
used as a rich point descriptor to encapsulate the two stated
cues. We propose using local semantic-context at scaling
resolutions to reduce the ambiguity when propagating infor-
mation between the labeled-unlabeled point sets and to im-
prove pseudo-labeling quality. We identify that the distribu-
tion of class labels over global coordinates is a robust, com-
pact semantic descriptor, especially for unlabeled points.

We initially discretize the space into coarse voxels. This
step is crucial as to avoid over-descriptive features that
cause the network to overfit to the scribble annotations,
reducing its capability to generalize well and understand

Car RoadBuilding Sidewalk
VegetationTerrain Fence

Figure 6. Illustration of pyramid local semantic-context (PLS)
augmentation based on scribble ground-truth (not to scale). As
seen, the semantic-context can provide highly descriptive informa-
tion about the local neighborhood of a point at scaling resolutions.

meaningful geometric relations. We use multiple sizes of
bins in cylindrical coordinates in order to follow the inher-
ent point distribution of the LiDAR sensor at different res-
olutions. For each bin bi we compute a coarse histogram:

hi = [h
(1)
i , . . . , h

(C)
i ] ∈ RC

h
(c)
i = #{yj = c ∀ j| pj ∈ bi}

(7)

as illustrated in Fig. 6. The pyramid local semantic-context
(PLS) of all points pj ∈ bi is then defined as the concatena-
tion of the normalized histograms:

PLS = [h1
i /max(h1

i ), . . . ,h
s
i/max(hs

i )] ∈ RsC (8)

for s resolutions. We append PLS to the input features
and redefine the input LiDAR point cloud as the augmented
set of points Paug = {p | p = (x, y, z, I,PLS) ∈ R4+sC}.
When optimizing Eq. 5, during the training step (Sec. 4.2)
we substitute P with Paug such that we generate better qual-
ity pseudo-labels during pseudo-labeling.

At the end of the self-training pipeline, we require one
extra distillation stage because PLS augmentation cannot
be used during test-time as the scribble-information is not
available. During distillation, we again set the input point
cloud to P . The resulting three stages of the overall pipeline
is illustrated in Fig. 4.

5. Experiments
We carry out our experiments using Cylinder3D [57] but

forego the applied test-time-augmentation (TTA) and test
the performance on the fully annotated SemanticKITTI [5]
valid-set unless stated otherwise. Alongside the mean-
Intersection-over-Union (mIoU), we also provide the rela-
tive performance of scribble-supervised (SS) training to the
fully supervised upper-bound (FS) in percentages (SS/FS).
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Implementation Details: For MT we set α = 0.99. For
CRB, we define R = 10 annuli. For PLS, we divide (r, ϕ)
into (20, 40), (40, 80) and (80, 120) voxels. We only apply
one iteration of self-training (β = 50%) as we don’t observe
a significant increase in performance in consecutive steps.

5.1. Results

We present the 3D semantic segmentation results from
the SemanticKITTI valid-set in Tab. 1 for three state-of-
the-art networks (Cylinder3D [57], MinkowskiNet [11],
SPVCNN [41]) to demonstrate the model independence of
our approach. For the training schedule and architecture de-
tails, please refer to the respective publications. In Fig. 7 we
present visual results using Cylinder3D.

Due to the lack of available supervision, the three pre-
sented models trained on scribble-annotations show a rel-
ative performances (SS/FS) of 88.6%, 90.0% and 89.2%
compared to their respective fully supervised upper-bound.
While the reduction in the number of supervised points re-
duce the class-wise performance across the board, this ef-
fect is further amplified for long tailed classes such as bicy-
cle, truck and other-vehicle.

By applying our proposed pipeline for scribble-
supervised LiDAR semantic segmentation, we are able to
reduce the gap between the two training strategies signifi-
cantly, reaching 95.3%, 95.7%, 95.3% relative performance
for all three models. As observed, the major performance
gains originate from the same long tailed classes that ini-
tially show a deficit against their respective baselines.

5.2. Ablation Studies

Scribbles as Annotations: We compare our proposed la-
beling strategy of weakly labeling all frames to fully label-
ing partial frames under a fixed labeling budget in Tab. 2 and
present the results for both Cylinder3D [57] and Sup-only,
the baseline U-Net model employed in Semi-sup [18]. As
seen, both models perform significantly better using scrib-
ble annotations compared to having full annotations on 10%
of the train-set by up to +10.2% and +11.1% mIoU.

Furthermore in Tab. 2, we also compare the current
state-of-the-art on semi-supervised LiDAR semantic seg-
mentation with our proposed scribble-supervised approach.
Semi-sup [18] which further makes use of the 90% unla-
beled frames still shows a 5.1% lower mIoU performance
than a its baseline Semi-sup trained on scribble-annotations.
Moreover, the same baseline model trained with our pro-
posed pipeline further increases the gap to 8.6%.
Effects of Network Components: We perform ablation
studies to investigate the effects of the different components
of our proposed pipeline for scribble-supervised LiDAR se-
mantic segmentation. We report the performance on the Se-
manticKITTI train-set for intermediate steps, as this metric
provides an indication of the pseudo-labeling quality, and

a b c

Figure 7. Example results from the SemanticKITTI valid-set
comparing (a) the ground truth frame; to Cylinder3D [57] trained
(b) scribble-supervised, and (c) scribble-supervised using our pro-
posed pipeline.

on the valid-set to assess the performance benefits of each
individual component.

As seen in Tab. 3, by adding a weak form of supervi-
sion to the unlabeled point set via MT, we observe a 2.3%
increase in mIoU, which alone reduces the relative per-
formance drop of scribble-supervised training below 10%.
However the fully labeled training performance does not in-
crease significantly. Applying CRB-ST at this point yields
an mIoU of 60.6%. Using PLS, we can further increase
the training mIoU by 8.0%, which has the benefit of boost-
ing pseudo-labeling accuracy from 98.1% to 99.0% and
improving mIoU performance in the subsequent step of
the self-training protocol. Self-training with CRB pseudo-
labeling now yields a further 0.6% increase in mIoU.
Pseudo-label Filtering for Self-training: We perform fur-
ther ablation studies on the pseudo-labeling strategy used
in the proposed self-training (ST) protocol and report the
results in Tab. 4. We replace our proposed CRB pseudo-
labeling module with naive sampling (where all predic-
tions are taken as pseudo-labels), threshold-based sam-
pling [8, 49, 58], class-balanced sampling (CB) [59] and
DARS [16]. For all given strategies we use the same input
predictions generated from the PLS augmented MT.

Due to the long-tailed nature of outdoor LiDAR scenes
for semantic segmentation, CB and DARS show great im-
provements over naive and threshold based sampling strate-
gies with improvements of up to +1.7%. Here we observe
that in 3D semantic segmentation, the confidence overlap-
ping is not as prevalent as in 2D. Applying DARS on CB
generated pseudo-labels results in a reduction of only 1.8%
data points on the entire train-set with β = 50% (at most
2.4% for head classes). Therefore both CB and DARS per-
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fully 64.3 - 96.3 49.8 69.4 84.3 50.6 71.9 88.0 0.0 94.4 39.4 80.9 0.1 90.5 58.9 88.1 68.1 75.5 63.2 50.2
Cylinder3D [57] scribble 57.0 88.6 88.5 39.9 58.0 58.4 48.1 68.6 77.0 0.5 84.4 30.4 72.2 2.5 89.4 48.4 81.9 64.6 59.8 61.2 48.7

scribble ✓ 61.3 95.3 91.0 41.1 58.1 85.5 57.1 71.7 80.9 0.0 87.2 35.1 74.6 3.3 88.8 51.5 86.3 68.0 70.7 63.4 49.5
fully 61.1 - 95.7 20.4 63.9 70.3 45.5 65.0 78.5 0.0 93.5 49.6 81.0 0.2 91.1 63.8 87.2 68.5 72.3 64.4 49.1

MinkowskiNet [11] scribble 55.0 90.0 88.1 13.2 55.1 72.3 36.9 61.3 77.1 0.0 83.4 32.7 71.0 0.3 90.0 50.0 84.1 66.6 65.8 61.6 35.2
scribble ✓ 58.5 95.7 91.1 23.8 59.0 66.3 58.6 65.2 75.2 0.0 83.8 36.1 72.4 0.7 90.2 51.8 86.7 68.5 72.5 62.5 46.6

fully 63.8 - 97.1 35.2 64.6 72.7 64.3 69.7 82.5 0.2 93.5 50.8 81.0 0.3 91.1 63.5 89.2 66.1 77.2 64.1 49.4
SPVCNN [41] scribble 56.9 89.2 88.6 25.7 55.9 67.4 48.8 65.0 78.2 0.0 82.6 30.4 70.1 0.3 90.5 49.6 84.4 67.6 66.1 61.6 48.7

scribble ✓ 60.8 95.3 91.1 35.3 57.2 71.1 63.8 70.0 81.3 0.0 84.6 37.9 72.9 0.0 90.0 54.0 87.4 71.1 73.0 64.0 50.5

Table 1. 3D semantic segmentation results evaluated on the SemanticKITTI valid-set. Alongside the per-class metrics we show the relative
performance of the scribble supervised approach against the fully supervised (SS/FS).

Labeled Unlabeled Valid
Model Volume Type Used mIoU
Cylinder3D [57] 10% frames fully 46.8
Cylinder3D [57] 8% points scribbles 57.0
Sup-only [18] 10% frames fully 43.9
Sup-only [18] 8% points scribbles 55.0
Semi-sup [18] 10% frames fully ✓ 49.9
Sup-only+Ours 8% points scribbles ✓ 58.5

Table 2. Compared are different annotation strategies for incom-
plete supervision. Sup-only refers to the baseline sparse U-Net
model employed by Semi-sup [18]. 10% frames fully labeled cor-
respond to 10.06% annotated points.

Method Train Valid
Baseline MT CRB-ST PLS mIoU mIoU SS/FS

✓ 77.6 57.0 88.6
✓ ✓ 78.0 59.3 92.2
✓ ✓ ✓ - 60.6 94.2
✓ ✓ ✓ 86.0 - -
✓ ✓ ✓ ✓ - 61.3 95.3

Table 3. Ablation study on proposed methods. PLS results are
given after the first iteration, while CRB-ST results are given
after the last iteration. Performances are reported on the Se-
manticKITTI train- and valid-sets respectively, along with the rel-
ative performance against fully supervised (SS/FS).

form similarly at 60.8% on the valid-set. After applying
further balancing on range with our proposed CRB, we ob-
serve an improvement of +0.5% over CB, reaching a rela-
tive performance of 95.3% to fully-supervised.
Consistency-loss within Mean Teacher: We perform fur-
ther ablation studies on the consistency loss within the mean
teacher framework and compare our partial application on
unlabeled points to the application on all points [52].

As seen in Tab. 5, the difference between the two losses
is negligible when training with scribble annotations. Scrib-
bles only account for roughly 8% of the total point count,
therefore the loss is mainly dominated by the unsupervised
points in either setting. However, when training on gen-
erated pseudo-labels, we observe that the teacher network

Labeling Valid
Pseudo-labeling Method β Acc mIoU SS/FS
Naive - 86.3 59.4 92.4
Threshold-based [8, 49, 58] 50% 99.0 59.1 91.9
Class-balanced [59] 50% 99.4 60.8 94.6
DARS [16] 50% 99.3 60.8 94.6
CRB (Ours) 50% 99.0 61.3 95.3

Table 4. Ablation study on the pseudo-labeling strategies com-
paring naive (all predictions), threshold-based, class-balanced la-
beling and DARS with our proposed CRB. β determines the per-
centage of labeled points. Performances are reported on the Se-
manticKITTI valid-set. All methods use the same initial labels.

Scribble CRB-PL (50%)
Consistency-loss mIoU SS/FS mIoU SS/FS
All points [52] 59.1 91.9 60.4 93.9
Partial (Ours) 59.3 92.2 61.3 95.3

Table 5. Compared is the application of the consistency-loss on all
points [52] to our proposed partial application on only unlabeled
points. We conduct experiments using the mean teacher pipeline
with scribble annotations (8%) and CRB pseudo-labels (50%).

can inject uncertainties to labeled points, weakening the in-
troduced supervision from the pseudo-labels and causing a
decrease in mIoU of 0.9%.

6. Conclusion
We have presented a weakly-supervised pipeline for Li-

DAR semantic segmentation based on scribble annotations.
Our pipeline comprises of three stand-alone contributions
that can be combined with any LiDAR semantic segmenta-
tion model to reduce the gap between fully-supervised and
scribble-supervised training.
Limitations: We only annotate the train-split of Se-
manticKITTI [5]. We haven’t applied our method to dif-
ferent datasets and LiDAR sensors due to annotation cost.
Acknowledgements: Special thanks to Zeynep Demirkol
and Tim Brödermann for their efforts during annotation.
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