Improving Network Security through Obfuscation

Doctoral Thesis

Author(s):
Meier, Roland

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000584627

Rights / license:
In Copyright - Non-Commercial Use Permitted
Improving Network Security through Obfuscation

Diss. ETH No. 28635

Roland Meier
IMPROVING NETWORK SECURITY THROUGH OBFUSCATION

A dissertation submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZÜRICH
(Dr. sc. ETH Zürich)

presented by
ROLAND MEIER
MSc ETH EEIT
ETH Zürich
born on July 27th, 1990
citizen of Zeihen AG, Switzerland

accepted on the recommendation of
Prof. Dr. Laurent Vanbever (Advisor)
Dr. Vincent Lenders (Co-Advisor)
Prof. Dr. Ang Chen
Prof. Dr. Adrian Perrig

2022
ABSTRACT

While it is impressive that many of the prevalent protocols and algorithms in today’s networks and the Internet have remained essentially unchanged since the very first computer networks in the Sixties, they were not designed for today’s security environment. Only thanks to protocol extensions and new technologies, today’s network users are protected against many threats. For example, most hosts are behind firewalls that prevent some malicious traffic from reaching them, and most traffic is encrypted to prevent eavesdropping. However, today’s protections are not enough. For example, denial-of-service attacks can cut a host’s connection even if their traffic does not reach it, and encrypted traffic still leaks information about its contents.

In this dissertation, we explore how obfuscation can help to prevent such weak points. To this end, we present two solutions:

First, we present NetHide, a system that mitigates denial-of-service attacks against the network infrastructure by obfuscating the network topology. The key idea behind NetHide is to formulate topology obfuscation as a multi-objective optimization problem that allows for a flexible trade-off between the security of the topology and the usability of network debugging tools. NetHide then intercepts and modifies path-tracing probes in the data plane to ensure that attackers can only learn the obfuscated topology.

Second, we present ditto, a system that prevents traffic-analysis attacks by obfuscating the timing and size of packets. The key idea behind ditto is to add padding to packets and to introduce chaff packets such that the resulting traffic is independent of production traffic with respect to packet sizes and timing. ditto provides high throughput without requiring changes at hosts, which makes it ideal for protecting wide area networks.

Both systems leverage recent advances in network programmability. They show that programmable switches can increase the security of high-throughput networks without degrading their performance.

However, programmable switches do not only provide high performance for obfuscation, but they also allow analyzing traffic at scale. We complete this dissertation with a discussion of four use cases where programmable switches analyze traffic – for both benign and malicious purposes.
Viele Protokolle und Algorithmen, die in den heutigen Computernetzwerken und im Internet verwendet werden, sind seit den allerersten Computernetzten in den sechziger Jahren im Wesentlichen unverändert geblieben. Das ist zwar beeindruckend, aber es heisst auch, dass sie nicht für das heutige Sicherheitsumfeld entwickelt wurden.

In dieser Dissertation untersuchen wir, wie Verschleierung helfen kann, solche Schwachstellen zu verhindern. Dazu stellen wir zwei Lösungen vor:

This dissertation is based on previously published conference proceedings. The list of accepted and submitted publications is presented hereafter.

NetHide: Secure and Practical Network Topology Obfuscation
Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, Martin Vechev.

ditto: WAN Traffic Obfuscation at Line Rate
Roland Meier, Vincent Lenders, Laurent Vanbever.
NDSS, San Diego, CA, USA, 2022.

The following publications were part of my PhD research and are referenced in this thesis, but they were led by other researchers.

pForest: In-Network Inference with Random Forests
Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias Bühler, Laurent Vanbever.

Mass Surveillance of VoIP Calls through Programmable Data Planes
Ege Cem Kirci, Maria Apostolaki, Roland Meier, Ankit Singla, Laurent Vanbever.
ACM Symposium on SDN Research (SOSR), online, 2022.
The following publications were part of my PhD research, but are not covered in this dissertation.

FeedRank: A Tamper-resistant Method for the Ranking of Cyber Threat Intelligence Feeds
Roland Meier, Cornelia Scherrer, David Gugelmann, Vincent Lenders, Laurent Vanbever.

Machine Learning-based Detection of C&C Channels with a Focus on the Locked Shields Cyber Defense Exercise
Nicolas Känzig, Roland Meier, Luca Gambazzi, Vincent Lenders, Laurent Vanbever

Detection of Malicious Remote Shell Sessions
Pierre Dumont, Roland Meier, David Gugelmann, Vincent Lenders.

(Self) Driving Under the Influence: Intoxicating Adversarial Network Inputs
Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli, Vincent Lenders, Ankit Singla, Laurent Vanbever.

Towards an AI-powered Player in Cyber Defense Exercises
Roland Meier, Arturs Lavrenovs, Kimmo Heinäaro, Luca Gambazzi, Vincent Lenders.
International Conference on Cyber Conflict (CyCon), online, 2021.

Generalizing Machine Learning Models to Detect Command and Control Attack Traffic
Lina Gehri, Roland Meier, Daniel Hulliger, Vincent Lenders.
Under submission, 2022.
ACKNOWLEDGMENTS

I was lucky to be surrounded by many helpful and smart people during the journey that led to this dissertation. I am deeply grateful to all of them. Below, I mention some that deserve a special thank you for making this journey possible and enjoyable.

First and foremost, I thank Prof. Laurent Vanbever for the opportunity to pursue a doctorate in his group. His great support and guidance already during my Master’s thesis were significant contributing factors for me to decide that I want to do a doctorate. I enjoyed being part of his group, and I highly appreciate that Laurent was always available when I needed his help and that he also gave me the freedom to explore research topics outside the scope of this thesis. Laurent is not only a great role model for doing research, but he also helped me improve my writing and presentation skills – and he pushed me to new personal records on Strava.

I am also extremely grateful to Vincent Lenders, my second advisor. He always provided excellent advice, feedback, and insights from the industry. This greatly improved the contents of this thesis and many other research projects. Furthermore, I thank Vincent for giving me the opportunity to collaborate with him, other people from armasuisse, and students on several projects outside the scope of this thesis.

I thank Prof. Ang Chen and Prof. Adrian Perrig for participating in my dissertation committee and for their valuable feedback that helped me improve this dissertation.

I thank all the other members of the Networked Systems Group for all their support and for the fun we had together: Maria Apostolaki, Rüdiger Birkner, Tobias Bühler, Coralie Busse-Grawitz, Yu Chen, Edgar Costa Molero, Alexander Dietmüller, Ahmed El-Hassany, Georgia Frangkouli, Albert Gran Alcoz, Thomas Holterbach, Romain Jacob, Ege Cem Kirci, Roland Schmid, Tibor Schneider, Muoi Tran, and Rui Yang. Special thanks go to Tobias for being a great office mate during all the years and for his help on countless occasions; Rüdiger and Edgar for the pleasant conversations in their office and all their help; and to Coralie, Tobias, and Ege for their feedback on drafts of this thesis.
During my doctorate, I had the pleasure of working together with many incredibly talented collaborators and students. I thank all of them for the good collaboration and for all the things I learned from them. I also thank Beat Futterknecht for his help on various administrative topics.

I am deeply grateful to my family and friends. They supported me over all the years and always provided a relaxing atmosphere in which I could unwind from the stressful aspects of the doctorate. In particular, I am thankful to my parents – Monika and Leo – and my siblings – Daniela and Manuel – as well as their partners for all the joyful and relaxing times.

Last but not least, I thank Coralie for her unlimited readiness to help, for her incredible patience, and for always cheering me up when I needed it.

Roland Meier
November 2022
CONTENTS

1 Introduction 1

2 Background 5
 2.1 Packet-switching networks 5
 2.2 Network programmability 9
 2.3 Network obfuscation 13

3 Obfuscating network topologies 17
 3.1 Model 20
 3.2 NetHide 25
 3.3 Generating secure topologies 27
 3.4 Topology deployment 32
 3.5 Evaluation 38
 3.6 Frequently asked questions 49
 3.7 Related work 51
 3.8 Conclusion 54

4 Obfuscating network traffic 55
 4.1 Model 58
 4.2 ditto 61
 4.3 Computing efficient traffic patterns 64
 4.4 Traffic shaping in the data plane 65
 4.5 Security analysis and limitations 67
 4.6 Implementation 70
 4.7 Evaluation 73
 4.8 Related work 90
 4.9 Conclusion 93

5 De-obfuscating traffic and users 95
 5.1 Case study: Proxy server detection 97
5.2 Background on proxy servers .. 99
5.3 Model ... 100
5.4 Design overview .. 102
5.5 Extracting features in the data plane 107
5.6 Identifying proxies in the control plane 107
5.7 Evaluation .. 109
5.8 Discussion and future work .. 116
5.9 Conclusion ... 120

6 Conclusion and outlook ... 121
6.1 Conclusion ... 121
6.2 Open research problems ... 122

Bibliography .. 125

 Own publications .. 125
 References ... 126
Seemingly innocent actions such as recording a workout to track one’s training progress or ordering pizza during a stressful working day can impair national security, as these two examples show: Recorded workout routes – even if anonymized, aggregated, and published only as a heatmap – can reveal the locations of military bases [12]. And pizza deliveries to the White House and the Pentagon can predict when something important is about to happen [13, 14].

The main reason why these so-called side-channel attacks work is that their attack vectors were not considered when the systems were designed. This also happened to computer networks and the Internet, where the initial creators could not foresee the dimensions that these networks have today.

In 1969, the “Internet” consisted of four nodes and provided 50 kbit/s bandwidth between them [15, 16]. The network – created by the Advanced Research Projects Agency (ARPA) in the United States’ Department of Defense – was called ARPANET. It was the first wide-area packet switching network with a distributed routing algorithm.

Even though the term “Internet” did not exist and the dimensions of this network were vastly different from what we call Internet today, the technology behind ARPANET was surprisingly similar to today’s Internet: It used packet switching (as opposed to circuit switching, which was prevalent at this time), it was a fully distributed system, and it implemented the TCP/IP protocol suite [17].

All of this is still the case in today’s Internet and most of the individual networks that compose it. However, today there are not four but rather 40 billion connected devices [18], these devices do not belong to four organizations but rather to billions of people [19] and the bandwidth available to each of these users is not in the order of kilobits per second but more than 100 megabits per second on average [19].

With this growth, the threat landscape has changed drastically too. In the early days of computer networks, the few users knew and trusted each other [20]. There was no reason to design protocols in a way that prevents
malicious actions. Today, several decades later, there is an arms race between attackers and defenders in the cyber world. Some of the outcomes related to network security include that firewalls and other packet inspection devices prevent malicious traffic from reaching its destination [21]; applications encrypt their traffic before it crosses the network [22]; and people use anonymity networks or proxies to conceal their identities [23].

Unfortunately, it turns out that this is not enough. For example, attackers can interrupt network links to impair users even if no malicious traffic reaches them; and attackers can use traffic metadata to reconstruct user activities even if the traffic is encrypted.

Or, to come back to the initial examples: the workout routes leak information even if they do not say who was training; and pizza delivery still leaks information, even if the type of pizza is not visible.

In this dissertation, we present techniques to fix such weaknesses through obfuscation. In other words, we change the way the network and its traffic “looks” to an attacker such that she cannot perform her attacks.

To use the examples one last time: Our systems would modify the workout routes to hide the real hotspots, and they would hide the pizza consumption by ensuring that number of daily pizza deliveries is constant.

But defending against attackers is not the only challenge that arose since the early days of the Internet. One other big challenge is that today’s networks and the Internet carry vastly more traffic compared to a few decades ago. For example, the global Internet traffic in 2022 was estimated to be around 150 terabytes per second [24]. This makes it more and more challenging to implement security solutions that can keep up with the traffic volume without downgrading the network performance.

Traditionally, devices that process network traffic are either fast but very restricted in their functionality (e.g., switches that process traffic in ASICs), or slow but very flexible (e.g., general-purpose servers that process packets using their CPUs). This inflexibility of traditional networking hardware frustrated not only the developers of security solutions but also network operators and researchers in general. And it resulted in network devices becoming both fast and flexible in the past years.

First (in 2008), researchers presented an abstraction of the control- and data planes in network devices. This opened the control plane for custom applications which could interact with the data plane through a standardized protocol [25]. Then (in 2014), researchers presented a programming
language for the data plane of network devices, which opened the data plane for custom algorithms too.

Today – as a result of these initiatives – there are network devices that are fully programmable and yet achieve the same performance as traditional fixed-function devices [26].

Even though these devices are still limited in terms of the available resources (e.g., little memory) and operations (e.g., no floating point), they have already enabled many research works. Examples include improved network monitoring (e.g., [27–29]), better traffic management (e.g., [30–32]), protections against various attacks (e.g., [33–35]), and many more [36].

In this dissertation, we leverage these advances in network programmability to make our obfuscation systems not only secure but also highly performant. And we show that the resources and operations available on these devices are enough to implement in-network security solutions.

In summary, this dissertation focuses on the following research question:

How can obfuscation and data-plane programmability increase the security of networks without degrading their performance?

We answer by introducing two systems:

Our first system, *NetHide*, showcases how programmable networks can prevent link-flooding attacks. For these attacks, the attacker needs to (partially) know the network topology. The key insight behind our work is that programmable networks can respond to path tracing queries in a way that maintains the utility of these tools for benign purposes but prevents an attacker from learning sensitive information about bottleneck links.

Our second system, *ditto*, showcases how programmable networks can prevent traffic-analysis attacks. For these attacks, the attacker only needs to have access to packet metadata (such as packet sizes, timestamps, and directions). The key insight behind our work is that programmable networks can obfuscate these metadata by mixing real and chaff packets in a way that provides both high security and high performance.

Both systems show that obfuscation complements existing security measures (such as traffic encryption) and helps to improve the security of a network. Both systems also show that programmable networks are a valuable tool for implementing network obfuscation techniques for high-throughput networks.
Outline The rest of this dissertation is structured as follows.

In Chapter 2, we introduce the required background knowledge about computer networks and network programmability.

Afterwards, we present two use cases where network programmability allows to increase security through obfuscation in a way that was not possible before: In Chapter 3, we present NetHide, our solution to mitigate link-flooding attacks by obfuscating the network topology. In Chapter 4, we present ditto, our solution to mitigate traffic-analysis attacks by obfuscating the size and timestamps of packets.

In Chapter 5, we broaden our scope and present ways in which programmable networks can also help to de-obfuscate network properties at scale. We first sketch three systems that enable network operators – with benign or malicious intents – to identify participants of VoIP calls, perform traffic classification using machine learning models, and perform traffic-analysis attacks. Then, we present a detailed case study that shows how programmable networks can identify and identify proxy servers in an ISP network.

Finally, in Chapter 6, we conclude and sketch opportunities for future research.
In this chapter, we provide the necessary background information for this dissertation. We first explain the basics of computer networks (Section 2.1) and what the “programmable” networks changed (Section 2.2). Then, we explain the concept of network obfuscation and discuss its use cases and existing work (Section 2.3).

2.1 PACKET-SWITCHING NETWORKS

In the most general sense, the purpose of a communication network is that two parties connected to the network can exchange data. This was—and still is—the case in the analog telephone network and for all modern computer networks [37].

However, while their high-level purpose is the same, these two types of networks differ in their technical implementation. The analog telephone network is a so-called circuit switching network, which means data is transmitted over a direct physical connection between the sender and the receiver (i.e., the caller and the callee). On the other hand, most computer networks and the Internet are so-called packet-switching networks. In these networks, the sender breaks a message into small chunks (the packets). These packets traverse the network individually while sharing the physical connections with packets from other senders and receivers. The receiver then assembles the packets back into the original message.

2.1.1 Types of networks

Depending on their geographical spread, computer networks are classified as personal area networks, local area networks, metropolitan area networks, wide area networks or internetworks [37]. In this dissertation, local area networks, wide area networks, and internetworks play important roles and are thus explained further below.
Local Area Networks (LANs) typically cover one room, building, or campus. They connect resources such as personal computers, servers, or printers. And they provide a gateway to larger networks (such as wide area networks).

Wide Area Networks (WANs) connect multiple LANs over large geographical distances. Two prominent examples of WANs are those that connect multiple sites (e.g., datacenters or campuses) of the same organization and those that connect many LANs to the Internet (the Internet Service Provider (ISP) networks).

Internetworks connect networks operated by different organizations. The most widely known instantiation of an internetwork is the Internet which connects over 70,000 networks (“Autonomous Systems”, or ASes) [38].

2.1.2 Sending packets through networks

Packet format Since the sender and the receiver might be in different networks, there is a need for common conventions and protocols across networks. Today’s computer networks and the protocols used in them can be modeled best by defining five layers (L1–L5) [37]:

- **L1**: The *physical layer* is responsible for transmitting individual bits across different carriers (e.g., wires or radio waves).

- **L2**: The *link layer* is responsible for transmitting finite-length chunks of data over one link.

- **L3**: The *network layer* is responsible for transmitting finite-length chunks of data over multiple links and potentially multiple networks.

- **L4**: The *transport layer* is responsible for providing reliability properties and abstractions for sending byte-streams of infinite lengths between two hosts.

- **L5**: The *application layer* is responsible for the interface to applications and processes which communicate over the network (e.g., web browsers).

Typically, each packet contains information on all these layers and different devices process information in different layers. While the source and destination hosts parse all layers, intermediate devices only need information up to L2 or L3 to forward the packet along the right path.
Forwarding packets through a network In order to connect many hosts to a network without requiring direct connections between each pair of them, switches and routers relay packets from multiple sources to multiple destinations.

Switches operate on the link layer (L2). To know where to send a packet, they parse the link-layer destination address (e.g., the destination MAC address in Ethernet) and query their so-called forwarding table, which contains data about which egress port the packet needs to be sent to.

Routers are similar to switches, but they additionally operate on the network layer (L3). This allows them to route packets across the boundaries of a local network. Similar to a switch, they parse the destination address of the network layer (e.g., IP) and use their knowledge in the so-called forwarding information base (FIB) to determine the egress port of a packet.

To determine the contents of the switches’ forwarding table and the routers’ FIB, there exists a variety of algorithms and protocols (e.g., MAC learning and spanning tree protocol for L2 [39, 40] and routing protocols for L3 [41, 42]). We do not go into the details of these protocols because they are not relevant for this dissertation.

2.1.3 Important protocols

In this section, we describe the protocols relevant for the systems presented in this dissertation.

Ethernet is the predominant link-layer protocol used in today’s local- and wide area networks. It was standardized in 1983 as IEEE 802.3 [37]. A data unit transmitted by Ethernet is called a frame and it contains source and destination MAC (Media Access Control) addresses, the type of the next-higher (L3) protocol and a frame check sequence [43].

Internet Protocol (IP) is the predominant network-layer protocol in today’s local networks as well as internetworks (including the Internet). Today, two different versions of IP are in use: IPv4, which is the predominant version [44] and is in use since 1980 [45], and IPv6, the new version which addresses some limitations of IPv4 [46]. Similar to Ethernet, IP specifies the source and destination address of a packet in its header and routers use this
information to route a packet through (potentially) multiple networks. In contrast to Ethernet addresses, IP addresses have a hierarchical format. The first part of the address (often the first 16 or 24 bits of a 32-bit IPv4 address) are called the prefix. This format allows routers to forward packets based on their prefix (instead of the full destination address), which significantly reduces the size of the FIB. Besides the source and destination addresses, the IP header includes information such as the packet length, the protocol that is used in the next-higher layer, and a “time to live” (TTL) value that specifies how many routers a packet can pass at most (in order to prevent infinite loops).

Internet Control Message Protocol (ICMP) is – in contrast to e.g., TCP and UDP, which we cover below – not used to transport data between hosts but it is a control protocol that allows routers to signal when a packet cannot be processed regularly. For this, ICMP defines 13 message types to notify the sender about events such as an unreachable destination, an invalid header, or an expired TTL value [47]. Several network debugging tools make use of ICMP features. Most prominently, this includes ping, a tool to measure the round trip time to a given device (it sends an ICMP ECHO REQUEST message and measures the time until the destination answers with ECHO REPLY) [48] and traceroute, a tool to determine the path that packets take through the network (it sends IP packets with increasing TTL values and leverages the fact that routers respond with ICMP TIME EXCEEDED when a packet’s TTL expires) [49].

User Datagram Protocol (UDP) is a transport-layer protocol for unreliable data transfer [50]. Unreliable means that UDP does not provide congestion control or retransmission of lost packets (in contrast to TCP, see below). The key strength of UDP is that it provides a fast way to send data because it does not require establishing a connection first. UDP uses port numbers to specify the source and the destination “socket” within the sending and receiving device. Applications can open these sockets in order to send or receive network data. In principle, every application can open any socket, but by convention, the port numbers below 1024 should be used by their assigned applications only (e.g., port 80 for HTTP) [51].

Transmission Control Protocol (TCP) is a transport-layer protocol for reliable data transfer [52]. Similar to UDP, it uses port numbers to trans-
fer data between the sender’s and receiver’s respective sockets. However, unlike UDP, TCP is connection-oriented. A TCP connection starts with a handshake before it can be used to transfer data. Within this connection, TCP monitors packet loss and reacts to network conditions (such as the available bandwidth): it automatically retransmits lost packets and it adapts the transmission rate depending on the network conditions.

Transport Layer Security (TLS) is an application-layer protocol that protects its payloads against eavesdropping, modifications, and injected messages [53]. To establish a TLS connection, the client and the server exchange handshake packets that contain cryptographic parameters and certificates. TLS is widely used to encrypt HTTP traffic (introduced below) to allow secure web browsing. In this case, only the server provides a certificate to prove that it is authorized to host the requested website. However, in other cases, TLS can be used to authenticate clients too.

Hypertext Transfer Protocol (HTTP) is an application-layer protocol for fetching resources over the network [54]. Most prominently, it is used to load data (e.g., websites) over the World Wide Web. It is designed as a request-response protocol where the client requests a resource (e.g., a website) from a server and the server returns the resource (i.e., the website’s source code). HTTP can run on top of a transport layer protocol (usually TCP) directly, or it can run on top of TLS for secure connections. HTTP that runs over TLS is called HTTPS. Today, most popular websites support HTTPS [55].

2.2 Network Programmability

In this section, we explain the architecture of network devices (routers and switches), how these devices are programmable and what the strengths and limitations of programmable network devices are.

2.2.1 Network device architecture

At a high level, network devices (routers and switches) consist of three building blocks (cf. Figure 2.1): The data, control, and management planes [56].

The *data plane* consists of the physical ports which receive and send packets and the logic for forwarding packets between them (including
buffering, scheduling, and some packet header modifications). The data plane is typically implemented in an application-specific integrated circuit (ASIC) that can process packets at line rate. For good performance, the vast majority of packets should be processed in the data plane. However, the data plane is usually optimized to apply simple actions to many packets in a short time. As a result, there are packets that the data plane cannot handle itself. Examples of such packets typically include routing protocol information or packets whose destination is not in the forwarding table.

The control plane typically runs on a general-purpose CPU. Thus, it provides high flexibility at the cost of packet processing performance. It can run more complex algorithms (e.g., to compute shortest paths) and it can update the data plane accordingly (e.g., through forwarding table entries).

The management plane provides an interface to network administrators for configuration and monitoring. It then configures the algorithms in the control plane accordingly. The management plane provides the highest flexibility since it can run on a general-purpose server and it does not interact with network packets directly.

Over time, the fact that only the management plane allowed a network administrator to configure her network became a limitation. This led to the desire for a more flexible control plane.
2.2.2 Programmability in the control plane

In 2008, McKeown et al. published an editorial note [25] in which they described the concept of a programmable control plane, an extended flow table, and a standardized interface between the two.

This allowed network operators (and researchers) (i) to develop their own control-plane applications; (ii) to use a central controller for multiple data planes (i.e., multiple switches); and (iii) to combine hardware of different vendors.

An OpenFlow-compatible switch (OpenFlow is the name of the protocol between the control plane and the data plane) provides a flow table with a given set of properties and allows modifications to the table entries through the OpenFlow protocol. Now, the biggest constraint for custom applications was the format of the flow table (i.e., the packet header fields that can be read and modified and the possible actions that can be executed). While an OpenFlow-compatible switch can typically perform all the actions that a traditional switch can (e.g., forward packets based on their destination MAC or IP address), it does not allow innovation in the form of new network- or link-layer protocols or data-plane algorithms.

To overcome this limitation of OpenFlow, the data plane had to become programmable too.

2.2.3 Programmability in the data plane

To enable innovation not only in the control plane but also in the data plane, Bosshart et al. introduced P4, a high-level programming language for “protocol-independent packet processors” [57]. Soon after, the first fully programmable switch was available on the market [26].

The so-called portable switch architecture (PSA) [58] describes a template for the architecture of programmable switches. Such switches allow running custom programs (implemented in P4) in the data plane and can process traffic at terabits per second [59].

At a high level, programmable switches process packets as follows (cf. illustration in Figure 2.1). When a packet arrives, a parser extracts information from the packet headers. These headers (together with metadata such as the ingress port) then traverse the ingress pipeline. There, match & action tables can modify the packet headers and metadata (e.g., set the egress port).
Afterwards, the packet arrives at the *traffic manager (TM)*, which (among others) sends the packet to an egress pipeline. The *egress* pipeline works like the ingress pipeline, except that it is attached to the packet’s egress port. At the end of the egress pipeline, the *deparser* assembles the (potentially modified) headers and the (unmodified) payload back to a packet and transmits it.

Below, we provide more details about each of these building blocks.

The *parser* receives the incoming packet and extracts headers. The format of these headers is programmable (i.e., the parser can extract custom header formats). Only the parsed parts of the packet are accessible in the pipelines. The rest of the packet is considered as payload and cannot be modified.

The *ingress pipeline* receives the packet’s headers together with metadata (e.g., its ingress port), which is all stored in the packet header vector (PHV). The pipeline consists of several stages in which match & action tables can match on data in the PHV and trigger actions to modify it.

The architecture and the focus on processing packets at line rate impose three main limitations concerning the ingress and egress pipeline: (i) the number of pipeline stages limits the number of sequential actions that can be performed on each packet; (ii) the size of the PHV limits the size of the parsed headers and metadata (which can be seen as local variables); and (iii) operations which take a non-constant time per packet are not possible (e.g., loops, splitting or merging packets).

The *Traffic Manager (TM)* switches packets from ingress pipelines to egress pipelines. If needed, the TM buffers packets in first-in, first-out (FIFO) queues. When the egress pipeline can process the next packet, the TM selects a queue and sends its next packet to the egress pipeline. To determine the queue, the TM can use different strategies [60]: (i) the queue’s priorities; (ii) weighted round-robin; or (iii) a combination of both (round robin among queues with equal priorities).

The *egress pipeline* is identical to the ingress pipeline except that it is attached to an egress port. As a consequence, it is, for example, no longer possible to change a packet’s egress port once the packet has passed the TM. Similarly, the *deparser* is the inverse of the parser: It takes the headers and the payload and assembles the final packet.
2.2.4 Strengths of programmable networks

In contrast to traditional networks where each device (routers, switches, firewalls, . . .) serves one fixed purpose and is only configurable by the operator (e.g., they can manage subnets, VLANS, or firewall rules), programmable network devices can run any data-plane program as long as it meets their resource constraints. This leads to the following advantages:

- **Flexibility**: Programmable network devices can be adapted to new protocols (e.g., future versions of IP) and one device (e.g., a switch) can run multiple applications tailored to the given network and the threat landscape. The operator can program the switch according to their needs.

- **Visibility**: Since the programs run in the data plane, they can interact with every packet that crosses the device without introducing traffic overhead (e.g., traditionally, the traffic had to be cloned to an other device).

- **Performance**: Data-plane programs process packets at line rate and they can update their state or take decisions instantly.

While the concept of programmable data planes was new when the research for this dissertation started in 2017, there exist many systems that show the usefulness of this concept for security applications in the meantime.

Among others, researchers have shown that programmable switches can be used to implement more flexible firewalls [33, 61–63]; new authentication schemes [64–69]; defenses against various attacks [70–85] and many more applications (cf. surveys in [36, 86]).

Since this dissertation focuses on using programmable networks for obfuscation, we mainly consider related work in this area. In the next section, as well as in Chapters 3 and 4, we discuss such work.

2.3 Network Obfuscation

Obfuscation generally means making something difficult or impossible to understand [87]. In this section, we discuss how obfuscation is helpful in computer networks. Concerning computer networks, there are four main use cases for obfuscation:
- Protocol obfuscation to avoid censorship
- Packet header obfuscation to increase anonymity
- Topology obfuscation to improve resilience
- Traffic obfuscation to prevent information leakage

In the following paragraphs, we will explain each use case in more detail and summarize corresponding related work.

Protocol obfuscation The main application of network protocol obfuscation systems is to circumvent filtering or censorship. Protocol obfuscation systems typically achieve this by using randomization, mimicry, or tunneling. Randomization systems (e.g., [88–90]) randomize the traffic such that it is not possible to extract information (e.g., the used application) from it. Mimicry systems (e.g., [91, 92]) modify traffic such that it contains signatures of popular (non-blocked) protocols. For example, such systems embed strings that match regular expressions of deep packet inspection boxes. Tunneling systems (e.g., [93–98]) go one step further and embed the obfuscated traffic in a cover protocol (e.g., in HTTPS).

While most systems fall in one of these three categories, some systems are programmable to use a combination of these techniques (e.g., [99, 100]).

Header obfuscation Several systems use obfuscation to hide packet headers as an alternative to network-layer anonymity systems such as TOR [101], LAP [102], Dovetail [103], HORNET [104] PHI [105], and TARANET [106].

Below, we summarize four systems that leverage network programmability to obfuscate packet headers.

In previous work, we presented iTAP [5], a system to obfuscate packet headers within a local network using OpenFlow-compatible switches. The main idea behind iTAP is to replace the source and destination addresses with pseudo-random values. Some bits of these pseudo-random values represent the actual sender and the receiver, but an eavesdropper does not know which bits. Similarly, Lee et al. developed two systems [107, 108] that assign per-packet one-time addresses to its customers’ hosts. In contrast to iTAP, these systems are designed to operate between multiple ASes.

SPINE [109] obfuscates packet header fields (IP addresses and TCP fields) in traffic between two participating ASes. To be compatible with the operations available on programmable switches, SPINE uses one-time-pad-based encryption to obfuscate the header fields.
PINOT [110] also obfuscates the IP addresses of traffic that leaves a trusted AS. But in contrast to SPINE, PINOT runs at the edge of one AS and does not need the cooperation of multiple ASes.

MIMIQ [111] leverages the connection migration capability of QUIC [112] to change the client’s IP address every few packets. Like PINOT, it runs at the edge of a trusted network and ensures that potential eavesdroppers outside of this network cannot infer the client that sent a packet.

Topology obfuscation Even though most network operators do not publish their topology, it is possible to determine it by using tools such as traceroute [49]. Unfortunately, knowledge of the topology can help an attacker to launch so-called link-flooding attacks [113, 114]. To prevent such attacks, there exist many systems to obfuscate a network’s topology.

In Chapter 3, we will present NetHide, our system for topology obfuscation. The main idea behind NetHide and many related works (e.g., [115–118]) is to modify the responses that traceroute produces in such a way that the presented network topology does not show the bottlenecks in the real topology. The main challenges for these works are to determine a topology that does not contain sensitive information but is still realistic and to modify responses to path tracing tools in a way that the attacker cannot notice. For a detailed discussion of related work in the area of topology obfuscation, we refer to Section 3.7.

Traffic obfuscation The main reason for traffic obfuscation is to prevent so-called traffic-analysis attacks that can infer details about ongoing activities only based on packet sizes, directions, and timings [119–134].

In Chapter 4, we will present ditto, our system for traffic obfuscation. ditto and many related works (e.g., [104, 106, 134–138]) obfuscate traffic by adding padding to packets (to obfuscate their size) and by introducing chaff packets (to obfuscate the number and timing of packets). The main challenge for these works is to do these operations in a way that does not allow an attacker to identify padding or chaff packets and provides high performance. For a detailed discussion of related work in the area of traffic obfuscation, we refer to Section 4.8.
In this chapter, we present NetHide, a network topology obfuscation framework that mitigates sophisticated distributed denial-of-service attacks while preserving the practicality of network debugging tools.

Botnet-driven Distributed Denial-of-Service (DDoS) attacks constitute one of today’s major Internet threats [139, 140]. Such attacks can be divided in two categories depending on whether they target end hosts and services (volume-based attacks) or the network infrastructure itself (link-flooding attacks, LFAs).

Purely volume-based attacks are the simplest and work by sending massive amounts of data to selected targets. Recent examples include the 1.2 Tbps DDoS attack against Dyn’s DNS service [141] in October 2016 and the 1.35 Tbps DDoS attack against GitHub in February 2018 [142]. While impressive, these attacks can be mitigated today by diverting the incoming traffic through large CDN infrastructures [143]. As an illustration, CloudFlare’s infrastructure can now mitigate volume-based attacks reaching Terabits per second [144].

Link-flooding attacks (LFAs) [113, 114] are more sophisticated and work by having a botnet generate low-rate flows between pairs of bots or towards public services such that all of these flows cross a given set of network links or nodes, degrading (or even preventing) the connectivity for all services using them. LFAs are much harder to detect as: (i) traffic volumes are relatively small (10 Gbps or 40 Gbps attacks are enough to kill most Internet links [145]); and (ii) attack flows are indistinguishable from legitimate traffic. Representative examples include the Spamhaus attack which flooded selected Internet eXchange Point (IXP) links in Europe and Asia [146–148].

Unlike volume-based attacks, performing an LFA requires the attacker to know the topology and the forwarding behavior of the targeted network. Without this knowledge, an attacker can only “guess” which flows share a common link, considerably reducing the attack’s efficiency. As an illustration, our simulations indicate that congesting an arbitrary link without...
knowing the topology requires 5 times more flows, while congesting a specific link is orders of magnitude more difficult.

Nowadays, attackers can easily acquire topology knowledge by running path tracing tools such as traceroute [49]. In fact, previous studies have shown that entire topologies can be precisely mapped with traceroute provided enough vantage points are used [149], a requirement easily met by using large-scale measurement platforms (e.g., RIPE Atlas [150]).

Existing works Existing LFA countermeasures either work reactively or proactively. Reactive measures dynamically adapt how traffic is being forwarded [151, 152] or have networks collaborating to detect malicious flows [145]. Proactive measures work by obfuscating the network topology so as to prevent attackers from discovering potential targets [115–117]. The problem with reactive countermeasures is the relative lack of incentives to deploy them: collaborative detection is only useful with a significant amount of participating networks, while dynamic traffic adaptation conflicts with traffic engineering objectives. In contrast, proactive approaches can protect each network individually without impacting normal traffic forwarding. Yet, they considerably lower the usefulness of path tracing tools [115, 117] such as traceroute which is the prevalent tool for debugging networks [149, 153, 154]. Further, they also provide poor obfuscation which can be broken with a small number of brute-force attacks [116, 117].

Problem statement Given the limitations of existing techniques, a fundamental question remains open: is it possible to obfuscate a network topology so as to mitigate attackers from performing link-flooding attacks while, at the same time, preserving the usefulness of path tracing tools?

Key challenges Answering this question is challenging for at least three reasons:

1. The topology must be obfuscated with respect to any possible attacker location: attackers can be located anywhere and their tracing traffic is often indistinguishable from legitimate user requests.

2. The obfuscation logic should not be invertible and should scale to large topologies.

3. The obfuscation logic needs to be able to intercept and modify tracing traffic at line rate. To preserve the troubleshooting-ability of network operators, tracing traffic should still flow across the correct physical
links such that, for example, link failures in the physical topology are visible in the obfuscated one.

NetHide We present NetHide, a novel network obfuscation approach which addresses the above challenges. NetHide consists of two main components: (i) a usability-preserving and scalable obfuscation algorithm; and (ii) a runtime system, which modifies tracing traffic directly in the data plane.

The key technical insight behind NetHide is to formulate the network obfuscation task as a multi-objective optimization problem that allows for a flexible trade-off between security (encoded as hard constraints) and usability (soft constraints). We introduce two metrics to quantify the usability of an obfuscated topology: accuracy and utility. Intuitively, the accuracy measures the similarity between the path along which a flow is routed in the physical topology with the path that NetHide presents in the virtual topology. The utility captures how physical events (e.g., link failures or congestion) in the physical topology are represented in the virtual topology. To scale, we show that considering only a few randomly selected candidate topologies, and optimizing over those, is enough to find secure solutions with near-optimal accuracy and utility.

We fully implemented NetHide and evaluated it on realistic topologies. We show that NetHide is able to obfuscate large topologies (> 150 nodes) with marginal impact on usability. In fact, we show in a case study that NetHide allows to precisely detect the vast majority (> 90 %) of link failures. We also show that NetHide is useful when partially deployed: 40 % of programmable devices allow to protect up to 60 % of the flows.

Contributions Our main contributions are:

- A novel formulation of the network obfuscation problem in a way that preserves the usefulness of existing debugging tools (Section 3.2).
- An encoding of the obfuscation task as a linear optimization problem together with a random sampling technique to ensure scalability (Section 3.3).
- An end-to-end implementation of our approach, including an online packet modification runtime (Section 3.4).
- An evaluation of NetHide on representative network topologies. We show that NetHide can obfuscate topologies of large networks in a reasonable amount of time. The obfuscation has little impact on benign users and mitigates realistic attacker strategies (Section 3.5).
3.1 Model

We now present our network and attacker models and formulate the precise problem we address.

3.1.1 Network model

We consider layer 3 (IP) networks operated by a single authority, such as an Internet service provider or an enterprise. Traffic at this layer is routed according to the destination IP address. We assume that routing is deterministic, meaning that the traffic is sent along a single path between each pair of nodes. While this assumption does not hold for networks relying on probabilistic load-balancing mechanisms (e.g., ECMP [155]), it makes our attacker more powerful as all paths are assumed to be persistent and therefore easier to learn.

To deploy NetHide, we assume that some of the routers are programmable in a way that allows them to: (i) match on arbitrary IP Time-to-Live (TTL) values; (ii) change the source and destination addresses of packets (e.g., UDP packets for traceroute) depending on the original destination address and the TTL; and (iii) restore the original source and destination addresses when replies (e.g., ICMP packets) to modified packets arrive. Our implementation uses the P4 programming language [156], which fulfills the above criteria. Yet, NetHide could also be implemented on top of existing router firmware.

3.1.2 Attacker model

We assume an attacker who controls a set of hosts (e.g., a botnet) that can inject traffic in the network. The attacker’s goal is to perform a Link Flooding Attack (LFA) such as Coremelt [113] or Crossfire [114]. The objective of these attacks is to isolate a network segment by congesting one or more links. The attacker aims to congest links by creating low-volume flows from many different sources (bots) to many destinations (public servers or other bots) such that all these flows cross the targeted links (illustrated in Figure 3.1). An attacker’s budget limits the number of flows she can run and we quantify the attacker’s strength based on her budget. Because the additional traffic is low-volume, it is hard to separate it from legitimate
Figure 3.1: Link-Flooding Attacks (LFAs) work by routing many legitimate low-volume flows over the same set of physical links in order to cause congestion. LFAs assume that the attacker can discover the network topology, usually using traceroute-like tracing.

(Also low-volume) traffic. This makes detecting and mitigating LFA attacks a hard problem [157].

To mount an efficient and stealthy LFA, the attacker must know enough (source, destination) pairs that communicate via the targeted link(s). Otherwise, she would have to create so many flows that she no longer remains efficient. Similarly to [113, 114], we assume the attacker has no prior knowledge of the network topology. And we assume that the attacker learns the network topology using traceroute-like tracing techniques [49]. traceroute works by sending a series of packets (probes) to the destination with increasing TTL values. In response to these probes, each router along the path to the destination sends an ICMP time exceeded message. More specifically, traceroute leverages the fact that TTL values are decremented by one at each router, and that the first router to see a TTL value of 0 sends a response to the source of the probe. For example, a packet with TTL value of 3 sent from A to B will cause the third router along the path from A to B to send an ICMP time exceeded message to A. By aggregating paths between many host pairs, it is possible to determine the topology and the forwarding behavior of the network [149]. We remark that in addition to revealing forwarding paths, traceroute-like probes also disclose the Round-Trip Time (RTT), i.e., the time difference between the moment a probe is sent and the corresponding ICMP time exceeded message is received, which can be used as a side-channel to gain intuition about the feasibility of a (potentially obfuscated) path returned by traceroute.
Network components

(Nodes) \(N \subseteq \mathcal{N} = \{n_1, \ldots, n_N\} \)

(Links) \(L \subseteq N \times N \)

(Forwarding tree) \(T_n = (N, L_n) \), tree rooted at \(n \)

(Forwarding trees) \(T = \cup_{n \in N} T_n \)

(Flows) \(F \subseteq N \times N \)

Network topologies

(Physical) \(P = (N, L, T) \)

(Virtual) \(V = (N', L', T') \)

\(N \subseteq N' \)

Metrics

(Flows per link) \(f(T, l) = \{ (s, d) \in F \mid l \in T_d \} \)

(Flow density) \(fd(T, l) = |f(T, l)| \)

(Capacity) \(c : L \rightarrow \mathbb{N} \)

(Accuracy) \(acc : ((s, d), P, V) \mapsto [0, 1] \)

(Utility) \(util : ((s, d), P, V) \mapsto [0, 1] \)

Figure 3.2: NetHide notation and metrics

Finally, we assume that the attacker knows everything about the deployed protection mechanisms in the network (including the ones presented in this chapter) except their secret inputs and random decisions following Kerckhoff’s principle [158].

3.1.3 Notation

We depict our notation and definitions in Figure 3.2. We model a network topology as a graph with nodes \(N \subseteq \mathcal{N} \), where \(\mathcal{N} \) is the set of all possible nodes, and links \(L \subseteq N \times N \). A node in the graph corresponds to a router in the network and a link corresponds to an (undirected) connection between two routers.

Given a node \(n \), we use a tree \(T_n = (N, L_n) \) rooted at \(n \) to model how packets are forwarded to \(n \). We refer to this tree as a forwarding tree. For simplicity, we write \(l \in T_n \) to denote that the link \(l \) is contained in the
forwarding tree T_n, i.e., $T_n = (N, L_n)$ with $l \in L_n$. We use T to denote the set of all forwarding trees.

A flow $(s, d) \in F$ is a pair of a source node s and destination node d. Note that the budget of the strongest attacker is given by the total number $|F|$ of possible flows. We use $T_{s \rightarrow d}$ to refer to the path from source node s to destination node d according to the forwarding tree T_d. In the style of [114], we define the flow density f_d for a link $l \in L$ as the number of flows that are routed via this link (in any direction). The maximum flow density that a link can handle without congestion is denoted by the link’s capacity c. A topology (N, L, T) is secure if the flow density for any link in the topology does not exceed its capacity, i.e., $\forall l \in L : f_d(T, l) \leq c(l)$. Note that no attacker (with any budget) can attack a secure topology as all links have enough capacity to handle the total number of flows from all the (source, destination) pairs in F.

3.1.4 Problem statement

We address the following network obfuscation problem: Given a physical topology P, the goal is to compute an obfuscated (virtual) topology V such that V is secure and is as similar as possible to P. In other words, the goal is to deceive the attacker with a virtual topology V. For the similarity between the physical topology P and the obfuscated topology V, we refer to Section 3.2 where we present metrics which represent the accuracy of paths reported by traceroute and the utility of link failures in P being closely represented in V.

We remark on a few important points. First, if P is secure, then the obfuscation problem should return P since we require that V is as similar as possible to P. Second, for any network and any attacker, the problem has a trivial solution since we can always come up with a network that has an exclusive routing path for each (source, destination) pair. However, for non-trivial notions of similarity, it is challenging to discover an obfuscated network V that similar to P.
NetHide operates in two steps: (i) computing a secure and usable virtual topology; and (ii) deploying the obfuscated topology in the physical network.
3.2 NETHIDE

We now illustrate how NetHide can compute a secure and yet usable (i.e., “debuggable”) obfuscated topology on a simple example depicted in Figure 3.3. Specifically, we consider the task of obfuscating a network with 6 routers: A, \ldots, F in which the core link (C, D) acts as bottleneck and is therefore a potential target for an LFA.

Inputs NetHide takes four inputs: (i) the physical network topology graph; (ii) a specification of the forwarding behavior (a forwarding tree for each destination according to the physical topology and incorporating potential link weights); (iii) the capacity c of each link (how many flows can cross each link before congesting it); along with (iv) the set of attack flows F to protect against. If the position of the attacker(s) is not known (the default), we define F to be the set of all possible flows between all (source,destination) pairs.

Given these inputs, NetHide produces an obfuscated virtual topology V which: (i) prevents the attacker(s) from determining a set of flows to congest any link; while (ii) still allowing non-malicious users to perform network diagnosis. A key insight behind NetHide is to formulate this task as a multi-objective optimization problem that allows for a flexible trade-off between security (encoded as hard constraints) and usability (encoded as soft constraints) of the virtual topology. The key challenge here is that the number of obfuscated topologies grows exponentially with the network size, making simple exhaustive solutions unusable. To scale, NetHide only considers a subset of candidate solutions amongst which it selects a usable one. Perhaps surprisingly, we show that this process leads to desirable solutions.

Pre-selecting a set of secure candidate topologies NetHide first computes a random set of obfuscated topologies. In addition to enabling NetHide to scale, this random selection also acts as a secret which makes it significantly harder to invert the obfuscation algorithm.

NetHide obfuscates network topologies along two dimensions: (i) it modifies the topology graph (i.e., it adds or removes links); and (ii) it modifies the forwarding behavior (i.e., how flows are routed along the graph). For instance, in Figure 3.3, the two candidate solutions V_1 and V_2 both contain two virtual links used to “route” flows from A to E and from B to F.
Selecting a usable obfuscated topology While there exist many secure candidate topologies, they differ in terms of usability, i.e., their perceived usefulness for benign users. In NetHide, we capture the usability of a virtual topology in terms of its accuracy and utility.

The accuracy measures the logical similarity of the paths reported when using traceroute against the original and against the obfuscated topology. Intuitively, a virtual topology with high accuracy enables network operators to diagnose routing issues such as sub-optimal routing. Conversely, tracing highly inaccurate topologies is likely to report bogus information such as traffic jumping between geographically distant points for no apparent reason. As illustration, V_2 is more accurate than V_1 in Figure 3.3 as the reported paths have more links and routers in common with the physical topology.

The utility metric measures the physical similarity between the paths actually taken by the tracing packets in the physical and the virtual topology. Intuitively, utility captures how well events such as link failures or congestion in the physical topology are observable in the virtual topology. For instance, we illustrate that V_2 has a higher utility than V_1 in Figure 3.3 by considering the failure of the link (D, E). Indeed, a non-malicious user would observe the failure of (D, E) (which is not obfuscated) when tracing V_2 while it would observe the failure of link (A, E) instead of (D, E) when tracing V_1.

Given V_1, V_2 and the fact that V_2 has higher accuracy and utility, NetHide deploys V_2.

Deploying the obfuscated topology NetHide obfuscates the topology at runtime by modifying tracing packets (i.e., IP packets whose TTL expires somewhere in the network). NetHide intercepts and processes such packets without impact on the network performance, directly in the data plane, by leveraging programmable network devices. Specifically, NetHide intercepts and possibly alters tracing packets at the edge of the network before sending them to the pretended destination in the physical network. That way, NetHide ensures that tracing packets traverse the corresponding physical links, and preserves the utility of traceroute-like tools. Observe that any alteration of tracing packets is reverted before they leave the network, which makes NetHide transparent. In contrast, simpler approaches which answer to tracing packets at the network edge or from a central controller (e.g., [115, 117]) render network debugging tools unusable.
Consider again Figure 3.3 (right). If router A receives a packet towards E with TTL=2, this packet needs to expire at router D according to the virtual topology. Since the link between A and D does not exist physically, the packet needs to be sent to D via C, and it would thus expire at C. To prevent this and to ensure that the packet expires at D, NetHide increases the TTL by 1. Observe that, in addition to ensure the utility (see above), making the intended router answer to the probe also ensures that the measured round trip times are realistic (cf. Section 3.4).

3.3 Generating Secure Topologies

In this section, we first explain how to phrase the task of obfuscating a network topology as an optimization problem. We then present our implementation which consists of roughly 2000 lines of Python code and uses the Gurobi ILP solver [159].

3.3.1 Optimization problem

Given a topology $P = (N, L, T)$, a set of flows F, and capacities c, the network obfuscation problem is to generate a virtual topology $V = (N', L', T')$ such that: (i) V is secure; and (ii) the accuracy and utility metrics are jointly maximized; we define these metrics shortly.

NetHide generates V by modifying P in two ways: (i) NetHide adds virtual links to connect nodes in V; and (ii) NetHide can modify the forwarding trees for all nodes in V.

We show the constraints that encode the security and the objective function that captures the closeness in terms of accuracy and utility in Figure 3.4 and explain them below.

Security constraints The main constraint is the security (C1) imposed on V. This being a hard constraint (as opposed to be part of the objective function) means that if NetHide finds a virtual topology V, then V is secure with respect to the attacker model and the capacities.

To ensure that the virtual topology V is valid, NetHide incorporates additional constraints capturing that: (C2) all physical nodes in N are also contained in the virtual topology with nodes N'; (C3) there is exactly one
Objective function

\[
\max_V \sum_{f \in F} (w_{acc} \cdot acc(f, P, V) + w_{util} \cdot util(f, P, V))
\]

where

\[
w_{acc} \in [0, 1] \\
w_{util} \in [0, 1] \\
w_{acc} + w_{util} = 1
\]

Hard constraints

\begin{align*}
(Security) & \quad \forall l \in L' : fd(V, l) \leq c(l) \quad (C1) \\
(Complete) & \quad n \in N \Rightarrow n \in N' \quad (C2) \\
(Reach) & \quad \forall n \in N' : |\{T_n | T_n \in T'\}| = 1 \quad (C3) \\
 & \quad \forall T \in T' : \forall l \in T : l \in L' \quad (C4) \\
 & \quad (n, n') \in L' \Rightarrow \{n, n'\} \in N' \quad (C5)
\end{align*}

Figure 3.4: NetHide optimization problem. NetHide finds a virtual topology that is secure and has maximum accuracy compared with the physical topology.

3.3.2 Accuracy metric

The accuracy metric is a function that maps two paths for a given flow to a value \(v \in [0, 1] \). In our case, this value captures the similarity between a path \(T_{s \rightarrow d} \) in \(P \) for a given flow \((s, d)\) and the (virtual) path \(T'_{s \rightarrow d} \) for the same flow \((s, d)\) in \(V \). Formally, given a flow \((s, d)\), the accuracy is defined as:
3.3 Generating Secure Topologies

Algorithm 3.1: Utility metric. It incorporates the likelihood that a failure in the physical topology \(P \) is visible in the virtual topology \(V \) and that a failure in \(V \) actually exists in \(P \). Note that we treat \(T_{s\rightarrow d} \) as a set of links.

Input: Flow \((s,d) \in F\),
- Physical topology \(P = (N, L, T) \),
- Virtual topology \(V = (N', L', T') \)

Output: Utility \(u \in [0, 1] \)

1. **for** \(n \in T'_{s\rightarrow d} \) **do**
2. \(C \leftarrow T_{s\rightarrow n} \cap T'_{s\rightarrow d}[0 : n] \) // common links
3. \(u_n \leftarrow \frac{1}{2} \left(\frac{|C|}{|T_{s\rightarrow n}|} + \frac{|C|}{|T'_{s\rightarrow d}[0:n]|} \right) \) // utility
4. \(u \leftarrow \frac{1}{|T_{s\rightarrow d}|} \sum_{n \in T'_{s\rightarrow d}} u_n \) // average

\[
\text{acc}((s,d), P, V) = 1 - \frac{LD(T_{s\rightarrow d}, T'_{s\rightarrow d})}{|T_{s\rightarrow d}| + |T'_{s\rightarrow d}|}
\]

Where \(LD(T_{s\rightarrow d}, T'_{s\rightarrow d}) \) is Levenshtein distance [160] and \(|T_{s\rightarrow d}| \) denotes the length of the path from \(s \) to \(d \).

The overall accuracy of a topology (as referred to in Section 3.5) is defined as the average accuracy over all flows in \(F \):

\[
A_{avg}(P, V) = \text{avg}_{(s,d) \in F} \text{acc}((s,d), P, V)
\]

We point out that the accuracy metric in NetHide can also be computed by any other function to precisely represent the network operator’s needs.

3.3.3 Utility metric

While the accuracy measures the similarity between the physical and virtual paths for a given flow, the utility measures the representation of physical events, such as link failures. For our implementation, we design the utility metric such that it computes the probability that a link failure in the physical path is observed in the virtual path and the probability that a failure reported in the virtual path is indeed occurring in the physical path.
Algorithm 3.1 describes the computation of our utility metric for a given flow \((s, d)\). In the algorithm, given a virtual path \(T'_{s \rightarrow d} = s \rightarrow n_1 \rightarrow \cdots \rightarrow n_k \rightarrow d\), we write \(T'_{s \rightarrow d}[0 : n_i]\) to denote the prefix path \(s \rightarrow n_1 \rightarrow \cdots \rightarrow n_i\). NetHide computes the overall utility by taking the average utility computed over all flows:

\[
U_{avg} = \frac{1}{|F|} \sum_{(s, d) \in F} \text{util}((s, d), P, V)
\]

As with accuracy, a network operator is free to implement a custom utility metric.

In most cases, the accuracy and utility are strongly linked together (we show this in Section 3.5). However, as illustrated in Figure 3.5, there exist cases where the accuracy is high and the utility low or vice-versa.

3.3.4 Scalability

To obfuscate topologies with maximal accuracy and utility, a naive approach would consider all possible changes to \(P\), which is infeasible even for small topologies.

NetHide significantly reduces the number of candidate solutions in order to ensure reasonable runtime while providing close-to-optimal accuracy and utility. The key insight is that NetHide pre-computes a set of forwarding trees for each node and later computes \(V\) as the optimal combination of them. Thanks to the reduction from modeling individual links or paths to forwarding trees, NetHide only considers valid combinations of paths (i.e., paths that form a tree rooted at \(n\), \(\forall n \in N'\)).
For computing the forwarding trees, NetHide builds a complete graph $G = (V, E)$ where $V = N'$ and $E = N' \times N'$, and assigns each edge the same weight $w(e) = 1 \ \forall e \in E$. Then, NetHide uses Dijkstra’s algorithm \cite{Dijkstra} to compute forwarding trees towards each node $n \in N'$. That is, a set of paths where the paths form a tree which is rooted at n. This is repeated until the specified number of forwarding trees per node is obtained while the weights are randomly chosen $w(e) \sim \text{Uniform}(1, 10)$ for each iteration.

As NetHide pre-computes a fixed number of forwarding trees per node, the ILP solver later only needs to find an optimal combination of $O(|N'|)$ forwarding trees instead of $O(|N'|^2)$ links and $O(|N'|^{\frac{1}{2}})$ forwarding trees.

We point out that the reduction from individual links or paths to forwarding trees and the small number of considered forwarding trees does not affect the security of V as security is a hard constraint and thus, NetHide never produces a topology that is insecure. In fact, the small number of considered forwarding trees actually makes NetHide more secure because it makes it harder to determine P even for a powerful brute-force attacker that can run NetHide with every possible input.

3.3.5 Security

We now discuss the security provided by NetHide. We consider two distinct attacker strategies: (i) reconstructing the physical topology P from the virtual topology V; and (ii) choosing an attack based on the observed virtual topology V (without explicitly reconstructing P). We describe the two strategies below.

Reconstructing the physical topology If the attacker can reconstruct P, then she can check if P is insecure and select a link and a set of flows that congests that link. Reconstructing the physical topology is mitigated in two ways. First, the attacker cannot reconstruct P with certainty by simply observing the virtual topology V. NetHide’s obfuscation function maps any physical topology that is secure to itself (i.e., to P). The obfuscation function is therefore not injective, which entails that NetHide guarantees opacity \cite{opacity}, a well-known security property stipulating that the attacker does not know the secret P.

Given that the attacker cannot reconstruct P with certainty, she may attempt to make an educated guess based on the observed V and her
knowledge about NetHide’s obfuscation function. Concretely, the attacker may perform exact Bayesian inference to discover the most likely topology T that was given as input to the obfuscation function. Exact inference is, however, highly non-trivial as NetHide’s obfuscation function relies on a complex set of constraints. As an alternative, the attacker may attempt to approximately discover a topology T that was likely provided as input to NetHide. Estimating the likelihood that a topology T could produce V is, however, expensive because NetHide’s obfuscation is highly randomized. That is, the estimation step would require a large number of samples, obtained by running T using the obfuscation function.

Choosing an attack In principle, even if the attacker cannot reconstruct P, she may still attempt to attack the network by selecting a set of flows and checking if these cause congestion or not. As a base case for this strategy, the attacker may randomly pick a set of flows. A more advanced attacker would leverage her knowledge about the observed topology to select the set of flows such that the likelihood of a successful attack is maximized.

In our evaluation, we consider three concrete strategies: (i) random, where the attacker selects the set of flows uniformly at random, (ii) bottleneck+random, where the attacker selects a link with the highest flow density and selects additional flows uniformly at random from the remaining set of flows, and (iii) bottleneck+closeness, where the attacker selects a link with the highest flow density and selects additional flows based on their distance to the link. Our results show that NetHide can mitigate these attacks even for powerful attackers (which can run many flows) and weak physical topologies (with small link capacities) while still providing high accuracy and utility (cf. Section 3.5.7). For example, NetHide provides 90% accuracy and 72% utility while limiting the probability of success to 1% for an attacker which can run twice the required number of flows and follows the bottleneck+random strategy in a physical topology where 20% of the links are insecure.

3.4 Topology Deployment

In this section, we describe how NetHide deploys the virtual topology V on top of the physical topology P. For this, we first state the challenges NetHide needs to address. Then, we provide insights on the architecture using which we implemented NetHide and describe the packet processing software as well as the controller in detail. In addition, we explain the
design choices that make NetHide partially deployable and we discuss the impact of changes in the physical topology to the virtual topology.

3.4.1 Challenges

In the following, we explain the major challenges which need to be addressed by the design and the implementation of the NetHide topology deployment to provide high security, accuracy, utility and performance.

Reflecting physical events in the virtual topology Maintaining the usefulness of network tracing and debugging tools is a major requirement for any network obfuscation scheme to be practical. As we explained in the previous sections, NetHide ensures that tracing V returns meaningful information by maximizing the utility metric. As a consequence, NetHide must assure that the data plane is acting in a way that corresponds to the utility metric.

The key idea to ensure high utility in NetHide is that the tracing packets are sent through the physical network as opposed to being answered at the edge or by a central controller. Answering tracing packets from a single point is impractical as events in P (such as link failures) would not be visible.

Timing-based fingerprinting of devices Besides the IP address of each node in a path, tracing tools allow to determine the round trip time (RTT) between the source and each node in the path. This can potentially be used to identify obfuscated parts of a path.

While packets forwarding is usually done in hardware without noticeable delay, answering to an expired (TTL=0) IP packet involves the router control plane and causes a noticeable delay. Actually, our experiments show that the time it takes for a router to answer to an expired packet not only varies greatly, but is also characteristic for the device, making it possible to identify a device based on the distribution of its processing time.

NetHide makes RTT measurements realistic by ensuring that a packet that is supposedly answered by node n is effectively answered by n. As such, n will process the packet as any other packet with an expired TTL irrespective of whether or not obfuscation is in place and the measured RTT is the RTT between the source host and n.
Packet manipulations at line rate To avoid tampering with network performance, NetHide needs to parse and modify network packets at line rate. In particular, it needs to manipulate the TTL field in IP headers as well as the IP source and destination addresses. Since changing these fields leads to a changed checksum in the IP header, NetHide also needs to recompute checksums.

While there are many architectures and devices where the NetHide runtime can operate, we decided to implement it in P4, which we introduce in Section 2.2.

3.4.2 Architecture

NetHide features a controller to translate V to configurations for programmable network devices, and a packet processing software that is running on network devices and modifies packets according to these configurations.

The device configuration is described as a set of match & action table entries that are queried upon arrival of a packet (Figure 3.6). The entries are installed when V is deployed the first time and when it changes. At other times, NetHide devices act autonomously.

We describe the packet processing software as well as the controller in the following two sections.
3.4.3 Packet processing software

The packet processing software is running in the data plane of a network device and typically performs tasks such as routing table lookups and forwarding packets to an outgoing interface. For \textit{NetHide}, we extend it with functionality to modify packets such that the behavior for a network user is consistent with \(V \). In the following paragraphs, we explain the processing shown in Figure 3.6.

Identifying potential tracing packets Upon receiving a new packet, a \textit{NetHide} device first checks whether it is a response to a packet that was modified by \textit{NetHide} (cf. below). If not, it checks whether the packet’s virtual path is different from the physical path and it thus needs to be modified. Even though we often use \textit{traceroute} packets as examples, \textit{NetHide} does not need to distinguish between \textit{traceroute} (or other tracing traffic) and productive network traffic. Instead, it purely relies on the TTL value, the source and destination of a packet and – if needed – it obfuscates traffic of all applications.

Encoding the virtual topology If a packet needs to be modified, \textit{NetHide} queries the match & action table which returns the required changes for the packet. Changes can include modifications of the destination address and/or the TTL value. If the packet’s TTL is high enough that it can cross the egress router, \textit{NetHide} does not need to modify addresses. However, if the virtual path for this packet has a different length than the physical path, the TTL needs to be incremented or decremented by the difference of the virtual and the physical path length.

If the packet has a low TTL value which will expire before the packet reaches its destination, \textit{NetHide} needs to ensure that the packet expires at the correct node with respect to \(V \). For this, \textit{NetHide} modifies the destination address of the packet such that it is sent to the node that has to answer according to \(V \). In addition, it sets the source address to the address of the \textit{NetHide} device that handles the packet. Therefore, the modified packet is sent to the responding router and the answer comes back to the \textit{NetHide} device. At this point, \textit{NetHide} needs to restore the original source and destination addresses of the packet and forward the reply to the sender.

Rewriting tracing packets at line rate The devices that we use to deploy \textit{NetHide} are able to modify network traffic at line rate without impacting throughput. As described above, \textit{NetHide} sometimes needs to modify the
TTL value in production traffic and it needs to send tracing packets to different routers (which has an impact on the observed RTT; but only for tracing packets whose TTL expires before reaching the destination).

Rewriting tracing packets statelessly A naive way to be able to reconstruct the original source and destination addresses of a packet is to cache them in the device (which bears similarities with the operating mode of a NAT device – but the state would need to be maintained on a *per-packet* basis). Since this would quickly exceed the limited memory that is typically available in programmable network devices, NetHide follows a better strategy: instead of maintaining the state information in the device, it encodes it into the packets. More precisely, NetHide adds an additional header to the packet which contains the original (layer 2 and 3) source and destination addresses, the original TTL value as well as a signature (a hash value containing the additional header combined with a device-specific secret value) (cf. Figure 3.7). This *meta header* is placed on top of the layer 3 payload and is thus contained in ICMP time exceeded replies.

Preventing packet injections Coming back to the first check when a packet arrives: if it contains a *meta header* and the signature is valid (i.e., corresponds to the device), NetHide restores the original source and destination addresses of the packet and removes the meta header before sending it to the outgoing interface.
3.4.4 NetHide controller

Below, we explain the key concepts of the NetHide controller which generates the configurations mentioned above.

Configuring the topology Being based on P4 devices, configuration entries are represented as entries in match & action tables which are queried by the packet processing program. NetHide’s configuration entries are of the following form:

\[(\text{destination}, \text{TTL}) \mapsto (\text{virtual destination IP}, \text{hops to virtual destination})\]

where the virtual destination IP can be unspecified if only the length of a path needs to be modified. P4 tables can match on IP addresses with *prefixes*, meaning that only one entry per prefix (e.g., 1.2.3.0/24) is required. For example, the entry "\((1.2.3.0/24, 1) \mapsto (11.22.33.44, 5)\)" means that if the device sees a packet to 1.2.3.4 (or any other IP address in 1.2.3.0/24) with TTL=1, it will send it to 11.22.33.44 and change the TTL value to 5.

Modifying packets distributedly NetHide selects one programmable network device per flow which then handles all of the flow’s packets. This device must be located before the first spoofed node, i.e., the first node in the virtual path that is different from the physical path.

While there is always one distinct device in charge of handling a certain flow, the same device is assigned to many different flows. To balance the load across devices, NetHide chooses one of the eligible devices at random (this does not impact the obfuscation). For more redundancy, multiple devices could be assigned to each flow.

Changing the topology on-the-fly Thanks to the separation between the packet processing software and the configuration table entries, \(V\) can be changed on-the-fly without interrupting the network.

3.4.5 Partial deployment

As deploying a system that needs to run on all devices is difficult, we design NetHide such that it can fully protect a network while being deployed on only a few devices. The key enabler for this is that NetHide only needs to modify packets at most at one point for each flow.
NetHide can obfuscate all traffic as soon as it has crossed at least one NetHide device. In the best case, in which NetHide is deployed at the network edge, it can protect the entire network. In the evaluation (Section 3.5), we show that even for the average case in which the NetHide devices are placed at random positions, a few devices are enough to protect a large share of the flows.

3.4.6 Dealing with topology changes

NetHide sends tracing packets through P such that they expire at the correct node according to V. Changes in P can impact NetHide in two ways:

1. When links are added to P or the routing behavior changes: some flows may no longer traverse the device that was selected to obfuscate them. This can be addressed by installing configuration entries in multiple devices (which results in a trade-off between resource requirements and redundancy). Since V is secure in any case, there is no immediate need to react to changes in P. However, to provide maximum accuracy and utility, NetHide can compute a new V' based on P' and deploy it without interrupting the network.

2. When links are removed from P: this results in link failures in V and has no impact on the security of V. If the links are permanently removed, NetHide can compute and deploy a new virtual topology.

3.5 Evaluation

In this section, we show that NetHide: (i) obfuscates topologies while maintaining high accuracy and utility (Sections 3.5.2 and 3.5.3); (ii) computes obfuscated topologies in less than one hour, even when considering large networks (Section 3.5.4). Recall that this computation is done offline, once, and does not impact network performance at runtime; (iii) is resilient against timing attacks (Section 3.5.5); (iv) is effective even when partially deployed (Section 3.5.6); (v) mitigates realistic attacks (Section 3.5.7); and (vi) has little impact on debugging tools (Section 3.5.8).
Table 3.1: We evaluate NetHide based on three realistic topologies of different size.

<table>
<thead>
<tr>
<th></th>
<th>Abilene</th>
<th>Switch</th>
<th>US Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>11</td>
<td>42</td>
<td>158</td>
</tr>
<tr>
<td>Links</td>
<td>14</td>
<td>63</td>
<td>189</td>
</tr>
<tr>
<td>Max. flow density</td>
<td>35</td>
<td>390</td>
<td>11301</td>
</tr>
<tr>
<td>Avg. flow density</td>
<td>19</td>
<td>89</td>
<td>1587</td>
</tr>
</tbody>
</table>

3.5.1 Metrics and methodology

Metrics To be able to compare the results of our evaluation with different topologies, we use the average flow density reduction factor, which denotes the ratio between the flow density in the physical topology $P = (N, L, T)$ and in the virtual topology $V = (N', L', T')$:

$$FR = 1 - \frac{\text{avg}_{l \in L'}fd(V, l)}{\text{avg}_{l \in L}fd(P, l)}$$

The flow density denotes the number of flows that are carried at each link (cf. Section 3.1.3). For example, $FR = 0.2$ means that the links in V carry 80% less flows than those in P (on average). For the accuracy and utility of V, we use A_{avg} and U_{avg} as defined in Section 3.3.

Datasets We consider three publicly available topologies from [163]: a small (Abilene, the former US research network), a medium (Switch, the network connecting Swiss universities) and a large one (US Carrier, a commercial network in the US). Table 3.1 lists key metrics for the three topologies. For the forwarding behavior, we assume that traffic in P is routed along the shortest path or a randomly picked shortest path in case there are multiple shortest paths between two nodes.

Parameters We run all our experiments with the following parameters: All nodes in P can act as ingress and egress for malicious traffic (which is the worst case when an attacker is everywhere). We also assume that all links have the same capacity. Since tracing packets need to be answered by the
correct node, NetHide only adds virtual links but no nodes (i.e., $N = N'$).
We consider 100 forwarding trees per node. For the ILP solver, we specify
a maximum relative gap of 2%, which means that the optimal results can
be at most 2% better than the reported results (in terms of accuracy and
utility, security is not affected). We run NetHide at least 5 times with each
configuration and plot the average results.

3.5.2 Protection vs. accuracy and utility

In this experiment, we analyze the impact of the obfuscation on the accuracy
and utility of V. For this, we run NetHide for link capacities c (the maximum
flow density) varying between 10% and 100% of the maximum flow density
listed in Table 3.1.

Figure 3.8 depicts the accuracy (left) and utility (center) achieved by
NetHide according to the flow density reduction factor. An ideal result is
represented by a point in the upper right corner translating to a topology
that is both highly obfuscated and provides high accuracy and utility.
As baseline, we include the results of a naive obfuscation algorithm that
computes V by adding links at random positions and routing traffic along
a shortest path.

NetHide scores close to the optimal point especially for large topologies.
We observe that the random algorithm can achieve high accuracy and utility.
Figure 3.9: The accuracy weight has a small impact for our accuracy and utility metrics.

(when adding few links) or high protection (when adding many links) but not both at the same time. Though, in a small area (very high flow density reduction in a small topology), the random algorithm can outperform NetHide. The reason is that such a low flow density is only achievable in an (almost) complete graph. While adding enough links randomly will eventually result in a complete graph, the small number of forwarding trees considered by NetHide does not always contain enough links to build a complete graph.

In Figure 3.8 (right), we show the percentage of flows that do not need to be modified (i.e., have 100% accuracy and utility) depending on the flow density reduction factor.

Figure 3.8 (right) illustrates that NetHide can obfuscate a network without modifying most of its paths therefore preserving the usability of tracing tools. In the medium size topology, NetHide computes a virtual topology that lowers the average flow density by more than 80% while keeping more than 80% of the paths identical. This is significantly better than the random baseline where a flow density reduction by 80% only preserves about 15% of the paths. We observe that larger topologies generally exhibit better results than small ones. This is due to the fact that in bigger topologies, a small modification has less impact on average accuracy than in a small topology while still providing high obfuscation. Conversely, smaller
topologies lead to worse results as a small number of changes can have a big impact.

3.5.3 Accuracy vs. utility

In Figure 3.9, we analyze the impact of the accuracy weight (w_{acc} in Figure 3.4) on the resulting accuracy and utility. We specify the capacity of each link to 10% of the maximum flow density listed in Table 3.1 and observe that w_{acc} has a relatively small impact for our accuracy and utility metrics especially for large topologies. This confirms that a topology with a high accuracy typically also has a high utility. If the paths are similar (high accuracy), the packets are routed via the same links (high utility), too.

3.5.4 Search space reduction and runtime

In this experiment, we analyze the impact of the search space reduction – in terms of the number of forwarding trees per node – on the runtime of NetHide. As we explained in Section 3.3.4, NetHide considers only a small subset of forwarding trees to improve scalability. We again specify the capacity of each link to 10% of the maximum flow density listed in
In this experiment, we analyze the difference between the lengths of paths in P and V. Large differences between the length of the physical path and the virtual path can lead to unrealistic RTTs and leak information about the obfuscation (e.g., if the RTT is significantly different for two paths of the same length).

As the results in Figure 3.11 show, virtual paths are shorter than physical paths (the ratio is ≤ 1) – intuitively because removing a node from a path has a smaller impact on our accuracy and utility metrics than adding one. And – for the medium and large topology – the virtual paths are less than
10\% shorter both on average and in the 10th percentile for a flow density reduction of 80\%.

The resulting small differences in path lengths support our assumption that timing information mainly leaks through the processing time at the last node and not through the propagation time (Section 3.4) as long as all links have roughly the same propagation delay.

3.5.6 Partial deployment

We now analyze the achievable protection if not all devices at the network edge are programmable. In NetHide, a flow can be obfuscated as long as it crosses a NetHide device before the first spoofed node (the first node that is different from the physical path). This is obviously the case if all edge routers are equipped with NetHide. Yet, as we show in Figure 3.12, a small percentage of NetHide devices (e.g., 40\%) is enough to protect the majority (60\%) of flows even in the average case where the devices are placed at random locations and all nodes are considered as ingress and egress points of traffic (i.e., as edge nodes).

To obtain the results in Figure 3.12, we set the maximum flow density to 10\% of the maximum value in Table 3.1 and vary the percentage of programmable nodes in V between 0 and 100\%. For each step, we compute
the average amount of flows that can be protected for 100 different samples of programmable devices.

The percentage of obfuscated flows in Figure 3.12 is normalized to only consider flows that need to be obfuscated. As we have shown in Figure 3.8, the vast majority of flows does not need to be obfuscated at all.

As an alternative approach to partial deployment, NetHide can be extended to incorporate the number and/or locations of NetHide devices as a constraint or as an objective such as to compute virtual topologies that can be deployed without new devices or with as few programmable devices as possible.

3.5.7 Security

As we explained in Section 3.3.5, inferring the exact physical input topology from the virtual topology is difficult.

However, an attacker can try to attack \(V \) directly, without trying to determine \(P \). Such an attacker is limited by the fact that she does not know \(P \) and by a maximum number (budget) of flows that she can create. Therefore, the key challenge for the attacker is to select the flows such that they result in a successful attack on \(P \).

Besides the attacker’s budget, her chances of success also depend on the robustness of \(P \): If \(P \) is weak (i.e., the capacity of many links is exceeded), it either needs to be obfuscated more or attacks are more likely to succeed.

In this experiment, we simulate three feasible strategies for an attacker to select \(b \) flows:

- **Random**: Samples \(b \) flows uniformly at random from the set of all flows \(F \).
- **Bottleneck+Random**: Identifies the link with the highest flow density in \(V \) (a "bottleneck" link \(l_b \)) and attacks by initiating all the \(fd(l_b) \) flows that cross this link plus \((b - fd(l_b)) \) random additional flows.
- **Bottleneck+Closeness**: Identifies the link \(l_b \) with the highest flow density in \(V \) and attacks by initiating all the \(fd(l_b) \) flows that cross this link plus \((b - fd(l_b)) \) nearby flows (according to the metric in Algorithm 3.2).
Figure 3.13: Attack simulations comparing the Random attacker with Bottleneck+Random. The plots show the required flow density reduction (FR) for making the attacker succeed with \(P_r < 1\% \) (first row) and the obtained accuracy and utility (second and third row) depending on the link capacity of the physical topology (measured as the percentage of secure links in the x-axis). For example, defending the Switch topology with only 60% secure links against Bottleneck+Random with 2\(\times \) budget maintains 80% accuracy.

An attack is successful if running the selected set of flows in \(P \) exceeds any link’s capacity (not necessarily the link that the attacker tried to attack).

In our simulations, we vary both the attacker’s budget and the robustness of \(P \) (in terms of the link capacity). We vary the capacity such that between 10% and 100% of the links in \(P \) are secure (e.g., if 10% of the links are secure, an attacker could directly attack 90% of the links if there was no obfuscation). For each choice of the link capacity \(c \) in \(P \), we vary the number
of flows that the attacker can initiate between $b = c + 1$ (just enough to break a link) and $b = 4 \times (c + 1)$ (four times the number of flows that the most efficient attacker would need).

To obtain the simulation results in Figure 3.13 and Figure 3.14, we simulated $10k$ attempts ($Random$ and $Bottleneck+Random$) and $1k$ attempts ($Bottleneck+Closeness$) for each virtual topology from Section 3.5.2 and each combination of the link capacity and attacker budget.

In Figure 3.13 we compare the $Random$ attacker with $Bottleneck+Random$ and in Figure 3.14 we compare $Random$ with $Bottleneck+Closeness$. In the first row of each figure, we plot how much obfuscation (i.e., in terms of the flow density reduction factor) is required to make the attacker successful.

Figure 3.14: Attack simulations comparing the $Random$ attacker with $Bottleneck+Closeness$. $Bottleneck+Closeness$ is slightly more powerful than $Bottleneck+Random$ (Figure 3.13), which results in more obfuscation that is required.
in < 1% of her attempts. There, we observe that the Random attacker is (as expected) the least powerful because it requires less obfuscation to defend against it and that Bottleneck+Closeness is slightly more powerful than Bottleneck+Random. Considering the setting with the Abilene topology and the attacker with 2× budget: Mitigating this attacker requires no obfuscation when she follows the Random strategy, but 71% (Bottleneck+Random) or 86% (Bottleneck+Closeness) flow density reduction for the more sophisticated strategies.

The required flow density reduction naturally increases as the attacker’s budget increases. In the right column where the attacker can run four times the number of required flows, even the Random attacker is successful because she can run so many flows (or even all possible flows in many cases) that it does not matter how the flows are selected.

The second and third row in the plots show the accuracy and utility that is preserved after obfuscating the topology. We observe there, that especially the Abilene and Switch topologies provide high accuracy and utility even if less than 50% of the links in P are secure. Comparing Figures 3.13 and 3.14 shows that since mitigating Bottleneck+Closeness requires more obfuscation, the achieved accuracy and utility are lower.

3.5.8 Case study: Link failure detection

We now show that NetHide preserves most of the usefulness of tracing tools by considering the problem of identifying link failures in obfuscated topologies. For our analysis, we use all three topologies and a flow density reduction factor of 50%. Then, we simulate the impact of an individual failure for each link. That is, we analyze how a failing physical link is represented in V.

Failing a link can have different effects in V: Ideally, it is correctly observed, which means that the exact same link failure appears in V. But since V contains links that are not in P or vice-versa, a physical link failure can be observed as multiple link failures or as the failing of another virtual link.

In Figure 3.15, we show that the vast majority of physical link failures is precisely reflected in the virtual topology. That is, NetHide allows users to use prevalent debugging tools to debug connectivity problems in the network. These results are a major advantage compared to competing
3.6 FREQUENTLY ASKED QUESTIONS

Below, we provide answers to some frequently asked questions and potential extensions of NetHide.

Can a topology be de-obfuscated by analyzing timing information? In NetHide, each probing packet is answered by the correct router and thus the processing time at the last node is realistic. Though, the propagation time can leak information in topologies where the propagation delay of some links is significantly higher than of others.
Figure 3.15: Link failures are correctly observed with high probability (e.g., for Switch: only 15% of the failures appear in less than 90% of the paths.)

However, extracting information from the propagation time in geographically small networks is hard for three reasons: (i) it is impossible to measure propagation time separately. Instead, only the RTT is measurable; (ii) the RTT includes the unknown return path; and (iii) NetHide keeps path length differences are small. For topologies exhibiting larger delays, NetHide can be extended to consider link delays as additional constraints.

The same arguments hold for analyzing queuing times or other time measurements. Moreover, delays often vary greatly in short time intervals, making it practically infeasible to perform enough simultaneous measurements.

Can a topology be de-obfuscated by analyzing link failures? Because some physical link failures are observed as multiple concurrent link failures in the virtual topology, an attacker can try to reconstruct the physical topology by observing link failures over a long timespan. However, this strategy is not promising for the following reasons: (i) most of the link failures are directly represented in the virtual topology (cf. Section 3.5.8). Observing them does not provide usable information for de-obfuscation; and (ii) analyzing link failures over time requires permanent tracing of the entire network between, which would make the attacker visible and is against the idea of LFAs.
Is NetHide compatible with link access control or VLANs? Not at the moment, but we can easily extend our model to support them. The required changes are: (i) link access control policies need to be part of the NetHide’s input; (ii) the ILP needs additional constraints to respect different VLANs (i.e., model forwarding trees per VLAN); (iii) the output consists of VLAN-specific paths; and (iv), the runtime additionally matches on the VLAN ID and applies the appropriate actions.

Does NetHide support load-balancing? Not at the moment, but after the following extensions: (i) instead of an exact path for each flow, we specify the expected load that a flow adds to each link (e.g., using max-min fair allocation as in [164]); (ii) the constraints regarding the flow density now constrain the expected flow density; (iii) the virtual topology can contain multiple parallel paths and probabilities with which each path is taken; and (iv) the runtime randomly selects one of the possible paths.

How close to the optimal is the solution computed by NetHide? Computing this distance is computationally infeasible as it requires to exhaustively enumerate all possible solutions (one of the cruxes behind NetHide security). Instead, we measure the distance between the virtual and the physical topology (Section 3.5.2) and show that the virtual topology is already very close (in terms of accuracy and utility) to the physical one. The optimal solution would therefore only do slightly better, while being much harder to compute.

Can NetHide be used with other metrics for computing the flow density? At present, NetHide requires a static metric such that the flow density can be computed before obfuscating the topology. For simplicity, we assume that the load which each flow imposes to the network is the same and all links have the same capacity. However, this assumption can easily be relaxed to allow specific loads and capacities for each flow and link (therefore requiring more knowledge or assumptions about the topology and the expected traffic).

3.7 Related Work

Existing works on detecting and preventing LFAs can be broadly classified into reactive and proactive approaches. Reactive approaches only become active once a potential LFA is detected. As such, they do not prevent LFAs
and only aim to limit their impact after the fact. CoDef [145] works on top of routing protocols and requires routers to collaborate to re-route traffic upon congestion. SPIFFY [151] temporarily increases the bandwidth for certain flows at a congested link. Assuming that benign hosts react differently than malicious ones, SPIFFY can tell them apart. Liaskos et al. describe a system [152] that continuously re-routes traffic such that it becomes unlikely that a benign host is persistently communicating via a congested link. Malicious hosts on the other hand are expected to adapt their behavior. Nyx [165] addresses the problem of LFAs in the context of multiple autonomous systems (ASes). It allows an AS to route traffic from and to another AS along a path that is not affected by an LFA. Routing traffic around a congested AS is achieved through BGP messages and does not require any cooperation from the other ASes. Later work [166]\(^1\) has raised doubts about the feasibility of this approach because the required BGP messages would not be accepted in many actual ASes. Ripple [74]\(^1\) provides a flexible framework to detect LFAs. Thanks to its policy language, Ripple can emulate several earlier reactive defense techniques. From these policies, Ripple compiles P4 programs and it leverages programmable switches to quickly detect LFAs.

On the other hand, proactive solutions – including NetHide– aim at preventing LFAs from happening and are typically based on obfuscation.

HoneyNet [115] uses software-defined networks to create a virtual network topology to which it redirects traceroute packets. While this hides the topology from an attacker, it also makes traceroute unusable for benign purposes.

Trassare et al. implemented topology obfuscation as a kernel module running on border routers [117]. The key idea is to identify the most critical node in the network and to find the ideal position to add an additional link that minimizes the centrality of this node. The border router replies to traceroute packets as if there was a link at the determined position. However, adding a single link has little impact on the security of a big network and even if the procedure would be repeated, an attacker could determine the virtual links with high probability. Further, traceroute becomes unusable for benign users as the replies come from the border router.

Linkbait [116] identifies potential target links of LFAs and tries to hide them from attackers. Hiding a target link is done by changing the routing of tracing packets from bots in such a way that the target link does not appear

\(^1\) This work was published after NetHide
in the paths. As a prerequisite to only redirect traffic from bots, Linkbait describes a machine learning-based detection scheme that runs at a central controller which needs to analyze all traffic. Being based on re-routing of packets, Linkbait can only present paths that exist in the network. Therefore, a topology that does not have enough redundant paths cannot be protected. The paper does not discuss issues with an attacker that is aware of the protection scheme and sends tracing traffic that is likely to be misclassified and therefore not re-routed.

ProTO [167, 168] operates in two steps: First, it uses machine learning to detect packets that show path tracing behavior. Then, it obscures the topology for these packets. Different from NetHide, ProTO focuses on topology inference through end-to-end delay measurements. This is why ProTO delays packets in order to obscure the topology instead of modifying the contents of path tracing packets.

NetObfu [169] runs in the control plane of OpenFlow switches and follows a similar approach as NetHide: It modifies path tracing responses such that an attacker (or every other network user) infers the virtual topology instead of the physical one. NetObfu uses greedy algorithms to compute a virtual topology, which decreases the computation time compared to NetHide.

BottleNet [170] also runs in the control plane of OpenFlow switches. It extends NetHide and other previous approaches in three dimensions: (i) it supports more metrics to determine bottleneck links (including dynamic metrics such as the actual link load); (ii) it generates more complex virtual topologies (thereby reducing the utility of path tracing tools); and (iii) it reroutes production traffic (to prevent “blind” LFAs where the attacker congests a link by chance).

AntiTomo [171] focuses on topology inference through tomography (e.g., by measuring end-to-end delays, similar to ProTO [167, 168]). To prevent this type of topology inference, AntiTomo generates a virtual topology that is secure and adds little overhead in terms of the end-to-end delay. The authors evaluate AntiTomo only in simulations, but to deploy the virtual topology, production traffic would need to be delayed.

EqualNet [118] identifies four limitations of NetHide, Trassare et al.’s approach [117], and LinkBait [116]: (i) adversaries can infer the popularity of links; (ii) virtual topologies are too similar to the physical ones; (iii) virtual topologies are not secure in the long term; and (iv) path tracing tools

1 This work was published after NetHide
return false information. Regarding NetHide, (i) only occurs if the interface of multiple (physical or virtual) links have the same IP address; (ii) is not a problem since the virtual topology is secure (w.r.t. our definition); (iii) is indeed a limitation because NetHide would need to recompute a new virtual topology if the physical one changes; and (iv) is minimized since NetHide minimizes the amount of obfuscation in order to preserve the usefulness of path tracing tools. As a proposal that does not suffer from these limitations, EqualNet generates a virtual topology by adding not only virtual links, but also virtual nodes and by distributing the path tracing flows equally among all links and nodes.

Other approaches that are related to LFAs but not particularly to our work are based on virtual networks [172], require changes in protocols or support from routers and end hosts [173–175] or focus on the detection of LFAs [157].

3.8 conclusion

We presented a new, usable approach for obfuscating network topologies. The core idea is to phrase the obfuscation task as a multi-objective optimization problem where security requirements are encoded as hard constraints and usability ones as soft constraints using the notions of accuracy and utility.

As a proof-of-concept, we built a system, called NetHide, which relies on an ILP solver and effective heuristics to compute compliant obfuscated topologies and on programmable network devices to capture and modify tracing traffic at line rate. Our evaluation on realistic topologies and simulated attacks shows that NetHide can obfuscate large topologies with marginal impact on usability, including in partial deployments.

While we focused on obfuscating network topologies to mitigate link-flooding attacks, an adapted version of NetHide could also be used to obfuscate topologies for other purposes (e.g., if an ISP wants to hide other aspects of its topology).

In the next chapter, we will present a system to obfuscate network traffic in order to prevent traffic-analysis attacks.
In this chapter, we present ditto, a traffic obfuscation system adapted to the requirements of wide area networks: achieving high-throughput traffic obfuscation at line rate without modifications of end hosts.

Many large organizations operate dedicated wide area networks (WANs) as a critical infrastructure distinct from the Internet to connect their data centers and remote sites. For example, cloud service providers such as Google [176], Amazon [177], and Microsoft [178] operate WANs to achieve low-latency, high-throughput inter data center communication. Public safety and security organizations rely on WANs to achieve secure and reliable communication between their sites (e.g., [179–183]). For large organizations, these WANs provide 100s of Gbps to Tbps of capacity over long distances and can cost 100s of millions of dollars per year [184].

WANs are an attractive target for eavesdropping attacks and mass surveillance because they are often used to transport large amounts of sensitive data. And because WANs spread over large geographical areas, it is impossible to secure the cables physically from wiretapping. Past revelations show that intercontinental fiber links were subject to tapping by governmental agencies [185, 186] or other entities [187] and many devices are available to tap on fiber links [188–192]. Indeed, major operators such as Amazon, Microsoft, and OVH acknowledge that WAN traffic is at risk and they use MACsec [193] to encrypt their traffic not only at the application layer, but also at the link layer [194–197].

However, it is well known that encryption alone is not sufficient to protect against traffic-analysis attacks [198, 199]. Even if the network traffic is end-to-end encrypted, metadata such as the traffic volume, the packet sizes and the timing information reveals a lot about ongoing activities. As a result, eavesdroppers intercepting the WAN communication can still perform traffic analysis attacks. Such attacks are mostly known from Internet traffic, where past work shows that it is possible to infer the contents of VoIP calls [119, 127], streamed movies [128, 129]; visited websites [130–134], or the device identities [120–125] without having to break the encryption.
Nonetheless, the same attacks can be applied to WAN traffic if the WAN carries the incoming and outgoing Internet traffic (which is typically the case if a company sends all Internet traffic via a central firewall). More generally, it has been shown many times (e.g., in [200–202]) that traffic classification also works for encrypted traffic.

Many techniques have been proposed to protect against traffic-analysis attacks in the Internet. However, these techniques are not well adapted to the specific requirements of WAN traffic protection. Techniques such as BuFLO [121], CS-BuFLO [137], HORNET [104], or TARANET [106] add padding to obfuscate the size of individual packets and flows and require modifications on the software and protocols of the end hosts. For many organizations operating a WAN, it is impossible to adapt these protocols on all end hosts (e.g., because a cloud provider does not control the software that is running on its customer’s instances). Other techniques such as Loopix [203], PriFi [204], or Wang et al. [136] impose strict transmission schedules and rates per flow, and thus severely limit the achievable throughput. As WAN traffic is high-throughput in nature, these solutions are not efficient enough to deal with high link traffic rates up to 100 Gbps.

This chapter presents ditto, an in-network and hardware-based traffic obfuscation system specifically tailored to WANs. As illustrated in Figure 4.1, ditto shapes traffic according to a predefined pattern (a periodic sequence of packet sizes at a fixed rate) using three operations: (i) packet padding; (ii) packet delaying; and (iii) chaff packet insertion. When there are “real” packets to transmit, ditto pads and transmits them. When there are no real packets, it transmits dummy “chaff” packets. Therefore, ditto only adds overhead (padding or chaff packets) in a way that does not degrade the network performance for the real traffic. It fills the gaps when there is not enough real traffic to transmit and (slightly) delays real packets in order to make the resulting network behavior independent of the actual traffic being sent.
ditto runs on the gateway network devices (e.g., routers or switches) of the WAN sites and does not require any modification to the end hosts or protocols. Being network-based, it is further efficient and supports high-speed obfuscation even when the traffic is bursty and unpredictable. ditto devices can react locally to traffic changes in real time. This allows them to quickly adapt to different network loads and to add or remove chaff packets almost instantly depending on the actual link load. In contrast, application-based approaches that run on the end hosts lack the visibility of the network load and need to send chaff traffic independent of other applications, which creates a significant overhead that ditto does not have.

We implemented ditto using off-the-shelf programmable network hardware of the same type as major operators have already deployed [205, 206]. We show that ditto can obfuscate packet size, timing and volume information at line rate. In the evaluation, we run interactive applications over ditto and we show that a ditto-enabled device can obfuscate up to 70 Gbps of production traffic (on a 100 Gbps link) without any significant impact on the network performance (in terms of throughput, packet loss, latency and jitter). This performance is enough for typical WANs since they usually run at (much) less than 60% utilization [176, 180, 183]. Even in highly optimized WANs such as the ones of Google and Microsoft where the utilization is close to 100% [176, 184], ditto could protect all the non-background traffic (which accounts to less than 50% [184]). We further show that the efficient patterns computed by ditto result in a significant performance increase compared to simpler approaches in previous work while not compromising security properties against traffic-analysis attacks.

Our main contributions are:

• a strategy to determine packet sizes that allow an efficient mixing of real and chaff packets (Section 4.3);
• an architecture to obfuscate the traffic volume and timing at line rate in network switches (Section 4.4);
• a full implementation (available as open source\(^1\)) on off-the-shelf hardware (Section 4.6); and
• an evaluation on real Internet traffic and with interactive applications (Section 4.7).

The remainder of this chapter is organized as follows. In Section 4.1, we describe the network and attacker models as well as the security goals. In

\(^1\) https://github.com/nsg-ethz/ditto
Section 4.2, we provide an overview over ditto before we describe its main components in more detail (pattern computation in Section 4.3 and traffic shaping in Section 4.4). In Section 4.5, we discuss ditto’s security properties and limitations. In Section 4.6 we describe the hardware implementation and in Section 4.7 we evaluate it. Finally, we review related work in Section 4.8 and conclude in Section 4.9.

4.1 MODEL

In this section, we describe the network model (Section 4.1.1), the attacker model (Section 4.1.2), and ditto’s security goals (Section 4.1.3).

4.1.1 Network model

We consider a wide area network (WAN) which connects multiple sites of one organization over dedicated, encrypted tunnels as illustrated in Figure 4.2. These tunnels can be created at layer 2 (e.g., leased fibers and MACsec encryption) or at layer 3 (e.g., IPsec tunnels). Each tunnel has a guaranteed bandwidth which the organization can fully utilize.

Each site is connected to the WAN with a programmable switch. These switches act as gateways between the local area network (LAN) in each site and the link(s) which interconnect the sites. The operator has full control over these switches and the LANs, but it does not control the WAN tunnels.
We note that such programmable switches are widely-available already and being deployed in large-scale infrastructure including AT&T, Deutsche Telekom, and Alibaba [205, 206].

4.1.2 Attacker model

We assume that the attacker has access to all devices and links in the WAN, but she does not have access to devices or links inside the LANs of the operator (including the gateways where ditto is running). The attacker can record timestamps and packet sizes but she cannot access the contents of packets since they are encrypted. We assume that the encryption happens at the same layer as the tunnel (e.g., MACsec [193] for a layer-2 tunnel, or IPsec [207] for a layer-3 tunnel). The attacker can also inject, modify, delay, or drop packets.

Our attacker model is realistic for typical organizations. As we elaborated above, several such wiretapping attacks happened in the past [185, 187] and major operators deploy link-layer encryption to mitigate them [194–197].

4.1.3 Security goals

Similar to related work [106, 203], ditto shapes network traffic such that it satisfies the following security goals:

- **Volume anonymity**: The attacker cannot determine the real size of individual packets and flows which are sent over the WAN. This prevents attacks such as the one presented by Boshart and Rossow [208].

- **Timing anonymity**: The attacker cannot determine the timing between packets composing real traffic. This prevents attacks such as the ones presented by Wang et al. [209] and Feghhi and Leith [210].

- **Path anonymity**: The attacker cannot track packets across WAN tunnels. This prevents attacks such as the one presented by Wang et al. [209].

The key enabler for ditto to achieve these goals at line rate is that ditto operates in the network (on routers or switches) and not on end devices such as clients or servers. In the following section, we describe this deployment scenario.
Figure 4.3: ditto overview. The combination of priority queueing (real packets have higher priority and there is always a chaff packet ready to send with lower priority) and round-robin scheduling (one queue per pattern state) ensures that the outgoing traffic follows the predefined pattern regarding packet sizes and timing. The figure does not show the removal of padding on the other end of a protected link.
4.2 DITTO

In this section, we explain the high-level concepts behind ditto using a running example and Figure 4.3.

Design goals The high-level goals of ditto are (i) to make the WAN traffic that an eavesdropper receives independent (in terms of packet sizes, inter-packet time and traffic volume) from the actual traffic that is exchanged over the network; (ii) to support high-throughput networks without degrading their performance; and (iii) to operate without requiring changes to end-devices (e.g., clients or servers).

Workflow ditto reaches these goals by running on programmable network devices (no changes to end-devices) and by shaping the incoming WAN traffic into a repeating sequence of packets with pre-defined sizes and timing. With ditto, the traffic actually flowing through the WAN is therefore perfectly independent of the real traffic entering it. A ditto-enabled switch shapes traffic by (possibly): (i) padding incoming packets, to regularize their sizes; (ii) buffering/delaying incoming packets, to regularize their timings and their relative order; and (iii) inserting chaff packets, to fill any possible gaps and ensure the consistency of the packet rates. Of course, enlarging packets and/or delaying them comes at a cost. ditto reduces this overhead by optimizing the shaping pattern.

In the paragraphs below, we rely on a simple example and Figure 4.3 to explain how ditto determines the “shape” of the packet stream (we refer to this as the obfuscation pattern) and how ditto modifies traffic such that it follows this pattern.

Architecture ditto has two components: (i) a *pattern computation algorithm* to compute a secure and efficient traffic pattern based on the packet size distribution; and (ii) a *data-plane program* to shape traffic according to this pattern at line rate by padding packets and introducing chaff packets.

Simple example We consider a simplistic WAN composed of two ditto switches connected by one link. In this WAN, packets are of three sizes: 25% of the packets are 500 B, 25% are 1000 B and 50% are 1500 B. The ordering of the packets follows an unknown distribution.

Pattern computation Given the packet size distribution as an input, ditto first computes an efficient obfuscation pattern. The *obfuscation pattern* spec-
ifies the order and sizes of packets traversing a link protected by ditto. We define it as an ordered list of packet sizes (the pattern states). ditto then repeats this pattern infinitely. For example, if the pattern is [500, 1000], ditto shapes the incoming traffic such that the outgoing packet sizes are [500, 1000, 500, 1000, 500, 1000, ...] at a fixed rate.

An efficient pattern minimizes the overhead in terms of padding (bytes added to a packet to make it larger) and chaff packets (dummy packets inserted to transmit at a constant rate). To minimize the amount of required padding, ditto computes the pattern such that it allows to distribute packets uniformly over all pattern states (this leads to minimal padding on average). To minimize chaff packets, ditto prefers short patterns (this reduces gaps between real packets). In Section 4.7, we show that patterns of length 3 to 6 achieve good results.

In the example from above, possible patterns include the ones listed below. For assigning packets to a pattern state, the objective is to minimize the amount of padding. Therefore, each packet is assigned to the next larger pattern state.

- [1500]: This would require to add 1000 B padding to 25% of the packets (the ones of original size 500 B) and 500 B to another 25% of the packets (the ones of 1000 B). But it minimizes the number of chaff packets since all packets can be padded to this size.
- [1000, 1500]: Here, the 1500 B packets can be sent in the 1500 B state and the other packets in the 1000 B state. Therefore, ditto only needs to add 500 B of padding to 25% of the packets. However, it needs to send chaff packets if multiple 1500 B packets arrive subsequently.
- [500, 1000, 1500, 1500]: Here, the pattern equals the input distribution and ditto can send each packet without padding. However, it might need to send chaff packets depending on the order in which the real packets arrive.

For the continuation of the example, we use the pattern [500, 1000, 1500, 1500].

Traffic shaping The data-plane component of ditto merges incoming real packets with chaff packets such that the mix fits the pattern with minimal overhead. This is challenging because it needs to be performed in hardware to achieve high performance but typical networking hardware is not designed for this. ditto solves this challenges by combining switch queuing and scheduling to hierarchical queues with two levels:
When a packet arrives at a ditto switch, ditto first assigns it to a pattern state. A pattern state is one entry in the pattern; it defines the size which the packet has when it leaves the switch. Since ditto cannot split packets, it assigns a packet to the next-larger pattern state. For example, a packet of size 800 B is assigned to the pattern state 1000 (P₁ in Figure 4.3) such that ditto sends it next time it needs to send a 1000 B packet.

Each pattern state Pᵢ has two first-in-first-out (FIFO) queues with priorities. A high-priority queue to which ditto assigns real packets (qᵢᵣ) and a low-priority queue which ditto fills with chaff packets (qᵢᶜ).

In the example, ditto assigns the 800 B packet to the high-priority queue q₁ᵣ belonging to the pattern state P₁.

Filling the low-priority queues with chaff packets requires a way to generate these packets. ditto achieves this by continuously recirculating chaff packets and cloning them into the low-priority queues. This does not require a dedicated traffic generator and it does not affect the switch performance (except that it requires one switch port to perform the recirculation).

ditto then feeds the output of each pair of priority queues (qᵢᵣ, qᵢᶜ) to a round-robin queue qᵢ and it configures their rates such that the output is 1/L-th of the total rate (for a pattern of length L). As a result, each pair of priority queues will output packets at a constant rate and irrespective of whether there is a real packet or not (since there is always at least one chaff packet in each low-priority queue).

In the next phase, ditto performs round-robin scheduling among the round-robin queues (q₀, q₁, q₂ and q₃ in Figure 4.3). Because the order of the round-robin queues corresponds to the obfuscation pattern, the scheduler then outputs packets according to the pattern.

After the queuing and scheduling in the traffic manager, ditto pads the packets in the egress pipeline. At this point, the ordering of the packets is already following the pattern and each packet is marked with its target size. ditto adds padding headers to compensate for the difference between the actual packet size and the target size. For example, it adds 200 B of padding headers for the 800 B packet from above.

Now that the packet has the right size, ditto sends it to the egress port. There, the packet needs to be encrypted (e.g., using MACsec, which can

2 Fragmentation is often not available on switches or routers for performance reasons. The largest pattern state needs to correspond to the maximum size of any packet in the network (MTU). If multiple states have the same size, ditto distributes packets uniformly among them.
run at line rate [211]) before it leaves the switch. The encryption ensures that an attacker cannot see the padding and she cannot distinguish between real and chaff packets from content analysis.

4.3 Computing Efficient Traffic Patterns

A naive pattern would be to make all packets equal size. However, this would be inefficient because network traffic contains a variety of different packet sizes and ditto would need to pad them all to the maximum size. For example, Internet backbone traffic is bi-modal (most packets are of size < 70 B or > 1400 B) [212].

In this section, we describe how ditto computes efficient patterns by minimizing the overhead for the expected traffic.

Definition An obfuscation pattern \(P \) for ditto is an ordered list of length \(L \) which specifies sizes of packets \(P_i \):

\[
P = [P_0, P_1, \ldots, P_{L-1}], \quad P_i \in \mathbb{N}
\]

(4.1)

Given such a pattern for a link protected by ditto, ditto orders and pads packets such that their size follows \(P \). That is, the \(j^{th} \) packet is of size \(P_{j \mod L} \).

Every pattern is secure We first note that ditto achieves its security goals with every pattern because the pattern is static and therefore does not reveal information about the real traffic traversing a protected link.

Efficient patterns Obfuscation patterns differ in their overhead. Intuitively, a pattern is more efficient than another if it requires less padding and buffers/reorders real packets less. In the following paragraphs, we explain how we determine the pattern length \(L \) and its states \(P_i \) to obtain efficient patterns.

Selecting the pattern length The pattern length impacts the amount of: (i) padding required, longer patterns require less padding as they can better fit the original traffic distribution; (ii) chaff packets generated, shorter patterns generate less chaff packets because incoming packets are spread over fewer states; and (iii) packet reordering, longer patterns lead to more reordered packets because they require more queues.
In Section 4.7, we show empirically that patterns of length 3–6 achieve good results in all dimensions and for realistic traffic.

Selecting the pattern states Since ditto iterates over the pattern and sends the same number of packets from each of the states over time, we compute the pattern such that each pattern state fits for \(\frac{100}{L} \) % of the packets. This is the case if the pattern state \(P_i \) is equal to the \(((i+1) \cdot \frac{100}{L})\)-th percentile of the expected traffic distribution \(D \):

\[
P_i = \text{percentile}_{(i+1) \cdot \frac{100}{L}} D \quad i \in [0, 1, \ldots, L - 1]
\]

When to compute and update the pattern \(D \) models the distribution of real packet sizes expected on the protected link. Ideally, the operator computes it based on the real traffic (e.g., recorded prior to using ditto). Since this distribution only reveals information about the average traffic characteristics, it is usually not confidential. Otherwise, the operator can use publicly available data such as [213].

When \(D \) changes significantly, the operator can compute a new pattern and reconfigure ditto to use the new pattern without interruption. However, as we show in the evaluation (Section 4.7), the same pattern can be used for many months of real Internet traffic with almost constant overhead.

4.4 TRAFFIC SHAPING IN THE DATA PLANE

In this section, we explain how ditto shapes traffic such that it follows the previously defined pattern.

Problem A switch running ditto receives packets with unpredictable size and at unpredictable times and it needs to ensure that the packets that leave the switch follow the predefined pattern (w.r.t. to packet sizes and inter-packet time). To achieve this, ditto needs to perform three operations using the capabilities of programmable switches: (i) add padding to real packets; (ii) buffer packets until they fit in the pattern; and (iii) insert chaff packets.

Architecture The architecture of a ditto switch is as follows (cf. illustration in Figure 4.3). When a real packet arrives at the ditto switch, the parser first extracts information such as the IP header. Then, ditto determines the egress port depending on the packet’s destination address and assigns it to one of the queues which belong to this egress port. For a pattern of
length L, each egress port (these are the ports where obfuscated traffic leaves a ditto switch) has L queues and each queue corresponds to one state in the pattern (and therefore one packet size). The traffic manager then performs round-robin scheduling to send packets from the queues to the egress pipeline. There, ditto adds padding such that the packet’s size eventually matches the target size determined by the pattern. Finally, the packet exits at the egress port.

Unfortunately, typical round-robin scheduling has a property that is not optimal for ditto: It skips a queue if it does not contain a packet. This is problematic for ditto because it leads to skipped states in the pattern. To avoid this, ditto makes sure that there is always at least one packet in each queue. If there is no “real” packet available, the switch sends a “chaff” packet.

Assigning packets to queues ditto selects the queue to which it assigns a packet such that the amount of padding is minimal. Since ditto can only make packets larger, it selects the next-largest queue i for a packet of size s and pattern states P_i:

$$i = \arg \min_i (P_i - s \mid s \leq P_i)$$

(4.3)

If the packet fits into more than one state with the same amount of padding, ditto randomly selects one of them.

Round-robin scheduling to implement the pattern ditto configures all queues of an egress port with the same priority such that the traffic manager (TM) performs round-robin scheduling. The TM therefore iterates over all queues and sends one packet from each non-empty queue.

The main challenge to ensure that the sent packets always follow the pattern is therefore to make sure that a queue is never empty when the TM tries to send a packet from it. Ideally, the hardware would allow to inject a “chaff” packet when the TM attempts to send a packet from an empty queue. While this would be a small extension in hardware, there was no need for such a feature so far and thus it does not exist. Below, we describe how we combine priority queueing and round-robin scheduling to overcome this limitation.

Priority queuing to mix real and chaff packets To ensure that round-robin queues are never empty, we implement hierarchical queueing with two levels. The idea is to combine priority queues with round-robin scheduling. For each pattern state, there is a pair of priority queues: A high-priority
queue \((q_{i,r}) \) which receives the real packets belonging to this state, and a low-priority queue \((q_{i,c}) \) which is flooded with chaff packets for this state. Each pair of priority queues produces a constant stream of packets while prioritizing real packets. These outputs are then fed into the round-robin scheduling which produces the pattern. We detail the implementation in Section 4.6.

Custom headers to add padding to packets After the TM ensured that packets reach the egress pipeline in the right order, *ditto* adds padding such that they have the right size. *ditto* pads packets by adding additional headers after the Ethernet header (adding and removing custom headers is something that programmable switches are designed to do at line rate). Because the structure of headers needs to be defined at compile time, *ditto* uses a combination of multiple headers of different sizes (32, 16, 8, 4, 2 and 1 Byte) to add the right amount of padding to every packet. To allow the receiver to identify padded packets and to remove the padding, *ditto* marks padded packets in the Ethernet header using the EtherType field. Since a device running *ditto* encrypts the traffic over the WAN links, *ditto* can add padding with arbitrary contents and include information about the packet’s original size such that the endpoint knows how much padding to remove.

Removing padding from packets The receiving switch recognizes padded packets based on their value in the EtherType field and can thus remove the padding without additional information or overhead. To remove the padding from packets before they are sent over a link which is not protected (e.g., to an end host), *ditto* removes all the padding headers and restores the original EtherType.

4.5 Security Analysis and Limitations

In this section, we explain why *ditto* achieves the security goals from Section 4.1.3 and we discuss *ditto*’s limitations.

4.5.1 Security goals

Volume anonymity The obfuscation pattern together with the link bandwidth defines the traffic volume (in terms of bytes and packets) that is
transmitted over every protected link. Since this volume is static and independent of the real traffic, an attacker cannot learn anything from it other than the maximum number of bytes and packets sent over the link if the link was fully utilized. Naturally, an attacker with access to multiple links and additional background information can derive an upper bound for the total traffic volume (cf. Section 4.5.2).

Timing anonymity Because ditto always sends traffic according to the same pattern and at the same rate, it does not leak timing information. Since packets are encrypted such that the ciphertext changes for each WAN link, attackers cannot distinguish real and chaff packets and they cannot determine which packets belong to the same host, application or flow.

Path anonymity Even if an attacker can eavesdrop on all links connected to a ditto switch, she cannot link incoming and outgoing packets because (i) the pattern of incoming and outgoing packets is always the same and ditto would rather drop packet than violate the pattern; (ii) she does not know which packets contain real traffic; and (iii) packets are encrypted such that the ciphertext changes for every WAN link.

Summary ditto ensures that the traffic seen on each protected link is independent of the real traffic crossing this link. From an attacker’s perspective, the traffic always looks the same: packets whose size follows a repeating pattern, with constant inter-packet time and random contents (because of the encryption). Assuming a bug-free implementation and properly working hardware, there is therefore no difference between the observed traffic when there is real traffic and when there is only chaff traffic. Thus, traffic-analysis attacks would produce the same result in both situations and do therefore not work. This also extends to other properties than timing and size, such as packet directions and to multiple colluding attackers.

4.5.2 Limitations

While ditto achieves its security goals and prevents traffic-analysis attacks, there are some limitations and potential attack vectors outside of our threat model. We discuss them below.

Malicious insider An attacker who has compromised multiple hosts (e.g., servers in two datacenters connected through a ditto-protected link) can
(i) try to estimate the real traffic volume by measuring the performance of her own traffic; and (ii) exploit ditto for a DoS attack.

To estimate the real traffic volume, the malicious insider can leverage the fact that ditto enforces a predefined traffic pattern and that it does not split packets. We illustrate this with a simple example: Assuming the pattern is \([500, 1500]\), the protected link runs at 100 packets per second (pps), the attacker knows that the link can carry at most 50 packets of size between 501 B and 1500 B per second. If the attacker can send and receive 50 packets of size 1500 B per second herself, she can use the observed delays or losses to roughly estimate the amount of other real traffic of this size because otherwise there would have been congestion or losses. Since the traffic created by this attacker is likely untypical for the compromised servers, it could be detected using anomaly detection techniques.

To exploit ditto for a DoS attack, the malicious insider can follow a similar strategy as above and she can create her traffic such that it requires a maximum amount of padding. For example, if the pattern is \([500, 1500]\), she can repeatedly send packets of size 64 B (the smallest IP packet size) and 501 B. ditto would pad these packets to 500 B and 1500 B respectively and thereby help the attacker to amplify her volume. Since the attacker’s packets compete with benign traffic for "transmission slots", the attacker can partially prevent benign traffic from being sent if her rate is high enough.

We see two possible approaches for mitigating this attack: (i) Within each pattern state, packets could be prioritized based on the amount of padding which is required (lower priority for packets which require more padding). Then, packets from such an attacker would be dropped first but this would also impact benign traffic that requires a lot of padding. (ii) The rate at which each user can send packets of a certain size could be limited (e.g., 10 packets with 101 B per second). Packets exceeding this limit could be handled with lower priority such that the measure only has an impact when the network is congested.

Attacker with insider knowledge If the attacker has additional knowledge of the network topology, she can potentially also use this to estimate the real traffic volume. The best case (for the attacker) is a linear topology where the traffic crosses multiple links and each link uses a different pattern. An extreme example is a linear topology with two links where the first one used a pattern that sends only MTU-sized packets (i.e., 1500 B) and the second one uses a pattern that sends minimal-sized packets of 64 B. If both of these links run at 100 Gbps, the first one transmits around
8 Mpps (million packets per second) and the second one 195 Mpps. If the attacker knows that all traffic crosses both links, she can derive an upper bound of 8 Mpps (because ditto does not concatenate or split packets) and 8 Mpps × 64 B ≈ 4 Gbps throughput (because ditto only makes packets larger). However, this weakness is not harmful in practice because (i) both links would use the same pattern if the pattern was computed as described in Section 4.3; and (ii) it does not break the volume anonymity property.

Compromised or faulty hardware ditto runs on network switches and requires them to be trusted and to function properly. If this is not the case, it allows various attacks.

If an attacker has administrative access to a ditto switch, she can easily break ditto’s security properties (e.g., by simply disabling ditto). While this is not in our threat model, there are existing techniques to mitigate such attacks [214].

If the used hardware leaks information (e.g., because the scheduling is not working properly or the encryption scheme is weak), this can naturally also weaken ditto’s security.

4.6 Implementation

We fully implemented ditto in P4 (traffic shaping) and Python (pattern computation). Since implementing the pattern computation is relatively straightforward, we focus on the P4 implementation, which is technically challenging (cf. Section 4.4).

The source code of our implementation is available on GitHub.3

Hardware target Our data-plane implementation runs on Intel’s Tofino chipset [59], which powers several off-the-shelf switches [215–217] and is used by large operators (e.g., AT&T, Deutsche Telekom, and Alibaba [205, 206]).

Architecture The architecture of our implementation follows the description in Section 4.4. In the ingress pipeline, we (i) determine the egress port for the incoming packet; (ii) we check if the egress port is one that we want to obfuscate and whether it is a real packet (as opposed to a chaff packet); if so, we (iii) assign the packet to the right queue; and (iv) check if the switch

3 https://github.com/nsg-ethz/ditto
can add enough padding in one pipeline pass or if the packet needs to be sent through the pipeline multiple times.

Approximating hierarchical queueing As explained in Section 4.4, one challenge behind ditto is that the switch needs to send a packet from each round-robin queue *even if the queue is empty*. This is not possible in existing switches. For ditto, we implemented an approximation of hierarchical queueing, where a packet traverses two queueing stages instead of just one. We achieve this by sending each packet through the switch data plane twice. As illustrated in Figure 4.4, the first queueing stage consists of one pair of priority queues for each pattern state. The queue with the higher priority receives all real packets belonging to the respective pattern state, while the queue with the lower priority is flooded with chaff packets.

We set the output rate of each priority-queue pair such that the sum of all pairs equals the total sending rate of the switch. For example, if the switch sends 10 Mpps and \(L = 4\), each queue pair needs to transmit 2.5 Mpps. The outputs from the priority queues are fed back to the switch via loopback ports.

When the packets arrive at the switch for the second pass, ditto sends them to the round-robin scheduler attached to the actual egress port. Its output then follows the pattern.

The main cost of sending each packet through the switch twice is that the loopback modules occupy ports which cannot be used for interconnections with other switches. Since each physical 100 Gbps QSFP port can be split into 2 or 4 sub-ports (with 50 Gbps or 25 Gbps throughput each, respectively), one loopback port can be used for up to 4 pattern states. The bandwidth of one sub-port needs to be at least 100/\(L\) Gbps where \(L\) is the length of the pattern. Since the bandwidth can only be 100, 50, or 25 Gbps, ditto configures it as follows:

\[
bw = \begin{cases}
100, & L = 1 \\
50, & L = 2 \text{ or } L = 3 \\
25, & L \geq 4
\end{cases}
\]

(4.4)

And the number of required loopback ports \(n\) computes to

\[
n = \left\lceil \frac{L \cdot bw}{100} \right\rceil
\]

(4.5)
Figure 4.4: *ditto* implements hierarchical queueing by sending each packet through the switch twice.

For example, patterns of length 3 and 6 require 2 loopback ports for each obfuscated port. In the typical use case where an organization uses a *ditto* switch as its gateway to the WAN, switch ports are not scarce (e.g., a typical switch has 64 ports [59] and could therefore support around 20 WAN links).

Adding padding In the egress pipeline, *ditto* adds padding to the packet until it has the required size. *ditto* adds padding in the form of additional headers of different sizes (between 32 B and 1 B). *ditto* adds the padding headers in decreasing order in separate stages to reduce the number of match & action table entries: First, it adds as many 32 B padding headers as possible (and needed). Then, it tries to fill the remaining space with 16 B headers and so on until there is no more padding needed. For example, *ditto* adds 2×32 B, 1×4 B and 1×2 B padding headers to increase a packet’s size by 70 B.

Recirculate packets if needed If the required amount of padding is larger than what can be added in one pipeline pass, *ditto* *recirculates* the packet. Then, the packet traverses the switch multiple times (i.e., from the end of
the egress pipeline, it is sent to the beginning of the ingress pipeline). With each pass, *ditto* can add additional 254 B of padding. By default, *ditto* uses two 100 Gbps port for the recirculations. Depending on the pattern and the traffic distribution, this can result in a bottleneck especially if *ditto* protects traffic on multiple ports. In this case, *ditto* can load-balance the recirculations over more ports (thereby reducing the number of available switch ports for other interconnections).

Removing padding Removing padding is straightforward: *ditto* removes all the padding headers and restores the original EtherType. Again, the limited size of the PHV (Packet Header Vector, cf. Section 2.3) can require recirculating the packet in order to remove all padding.

Resource usage The main bottleneck regarding resource usage of *ditto* is the amount of padding that can be added in one pipeline pass. Because *ditto* adds padding in the form of additional headers, the amount is limited by the size of the PHV and the deparser. In our current implementation, *ditto* can add up to 254 B of padding in one pipeline pass. Regarding other types of resources (e.g., SRAM and TCAM memory), our implementation uses only a small fraction of the switch’s resources (less than 10% on average over all stages).

4.7 Evaluation

We first describe our methodology in Section 4.7.1. Then, we evaluate our implementation with respect to performance (Section 4.7.2) and security (Section 4.7.3). In addition, we outline the potential of future hardware optimized for *ditto* through simulations (Section 4.7.4). Table 4.1 summarizes our main results.

4.7.1 Datasets and methodology

The distribution of traffic processed by *ditto* depends on the type of WAN in which it is deployed. As a typical use case, we envision an organization with several sites which uses its WAN to connect them and use one site as a gateway through which it sends all outgoing and incoming traffic. In this case, WAN traffic has similar characteristics as Internet traffic. In addition,
Results from hardware measurements

Performance and efficiency

- Longer patterns reduce the padding and chaff overhead.
- *ditto*’s padding strategy leads to less overhead compared to related work.
- Non-interactive traffic (replayed traces): no performance loss for link loads between 60 and 70 Gbps (depending on the dataset).
- Interactive traffic (iPerf, VoIP and web browsing): no performance loss for link loads between 70 and 80 Gbps (depending on the dataset).

Security

- Packet sizes and timing do not allow conclusions about real traffic.

Results from simulations

Performance and efficiency

- Longer patterns reduce the padding and chaff overhead.
- 1 MB of buffer space is enough to obfuscate a traffic volume of up to 99% of the link bandwidth.
- The same pattern can be used for months without sacrificing efficiency.
- 92% of the packets remain in the correct order for highest load and the longest pattern.

Security

- The pattern produced by *ditto* is secure by design.

| Table 4.1: Evaluation summary |

we consider two extreme cases: (i) the best case for *ditto* where all packets have the same size (e.g., if there was heavy traffic shaping); and (ii) the worst case for *ditto* where the packet sizes are uniformly distributed.

Datasets

We use real Internet traffic and synthetic traffic where the packet sizes follow given distributions. For the real Internet traces, we use the publicly available CAIDA anonymized Internet traces dataset [213] (CAIDA). Even though this dataset was collected on Internet links, we believe it is representative for a WAN where one site is used as a gateway for all incoming and outgoing traffic (e.g., for central compliance monitoring). We use the most recent dataset (captured in January 2019) and we preprocess it in two steps: (i) we remove all non-IPv4 packets because the current
implementation of ditto can only handle IPv4 traffic, and (ii) we extract the first 100 M packets to speed up our simulations.

In addition, we generate two synthetic traffic traces using Scapy [218]: one where all packets have size 1480 B (CONSTANT) and one with uniformly distributed packet sizes between 60 B and 1480 B (UNIFORM). While these traffic distributions are unlikely to occur in practice, we use them to represent two extreme cases: CONSTANT is the best case for ditto because it already follows a constant pattern while UNIFORM represents the worst case because fitting a pattern to a uniform distribution creates the highest overhead.

Many WANs will have different traffic distributions than the traces that we use in the evaluation, but we argue that our datasets are useful to show ditto’s performance on a wide range of different traffic characteristics. It is also important to note that the traffic distribution does not have an impact on ditto’s security properties.

All datasets mentioned above represent non-interactive traffic. That is, the traffic does not change depending on the network behavior. While this allows us to test ditto with high traffic volumes (up to 100 Gbps), it is not fully representative for real-world behavior (e.g., a dropped TCP packet would be retransmitted). To address this, we run interactive applications on top of the replayed traffic and we measure the performance achieved by these applications. We describe this in Section 4.7.2.

Methodology We evaluate ditto on off-the-shelf devices and we simulate how it would perform on ideal future hardware.

4 This is only an implementation detail. The same approach would also work for IPv6 packets.
The hardware prototype is our implementation as described in Section 4.6. It runs on two Intel Tofino switches with 32×100 Gbps ports. Between the switches, ditto obfuscates traffic on one link at 100 Gbps. We use a traffic generator (Moongen [219]) to inject traffic from one server, and to record traffic on another server (cf. Figure 4.5).

We also implemented a simulator for optimal hardware in Python. It receives a packet sequence as input (the real traffic) and produces a packet sequence as output (the obfuscated traffic). The simulator operates in discrete time steps: in each iteration, it receives and sends one packet. To shape traffic according to the pattern, it uses round-robin scheduling and when there is no real packet to send it sends a chaff packet.

4.7.2 Performance and efficiency in today's hardware

In the following paragraphs, we show the performance of ditto with respect to these three aspects:

- **Throughput**: The ratio between the incoming and the outgoing real traffic
- **Recirculations**: The number of recirculations of each packet
- **Application performance**: The performance of interactive applications

Throughput Figure 4.6 shows the ratio between incoming real traffic and outgoing real traffic. To obtain these results, we send traffic from a server to a first switch where we add additional information to packets that we need for our measurements (e.g., we add a number to each packet). Then we send it to the switch which runs ditto. Afterwards, we record the obfuscated traffic on another server (see Figure 4.5).

The total outgoing traffic is always 100 Gbps (not shown in the plot). If there was no performance loss, the amount of incoming traffic would equal the amount of outgoing traffic. But since ditto makes packets larger and fits them into a predefined pattern, it creates overhead and therefore reduced the usable throughput. However, as Figure 4.6 shows, the hardware prototype operates almost without loss until 90% (CONSTANT), 70% (UNIFORM) or 60% (CAIDA) load.

The reasons for this sub-optimal performance include:
• *ditto* relies on precisely controlled output rates of priority queues such that the output does not fluctuate. However, today’s switches are typically not designed for that (they offer traffic shaping, but the rate is only correct “on average”). In our case, bursts of too much traffic lead to dropped packets.

• *ditto* adds padding in the form of additional headers. Treating padding like packet headers is expensive with respect to the required resources in the pipeline and the deparsing time, and a switch that could add padding without using these resources could perform better.

• *ditto* uses a maximum bandwidth of 100 Gbps for recirculation. Therefore, if packets need to be recirculated multiple times, this bandwidth is not enough and packets get lost.

Comparison with related work In Figure 4.6 we also show an upper bound for the performance of three systems that rely on end-host protocols to obfuscate traffic: HORNET [104], TARANET [106] and BuFLO [121]. To compute the performance of these systems, we only simulate their padding strategy (i.e., we neglect computational overhead and overhead due to mixing with chaff packets), hence the real results of these systems would be strictly worse than the plotted upper bound.

Our results show that *ditto* outperforms all of these approaches even if their computational overhead is ignored (the results for *ditto* are measurements on actual hardware and therefore include all forms of overhead). *ditto* outperforms these approaches because (i) *ditto* adds padding according to an efficient pattern, which produces less overhead than padding all packets to the same size; and (ii) operates on a per-link basis as opposed to obfuscating each flow separately.

Below, we provide more details about the simulated parameters.

HORNET pads all packets to the same size s. We set s to the size of the largest packet in the respective dataset, which minimizes the padding. Further, HORNET adds headers to the original packets. The size of these headers depends on the AS path length and a sample length. We set the AS path length to 1 and the sample length to 16 (as in the paper [104]).

TARANET shapes flow(lets) such that they transmit at a fixed rate (constant size and inter-packet time) and it adds chaff packets to obfuscate the real length of a flow(let). In contrast to *ditto*, TARANET can also split packets to make them smaller. For our simulations, we do not consider
chaff packets (which makes the results only better) and we set the packet size to the average packet size of the respective dataset.

BuFLO's padding strategy is to pad all packets to the MTU (1500 B in our case) without modifying the timing. Again, we only simulate the padding overhead without considering chaff packets. Ideally, this approach can work without additional headers which is why we assume there is no such overhead.

Recirculations Since our hardware prototype can only add 254 B of padding per pipeline pass, some packets need to traverse the switch multiple times. For this, we use a technique called recirculation which sends a packet from the end of the egress pipeline back to the beginning of the ingress pipeline.

Recirculating packets increases reordering and packet delay and (because the bandwidth for recirculation is limited) can lead to packet loss. Therefore, it is better to keep the number of recirculations small. The best strategy to reduce recirculations is to make patterns long enough such that the
difference between each pattern state and the next smaller or larger one is less than the number of padding bytes per pipeline pass.

Constant does not require recirculations. For CAIDA and UNIFORM, the number of recirculations decreases with an increasing pattern length. A pattern of length 1 requires 1.59 (CAIDA) or 0.99 (UNIFORM) recirculations on average. This numbers decrease to 0.23 and 0.40 for a pattern of length 3 and 0.18 and 0.03 for length 6.

Application performance In addition to the raw throughput measurements above, where we replayed static traffic traces, we now measure the performance of interactive applications.

We measure the real-world performance of three typical types of applications: (i) high-bandwidth TCP and UDP traffic (using iPerf [220]); (ii) web browsing traffic (using WprGo [221]); and (iii) VoIP traffic (using pjsip [222]). Figure 4.5 illustrates the setup of this experiment. We run Docker containers with clients and servers for the respective application and we measure the performance of these applications when the traffic is sent via a *ditto*-enabled link versus the performance when the traffic is forwarded directly (we use this as the baseline).

Figure 4.7 shows the results of these measurements. We obtain the results by running 50 measurements for each input rate (0–100 Gbps) and we perform each measurement with and without *ditto*. We highlight that we perform the measurements in addition to the replayed traffic. Therefore, a TCP throughput of 7 Gbps at an input rate of 80 Gbps means that *ditto* is handling 87 Gbps in total. The measurements without *ditto* represent a baseline where traffic is directly forwarded.

We measure the following metrics:

- **TCP throughput**: Important for applications which demand high bandwidth and reliable throughput (e.g., file transfer). We measure TCP throughput by creating 30 s TCP flows with maximum throughput using iPerf.

- **Packet loss**: Important for applications using unreliable transport (e.g., video streaming over UDP) and reliable transport (e.g., TCP). We measure packet loss by creating 30 s UDP flows with 1 Gbps throughput using iPerf.

- **Jitter**: Important for real-time applications and streaming (e.g., video calls). We measure jitter by creating 30 s UDP flows with 1 Gbps throughput using iPerf.
Figure 4.7: ditto compared to the baseline. Lines show mean values and colored areas indicate the 95% confidence interval. ditto affects the application performance after a certain link load, depending on the dataset, pattern length and metric.
• **Round-trip time (RTT):** Important for real-time applications (e.g., VoIP). We measure the RTT by creating 8×30 s VoIP calls using PJSIP.

• **Website load time:** Important QoE metric. We measure the load time for the 9 most popular websites according to Alexa [223].

The results in Figure 4.7 show that – as expected – ditto does not degrade the network performance up to a certain point. Depending on the distribution of the traffic and the length of the pattern, ditto does not have significant impact on the network performance with an input rate of up to 80 Gbps (TCP throughput, Uniform, pattern of length 6). The main causes for the degraded performance are dropped packets (due to the same reasons as discussed above). If packets are not dropped, we highlight that ditto has no significant effect on timing-related metrics such as jitter and Round-Trip Time (RTT).

In general, longer patterns are more efficient because they produce less overhead. Most of our results confirm this hypothesis. However, there are two exceptions in the CAIDA dataset: TCP throughput and packet loss. The reason for this is that we do not take the interactive application traffic into account when we computed the pattern. Then, it can happen that the measurements modified the traffic distribution to an extent where the pattern does not fit well anymore. Especially for longer patterns (because each state of the pattern has a small share of the total amount of transmitted packets, e.g., $1/6$th for $L = 6$) and for flows with many equal-sized packets (because then all packets are assigned to the same pattern state). Both the TCP and the UDP measurements consist of constant-size packets because iPerf maximizes the throughput.

4.7.3 Security in today’s hardware

We now show that the hardware prototype obfuscates traffic such that the observed inter-packet times and packet sizes are independent of the real traffic and we show that the accuracy of a state-of-the-art attack is on par with random guessing.

Packet timings are independent of the real traffic Figure 4.8 shows the Inter-Packet Gap distribution (IPG, the time between the end (last byte) of the previous packet and the start (first byte) of the current packet) for

5 [amazon.com, facebook.com, netflix.com, reddit.com, youtube.com, zoom.us, bing.com, google.com, and wikipedia.org](#)
Figure 4.8: IPG distributions. The IPG does not depend on the input rate (the 11 lines in each plot are overlapping).

Each dataset, pattern length, and network load. Visually, it is clear that the distributions do not depend on the network load (the lines largely overlap). Analyzing the measurements further shows that a large fraction is within a typical error margin around the median value. For example, an attacker who can measure timestamps with a precision of ± 3.2 ns (as in a state-of-the-art capturing device [224]), could not distinguish between 92% and 97% (depending on dataset and pattern length) of the measurements.

The numbers in Figure 4.8 are subject to imprecisions for two reasons: (i) we measure the timestamps in the ingress pipeline of the evaluation proxy switch (cf. Figure 4.5), i.e., not on the link directly and not on a calibrated measurement device; and (ii) we measure the timestamp at the beginning of a packet, while the IPG refers to the time between the last byte of the previous packet and the first byte of the current packet. We therefore adjust the timestamp computationally as follows. For two packets of sizes...
Figure 4.9: ditto performs round-robin scheduling up to an error which does not depend on the input rate.

\[s_0 \text{ and } s_1 \text{ bytes arriving at timestamps } t_0 \text{ and } t_1 \text{ (} t_0 < t_1 \text{) and a line rate of 100 Gbps, the IPG is} \]

\[IPG = t_1 - t_0 + \frac{s_0 \cdot 8}{100 \cdot 10^9} \quad (4.6) \]

Packet sizes are independent of the real traffic We now evaluate whether the hardware prototype obfuscates traffic such that it follows the defined pattern. Round-robin scheduling in today’s switches is designed to follow round-robin behavior on average, not necessarily in microscopic detail. This means that the switch performing round-robin scheduling could send \([P_1, P_1, P_2, P_2, P_3, P_3]\) instead of \([P_1, P_2, P_3, P_1, P_2, P_3]\) (where \(P_i\) represents a packet from queue \(i\)). However, since this behavior originates in the hardware implementation of the switch and not in the behavior of ditto, it does not affect ditto’s security.

In Figure 4.9 we show that the hardware prototype indeed performs round-robin scheduling on average and it produces a distribution which is close to uniform. In the plot, we show the Root Mean Square Error (RMSE) between the observed distribution and a uniform distribution. The error does not leak information about real traffic. Instead, it originates from the approximation of the 2-level hierarchical queueing and the required precise rate-control, which is more error-prone for small packets.

State-of-the-art attack does not work with ditto After showing that packet sizes and timings are independent of the real traffic and do not leak
information in general, we now run a state-of-the-art attack to showcase that ditto is robust against this particular attack.

We run the Deep Fingerprinting (DF) attack developed by Sirinam et al. in [126]. This attack uses convolutional neural networks to identify visited websites. The inputs for training, validation and testing are sequences of packet directions (e.g., [1, -1, -1] when loading a website required one outgoing packet and two incoming ones).

To run the attack, we used the code published by the authors and the same parameters and input dimensions (1000 samples per website, at most 5000 packet directions per sample). To load the websites, we used the same setup as for the application performance experiment above and we added 5 ms latency between the two containers to make it realistic for real Internet traffic. We loaded the Alexa top 9 websites and recorded the traffic on the link protected by ditto using tcpdump [225]. In order to be able to record the traffic, we run ditto at only 500 Mbps per direction.\footnote{The attack would not perform better for a higher bandwidth.} From the recorded traffic, we extracted the packet directions for 5000 packets starting with the first packet sent from the client to request a website. This makes it easier for the attack as it would be in practice because a real attacker could not distinguish between real and chaff packets and thus she could not determine the first packet of a request. We run the attack in the closed world setting as in [126], where there is no other real traffic besides the loaded website (which makes it easier for the attack) and we run the attack for traffic recordings containing between 2 and 9 websites (identify fewer websites is easier for the attack).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{DF attack accuracy. For ditto-protected traffic, the accuracy is on par with random guessing.}
\end{figure}
We depict the accuracy of the attack in Figure 4.10 with and without ditto (each point in the plot is the average accuracy over 20 attack runs). We also depict the accuracy of an attacker randomly guessing (for reference). We see that the attack is unsuccessful on ditto-protected traffic: the accuracy is on-par with random guessing. Note that the results hold independently of the pattern length (here, 1 or 3). We also see that the attack is successful without ditto, as expected.7

4.7.4 Performance and efficiency in future hardware

We now simulate how ditto would run on future hardware with two extensions compared to our hardware: (i) the round-robin scheduler can directly send a chaff packet if a queue is empty; and (ii) the number of padding bytes is not limited.

In the following paragraphs, we show the simulated performance of ditto with respect to these two aspects:

- **Overhead**: Amount of padding and chaff packets depending on the input load and the pattern length
- **Reordering**: Out-of-order packets in TCP flows depending on the input load and the pattern length

Overhead We simulate ditto with different input loads (10–100%) and pattern lengths (1–32) to evaluate the overhead added to real traffic. To measure overhead, we use 4 metrics:

- **Chaff overhead**: The number of chaff bytes that ditto sends to always transmit at line rate
- **Padding overhead**: The padding that ditto adds to packets in order to fit into the pattern
- **Buffer space usage**: The required buffer space to store packets until they fit in the pattern
- **Switching delay**: The number of packets that ditto transmits between two packets that arrive subsequently

7 We observed that the model is overfitting in some cases for the unprotected datasets. To limit this, we added an early stopping mechanism that stops the training when there was no significant improvement in the last 3 epochs [226].
Figure 4.11: Overhead depending on the input load. **ditto**’s overhead in terms of buffer space and introduced switching delay is small up to an input load of around 80%.

Overhead depending on the network load Figure 4.11 shows how the network load impacts the overhead created by **ditto**.

We show the results for all three datasets. For CAIDA and **UNIFORM**, we show the results for different pattern lengths (1, 3 and 6). For **CONSTANT**, we only show a pattern of length 1 because this is already the most efficient pattern. As expected, longer patterns fit the actual traffic distribution better and therefore create lower padding- and chaff overhead.

The **chaff overhead** decreases with increasing input load because the more real traffic there is to send, the fewer chaff packets need to be added.

We observe that the chaff overhead is larger for short patterns. This is because short patterns need to consist of larger packets (e.g., a pattern of length 1 results in sending MTU-sized packets constantly) and therefore, even if there are fewer chaff packets, the amount of chaff bytes is larger.

ditto needs to buffer packets when the sequence of the pattern does not match the sequence of the incoming packets. For small loads, this is less critical because there is more time between two subsequent incoming packets (e.g., if the time between two incoming packets is larger than the time it takes to iterate over the pattern once, the buffer is always empty when the new one arrives). For high input loads, discrepancies between the sizes of incoming packets and the outgoing pattern have a higher impact.
However, as Figure 4.11 shows, 1 MB of buffer space is sufficient for up to 90% (CAIDA) or 99% (Uniform) load. Patterns of length 1 do not require buffering because ditto pads and sends each packet immediately.

The switching delay measures the number of packets sent between two incoming packets. Therefore, it evolves similarly to the buffer overhead. Again we observe a slow increase until the switch starts to get congested around 90% network load.

Overhead depending on the pattern length Figure 4.12 shows how the pattern length impacts the overhead. The results are for a high network load of 80%, which means that there are usually real packets ready to be sent in each pattern state. In this case, longer patterns result in less chaff overhead and padding overhead. This is because longer patterns fit the actual traffic distribution better and therefore require sending less additional traffic. At the same time, longer patterns lead to increased buffer usage and switching delay because it is more difficult to fit the incoming packets to the right pattern state.
Overhead for long-term use of a pattern

ditto computes the pattern based on the packet size distribution and then applies it for future traffic. This is always secure, but not necessarily efficient. If the distribution of the real traffic changes, it is worth computing a new pattern (which can be deployed without interrupting the switch [227]). We confirm with the results in Figure 4.13 that *ditto* can apply the same pattern over a long period (10 months) with a nearly constant overhead.

Packet reordering

We now evaluate the impact of *ditto* on the ordering of packets. We again simulate *ditto* with different input loads (between 10 and 100%) and different pattern lengths (1–32).

We focus on CAIDA in this experiment because the other datasets do not contain TCP flows. We randomly select 100k TCP flows with at least 2 packets from CAIDA and count the number of reordered packets for each of them (the sampled flows are the same across all experiments).

To measure reordering, we use the following metrics:

- **Reordered packets**: Packets that were out of order (i.e., packet i arrived before packet $i - 1$)
- **Flows with reordered packets**: Flows with at least one reordered packet

Reordering depending on the network load

Figure 4.14 shows how the network load impacts the reordering. As expected, a higher input load leads to more reordering. But even in fully loaded networks, less than 8% of the packets are reordered. 8% of reordered packets impact at most 47% of flows because many short flows are reordered.
Figure 4.14: Packet reordering depending on the input load. 92% of the packets remain in order for the highest load and the longest pattern ($l = 6$).

Figure 4.15: Packet reordering depending on the pattern length. Longer patterns lead to more reordering.

We point out that these results show a worst case because of the way how our simulator works. The original throughput of the CAIDA dataset is around 4 Gbps [212], which corresponds to an input load of 4% in our simulation. To simulate higher input loads, we replay CAIDA at a higher speed (up to 25× the original speed), which creates unrealistically high-bandwidth flows. For example, a user downloading a file with 1 Gbps is simulated as a user with a 25 Gbps connection.

Reordering depending on the pattern length Figure 4.15 shows how the pattern length impacts reordering. As expected, longer patterns lead to more reordering because the sequence of outgoing packets is more constrained.
4.8 RELATED WORK

Preventing traffic-analysis attacks has been an active research area for many years. However, existing work focuses on preventing traffic-analysis attacks for Internet users. As we elaborated earlier, these systems are largely orthogonal to ditto because protecting WAN traffic presents both new challenges (e.g., high throughput) and opportunities (e.g., control over network devices). Even though existing systems could be applied in WANs too, they would not perform well enough (cf. simulations in Section 4.7) since they are not optimized for this setting or they require modifications of the end hosts.

Most existing work is application-specific (e.g., to prevent website fingerprinting [228–231], ensure anonymous communication [204, 232] or protect IoT devices [233]) and/or requires additional servers to relay traffic [136, 203, 234]. In contrast to these approaches, ditto operates at the network layer, protects all traffic and does not need additional servers or modifications at the clients. Below and in Table 4.2, we summarize the most relevant work related to ditto.

Widely used protocols and libraries already allow adding random number of bytes to the plaintext before encrypting it. Examples include SSH [235], GnuTLS [231], and IPSec [236]. However, this only adds a small amount of anonymity (the volume increases by a random amount within some bounds) and it does not provide timing- or path anonymity.

Onion routing and mix networks TOR [101, 234], the most widely used anonymity network today, and similar systems (e.g., [104, 237, 238] use onion routing [239] to hide the source and the destination of traffic. However, they do not prevent timing attacks and they do not hide the traffic volume.

HORNET [104] is similar to TOR in the sense that it uses onion routing but it operates on the network layer. To obfuscate the traffic volume, HORNET adds padding to packets such that all packets have the same size.

PriFi [204] is based on Dining Cryptographers networks (DC-nets) [240] where each participating node is assigned a time slot in which it can (and must) send a message. This provides volume-, timing- and path anonymity because the observed traffic is always the same, but it reduces the total throughput linearly with the participating nodes.

Loopix [203] mixes real and chaff traffic in dedicated mix nodes and achieves low-latency communication with up to 300 messages per second.
while hiding the sender and receiver of messages as well as whether they are currently active.

Padding and traffic shaping Like *ditto*, several works aim at hiding the traffic volume by adding padding, chaff packets and/or by sending packets according to a predefined schedule. Examples of such systems include the works of Guan et al. [135], Wang et al. [136] and Wright et al. [241].

In [242], Dyer et al. show that existing padding approaches do not provide enough security and they suggest BuFLO as a solution with high security. BuFLO [242] pads all packets to the same size; delays them such that the time between two packets is constant; and sends chaff packets such that each flow has a certain minimal length. However, as the authors state in the paper, this approach is inefficient because of the constant packet size and inter-packet time. The key difference to *ditto* is the deployment scenario: BuFLO runs on end hosts and obfuscates each flow individually. This leads to the large overhead mentioned in the paper. *ditto* runs in the network and obfuscates traffic on a per-link basis according to an efficient pattern (instead of making all packets constant-size), which leads to less overhead. Furthermore, *ditto* does not leak information about flow durations or sizes.

In [134] and [137], Cai et al. present CS-BuFLO, an improved congestion-sensitive version of BuFLO. CS-BuFLO adapts the transmission rate depending on how much traffic the client tries to send. This makes it more efficient but also less secure because it leaks information about the sender’s volume. While CS-BuFLO has less overhead than BuFLO, it suffers from similar limitations: Since the padding happens per flow or per device, the overhead created by many flows or devices sums up in the network. Further, CS-BuFLO leaks information about the total volume of a flow or device and the sending rate while *ditto* does not because it runs in the network.

TARANET [106] shapes traffic into constant-rate flowlets at the hosts. The system then makes sure that these flowlets achieve the constant rate despite dynamic network events such as packet loss. Similarly to *ditto*, TARANET mixes real and chaff packets, but in contrast to *ditto*, TARANET requires support from the end host.
Table 4.2: Comparison of ditto’s key properties with related work. Related work focuses on preventing traffic-analysis attacks on shared links, which adds other constraints compared to ditto and generally results in worse performance.

<table>
<thead>
<tr>
<th>System</th>
<th>Year</th>
<th>Deployment¹</th>
<th>Techniques²</th>
<th>Volume anonymity</th>
<th>Timing anon.</th>
<th>Path anon.</th>
<th>Throughput³</th>
<th>Main overhead / bottleneck</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOR/Onion Routing [234, 239]</td>
<td>1999</td>
<td>C/S</td>
<td>P, (C, D, R) R</td>
<td>✗</td>
<td>-</td>
<td>✓</td>
<td>100 Mbps</td>
<td>Latency (send via relays)</td>
</tr>
<tr>
<td>NetCam [135]</td>
<td>2001</td>
<td>C/S/N</td>
<td>P, C, R</td>
<td></td>
<td>-</td>
<td></td>
<td>N/A³</td>
<td>Per-flow padding</td>
</tr>
<tr>
<td>Wang et al. [136]</td>
<td>2008</td>
<td>S</td>
<td>P, C, D</td>
<td></td>
<td>-</td>
<td>✓</td>
<td>10 Gbps</td>
<td>Per-flow padding, latency (via server)</td>
</tr>
<tr>
<td>BuFLO [242]</td>
<td>2012</td>
<td>C/S</td>
<td>P, C, D</td>
<td></td>
<td>✓</td>
<td>✗</td>
<td>320 Mbps</td>
<td>All packets have the same size</td>
</tr>
<tr>
<td>CS-BuFLO [134, 137]</td>
<td>2012</td>
<td>C/S</td>
<td>P, C, D</td>
<td></td>
<td>✓</td>
<td>✗</td>
<td>400 Mbps</td>
<td>All packets have the same size</td>
</tr>
<tr>
<td>HORNET [104]</td>
<td>2015</td>
<td>C/N</td>
<td>P, R</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>8 Gbps</td>
<td>Onion routing and constant-size packets</td>
</tr>
<tr>
<td>WTF-PAD [138]</td>
<td>2016</td>
<td>C/S</td>
<td>P, C</td>
<td></td>
<td>✓</td>
<td>✗</td>
<td>N/A³</td>
<td>Per-flow padding</td>
</tr>
<tr>
<td>PriFi [204]</td>
<td>2017</td>
<td>C/S</td>
<td>P, C, D</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>100 Mbps</td>
<td>Throughput (1 client can send per slot)</td>
</tr>
<tr>
<td>Loopix [203]</td>
<td>2017</td>
<td>C/S</td>
<td>P, C, D, R</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>4 Mbps</td>
<td>Per-device obfuscation, computation</td>
</tr>
<tr>
<td>TARANET [106]</td>
<td>2018</td>
<td>C/S/N</td>
<td>P, C, D</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>4 Gbps</td>
<td>Per-flow(let) obfuscation</td>
</tr>
<tr>
<td>ditto</td>
<td>2021</td>
<td>N</td>
<td>P, C, D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>100 Gbps</td>
<td>Switch resources, pattern efficiency</td>
</tr>
</tbody>
</table>

¹ C: Client; S: Server, N: Network ² P: padding, C: chaff packets, D: delay, R: routing ³ Results from the respective paper. When applicable, we use the following assumptions: throughput for 1 device port or link, 100 Gbps line rate, 1500 B packet or message size, 1000 users or devices, 1 server with a 10 Gbps connection, clients with 1 Gbps connections ⁴ No throughput measurements in the paper. But the per-flow obfuscation makes the throughput is significantly worse compared to ditto.
4.9 CONCLUSION

This chapter shows that it is possible to obfuscate volume- and timing properties of wide area network (WAN) traffic directly in the network data plane, using existing hardware, and with a small performance overhead.

ditto mixes real and chaff traffic and it adds padding to packets such that they follow a predefined pattern with respect to packet size and timing.

Two insights allow ditto to achieve high performance (up to 70 Gbps per 100 Gbps switch port for real Internet backbone traffic and interactive applications) and perfect security (observed traffic is independent of real traffic): (i) the traffic pattern is efficient because it fits the actual traffic distribution in the protected network; and (ii) existing network devices offer the features which are needed to perform packet padding and mixing with chaff traffic at line rate.

In the next chapter, we will change the perspective and discuss how programmable networks can also be used to de-obfuscate networks, their traffic and their users.
In the previous chapters, we presented two techniques that use programmable networks to obfuscate networks and their traffic. In this chapter, we change the perspective and discuss how programmable networks can also be used for the opposite: to de-obfuscate networks, their traffic, and their users.

In the following paragraphs, we first summarize two previous works on using programmable networks to (i) detect VoIP calls and reveal the caller and callee; and (ii) apply random forest models and classify network traffic at line rate. Then, we outline how programmable networks could improve the traffic-analysis attacks that ditto prevents.

Afterwards, we present a new case study that shows how programmable networks can detect proxy servers based on their traffic.

The main enabler for all these systems is that programmable switches can run custom programs to analyze every packet at line rate, without sampling or cloning or rerouting traffic to a different device.

Identifying VoIP calls and their participants In previous work, we presented DELTA [4], a novel network-level side-channel attack that can efficiently identify VoIP calls in-path, in real-time, and at scale. DELTA leverages the VoIP signaling mechanism used for peer discovery and call setup: VoIP callers and callees first connect to a publicly known central application server shortly before communicating directly with each other. This fundamental call bootstrapping mechanism, used by prominent VoIP platforms (including Signal, Skype, Telegram, and WhatsApp), leads to a triangular connection pattern. DELTA takes advantage of this pattern by storing the signaling connections and linking the candidate call flows to these stored addresses. Our implementation of DELTA runs on Intel Tofino switches [243] and we evaluate our prototype against both real and synthesized packet traces. Our experiments show that a single switch’s DBBF can hold connection state to simultaneously detect up to 100 000 unique VoIP calls for each VoIP application with virtually no hash collisions within up to 6.4 Tbps of traffic, the switch’s maximum throughput. To put these numbers in
perspective, AMS-IX [244] – the busiest Internet location in the world – transits around 11 Tbps of traffic on its peak [245], whereas WhatsApp, the most popular VoIP service in the world, facilitates 100 million calls per day worldwide [246]. In other words, two switches would be enough to process worldwide VoIP traffic, provided it would cross these switches.

Applying machine learning models to network traffic In previous work, we presented pForest [3], a system that enables programmable switches to perform real-time inference according to supervised machine learning models (random forests), accurately and at scale. To save resources on the programmable switch and to speed up the classification, pForest classifies flows as soon as possible, after the first few packets. To do so, it trains a sequence of models that maps to the different phases of a flow. The data plane applies this sequence during the life of a flow until the candidate label is certain enough. Accordingly, pForest decides on a per-flow basis when the soonest classification is possible. Our evaluation shows that pForest can perform traffic classification at line rate, for hundreds of thousands of concurrent flows, and with a classification score that is on-par with software-based solutions.

Accelerating traffic-analysis attacks Most traffic-analysis attacks assume that the traffic can be analyzed on a server. However, this is unrealistic for high traffic volumes (as for example in the WANs considered in Chapter 4). Here, programmable switches could reduce the amount of traffic that needs to be sent to the server. We illustrate this with the traffic-analysis attacks that we used to motivate ditto. They require only packet sizes, timings, and directions as inputs [119–134]. Programmable switches can help scaling these attacks to high traffic volumes in two ways: (i) by filtering traffic that is relevant for the attack; and (ii) by computing the features for the attack directly in the data plane. For example, in the case of the deep fingerprinting attack [126] that we used to evaluate ditto, the feature vector consists of at most 5000 packet directions – a feature that is trivial to compute in a programmable switch. Even though the resources available in today’s programmable switches do not allow assembling such long feature vectors for a reasonable number of concurrent flows, they can assemble shorter vectors and leverage the fact that most flows are much shorter anyways [247].
In the remainder of this chapter, we present a case study to show how programmable switches can help detect proxy servers in an ISP network.

If Internet users do not want to reveal their identity (especially their public IP address) to a contacted server, they can use a proxy server. Proxy servers (or proxies) relay requests and responses between their clients and the contacted servers such that the proxy appears as the source of the requests and therefore the clients are not visible to the servers.

Many people and organizations use proxies to access geo-restricted content, to perform market research, or to monitor website rankings on search engines [248]. However, proxies also help criminals to conceal their identity. For example, they help to perform credit card fraud [249, 250], ad fraud [251] and scanning for vulnerable devices [252]. They are also useful for performing distributed denial-of-service attacks such as the one originating from the Mirai botnet with 65 000 residential hosts [253] or link-flooding attacks that require a many sources at specific locations [113, 114].

Proxies can run at various places. Traditionally, proxies were either operated by an organization as their exit point for all outgoing connections or they were operated by third-party providers in data centers. We focus on the latter case, where everybody can use the proxy (sometimes for free, sometimes for a fee). However, the fact that these proxies were running on dedicated machines in data centers (sometimes even on publicly listed IPs [254, 255]) made it possible for network operators or content providers to identify and block these IPs. Since detectable proxies are often of little use, this has led to a new type of proxy which is much harder to detect: residential IP proxies (RESIPs). These proxies are not running in data centers controlled by the service provider, but instead in residential networks (e.g., people’s homes). As a result, these proxies allow their customers to hide behind actual residential IP addresses, which makes them much harder to detect using existing methods.

Leading proxy service providers (including Bright Data [256], StormProxies [257], and GeoSurf [258]) offer their customers tens of millions of residential IP addresses that can be used as proxies. Their proxy servers usually run on home users’ devices with the owner’s consent and give the owner a small reward for every gigabyte that was sent through their device [259]. However, previous work has shown that many residential proxies run on likely compromised IoT devices without the owner’s consent [251].
Proxy servers – especially residential ones – are not only troublesome for content providers, they can also be problematic for Internet service providers (ISPs) because (i) they can be used for attacks (e.g., DDoS) against the ISP and thereby downgrade its reputation; (ii) they can be used for attacks against other targets and thereby associate the ISP’s IP range with malicious actions; and (iii) they can consume the ISP’s customers’ bandwidth without consent and thereby degrade the perceived performance for the customer. Furthermore, since residential proxy servers often run without the owner’s consent [251, 260], the ISP could also perform the proxy detection as a service for its customers.

Detecting proxies with programmable networks In this case study, we show that programmable switches can help a network operator (especially an ISP) to detect potential proxy servers at scale and without impacting the network performance for its customers.

We present a proof-of-concept implementation that analyzes network traffic, extracts features, and uses clustering to distinguish between normal clients and proxies. Even though the approach is simple, we show in the evaluation that it can distinguish between normal clients and proxies with an F_1 score of more than 90%.

Related work Early proxy-detection approaches used fixed rules or deep packet inspection to identify proxies [261–264]. However, since most traffic today is encrypted and proxies can run on various devices, newer approaches use more sophisticated techniques. For instance, they use packet-level features such as inter-arrival times, packet sizes, and flow durations [265–271]. However, these systems assume that the whole network traffic is available for their analysis, which is infeasible in large networks due to their high traffic volume.

In our case study, we demonstrate how programmable switches can allow proxy detection systems to scale by extracting some of the features in the data plane. While programmable switches could accelerate all of the systems mentioned above, we use this case study to present a system that is different from existing ones in the sense that it only requires one feature: timestamps of TLS connections.

Outline In the following sections, we provide background information about how proxies work (Section 5.2); describe our network model and terminology (Section 5.3); present a system to detect proxies based on timing information in TLS connections (Section 5.4); describe how the
system extracts features in the data plane (Section 5.5) and identifies proxies in the control plane (Section 5.6); evaluate the system (Section 5.7); and discuss the system’s limitations and ways to resolve them (Section 5.8).

5.2 BACKGROUND ON PROXY SERVERS

At a high level, proxies act as intermediaries between their clients and the servers that these clients want to connect to. As illustrated in Figure 5.1, instead of connecting directly to the server, a client then sends its request to the proxy and the proxy sends the request to the server through a separate connection [272].

There are various types of proxies. The ones we consider in this case study are so-called forward proxies, which relay traffic between many sources (e.g., subscribers of a service) and all destinations (e.g., any website). The other type of proxies is reverse proxies, which accept requests from all sources but only to specific destinations (e.g., one website). These proxies are often used for load balancing and redundancy.

Forward proxies exist in many different sub-categories. For example, open proxies are listed publicly and are available to every Internet user [254, 255]. Other proxy servers are only accessible to subscribers of commercial services or to clients within a certain network (e.g., a company network).

Depending on the setup, proxies differ in how they receive their clients’ requests. The most prevalent types are HTTP(S) proxies and SOCKS5 proxies. HTTP(S) proxies receive the requests from the client through HTTP(S) and therefore only work for HTTP(S) traffic. On the other hand, SOCKS5 proxies use the SOCKS protocol that can work with any application-layer protocol [273].
Generally, a client establishes a direct connection with the proxy (Figure 5.1). However, many commercial service providers operate a gateway server to which the client connects. This gateway server then forwards the request to the actual proxy server (Figure 5.2) [251]. This setting makes management and monitoring easier for the proxy providers and allows them to distribute requests from one client over many proxies (to offer so-called rotating IP proxies).

5.3 MODEL

In this section, we describe the networks in which we want to detect proxies and we define the terminology used in the remainder of this case study.

Network model Our goal is to identify IP addresses that act as proxy servers in an Internet Service Provider (ISP) network. These networks connect their customers (private households or businesses) to the Internet. We assume that the network forwards traffic such that each flow traverses at least one programmable switch that runs our proxy detection system.

The ISP assigns one public IP address to each customer, but the customers can operate many devices that share this IP address through network address translation (NAT) [274]. Each of the customer’s devices can act as a normal client and/or as a proxy. We do not differentiate between individual devices sharing one IP. We say that an IP acts as a proxy if at least one device that uses this IP acts as a proxy.

Figure 5.3 illustrates an ISP network and the following paragraph explains the terminology in more detail.
Terminology Below, we explain some essential terms used in this case study. Parts of our terminology are borrowed from [275] and [276].

- **Server**: device that hosts websites
- **Proxy**: device that acts as a proxy
- **Client**: device that is used to browse the Internet. We distinguish between two types of clients:
 - **Normal client**: a client that does not use a proxy
 - **Proxy client**: a client that uses a proxy
- **Stub**: local network of one customer of an ISP, identified by its public IP assigned by the ISP
- **Proxy provider**: an entity that provides access to proxies (but does not necessarily operate them).
- **Website request**: action taken by a user that triggers one or more HTTP(S) requests (e.g., a click on a link or entering a URL in the browser’s address bar)
- **Head request**: the first HTTP(S) request triggered by a user request
- **Embedded requests**: Other HTTP(S) requests triggered by a user request
- **Isolated requests**: HTTP(S) requests that are neither head requests nor embedded requests
5.4 Design Overview

In this section, we explain how we distinguish between normal clients and proxy servers based on their traffic.

We first state our design goals. Then, we describe how the traffic of proxies and normal clients differs and how website requests allow estimating the distance between the client and the server. Afterwards, we explain the metric we use to measure these differences and our underlying hypothesis. Finally, we outline the architecture for the implemented system.

Design goals The goal of this case study is to develop a system that can distinguish between normal clients and proxies in an ISP network while fulfilling these requirements:

- The system’s input is the traffic exchanged in the ISP network
- The system cannot decrypt encrypted traffic
- The system has no control over the end devices (clients, proxies, servers)
- The system must not degrade the network performance

Peculiarities of proxies As explained above, proxies relay connections from their clients to the connected server. This leads to several peculiarities in the network traffic from and to proxies. For example: (i) there is a strong correlation between incoming and outgoing traffic regarding timing and volume; (ii) compared to typical ISP customers, proxies receive more incoming connections; and (iii) interactions that involve the client happen slower because traffic first needs to reach the client.

We focus our system on the third property because it is more difficult to obfuscate for the proxy provider than the other two. Obfuscating the first two properties is possible for the proxy provider or the client by introducing chaff packets. Especially if the proxy client connects to the proxy through a gateway server controlled by the proxy provider (illustrated in Figure 5.2) [251]. Such a gateway server allows the proxy provider to add chaff packets between the gateway and the proxy and to “reverse” the connection between the proxy and the relay server (i.e., the proxy initiates the connection to the relay server).

On the other hand, the time it takes until the proxy client has received the content depends on its geographical location and the distance to the
proxy. While it is not possible to measure this time directly (after all, the main purpose of a proxy is to hide the client), we explain below how we approximate it using the characteristics of HTTP and HTML.

Peculiarities of web browsing Almost all websites contain multiple elements (e.g., text, images, videos, and client-side code) which a browser needs to download before displaying the website. These elements are stored in separate files and potentially on separate servers. When a user requests a website, the browser first downloads the HTML code that specifies the structure of the website (e.g., the text and the position of images). Based on the HTML code, the browser then knows which additional elements it needs to download.

We leverage this behavior to estimate the time it takes for the content to reach the client which is potentially hiding behind a proxy. More precisely, we leverage two key observations.

The first observation is that loading a website almost always results in the following pattern:

1. The client requests the website’s HTML code
2. The server returns the code
3. The client parses the code
4. The client requests additional elements (potentially from multiple servers)
5. The server(s) return additional elements

The second observation is that the time between 2 and 4 depends on the geographical distance between the client and the server, even if the client uses a proxy. The time between 2 and 4 is approximately proportional to the distance client—proxy—server if the client uses a proxy or client—server otherwise.

In Figures 5.4 and 5.5, we illustrate this pattern for the case where the client loads a website without a proxy (Figure 5.4) and where it loads it through a proxy (Figure 5.5). Because most web-browsing traffic today is encrypted using TLS [53], we design our system to work even if traffic is encrypted. Figures 5.4 and 5.5 show the TLS handshakes between the proxy and the server.
Figure 5.4: Loading a website without a proxy. The client establishes a first TLS connection to load the HTML code. After it receives the HTML code, it establishes a second connection to request the embedded image.

While TLS hides the packet contents, it still allows identifying the requests in steps 1 and 4 because both requests trigger the establishment of a new TLS connection with the server and the time between these two TLS connections also depends on the geographical distance between the client and the server.\(^1\)

Client reaction time (CRT) We call the time that it takes a client to react to new instructions for loading elements the client reaction time (CRT). As an example, consider the case where the HTML code and the embedded elements are hosted on the same server. Then, the CRT computes to the time difference between when the server returns the HTML code and when the server receives the request for the first embedded element. However, computing this time solely based on TLS-encrypted traffic is not possible,

\(^1\) In Section 5.8, we discuss the impact of future HTTP versions.
which is why we approximate it. In our case, we compute the CRT as the time between the two TLS handshakes (more precisely: the client hello packets in the two handshakes) shown in Figures 5.4 and 5.5. This approximation works well for our purposes because it still captures the difference between requests that go through a proxy and those that do not.

Hypothesis Given that the CRT depends on the geographical distance between the client and the server, it also depends on the distance between
the proxy and the client if a proxy is involved. We therefore expect that it reveals whether an IP address is used as a proxy or not.

More precisely, given the IP address of a stub in the ISP network, we expect the following characteristics of the CRT depending on whether this IP address is used as a proxy:

If the IP address is not used as a proxy, we expect the CRT to be (i) relatively small compared to other IPs in the same network (because the client is identical or close to the device with the IP address); and (ii) relatively constant (because all devices behind this IP are close by).

On the other hand, if the IP address is used as a proxy, we expect the CRT to be (i) relatively large compared to other IPs in the same network (because the clients behind the proxy are further away); and (ii) relatively variable (because the clients are in many different locations).

Architecture Figure 5.6 shows the architecture of our proxy detection system. The system consists of two main building blocks: A data plane component to extract the metrics that we use to identify proxies from traffic in real-time; and a control plane component to analyze the extracted metrics and perform the classification.

In the following two sections, we explain each component in more details.
In [277], we developed a prototype implementation of the data-plane component that runs on Intel Tofino switches. Below, we summarize how this P4 program identifies TLS client hello packets in the data plane and notifies the control plane.

Identifying TLS client hello packets The parser identifies TLS client hello packets based on the following criteria: (i) it is a TCP packet (i.e., the *etherType* in the Ethernet header is equal to 0x0800 and the *protocol* in the IP header is equal to 0x6); (ii) the SYN flag is 0 (i.e., it is not a TCP handshake packet that does not contain TLS records); (iii) the destination port is 443 (i.e., the default for HTTPS); (iv) the content type of the TLS record is 0x16 (i.e., it is a TLS handshake packet); and (v) the handshake type 0x1 (i.e., it is a client hello packet).

Notifying the control plane The switch notifies the control plane about any new client hello packet through a so-called digest message. Digest messages provide an efficient way of sending data from the data plane to the control plane without cloning the entire packet [278]. In our case, the digest message contains the packet’s source and destination IP address as well as the timestamp at which the packet was received.

This implementation serves only as a prototype and is not the most efficient one. As we show in [277], the switch could already compute the CRT in the data plane – at least for some requests, depending on how much memory is available. In Section 5.8, we discuss additional possibilities for improvements.

5.6 Identifying proxies in the control plane

In this section, we explain how we use the timestamp measurements from the data plane to distinguish between normal clients and proxy clients.

Inputs The inputs to the control plane algorithm are timestamp measurements from the data plane as described above.

Features We hypothesize that the CRT of proxy clients is higher and follows a broader distribution than the CRT of normal clients. Therefore, our two main features are the mean value and the standard deviation of
the CRTs of one stub. But there are cases when we cannot compute the CRT, namely when the head request and the embedded requests are distributed over multiple proxies (i.e., they have different source IPs). This is the case for so-called rotating IP proxies. To cover this, we add an additional feature that computes the percentage of isolated requests per IP. Isolated requests are those that are not preceded or followed by another request with the same (source IP, destination IP) pair.

In summary, our features are:

- CRT_m: The mean value of the CRT
- CRT_{std}: The standard deviation of the CRT
- $\text{Isol}_{\%}$: The percentage of isolated requests

Feature extraction To compute these features, the proxy detection system must first extract website requests from the inputs. To do this, it analyzes the individual inputs (i.e., client hello packets) and labels each of them as one of three request types:

- **Head requests** denote the first request that loads the HTML code of a website
- **Embedded requests** denote the requests that follow a head request and load additional elements (images etc.) contained in the website
- **Isolated requests** denote requests that are neither head nor embedded requests

For the labeling, we use a simple heuristic based on two timeouts (T_{idle} and T_{head}): T_{idle} is the minimum idle time between two head requests. In other words, we assume that a user waits for T_{idle} until opening the next website. T_{head} is the maximum time it takes until all elements of a website are loaded after the head request.

Based on these two parameters and the information in the inputs (timestamps, source IP addresses and destination IP addresses), we then label each request in two stages.

In the first stage, we assign the labels as follows:

- **potential head** if there is no other request from the same client in the last T_{idle}
- **embedded** if it is within T_{head} after a request labeled as potential head or head and it has the same source and destination IP as the
We then change the label of the potential head to:

- potential embedded if it is within T_{head} after a request labeled as potential head or head and it has the same source but a different destination IP.

In the second stage, we change the label of all requests previously labeled as potential head to isolated if they were not followed by at least one embedded or potential embedded.

Once all requests are labeled, computing the features is straightforward. The CRT is the time between a head request and its first embedded request. CRT_m is the mean CRT of one source IP and CRT_{std} is the standard deviation. $Isol\%$ is the ratio of isolated requests over the number of total requests for each source IP.

We acknowledge that this heuristic is not optimal, but building an optimal heuristic is out of scope for this case study. For example, the heuristic gets disturbed when a client starts multiple requests simultaneously or when websites load additional elements over a long time. In Section 5.8, we discuss the limitations in detail.

Classification

After we extracted the features (CRT_m, CRT_{std}, and $Isol\%$) for each source IP, we put them into two clusters using the k-means clustering algorithm [279]. According to our hypothesis, clients and proxies show different behaviors with respect to our features and therefore end up in different clusters. Since we expect the proxies to have higher values for CRT_m and CRT_{std}, we interpret the cluster with the higher center (w.r.t. CRT_m and CRT_{std}) as the proxy cluster and label all IPs in this cluster as proxies and all other IPs as clients.

5.7 Evaluation

In this section, we show that our proof-of-concept implementation can identify proxies with high accuracy (F_1 score over 90\%) even if the proxy clients are in close geographical proximity, they use a large range of different bandwidths, and the proxy uses rotating IPs.

After we describe our evaluation methodology, we show how the detection accuracy of our system depends on the number of observed requests,
the clients’ bandwidths, the clients’ locations, and the number of IP addresses per proxy.

5.7.1 Methodology

We now describe how we generate and collect the data we use to evaluate the proxy detection system.

ISP topology We consider a hypothetical ISP that operates in New York City and wants to detect proxy servers among its customers.

Infrastructure We perform all experiments on the cloud infrastructure provided by DigitalOcean [280]. DigitalOcean allows creating virtual machines (VMs) in eight different regions (Amsterdam, Bangalore, Frankfurt, London, New York City, San Francisco, Singapore, Toronto). Depending on the experiment, we host our clients in a varying selection of these regions.

Clients Our clients are DigitalOcean VMs with 2 virtual CPU cores and 4 GB memory. The clients run Ubuntu 20.04.4 LTS and use Firefox to browse the web. To automate the experiments, we use Selenium [281]. The clients use HTTP/1.1 and TLS 1.3 to access our webserver.

Proxies We use proxies provided by BrightData [256] (previously called Luminati), one of the largest providers of proxy servers [251]. The Bright Initiative [282] granted us free access to BrightData’s proxy services. BrightData offers different types of proxies: residential proxies, ISP proxies, datacenter proxies and mobile proxies. We use ISP proxies for our experiments because they fit our use case (detecting proxies in ISP networks) and they do not involve devices which potentially act as a proxy without the owner’s consent (as it can be the case for residential proxies [251], cf. ethics discussion below).

Server We run an Apache webserver [283] version 2.4.41 in one VM with 4 virtual CPU cores and 8 GB memory in Frankfurt. Apache runs in its default configuration. To obtain TLS certificates, we use LetsEncrypt [284]. The website consists of three elements besides the HTML code: an image, a CSS stylesheet in a separate file, and javascript code in a separate file.

Data collection To create the datasets, we capture the traffic on the webserver’s network interface using `tcpdump` [225] and we create logs with the
timestamps of each website request on all clients. We only use these logs as ground truth, the proxy detection system receives only the pcap file as input.

Metrics We measure the accuracy of our proxy detection system using the typical metrics precision, recall, and the F_1 score. These metrics are based on the confusion matrix in Table 5.1.

The *precision* denotes the ratio of correctly identified proxies over all IPs labeled as proxies:

$$\text{precision} = \frac{tp}{tp + fp}$$

The *recall* denotes the ratio of correctly identified proxies over all proxies in the dataset:

$$\text{recall} = \frac{tp}{tp + fn}$$

The F_1 *score* is the harmonic mean of the precision and recall:

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{tp}{tp + \frac{1}{2}(fp + fn)}$$

Ethics Our experiments do not raise ethical issues because:

- We only capture traffic that we created ourselves (through browser automation).
- We do not use residential proxies because they might be running without the device owner’s consent.
- We described our project to the Bright Initiative and they approved us for using their proxy infrastructure.
In this experiment, we evaluate how the accuracy depends on the number of observed requests. We run 12 normal clients in New York City and 48 proxy clients at random locations. These proxy clients use one of 10 proxies in New York City at random.

In Figure 5.7, we show the precision, recall and F_1 score depending on the number of analyzed requests. Each point in the plot shows the average over 5 runs of the experiment. The results show that the detection works well (F_1 score $\geq 90\%$) after 30 observed requests. Ideally, this would mean that our system can identify proxies after only 30 user requests. However, as we discuss in Section 5.8, our datasets are not fully representative for real ISP traffic, which might have a positive impact on our results.

5.7.3 Impact of the bandwidth

In this experiment, we evaluate the impact of the clients’ bandwidth on the detection accuracy. To do this, we limit the bandwidth of each client randomly to one of the following values: 1 Gbps, 500 Mbps, 300 Mbps, 100 Mbps, 50 Mbps, 25 Mbps, 10 Mbps, 5 Mbps, 1 Mbps, 0.5 Mbps. The six highest values correspond to the rates offered by AT&T, one of the world’s largest ISPs [285]. We added the smaller values to simulate devices that cannot fully utilize the high bandwidth.
Figure 5.8: Accuracy depending on the bandwidth distribution. The bandwidth has a small impact on the accuracy because the website is small.

In Figure 5.8, we show how the F_1 score changes depending on the number of different bandwidths of the clients. The value on the x-axis specifies that the clients used the top-x bandwidths randomly (e.g., for $x = 3$, each client was configured with a bandwidth of either 1 Gbps, 500 Mbps, or 300 Mbps). To limit the bandwidth, we used `iproute-tc` [286]. In each case, there were 12 normal clients in New York City, 48 proxy clients at random locations, and 10 proxy servers in New York City. Each point in the plot shows the average over 5 runs of the experiment.

The results show that the bandwidth distribution has a small impact on the accuracy of our system. The explanation for this is that the website that we load is small (about 400 kB in total, and the HTML code is only 1 kB), and therefore the impact of the bandwidth on the CRT is small. Since we compute the CRT between the first two client hello packets, only the HTML code and handshake packets are transmitted during this time. Since these packets are small, the bandwidth does not have a significant impact on the CRT (e.g., the time difference between transmitting 1 kB at 1 Gbps and at 25 Mbps is only 312 μs while CRT_m is around 0.8 s in our topology).

5.7.4 Impact of the geographical distribution

In this experiment, we evaluate the impact of the client’s location on the F_1 score. To do this, we randomly distribute the 48 proxy clients across an increasing number of locations. The available locations are the ones offered by DigitalOcean as listed above.
In Figure 5.9, we show how the F_1 score changes depending on the number of different locations of the clients. The value on the x-axis specifies that the top-x locations sorted by their distance to New York City are used (e.g., for $x = 3$, we distributed the clients across New York City, Toronto and San Francisco).

We use 12 normal clients in New York City and 48 proxy clients at random locations. We evaluate the case where the bandwidth of each client is the same (1 Gbps) and the case where each client has a bandwidth randomly selected among 1 Gbps, 500 Mbps, 300 Mbps, 100 Mbps, 50 Mbps, 25 Mbps (the bandwidths offered by AT&T [285]). Again, each point in the plot shows the average over 5 runs of the experiment.

The results show that the accuracy generally increases slightly with the number of regions. This is expected because if the proxy clients are in other regions than the normal clients, CRT_m increases. And if the proxy clients are distributed over many regions, CRT_{std} increases too. The results vary more if the bandwidth is randomly chosen because of our small sample size (only 5 runs of the experiment).
Figure 5.10: Examples of feature values for proxies with rotating IPs. Datapoints outside of the shown range are mapped to the grey border area.

5.7.5 Impact of rotating IP addresses

In this experiment, we evaluate the impact of rotating IP addresses on the F1 score. For this experiment, we use 30 normal clients in New York City and 30 proxy clients with a randomly chosen bandwidth at randomly chosen locations. All proxy clients use the same proxy server (in New York City), but depending on the scenario, the proxy server distributes its requests over 1, 10, 100 or 200 IP addresses.\(^2\)

\(^2\) Higher numbers of IPs were not available.
Table 5.2: Accuracy for proxies with rotating IPs. Our system can detect proxies even if they use many source IPs.

<table>
<thead>
<tr>
<th>IPs per proxy</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>1.0</td>
<td>1.0</td>
<td>0.97</td>
<td>0.45</td>
</tr>
<tr>
<td>Recall</td>
<td>0.93</td>
<td>1.0</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>F1</td>
<td>0.96</td>
<td>1.0</td>
<td>0.97</td>
<td>0.53</td>
</tr>
</tbody>
</table>

In Figure 5.10, we illustrate the results of one measurement in each of these scenarios. The plots now show 1, 10, 100 or 200 proxy IP addresses and a varying degree of isolated requests. In this experiment, the feature $\text{Isol}_\%$ becomes important because the CRT cannot be computed if the head and embedded requests come from different source IPs. The example with 200 proxy IPs shows many IPs with CRT_{std} equal to 1. This is because we initialize CRT_{std} to 1 if there are less than two CRT measurements for this IP. This often happens here because the requests are spread over many IPs.

In Table 5.2, we show the accuracy depending on the number of IP addresses per proxy. The results show that our system can detect proxies with up to 100 rotating IP addresses with the same accuracy as it detects proxies with a fixed IP. However, as the number of IPs per proxy increases to 200, the clustering does not work well anymore. While the recall is still high (i.e., the IPs classified as proxies are indeed proxies), the precision is low (i.e., many of the IPs classified as normal clients are in fact proxies). Presumably, a more sophisticated and better tuned clustering algorithm would achieve better results as our basic approach based on k-means and three equally weighted features.

5.8 DISCUSSION AND FUTURE WORK

The purpose of this case study is to sketch how programmable switches can extract data from network traffic with proxy server detection as an example. While the developed system shows promising results, it is far from perfect and provides many opportunities to improve it.

Next, we discuss the current limitations and outline approaches to fix them. In addition, we discuss how proxy providers could avoid detection.
5.8 Discussion and Future Work

5.8.1 Limitations

Below, we discuss the main limitations of our proxy detection system and describe solutions to improve them.

Simple datasets The datasets from our evaluation are not representative of traffic that an actual ISP would see for the following reasons:

(i) the datasets only contain HTTPS traffic towards one webserver and one website
(ii) the loaded website loads all elements immediately
(iii) all clients and proxy clients have the same operating system and browser
(iv) all clients and proxy clients run as VMs in datacenters of a cloud provider
(v) each stub consists of only one device
(vi) each client and proxy client performs all requests of the website sequentially
(vii) each stub consists of only one device

Item (i) and Item (ii) could be achieved in a real dataset relatively easily by filtering only traffic of websites that are suitable for the analysis. Of course, this would slow down the detection because the system would need to wait until it has captured enough requests for these websites.

Item (iii), Item (iv), Item (v), and Item (vii) could be addressed through more extensive simulations. Instead of trying to simulate a realistic environment, one could collect the dataset with the help of volunteers who access websites for which one can record the traffic. This would also address Item (vi).

Item (vii) could be overcome by performing the experiments via multiple proxy providers.

Overlapping requests Our heuristic to compute the CRT is based on the assumption that a stub accesses only one website at a time. In practice, this assumption does not hold in many cases, especially if there are multiple active clients in one stub.

The simple solution here would be to discard these requests and wait until only one client is active simultaneously. However, this would add
delay to the decision. A more sophisticated approach would be to use other features for identifying head and embedded requests. For example, the server name indication (SNI) extension in TLS allows to extract the (unencrypted) domain name of the requested website [287]. Furthermore, existing works (e.g., [120, 288]) have also shown that the TLS handshake reveals enough information to fingerprint the client (e.g., with respect to its operating system and browser).

Different versions of HTTP Over the years, HTTP has undergone several enhancements that affect how embedded elements are loaded:

- HTTP/1.0 establishes a separate TCP connection for every element [54]
- HTTP/1.1 allows reusing a TCP connection for loading multiple elements [289]
- HTTP/2 uses a single TCP connection for all elements [290]
- HTTP/3 uses QUIC and UDP instead of TCP connections [291]

We designed our proxy detection system for HTTP/1.0 and HTTP/1.1 (if HTTP/1.1 does not reuse the connection between the head request and the embedded requests). These versions of HTTP are still predominant today, but HTTP/2 and HTTP/3 are gaining more and more support (currently, about 45% of the 10 M most popular websites support HTTP/2 [292] and 25% support HTTP/3 [293]). Extracting the CRT from HTTP/2 and HTTP/3 would require a different approach, but it is still possible. Since all requests to the same server would be transmitted over the same connection, one could identify the head and embedded requests as the first two “bursts” of response data in this connection.

Many packets sent to the controller In our current implementation, we send a digest message to the controller for every client hello packet. This could overload the controller in large networks. To reduce the load on the controller, one could improve the system in the following ways:

- Compute the CRT in the data plane: Using registers, it is possible to compute the CRT entirely in the data plane (we have developed a proof-of-concept in [277]). However, the relatively little available memory (tens of megabytes [294]) limits the number of parallel website requests, for which the timestamps can be stored in the switch.
- Adaptive sampling: As shown in the evaluation, a few requests are enough to identify proxies with high certainty. Therefore, constantly analyzing all traffic is not needed. Instead, one could only analyze a
small percentage of requests if they come from IPs that are already classified. This sampling could be performed directly in the data plane.

5.8.2 Countermeasures

In this section, we present some countermeasures that proxy providers or content providers could deploy in order to prevent detection by our system.

Chaff traffic To make the CRT computation more difficult, proxies could initiate additional requests simultaneously to the requests that they initiate for their clients. This would have a similar effect as simultaneous requests discussed above: It would disturb our current heuristic and lower the detection accuracy.

If the proxy provider uses a gateway server between the clients and the proxies, it could also inject chaff packets into the connection between the gateway and the proxy. However, since our analysis is based on the traffic between the proxy and the server, this would not have an impact on our system.

Caching Proxies can cache the contents they requested for their clients such that they can respond to future requests with the data that they already have in cache. In this case, our system could not extract a CRT because the proxy answers the embedded request without contacting the server. This would slow down the detection with our system because it takes more time to observe enough (non-cached) requests.

Delaying requests A proxy could tamper with the CRT by introducing additional (potentially random) delays before it relays a request from a client to the server. By doing this, the proxy could increase CRT_m and increase or decrease CRT_{std}. However, the higher CRT_m would likely make it easier to detect the proxy.

Encoding elements in HTML Instead of embedding the paths to elements in HTML, it is possible to encode the elements (e.g., images) directly in the HTML code using base64 encoding [295]. If a website does this for all elements, it does not trigger embedded requests. However, this would decrease the website performance and require cooperation from the website provider.
5.9 CONCLUSION

In this chapter, we have shown that programmable switches can help to de-obfuscate network users and their traffic.

We first summarized how programmable switches can (i) identify VoIP calls and determine the caller and callee at scale by recognizing the unique traffic pattern that occurs upon the establishment of a VoIP call; (ii) apply random forest models to network traffic at line rate by optimizing the models and features for the resources and operations available in programmable switches; and (iii) extract the features that are required for many traffic-analysis attacks at line rate and without sampling, thereby making these attacks more scalable.

Then, we presented a case-study that shows how programmable switches can help to scale the identification of proxy servers to ISP networks. Here, the main insight was that timing properties of web requests that come from proxies are different from requests that come from the client directly. We have shown that by measuring the so-called client reaction time it is possible to distinguish between regular clients and proxy servers.

In summary, we have shown that programmable networks are not only useful for implementing network-level defenses, but they can also perform powerful traffic analysis at line rate. This results in a new generation of possible attack vectors not only for de-obfuscation.
CONCLUSION AND OUTLOOK

In this chapter, we conclude this dissertation and we describe future research problems in the area of network obfuscation.

6.1 CONCLUSION

In this dissertation, we presented two systems that increase network security through obfuscation. Both systems leverage recent advances in network programmability, which allow network switches to run sophisticated algorithms at line rate.

In Chapter 3, we demonstrated how programmable switches allow obfuscating topologies in order to prevent link-flooding attacks. We presented NetIdle, a new, usable approach for obfuscating network topologies. The core idea behind NetIdle is to phrase the obfuscation task as a multi-objective optimization problem. The security requirements are encoded as hard constraints and the usability ones as soft constraints using the notions of accuracy and utility. NetIdle relies on an ILP solver and effective heuristics to compute obfuscated topologies and on programmable network devices to capture and modify path tracing traffic at line rate. Our evaluation on realistic topologies and simulated attacks shows that NetIdle can obfuscate large topologies with marginal impact on usability.

In Chapter 4, we demonstrated how programmable switches allow obfuscating volume- and timing properties of wide area network (WAN) traffic in order to prevent traffic-analysis attacks. We presented ditto, a system that mixes real and chaff traffic and adds padding to packets such that they follow a predefined pattern with respect to packet size and timing. Two insights allow ditto to achieve high performance (up to 70 Gbps per 100 Gbps switch port for real Internet backbone traffic and interactive applications) and perfect security (observed traffic is independent of real traffic): (i) the traffic pattern is efficient because it fits the actual overall traffic distribution in the protected network; and (ii) programmable network devices offer the
features which are needed to perform packet padding and mixing with chaff traffic at line rate.

After presenting two systems that use programmable switches for obfuscation, we changed the perspective for the next chapter and discussed how programmable switches can also achieve the opposite – for benign and malicious purposes.

In Chapter 5, we demonstrated how programmable switches allow de-obfuscating network users and their traffic. We explained how programmable switches can be used to (i) identify VoIP calls and determine the caller and callee at scale; (ii) apply random forest models to network traffic at line rate; (iii) scale traffic-analysis attacks to high volumes; and (iv) detect devices that are acting as proxy servers in an ISP network.

6.2 OPEN RESEARCH PROBLEMS

In this section, we first describe opportunities for improving NetHide and ditto. Then, we sketch a more general obfuscation framework that could be developed in future work.

6.2.1 Better topology obfuscation

We see two main directions along which future work could improve NetHide.

Handling changes in the topology If the physical topology changes permanently, NetHide needs to compute a new virtual topology. This virtual topology will be similar to the new physical topology, but not necessarily similar to the previous virtual topology. To change that, we suggest including the difference between the previous virtual topology and the new virtual topology in the accuracy metric. Then, the optimization problem would produce a new virtual topology similar to both the previous virtual topology and the new physical topology.

Preventing router fingerprinting and timing side-channels NetHide takes two measures to prevent router fingerprinting based on timing information: First, it ensures that the physical path and the virtual path have similar lengths (to avoid information leakage through the propagation time). And second, it ensures that the response to a path tracing packet comes from the correct router according to the virtual topology (to avoid information
leakage through the processing time). However, \textit{NetHide} measures the length of a path in terms of the number of hops. Since the physical length of two paths (and therefore their propagation time) can be very different even if two paths have the same number of hops, router fingerprinting could still be possible. To counteract this, \textit{NetHide} could delay path tracing responses to obfuscate the true RTT (e.g., by recirculating a response packet several times to delay it) or it could take the physical link lengths into consideration when generating the virtual topology.

In addition, we see a research opportunity in combining topology obfuscation through modified path tracing responses (as done by \textit{NetHide}) with topology obfuscation through modified end-to-end delays (as done by \cite{167} and \cite{171}). A combined system could prevent both types of topology inference while maintaining the utility of path tracing tools and minimizing the additional delay.

6.2.2 Better traffic obfuscation

We see two main directions along which future work could improve \textit{ditto}.

Reacting to changes in the traffic distribution \textit{ditto} keeps using a pattern until the operator instructs it to compute a new one. In the future, \textit{ditto} could automatically compute and deploy a new pattern when the traffic distributions changes significantly. To achieve this, \textit{ditto} could measure the padding it adds to packets, the reordering it causes, and the recirculations it requires. At the same time, it could continuously measure the traffic distribution (e.g., by using similar techniques as presented in \cite{296, 297}). When the current pattern requires too much padding, reordering, or recirculations, \textit{ditto} could immediately compute and deploy a new pattern.

On the other hand, adapting the pattern too often can reveal too much about the current real traffic. Part of this future work should also be to define the trade-off between overhead and information leakage and to find the optimal parameter choice.

Distributing padding over multiple switches Recirculations that are required because a switch cannot add enough padding in one pipeline pass constitute a significant part of \textit{ditto}’s overhead. Instead of recirculating the packets multiple times through the same switch, one could distribute the padding over multiple switches, especially since most traffic likely traverses multiple switches because it enters the WAN.
These “internal” switches could add padding to each packet until it has reached the size of one of the pattern states. Ideally, the edge switch then only needs to mix real and chaff packets. To do this, the internal switches need to be programmable and they need to know the pattern states (the edge switch could distribute this information).

The same applies to the de-obfuscation side, where the removal of padding could also happen over multiple switches.

6.2.3 Towards a general obfuscation framework

NetHide, ditto, and most related works are isolated systems that obfuscate one property of a network (e.g., the topology or the traffic) using one platform (e.g., programmable switches). For future work, we see an opportunity to combine many obfuscation techniques into one framework. This framework could then leverage multiple platforms (e.g., hosts, network interfaces and switches) to obfuscate various properties of networks (following the concept of “deep programmability” discussed in [298]).

Developing such a framework would involve research to answer the following questions:

- **Which properties can and should be obfuscated?** We have shown how to obfuscate the topology and traffic. However, these are not the only properties of a network that can be obfuscated. Other properties include, for example, the number and type of hosts or the configuration (such as firewall rules or load balancing).

- **How can we specify an obfuscation policy?** Depending on the network, there will be different requirements regarding what needs to be obfuscated. To specify these requirements, a policy language should be developed. The policies could be based on concepts such as k-anonymity [299] (e.g., to specify that the traffic of one host is indistinguishable of at least k other hosts).

- **How can we perform the obfuscation?** Given the properties that need to be obfuscated and the policies that need to hold, there should be a compiler that translates them into programs and configurations for hosts, network interfaces, switches, and other middleboxes such as firewalls.
OWN PUBLICATIONS

REFERENCES

[26] PCWorld. This startup may have built the world’s fastest networking switch chip (06/14/2016). https://www.pcworld.com/article/415231/this-startup-may-have-built-the-worlds-fastest-networking-switch-chip.html. (Accessed on 06/23/2022).

