
Improving
Network Security

through Obfuscation
Diss. ETH No. 28635

Roland Meier

diss . eth no. 28635

I M P R O V I N G N E T W O R K S E C U R I T Y
T H R O U G H O B F U S C AT I O N

A dissertation submitted to attain the degree of

D O C T O R O F S C I E N C E S of E T H Z Ü R I C H
(Dr. sc. ETH Zürich)

presented by

R O L A N D M E I E R
MSc ETH EEIT

ETH Zürich

born on July 27th, 1990

citizen of Zeihen AG, Switzerland

accepted on the recommendation of

Prof. Dr. Laurent Vanbever (Advisor)
Dr. Vincent Lenders (Co-Advisor)

Prof. Dr. Ang Chen
Prof. Dr. Adrian Perrig

2022

Roland Meier: Improving Network Security through Obfuscation, © 2022

Diss. ETH No. 28635

TIK-Schriftenreihe-Nr. 203

A B S T R A C T

While it is impressive that many of the prevalent protocols and algorithms
in today’s networks and the Internet have remained essentially unchanged
since the very first computer networks in the Sixties, they were not de-
signed for today’s security environment. Only thanks to protocol extensions
and new technologies, today’s network users are protected against many
threats. For example, most hosts are behind firewalls that prevent some ma-
licious traffic from reaching them, and most traffic is encrypted to prevent
eavesdropping. However, today’s protections are not enough. For example,
denial-of-service attacks can cut a host’s connection even if their traffic does
not reach it, and encrypted traffic still leaks information about its contents.

In this dissertation, we explore how obfuscation can help to prevent such
weak points. To this end, we present two solutions:

First, we present NetHide, a system that mitigates denial-of-service attacks
against the network infrastructure by obfuscating the network topology. The
key idea behind NetHide is to formulate topology obfuscation as a multi-
objective optimization problem that allows for a flexible trade-off between
the security of the topology and the usability of network debugging tools.
NetHide then intercepts and modifies path-tracing probes in the data plane
to ensure that attackers can only learn the obfuscated topology.

Second, we present ditto, a system that prevents traffic-analysis attacks
by obfuscating the timing and size of packets. The key idea behind ditto

is to add padding to packets and to introduce chaff packets such that
the resulting traffic is independent of production traffic with respect to
packet sizes and timing. ditto provides high throughput without requiring
changes at hosts, which makes it ideal for protecting wide area networks.

Both systems leverage recent advances in network programmability.
They show that programmable switches can increase the security of high-
throughput networks without degrading their performance.

However, programmable switches do not only provide high performance
for obfuscation, but they also allow analyzing traffic at scale. We complete
this dissertation with a discussion of four use cases where programmable
switches analyze traffic – for both benign and malicious purposes.

iii

Z U S A M M E N FA S S U N G

Viele Protokolle und Algorithmen, die in den heutigen Computernetzwer-
ken und im Internet verwendet werden, sind seit den allerersten Computer-
netzen in den sechziger Jahren im Wesentlichen unverändert geblieben. Das
ist zwar beeindruckend, aber es heisst auch, dass sie nicht für das heutige
Sicherheitsumfeld entwickelt wurden.

Nur dank Erweiterungen und neuen Technologien sind die heutigen
Netzwerkbenutzer vor vielen Bedrohungen geschützt. So befinden sich
beispielsweise die meisten Geräte hinter Firewalls, die verhindern, dass
schädlicher Datenverkehr zu ihnen gelangt. Und der meiste Datenverkehr
ist verschlüsselt, um das Abhören zu verhindern. Die heutigen Schutzmass-
nahmen reichen jedoch nicht aus. So können beispielsweise sogenannte
Denial-of-Service-Angriffe die Verbindung eines Endgerätes kappen, auch
wenn ihr Datenverkehr das Gerät nicht erreicht. Und verschlüsselter Daten-
verkehr gibt immer noch Informationen über seinen Inhalt preis.

In dieser Dissertation untersuchen wir, wie Verschleierung helfen kann,
solche Schwachstellen zu verhindern. Dazu stellen wir zwei Lösungen vor:

Zuerst präsentieren wir NetHide, ein System, das die Netzwerktopologie
verschleiert, um Denial-of-Service-Angriffe auf die Netzwerkinfrastruktur
zu verhindern. NetHide formuliert die Verschleierung der Netzwerktopolo-
gie als ein Optimierungsproblem und ermöglicht so einen flexiblen Kompro-
miss zwischen der Sicherheit der Topologie und der Benutzerfreundlichkeit
von Netzwerk-Analyse-Programmen. Um sicherzustellen, dass Angreifer
nur die verschleierte Topologie herausfinden können, verändert NetHide die
Pakete von Netzwerk-Analyse-Programmen in Echtzeit.

Als zweites präsentieren wir ditto, ein System, das den Sendezeitpunkt
und die Grösse von Netzwerkpaketen verschleiert, um Analysen des Da-
tenverkehrs zu verhindern. Die Grundidee von ditto besteht darin, Pakete
zu vergrössern und zusätzliche Pakete einzuführen, so dass der resultieren-
de Datenverkehr in Bezug auf Paketgrössen und Sendezeiten unabhängig
vom tatsächlichen Verkehr ist. ditto bietet einen hohen Durchsatz, ohne
dass Änderungen an den Endgeräten erforderlich sind. Daher ist ditto

ideal geeignet, um beispielsweise Netzwerke zwischen Rechencentern zu
schützen.

v

Beide Systeme nutzen die jüngsten Fortschritte bei der Programmier-
barkeit von Netzwerken. Die zwei Systeme zeigen, dass programmierbare
Netzwerkgeräte die Sicherheit von Computernetzwerken verbessern kön-
nen, ohne deren Leistung zu beeinträchtigen.

Programmierbare Netzwerkgeräte können jedoch nicht nur für die Ver-
schleierung von Netzwerken genutzt werden, sondern sie ermöglichen auch
die Analyse des Datenverkehrs in grossem Umfang. Zum Abschluss dieser
Dissertation diskutieren wir vier Anwendungsfälle, in denen programmier-
bare Netzwerkgeräte den Datenverkehr analysieren – sowohl für gute als
auch für schlechte Zwecke.

vi

P U B L I C AT I O N S

This dissertation is based on previously published conference proceedings.
The list of accepted and submitted publications is presented hereafter.

NetHide: Secure and Practical Network Topology Obfuscation

Roland Meier, Petar Tsankov, Vincent Lenders,
Laurent Vanbever, Martin Vechev.

USENIX Security, Baltimore, MD, USA, 2018.

ditto: WAN Traffic Obfuscation at Line Rate

Roland Meier, Vincent Lenders, Laurent Vanbever.

NDSS, San Diego, CA, USA, 2022.

The following publications were part of my PhD research and are referenced
in this thesis, but they were led by other researchers.

pForest: In-Network Inference with Random Forests

Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller,
Tobias Bühler, Laurent Vanbever.

arXiv preprint, arXiv:1909.05680, 2019.

Mass Surveillance of VoIP Calls through
Programmable Data Planes

Ege Cem Kirci, Maria Apostolaki, Roland Meier,
Ankit Singla, Laurent Vanbever.

ACM Symposium on SDN Research (SOSR), online, 2022.

vii

The following publications were part of my PhD research, but are not
covered in this dissertation.

FeedRank: A Tamper-resistant Method for the Ranking
of Cyber Threat Intelligence Feeds

Roland Meier, Cornelia Scherrer, David Gugelmann,
Vincent Lenders, Laurent Vanbever.

International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 2018.

Machine Learning-based Detection of C&C Channels with
a Focus on the Locked Shields Cyber Defense Exercise

Nicolas Känzig, Roland Meier, Luca Gambazzi,
Vincent Lenders, Laurent Vanbever

International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 2019.

Detection of Malicious Remote Shell Sessions

Pierre Dumont, Roland Meier, David Gugelmann, Vincent Lenders.

International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 2019.

(Self) Driving Under the Influence: Intoxicating
Adversarial Network Inputs

Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli,
Vincent Lenders, Ankit Singla, Laurent Vanbever.

ACM HotNets, Princeton, NJ, USA, 2019.

Towards an AI-powered Player in Cyber Defense Exercises

Roland Meier, Arturs Lavrenovs, Kimmo Heinäaro,
Luca Gambazzi, Vincent Lenders.

International Conference on Cyber Conflict (CyCon), online, 2021.

Generalizing Machine Learning Models to Detect
Command and Control Attack Traffic

Lina Gehri, Roland Meier, Daniel Hulliger, Vincent Lenders.

Under submission, 2022.

viii

A C K N O W L E D G M E N T S

I was lucky to be surrounded by many helpful and smart people during
the journey that led to this dissertation. I am deeply grateful to all of them.
Below, I mention some that deserve a special thank you for making this
journey possible and enjoyable.

First and foremost, I thank Prof. Laurent Vanbever for the opportunity to
pursue a doctorate in his group. His great support and guidance already
during my Master’s thesis were significant contributing factors for me to
decide that I want to do a doctorate. I enjoyed being part of his group, and I
highly appreciate that Laurent was always available when I needed his help
and that he also gave me the freedom to explore research topics outside
the scope of this thesis. Laurent is not only a great role model for doing
research, but he also helped me improve my writing and presentation skills
– and he pushed me to new personal records on Strava.

I am also extremely grateful to Vincent Lenders, my second advisor. He
always provided excellent advice, feedback, and insights from the industry.
This greatly improved the contents of this thesis and many other research
projects. Furthermore, I thank Vincent for giving me the opportunity to
collaborate with him, other people from armasuisse, and students on several
projects outside the scope of this thesis.

I thank Prof. Ang Chen and Prof. Adrian Perrig for participating in my
dissertation committee and for their valuable feedback that helped me
improve this dissertation.

I thank all the other members of the Networked Systems Group for all
their support and for the fun we had together: Maria Apostolaki, Rüdiger
Birkner, Tobias Bühler, Coralie Busse-Grawitz, Yu Chen, Edgar Costa Molero,
Alexander Dietmüller, Ahmed El-Hassany, Georgia Frangkouli, Albert Gran
Alcoz, Thomas Holterbach, Romain Jacob, Ege Cem Kirci, Roland Schmid,
Tibor Schneider, Muoi Tran, and Rui Yang. Special thanks go to Tobias for
being a great office mate during all the years and for his help on countless
occasions; Rüdiger and Edgar for the pleasant conversations in their office
and all their help; and to Coralie, Tobias, and Ege for their feedback on
drafts of this thesis.

ix

During my doctorate, I had the pleasure of working together with many
incredibly talented collaborators and students. I thank all of them for the
good collaboration and for all the things I learned from them. I also thank
Beat Futterknecht for his help on various administrative topics.

I am deeply grateful to my family and friends. They supported me over
all the years and always provided a relaxing atmosphere in which I could
unwind from the stressful aspects of the doctorate. In particular, I am
thankful to my parents – Monika and Leo – and my siblings – Daniela and
Manuel – as well as their partners for all the joyful and relaxing times.

Last but not least, I thank Coralie for her unlimited readiness to help, for
her incredible patience, and for always cheering me up when I needed it.

Roland Meier
November 2022

x

C O N T E N T S

1 Introduction 1

2 Background 5

2.1 Packet-switching networks . 5

2.2 Network programmability . 9

2.3 Network obfuscation . 13

3 Obfuscating network topologies 17

3.1 Model . 20

3.2 NetHide . 25

3.3 Generating secure topologies 27

3.4 Topology deployment . 32

3.5 Evaluation . 38

3.6 Frequently asked questions . 49

3.7 Related work . 51

3.8 Conclusion . 54

4 Obfuscating network traffic 55

4.1 Model . 58

4.2 ditto . 61

4.3 Computing efficient traffic patterns 64

4.4 Traffic shaping in the data plane 65

4.5 Security analysis and limitations 67

4.6 Implementation . 70

4.7 Evaluation . 73

4.8 Related work . 90

4.9 Conclusion . 93

5 De-obfuscating traffic and users 95

5.1 Case study: Proxy server detection 97

xi

xii contents

5.2 Background on proxy servers 99

5.3 Model . 100

5.4 Design overview . 102

5.5 Extracting features in the data plane 107

5.6 Identifying proxies in the control plane 107

5.7 Evaluation . 109

5.8 Discussion and future work . 116

5.9 Conclusion . 120

6 Conclusion and outlook 121

6.1 Conclusion . 121

6.2 Open research problems . 122

Bibliography 125

Own publications . 125

References . 126

1
I N T R O D U C T I O N

Seemingly innocent actions such as recording a workout to track one’s
training progress or ordering pizza during a stressful working day can
impair national security, as these two examples show: Recorded workout
routes – even if anonymized, aggregated, and published only as a heatmap
– can reveal the locations of military bases [12]. And pizza deliveries to the
White House and the Pentagon can predict when something important is
about to happen [13, 14].

The main reason why these so-called side-channel attacks work is that
their attack vectors were not considered when the systems were designed.
This also happened to computer networks and the Internet, where the initial
creators could not foresee the dimensions that these networks have today.

In 1969, the “Internet” consisted of four nodes and provided 50 kbit/s
bandwidth between them [15, 16]. The network – created by the Advanced
Research Projects Agency (ARPA) in the United States’ Department of
Defense – was called ARPANET. It was the first wide-area packet switching
network with a distributed routing algorithm.

Even though the term “Internet” did not exist and the dimensions of
this network were vastly different from what we call Internet today, the
technology behind ARPANET was surprisingly similar to today’s Internet: It
used packet switching (as opposed to circuit switching, which was prevalent
at this time), it was a fully distributed system, and it implemented the
TCP/IP protocol suite [17].

All of this is still the case in today’s Internet and most of the individual
networks that compose it. However, today there are not four but rather
40 billion connected devices [18], these devices do not belong to four
organizations but rather to billions of people [19] and the bandwidth
available to each of these users is not in the order of kilobits per second but
more than 100 megabits per second on average [19].

With this growth, the threat landscape has changed drastically too. In
the early days of computer networks, the few users knew and trusted each
other [20]. There was no reason to design protocols in a way that prevents

1

2 introduction

malicious actions. Today, several decades later, there is an arms race between
attackers and defenders in the cyber world. Some of the outcomes related to
network security include that firewalls and other packet inspection devices
prevent malicious traffic from reaching its destination [21]; applications
encrypt their traffic before it crosses the network [22]; and people use
anonymity networks or proxies to conceal their identities [23].

Unfortunately, it turns out that this is not enough. For example, attackers
can interrupt network links to impair users even if no malicious traffic
reaches them; and attackers can use traffic metadata to reconstruct user
activities even if the traffic is encrypted.

Or, to come back to the initial examples: the workout routes leak infor-
mation even if they do not say who was training; and pizza delivery still
leaks information, even if the type of pizza is not visible.

In this dissertation, we present techniques to fix such weaknesses through
obfuscation. In other words, we change the way the network and its traffic
“looks” to an attacker such that she cannot perform her attacks.

To use the examples one last time: Our systems would modify the work-
out routes to hide the real hotspots, and they would hide the pizza con-
sumption by ensuring that number of daily pizza deliveries is constant.

But defending against attackers is not the only challenge that arose since
the early days of the Internet. One other big challenge is that today’s
networks and the Internet carry vastly more traffic compared to a few
decades ago. For example, the global Internet traffic in 2022 was estimated
to be around 150 terabytes per second [24]. This makes it more and more
challenging to implement security solutions that can keep up with the
traffic volume without downgrading the network performance.

Traditionally, devices that process network traffic are either fast but very
restricted in their functionality (e.g., switches that process traffic in ASICs),
or slow but very flexible (e.g., general-purpose servers that process packets
using their CPUs). This inflexibility of traditional networking hardware
frustrated not only the developers of security solutions but also network
operators and researchers in general. And it resulted in network devices
becoming both fast and flexible in the past years.

First (in 2008), researchers presented an abstraction of the control- and
data planes in network devices. This opened the control plane for custom
applications which could interact with the data plane through a standard-
ized protocol [25]. Then (in 2014), researchers presented a programming

introduction 3

language for the data plane of network devices, which opened the data
plane for custom algorithms too.

Today – as a result of these initiatives – there are network devices that are
fully programmable and yet achieve the same performance as traditional
fixed-function devices [26].

Even though these devices are still limited in terms of the available
resources (e.g., little memory) and operations (e.g., no floating point), they
have already enabled many research works. Examples include improved
network monitoring (e.g., [27–29]), better traffic management (e.g., [30–32]),
protections against various attacks (e.g., [33–35]), and many more [36].

In this dissertation, we leverage these advances in network programma-
bility to make our obfuscation systems not only secure but also highly
performant. And we show that the resources and operations available on
these devices are enough to implement in-network security solutions.

In summary, this dissertation focuses on the following research question:

How can obfuscation and data-plane programmability increase the
security of networks without degrading their performance?

We answer by introducing two systems:

Our first system, NetHide, showcases how programmable networks can
prevent link-flooding attacks. For these attacks, the attacker needs to (par-
tially) know the network topology. The key insight behind our work is that
programmable networks can respond to path tracing queries in a way that
maintains the utility of these tools for benign purposes but prevents an
attacker from learning sensitive information about bottleneck links.

Our second system, ditto, showcases how programmable networks can
prevent traffic-analysis attacks. For these attacks, the attacker only needs
to have access to packet metadata (such as packet sizes, timestamps, and
directions). The key insight behind our work is that programmable networks
can obfuscate these metadata by mixing real and chaff packets in a way
that provides both high security and high performance.

Both systems show that obfuscation complements existing security mea-
sures (such as traffic encryption) and helps to improve the security of
a network. Both systems also show that programmable networks are a
valuable tool for implementing network obfuscation techniques for high-
throughput networks.

4 introduction

Outline The rest of this dissertation is structured as follows.

In Chapter 2, we introduce the required background knowledge about
computer networks and network programmability.

Afterwards, we present two use cases where network programmability
allows to increase security through obfuscation in a way that was not
possible before: In Chapter 3, we present NetHide, our solution to mitigate
link-flooding attacks by obfuscating the network topology. In Chapter 4, we
present ditto, our solution to mitigate traffic-analysis attacks by obfuscating
the size and timestamps of packets.

In Chapter 5, we broaden our scope and present ways in which pro-
grammable networks can also help to de-obfuscate network properties at
scale. We first sketch three systems that enable network operators – with
benign or malicious intents – to identify participants of VoIP calls, perform
traffic classification using machine learning models, and perform traffic-
analysis attacks. Then, we present a detailed case study that shows how
programmable networks can identify and identify proxy servers in an ISP
network.

Finally, in Chapter 6, we conclude and sketch opportunities for future
research.

2
B A C K G R O U N D

In this chapter, we provide the necessary background information for this
dissertation. We first explain the basics of computer networks (Section 2.1)
and what the “programmable” networks changed (Section 2.2). Then, we
explain the concept of network obfuscation and discuss its use cases and
existing work (Section 2.3).

2.1 packet-switching networks

In the most general sense, the purpose of a communication network is
that two parties connected to the network can exchange data. This was –
and still is – the case in the analog telephone network and for all modern
computer networks [37].

However, while their high-level purpose is the same, these two types of
networks differ in their technical implementation. The analog telephone
network is a so-called circuit switching network, which means data is trans-
mitted over a direct physical connection between the sender and the receiver
(i.e., the caller and the callee). On the other hand, most computer networks
and the Internet are so-called packet-switching networks. In these networks,
the sender breaks a message into small chunks (the packets). These packets
traverse the network individually while sharing the physical connections
with packets from other senders and receivers. The receiver then assembles
the packets back into the original message.

2.1.1 Types of networks

Depending on their geographical spread, computer networks are classified
as personal area networks, local area networks, metropolitan area networks,
wide area networks or internetworks [37]. In this dissertation, local area
networks, wide area networks, and internetworks play important roles and
are thus explained further below.

5

6 background

Local Area Networks (LANs) typically cover one room, building, or cam-
pus. They connect resources such as personal computers, servers, or printers.
And they provide a gateway to larger networks (such as wide area net-
works).

Wide Area Networks (WANs) connect multiple LANs over large geograph-
ical distances. Two prominent examples of WANs are those that connect
multiple sites (e.g., datacenters or campuses) of the same organization and
those that connect many LANs to the Internet (the Internet Service Provider
(ISP) networks).

Internetworks connect networks operated by different organizations. The
most widely known instantiation of an internetwork is the Internet which
connects over 70 000 networks (“Autonomous Systems”, or ASes) [38].

2.1.2 Sending packets through networks

Packet format Since the sender and the receiver might be in different
networks, there is a need for common conventions and protocols across
networks. Today’s computer networks and the protocols used in them can
be modeled best by defining five layers (L1–L5) [37]:

L1: The physical layer is responsible for transmitting individual bits across
different carriers (e.g., wires or radio waves).

L2: The link layer is responsible for transmitting finite-length chunks of
data over one link.

L3: The network layer is responsible for transmitting finite-length chunks
of data over multiple links and potentially multiple networks.

L4: The transport layer is responsible for providing reliability properties
and abstractions for sending byte-streams of infinite lengths between
two hosts.

L5: The application layer is responsible for the interface to applications and
processes which communicate over the network (e.g., web browsers).

Typically, each packet contains information on all these layers and differ-
ent devices process information in different layers. While the source and
destination hosts parse all layers, intermediate devices only need informa-
tion up to L2 or L3 to forward the packet along the right path.

2.1 packet-switching networks 7

Forwarding packets through a network In order to connect many hosts
to a network without requiring direct connections between each pair of
them, switches and routers relay packets from multiple sources to multiple
destinations.

Switches operate on the link layer (L2). To know where to send a packet,
they parse the link-layer destination address (e.g., the destination MAC
address in Ethernet) and query their so-called forwarding table, which
contains data about which egress port the packet needs to be sent to.

Routers are similar to switches, but they additionally operate on the
network layer (L3). This allows them to route packets across the boundaries
of a local network. Similar to a switch, they parse the destination address
of the network layer (e.g., IP) and use their knowledge in the so-called
forwarding information base (FIB) to determine the egress port of a packet.

To determine the contents of the switches’ forwarding table and the
routers’ FIB, there exists a variety of algorithms and protocols (e.g., MAC
learning and spanning tree protocol for L2 [39, 40] and routing protocols
for L3 [41, 42]). We do not go into the details of these protocols because
they are not relevant for this dissertation.

2.1.3 Important protocols

In this section, we describe the protocols relevant for the systems presented
in this dissertation.

Ethernet is the predominant link-layer protocol used in today’s local- and
wide area networks. It was standardized in 1983 as IEEE 802.3 [37]1. A
data unit transmitted by Ethernet is called a frame and it contains source
and destination MAC (Media Access Control) addresses, the type of the
next-higher (L3) protocol and a frame check sequence [43].

Internet Protocol (IP) is the predominant network-layer protocol in today’s
local networks as well as internetworks (including the Internet). Today, two
different versions of IP are in use: IPv4, which is the predominant version
[44] and is in use since 1980 [45], and IPv6, the new version which addresses
some limitations of IPv4 [46]. Similar to Ethernet, IP specifies the source
and destination address of a packet in its header and routers use this

1 Originally, classic Ethernet was designed for communication over a shared medium, switched
Ethernet – the variant that is used today – is designed for packet switching networks

8 background

information to route a packet through (potentially) multiple networks. In
contrast to Ethernet addresses, IP addresses have a hierarchical format. The
first part of the address (often the first 16 or 24 bits of a 32-bit IPv4 address)
are called the prefix. This format allows routers to forward packets based
on their prefix (instead of the full destination address), which significantly
reduces the size of the FIB. Besides the source and destination addresses,
the IP header includes information such as the packet length, the protocol
that is used in the next-higher layer, and a “time to live” (TTL) value that
specifies how many routers a packet can pass at most (in order to prevent
infinite loops).2

Internet Control Message Protocol (ICMP) is – in contrast to e.g., TCP and
UDP, which we cover below – not used to transport data between hosts but
it is a control protocol that allows routers to signal when a packet cannot be
processed regularly. For this, ICMP defines 13

3 message types to notify the
sender about events such as an unreachable destination, an invalid header,
or an expired TTL value [47]. Several network debugging tools make use of
ICMP features. Most prominently, this includes ping, a tool to measure the
round trip time to a given device (it sends an ICMP ECHO REQUEST message
and measures the time until the destination answers with ECHO REPLY) [48]
and traceroute, a tool to determine the path that packets take through the
network (it sends IP packets with increasing TTL values and leverages the
fact that routers respond with ICMP TIME EXCEEDED when a packet’s TTL
expires) [49].

User Datagram Protocol (UDP) is a transport-layer protocol for unreliable
data transfer [50]. Unreliable means that UDP does not provide congestion
control or retransmission of lost packets (in contrast to TCP, see below). The
key strength of UDP is that it provides a fast way to send data because it
does not require establishing a connection first. UDP uses port numbers
to specify the source and the destination “socket” within the sending and
receiving device. Applications can open these sockets in order to send or
receive network data. In principle, every application can open any socket,
but by convention, the port numbers below 1024 should be used by their
assigned applications only (e.g., port 80 for HTTP) [51].

Transmission Control Protocol (TCP) is a transport-layer protocol for
reliable data transfer [52]. Similar to UDP, it uses port numbers to trans-

2 The field names are for IPv4, but similar fields exist in IPv6

3 not including deprecated, experimental, or reserved types

2.2 network programmability 9

fer data between the sender’s and receiver’s respective sockets. However,
unlike UDP, TCP is connection-oriented. A TCP connection starts with a
handshake before it can be used to transfer data. Within this connection,
TCP monitors packet loss and reacts to network conditions (such as the
available bandwidth): it automatically retransmits lost packets and it adapts
the transmission rate depending on the network conditions.

Transport Layer Security (TLS) is an application-layer protocol that pro-
tects its payloads against eavesdropping, modifications, and injected mes-
sages [53]. To establish a TLS connection, the client and the server exchange
handshake packets that contain cryptographic parameters and certificates.
TLS is widely used to encrypt HTTP traffic (introduced below) to allow
secure web browsing. In this case, only the server provides a certificate to
prove that it is authorized to host the requested website. However, in other
cases, TLS can be used to authenticate clients too.

Hypertext Transfer Protocol (HTTP) is an application-layer protocol for
fetching resources over the network [54]. Most prominently, it is used
to load data (e.g., websites) over the World Wide Web. It is designed as
a request-response protocol where the client requests a resource (e.g., a
website) from a server and the server returns the resource (i.e., the website’s
source code). HTTP can run on top of a transport layer protocol (usually
TCP) directly, or it can run on top of TLS for secure connections. HTTP
that runs over TLS is called HTTPS. Today, most popular websites support
HTTPS [55].

2.2 network programmability

In this section, we explain the architecture of network devices (routers and
switches), how these devices are programmable and what the strengths and
limitations of programmable network devices are.

2.2.1 Network device architecture

At a high level, network devices (routers and switches) consist of three build-
ing blocks (cf. Figure 2.1): The data, control, and management planes [56].

The data plane consists of the physical ports which receive and send
packets and the logic for forwarding packets between them (including

10 background

Data plane

Control plane

Management plane

Parser Ingress pipeline Traffic manager Egress pipeline Deparser

Packets Packets

Figure 2.1: Architecture of a (programmable) switch. It consists of three planes:
the management plane (for configuration), the control plane (for
forwarding decisions), and the data plane (for handling packets).

buffering, scheduling, and some packet header modifications). The data
plane is typically implemented in an application-specific integrated circuit
(ASIC) that can process packets at line rate. For good performance, the vast
majority of packets should be processed in the data plane. However, the
data plane is usually optimized to apply simple actions to many packets
in a short time. As a result, there are packets that the data plane cannot
handle itself. Examples of such packets typically include routing protocol
information or packets whose destination is not in the forwarding table.

The control plane typically runs on a general-purpose CPU. Thus, it
provides high flexibility at the cost of packet processing performance. It can
run more complex algorithms (e.g., to compute shortest paths) and it can
update the data plane accordingly (e.g., through forwarding table entries).

The management plane provides an interface to network administrators
for configuration and monitoring. It then configures the algorithms in the
control plane accordingly. The management plane provides the highest
flexibility since it can run on a general-purpose server and it does not
interact with network packets directly.

Over time, the fact that only the management plane allowed a network
administrator to configure her network became a limitation. This led to the
desire for a more flexible control plane.

2.2 network programmability 11

2.2.2 Programmability in the control plane

In 2008, McKeown et al. published an editorial note [25] in which they
described the concept of a programmable control plane, an extended flow
table, and a standardized interface between the two.

This allowed network operators (and researchers) (i) to develop their own
control-plane applications; (ii) to use a central controller for multiple data
planes (i.e., multiple switches); and (iii) to combine hardware of different
vendors.

An OpenFlow-compatible switch (OpenFlow is the name of the protocol
between the control plane and the data plane) provides a flow table with a
given set of properties and allows modifications to the table entries through
the OpenFlow protocol. Now, the biggest constraint for custom applications
was the format of the flow table (i.e., the packet header fields that can be
read and modified and the possible actions that can be executed). While an
OpenFlow-compatible switch can typically perform all the actions that a
traditional switch can (e.g., forward packets based on their destination MAC
or IP address), it does not allow innovation in the form of new network- or
link-layer protocols or data-plane algorithms.

To overcome this limitation of OpenFlow, the data plane had to become
programmable too.

2.2.3 Programmability in the data plane

To enable innovation not only in the control plane but also in the data
plane, Bosshart et al. introduced P4, a high-level programming language
for “protocol-independent packet processors” [57]. Soon after, the first fully
programmable switch was available on the market [26].

The so-called portable switch architecture (PSA) [58] describes a template
for the architecture of programmable switches. Such switches allow running
custom programs (implemented in P4) in the data plane and can process
traffic at terabits per second [59].

At a high level, programmable switches process packets as follows (cf.
illustration in Figure 2.1). When a packet arrives, a parser extracts informa-
tion from the packet headers. These headers (together with metadata such
as the ingress port) then traverse the ingress pipeline. There, match & action
tables can modify the packet headers and metadata (e.g., set the egress port).

12 background

Afterwards, the packet arrives at the traffic manager (TM), which (among
others) sends the packet to an egress pipeline. The egress pipeline works like
the ingress pipeline, except that it is attached to the packet’s egress port.
At the end of the egress pipeline, the deparser assembles the (potentially
modified) headers and the (unmodified) payload back to a packet and
transmits it.

Below, we provide more details about each of these building blocks.

The parser receives the incoming packet and extracts headers. The format
of these headers is programmable (i.e., the parser can extract custom header
formats). Only the parsed parts of the packet are accessible in the pipelines.
The rest of the packet is considered as payload and cannot be modified.

The ingress pipeline receives the packet’s headers together with metadata
(e.g., its ingress port), which is all stored in the packet header vector (PHV).
The pipeline consists of several stages in which match & action tables can
match on data in the PHV and trigger actions to modify it.

The architecture and the focus on processing packets at line rate impose
three main limitations concerning the ingress and egress pipeline: (i) the
number of pipeline stages limits the number of sequential actions that can
be performed on each packet; (ii) the size of the PHV limits the size of the
parsed headers and metadata (which can be seen as local variables); and
(iii) operations which take a non-constant time per packet are not possible
(e.g., loops, splitting or merging packets).

The Traffic Manager (TM) switches packets from ingress pipelines to
egress pipelines. If needed, the TM buffers packets in first-in, first-out
(FIFO) queues. When the egress pipeline can process the next packet, the
TM selects a queue and sends its next packet to the egress pipeline. To
determine the queue, the TM can use different strategies [60]: (i) the queue’s
priorities; (ii) weighted round-robin; or (iii) a combination of both (round
robin among queues with equal priorities).

The egress pipeline is identical to the ingress pipeline except that it is
attached to an egress port. As a consequence, it is, for example, no longer
possible to change a packet’s egress port once the packet has passed the
TM. Similarly, the deparser is the inverse of the parser: It takes the headers
and the payload and assembles the final packet.

2.3 network obfuscation 13

2.2.4 Strengths of programmable networks

In contrast to traditional networks where each device (routers, switches,
firewalls, . . .) serves one fixed purpose and is only configurable by the opera-
tor (e.g., they can manage subnets, VLANS, or firewall rules), programmable
network devices can run any data-plane program as long as it meets their
resource constraints. This leads to the following advantages:

• Flexibility: Programmable network devices can be adapted to new
protocols (e.g., future versions of IP) and one device (e.g., a switch)
can run multiple applications tailored to the given network and the
threat landscape. The operator can program the switch according to
their needs.

• Visibility: Since the programs run in the data plane, they can interact
with every packet that crosses the device without introducing traffic
overhead (e.g., traditionally, the traffic had to be cloned to an other
device).

• Performance: Data-plane programs process packets at line rate and
they can update their state or take decisions instantly.

While the concept of programmable data planes was new when the
research for this dissertation started in 2017, there exist many systems
that show the usefulness of this concept for security applications in the
meantime.

Among others, researchers have shown that programmable switches can
be used to implement more flexible firewalls [33, 61–63]; new authentication
schemes [64–69]; defenses against various attacks [70–85] and many more
applications (cf. surveys in [36, 86]).

Since this dissertation focuses on using programmable networks for
obfuscation, we mainly consider related work in this area. In the next
section, as well as in Chapters 3 and 4, we discuss such work.

2.3 network obfuscation

Obfuscation generally means making something difficult or impossible to
understand [87]. In this section, we discuss how obfuscation is helpful in
computer networks. Concerning computer networks, there are four main
use cases for obfuscation:

14 background

• Protocol obfuscation to avoid censorship

• Packet header obfuscation to increase anonymity

• Topology obfuscation to improve resilience

• Traffic obfuscation to prevent information leakage

In the following paragraphs, we will explain each use case in more detail
and summarize corresponding related work.

Protocol obfuscation The main application of network protocol obfusca-
tion systems is to circumvent filtering or censorship. Protocol obfuscation
systems typically achieve this by using randomization, mimicry, or tun-
neling. Randomization systems (e.g., [88–90]) randomize the traffic such
that it is not possible to extract information (e.g., the used application)
from it. Mimicry systems (e.g., [91, 92]) modify traffic such that it contains
signatures of popular (non-blocked) protocols. For example, such systems
embed strings that match regular expressions of deep packet inspection
boxes. Tunneling systems (e.g., [93–98]) go one step further and embed the
obfuscated traffic in a cover protocol (e.g., in HTTPS).

While most systems fall in one of these three categories, some systems
are programmable to use a combination of these techniques (e.g., [99, 100]).

Header obfuscation Several systems use obfuscation to hide packet headers
as an alternative to network-layer anonymity systems such as TOR [101],
LAP [102], Dovetail [103], HORNET [104] PHI [105], and TARANET [106].

Below, we summarize four systems that leverage network programmabil-
ity to obfuscate packet headers.

In previous work, we presented iTAP [5], a system to obfuscate packet
headers within a local network using OpenFlow-compatible switches. The
main idea behind iTAP is to replace the source and destination addresses
with pseudo-random values. Some bits of these pseudo-random values
represent the actual sender and the receiver, but an eavesdropper does not
know which bits. Similarly, Lee et al. developed two systems [107, 108] that
assign per-packet one-time addresses to its customers’ hosts. In contrast to
iTAP, these systems are designed to operate between multiple ASes.

SPINE [109] obfuscates packet header fields (IP addresses and TCP
fields) in traffic between two participating ASes. To be compatible with the
operations available on programmable switches, SPINE uses one-time-pad-
based encryption to obfuscate the header fields.

2.3 network obfuscation 15

PINOT [110] also obfuscates the IP addresses of traffic that leaves a
trusted AS. But in contrast to SPINE, PINOT runs at the edge of one AS
and does not need the cooperation of multiple ASes.

MIMIQ [111] leverages the connection migration capability of QUIC [112]
to change the client’s IP address every few packets. Like PINOT, it runs
at the edge of a trusted network and ensures that potential eavesdroppers
outside of this network cannot infer the client that sent a packet.

Topology obfuscation Even though most network operators do not pub-
lish their topology, it is possible to determine it by using tools such as
traceroute [49]. Unfortunately, knowledge of the topology can help an
attacker to launch so-called link-flooding attacks [113, 114]. To prevent such
attacks, there exist many systems to obfuscate a network’s topology.

In Chapter 3, we will present NetHide, our system for topology obfusca-
tion. The main idea behind NetHide and many related works (e.g., [115–118])
is to modify the responses that traceroute produces in such a way that
the presented network topology does not show the bottlenecks in the real
topology. The main challenges for these works are to determine a topology
that does not contain sensitive information but is still realistic and to modify
responses to path tracing tools in a way that the attacker cannot notice. For
a detailed discussion of related work in the area of topology obfuscation,
we refer to Section 3.7.

Traffic obfuscation The main reason for traffic obfuscation is to prevent so-
called traffic-analysis attacks that can infer details about ongoing activities
only based on packet sizes, directions, and timings [119–134].

In Chapter 4, we will present ditto, our system for traffic obfuscation.
ditto and many related works (e.g., [104, 106, 134–138]) obfuscate traffic
by adding padding to packets (to obfuscate their size) and by introducing
chaff packets (to obfuscate the number and timing of packets). The main
challenge for these works is to do these operations in a way that does not
allow an attacker to identify padding or chaff packets and provides high
performance. For a detailed discussion of related work in the area of traffic
obfuscation, we refer to Section 4.8.

3
O B F U S C AT I N G N E T W O R K T O P O L O G I E S T O P R E V E N T
S O P H I S T I C AT E D D E N I A L - O F - S E RV I C E AT TA C K S

In this chapter, we present NetHide, a network topology obfuscation frame-
work that mitigates sophisticated distributed denial-of-service attacks while
preserving the practicality of network debugging tools.

Botnet-driven Distributed Denial-of-Service (DDoS) attacks constitute
one of today’s major Internet threats [139, 140]. Such attacks can be divided
in two categories depending on whether they target end hosts and services
(volume-based attacks) or the network infrastructure itself (link-flooding
attacks, LFAs).

Purely volume-based attacks are the simplest and work by sending
massive amounts of data to selected targets. Recent examples include the
1.2 Tbps DDoS attack against Dyn’s DNS service [141] in October 2016

and the 1.35 Tbps DDoS attack against GitHub in February 2018 [142].
While impressive, these attacks can be mitigated today by diverting the
incoming traffic through large CDN infrastructures [143]. As an illustration,
CloudFlare’s infrastructure can now mitigate volume-based attacks reaching
Terabits per second [144].

Link-flooding attacks (LFAs) [113, 114] are more sophisticated and work
by having a botnet generate low-rate flows between pairs of bots or towards
public services such that all of these flows cross a given set of network links
or nodes, degrading (or even preventing) the connectivity for all services
using them. LFAs are much harder to detect as: (i) traffic volumes are
relatively small (10 Gbps or 40 Gbps attacks are enough to kill most Internet
links [145]); and (ii) attack flows are indistinguishable from legitimate
traffic. Representative examples include the Spamhaus attack which flooded
selected Internet eXchange Point (IXP) links in Europe and Asia [146–148].

Unlike volume-based attacks, performing an LFA requires the attacker to
know the topology and the forwarding behavior of the targeted network.
Without this knowledge, an attacker can only “guess” which flows share
a common link, considerably reducing the attack’s efficiency. As an illus-
tration, our simulations indicate that congesting an arbitrary link without

17

18 obfuscating network topologies

knowing the topology requires 5 times more flows, while congesting a
specific link is orders of magnitude more difficult.

Nowadays, attackers can easily acquire topology knowledge by running
path tracing tools such as traceroute [49]. In fact, previous studies have
shown that entire topologies can be precisely mapped with traceroute

provided enough vantage points are used [149], a requirement easily met
by using large-scale measurement platforms (e.g., RIPE Atlas [150]).

Existing works Existing LFA countermeasures either work reactively or
proactively. Reactive measures dynamically adapt how traffic is being for-
warded [151, 152] or have networks collaborating to detect malicious
flows [145]. Proactive measures work by obfuscating the network topology
so as to prevent attackers from discovering potential targets [115–117]. The
problem with reactive countermeasures is the relative lack of incentives
to deploy them: collaborative detection is only useful with a significant
amount of participating networks, while dynamic traffic adaptation con-
flicts with traffic engineering objectives. In contrast, proactive approaches
can protect each network individually without impacting normal traffic
forwarding. Yet, they considerably lower the usefulness of path tracing
tools [115, 117] such as traceroute which is the prevalent tool for debug-
ging networks [149, 153, 154]. Further, they also provide poor obfuscation
which can be broken with a small number of brute-force attacks [116, 117].

Problem statement Given the limitations of existing techniques, a funda-
mental question remains open: is it possible to obfuscate a network topology so
as to mitigate attackers from performing link-flooding attacks while, at the same
time, preserving the usefulness of path tracing tools?

Key challenges Answering this question is challenging for at least three
reasons:

1. The topology must be obfuscated with respect to any possible attacker
location: attackers can be located anywhere and their tracing traffic is
often indistinguishable from legitimate user requests.

2. The obfuscation logic should not be invertible and should scale to
large topologies.

3. The obfuscation logic needs to be able to intercept and modify tracing
traffic at line rate. To preserve the troubleshooting-ability of network
operators, tracing traffic should still flow across the correct physical

obfuscating network topologies 19

links such that, for example, link failures in the physical topology are
visible in the obfuscated one.

NetHide We present NetHide, a novel network obfuscation approach which
addresses the above challenges. NetHide consists of two main components:
(i) a usability-preserving and scalable obfuscation algorithm; and (ii) a
runtime system, which modifies tracing traffic directly in the data plane.

The key technical insight behind NetHide is to formulate the network
obfuscation task as a multi-objective optimization problem that allows for
a flexible trade-off between security (encoded as hard constraints) and us-
ability (soft constraints). We introduce two metrics to quantify the usability
of an obfuscated topology: accuracy and utility. Intuitively, the accuracy
measures the similarity between the path along which a flow is routed in
the physical topology with the path that NetHide presents in the virtual
topology. The utility captures how physical events (e.g., link failures or
congestion) in the physical topology are represented in the virtual topology.
To scale, we show that considering only a few randomly selected candidate
topologies, and optimizing over those, is enough to find secure solutions
with near-optimal accuracy and utility.

We fully implemented NetHide and evaluated it on realistic topologies. We
show that NetHide is able to obfuscate large topologies (> 150 nodes) with
marginal impact on usability. In fact, we show in a case study that NetHide
allows to precisely detect the vast majority (> 90 %) of link failures. We also
show that NetHide is useful when partially deployed: 40 % of programmable
devices allow to protect up to 60 % of the flows.

Contributions Our main contributions are:

• A novel formulation of the network obfuscation problem in a way
that preserves the usefulness of existing debugging tools (Section 3.2).

• An encoding of the obfuscation task as a linear optimization problem
together with a random sampling technique to ensure scalability
(Section 3.3).

• An end-to-end implementation of our approach, including an online
packet modification runtime (Section 3.4).

• An evaluation of NetHide on representative network topologies. We
show that NetHide can obfuscate topologies of large networks in a
reasonable amount of time. The obfuscation has little impact on benign
users and mitigates realistic attacker strategies (Section 3.5).

20 obfuscating network topologies

3.1 model

We now present our network and attacker models and formulate the precise
problem we address.

3.1.1 Network model

We consider layer 3 (IP) networks operated by a single authority, such
as an Internet service provider or an enterprise. Traffic at this layer is
routed according to the destination IP address. We assume that routing is
deterministic, meaning that the traffic is sent along a single path between
each pair of nodes. While this assumption does not hold for networks
relying on probabilistic load-balancing mechanisms (e.g., ECMP [155]), it
makes our attacker more powerful as all paths are assumed to be persistent
and therefore easier to learn.

To deploy NetHide, we assume that some of the routers are programmable
in a way that allows them to: (i) match on arbitrary IP Time-to-Live (TTL)
values; (ii) change the source and destination addresses of packets (e.g., UDP
packets for traceroute) depending on the original destination address and
the TTL; and (iii) restore the original source and destination addresses when
replies (e.g., ICMP packets) to modified packets arrive. Our implementation
uses the P4 programming language [156], which fulfills the above criteria.
Yet, NetHide could also be implemented on top of existing router firmware.

3.1.2 Attacker model

We assume an attacker who controls a set of hosts (e.g., a botnet) that can
inject traffic in the network. The attacker’s goal is to perform a Link Flooding
Attack (LFA) such as Coremelt [113] or Crossfire [114]. The objective of
these attacks is to isolate a network segment by congesting one or more
links. The attacker aims to congest links by creating low-volume flows
from many different sources (bots) to many destinations (public servers or
other bots) such that all these flows cross the targeted links (illustrated in
Figure 3.1). An attacker’s budget limits the number of flows she can run
and we quantify the attacker’s strength based on her budget. Because the
additional traffic is low-volume, it is hard to separate it from legitimate

3.1 model 21

Public serversBotnet

Low-rate, legitimate flows 
spread over many endpoints

Congested 
link

Figure 3.1: Link-Flooding Attacks (LFAs) work by routing many legitimate low-
volume flows over the same set of physical links in order to cause
congestion. LFAs assume that the attacker can discover the network
topology, usually using traceroute-like tracing.

(also low-volume) traffic. This makes detecting and mitigating LFA attacks
a hard problem [157].

To mount an efficient and stealthy LFA, the attacker must know enough
(source, destination) pairs that communicate via the targeted link(s). Other-
wise, she would have to create so many flows that she no longer remains
efficient. Similarly to [113, 114], we assume the attacker has no prior knowl-
edge of the network topology. And we assume that the attacker learns the
network topology using traceroute-like tracing techniques [49]. traceroute
works by sending a series of packets (probes) to the destination with in-
creasing TTL values. In response to these probes, each router along the path
to the destination sends an ICMP time exceeded message. More specifically,
traceroute leverages the fact that TTL values are decremented by one at
each router, and that the first router to see a TTL value of 0 sends a response
to the source of the probe. For example, a packet with TTL value of 3 sent
from A to B will cause the third router along the path from A to B to send
an ICMP time exceeded message to A. By aggregating paths between many
host pairs, it is possible to determine the topology and the forwarding
behavior of the network [149]. We remark that in addition to revealing
forwarding paths, traceroute-like probes also disclose the Round-Trip Time
(RTT), i.e., the time difference between the moment a probe is sent and the
corresponding ICMP time exceeded message is received, which can be used
as a side-channel to gain intuition about the feasibility of a (potentially
obfuscated) path returned by traceroute.

22 obfuscating network topologies

Network components

(Nodes) N ⊆ N = {n1, . . . , nN}
(Links) L ⊆ N × N

(Forwarding tree) Tn = (N, Ln), tree rooted at n

(Forwarding trees) T =
⋃

n∈N Tn

(Flows) F ⊆ N × N

Network topologies

(Physical) P = (N, L, T)

(Virtual) V = (N′, L′, T′)

N ⊆ N′

Metrics

(Flows per link) f (T, l) = {(s, d) ∈ F | l ∈ Td}
(Flow density) fd(T, l) = | f (T, l)|
(Capacity) c : L→N

(Accuracy) acc : ((s, d) , P, V) 7→ [0, 1]

(Utility) util : ((s, d) , P, V) 7→ [0, 1]

Figure 3.2: NetHide notation and metrics

Finally, we assume that the attacker knows everything about the deployed
protection mechanisms in the network (including the ones presented in
this chapter) except their secret inputs and random decisions following
Kerckhoff’s principle [158].

3.1.3 Notation

We depict our notation and definitions in Figure 3.2. We model a network
topology as a graph with nodes N ⊆ N , where N is the set of all possible
nodes, and links L ⊆ N× N. A node in the graph corresponds to a router in
the network and a link corresponds to an (undirected) connection between
two routers.

Given a node n, we use a tree Tn = (N, Ln) rooted at n to model how
packets are forwarded to n. We refer to this tree as a forwarding tree. For
simplicity, we write l ∈ Tn to denote that the link l is contained in the

3.1 model 23

forwarding tree Tn, i.e., Tn = (N, Ln) with l ∈ Ln. We use T to denote the
set of all forwarding trees.

A flow (s, d) ∈ F is a pair of a source node s and destination node d. Note
that the budget of the strongest attacker is given by the total number |F|
of possible flows. We use Ts→d to refer to the path from source node s to
destination node d according to the forwarding tree Td. In the style of [114],
we define the flow density fd for a link l ∈ L as the number of flows that are
routed via this link (in any direction). The maximum flow density that a
link can handle without congestion is denoted by the link’s capacity c. A
topology (N, L, T) is secure if the flow density for any link in the topology
does not exceed its capacity, i.e., ∀l ∈ L : fd(T, l) ≤ c(l). Note that no
attacker (with any budget) can attack a secure topology as all links have
enough capacity to handle the total number of flows from all the (source,
destination) pairs in F.

3.1.4 Problem statement

We address the following network obfuscation problem: Given a physical
topology P, the goal is to compute an obfuscated (virtual) topology V such
that V is secure and is as similar as possible to P. In other words, the
goal is to deceive the attacker with a virtual topology V. For the similarity
between the physical topology P and the obfuscated topology V, we refer to
Section 3.2 where we present metrics which represent the accuracy of paths
reported by traceroute and the utility of link failures in P being closely
represented in V.

We remark on a few important points. First, if P is secure, then the
obfuscation problem should return P since we require that V is as similar
as possible to P. Second, for any network and any attacker, the problem
has a trivial solution since we can always come up with a network that has
an exclusive routing path for each (source, destination) pair. However, for
non-trivial notions of similarity, it is challenging to discover an obfuscated
network V that similar to P.

2
4

o
b

f
u

s
c

a
t

i
n

g
n

e
t

w
o

r
k

t
o

p
o

l
o

g
i
e

s

Input
 Topology obfuscation (§3.3)

Physical topology

A

B

E

FC D

Topology deployment (§3.4)

Virtual topology

A

B

E

FC D

dst TTL actions

E 2 TTL=3,
dst=D

Random sample of
candidate solutions

Select topology with maximal accuracy and utility (V2)

bottleneck

link (C,D)

Accuracy

compare (,)

compare (,)

= 2 common

= 2 common

Utility for failure of link (D,E)________

observe failure (A,E)

observe no failure ✓

✗

Accuracy

compare (,)

compare (,)

= 3 common

= 3 common

Utility for failure of link (D,E)________

observe failure (D,E)

observe no failure

✓
✓

… … …

dst TTL actions

A 3 TTL=4
… … …

dst TTL actions

F 3 TTL=4
… … …

dst TTL actions

B 3 TTL=4
… … …

c(C,D) < fd(C,D)

▪ Physical topology

▪ Routing behavior

▪ Set of flows

▪ Capacity of each link

Inputs:

virtual link

V1

V2

Figure 3.3: NetHide operates in two steps: (i) computing a secure and usable virtual topology; and (ii) deploying the
obfuscated topology in the physical network.

3.2 nethide 25

3.2 nethide

We now illustrate how NetHide can compute a secure and yet usable (i.e.,
“debuggable”) obfuscated topology on a simple example depicted in Fig-
ure 3.3. Specifically, we consider the task of obfuscating a network with
6 routers: A, . . . , F in which the core link (C, D) acts as bottleneck and is
therefore a potential target for an LFA.

Inputs NetHide takes four inputs: (i) the physical network topology graph;
(ii) a specification of the forwarding behavior (a forwarding tree for each
destination according to the physical topology and incorporating potential
link weights); (iii) the capacity c of each link (how many flows can cross
each link before congesting it); along with (iv) the set of attack flows F to
protect against. If the position of the attacker(s) is not known (the default),
we define F to be the set of all possible flows between all (source,destination)
pairs.

Given these inputs, NetHide produces an obfuscated virtual topology
V which: (i) prevents the attacker(s) from determining a set of flows to
congest any link; while (ii) still allowing non-malicious users to perform
network diagnosis. A key insight behind NetHide is to formulate this task
as a multi-objective optimization problem that allows for a flexible trade-off
between security (encoded as hard constraints) and usability (encoded as
soft constraints) of the virtual topology. The key challenge here is that the
number of obfuscated topologies grows exponentially with the network
size, making simple exhaustive solutions unusable. To scale, NetHide only
considers a subset of candidate solutions amongst which it selects a usable
one. Perhaps surprisingly, we show that this process leads to desirable
solutions.

Pre-selecting a set of secure candidate topologies NetHide first computes
a random set of obfuscated topologies. In addition to enabling NetHide to
scale, this random selection also acts as a secret which makes it significantly
harder to invert the obfuscation algorithm.

NetHide obfuscates network topologies along two dimensions: (i) it modi-
fies the topology graph (i.e., it adds or removes links); and (ii) it modifies
the forwarding behavior (i.e., how flows are routed along the graph). For
instance, in Figure 3.3, the two candidate solutions V1 and V2 both contain
two virtual links used to “route” flows from A to E and from B to F.

26 obfuscating network topologies

Selecting a usable obfuscated topology While there exist many secure
candidate topologies, they differ in terms of usability, i.e., their perceived
usefulness for benign users. In NetHide, we capture the usability of a virtual
topology in terms of its accuracy and utility.

The accuracy measures the logical similarity of the paths reported when
using traceroute against the original and against the obfuscated topology.
Intuitively, a virtual topology with high accuracy enables network operators
to diagnose routing issues such as sub-optimal routing. Conversely, tracing
highly inaccurate topologies is likely to report bogus information such
as traffic jumping between geographically distant points for no apparent
reason. As illustration, V2 is more accurate than V1 in Figure 3.3 as the
reported paths have more links and routers in common with the physical
topology.

The utility metric measures the physical similarity between the paths
actually taken by the tracing packets in the physical and the virtual topol-
ogy. Intuitively, utility captures how well events such as link failures or
congestion in the physical topology are observable in the virtual topology.
For instance, we illustrate that V2 has a higher utility than V1 in Figure 3.3
by considering the failure of the link (D, E). Indeed, a non-malicious user
would observe the failure of (D, E) (which is not obfuscated) when tracing
V2 while it would observe the failure of link (A, E) instead of (D, E) when
tracing V1.

Given V1, V2 and the fact that V2 has higher accuracy and utility, NetHide
deploys V2.

Deploying the obfuscated topology NetHide obfuscates the topology at
runtime by modifying tracing packets (i.e., IP packets whose TTL expires
somewhere in the network). NetHide intercepts and processes such packets
without impact on the network performance, directly in the data plane, by
leveraging programmable network devices. Specifically, NetHide intercepts
and possibly alters tracing packets at the edge of the network before send-
ing them to the pretended destination in the physical network. That way,
NetHide ensures that tracing packets traverse the corresponding physical
links, and preserves the utility of traceroute-like tools. Observe that any
alteration of tracing packets is reverted before they leave the network, which
makes NetHide transparent. In contrast, simpler approaches which answer
to tracing packets at the network edge or from a central controller (e.g.,
[115, 117]) render network debugging tools unusable.

3.3 generating secure topologies 27

Consider again Figure 3.3 (right). If router A receives a packet towards E
with TTL=2, this packet needs to expire at router D according to the virtual
topology. Since the link between A and D does not exist physically, the
packet needs to be sent to D via C, and it would thus expire at C. To prevent
this and to ensure that the packet expires at D, NetHide increases the TTL
by 1. Observe that, in addition to ensure the utility (see above), making the
intended router answer to the probe also ensures that the measured round
trip times are realistic (cf. Section 3.4).

3.3 generating secure topologies

In this section, we first explain how to phrase the task of obfuscating
a network topology as an optimization problem. We then present our
implementation which consists of roughly 2000 lines of Python code and
uses the Gurobi ILP solver [159].

3.3.1 Optimization problem

Given a topology P = (N, L, T), a set of flows F, and capacities c, the net-
work obfuscation problem is to generate a virtual topology V = (N′, L′, T′)
such that: (i) V is secure; and (ii) the accuracy and utility metrics are jointly
maximized; we define these metrics shortly.

NetHide generates V by modifying P in two ways: (i) NetHide adds virtual
links to connect nodes in V; and (ii) NetHide can modify the forwarding trees
for all nodes in V.

We show the constraints that encode the security and the objective func-
tion that captures the closeness in terms of accuracy and utility in Figure 3.4
and explain them below.

Security constraints The main constraint is the security (C1) imposed on V.
This being a hard constraint (as opposed to be part of the objective function)
means that if NetHide finds a virtual topology V, then V is secure with
respect to the attacker model and the capacities.

To ensure that the virtual topology V is valid, NetHide incorporates
additional constraints capturing that: (C2) all physical nodes in N are also
contained in the virtual topology with nodes N′; (C3) there is exactly one

28 obfuscating network topologies

Objective function

max
V

∑
f∈F

(
wacc · acc (f , P, V) + wutil · util (f , P, V)

)
where

wacc ∈ [0, 1]

wutil ∈ [0, 1]

wacc + wutil = 1

Hard constraints

(Security) ∀l ∈ L′ : fd(V, l) ≤ c(l) (C1)

(Complete) n ∈ N ⇒ n ∈ N′ (C2)

(Reach) ∀n ∈ N′ : |{Tn|Tn ∈ T′}| = 1 (C3)

∀T ∈ T′ : ∀l ∈ T : l ∈ L′ (C4)

(n, n′) ∈ L′ ⇒ {n, n′} ∈ N′ (C5)

Figure 3.4: NetHide optimization problem. NetHide finds a virtual topology that
is secure and has maximum accuracy compared with the physical
topology.

virtual forwarding tree for each node; and (C4-5) links and nodes in the
virtual forwarding trees are contained in N′.

Objective function The objective of NetHide is to find a virtual topology
that maximizes the overall accuracy (cf. Section 3.3.2) and utility (cf. Sec-
tion 3.3.3). As shown in Figure 3.4, we define the overall accuracy and
utility as a weighted sum of the accuracy and utility values of all flows in
the network.

3.3.2 Accuracy metric

The accuracy metric is a function that maps two paths for a given flow to
a value v ∈ [0, 1]. In our case, this value captures the similarity between a
path Ts→d in P for a given flow (s, d) and the (virtual) path T′s→d for the
same flow (s, d) in V. Formally, given a flow (s, d), the accuracy is defined
as:

3.3 generating secure topologies 29

Algorithm 3.1: Utility metric. It incorporates the likelihood that a
failure in the physical topology P is visible in the virtual topology V
and that a failure in V actually exists in P. Note that we treat Ts→d
as a set of links.

Input: Flow (s, d) ∈ F,
Physical topology P = (N, L, T),
Virtual topology V = (N′, L′, T′)

Output: Utility u ∈ [0, 1]

1 for n ∈ T′s→d do
2 C ← Ts→n ∩ T′s→d[0 : n] // common links

3 un ← 1
2

(
|C|
|Ts→n | +

|C|
|T′s→d [0:n]|

)
// utility

4 u← 1
|T′s→d|

∑n∈T′s→d
un // average

acc ((s, d), P, V) = 1−
LD(Ts→d, T′s→d)

|Ts→d|+
∣∣T′s→d

∣∣
Where LD(Ts→d, T′s→d) is Levenshtein distance [160] and |Ts→d| denotes

the length of the path from s to d.

The overall accuracy of a topology (as referred to in Section 3.5) is defined
as the average accuracy over all flows in F:

Aavg(P, V) = avg(s,d)∈F acc((s, d), P, V)

We point out that the accuracy metric in NetHide can also be computed
by any other function to precisely represent the network operator’s needs.

3.3.3 Utility metric

While the accuracy measures the similarity between the physical and virtual
paths for a given flow, the utility measures the representation of physical
events, such as link failures. For our implementation, we design the utility
metric such that it computes the probability that a link failure in the
physical path is observed in the virtual path and the probability that a
failure reported in the virtual path is indeed occurring in the physical path.

30 obfuscating network topologies

(a) high accuracy, low utility

physical path virtual path

paths of tracing packets

(b) low accuracy, high utility

Figure 3.5: High accuracy does not always imply high utility (and vice-versa). In
Figure 3.5a, the physical and virtual paths are similar but the tracing
packets do not cross the physical links. In Figure 3.5b, the physical
and virtual paths are dissimilar but the tracing packets do cross the
physical links.

Algorithm 3.1 describes the computation of our utility metric for a given
flow (s, d). In the algorithm, given a virtual path T′s→d = s→ n1 → · · · →
nk → d, we write T′s→d[0 : ni] to denote the prefix path s→ n1 → · · · → ni.
NetHide computes the overall utility by taking the average utility computed
over all flows:

Uavg = avg(s,d)∈F util((s, d), P, V)

As with accuracy, a network operator is free to implement a custom
utility metric.

In most cases, the accuracy and utility are strongly linked together (we
show this in Section 3.5). However, as illustrated in Figure 3.5, there exist
cases where the accuracy is high and the utility low or vice-versa.

3.3.4 Scalability

To obfuscate topologies with maximal accuracy and utility, a naive approach
would consider all possible changes to P, which is infeasible even for small
topologies.

NetHide significantly reduces the number of candidate solutions in order
to ensure reasonable runtime while providing close-to-optimal accuracy
and utility. The key insight is that NetHide pre-computes a set of forwarding
trees for each node and later computes V as the optimal combination of
them. Thanks to the reduction from modeling individual links or paths to
forwarding trees, NetHide only considers valid combinations of paths (i.e.,
paths that form a tree rooted at n, ∀n ∈ N′).

3.3 generating secure topologies 31

For computing the forwarding trees, NetHide builds a complete graph G
with all nodes from V, that is G = (V, E) where V = N′ and E = N′ × N′,
and assigns each edge the same weight w(e) = 1 ∀e ∈ E. Then, NetHide uses
Dijkstra’s algorithm [161] to compute forwarding trees towards each node
n ∈ N′. That is, a set of paths where the paths form a tree which is rooted at
n. This is repeated until the specified number of forwarding trees per node
is obtained while the weights are randomly chosen w(e) ∼ Uniform(1, 10)
for each iteration.

As NetHide pre-computes a fixed number of forwarding trees per node,
the ILP solver later only needs to find an optimal combination of O(|N′|)
forwarding trees instead of O(|N′|2) links and O(|N′||N

′ |) forwarding trees.

We point out that the reduction from individual links or paths to for-
warding trees and the small number of considered forwarding trees does
not affect the security of V as security is a hard constraint and thus, NetHide
never produces a topology that is insecure. In fact, the small number of
considered forwarding trees actually makes NetHide more secure because
it makes it harder to determine P even for a powerful brute-force attacker
that can run NetHide with every possible input.

3.3.5 Security

We now discuss the security provided by NetHide. We consider two distinct
attacker strategies: (i) reconstructing the physical topology P from the
virtual topology V; and (ii) choosing an attack based on the observed
virtual topology V (without explicitly reconstructing P). We describe the
two strategies below.

Reconstructing the physical topology If the attacker can reconstruct P,
then she can check if P is insecure and select a link and a set of flows that
congests that link. Reconstructing the physical topology is mitigated in
two ways. First, the attacker cannot reconstruct P with certainty by simply
observing the virtual topology V. NetHide’s obfuscation function maps
any physical topology that is secure to itself (i.e., to P). The obfuscation
function is therefore not injective, which entails that NetHide guarantees
opacity [162], a well-known security property stipulating that the attacker
does not know the secret P.

Given that the attacker cannot reconstruct P with certainty, she may
attempt to make an educated guess based on the observed V and her

32 obfuscating network topologies

knowledge about NetHide’s obfuscation function. Concretely, the attacker
may perform exact Bayesian inference to discover the most likely topology T
that was given as input to the obfuscation function. Exact inference is,
however, highly non-trivial as NetHide’s obfuscation function relies on a
complex set of constraints. As an alternative, the attacker may attempt to
approximately discover a topology T that was likely provided as input to
NetHide. Estimating the likelihood that a topology T could produce V is,
however, expensive because NetHide’s obfuscation is highly randomized.
That is, the estimation step would require a large number of samples,
obtained by running T using the obfuscation function.

Choosing an attack In principle, even if the attacker cannot reconstruct P,
she may still attempt to attack the network by selecting a set of flows and
checking if these cause congestion or not. As a base case for this strategy,
the attacker may randomly pick a set of flows. A more advanced attacker
would leverage her knowledge about the observed topology to select the
set of flows such that the likelihood of a successful attack is maximized.

In our evaluation, we consider three concrete strategies: (i) random,
where the attacker selects the set of flows uniformly at random, (ii) bottle-
neck+random, where the attacker selects a link with the highest flow density
and selects additional flows uniformly at random from the remaining set of
flows, and (iii) bottleneck+closeness, where the attacker selects a link with the
highest flow density and selects additional flows based on their distance
to the link. Our results show that NetHide can mitigate these attacks even
for powerful attackers (which can run many flows) and weak physical
topologies (with small link capacities) while still providing high accuracy
and utility (cf. Section 3.5.7). For example, NetHide provides 90 % accuracy
and 72 % utility while limiting the probability of success to 1 % for an
attacker which can run twice the required number of flows and follows the
bottleneck+random strategy in a physical topology where 20 % of the links
are insecure.

3.4 topology deployment

In this section, we describe how NetHide deploys the virtual topology V
on top of the physical topology P. For this, we first state the challenges
NetHide needs to address. Then, we provide insights on the architecture
using which we implemented NetHide and describe the packet processing
software as well as the controller in detail. In addition, we explain the

3.4 topology deployment 33

design choices that make NetHide partially deployable and we discuss the
impact of changes in the physical topology to the virtual topology.

3.4.1 Challenges

In the following, we explain the major challenges which need to be ad-
dressed by the design and the implementation of the NetHide topology
deployment to provide high security, accuracy, utility and performance.

Reflecting physical events in the virtual topology Maintaining the use-
fulness of network tracing and debugging tools is a major requirement
for any network obfuscation scheme to be practical. As we explained in
the previous sections, NetHide ensures that tracing V returns meaningful
information by maximizing the utility metric. As a consequence, NetHide
must assure that the data plane is acting in a way that corresponds to the
utility metric.

The key idea to ensure high utility in NetHide is that the tracing packets
are sent through the physical network as opposed to being answered at the
edge or by a central controller. Answering tracing packets from a single
point is impractical as events in P (such as link failures) would not be
visible.

Timing-based fingerprinting of devices Besides the IP address of each
node in a path, tracing tools allow to determine the round trip time (RTT)
between the source and each node in the path. This can potentially be used
to identify obfuscated parts of a path.

While packets forwarding is usually done in hardware without noticeable
delay, answering to an expired (TTL=0) IP packet involves the router control
plane and causes a noticeable delay. Actually, our experiments show that
the time it takes for a router to answer to an expired packet not only varies
greatly, but is also characteristic for the device, making it possible to identify
a device based on the distribution of its processing time.

NetHide makes RTT measurements realistic by ensuring that a packet that
is supposedly answered by node n is effectively answered by n. As such, n
will process the packet as any other packet with an expired TTL irrespective
of whether or not obfuscation is in place and the measured RTT is the RTT
between the source host and n.

34 obfuscating network topologies

NetHide device
In

co
m

in
g

in
te

rf
ac

e

O
u
tg

o
in

g

in
te

rf
ac

e

Contains
meta header?

Modification
required?

Signature
correct?

Restore original

header values

Remove

meta header

Add meta
header and

modify packet

Config

Drop packet

yes

yes

yes

no no

no

Packet Packet

NetHide controller

Figure 3.6: NetHide topology deployment architecture overview. A controller
generates the configuration entries which are later used by the packet
processing software running in NetHide devices.

Packet manipulations at line rate To avoid tampering with network
performance, NetHide needs to parse and modify network packets at line
rate. In particular, it needs to manipulate the TTL field in IP headers as well
as the IP source and destination addresses. Since changing these fields leads
to a changed checksum in the IP header, NetHide also needs to recompute
checksums.

While there are many architectures and devices where the NetHide run-
time can operate, we decided to implement it in P4, which we introduce in
Section 2.2.

3.4.2 Architecture

NetHide features a controller to translate V to configurations for program-
mable network devices, and a packet processing software that is running
on network devices and modifies packets according to these configurations.

The device configuration is described as a set of match & action table
entries that are queried upon arrival of a packet (Figure 3.6). The entries are
installed when V is deployed the first time and when it changes. At other
times, NetHide devices act autonomously.

We describe the packet processing software as well as the controller in
the following two sections.

3.4 topology deployment 35

3.4.3 Packet processing software

The packet processing software is running in the data plane of a network
device and typically performs tasks such as routing table lookups and
forwarding packets to an outgoing interface. For NetHide, we extend it with
functionality to modify packets such that the behavior for a network user is
consistent with V. In the following paragraphs, we explain the processing
shown in Figure 3.6.

Identifying potential tracing packets Upon receiving a new packet, a
NetHide device first checks whether it is a response to a packet that was
modified by NetHide (cf. below). If not, it checks whether the packet’s virtual
path is different from the physical path and it thus needs to be modified.
Even though we often use traceroute packets as examples, NetHide does
not need to distinguish between traceroute (or other tracing traffic) and
productive network traffic. Instead, it purely relies on the TTL value, the
source and destination of a packet and – if needed – it obfuscates traffic of
all applications.

Encoding the virtual topology If a packet needs to be modified, NetHide
queries the match & action table which returns the required changes for
the packet. Changes can include modifications of the destination address
and/or the TTL value. If the packet’s TTL is high enough that it can cross
the egress router, NetHide does not need to modify addresses. However, if
the virtual path for this packet has a different length than the physical path,
the TTL needs to be incremented or decremented by the difference of the
virtual and the physical path length.

If the packet has a low TTL value which will expire before the packet
reaches its destination, NetHide needs to ensure that the packet expires at
the correct node with respect to V. For this, NetHide modifies the destination
address of the packet such that it is sent to the node that has to answer
according to V. In addition, it sets the source address to the address of the
NetHide device that handles the packet. Therefore, the modified packet is
sent to the responding router and the answer comes back to the NetHide

device. At this point, NetHide needs to restore the original source and
destination addresses of the packet and forward the reply to the sender.

Rewriting tracing packets at line rate The devices that we use to deploy
NetHide are able to modify network traffic at line rate without impacting
throughput. As described above, NetHide sometimes needs to modify the

36 obfuscating network topologies

N
et

H
id

e
d
ev

ic
e

src IP dst IP TTL

src port dst port

payload

IP

UDP

P4 X 1

src port 9999

payload

src IP dst IP TTL

src portdst port sign.

IP

UDP

meta

UDP

P4 X 1

src port 9999

payload

src IP dst IP TTL

src portdst port sign.

IP

UDP

meta

UDP

X P4 TTLIP

TTL exceededICMP

src IP dst IP TTL

src port dst port

payload

IP

UDP

X src IP TTLIP

TTL exceededICMP

Router
X

Figure 3.7: NetHide devices encode state information into packets in order to
avoid maintaining state in the devices.

TTL value in production traffic and it needs to send tracing packets to
different routers (which has an impact on the observed RTT; but only for
tracing packets whose TTL expires before reaching the destination).

Rewriting tracing packets statelessly A naive way to be able to reconstruct
the original source and destination addresses of a packet is to cache them
in the device (which bears similarities with the operating mode of a NAT
device – but the state would need to be maintained on a per-packet basis).
Since this would quickly exceed the limited memory that is typically avail-
able in programmable network devices, NetHide follows a better strategy:
instead of maintaining the state information in the device, it encodes it
into the packets. More precisely, NetHide adds an additional header to the
packet which contains the original (layer 2 and 3) source and destination
addresses, the original TTL value as well as a signature (a hash value con-
taining the additional header combined with a device-specific secret value)
(cf. Figure 3.7). This meta header is placed on top of the layer 3 payload and
is thus contained in ICMP time exceeded replies.

Preventing packet injections Coming back to the first check when a packet
arrives: if it contains a meta header and the signature is valid (i.e., corresponds
to the device), NetHide restores the original source and destination addresses
of the packet and removes the meta header before sending it to the outgoing
interface.

3.4 topology deployment 37

3.4.4 NetHide controller

Below, we explain the key concepts of the NetHide controller which generates
the configurations mentioned above.

Configuring the topology Being based on P4 devices, configuration entries
are represented as entries in match & action tables which are queried by
the packet processing program. NetHide’s configuration entries are of the
following form:

(destination, TTL) 7→
(virtual destination IP, hops to virtual destination)

where the virtual destination IP can be unspecified if only the length of a
path needs to be modified. P4 tables can match on IP addresses with prefixes,
meaning that only one entry per prefix (e.g., 1.2.3.0/24) is required. For
example, the entry "(1.2.3.0/24, 1) 7→ (11.22.33.44, 5)" means that if the
device sees a packet to 1.2.3.4 (or any other IP address in 1.2.3.0/24) with
TTL=1, it will send it to 11.22.33.44 and change the TTL value to 5.

Modifying packets distributedly NetHide selects one programmable net-
work device per flow which then handles all of the flow’s packets. This
device must be located before the first spoofed node, i.e., the first node in
the virtual path that is different from the physical path.

While there is always one distinct device in charge of handling a certain
flow, the same device is assigned to many different flows. To balance the
load across devices, NetHide chooses one of the eligible devices at random
(this does not impact the obfuscation). For more redundancy, multiple
devices could be assigned to each flow.

Changing the topology on-the-fly Thanks to the separation between the
packet processing software and the configuration table entries, V can be
changed on-the-fly without interrupting the network.

3.4.5 Partial deployment

As deploying a system that needs to run on all devices is difficult, we design
NetHide such that it can fully protect a network while being deployed on
only a few devices. The key enabler for this is that NetHide only needs to
modify packets at most at one point for each flow.

38 obfuscating network topologies

NetHide can obfuscate all traffic as soon as it has crossed at least one
NetHide device. In the best case, in which NetHide is deployed at the network
edge, it can protect the entire network. In the evaluation (Section 3.5), we
show that even for the average case in which the NetHide devices are placed
at random positions, a few devices are enough to protect a large share of
the flows.

3.4.6 Dealing with topology changes

NetHide sends tracing packets through P such that they expire at the correct
node according to V. Changes in P can impact NetHide in two ways:

1. When links are added to P or the routing behavior changes: some flows
may no longer traverse the device that was selected to obfuscate them.
This can be addressed by installing configuration entries in multiple
devices (which results in a trade-off between resource requirements
and redundancy). Since V is secure in any case, there is no immediate
need to react to changes in P. However, to provide maximum accuracy
and utility, NetHide can compute a new V′ based on P′ and deploy it
without interrupting the network.

2. When links are removed from P: this results in link failures in V and
has no impact on the security of V. If the links are permanently
removed, NetHide can compute and deploy a new virtual topology.

3.5 evaluation

In this section, we show that NetHide: (i) obfuscates topologies while main-
taining high accuracy and utility (Sections 3.5.2 and 3.5.3); (ii) computes
obfuscated topologies in less than one hour, even when considering large
networks (Section 3.5.4). Recall that this computation is done offline, once,
and does not impact network performance at runtime; (iii) is resilient
against timing attacks (Section 3.5.5); (iv) is effective even when partially
deployed (Section 3.5.6); (v) mitigates realistic attacks (Section 3.5.7); and
(vi) has little impact on debugging tools (Section 3.5.8).

3.5 evaluation 39

Abilene Switch US Carrier

Nodes 11 42 158

Links 14 63 189

Max. flow density 35 390 11301

Avg. flow density 19 89 1587

Table 3.1: We evaluate NetHide based on three realistic topologies of different
size.

3.5.1 Metrics and methodology

Metrics To be able to compare the results of our evaluation with different
topologies, we use the average flow density reduction factor, which denotes
the ratio between the flow density in the physical topology P = (N, L, T)
and in the virtual topology V = (N′, L′, T′):

FR = 1−
avgl∈L′ fd(V, l)
avgl∈L fd(P, l)

The flow density denotes the number of flows that are carried at each
link (cf. Section 3.1.3). For example, FR = 0.2 means that the links in V
carry 80% less flows than those in P (on average). For the accuracy and
utility of V, we use Aavg and Uavg as defined in Section 3.3.

Datasets We consider three publicly available topologies from [163]: a
small (Abilene, the former US research network), a medium (Switch, the
network connecting Swiss universities) and a large one (US Carrier, a
commercial network in the US). Table 3.1 lists key metrics for the three
topologies. For the forwarding behavior, we assume that traffic in P is
routed along the shortest path or a randomly picked shortest path in case
there are multiple shortest paths between two nodes.

Parameters We run all our experiments with the following parameters: All
nodes in P can act as ingress and egress for malicious traffic (which is the
worst case when an attacker is everywhere). We also assume that all links
have the same capacity. Since tracing packets need to be answered by the

40 obfuscating network topologies

0.00 0.25 0.50 0.75 1.00
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

be
tte

r

0.00 0.25 0.50 0.75 1.00
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 u
til

ity

be
tte

r

0.00 0.25 0.50 0.75 1.00
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
at

hs
 w

ith
 a

cc
=

10
0%

be
tte

r

Switch Abilene UsCarrier Algorithm: NetHide Random

Figure 3.8: Accuracy and utility for different protection margins. NetHide achieves
high accuracy (left plot) and utility (middle) and does not change
most of the paths at all (right plot) while reducing the flow density
by more than 75 %.

correct node, NetHide only adds virtual links but no nodes (i.e., N = N′).
We consider 100 forwarding trees per node. For the ILP solver, we specify
a maximum relative gap of 2 %, which means that the optimal results can
be at most 2 % better than the reported results (in terms of accuracy and
utility, security is not affected). We run NetHide at least 5 times with each
configuration and plot the average results.

3.5.2 Protection vs. accuracy and utility

In this experiment, we analyze the impact of the obfuscation on the accuracy
and utility of V. For this, we run NetHide for link capacities c (the maximum
flow density) varying between 10 % and 100 % of the maximum flow density
listed in Table 3.1.

Figure 3.8 depicts the accuracy (left) and utility (center) achieved by
NetHide according to the flow density reduction factor. An ideal result is
represented by a point in the upper right corner translating to a topology
that is both highly obfuscated and provides high accuracy and utility.
As baseline, we include the results of a naive obfuscation algorithm that
computes V by adding links at random positions and routing traffic along
a shortest path.

NetHide scores close to the optimal point especially for large topologies.
We observe that the random algorithm can achieve high accuracy and utility

3.5 evaluation 41

0.00 0.25 0.50 0.75 1.00
Accuracy weight

0.00

0.25

0.50

0.75

1.00

{A
cc

ur
ac

y,
 U

til
ity

}

Abilene
Metric:

Switch
Accuracy

UsCarrier
Utility

Figure 3.9: The accuracy weight has a small impact for our accuracy and utility
metrics.

(when adding few links) or high protection (when adding many links) but
not both at the same time. Though, in a small area (very high flow density
reduction in a small topology), the random algorithm can outperform
NetHide. The reason is that such a low flow density is only achievable in
an (almost) complete graph. While adding enough links randomly will
eventually result in a complete graph, the small number of forwarding
trees considered by NetHide does not always contain enough links to build
a complete graph.

In Figure 3.8 (right), we show the percentage of flows that do not need to
be modified (i.e., have 100 % accuracy and utility) depending on the flow
density reduction factor.

Figure 3.8 (right) illustrates that NetHide can obfuscate a network without
modifying most of its paths therefore preserving the usability of tracing
tools. In the medium size topology, NetHide computes a virtual topology
that lowers the average flow density by more than 80 % while keeping
more than 80 % of the paths identical. This is significantly better than the
random baseline where a flow density reduction by 80 % only preserves
about 15 % of the paths. We observe that larger topologies generally exhibit
better results than small ones. This is due to the fact that in bigger topolo-
gies, a small modification has less impact on average accuracy than in a
small topology while still providing high obfuscation. Conversely, smaller

42 obfuscating network topologies

0 200 400
Number of forwarding trees

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

0 200 400
Number of forwarding trees

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

 u
til

ity

0 200 400
Number of forwarding trees

10−3

10−2

10−1

100

R
un

tim
e

(h
)

Switch Abilene UsCarrier

Figure 3.10: Accuracy, utility and runtime for different number of forwarding
trees. Considering only a small number of forwarding trees per node
does not significantly decrease the accuracy and utility of NetHide
but drastically decreases the runtime. Thanks to this, NetHide can
obfuscate large topologies (>150 nodes) in less than one hour.

topologies lead to worse results as a small number of changes can have a
big impact.

3.5.3 Accuracy vs. utility

In Figure 3.9, we analyze the impact of the accuracy weight (wacc in Fig-
ure 3.4) on the resulting accuracy and utility. We specify the capacity of
each link to 10 % of the maximum flow density listed in Table 3.1 and
observe that wacc has a relatively small impact for our accuracy and utility
metrics especially for large topologies. This confirms that a topology with a
high accuracy typically also has a high utility. If the paths are similar (high
accuracy), the packets are routed via the same links (high utility), too.

3.5.4 Search space reduction and runtime

In this experiment, we analyze the impact of the search space reduction
– in terms of the number of forwarding trees per node – on the runtime
of NetHide. As we explained in Section 3.3.4, NetHide considers only a
small subset of forwarding trees to improve scalability. We again specify
the capacity of each link to 10 % of the maximum flow density listed in

3.5 evaluation 43

0.00 0.25 0.50 0.75 1.00
Flow density reduction factor

0.00

0.25

0.50

0.75

1.00

le
n(

v.
 p

at
h)

 /
le

n(
p.

 p
at

h)
bette

r

Switch
Metric:

Abilene
average

UsCarrier
10th perc.

Figure 3.11: Length ratio between the virtual and the physical paths. Reducing
the flow density by 80 % changes path lengths by less than 20 %.

Table 3.1 and run NetHide for a varying number of forwarding trees per
node. The experiments were run in a VirtualBox VM running Ubuntu 16.04

with 20 Intel Xeon E5 CPU cores and 90 GB of memory.

In Figure 3.10, we show that a small number of forwarding trees is enough
to reach close-to-optimal results. While the runtime increases exponentially
with the number of forwarding trees, the accuracy and utility do not
noticeably improve above 100 forwarding trees per node.

The runtime of NetHide when considering 100 forwarding trees per node
is within one hour, even for large topologies (Figure 3.10). As the topology
is computed offline (cf. Section 3.4.6), such a running time is reasonable.

3.5.5 Path length

In this experiment, we analyze the difference between the lengths of paths
in P and V. Large differences between the length of the physical path and
the virtual path can lead to unrealistic RTTs and leak information about the
obfuscation (e.g., if the RTT is significantly different for two paths of the
same length).

As the results in Figure 3.11 show, virtual paths are shorter than physical
paths (the ratio is ≤ 1) – intuitively because removing a node from a path
has a smaller impact on our accuracy and utility metrics than adding one.
And – for the medium and large topology – the virtual paths are less than

44 obfuscating network topologies

0.0 0.2 0.4 0.6 0.8 1.0
% programmable nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

bf
us

ca
te

d
flo

w
s

Abilene Switch UsCarrier

Figure 3.12: Partial deployment at random locations. 40 % NetHide devices allow
to protect up to 60 % of the flows that need obfuscation

10 % shorter both on average and in the 10th percentile for a flow density
reduction of 80 %.

The resulting small differences in path lengths support our assumption
that timing information mainly leaks through the processing time at the
last node and not through the propagation time (Section 3.4) as long as all
links have roughly the same propagation delay.

3.5.6 Partial deployment

We now analyze the achievable protection if not all devices at the network
edge are programmable. In NetHide, a flow can be obfuscated as long as it
crosses a NetHide device before the first spoofed node (the first node that
is different from the physical path). This is obviously the case if all edge
routers are equipped with NetHide. Yet, as we show in Figure 3.12, a small
percentage of NetHide devices (e.g., 40 %) is enough to protect the majority
(60 %) of flows even in the average case where the devices are placed at
random locations and all nodes are considered as ingress and egress points
of traffic (i.e., as edge nodes).

To obtain the results in Figure 3.12, we set the maximum flow density
to 10 % of the maximum value in Table 3.1 and vary the percentage of
programmable nodes in V between 0 and 100 %. For each step, we compute

3.5 evaluation 45

the average amount of flows that can be protected for 100 different samples
of programmable devices.

The percentage of obfuscated flows in Figure 3.12 is normalized to only
consider flows that need to be obfuscated. As we have shown in Figure 3.8,
the vast majority of flows does not need to be obfuscated at all.

As an alternative approach to partial deployment, NetHide can be ex-
tended to incorporate the number and/or locations of NetHide devices as a
constraint or as an objective such as to compute virtual topologies that can
be deployed without new devices or with as few programmable devices as
possible.

3.5.7 Security

As we explained in Section 3.3.5, inferring the exact physical input topology
from the virtual topology is difficult.

However, an attacker can try to attack V directly, without trying to
determine P. Such an attacker is limited by the fact that she does not
know P and by a maximum number (budget) of flows that she can create.
Therefore, the key challenge for the attacker is to select the flows such that
they result in a successful attack on P.

Besides the attacker’s budget, her chances of success also depend on the
robustness of P: If P is weak (i.e., the capacity of many links is exceeded), it
either needs to be obfuscated more or attacks are more likely to succeed.

In this experiment, we simulate three feasible strategies for an attacker to
select b flows:

• Random: Samples b flows uniformly at random from the set of all
flows F.

• Bottleneck+Random: Identifies the link with the highest flow density in
V (a "bottleneck" link lb) and attacks by initiating all the fd(lb) flows
that cross this link plus (b− fd(lb)) random additional flows.

• Bottleneck+Closeness: Identifies the link lb with the highest flow den-
sity in V and attacks by initiating all the fd(lb) flows that cross this
link plus (b− fd(lb)) nearby flows (according to the metric in Algo-
rithm 3.2).

46 obfuscating network topologies

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Re
qu

ire
d
FR

fo

r
P

(s
uc

ce
ss

)
<

 1
%

Attacker budget: 1x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Attacker budget: 2x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Attacker budget: 4x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

A
ch

ie
ve

d
ac

cu
ra

cy

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

A
ch

ie
ve

d
ut

ili
ty

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

Abilene Switch UsCarrier Attack: Bottleneck+Random Random

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

Figure 3.13: Attack simulations comparing the Random attacker with Bottle-
neck+Random. The plots show the required flow density reduction
(FR) for making the attacker succeed with Pr < 1 % (first row)
and the obtained accuracy and utility (second and third row) de-
pending on the link capacity of the physical topology (measured
as the percentage of secure links in the x-axis). For example, de-
fending the Switch topology with only 60 % secure links against
Bottleneck+Random with 2× budget maintains 80 % accuracy.

An attack is successful if running the selected set of flows in P exceeds
any link’s capacity (not necessarily the link that the attacker tried to attack).

In our simulations, we vary both the attacker’s budget and the robustness
of P (in terms of the link capacity). We vary the capacity such that between
10 % and 100 % of the links in P are secure (e.g., if 10 % of the links are
secure, an attacker could directly attack 90 % of the links if there was no
obfuscation). For each choice of the link capacity c in P, we vary the number

3.5 evaluation 47

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Re
qu

ire
d
FR

fo

r
P

(s
uc

ce
ss

)
<

 1
%

Attacker budget: 1x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Attacker budget: 2x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Attacker budget: 4x

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

A
ch

ie
ve

d
ac

cu
ra

cy

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

A
ch

ie
ve

d
ut

ili
ty

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

Abilene Switch UsCarrier Attack: Bottleneck+Closeness Random

0 25 50 75 100
% of secure links in P

0.00

0.25

0.50

0.75

1.00

Figure 3.14: Attack simulations comparing the Random attacker with Bottle-
neck+Closeness. Bottleneck+Closeness is slightly more powerful than
Bottleneck+Random (Figure 3.13), which results in more obfuscation
that is required.

of flows that the attacker can initiate between b = c + 1 (just enough to
break a link) and b = 4× (c + 1) (four times the number of flows that the
most efficient attacker would need).

To obtain the simulation results in Figure 3.13 and Figure 3.14, we simu-
lated 10k attempts (Random and Bottleneck+Random) and 1k attempts (Bot-
tleneck+Closeness) for each virtual topology from Section 3.5.2 and each
combination of the link capacity and attacker budget.

In Figure 3.13 we compare the Random attacker with Bottleneck+Random
and in Figure 3.14 we compare Random with Bottleneck+Closeness. In the
first row of each figure, we plot how much obfuscation (i.e., in terms of the
flow density reduction factor) is required to make the attacker successful

48 obfuscating network topologies

in < 1 % of her attempts. There, we observe that the Random attacker
is (as expected) the least powerful because it requires less obfuscation to
defend against it and that Bottleneck+Closeness is slightly more powerful than
Bottleneck+Random. Considering the setting with the Abilene topology and
the attacker with 2× budget: Mitigating this attacker requires no obfuscation
when she follows the Random strategy, but 71 % (Bottleneck+Random) or 86 %
(Bottleneck+Closeness) flow density reduction for the more sophisticated
strategies.

The required flow density reduction naturally increases as the attacker’s
budget increases. In the right column where the attacker can run four
times the number of required flows, even the Random attacker is successful
because she can run so many flows (or even all possible flows in many
cases) that it does not matter how the flows are selected.

The second and third row in the plots show the accuracy and utility that
is preserved after obfuscating the topology. We observe there, that especially
the Abilene and Switch topologies provide high accuracy and utility even if
less than 50 % of the links in P are secure. Comparing Figures 3.13 and 3.14

shows that since mitigating Bottleneck+Closeness requires more obfuscation,
the achieved accuracy and utility are lower.

3.5.8 Case study: Link failure detection

We now show that NetHide preserves most of the usefulness of tracing
tools by considering the problem of identifying link failures in obfuscated
topologies. For our analysis, we use all three topologies and a flow density
reduction factor of 50 %. Then, we simulate the impact of an individual
failure for each link. That is, we analyze how a failing physical link is
represented in V.

Failing a link can have different effects in V: Ideally, it is correctly observed,
which means that the exact same link failure appears in V. But since V
contains links that are not in P or vice-versa, a physical link failure can be
observed as multiple link failures or as the failing of another virtual link.

In Figure 3.15, we show that the vast majority of physical link failures
is precisely reflected in the virtual topology. That is, NetHide allows users
to use prevalent debugging tools to debug connectivity problems in the
network. These results are a major advantage compared to competing

3.6 frequently asked questions 49

Algorithm 3.2: Flow preference metric. Flows that contain the bot-
tleneck link or at least one of the endpoints of the link are more
promising to be useful in the attack.

Input: Virtual topology V = (N′, L′, T′),
Flow (s, d) ∈ N′ × N′,
Flow path T′s→d
Bottleneck link (n1, n2) ∈ L′

Output: Preference p ∈ [0, 1]

1 if (n1 ∈ T′s→d) ∧ (n2 ∈ T′s→d) then
2 p← 1/| links between n1 and n2 in T′s→d|
3 else if (n1 ∈ T′s→d) ∧ (n2 /∈ T′s→d) then
4 na ← node after n1 in T′s→d
5 nb ← node before n1 in T′s→d
6 pa ← length of path from n2 to na
7 pb ← length of path from n2 to nb
8 p← 1/ min(pa, pb)

9 else if (n1 /∈ T′s→d) ∧ (n2 ∈ T′s→d) then
10 (see above with n1 and n2 flipped)

11 else
12 p← 0

approaches [115, 117] that do not send the tracing packets through the
actual network.

3.6 frequently asked questions

Below, we provide answers to some frequently asked questions and poten-
tial extensions of NetHide.

Can a topology be de-obfuscated by analyzing timing information? In
NetHide, each probing packet is answered by the correct router and thus the
processing time at the last node is realistic. Though, the propagation time
can leak information in topologies where the propagation delay of some
links is significantly higher than of others.

50 obfuscating network topologies

0.00 0.25 0.50 0.75 1.00
% correct observations

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

better

Abilene Switch UsCarrier

Figure 3.15: Link failures are correctly observed with high probability (e.g., for
Switch: only 15 % of the failures appear in less than 90 % of the
paths.)

However, extracting information from the propagation time in geographi-
cally small networks is hard for three reasons: (i) it is impossible to measure
propagation time separately. Instead, only the RTT is measurable; (ii) the
RTT includes the unknown return path; and (iii) NetHide keeps path length
differences are small. For topologies exhibiting larger delays, NetHide can
be extended to consider link delays as additional constraints.

The same arguments hold for analyzing queuing times or other time
measurements. Moreover, delays often vary greatly in short time intervals,
making it practically infeasible to perform enough simultaneous measure-
ments.

Can a topology be de-obfuscated by analyzing link failures? Because some
physical link failures are observed as multiple concurrent link failures in the
virtual topology, an attacker can try to reconstruct the physical topology by
observing link failures over a long timespan. However, this strategy is not
promising for the following reasons: (i) most of the link failures are directly
represented in the virtual topology (cf. Section 3.5.8). Observing them does
not provide usable information for de-obfuscation; and (ii) analyzing link
failures over time requires permanent tracing of the entire network between,
which would make the attacker visible and is against the idea of LFAs.

3.7 related work 51

Is NetHide compatible with link access control or VLANs? Not at the
moment, but we can easily extend our model to support them. The required
changes are: (i) link access control policies need to be part of the NetHide’s
input; (ii) the ILP needs additional constraints to respect different VLANs
(i.e., model forwarding trees per VLAN); (iii) the output consists of VLAN-
specific paths; and (iv), the runtime additionally matches on the VLAN ID
and applies the appropriate actions.

Does NetHide support load-balancing? Not at the moment, but after the
following extensions: (i) instead of an exact path for each flow, we specify
the expected load that a flow adds to each link (e.g., using max-min fair
allocation as in [164]); (ii) the constraints regarding the flow density now
constrain the expected flow density; (iii) the virtual topology can contain
multiple parallel paths and probabilities with which each path is taken; and
(iv) the runtime randomly selects one of the possible paths.

How close to the optimal is the solution computed by NetHide? Computing
this distance is computationally infeasible as it requires to exhaustively
enumerate all possible solutions (one of the cruxes behind NetHide security).
Instead, we measure the distance between the virtual and the physical
topology (Section 3.5.2) and show that the virtual topology is already very
close (in terms of accuracy and utility) to the physical one. The optimal
solution would therefore only do slightly better, while being much harder
to compute.

Can NetHide be used with other metrics for computing the flow density?
At present, NetHide requires a static metric such that the flow density can be
computed before obfuscating the topology. For simplicity, we assume that
the load which each flow imposes to the network is the same and all links
have the same capacity. However, this assumption can easily be relaxed
to allow specific loads and capacities for each flow and link (therefore
requiring more knowledge or assumptions about the topology and the
expected traffic).

3.7 related work

Existing works on detecting and preventing LFAs can be broadly classified
into reactive and proactive approaches. Reactive approaches only become
active once a potential LFA is detected. As such, they do not prevent LFAs

52 obfuscating network topologies

and only aim to limit their impact after the fact. CoDef [145] works on
top of routing protocols and requires routers to collaborate to re-route
traffic upon congestion. SPIFFY [151] temporarily increases the bandwidth
for certain flows at a congested link. Assuming that benign hosts react
differently than malicious ones, SPIFFY can tell them apart. Liaskos et al.
describe a system [152] that continuously re-routes traffic such that it
becomes unlikely that a benign host is persistently communicating via a
congested link. Malicious hosts on the other hand are expected to adapt
their behavior. Nyx [165] addresses the problem of LFAs in the context of
multiple autonomous systems (ASes). It allows an AS to route traffic from
and to another AS along a path that is not affected by an LFA. Routing
traffic around a congested AS is achieved through BGP messages and does
not require any cooperation from the other ASes. Later work [166]1 has
raised doubts about the feasibility of this approach because the required
BGP messages would not be accepted in many actual ASes. Ripple [74]1

provides a flexible framework to detect LFAs. Thanks to its policy language,
Ripple can emulate several earlier reactive defense techniques. From these
policies, Ripple compiles P4 programs and it leverages programmable
switches to quickly detect LFAs.

On the other hand, proactive solutions – including NetHide– aim at pre-
venting LFAs from happening and are typically based on obfuscation.

HoneyNet [115] uses software-defined networks to create a virtual net-
work topology to which it redirects traceroute packets. While this hides
the topology from an attacker, it also makes traceroute unusable for benign
purposes.

Trassare et al. implemented topology obfuscation as a kernel module
running on border routers [117]. The key idea is to identify the most critical
node in the network and to find the ideal position to add an additional
link that minimizes the centrality of this node. The border router replies
to traceroute packets as if there was a link at the determined position.
However, adding a single link has little impact on the security of a big
network and even if the procedure would be repeated, an attacker could de-
termine the virtual links with high probability. Further, traceroute becomes
unusable for benign users as the replies come from the border router.

Linkbait [116] identifies potential target links of LFAs and tries to hide
them from attackers. Hiding a target link is done by changing the routing of
tracing packets from bots in such a way that the target link does not appear

1 This work was published after NetHide

3.7 related work 53

in the paths. As a prerequisite to only redirect traffic from bots, Linkbait
describes a machine learning-based detection scheme that runs at a central
controller which needs to analyze all traffic. Being based on re-routing of
packets, Linkbait can only present paths that exist in the network. Therefore,
a topology that does not have enough redundant paths cannot be protected.
The paper does not discuss issues with an attacker that is aware of the
protection scheme and sends tracing traffic that is likely to be misclassified
and therefore not re-routed.

ProTO [167, 168]1 operates in two steps: First, it uses machine learning
to detect packets that show path tracing behavior. Then, it obfuscates
the topology for these packets. Different from NetHide, ProTO focuses
on topology inference through end-to-end delay measurements. This is
why ProTO delays packets in order to obfuscate the topology instead of
modifying the contents of path tracing packets.

NetObfu [169]1 runs in the control plane of OpenFlow switches and fol-
lows a similar approach as NetHide: It modifies path tracing responses such
that an attacker (or every other network user) infers the virtual topology
instead of the physical one. NetObfu uses greedy algorithms to compute
a virtual topology, which decreases the computation time compared to
NetHide.

BottleNet [170]1 also runs in the control plane of OpenFlow switches. It
extends NetHide and other previous approaches in three dimensions: (i) it
supports more metrics to determine bottleneck links (including dynamic
metrics such as the actual link load); (ii) it generates more complex virtual
topologies (thereby reducing the utility of path tracing tools); and (iii) it
reroutes production traffic (to prevent “blind” LFAs where the attacker
congests a link by chance).

AntiTomo [171]1 focuses on topology inference through tomography (e.g.,
by measuring end-to-end delays, similar to ProTO [167, 168]). To prevent
this type of topology inference, AntiTomo generates a virtual topology that
is secure and adds little overhead in terms of the end-to-end delay. The
authors evaluate AntiTomo only in simulations, but to deploy the virtual
topology, production traffic would need to be delayed.

EqualNet [118]1 identifies four limitations of NetHide, Trassare et al.’s
approach [117], and LinkBait [116]: (i) adversaries can infer the popularity
of links; (ii) virtual topologies are too similar to the physical ones; (iii)
virtual topologies are not secure in the long term; and (iv) path tracing tools

1 This work was published after NetHide

54 obfuscating network topologies

return false information. Regarding NetHide, (i) only occurs if the interface
of multiple (physical or virtual) links have the same IP address; (ii) is not a
problem since the virtual topology is secure (w.r.t. our definition); (iii) is
indeed a limitation because NetHide would need to recompute a new virtual
topology if the physical one changes; and (iv) is minimized since NetHide

minimizes the amount of obfuscation in order to preserve the usefulness of
path tracing tools. As a proposal that does not suffer from these limitations,
EqualNet generates a virtual topology by adding not only virtual links, but
also virtual nodes and by distributing the path tracing flows equally among
all links and nodes.

Other approaches that are related to LFAs but not particularly to our
work are based on virtual networks [172], require changes in protocols or
support from routers and end hosts [173–175] or focus on the detection of
LFAs [157].

3.8 conclusion

We presented a new, usable approach for obfuscating network topologies.
The core idea is to phrase the obfuscation task as a multi-objective optimiza-
tion problem where security requirements are encoded as hard constraints
and usability ones as soft constraints using the notions of accuracy and
utility.

As a proof-of-concept, we built a system, called NetHide, which relies
on an ILP solver and effective heuristics to compute compliant obfuscated
topologies and on programmable network devices to capture and mod-
ify tracing traffic at line rate. Our evaluation on realistic topologies and
simulated attacks shows that NetHide can obfuscate large topologies with
marginal impact on usability, including in partial deployments.

While we focused on obfuscating network topologies to mitigate link-
flooding attacks, an adapted version of NetHide could also be used to
obfuscate topologies for other purposes (e.g., if an ISP wants to hide other
aspects of its topology).

In the next chapter, we will present a system to obfuscate network traffic
in order to prevent traffic-analysis attacks.

4
O B F U S C AT I N G WA N T R A F F I C T O P R E V E N T
T R A F F I C - A N A LY S I S AT TA C K S

In this chapter, we present ditto, a traffic obfuscation system adapted to
the requirements of wide area networks: achieving high-throughput traffic
obfuscation at line rate without modifications of end hosts.

Many large organizations operate dedicated wide area networks (WANs)
as a critical infrastructure distinct from the Internet to connect their data
centers and remote sites. For example, cloud service providers such as
Google [176], Amazon [177], and Microsoft [178] operate WANs to achieve
low-latency, high-throughput inter data center communication. Public safety
and security organizations rely on WANs to achieve secure and reliable
communication between their sites (e.g., [179–183]). For large organizations,
these WANs provide 100s of Gbps to Tbps of capacity over long distances
and can cost 100s of millions of dollars per year [184].

WANs are an attractive target for eavesdropping attacks and mass surveil-
lance because they are often used to transport large amounts of sensitive
data. And because WANs spread over large geographical areas, it is impos-
sible to secure the cables physically from wiretapping. Past revelations show
that intercontinental fiber links were subject to tapping by governmental
agencies [185, 186] or other entities [187] and many devices are available
to tap on fiber links [188–192]. Indeed, major operators such as Amazon,
Microsoft, and OVH acknowledge that WAN traffic is at risk and they use
MACsec [193] to encrypt their traffic not only at the application layer, but
also at the link layer [194–197].

However, it is well known that encryption alone is not sufficient to protect
against traffic-analysis attacks [198, 199]. Even if the network traffic is end-
to-end encrypted, metadata such as the traffic volume, the packet sizes and
the timing information reveals a lot about ongoing activities. As a result,
eavesdroppers intercepting the WAN communication can still perform
traffic analysis attacks. Such attacks are mostly known from Internet traffic,
where past work shows that it is possible to infer the contents of VoIP
calls [119, 127], streamed movies [128, 129]; visited websites [130–134], or
the device identities [120–125] without having to break the encryption.

55

56 obfuscating network traffic

t

size

t0tt0

input output

padding

chaff packet

real packet

ditto

pattern

Figure 4.1: ditto adds padding and chaff packets such that the outgoing traffic
always follows a predefined pattern

Nonetheless, the same attacks can be applied to WAN traffic if the WAN
carries the incoming and outgoing Internet traffic (which is typically the
case if a company sends all Internet traffic via a central firewall). More
generally, it has been shown many times (e.g., in [200–202]) that traffic
classification also works for encrypted traffic.

Many techniques have been proposed to protect against traffic-analysis
attacks in the Internet. However, these techniques are not well adapted to
the specific requirements of WAN traffic protection. Techniques such as
BuFLO [121], CS-BuFLO [137], HORNET [104], or TARANET [106] add
padding to obfuscate the size of individual packets and flows and require
modifications on the software and protocols of the end hosts. For many
organizations operating a WAN, it is impossible to adapt these protocols
on all end hosts (e.g., because a cloud provider does not control the soft-
ware that is running on its customer’s instances). Other techniques such
as Loopix [203], PriFi [204], or Wang et al. [136] impose strict transmis-
sion schedules and rates per flow, and thus severely limit the achievable
throughput. As WAN traffic is high-throughput in nature, these solutions
are not efficient enough to deal with high link traffic rates up to 100 Gbps.

This chapter presents ditto, an in-network and hardware-based traffic ob-
fuscation system specifically tailored to WANs. As illustrated in Figure 4.1,
ditto shapes traffic according to a predefined pattern (a periodic sequence
of packet sizes at a fixed rate) using three operations: (i) packet padding;
(ii) packet delaying; and (iii) chaff packet insertion. When there are “real”
packets to transmit, ditto pads and transmits them. When there are no real
packets, it transmits dummy “chaff” packets. Therefore, ditto only adds
overhead (padding or chaff packets) in a way that does not degrade the
network performance for the real traffic. It fills the gaps when there is not
enough real traffic to transmit and (slightly) delays real packets in order
to make the resulting network behavior independent of the actual traffic
being sent.

obfuscating network traffic 57

ditto runs on the gateway network devices (e.g., routers or switches) of
the WAN sites and does not require any modification to the end hosts or
protocols. Being network-based, it is further efficient and supports high-
speed obfuscation even when the traffic is bursty and unpredictable. ditto
devices can react locally to traffic changes in real time. This allows them
to quickly adapt to different network loads and to add or remove chaff
packets almost instantly depending on the actual link load. In contrast,
application-based approaches that run on the end hosts lack the visibility
of the network load and need to send chaff traffic independent of other
applications, which creates a significant overhead that ditto does not have.

We implemented ditto using off-the-shelf programmable network hard-
ware of the same type as major operators have already deployed [205, 206].
We show that ditto can obfuscate packet size, timing and volume infor-
mation at line rate. In the evaluation, we run interactive applications over
ditto and we show that a ditto-enabled device can obfuscate up to 70 Gbps
of production traffic (on a 100 Gbps link) without any significant impact on
the network performance (in terms of throughput, packet loss, latency and
jitter). This performance is enough for typical WANs since they usually run
at (much) less than 60 % utilization [176, 180, 183]. Even in highly optimized
WANs such as the ones of Google and Microsoft where the utilization is
close to 100 % [176, 184], ditto could protect all the non-background traffic
(which accounts to less than 50 % [184]). We further show that the efficient
patterns computed by ditto result in a significant performance increase
compared to simpler approaches in previous work while not compromising
security properties against traffic-analysis attacks.

Our main contributions are:

• a strategy to determine packet sizes that allow an efficient mixing of
real and chaff packets (Section 4.3);

• an architecture to obfuscate the traffic volume and timing at line rate
in network switches (Section 4.4);

• a full implementation (available as open source1) on off-the-shelf
hardware (Section 4.6); and

• an evaluation on real Internet traffic and with interactive applications
(Section 4.7).

The remainder of this chapter is organized as follows. In Section 4.1, we
describe the network and attacker models as well as the security goals. In

1 https://github.com/nsg-ethz/ditto

https://github.com/nsg-ethz/ditto

58 obfuscating network traffic

ditto  
switch

WAN

LANLAN

LAN
LAN

protected link

Figure 4.2: Network model. ditto protects WAN links which interconnect differ-
ent sites of an organization.

Section 4.2, we provide an overview over ditto before we describe its main
components in more detail (pattern computation in Section 4.3 and traffic
shaping in Section 4.4). In Section 4.5, we discuss ditto’s security properties
and limitations. In Section 4.6 we describe the hardware implementation and
in Section 4.7 we evaluate it. Finally, we review related work in Section 4.8
and conclude in Section 4.9.

4.1 model

In this section, we describe the network model (Section 4.1.1), the attacker
model (Section 4.1.2), and ditto’s security goals (Section 4.1.3).

4.1.1 Network model

We consider a wide area network (WAN) which connects multiple sites
of one organization over dedicated, encrypted tunnels as illustrated in
Figure 4.2. These tunnels can be created at layer 2 (e.g., leased fibers and
MACsec encryption) or at layer 3 (e.g., IPsec tunnels). Each tunnel has a
guaranteed bandwidth which the organization can fully utilize.

Each site is connected to the WAN with a programmable switch. These
switches act as gateways between the local area network (LAN) in each site
and the link(s) which interconnect the sites. The operator has full control
over these switches and the LANs, but it does not control the WAN tunnels.

4.1 model 59

We note that such programmable switches are widely-available already
and being deployed in large-scale infrastructure including AT&T, Deutsche
Telekom, and Alibaba [205, 206].

4.1.2 Attacker model

We assume that the attacker has access to all devices and links in the WAN,
but she does not have access to devices or links inside the LANs of the
operator (including the gateways where ditto is running). The attacker can
record timestamps and packet sizes but she cannot access the contents of
packets since they are encrypted. We assume that the encryption happens
at the same layer as the tunnel (e.g., MACsec [193] for a layer-2 tunnel, or
IPsec [207] for a layer-3 tunnel). The attacker can also inject, modify, delay,
or drop packets.

Our attacker model is realistic for typical organizations. As we elaborated
above, several such wiretapping attacks happened in the past [185, 187] and
major operators deploy link-layer encryption to mitigate them [194–197].

4.1.3 Security goals

Similar to related work [106, 203], ditto shapes network traffic such that it
satisfies the following security goals:

• Volume anonymity: The attacker cannot determine the real size of
individual packets and flows which are sent over the WAN. This
prevents attacks such as the one presented by Boshart and Rossow
[208].

• Timing anonymity: The attacker cannot determine the timing between
packets composing real traffic. This prevents attacks such as the ones
presented by Wang et al. [209] and Feghhi and Leith [210].

• Path anonymity: The attacker cannot track packets across WAN tunnels.
This prevents attacks such as the one presented by Wang et al. [209].

The key enabler for ditto to achieve these goals at line rate is that ditto
operates in the network (on routers or switches) and not on end devices such
as clients or servers. In the following section, we describe this deployment
scenario.

6
0

o
b

f
u

s
c

a
t

i
n

g
n

e
t

w
o

r
k

t
r

a
f

f
i
c

add padding

500

1000

1500

1500
encryptdecrypt

real

packet

size

round robin

scheduling

queue

selection

clone
chaff

packet

ingress pipeline traffic manager egress pipeline

ditto switch

0

25 %

50 %

5
0

0
 B

1
0

0
0

 B

1
5

0
0

 B

packet size

distribution

[1500]

[1000, 1500]

[500, 1000, 1500]

[500, 1000, 1500, 1500]

Pattern Overhead

Traffic shaping in  
the data plane (§4.5)

Efficient pattern 

computation (§4.4)

>

>

>

>

priority

queues

pattern computation

recirculation

q0,c

q0,r

q1,c

q1,r

q2,c

q2,r

q3,c

q3,r

q0

q1

q2

q3

P0

P1

P2

P3

parser deparser

chaff

packet

padded

packet

unprotected 
traffic

protected 
traffic

Figure 4.3: ditto overview. The combination of priority queueing (real packets have higher priority and there is always a
chaff packet ready to send with lower priority) and round-robin scheduling (one queue per pattern state) ensures
that the outgoing traffic follows the predefined pattern regarding packet sizes and timing. The figure does not
show the removal of padding on the other end of a protected link.

4.2 ditto 61

4.2 ditto

In this section, we explain the high-level concepts behind ditto using a
running example and Figure 4.3.

Design goals The high-level goals of ditto are (i) to make the WAN traffic
that an eavesdropper receives independent (in terms of packet sizes, inter-
packet time and traffic volume) from the actual traffic that is exchanged over
the network; (ii) to support high-throughput networks without degrading
their performance; and (iii) to operate without requiring changes to end-
devices (e.g., clients or servers).

Workflow ditto reaches these goals by running on programmable network
devices (no changes to end-devices) and by shaping the incoming WAN
traffic into a repeating sequence of packets with pre-defined sizes and
timing. With ditto, the traffic actually flowing through the WAN is therefore
perfectly independent of the real traffic entering it. A ditto-enabled switch
shapes traffic by (possibly): (i) padding incoming packets, to regularize their
sizes; (ii) buffering/delaying incoming packets, to regularize their timings
and their relative order; and (iii) inserting chaff packets, to fill any possible
gaps and ensure the consistency of the packet rates. Of course, enlarging
packets and/or delaying them comes at a cost. ditto reduces this overhead
by optimizing the shaping pattern.

In the paragraphs below, we rely on a simple example and Figure 4.3 to
explain how ditto determines the “shape” of the packet stream (we refer
to this as the obfuscation pattern) and how ditto modifies traffic such that
it follows this pattern.

Architecture ditto has two components: (i) a pattern computation algorithm
to compute a secure and efficient traffic pattern based on the packet size
distribution; and (ii) a data-plane program to shape traffic according to this
pattern at line rate by padding packets and introducing chaff packets.

Simple example We consider a simplistic WAN composed of two ditto

switches connected by one link. In this WAN, packets are of three sizes:
25 % of the packets are 500 B, 25 % are 1000 B and 50 % are 1500 B. The
ordering of the packets follows an unknown distribution.

Pattern computation Given the packet size distribution as an input, ditto
first computes an efficient obfuscation pattern. The obfuscation pattern spec-

62 obfuscating network traffic

ifies the order and sizes of packets traversing a link protected by ditto.
We define it as an ordered list of packet sizes (the pattern states). ditto
then repeats this pattern infinitely. For example, if the pattern is [500,1000],
ditto shapes the incoming traffic such that the outgoing packet sizes are
[500,1000,500,1000,500,1000,...] at a fixed rate.

An efficient pattern minimizes the overhead in terms of padding (bytes
added to a packet to make it larger) and chaff packets (dummy packets
inserted to transmit at a constant rate). To minimize the amount of required
padding, ditto computes the pattern such that it allows to distribute packets
uniformly over all pattern states (this leads to minimal padding on average).
To minimize chaff packets, ditto prefers short patterns (this reduces gaps
between real packets). In Section 4.7, we show that patterns of length 3 to 6

achieve good results.

In the example from above, possible patterns include the ones listed
below. For assigning packets to a pattern state, the objective is to minimize
the amount of padding. Therefore, each packet is assigned to the next larger
pattern state.

• [1500]: This would require to add 1000 B padding to 25 % of the
packets (the ones of original size 500 B) and 500 B to another 25 % of
the packets (the ones of 1000 B). But it minimizes the number of chaff
packets since all packets can be padded to this size.

• [1000,1500]: Here, the 1500 B packets can be sent in the 1500 B state
and the other packets in the 1000 B state. Therefore, ditto only needs
to add 500 B of padding to 25 % of the packets. However, it needs to
send chaff packets if multiple 1500 B packets arrive subsequently.

• [500,1000,1500,1500]: Here, the pattern equals the input distribution
and ditto can send each packet without padding. However, it might
need to send chaff packets depending on the order in which the real
packets arrive.

For the continuation of the example, we use the pattern [500,1000,1500,

1500].

Traffic shaping The data-plane component of ditto merges incoming
real packets with chaff packets such that the mix fits the pattern with
minimal overhead. This is challenging because it needs to be performed in
hardware to achieve high performance but typical networking hardware
is not designed for this. ditto solves this challenges by combining switch
queuing and scheduling to hierarchical queues with two levels:

4.2 ditto 63

When a packet arrives at a ditto switch, ditto first assigns it to a pattern
state. A pattern state is one entry in the pattern; it defines the size which
the packet has when it leaves the switch. Since ditto cannot split packets, it
assigns a packet to the next-larger pattern state.2 For example, a packet of
size 800 B is assigned to the pattern state 1000 (P1 in Figure 4.3) such that
ditto sends it next time it needs to send a 1000 B packet.

Each pattern state Pi has two first-in-first-out (FIFO) queues with priori-
ties. A high-priority queue to which ditto assigns real packets (qi,r) and a
low-priority queue which ditto fills with chaff packets (qi,c).

In the example, ditto assigns the 800 B packet to the high-priority queue
q1,r belonging to the pattern state P1.

Filling the low-priority queues with chaff packets requires a way to gen-
erate these packets. ditto achieves this by continuously recirculating chaff
packets and cloning them into the low-priority queues. This does not require
a dedicated traffic generator and it does not affect the switch performance
(except that it requires one switch port to perform the recirculation).

ditto then feeds the output of each pair of priority queues (qi,r, qi,c) to a
round-robin queue qi and it configures their rates such that the output is
1/L-th of the total rate (for a pattern of length L). As a result, each pair of
priority queues will output packets at a constant rate and irrespective of
whether there is a real packet or not (since there is always at least one chaff
packet in each low-priority queue).

In the next phase, ditto performs round-robin scheduling among the
round-robin queues (q0, q1, q2 and q3 in Figure 4.3). Because the order of the
round-robin queues corresponds to the obfuscation pattern, the scheduler
then outputs packets according to the pattern.

After the queuing and scheduling in the traffic manager, ditto pads the
packets in the egress pipeline. At this point, the ordering of the packets is
already following the pattern and each packet is marked with its target size.
ditto adds padding headers to compensate for the difference between the
actual packet size and the target size. For example, it adds 200 B of padding
headers for the 800 B packet from above.

Now that the packet has the right size, ditto sends it to the egress port.
There, the packet needs to be encrypted (e.g., using MACsec, which can

2 Fragmentation is often not available on switches or routers for performance reasons. The
largest pattern state needs to correspond to the maximum size of any packet in the network
(MTU). If multiple states have the same size, ditto distributes packets uniformly among them.

64 obfuscating network traffic

run at line rate [211]) before it leaves the switch. The encryption ensures
that an attacker cannot see the padding and she cannot distinguish between
real and chaff packets from content analysis.

4.3 computing efficient traffic patterns

A naive pattern would be to make all packets equal size. However, this
would be inefficient because network traffic contains a variety of different
packet sizes and ditto would need to pad them all to the maximum size.
For example, Internet backbone traffic is bi-modal (most packets are of size
< 70 B or > 1400 B) [212].

In this section, we describe how ditto computes efficient patterns by
minimizing the overhead for the expected traffic.

Definition An obfuscation pattern P for ditto is an ordered list of length
L which specifies sizes of packets Pi:

P = [P0, P1, . . . , PL−1], Pi ∈N (4.1)

Given such a pattern for a link protected by ditto, ditto orders and pads
packets such that their size follows P. That is, the jth packet is of size
Pj mod L.

Every pattern is secure We first note that ditto achieves its security goals
with every pattern because the pattern is static and therefore does not reveal
information about the real traffic traversing a protected link.

Efficient patterns Obfuscation patterns differ in their overhead. Intuitively,
a pattern is more efficient than another if it requires less padding and
buffers/reorders real packets less. In the following paragraphs, we explain
how we determine the pattern length L and its states Pi to obtain efficient
patterns.

Selecting the pattern length The pattern length impacts the amount of: (i)
padding required, longer patterns require less padding as they can better fit
the original traffic distribution; (ii) chaff packets generated, shorter patterns
generate less chaff packets because incoming packets are spread over fewer
states; and (iii) packet reordering, longer patterns lead to more reordered
packets because they require more queues.

4.4 traffic shaping in the data plane 65

In Section 4.7, we show empirically that patterns of length 3–6 achieve
good results in all dimensions and for realistic traffic.

Selecting the pattern states Since ditto iterates over the pattern and sends
the same number of packets from each of the states over time, we compute
the pattern such that each pattern state fits for 100

L % of the packets. This is
the case if the pattern state Pi is equal to the ((i + 1) · 100/L)-th percentile
of the expected traffic distribution D:

Pi = percentile(i+1)·100/LD i ∈ [0, 1, . . . , L− 1] (4.2)

When to compute and update the pattern D models the distribution
of real packet sizes expected on the protected link. Ideally, the operator
computes it based on the real traffic (e.g., recorded prior to using ditto).
Since this distribution only reveals information about the average traffic
characteristics, it is usually not confidential. Otherwise, the operator can
use publicly available data such as [213].

When D changes significantly, the operator can compute a new pattern
and reconfigure ditto to use the new pattern without interruption. However,
as we show in the evaluation (Section 4.7), the same pattern can be used for
many months of real Internet traffic with almost constant overhead.

4.4 traffic shaping in the data plane

In this section, we explain how ditto shapes traffic such that it follows the
previously defined pattern.

Problem A switch running ditto receives packets with unpredictable size
and at unpredictable times and it needs to ensure that the packets that
leave the switch follow the predefined pattern (w.r.t. to packet sizes and
inter-packet time). To achieve this, ditto needs to perform three operations
using the capabilities of programmable switches: (i) add padding to real
packets; (ii) buffer packets until they fit in the pattern; and (iii) insert chaff
packets.

Architecture The architecture of a ditto switch is as follows (cf. illustration
in Figure 4.3). When a real packet arrives at the ditto switch, the parser
first extracts information such as the IP header. Then, ditto determines
the egress port depending on the packet’s destination address and assigns
it to one of the queues which belong to this egress port. For a pattern of

66 obfuscating network traffic

length L, each egress port (these are the ports where obfuscated traffic
leaves a ditto switch) has L queues and each queue corresponds to one
state in the pattern (and therefore one packet size). The traffic manager
then performs round-robin scheduling to send packets from the queues to
the egress pipeline. There, ditto adds padding such that the packet’s size
eventually matches the target size determined by the pattern. Finally, the
packet exits at the egress port.

Unfortunately, typical round-robin scheduling has a property that is not
optimal for ditto: It skips a queue if it does not contain a packet. This
is problematic for ditto because it leads to skipped states in the pattern.
To avoid this, ditto makes sure that there is always at least one packet in
each queue. If there is no “real” packet available, the switch sends a “chaff”
packet.

Assigning packets to queues ditto selects the queue to which it assigns a
packet such that the amount of padding is minimal. Since ditto can only
make packets larger, it selects the next-largest queue i for a packet of size s
and pattern states Pi:

i = arg min
i
(Pi − s | s ≤ Pi) (4.3)

If the packet fits into more than one state with the same amount of padding,
ditto randomly selects one of them.

Round-robin scheduling to implement the pattern ditto configures all
queues of an egress port with the same priority such that the traffic manager
(TM) performs round-robin scheduling. The TM therefore iterates over all
queues and sends one packet from each non-empty queue.

The main challenge to ensure that the sent packets always follow the
pattern is therefore to make sure that a queue is never empty when the
TM tries to send a packet from it. Ideally, the hardware would allow to
inject a “chaff” packet when the TM attempts to send a packet from an
empty queue. While this would be a small extension in hardware, there
was no need for such a feature so far and thus it does not exist. Below, we
describe how we combine priority queueing and round-robin scheduling to
overcome this limitation.

Priority queuing to mix real and chaff packets To ensure that round-
robin queues are never empty, we implement hierarchical queueing with two
levels. The idea is to combine priority queues with round-robin scheduling.
For each pattern state, there is a pair of priority queues: A high-priority

4.5 security analysis and limitations 67

queue (qi,r) which receives the real packets belonging to this state, and a
low-priority queue (qi,c) which is flooded with chaff packets for this state.
Each pair of priority queues produces a constant stream of packets while
prioritizing real packets. These outputs are then fed into the round-robin
scheduling which produces the pattern. We detail the implementation in
Section 4.6.

Custom headers to add padding to packets After the TM ensured that
packets reach the egress pipeline in the right order, ditto adds padding
such that they have the right size. ditto pads packets by adding additional
headers after the Ethernet header (adding and removing custom headers
is something that programmable switches are designed to do at line rate).
Because the structure of headers needs to be defined at compile time, ditto
uses a combination of multiple headers of different sizes (32, 16, 8, 4, 2

and 1 Byte) to add the right amount of padding to every packet. To allow
the receiver to identify padded packets and to remove the padding, ditto
marks padded packets in the Ethernet header using the EtherType field.
Since a device running ditto encrypts the traffic over the WAN links, ditto
can add padding with arbitrary contents and include information about the
packet’s original size such that the endpoint knows how much padding to
remove.

Removing padding from packets The receiving switch recognizes padded
packets based on their value in the EtherType field and can thus remove
the padding without additional information or overhead. To remove the
padding from packets before they are sent over a link which is not protected
(e.g., to an end host), ditto removes all the padding headers and restores
the original EtherType.

4.5 security analysis and limitations

In this section, we explain why ditto achieves the security goals from
Section 4.1.3 and we discuss ditto’s limitations.

4.5.1 Security goals

Volume anonymity The obfuscation pattern together with the link band-
width defines the traffic volume (in terms of bytes and packets) that is

68 obfuscating network traffic

transmitted over every protected link. Since this volume is static and inde-
pendent of the real traffic, an attacker cannot learn anything from it other
than the maximum number of bytes and packets sent over the link if the
link was fully utilized. Naturally, an attacker with access to multiple links
and additional background information can derive an upper bound for the
total traffic volume (cf. Section 4.5.2).

Timing anonymity Because ditto always sends traffic according to the
same pattern and at the same rate, it does not leak timing information.
Since packets are encrypted such that the ciphertext changes for each WAN
link, attackers cannot distinguish real and chaff packets and they cannot
determine which packets belong to the same host, application or flow.

Path anonymity Even if an attacker can eavesdrop on all links connected
to a ditto switch, she cannot link incoming and outgoing packets because
(i) the pattern of incoming and outgoing packets is always the same and
ditto would rather drop packet than violate the pattern; (ii) she does not
know which packets contain real traffic; and (iii) packets are encrypted such
that the ciphertext changes for every WAN link.

Summary ditto ensures that the traffic seen on each protected link is inde-
pendent of the real traffic crossing this link. From an attacker’s perspective,
the traffic always looks the same: packets whose size follows a repeating
pattern, with constant inter-packet time and random contents (because
of the encryption). Assuming a bug-free implementation and properly
working hardware, there is therefore no difference between the observed
traffic when there is real traffic and when there is only chaff traffic. Thus,
traffic-analysis attacks would produce the same result in both situations
and do therefore not work. This also extends to other properties than timing
and size, such as packet directions and to multiple colluding attackers.

4.5.2 Limitations

While ditto achieves its security goals and prevents traffic-analysis attacks,
there are some limitations and potential attack vectors outside of our threat
model. We discuss them below.

Malicious insider An attacker who has compromised multiple hosts (e.g.,
servers in two datacenters connected through a ditto-protected link) can

4.5 security analysis and limitations 69

(i) try to estimate the real traffic volume by measuring the performance of
her own traffic; and (ii) exploit ditto for a DoS attack.

To estimate the real traffic volume, the malicious insider can leverage the
fact that ditto enforces a predefined traffic pattern and that it does not split
packets. We illustrate this with a simple example: Assuming the pattern
is [500,1500], the protected link runs at 100 packets per second (pps), the
attacker knows that the link can carry at most 50 packets of size between
501 B and 1500 B per second. If the attacker can send and receive 50 packets
of size 1500 B per second herself, she can use the observed delays or losses
to roughly estimate the amount of other real traffic of this size because
otherwise there would have been congestion or losses. Since the traffic
created by this attacker is likely untypical for the compromised servers, it
could be detected using anomaly detection techniques.

To exploit ditto for a DoS attack, the malicious insider can follow a similar
strategy as above and she can create her traffic such that it requires a
maximum amount of padding. For example, if the pattern is [500,1500],
she can repeatedly send packets of size 64 B (the smallest IP packet size)
and 501 B. ditto would pad these packets to 500 B and 1500 B respectively
and thereby help the attacker to amplify her volume. Since the attacker’s
packets compete with benign traffic for "transmission slots", the attacker can
partially prevent benign traffic from being sent if her rate is high enough.
We see two possible approaches for mitigating this attack: (i) Within each
pattern state, packets could be prioritized based on the amount of padding
which is required (lower priority for packets which require more padding).
Then, packets from such an attacker would be dropped first but this would
also impact benign traffic that requires a lot of padding. (ii) The rate at
which each user can send packets of a certain size could be limited (e.g.,
10 packets with 101 B per second). Packets exceeding this limit could be
handled with lower priority such that the measure only has an impact when
the network is congested.

Attacker with insider knowledge If the attacker has additional knowledge
of the network topology, she can potentially also use this to estimate the real
traffic volume. The best case (for the attacker) is a linear topology where
the traffic crosses multiple links and each link uses a different pattern.
An extreme example is a linear topology with two links where the first
one used a pattern that sends only MTU-sized packets (i.e., 1500 B) and
the second one uses a pattern that sends minimal-sized packets of 64 B.
If both of these links run at 100 Gbps, the first one transmits around

70 obfuscating network traffic

8 Mpps (million packets per second) and the second one 195 Mpps. If the
attacker knows that all traffic crosses both links, she can derive an upper
bound of 8 Mpps (because ditto does not concatenate or split packets) and
8 Mpps× 64 B ≈ 4 Gbps throughput (because ditto only makes packets
larger). However, this weakness is not harmful in practice because (i) both
links would use the same pattern if the pattern was computed as described
in Section 4.3; and (ii) it does not break the volume anonymity property.

Compromised or faulty hardware ditto runs on network switches and
requires them to be trusted and to function properly. If this is not the case,
it allows various attacks.

If an attacker has administrative access to a ditto switch, she can easily
break ditto’s security properties (e.g., by simply disabling ditto). While
this is not in our threat model, there are existing techniques to mitigate
such attacks [214].

If the used hardware leaks information (e.g., because the scheduling is
not working properly or the encryption scheme is weak), this can naturally
also weaken ditto’s security.

4.6 implementation

We fully implemented ditto in P4 (traffic shaping) and Python (pattern
computation). Since implementing the pattern computation is relatively
straightforward, we focus on the P4 implementation, which is technically
challenging (cf. Section 4.4).

The source code of our implementation is available on GitHub.3

Hardware target Our data-plane implementation runs on Intel’s Tofino
chipset [59], which powers several off-the-shelf switches [215–217] and is
used by large operators (e.g., AT&T, Deutsche Telekom, and Alibaba [205,
206]).

Architecture The architecture of our implementation follows the descrip-
tion in Section 4.4. In the ingress pipeline, we (i) determine the egress port
for the incoming packet; (ii) we check if the egress port is one that we want
to obfuscate and whether it is a real packet (as opposed to a chaff packet); if
so, we (iii) assign the packet to the right queue; and (iv) check if the switch

3 https://github.com/nsg-ethz/ditto

https://github.com/nsg-ethz/ditto

4.6 implementation 71

can add enough padding in one pipeline pass or if the packet needs to be
sent through the pipeline multiple times.

Approximating hierarchical queueing As explained in Section 4.4, one
challenge behind ditto is that the switch needs to send a packet from each
round-robin queue even if the queue is empty. This is not possible in existing
switches. For ditto, we implemented an approximation of hierarchical
queueing, where a packet traverses two queueing stages instead of just one.
We achieve this by sending each packet through the switch data plane twice.
As illustrated in Figure 4.4, the first queueing stage consists of one pair of
priority queues for each pattern state. The queue with the higher priority
receives all real packets belonging to the respective pattern state, while the
queue with the lower priority is flooded with chaff packets.

We set the output rate of each priority-queue pair such that the sum of all
pairs equals the total sending rate of the switch. For example, if the switch
sends 10 Mpps and L = 4, each queue pair needs to transmit 2.5 Mpps. The
outputs from the priority queues are fed back to the switch via loopback
ports.

When the packets arrive at the switch for the second pass, ditto sends
them to the round-robin scheduler attached to the actual egress port. Its
output then follows the pattern.

The main cost of sending each packet through the switch twice is that
the loopback modules occupy ports which cannot be used for interconnec-
tions with other switches. Since each physical 100 Gbps QSFP port can
be split into 2 or 4 sub-ports (with 50 Gbps or 25 Gbps throughput each,
respectively), one loopback port can be used for up to 4 pattern states. The
bandwidth of one sub-port needs to be at least 100/L Gbps where L is the
length of the pattern. Since the bandwidth can only be 100, 50, or 25 Gbps,
ditto configures it as follows:

bw =


100, L = 1

50, L = 2 or L = 3

25, L ≥ 4

(4.4)

And the number of required loopback ports n computes to

n =

⌈
L · bw
100

⌉
(4.5)

72 obfuscating network traffic

ditto switch

Real

traffic

Obfuscated

traffic

queue

selection

>

>

>

>

priority queues

500

1000

1500

1500

round robin scheduling

Chaff

traffic

Loopback

Figure 4.4: ditto implements hierarchical queueing by sending each packet
through the switch twice.

For example, patterns of length 3 and 6 require 2 loopback ports for each
obfuscated port. In the typical use case where an organization uses a ditto

switch as its gateway to the WAN, switch ports are not scarce (e.g., a typical
switch has 64 ports [59] and could therefore support around 20 WAN links).

Adding padding In the egress pipeline, ditto adds padding to the packet
until it has the required size. ditto adds padding in the form of additional
headers of different sizes (between 32 B and 1 B). ditto adds the padding
headers in decreasing order in separate stages to reduce the number of
match & action table entries: First, it adds as many 32 B padding headers
as possible (and needed). Then, it tries to fill the remaining space with 16 B
headers and so on until there is no more padding needed. For example,
ditto adds 2×32 B, 1×4 B and 1×2 B padding headers to increase a packet’s
size by 70 B.

Recirculate packets if needed If the required amount of padding is larger
than what can be added in one pipeline pass, ditto recirculates the packet.
Then, the packet traverses the switch multiple times (i.e., from the end of

4.7 evaluation 73

the egress pipeline, it is sent to the beginning of the ingress pipeline). With
each pass, ditto can add additional 254 B of padding. By default, ditto
uses two 100 Gbps port for the recirculations. Depending on the pattern
and the traffic distribution, this can result in a bottleneck especially if ditto
protects traffic on multiple ports. In this case, ditto can load-balance the
recirculations over more ports (thereby reducing the number of available
switch ports for other interconnections).

Removing padding Removing padding is straightforward: ditto removes
all the padding headers and restores the original EtherType. Again, the
limited size of the PHV (Packet Header Vector, cf. Section 2.3) can require
recirculating the packet in order to remove all padding.

Resource usage The main bottleneck regarding resource usage of ditto is
the amount of padding that can be added in one pipeline pass. Because
ditto adds padding in the form of additional headers, the amount is limited
by the size of the PHV and the deparser. In our current implementation,
ditto can add up to 254 B of padding in one pipeline pass. Regarding other
types of resources (e.g., SRAM and TCAM memory), our implementation
uses only a small fraction of the switch’s resources (less than 10 % on
average over all stages).

4.7 evaluation

We first describe our methodology in Section 4.7.1. Then, we evaluate our
implementation with respect to performance (Section 4.7.2) and security
(Section 4.7.3). In addition, we outline the potential of future hardware opti-
mized for ditto through simulations (Section 4.7.4). Table 4.1 summarizes
our main results.

4.7.1 Datasets and methodology

The distribution of traffic processed by ditto depends on the type of WAN
in which it is deployed. As a typical use case, we envision an organization
with several sites which uses its WAN to connect them and use one site as
a gateway through which it sends all outgoing and incoming traffic. In this
case, WAN traffic has similar characteristics as Internet traffic. In addition,

74 obfuscating network traffic

Results from hardware measurements

Performance and efficiency Section 4.7.2

• Longer patterns reduce the padding and chaff overhead.

• ditto’s padding strategy leads to less overhead compared to related work.

• Non-interactive traffic (replayed traces): no performance loss for link loads
between 60 and 70 Gbps (depending on the dataset).

• Interactive traffic (iPerf, VoIP and web browsing): no performance loss for
link loads between 70 and 80 Gbps (depending on the dataset).

Security Section 4.7.3

• Packet sizes and timing do not allow conclusions about real traffic.

Results from simulations

Performance and efficiency Section 4.7.4

• Longer patterns reduce the padding and chaff overhead.

• 1 MB of buffer space is enough to obfuscate a traffic volume of up to 99 %
of the link bandwidth.

• The same pattern can be used for months without sacrificing efficiency.

• 92 % of the packets remain in the correct order for highest load and the
longest pattern.

Security

• The pattern produced by ditto is secure by design.

Table 4.1: Evaluation summary

we consider two extreme cases: (i) the best case for ditto where all packets
have the same size (e.g., if there was heavy traffic shaping); and (ii) the
worst case for ditto where the packet sizes are uniformly distributed.

Datasets We use real Internet traffic and synthetic traffic where the packet
sizes follow given distributions. For the real Internet traces, we use the pub-
licly available CAIDA anonymized Internet traces dataset [213] (CAIDA).
Even though this dataset was collected on Internet links, we believe it is
representative for a WAN where one site is used as a gateway for all in-
coming and outgoing traffic (e.g., for central compliance monitoring). We
use the most recent dataset (captured in January 2019) and we preprocess
it in two steps: (i) we remove all non-IPv4 packets because the current

4.7 evaluation 75

Appl.

Traffic

ditto

Switch

Traffic 
Generator

Application

Client

Input

load

Obfuscated

Traffic

ditto

Switch

Traffic 
Collector

Application

Server

Proxy

Switch

Proxy

Switch

Figure 4.5: Evaluation setup. We use two ditto switches, two switches that act as
proxies to perform measurements (e.g., timestamps), and two servers
to send and receive traffic.

implementation of ditto can only handle IPv4 traffic;4 and (ii) we extract
the first 100 M packets to speed up our simulations.

In addition, we generate two synthetic traffic traces using Scapy [218]:
one where all packets have size 1480 B (Constant) and one with uniformly
distributed packet sizes between 60 B and 1480 B (Uniform). While these
traffic distributions are unlikely to occur in practice, we use them to rep-
resent two extreme cases: Constant is the best case for ditto because it
already follows a constant pattern while Uniform represents the worst
case because fitting a pattern to a uniform distribution creates the highest
overhead.

Many WANs will have different traffic distributions than the traces that
we use in the evaluation, but we argue that our datasets are useful to show
ditto’s performance on a wide range of different traffic characteristics. It is
also important to note that the traffic distribution does not have an impact
on ditto’s security properties.

All datasets mentioned above represent non-interactive traffic. That is,
the traffic does not change depending on the network behavior. While this
allows us to test ditto with high traffic volumes (up to 100 Gbps), it is not
fully representative for real-world behavior (e.g., a dropped TCP packet
would be retransmitted). To address this, we run interactive applications on
top of the replayed traffic and we measure the performance achieved by
these applications. We describe this in Section 4.7.2.

Methodology We evaluate ditto on off-the-shelf devices and we simulate
how it would perform on ideal future hardware.

4 This is only an implementation detail. The same approach would also work for IPv6 packets.

76 obfuscating network traffic

The hardware prototype is our implementation as described in Section 4.6.
It runs on two Intel Tofino switches with 32× 100 Gbps ports. Between the
switches, ditto obfuscates traffic on one link at 100 Gbps. We use a traffic
generator (Moongen [219]) to inject traffic from one server, and to record
traffic on another server (cf. Figure 4.5).

We also implemented a simulator for optimal hardware in Python. It
receives a packet sequence as input (the real traffic) and produces a packet
sequence as output (the obfuscated traffic). The simulator operates in
discrete time steps: in each iteration, it receives and sends one packet.
To shape traffic according to the pattern, it uses round-robin scheduling
and when there is no real packet to send it sends a chaff packet.

4.7.2 Performance and efficiency in today’s hardware

In the following paragraphs, we show the performance of ditto with respect
to these three aspects:

• Throughput: The ratio between the incoming and the outgoing real
traffic

• Recirculations: The number of recirculations of each packet

• Application performance: The performance of interactive applications

Throughput Figure 4.6 shows the ratio between incoming real traffic and
outgoing real traffic. To obtain these results, we send traffic from a server to
a first switch where we add additional information to packets that we need
for our measurements (e.g., we add a number to each packet). Then we send
it to the switch which runs ditto. Afterwards, we record the obfuscated
traffic on another server (see Figure 4.5).

The total outgoing traffic is always 100 Gbps (not shown in the plot).
If there was no performance loss, the amount of incoming traffic would
equal the amount of outgoing traffic. But since ditto makes packets larger
and fits them into a predefined pattern, it creates overhead and therefore
reduced the usable throughput. However, as Figure 4.6 shows, the hard-
ware prototype operates almost without loss until 90 % (Constant), 70 %
(Uniform) or 60 % (CAIDA) load.

The reasons for this sub-optimal performance include:

4.7 evaluation 77

• ditto relies on precisely controlled output rates of priority queues
such that the output does not fluctuate. However, today’s switches are
typically not designed for that (they offer traffic shaping, but the rate
is only correct “on average”). In our case, bursts of too much traffic
lead to dropped packets.

• ditto adds padding in the form of additional headers. Treating
padding like packet headers is expensive with respect to the required
resources in the pipeline and the deparsing time, and a switch that
could add padding without using these resources could perform
better.

• ditto uses a maximum bandwidth of 100 Gbps for recirculation.
Therefore, if packets need to be recirculated multiple times, this
bandwidth is not enough and packets get lost.

Comparison with related work In Figure 4.6 we also show an upper bound
for the performance of three systems that rely on end-host protocols to
obfuscate traffic: HORNET [104], TARANET [106] and BuFLO [121]. To
compute the performance of these systems, we only simulate their padding
strategy (i.e., we neglect computational overhead and overhead due to
mixing with chaff packets), hence the real results of these systems would
be strictly worse than the plotted upper bound.

Our results show that ditto outperforms all of these approaches even
if their computational overhead is ignored (the results for ditto are mea-
surements on actual hardware and therefore include all forms of overhead).
ditto outperforms these approaches because (i) ditto adds padding accord-
ing to an efficient pattern, which produces less overhead than padding all
packets to the same size; and (ii) operates on a per-link basis as opposed to
obfuscating each flow separately.

Below, we provide more details about the simulated parameters.

HORNET pads all packets to the same size s. We set s to the size of
the largest packet in the respective dataset, which minimizes the padding.
Further, HORNET adds headers to the original packets. The size of these
headers depends on the AS path length and a sample length. We set the AS
path length to 1 and the sample length to 16 (as in the paper [104]).

TARANET shapes flow(lets) such that they transmit at a fixed rate (con-
stant size and inter-packet time) and it adds chaff packets to obfuscate
the real length of a flow(let). In contrast to ditto, TARANET can also split
packets to make them smaller. For our simulations, we do not consider

78 obfuscating network traffic

0 20 40 60 80 100
Input rate [Gbps]

0

20

40

60

80

100

O
ut

pu
t (

re
al

 tr
af

fic
)

[G
bp

s]

CAIDA (l= 1)
CAIDA (l= 3)
CAIDA (l= 6)
CAIDA (HORNET)
CAIDA (TARANET)
CAIDA (BuFLO)

Uniform (l= 1)
Uniform (l= 6)
Uniform (l= 3)
Uniform (HORNET)
Uniform (TARANET)
Uniform (BuFLO)

Constant (l= 1)
Ideal

Constant (HORNET)
Constant (TARANET)
Constant (BuFLO)

40 50 60 70 80 90 100
Input rate [Gbps]

40

50

60

70

80

90

100

O
ut

pu
t (

re
al

 tr
af

fic
)

[G
bp

s]

Figure 4.6: Input vs. output rate of real traffic. Longer patterns and constant size
traffic lead to higher goodput. ditto outperforms related work even
their computational overhead is ignored.

chaff packets (which makes the results only better) and we set the packet
size to the average packet size of the respective dataset.

BuFLO’s padding strategy is to pad all packets to the MTU (1500 B in our
case) without modifying the timing. Again, we only simulate the padding
overhead without considering chaff packets. Ideally, this approach can
work without additional headers which is why we assume there is no such
overhead.

Recirculations Since our hardware prototype can only add 254 B of
padding per pipeline pass, some packets need to traverse the switch mul-
tiple times. For this, we use a technique called recirculation which sends
a packet from the end of the egress pipeline back to the beginning of the
ingress pipeline.

Recirculating packets increases reordering and packet delay and (because
the bandwidth for recirculation is limited) can lead to packet loss. Therefore,
it is better to keep the number of recirculations small. The best strategy
to reduce recirculations is to make patterns long enough such that the

4.7 evaluation 79

difference between each pattern state and the next smaller or larger one is
less than the number of padding bytes per pipeline pass.

Constant does not require recirculations. For CAIDA and Uniform, the
number of recirculations decreases with an increasing pattern length. A
pattern of length 1 requires 1.59 (CAIDA) or 0.99 (Uniform) recirculations
on average. This numbers decrease to 0.23 and 0.40 for a pattern of length 3

and 0.18 and 0.03 for length 6.

Application performance In addition to the raw throughput measure-
ments above, where we replayed static traffic traces, we now measure the
performance of interactive applications.

We measure the real-world performance of three typical types of ap-
plications: (i) high-bandwidth TCP and UDP traffic (using iPerf [220]);
(ii) web browsing traffic (using WprGo [221]); and (iii) VoIP traffic (using
pjsip [222]). Figure 4.5 illustrates the setup of this experiment. We run
Docker containers with clients and servers for the respective application
and we measure the performance of these applications when the traffic is
sent via a ditto-enabled link versus the performance when the traffic is
forwarded directly (we use this as the baseline).

Figure 4.7 shows the results of these measurements. We obtain the results
by running 50 measurements for each input rate (0–100 Gbps) and we
perform each measurement with and without ditto. We highlight that we
perform the measurements in addition to the replayed traffic. Therefore, a
TCP throughput of 7 Gbps at an input rate of 80 Gbps means that ditto is
handling 87 Gbps in total. The measurements without ditto represent a
baseline where traffic is directly forwarded.

We measure the following metrics:

• TCP throughput: Important for applications which demand high band-
width and reliable throughput (e.g., file transfer). We measure TCP
throughput by creating 30 s TCP flows with maximum throughput
using iPerf.

• Packet loss: Important for applications using unreliable transport (e.g.,
video streaming over UDP) and reliable transport (e.g., TCP). We mea-
sure packet loss by creating 30 s UDP flows with 1 Gbps throughput
using iPerf.

• Jitter: Important for real-time applications and streaming (e.g., video
calls). We measure jitter by creating 30 s UDP flows with 1 Gbps
throughput using iPerf.

80 obfuscating network traffic

0 20 40 60 80 100
Input rate [Gbps]

0

5

10
T

hr
ou

gh
pu

t [
G

bp
s] TCP throughput

0 20 40 60 80 100
Input rate [Gbps]

0

5

10

P
ac

ke
t l

os
s

[%
] UDP packet loss

0 20 40 60 80 100
Input rate [Gbps]

0

10

Jit
te

r [
μs

]

UDP jitter

0 20 40 60 80 100
Input rate [Gbps]

0

5

10

R
T

T
 [m

s]

VoIP RTT

0 20 40 60 80 100
Input rate [Gbps]

0

2

Lo
ad

 ti
m

e
[s

]

Top9 webpage load time

l= 1 with ditto
l= 3 with ditto
l= 6 with ditto

l= 1 baseline
l= 3 baseline
l= 6 baseline

(a) Uniform

0 20 40 60 80 100
Input rate [Gbps]

0

5

10

T
hr

ou
gh

pu
t [

G
bp

s] TCP throughput

0 20 40 60 80 100
Input rate [Gbps]

0

5

10

P
ac

ke
t l

os
s

[%
] UDP packet loss

0 20 40 60 80 100
Input rate [Gbps]

0

10
Jit

te
r [
μs

]

UDP jitter

0 20 40 60 80 100
Input rate [Gbps]

0

5

10

R
T

T
 [m

s]

VoIP RTT

0 20 40 60 80 100
Input rate [Gbps]

0

2

Lo
ad

 ti
m

e
[s

]

Top9 webpage load time

l= 1 with ditto
l= 3 with ditto
l= 6 with ditto

l= 1 baseline
l= 3 baseline
l= 6 baseline

(b) CAIDA

Figure 4.7: ditto compared to the baseline. Lines show mean values and colored
areas indicate the 95 % confidence interval. ditto affects the applica-
tion performance after a certain link load, depending on the dataset,
pattern length and metric.

4.7 evaluation 81

• Round-trip time (RTT): Important for real-time applications (e.g., VoIP).
We measure the RTT by creating 8 × 30 s VoIP calls using PJSIP.

• Website load time: Important QoE metric. We measure the load time
for the 9 most popular websites according to Alexa [223].5

The results in Figure 4.7 show that – as expected – ditto does not
degrade the network performance up to a certain point. Depending on
the distribution of the traffic and the length of the pattern, ditto does not
have significant impact on the network performance with an input rate of
up to 80 Gbps (TCP throughput, Uniform, pattern of length 6). The main
causes for the degraded performance are dropped packets (due to the same
reasons as discussed above). If packets are not dropped, we highlight that
ditto has no significant effect on timing-related metrics such as jitter and
Round-Trip Time (RTT).

In general, longer patterns are more efficient because they produce less
overhead. Most of our results confirm this hypothesis. However, there are
two exceptions in the CAIDA dataset: TCP throughput and packet loss.
The reason for this is that we do not take the interactive application traffic
into account when we computed the pattern. Then, it can happen that
the measurements modified the traffic distribution to an extent where the
pattern does not fit well anymore. Especially for longer patterns (because
each state of the pattern has a small share of the total amount of transmitted
packets, e.g., 1/6th for L = 6) and for flows with many equal-sized packets
(because then all packets are assigned to the same pattern state). Both the
TCP and the UDP measurements consist of constant-size packets because
iPerf maximizes the throughput.

4.7.3 Security in today’s hardware

We now show that the hardware prototype obfuscates traffic such that the
observed inter-packet times and packet sizes are independent of the real
traffic and we show that the accuracy of a state-of-the-art attack is on par
with random guessing.

Packet timings are independent of the real traffic Figure 4.8 shows the
Inter-Packet Gap distribution (IPG, the time between the end (last byte)
of the previous packet and the start (first byte) of the current packet) for

5 amazon.com, facebook.com, netflix.com, reddit.com, youtube.com, zoom.us, bing.com, google.

com, and wikipedia.org

amazon.com
facebook.com
netflix.com
reddit.com
youtube.com
zoom.us
bing.com
google.com
google.com
wikipedia.org

82 obfuscating network traffic

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

 -
 P

(X
 <

=
 x

)

Uniform (l= 1)

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

Uniform (l= 3)

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

Uniform (l= 6)

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

CAIDA (l= 1)

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

CAIDA (l= 3)

-2 0 2 4
x: IPG [ns]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 -

 P
(X

 <
=

 x
)

CAIDA (l= 6)

Input rate [Gbps]

0
10

20
30

40
50

60
70

80
90

100

Figure 4.8: IPG distributions. The IPG does not depend on the input rate (the 11

lines in each plot are overlapping).

each dataset, pattern length, and network load. Visually, it is clear that
the distributions do not depend on the network load (the lines largely
overlap). Analyzing the measurements further shows that a large fraction
is within a typical error margin around the median value. For example, an
attacker who can measure timestamps with a precision of ± 3.2 ns (as in a
state-of-the-art capturing device [224]), could not distinguish between 92 %
and 97 % (depending on dataset and pattern length) of the measurements.

The numbers in Figure 4.8 are subject to imprecisions for two reasons:
(i) we measure the timestamps in the ingress pipeline of the evaluation
proxy switch (cf. Figure 4.5), i.e., not on the link directly and not on a
calibrated measurement device; and (ii) we measure the timestamp at the
beginning of a packet, while the IPG refers to the time between the last byte
of the previous packet and the first byte of the current packet. We therefore
adjust the timestamp computationally as follows. For two packets of sizes

4.7 evaluation 83

0 20 40 60 80 100
Input rate [Gbps]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
M

S
E

 [%
]

Uniform (l= 1)
Uniform (l= 3)
Uniform (l= 6)
CAIDA (l= 1)
CAIDA (l= 3)
CAIDA (l= 6)

Figure 4.9: ditto performs round-robin scheduling up to an error which does
not depend on the input rate.

s0 and s1 bytes arriving at timestamps t0 and t1 (t0 < t1) and a line rate of
100 Gbps, the IPG is

IPG = t1 − t0 +
s0 · 8

100 · 109 (4.6)

Packet sizes are independent of the real traffic We now evaluate whether
the hardware prototype obfuscates traffic such that it follows the defined
pattern. Round-robin scheduling in today’s switches is designed to fol-
low round-robin behavior on average, not necessarily in microscopic detail.
This means that the switch performing round-robin scheduling could send
[P1, P1, P2, P2, P3, P3] instead of [P1, P2, P3, P1, P2, P3] (where Pi represents a
packet from queue i). However, since this behavior originates in the hard-
ware implementation of the switch and not in the behavior of ditto, it does
not affect ditto’s security.

In Figure 4.9 we show that the hardware prototype indeed performs
round-robin scheduling on average and it produces a distribution which is
close to uniform. In the plot, we show the Root Mean Square Error (RMSE)
between the observed distribution and a uniform distribution. The error
does not leak information about real traffic. Instead, it originates from the
approximation of the 2-level hierarchical queueing and the required precise
rate-control, which is more error-prone for small packets.

State-of-the-art attack does not work with ditto After showing that
packet sizes and timings are independent of the real traffic and do not leak

84 obfuscating network traffic

2 3 4 5 6 7 8 9
Number of websites

0

25

50

75

100

A
tta

ck
 a

cc
ur

ac
y

(%
)

without ditto
ditto (l= 1)
ditto (l= 3)
random guessing

Figure 4.10: DF attack accuracy. For ditto-protected traffic, the accuracy is on
par with random guessing.

information in general, we now run a state-of-the-art attack to showcase
that ditto is robust against this particular attack.

We run the Deep Fingerprinting (DF) attack developed by Sirinam et al.
in [126]. This attack uses convolutional neural networks to identify visited
websites. The inputs for training, validation and testing are sequences of
packet directions (e.g., [1,-1,-1] when loading a website required one
outgoing packet and two incoming ones).

To run the attack, we used the code published by the authors and the
same parameters and input dimensions (1000 samples per website, at most
5000 packet directions per sample). To load the websites, we used the same
setup as for the application performance experiment above and we added
5 ms latency between the two containers to make it realistic for real Internet
traffic. We loaded the Alexa top 9 websites and recorded the traffic on the
link protected by ditto using tcpdump [225]. In order to be able to record
the traffic, we run ditto at only 500 Mbps per direction.6 From the recorded
traffic, we extracted the packet directions for 5000 packets starting with
the first packet sent from the client to request a website. This makes it
easier for the attack as it would be in practice because a real attacker could
not distinguish between real and chaff packets and thus she could not
determine the first packet of a request. We run the attack in the closed
world setting as in [126], where there is no other real traffic besides the
loaded website (which makes it easier for the attack) and we run the attack
for traffic recordings containing between 2 and 9 websites (identify fewer
websites is easier for the attack).

6 The attack would not perform better for a higher bandwidth.

4.7 evaluation 85

We depict the accuracy of the attack in Figure 4.10 with and without ditto
(each point in the plot is the average accuracy over 20 attack runs). We also
depict the accuracy of an attacker randomly guessing (for reference). We
see that the attack is unsuccessful on ditto-protected traffic: the accuracy is
on-par with random guessing. Note that the results hold independently of
the pattern length (here, 1 or 3). We also see that the attack is successful
without ditto, as expected.7

4.7.4 Performance and efficiency in future hardware

We now simulate how ditto would run on future hardware with two
extensions compared to our hardware: (i) the round-robin scheduler can
directly send a chaff packet if a queue is empty; and (ii) the number of
padding bytes is not limited.

In the following paragraphs, we show the simulated performance of
ditto with respect to these two aspects:

• Overhead: Amount of padding and chaff packets depending on the
input load and the pattern length

• Reordering: Out-of-order packets in TCP flows depending on the input
load and the pattern length

Overhead We simulate ditto with different input loads (10–100 %) and
pattern lengths (1–32) to evaluate the overhead added to real traffic. To
measure overhead, we use 4 metrics:

• Chaff overhead: The number of chaff bytes that ditto sends to always
transmit at line rate

• Padding overhead: The padding that ditto adds to packets in order to
fit into the pattern

• Buffer space usage: The required buffer space to store packets until they
fit in the pattern

• Switching delay: The number of packets that ditto transmits between
two packets that arrive subsequently

7 We observed that the model is overfitting in some cases for the unprotected datasets. To
limit this, we added an early stopping mechanism that stops the training when there was no
significant improvement in the last 3 epochs [226].

86 obfuscating network traffic

0 25 50 75 100
Input load (%)

0

2500

5000

7500

10000

12500

B
yt

es
 /

pa
ck

et
Chaff overhead

0 25 50 75 100
Input load (%)

0
100

101
102
103
104
105
106
107
108

B
yt

es

Used buffer space (average)

0 25 50 75 100
Input load (%)

0
100

101

102

103

104

P
ac

ke
ts

Switching delay (average)

Uniform (l= 1)
CAIDA (l= 1)

Uniform (l= 3)
CAIDA (l= 3)

Uniform (l= 6)
CAIDA (l= 6)

Constant (l= 1)

Figure 4.11: Overhead depending on the input load. ditto’s overhead in terms
of buffer space and introduced switching delay is small up to an
input load of around 80 %.

Overhead depending on the network load Figure 4.11 shows how the
network load impacts the overhead created by ditto.

We show the results for all three datasets. For CAIDA and Uniform, we
show the results for different pattern lengths (1, 3 and 6). For Constant,
we only show a pattern of length 1 because this is already the most efficient
pattern. As expected, longer patterns fit the actual traffic distribution better
and therefore create lower padding- and chaff overhead.

The chaff overhead decreases with increasing input load because the more
real traffic there is to send, the fewer chaff packets need to be added.

We observe that the chaff overhead is larger for short patterns. This is
because short patterns need to consist of larger packets (e.g., a pattern of
length 1 results in sending MTU-sized packets constantly) and therefore,
even if there are fewer chaff packets, the amount of chaff bytes is larger.

ditto needs to buffer packets when the sequence of the pattern does
not match the sequence of the incoming packets. For small loads, this is
less critical because there is more time between two subsequent incoming
packets (e.g., if the time between two incoming packets is larger than the
time it takes to iterate over the pattern once, the buffer is always empty
when the new one arrives). For high input loads, discrepancies between the
sizes of incoming packets and the outgoing pattern have a higher impact.

4.7 evaluation 87

0 10 20 30
Pattern length

200

250

300

350
B

yt
es

 /
pa

ck
et

Chaff overhead

0 10 20 30
Pattern length

0
100

101
102
103
104
105
106

B
yt

es

Used buffer space (average)

0 10 20 30
Pattern length

0

200

400

600

B
yt

es
 /

pa
ck

et

Padding overhead

0 10 20 30
Pattern length

0
100

101

102

103

P
ac

ke
ts

Switching delay (average)

Constant (load=80%) Uniform (load=80%) CAIDA (load=80%)

Figure 4.12: Overhead depending on the pattern length. Long patterns result in
small padding and chaff overhead but require more buffer space
and introduce more delay.

However, as Figure 4.11 shows, 1 MB of buffer space is sufficient for up to
90 % (CAIDA) or 99 % (Uniform) load. Patterns of length 1 do not require
buffering because ditto pads and sends each packet immediately.

The switching delay measures the number of packets sent between two
incoming packets. Therefore, it evolves similarly to the buffer overhead.
Again we observe a slow increase until the switch starts to get congested
around 90 % network load.

Overhead depending on the pattern length Figure 4.12 shows how the
pattern length impacts the overhead. The results are for a high network
load of 80 %, which means that there are usually real packets ready to be
sent in each pattern state. In this case, longer patterns result in less chaff
overhead and padding overhead. This is because longer patterns fit the actual
traffic distribution better and therefore require sending less additional
traffic. At the same time, longer patterns lead to increased buffer usage and
switching delay because it is more difficult to fit the incoming packets to the
right pattern state.

88 obfuscating network traffic

 2
01

8-
03

 2
01

8-
08

 2
01

8-
05

 2
01

8-
07

 2
01

8-
09

 2
01

8-
06

 2
01

8-
04

 2
01

8-
12

 2
01

8-
10

 2
01

8-
11

Dataset

0

500

1000

1500

2000

B
yt

es
 /

pa
ck

et

Padding overhead

l= 1
l= 3
l= 6

Figure 4.13: Overhead for using the same pattern (length l) over 10 subsequent
months. The padding overhead does not increase because the traffic
distribution roughly stays the same.

Overhead for long-term use of a pattern ditto computes the pattern
based on the packet size distribution and then applies it for future traffic.
This is always secure, but not necessarily efficient. If the distribution of
the real traffic changes, it is worth computing a new pattern (which can
be deployed without interrupting the switch [227]). We confirm with the
results in Figure 4.13 that ditto can apply the same pattern over a long
period (10 months) with a nearly constant overhead.

Packet reordering We now evaluate the impact of ditto on the ordering
of packets. We again simulate ditto with different input loads (between 10

and 100 %) and different pattern lengths (1–32).

We focus on CAIDA in this experiment because the other datasets do
not contain TCP flows. We randomly select 100k TCP flows with at least 2

packets from CAIDA and count the number of reordered packets for each
of them (the sampled flows are the same across all experiments).

To measure reordering, we use the following metrics:

• Reordered packets: Packets that were out of order (i.e., packet i arrived
before packet i− 1)

• Flows with reordered packets: Flows with at least one reordered packet

Reordering depending on the network load Figure 4.14 shows how the
network load impacts the reordering. As expected, a higher input load
leads to more reordering. But even in fully loaded networks, less than 8 %
of the packets are reordered. 8 % of reordered packets impact at most 47 %
of flows because many short flows are reordered.

4.7 evaluation 89

20 40 60 80 100
Input load [%]

0

2

4

6

8

P
ac

ke
ts

 [%
]

Reordered packets

20 40 60 80 100
Input load [%]

0

10

20

30

40

F
lo

w
s

[%
]

Flows with reordered packets

CAIDA (l= 1) CAIDA (l= 3) CAIDA (l= 6)

Figure 4.14: Packet reordering depending on the input load. 92 % of the packets
remain in order for the highest load and the longest pattern (l = 6).

0 10 20 30
Pattern length

0

5

10

15

20

P
ac

ke
ts

 [%
]

Reordered packets

0 10 20 30
Pattern length

0

10

20

30

40

50

F
lo

w
s

[%
]

Flows with reordered packets

CAIDA (load=10%)
CAIDA (load=50%)

CAIDA (load=80%)
CAIDA (load=100%)

Figure 4.15: Packet reordering depending on the pattern length. Longer patterns
lead to more reordering.

We point out that these results show a worst case because of the way
how our simulator works. The original throughput of the CAIDA dataset
is around 4 Gbps [212], which corresponds to an input load of 4 % in our
simulation. To simulate higher input loads, we replay CAIDA at a higher
speed (up to 25× the original speed), which creates unrealistically high-
bandwidth flows. For example, a user downloading a file with 1 Gbps is
simulated as a user with a 25 Gbps connection.

Reordering depending on the pattern length Figure 4.15 shows how the
pattern length impacts reordering. As expected, longer patterns lead to more
reordering because the sequence of outgoing packets is more constrained.

90 obfuscating network traffic

4.8 related work

Preventing traffic-analysis attacks has been an active research area for
many years. However, existing work focuses on preventing traffic-analysis
attacks for Internet users. As we elaborated earlier, these systems are largely
orthogonal to ditto because protecting WAN traffic presents both new
challenges (e.g., high throughput) and opportunities (e.g., control over
network devices). Even though existing systems could be applied in WANs
too, they would not perform well enough (cf. simulations in Section 4.7)
since they are not optimized for this setting or they require modifications
of the end hosts.

Most existing work is application-specific (e.g., to prevent website finger-
printing [228–231], ensure anonymous communication [204, 232] or protect
IoT devices [233]) and/or requires additional servers to relay traffic [136,
203, 234]. In contrast to these approaches, ditto operates at the network
layer, protects all traffic and does not need additional servers or modifica-
tions at the clients. Below and in Table 4.2, we summarize the most relevant
work related to ditto.

Widely used protocols and libraries already allow adding random number
of bytes to the plaintext before encrypting it. Examples include SSH [235],
GnuTLS [231], and IPSec [236]. However, this only adds a small amount
of anonymity (the volume increases by a random amount within some
bounds) and it does not provide timing- or path anonymity.

Onion routing and mix networks TOR [101, 234], the most widely used
anonymity network today, and similar systems (e.g., [104, 237, 238] use
onion routing [239] to hide the source and the destination of traffic. However,
they do not prevent timing attacks and they do not hide the traffic volume.

HORNET [104] is similar to TOR in the sense that it uses onion routing but
it operates on the network layer. To obfuscate the traffic volume, HORNET
adds padding to packets such that all packets have the same size.

PriFi [204] is based on Dining Cryptographers networks (DC-nets) [240]
where each participating node is assigned a time slot in which it can (and
must) send a message. This provides volume-, timing- and path anonymity
because the observed traffic is always the same, but it reduces the total
throughput linearly with the participating nodes.

Loopix [203] mixes real and chaff traffic in dedicated mix nodes and
achieves low-latency communication with up to 300 messages per second

4.8 related work 91

while hiding the sender and receiver of messages as well as whether they
are currently active.

Padding and traffic shaping Like ditto, several works aim at hiding the
traffic volume by adding padding, chaff packets and/or by sending packets
according to a predefined schedule. Examples of such systems include the
works of Guan et al. [135], Wang et al. [136] and Wright et al. [241].

In [242], Dyer et al. show that existing padding approaches do not provide
enough security and they suggest BuFLO as a solution with high security.
BuFLO [242] pads all packets to the same size; delays them such that the
time between two packets is constant; and sends chaff packets such that
each flow has a certain minimal length. However, as the authors state in the
paper, this approach is inefficient because of the constant packet size and
inter-packet time. The key difference to ditto is the deployment scenario:
BuFLO runs on end hosts and obfuscates each flow individually. This leads
to the large overhead mentioned in the paper. ditto runs in the network
and obfuscates traffic on a per-link basis according to an efficient pattern
(instead of making all packets constant-size), which leads to less overhead.
Furthermore, ditto does not leak information about flow durations or sizes.

In [134] and [137], Cai et al. present CS-BuFLO, an improved congestion-
sensitive version of BuFLO. CS-BuFLO adapts the transmission rate de-
pending on how much traffic the client tries to send. This makes it more
efficient but also less secure because it leaks information about the sender’s
volume. While CS-BuFLO has less overhead than BuFLO, it suffers from
similar limitations: Since the padding happens per flow or per device, the
overhead created by many flows or devices sums up in the network. Further,
CS-BuFLO leaks information about the total volume of a flow or device and
the sending rate while ditto does not because it runs in the network.

TARANET [106] shapes traffic into constant-rate flowlets at the hosts. The
system then makes sure that these flowlets achieve the constant rate despite
dynamic network events such as packet loss. Similarly to ditto, TARANET
mixes real and chaff packets, but in contrast to ditto, TARANET requires
support from the end host.

9
2

o
b

f
u

s
c

a
t

i
n

g
n

e
t

w
o

r
k

t
r

a
f

f
i
c

Deploy- Tech- Volume Timing Path

System Year ment1 niques2 anonymity anon. anon. Throughput3 Main overhead / bottleneck

TOR/Onion Routing [234,
239]

1999 C/S P, (C, D,) R ✗ ~ ✓ 100 Mbps Latency (send via relays)

NetCamo [135] 2001 C/S/N P, C, R ~ ~ ✗ N/A4 Per-flow padding

Wang et al. [136] 2008 S P, C, D ~ ~ ✓ 10 Gbps Per-flow padding, latency (via server)

BuFLO [242] 2012 C/S P, C, D ~ ✓ ✗ 320 Mbps All packets have the same size

CS-BuFLO [134, 137] 2012 C/S P, C, D ~ ~ ✗ 400 Mbps All packets have the same size

HORNET [104] 2015 C/N P, R ~ ✗ ✓ 8 Gbps Onion routing and constant-size packets

WTF-PAD [138] 2016 C/S P, C ~ ~ ✗ N/A4 Per-flow padding

PriFi [204] 2017 C/S P, C, D ✓ ✓ ✓ 100 Mbps Throughput (1 client can send per slot)

Loopix [203] 2017 C/S P, C, D, R ✓ ~ ✓ 4 Mbps Per-device obfuscation, computation

TARANET [106] 2018 C/S/N P, C, D ✗ ~ ✓ 4 Gbps Per-flow(let) obfuscation

ditto 2021 N P, C, D ✓ ✓ ✓ 100 Gbps Switch resources, pattern efficiency

1 C: Client; S: Server, N: Network 2 P: padding, C: chaff packets, D: delay, R: routing 3 Results from the respective paper. When applicable, we use the
following assumptions: throughput for 1 device port or link, 100 Gbps line rate, 1500 B packet or message size, 1000 users or devices, 1 server with a 10 Gbps

connection, clients with 1 Gbps connections 4 No throughput measurements in the paper. But the per-flow obfuscation makes the throughput is significantly
worse compared to ditto.

Table 4.2: Comparison of ditto’s key properties with related work. Related work focuses on preventing traffic-analysis attacks
on shared links, which adds other constraints compared to ditto and generally results in worse performance.

4.9 conclusion 93

4.9 conclusion

This chapter shows that it is possible to obfuscate volume- and timing
properties of wide area network (WAN) traffic directly in the network data
plane, using existing hardware, and with a small performance overhead.

ditto mixes real and chaff traffic and it adds padding to packets such
that they follow a predefined pattern with respect to packet size and timing.

Two insights allow ditto to achieve high performance (up to 70 Gbps
per 100 Gbps switch port for real Internet backbone traffic and interactive
applications) and perfect security (observed traffic is independent of real
traffic): (i) the traffic pattern is efficient because it fits the actual traffic
distribution in the protected network; and (ii) existing network devices offer
the features which are needed to perform packet padding and mixing with
chaff traffic at line rate.

In the next chapter, we will change the perspective and discuss how
programmable networks can also be used to de-obfuscate networks, their
traffic and their users.

5
D E - O B F U S C AT I N G T R A F F I C A N D U S E R S

In the previous chapters, we presented two techniques that use program-
mable networks to obfuscate networks and their traffic. In this chapter, we
change the perspective and discuss how programmable networks can also
be used for the opposite: to de-obfuscate networks, their traffic, and their
users.

In the following paragraphs, we first summarize two previous works on
using programmable networks to (i) detect VoIP calls and reveal the caller
and callee; and (ii) apply random forest models and classify network traffic
at line rate. Then, we outline how programmable networks could improve
the traffic-analysis attacks that ditto prevents.

Afterwards, we present a new case study that shows how programmable
networks can detect proxy servers based on their traffic.

The main enabler for all these systems is that programmable switches can
run custom programs to analyze every packet at line rate, without sampling
or cloning or rerouting traffic to a different device.

Identifying VoIP calls and their participants In previous work, we pre-
sented DELTA [4], a novel network-level side-channel attack that can effi-
ciently identify VoIP calls in-path, in real-time, and at scale. DELTA leverages
the VoIP signaling mechanism used for peer discovery and call setup: VoIP
callers and callees first connect to a publicly known central application
server shortly before communicating directly with each other. This funda-
mental call bootstrapping mechanism, used by prominent VoIP platforms
(including Signal, Skype, Telegram, and WhatsApp), leads to a triangular
connection pattern. DELTA takes advantage of this pattern by storing the
signaling connections and linking the candidate call flows to these stored
addresses. Our implementation of DELTA runs on Intel Tofino switches [243]
and we evaluate our prototype against both real and synthesized packet
traces. Our experiments show that a single switch’s DBBF can hold connec-
tion state to simultaneously detect up to 100 000 unique VoIP calls for each
VoIP application with virtually no hash collisions within up to 6.4 Tbps
of traffic, the switch’s maximum throughput. To put these numbers in

95

96 de-obfuscating traffic and users

perspective, AMS-IX [244] – the busiest Internet location in the world –
transits around 11 Tbps of traffic on its peak [245], whereas WhatsApp, the
most popular VoIP service in the world, facilitates 100 million calls per day
worldwide [246]. In other words, two switches would be enough to process
worldwide VoIP traffic, provided it would cross these switches.

Applying machine learning models to network traffic In previous work,
we presented pForest [3], a system that enables programmable switches
to perform real-time inference according to supervised machine learning
models (random forests), accurately and at scale. To save resources on the
programmable switch and to speed up the classification, pForest classifies
flows as soon as possible, after the first few packets. To do so, it trains a
sequence of models that maps to the different phases of a flow. The data
plane applies this sequence during the life of a flow until the candidate label
is certain enough. Accordingly, pForest decides on a per-flow basis when
the soonest classification is possible. Our evaluation shows that pForest

can perform traffic classification at line rate, for hundreds of thousands
of concurrent flows, and with a classification score that is on-par with
software-based solutions.

Accelerating traffic-analysis attacks Most traffic-analysis attacks assume
that the traffic can be analyzed on a server. However, this is unrealistic for
high traffic volumes (as for example in the WANs considered in Chapter 4).
Here, programmable switches could reduce the amount of traffic that needs
to be sent to the server. We illustrate this with the traffic-analysis attacks
that we used to motivate ditto. They require only packet sizes, timings,
and directions as inputs [119–134]. Programmable switches can help scaling
these attacks to high traffic volumes in two ways: (i) by filtering traffic
that is relevant for the attack; and (ii) by computing the features for the
attack directly in the data plane. For example, in the case of the deep
fingerprinting attack [126] that we used to evaluate ditto, the feature vector
consists of at most 5000 packet directions – a feature that is trivial to
compute in a programmable switch. Even though the resources available in
today’s programmable switches do not allow assembling such long feature
vectors for a reasonable number of concurrent flows, they can assemble
shorter vectors and leverage the fact that most flows are much shorter
anyways [247].

5.1 case study : proxy server detection 97

5.1 case study : proxy server detection

In the remainder of this chapter, we present a case study to show how
programmable switches can help detect proxy servers in an ISP network.

If Internet users do not want to reveal their identity (especially their
public IP address) to a contacted server, they can use a proxy server. Proxy
servers (or proxies) relay requests and responses between their clients and
the contacted servers such that the proxy appears as the source of the
requests and therefore the clients are not visible to the servers.

Many people and organizations use proxies to access geo-restricted con-
tent, to perform market research, or to monitor website rankings on search
engines [248]. However, proxies also help criminals to conceal their identity.
For example, they help to perform credit card fraud [249, 250], ad fraud
[251] and scanning for vulnerable devices [252]. They are also useful for
performing distributed denial-of-service attacks such as the one originating
from the Mirai botnet with 65 000 residential hosts [253] or link-flooding
attacks that require a many sources at specific locations [113, 114].

Proxies can run at various places. Traditionally, proxies were either op-
erated by an organization as their exit point for all outgoing connections
or they were operated by third-party providers in data centers. We focus
on the latter case, where everybody can use the proxy (sometimes for free,
sometimes for a fee). However, the fact that these proxies were running on
dedicated machines in data centers (sometimes even on publicly listed IPs
[254, 255]) made it possible for network operators or content providers to
identify and block these IPs. Since detectable proxies are often of little use,
this has led to a new type of proxy which is much harder to detect: resi-
dential IP proxies (RESIPs). These proxies are not running in data centers
controlled by the service provider, but instead in residential networks (e.g.,
people’s homes). As a result, these proxies allow their customers to hide
behind actual residential IP addresses, which makes them much harder to
detect using existing methods.

Leading proxy service providers (including Bright Data [256], Storm-
Proxies [257], and GeoSurf [258]) offer their customers tens of millions of
residential IP addresses that can be used as proxies. Their proxy servers
usually run on home users’ devices with the owner’s consent and give the
owner a small reward for every gigabyte that was sent through their de-
vice [259]. However, previous work has shown that many residential proxies
run on likely compromised IoT devices without the owner’s consent [251].

98 de-obfuscating traffic and users

Proxy servers – especially residential ones – are not only troublesome
for content providers, they can also be problematic for Internet service
providers (ISPs) because (i) they can be used for attacks (e.g., DDoS) against
the ISP and thereby downgrade its reputation; (ii) they can be used for
attacks against other targets and thereby associate the ISP’s IP range with
malicious actions; and (iii) they can consume the ISP’s customers’ band-
width without consent and thereby degrade the perceived performance
for the customer. Furthermore, since residential proxy servers often run
without the owner’s consent [251, 260], the ISP could also perform the
proxy detection as a service for its customers.

Detecting proxies with programmable networks In this case study, we
show that programmable switches can help a network operator (especially
an ISP) to detect potential proxy servers at scale and without impacting the
network performance for its customers.

We present a proof-of-concept implementation that analyzes network
traffic, extracts features, and uses clustering to distinguish between normal
clients and proxies. Even though the approach is simple, we show in the
evaluation that it can distinguish between normal clients and proxies with
an F1 score of more than 90 %.

Related work Early proxy-detection approaches used fixed rules or deep
packet inspection to identify proxies [261–264]. However, since most traffic
today is encrypted and proxies can run on various devices, newer ap-
proaches use more sophisticated techniques. For instance, they use packet-
level features such as inter-arrival times, packet sizes, and flow durations
[265–271]. However, these systems assume that the whole network traffic
is available for their analysis, which is infeasible in large networks due to
their high traffic volume.

In our case study, we demonstrate how programmable switches can
allow proxy detection systems to scale by extracting some of the features in
the data plane. While programmable switches could accelerate all of the
systems mentioned above, we use this case study to present a system that
is different from existing ones in the sense that it only requires one feature:
timestamps of TLS connections.

Outline In the following sections, we provide background information
about how proxies work (Section 5.2); describe our network model and
terminology (Section 5.3); present a system to detect proxies based on
timing information in TLS connections (Section 5.4); describe how the

5.2 background on proxy servers 99

Server

TCP 
connection

Proxy

client

Proxy

Figure 5.1: Basic proxy setup. A client connects directly to the proxy and the
proxy maintains separate connections with the client and the server.

system extracts features in the data plane (Section 5.5) and identifies proxies
in the control plane (Section 5.6); evaluate the system (Section 5.7); and
discuss the system’s limitations and ways to resolve them (Section 5.8).

5.2 background on proxy servers

At a high level, proxies act as intermediaries between their clients and the
servers that these clients want to connect to. As illustrated in Figure 5.1,
instead of connecting directly to the server, a client then sends its request to
the proxy and the proxy sends the request to the server through a separate
connection [272].

There are various types of proxies. The ones we consider in this case study
are so-called forward proxies, which relay traffic between many sources
(e.g., subscribers of a service) and all destinations (e.g., any website). The
other type of proxies is reverse proxies, which accept requests from all
sources but only to specific destinations (e.g., one website). These proxies
are often used for load balancing and redundancy.

Forward proxies exist in many different sub-categories. For example,
open proxies are listed publicly and are available to every Internet user [254,
255]. Other proxy servers are only accessible to subscribers of commercial
services or to clients within a certain network (e.g., a company network).

Depending on the setup, proxies differ in how they receive their clients’
requests. The most prevalent types are HTTP(S) proxies and SOCKS5 prox-
ies. HTTP(S) proxies receive the requests from the client through HTTP(S)
and therefore only work for HTTP(S) traffic. On the other hand, SOCKS5

proxies use the SOCKS protocol that can work with any application-layer
protocol [273].

100 de-obfuscating traffic and users

ServerProxy

gateway

Proxies

TCP 
connection

Proxy

client

Figure 5.2: Proxy setup with a gateway. The client connects to a gateway, which
relays its traffic to a proxy.

Generally, a client establishes a direct connection with the proxy (Fig-
ure 5.1). However, many commercial service providers operate a gateway
server to which the client connects. This gateway server then forwards the
request to the actual proxy server (Figure 5.2) [251]. This setting makes
management and monitoring easier for the proxy providers and allows
them to distribute requests from one client over many proxies (to offer
so-called rotating IP proxies).

5.3 model

In this section, we describe the networks in which we want to detect proxies
and we define the terminology used in the remainder of this case study.

Network model Our goal is to identify IP addresses that act as proxy
servers in an Internet Service Provider (ISP) network. These networks
connect their customers (private households or businesses) to the Internet.
We assume that the network forwards traffic such that each flow traverses
at least one programmable switch that runs our proxy detection system.

The ISP assigns one public IP address to each customer, but the customers
can operate many devices that share this IP address through network
address translation (NAT) [274]. Each of the customer’s devices can act as a
normal client and/or as a proxy. We do not differentiate between individual
devices sharing one IP. We say that an IP acts as a proxy if at least one
device that uses this IP acts as a proxy.

Figure 5.3 illustrates an ISP network and the following paragraph explains
the terminology in more detail.

5.3 model 101

Client

Proxy
Proxy client

ServerISP

Proxy detection 
switch

Figure 5.3: Network model. We consider an ISP network where customers can
have multiple devices acting as normal clients and/or as proxies.

Terminology Below, we explain some essential terms used in this case
study. Parts of our terminology are borrowed from [275] and [276].

• Server: device that hosts websites

• Proxy: device that acts as a proxy

• Client: device that is used to browse the Internet. We distinguish
between two types of clients:

– Normal client: a client that does not use a proxy

– Proxy client: a client that uses a proxy

• Stub: local network of one customer of an ISP, identified by its public
IP assigned by the ISP

• Proxy provider: an entity that provides access to proxies (but does not
necessarily operate them).

• Website request: action taken by a user that triggers one or more
HTTP(S) requests (e.g., a click on a link or entering a URL in the
browser’s address bar)

• Head request: the first HTTP(S) request triggered by a user request

• Embedded requests: Other HTTP(S) requests triggered by a user request

• Isolated requests: HTTP(S) requests that are neither head requests nor
embedded requests

102 de-obfuscating traffic and users

5.4 design overview

In this section, we explain how we distinguish between normal clients and
proxy servers based on their traffic.

We first state our design goals. Then, we describe how the traffic of prox-
ies and normal clients differs and how website requests allow estimating
the distance between the client and the server. Afterwards, we explain the
metric we use to measure these differences and our underlying hypothesis.
Finally, we outline the architecture for the implemented system.

Design goals The goal of this case study is to develop a system that can
distinguish between normal clients and proxies in an ISP network while
fulfilling these requirements:

• The system’s input is the traffic exchanged in the ISP network

• The system cannot decrypt encrypted traffic

• The system has no control over the end devices (clients, proxies,
servers)

• The system must not degrade the network performance

Peculiarities of proxies As explained above, proxies relay connections
from their clients to the connected server. This leads to several peculiarities
in the network traffic from and to proxies. For example: (i) there is a
strong correlation between incoming and outgoing traffic regarding timing
and volume; (ii) compared to typical ISP customers, proxies receive more
incoming connections; and (iii) interactions that involve the client happen
slower because traffic first needs to reach the client.

We focus our system on the third property because it is more difficult to
obfuscate for the proxy provider than the other two. Obfuscating the first
two properties is possible for the proxy provider or the client by introducing
chaff packets. Especially if the proxy client connects to the proxy through a
gateway server controlled by the proxy provider (illustrated in Figure 5.2)
[251]. Such a gateway server allows the proxy provider to add chaff packets
between the gateway and the proxy and to “reverse” the connection between
the proxy and the relay server (i.e., the proxy initiates the connection to the
relay server).

On the other hand, the time it takes until the proxy client has received
the content depends on its geographical location and the distance to the

5.4 design overview 103

proxy. While it is not possible to measure this time directly (after all, the
main purpose of a proxy is to hide the client), we explain below how we
approximate it using the characteristics of HTTP and HTML.

Peculiarities of web browsing Almost all websites contain multiple ele-
ments (e.g., text, images, videos, and client-side code) which a browser
needs to download before displaying the website. These elements are stored
in separate files and potentially on separate servers. When a user requests
a website, the browser first downloads the HTML code that specifies the
structure of the website (e.g., the text and the position of images). Based
on the HTML code, the browser then knows which additional elements it
needs to download.

We leverage this behavior to estimate the time it takes for the content to
reach the client which is potentially hiding behind a proxy. More precisely,
we leverage two key observations.

The first observation is that loading a website almost always results in
the following pattern:

1 The client requests the website’s HMTL code

2 The server returns the code

3 The client parses the code

4 The client requests additional elements (potentially from multiple
servers)

5 The server(s) return additional elements

The second observation is that the time between 2 and 4 depends
on the geographical distance between the client and the server, even if
the client uses a proxy. The time between 2 and 4 is approximately
proportional to the distance client—proxy—server if the client uses a proxy
or client—server otherwise.

In Figures 5.4 and 5.5, we illustrate this pattern for the case where the
client loads a website without a proxy (Figure 5.4) and where it loads it
through a proxy (Figure 5.5). Because most web-browsing traffic today is
encrypted using TLS [53], we design our system to work even if traffic is
encrypted. Figures 5.4 and 5.5 show the TLS handshakes between the proxy
and the server.

104 de-obfuscating traffic and users

GET /example.com

Hello world

Client Server

SYN

SYN+ACK

ACK | Client Hello

Server Hello | …

(key exchange)

(key exchange)

GET cat.png

SYN

SYN+ACK

ACK | Client Hello

Server Hello | …

(key exchange)

(key exchange)

TCP

TLS

HTTP

TCP

TLS

HTTP

CRT

Figure 5.4: Loading a website without a proxy. The client establishes a first TLS
connection to load the HTML code. After it receives the HTML code,
it establishes a second connection to request the embedded image.

While TLS hides the packet contents, it still allows identifying the requests
in steps 1 and 4 because both requests trigger the establishment of a
new TLS connection with the server and the time between these two TLS
connections also depends on the geographical distance between the client
and the server.1

Client reaction time (CRT) We call the time that it takes a client to react
to new instructions for loading elements the client reaction time (CRT). As
an example, consider the case where the HTML code and the embedded
elements are hosted on the same server. Then, the CRT computes to the
time difference between when the server returns the HTML code and when
the server receives the request for the first embedded element. However,
computing this time solely based on TLS-encrypted traffic is not possible,

1 In Section 5.8, we discuss the impact of future HTTP versions.

5.4 design overview 105

GET /example.com

Hello world

GET /

Client Proxy Server

SYN

SYN+ACK

ACK | Client Hello

Server Hello | …

(key exchange)

(key exchange)

GET cat.png

GET cat.png

SYN

SYN+ACK

ACK | Client Hello

Server Hello | …

(key exchange)

(key exchange)

TCP

TLS

HTTP

TCP

TLS

HTTP

CRT

Simplified

Figure 5.5: Loading a website through a proxy. The time between the response
with the HTML code and the request of the image is now longer
because the HTML code first needs to reach the client behind the
proxy. Note that the channel between the client and the proxy is
simplified here (e.g., we do not show the handshakes to establish a
TLS connection)

which is why we approximate it. In our case, we compute the CRT as the
time between the two TLS handshakes (more precisely: the client hello
packets in the two handshakes) shown in Figures 5.4 and 5.5. This approxi-
mation works well for our purposes because it still captures the difference
between requests that go through a proxy and those that do not.

Hypothesis Given that the CRT depends on the geographical distance
between the client and the server, it also depends on the distance between

106 de-obfuscating traffic and users

Feature extraction 
in the data plane

Device classification

in the control plane

Figure 5.6: Architecture of our proxy detection system. A programmable switch
extracts features from network traffic, and the control plane computes
clusters of similar devices and distinguishes between proxies and
normal clients.

the proxy and the client if a proxy is involved. We therefore expect that it
reveals whether an IP address is used as a proxy or not.

More precisely, given the IP address of a stub in the ISP network, we
expect the following characteristics of the CRT depending on whether this
IP address is used as a proxy:

If the IP address is not used as a proxy, we expect the CRT to be (i) relatively
small compared to other IPs in the same network (because the client is
identical or close to the device with the IP address); and (ii) relatively
constant (because all devices behind this IP are close by).

On the other hand, if the IP address is used as a proxy, we expect the CRT
to be (i) relatively large compared to other IPs in the same network (because
the clients behind the proxy are further away); and (ii) relatively variable
(because the clients are in many different locations).

Architecture Figure 5.6 shows the architecture of our proxy detection
system. The system consists of two main building blocks: A data plane
component to extract the metrics that we use to identify proxies from traffic
in real-time; and a control plane component to analyze the extracted metrics
and perform the classification.

In the following two sections, we explain each component in more details.

5.5 extracting features in the data plane 107

5.5 extracting features in the data plane

In [277], we developed a prototype implementation of the data-plane com-
ponent that runs on Intel Tofino switches. Below, we summarize how this
P4 program identifies TLS client hello packets in the data plane and notifies
the control plane.

Identifying TLS client hello packets The parser identifies TLS client hello
packets based on the following criteria: (i) it is a TCP packet (i.e., the
etherType in the Ethernet header is equal to 0x0800 and the protocol in the
IP header is equal to 0x6); (ii) the SYN flag is 0 (i.e., it is not a TCP handshake
packet that does not contain TLS records); (iii) the destination port is 443

(i.e., the default for HTTPS); (iv) the content type of the TLS record is 0x16

(i.e., it is a TLS handshake packet); and (v) the handshake type 0x1 (i.e., it is
a client hello packet).

Notifying the control plane The switch notifies the control plane about
any new client hello packet through a so-called digest message. Digest
messages provide an efficient way of sending data from the data plane to
the control plane without cloning the entire packet [278]. In our case, the
digest message contains the packet’s source and destination IP address as
well as the timestamp at which the packet was received.

This implementation serves only as a prototype and is not the most
efficient one. As we show in [277], the switch could already compute the
CRT in the data plane – at least for some requests, depending on how much
memory is available. In Section 5.8, we discuss additional possibilities for
improvements.

5.6 identifying proxies in the control plane

In this section, we explain how we use the timestamp measurements from
the data plane to distinguish between normal clients and proxy clients.

Inputs The inputs to the control plane algorithm are timestamp measure-
ments from the data plane as described above.

Features We hypothesize that the CRT of proxy clients is higher and
follows a broader distribution than the CRT of normal clients. Therefore,
our two main features are the mean value and the standard deviation of

108 de-obfuscating traffic and users

the CRTs of one stub. But there are cases when we cannot compute the CRT,
namely when the head request and the embedded requests are distributed
over multiple proxies (i.e., they have different source IPs). This is the case
for so-called rotating IP proxies. To cover this, we add an additional feature
that computes the percentage of isolated requests per IP. Isolated requests
are those that are not preceded or followed by another request with the
same (source IP, destination IP) pair.

In summary, our features are:

• CRTm: The mean value of the CRT

• CRTstd: The standard deviation of the CRT

• Isol%: The percentage of isolated requests

Feature extraction To compute these features, the proxy detection system
must first extract website requests from the inputs. To do this, it analyzes
the individual inputs (i.e., client hello packets) and labels each of them as
one of three request types:

• Head requests denote the first request that loads the HTML code of a
website

• Embedded requests denote the requests that follow a head request and
load additional elements (images etc.) contained in the website

• Isolated requests denote requests that are neither head nor embedded
requests

For the labeling, we use a simple heuristic based on two timeouts (Tidle
and Thead): Tidle is the minimum idle time between two head requests. In
other words, we assume that a user waits for Tidle until opening the next
website. Thead is the maximum time it takes until all elements of a website
are loaded after the head request.

Based on these two parameters and the information in the inputs (times-
tamps, source IP addresses and destination IP addresses), we then label
each request in two stages.

In the first stage, we assign the labels as follows:

• potential head if there is no other request from the same client in the
last Tidle

• embedded if it is within Thead after a request labeled as potential

head or head and it has the same source and destination IP as the

5.7 evaluation 109

(potential) head. We then change the label of the potential head to
head

• potential embedded if it is within Thead after a request labeled as
potential head or head and it has the same source but a different
destination IP

In the second stage, we change the label of all requests previously labeled
as potential head to isolated if they were not followed by at least one
embedded or potential embedded.

Once all requests are labeled, computing the features is straightforward.
The CRT is the time between a head request and its first embedded request.
CRTm is the mean CRT of one source IP and CRTstd is the standard deviation.
Isol% is the ratio of isolated requests over the number of total requests for
each source IP.

We acknowledge that this heuristic is not optimal, but building an optimal
heuristic is out of scope for this case study. For example, the heuristic gets
disturbed when a client starts multiple requests simultaneously or when
websites load additional elements over a long time. In Section 5.8, we
discuss the limitations in detail.

Classification After we extracted the features (CRTm, CRTstd, and Isol%)
for each source IP, we put them into two clusters using the k-means clus-
tering algorithm [279]. According to our hypothesis, clients and proxies
show different behaviors with respect to our features and therefore end
up in different clusters. Since we expect the proxies to have higher values
for CRTm and CRTstd, we interpret the cluster with the higher center (w.r.t.
CRTm and CRTstd) as the proxy cluster and label all IPs in this cluster as
proxies and all other IPs as clients.

5.7 evaluation

In this section, we show that our proof-of-concept implementation can
identify proxies with high accuracy (F1 score over 90 %) even if the proxy
clients are in close geographical proximity, they use a large range of different
bandwidths, and the proxy uses rotating IPs.

After we describe our evaluation methodology, we show how the detec-
tion accuracy of our system depends on the number of observed requests,

110 de-obfuscating traffic and users

the clients’ bandwidths, the clients’ locations, and the number of IP ad-
dresses per proxy.

5.7.1 Methodology

We now describe how we generate and collect the data we use to evaluate
the proxy detection system.

ISP topology We consider a hypothetical ISP that operates in New York
City and wants to detect proxy servers among its customers.

Infrastructure We perform all experiments on the cloud infrastructure
provided by DigitalOcean [280]. DigitalOcean allows creating virtual ma-
chines (VMs) in eight different regions (Amsterdam, Bangalore, Frankfurt,
London, New York City, San Francisco, Singapore, Toronto). Depending on
the experiment, we host our clients in a varying selection of these regions.

Clients Our clients are DigitalOcean VMs with 2 virtual CPU cores and
4 GB memory. The clients run Ubuntu 20.04.4 LTS and use Firefox to browse
the web. To automate the experiments, we use Selenium [281]. The clients
use HTTP/1.1 and TLS 1.3 to access our webserver.

Proxies We use proxies provided by BrightData [256] (previously called Lu-
minati), one of the largest providers of proxy servers [251]. The Bright Initia-
tive [282] granted us free access to BrightData’s proxy services. BrightData
offers different types of proxies: residential proxies, ISP proxies, datacenter
proxies and mobile proxies. We use ISP proxies for our experiments because
they fit our use case (detecting proxies in ISP networks) and they do not
involve devices which potentially act as a proxy without the owner’s con-
sent (as it can be the case for residential proxies [251], cf. ethics discussion
below).

Server We run an Apache webserver [283] version 2.4.41 in one VM with
4 virtual CPU cores and 8 GB memory in Frankfurt. Apache runs in its
default configuration. To obtain TLS certificates, we use LetsEncrypt [284].
The website consists of three elements besides the HTML code: an image, a
CSS stylesheet in a separate file, and javascript code in a separate file.

Data collection To create the datasets, we capture the traffic on the web-
servers’s network interface using tcpdump [225] and we create logs with the

5.7 evaluation 111

True class

Proxy Normal client

Predicted class
Proxy True positive (tp) False positive (fp)

Normal client False negative (fn) True negative (tn)

Table 5.1: Confusion matrix

timestamps of each website request on all clients. We only use these logs
as ground truth, the proxy detection system receives only the pcap file as
input.

Metrics We measure the accuracy of our proxy detection system using the
typical metrics precision, recall, and the F1 score. These metrics are based
on the confusion matrix in Table 5.1.

The precision denotes the ratio of correctly identified proxies over all IPs
labeled as proxies:

precision =
tp

tp + fp

The recall denotes the ratio of correctly identified proxies over all proxies
in the dataset:

recall =
tp

tp + fn

The F1 score is the harmonic mean of the precision and recall:

F1 = 2× precision× recall
precision + recall

=
tp

tp + 1
2 (fp + fn)

Ethics Our experiments do not raise ethical issues because:

• We only capture traffic that we created ourselves (through browser
automation).

• We do not use residential proxies because they might be running
without the device owner’s consent.

• We described our project to the Bright Initiative and they approved
us for using their proxy infrastructure.

112 de-obfuscating traffic and users

0 10 20 30 40 50
Number of requests

0.0

0.2

0.4

0.6

0.8

1.0

Precision
Recall
F1

Figure 5.7: Accuracy depending on the number of requests. Proxies can be de-
tected reliably after only about 30 requests in our datasets.

5.7.2 Detection time

In this experiment, we evaluate how the accuracy depends on the number
of observed requests. We run 12 normal clients in New York City and 48

proxy clients at random locations. These proxy clients use one of 10 proxies
in New York City at random.

In Figure 5.7, we show the precision, recall and F1 score depending on
the number of analyzed requests. Each point in the plot shows the average
over 5 runs of the experiment. The results show that the detection works
well (F1 score ≥ 90 %) after 30 observed requests. Ideally, this would mean
that our system can identify proxies after only 30 user requests. However,
as we discuss in Section 5.8, our datasets are not fully representative for
real ISP traffic, which might have a positive impact on our results.

5.7.3 Impact of the bandwidth

In this experiment, we evaluate the impact of the clients’ bandwidth on
the detection accuracy. To do this, we limit the bandwidth of each client
randomly to one of the following values: 1 Gbps, 500 Mbps, 300 Mbps,
100 Mbps, 50 Mbps, 25 Mbps, 10 Mbps, 5 Mbps, 1 Mbps, 0.5 Mbps. The six
highest values correspond to the rates offered by AT&T, one of the world’s
largest ISPs [285]. We added the smaller values to simulate devices that
cannot fully utilize the high bandwidth.

5.7 evaluation 113

2 4 6 8 10
Number of different bandwidths

0.0

0.2

0.4

0.6

0.8

1.0

Precision
Recall
F1

Figure 5.8: Accuracy depending on the bandwidth distribution. The bandwidth
has a small impact on the accuracy because the website is small.

In Figure 5.8, we show how the F1 score changes depending on the
number of different bandwidths of the clients. The value on the x-axis
specifies that the clients used the top-x bandwidths randomly (e.g., for
x = 3, each client was configured with a bandwidth of either 1 Gbps,
500 Mbps, or 300 Mbps). To limit the bandwidth, we used iproute-tc [286].
In each case, there were 12 normal clients in New York City, 48 proxy clients
at random locations, and 10 proxy servers in New York City. Each point in
the plot shows the average over 5 runs of the experiment.

The results show that the bandwidth distribution has a small impact on
the accuracy of our system. The explanation for this is that the website that
we load is small (about 400 kB in total, and the HTML code is only 1 kB),
and therefore the impact of the bandwidth on the CRT is small. Since we
compute the CRT between the first two client hello packets, only the HTML
code and handshake packets are transmitted during this time. Since these
packets are small, the bandwidth does not have a significant impact on the
CRT (e.g., the time difference between transmitting 1 kB at 1 Gbps and at
25 Mbps is only 312 µs while CRTm is around 0.8 s in our topology).

5.7.4 Impact of the geographical distribution

In this experiment, we evaluate the impact of the client’s location on the
F1 score. To do this, we randomly distribute the 48 proxy clients across an
increasing number of locations. The available locations are the ones offered
by DigitalOcean as listed above.

114 de-obfuscating traffic and users

2 4 6 8
Number of regions

0.0

0.2

0.4

0.6

0.8

1.0

Variable bandwidth

2 4 6 8
Number of regions

0.0

0.2

0.4

0.6

0.8

1.0

Fixed bandwidth

Precision
Recall
F1

Figure 5.9: Accuracy depending on the number of regions where proxy clients
are placed. The accuracy increases if the proxy clients are distributed
in multiple regions.

In Figure 5.9, we show how the F1 score changes depending on the
number of different locations of the clients. The value on the x-axis specifies
that the top-x locations sorted by their distance to New York City are used
(e.g., for x = 3, we distributed the clients across New York City, Toronto
and San Francisco).

We use 12 normal clients in New York City and 48 proxy clients at random
locations. We evaluate the case where the bandwidth of each client is the
same (1 Gbps) and the case where each client has a bandwidth randomly
selected among 1 Gbps, 500 Mbps, 300 Mbps, 100 Mbps, 50 Mbps, 25 Mbps
(the bandwidths offered by AT&T [285]). Again, each point in the plot
shows the average over 5 runs of the experiment.

The results show that the accuracy generally increases slightly with the
number of regions. This is expected because if the proxy clients are in other
regions than the normal clients, CRTm increases. And if the proxy clients
are distributed over many regions, CRTstd increases too. The results vary
more if the bandwidth is randomly chosen because of our small sample
size (only 5 runs of the experiment).

5.7 evaluation 115

0.0 0.5 1.0 1.5
CRTm [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CR
T s
td

 [s
]

1 IP

0.0 0.5 1.0 1.5
CRTm [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CR
T s
td

 [s
]

10 IPs

0.0 0.5 1.0 1.5
CRTm [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CR
T s
td

 [s
]

100 IPs

0.0 0.5 1.0 1.5
CRTm [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
CR
T s
td

 [s
]

200 IPs

Normal client Proxy server

0.0

0.2

0.4

0.6

0.8

1.0

Isol%

0.0

0.2

0.4

0.6

0.8

1.0

Isol%

0.0

0.2

0.4

0.6

0.8

1.0

Isol%

0.0

0.2

0.4

0.6

0.8

1.0

Isol%

Figure 5.10: Examples of feature values for proxies with rotating IPs. Datapoints
outside of the shown range are mapped to the grey border area.

5.7.5 Impact of rotating IP addresses

In this experiment, we evaluate the impact of rotating IP addresses on the F1

score. For this experiment, we use 30 normal clients in New York City and
30 proxy clients with a randomly chosen bandwidth at randomly chosen
locations. All proxy clients use the same proxy server (in New York City),
but depending on the scenario, the proxy server distributes its requests
over 1, 10, 100 or 200 IP addresses.2

2 Higher numbers of IPs were not available.

116 de-obfuscating traffic and users

IPs per proxy

1 10 100 200

Precision 1.0 1.0 0.97 0.45

Recall 0.93 1.0 0.98 0.92

F1 0.96 1.0 0.97 0.53

Table 5.2: Accuracy for proxies with rotating IPs. Our system can detect proxies
even if they use many source IPs.

In Figure 5.10, we illustrate the results of one measurement in each of
these scenarios. The plots now show 1, 10, 100 or 200 proxy IP addresses
and a varying degree of isolated requests. In this experiment, the feature
Isol% becomes important because the CRT cannot be computed if the head
and embedded requests come from different source IPs. The example with
200 proxy IPs shows many IPs with CRTstd equal to 1. This is because we
initialize CRTstd to 1 if there are less than two CRT measurements for this
IP. This often happens here because the requests are spread over many IPs.

In Table 5.2, we show the accuracy depending on the number of IP
addresses per proxy. The results show that our system can detect proxies
with up to 100 rotating IP addresses with the same accuracy as it detects
proxies with a fixed IP. However, as the number of IPs per proxy increases
to 200, the clustering does not work well anymore. While the recall is still
high (i.e., the IPs classified as proxies are indeed proxies), the precision is
low (i.e., many of the IPs classified as normal clients are in fact proxies).
Presumably, a more sophisticated and better tuned clustering algorithm
would achieve better results as our basic approach based on k-means and
three equally weighted features.

5.8 discussion and future work

The purpose of this case study is to sketch how programmable switches can
extract data from network traffic with proxy server detection as an example.
While the developed system shows promising results, it is far from perfect
and provides many opportunities to improve it.

Next, we discuss the current limitations and outline approaches to fix
them. In addition, we discuss how proxy providers could avoid detection.

5.8 discussion and future work 117

5.8.1 Limitations

Below, we discuss the main limitations of our proxy detection system and
describe solutions to improve them.

Simple datasets The datasets from our evaluation are not representative
of traffic that an actual ISP would see for the following reasons:

(i) the datasets only contain HTTPS traffic towards one webserver and
one website

(ii) the loaded website loads all elements immediately

(iii) all clients and proxy clients have the same operating system and
browser

(iv) all clients and proxy clients run as VMs in datacenters of a cloud
provider

(v) each stub consists of only one device

(vi) each client and proxy client performs all requests of the website
sequentially

(vii) each stub consists of only one device

Item (i) and Item (ii) could be achieved in a real dataset relatively easily
by filtering only traffic of websites that are suitable for the analysis. Of
course, this would slow down the detection because the system would need
to wait until it has captured enough requests for these websites.

Item (iii), Item (iv), Item (v), and Item (vii) could be addressed through
more extensive simulations. Instead of trying to simulate a realistic envi-
ronment, one could collect the dataset with the help of volunteers who
access websites for which one can record the traffic. This would also address
Item (vi).

Item (vii) could be overcome by performing the experiments via multiple
proxy providers.

Overlapping requests Our heuristic to compute the CRT is based on the
assumption that a stub accesses only one website at a time. In practice, this
assumption does not hold in many cases, especially if there are multiple
active clients in one stub.

The simple solution here would be to discard these requests and wait
until only one client is active simultaneously. However, this would add

118 de-obfuscating traffic and users

delay to the decision. A more sophisticated approach would be to use
other features for identifying head and embedded requests. For example,
the server name indication (SNI) extension in TLS allows to extract the
(unencrypted) domain name of the requested website [287]. Furthermore,
existing works (e.g., [120, 288]) have also shown that the TLS handshake
reveals enough information to fingerprint the client (e.g., with respect to its
operating system and browser).

Different versions of HTTP Over the years, HTTP has undergone several
enhancements that affect how embedded elements are loaded:

• HTTP/1.0 establishes a separate TCP connection for every element [54]

• HTTP/1.1 allows reusing a TCP connection for loading multiple
elements [289]

• HTTP/2 uses a single TCP connection for all elements [290]

• HTTP/3 uses QUIC and UDP instead of TCP connections [291]

We designed our proxy detection system for HTTP/1.0 and HTTP/1.1 (if
HTTP/1.1 does not reuse the connection between the head request and the
embedded requests). These versions of HTTP are still predominant today,
but HTTP/2 and HTTP/3 are gaining more and more support (currently,
about 45 % of the 10 M most popular websites support HTTP/2 [292] and
25 % support HTTP/3 [293]). Extracting the CRT from HTTP/2 and HTTP/3

would require a different approach, but it is still possible. Since all requests
to the same server would be transmitted over the same connection, one
could identify the head and embedded requests as the first two “bursts” of
response data in this connection.

Many packets sent to the controller In our current implementation, we
send a digest message to the controller for every client hello packet. This
could overload the controller in large networks. To reduce the load on the
controller, one could improve the system in the following ways:

• Compute the CRT in the data plane: Using registers, it is possible to
compute the CRT entirely in the data plane (we have developed a
proof-of-concept in [277]). However, the relatively little available mem-
ory (tens of megabytes [294]) limits the number of parallel website
requests, for which the timestamps can be stored in the switch.

• Adaptive sampling: As shown in the evaluation, a few requests are
enough to identify proxies with high certainty. Therefore, constantly
analyzing all traffic is not needed. Instead, one could only analyze a

5.8 discussion and future work 119

small percentage of requests if they come from IPs that are already
classified. This sampling could be performed directly in the data
plane.

5.8.2 Countermeasures

In this section, we present some countermeasures that proxy providers or
content providers could deploy in order to prevent detection by our system.

Chaff traffic To make the CRT computation more difficult, proxies could
initiate additional requests simultaneously to the requests that they initiate
for their clients. This would have a similar effect as simultaneous requests
discussed above: It would disturb our current heuristic and lower the
detection accuracy.

If the proxy provider uses a gateway server between the clients and the
proxies, it could also inject chaff packets into the connection between the
gateway and the proxy. However, since our analysis is based on the traffic
between the proxy and the server, this would not have an impact on our
system.

Caching Proxies can cache the contents they requested for their clients
such that they can respond to future requests with the data that they already
have in cache. In this case, our system could not extract a CRT because the
proxy answers the embedded request without contacting the server. This
would slow down the detection with our system because it takes more time
to observe enough (non-cached) requests.

Delaying requests A proxy could tamper with the CRT by introducing
additional (potentially random) delays before it relays a request from a
client to the server. By doing this, the proxy could increase CRTm and
increase or decrease CRTstd. However, the higher CRTm would likely make
it easier to detect the proxy.

Encoding elements in HTML Instead of embedding the paths to elements
in HTML, it is possible to encode the elements (e.g., images) directly in
the HTML code using base64 encoding [295]. If a website does this for
all elements, it does not trigger embedded requests. However, this would
decrease the website performance and require cooperation from the website
provider.

120 de-obfuscating traffic and users

5.9 conclusion

In this chapter, we have shown that programmable switches can help to
de-obfuscate network users and their traffic.

We first summarized how programmable switches can (i) identify VoIP
calls and determine the caller and callee at scale by recognizing the unique
traffic pattern that occurs upon the establishment of a VoIP call; (ii) apply
random forest models to network traffic at line rate by optimizing the
models and features for the resources and operations available in program-
mable switches; and (iii) extract the features that are required for many
traffic-analysis attacks at line rate and without sampling, thereby making
these attacks more scalable.

Then, we presented a case-study that shows how programmable switches
can help to scale the identification of proxy servers to ISP networks. Here,
the main insight was that timing properties of web requests that come
from proxies are different from requests that come from the client directly.
We have shown that by measuring the so-called client reaction time it is
possible to distinguish between regular clients and proxy servers.

In summary, we have shown that programmable networks are not only
useful for implementing network-level defenses, but they can also perform
powerful traffic analysis at line rate. This results in a new generation of
possible attack vectors not only for de-obfuscation.

6
C O N C L U S I O N A N D O U T L O O K

In this chapter, we conclude this dissertation and we describe future research
problems in the area of network obfuscation.

6.1 conclusion

In this dissertation, we presented two systems that increase network secu-
rity through obfuscation. Both systems leverage recent advances in network
programmability, which allow network switches to run sophisticated algo-
rithms at line rate.

In Chapter 3, we demonstrated how programmable switches allow obfus-
cating topologies in order to prevent link-flooding attacks. We presented
NetHide, a new, usable approach for obfuscating network topologies. The
core idea behind NetHide is to phrase the obfuscation task as a multi-
objective optimization problem. The security requirements are encoded
as hard constraints and the usability ones as soft constraints using the
notions of accuracy and utility. NetHide relies on an ILP solver and effective
heuristics to compute obfuscated topologies and on programmable network
devices to capture and modify path tracing traffic at line rate. Our evalua-
tion on realistic topologies and simulated attacks shows that NetHide can
obfuscate large topologies with marginal impact on usability.

In Chapter 4, we demonstrated how programmable switches allow obfus-
cating volume- and timing properties of wide area network (WAN) traffic
in order to prevent traffic-analysis attacks. We presented ditto, a system
that mixes real and chaff traffic and adds padding to packets such that they
follow a predefined pattern with respect to packet size and timing. Two in-
sights allow ditto to achieve high performance (up to 70 Gbps per 100 Gbps
switch port for real Internet backbone traffic and interactive applications)
and perfect security (observed traffic is independent of real traffic): (i) the
traffic pattern is efficient because it fits the actual overall traffic distribution
in the protected network; and (ii) programmable network devices offer the

121

122 conclusion and outlook

features which are needed to perform packet padding and mixing with
chaff traffic at line rate.

After presenting two systems that use programmable switches for ob-
fuscation, we changed the perspective for the next chapter and discussed
how programmable switches can also achieve the opposite – for benign and
malicious purposes.

In Chapter 5, we demonstrated how programmable switches allow de-
obfuscating network users and their traffic. We explained how program-
mable switches can be used to (i) identify VoIP calls and determine the
caller and callee at scale; (ii) apply random forest models to network traffic
at line rate; (iii) scale traffic-analysis attacks to high volumes; and (iv) detect
devices that are acting as proxy servers in an ISP network.

6.2 open research problems

In this section, we first describe opportunities for improving NetHide and
ditto. Then, we sketch a more general obfuscation framework that could
be developed in future work.

6.2.1 Better topology obfuscation

We see two main directions along which future work could improve NetHide.

Handling changes in the topology If the physical topology changes per-
manently, NetHide needs to compute a new virtual topology. This virtual
topology will be similar to the new physical topology, but not necessar-
ily similar to the previous virtual topology. To change that, we suggest
including the difference between the previous virtual topology and the new
virtual topology in the accuracy metric. Then, the optimization problem
would produce a new virtual topology similar to both the previous virtual
topology and the new physical topology.

Preventing router fingerprinting and timing side-channels NetHide takes
two measures to prevent router fingerprinting based on timing information:
First, it ensures that the physical path and the virtual path have similar
lengths (to avoid information leakage through the propagation time). And
second, it ensures that the response to a path tracing packet comes from
the correct router according to the virtual topology (to avoid information

6.2 open research problems 123

leakage through the processing time). However, NetHide measures the length
of a path in terms of the number of hops. Since the physical length of two
paths (and therefore their propagation time) can be very different even if
two paths have the same number of hops, router fingerprinting could still
be possible. To counteract this, NetHide could delay path tracing responses
to obfuscate the true RTT (e.g., by recirculating a response packet several
times to delay it) or it could take the physical link lengths into consideration
when generating the virtual topology.

In addition, we see a research opportunity in combining topology ob-
fuscation through modified path tracing responses (as done by NetHide)
with topology obfuscation through modified end-to-end delays (as done by
[167] and [171]). A combined system could prevent both types of topology
inference while maintaining the utility of path tracing tools and minimizing
the additional delay.

6.2.2 Better traffic obfuscation

We see two main directions along which future work could improve ditto.

Reacting to changes in the traffic distribution ditto keeps using a pattern
until the operator instructs it to compute a new one. In the future, ditto
could automatically compute and deploy a new pattern when the traffic
distributions changes significantly. To achieve this, ditto could measure
the padding it adds to packets, the reordering it causes, and the recircu-
lations it requires. At the same time, it could continuously measure the
traffic distribution (e.g., by using similar techniques as presented in [296,
297]). When the current pattern requires too much padding, reordering, or
recirculations, ditto could immediately compute and deploy a new pattern.

On the other hand, adapting the pattern too often can reveal too much
about the current real traffic. Part of this future work should also be to
define the trade-off between overhead and information leakage and to find
the optimal parameter choice.

Distributing padding over multiple switches Recirculations that are re-
quired because a switch cannot add enough padding in one pipeline pass
constitute a significant part of ditto’s overhead. Instead of recirculating the
packets multiple times through the same switch, one could distribute the
padding over multiple switches, especially since most traffic likely traverses
multiple switches because it enters the WAN.

124 conclusion and outlook

These “internal” switches could add padding to each packet until it has
reached the size of one of the pattern states. Ideally, the edge switch then
only needs to mix real and chaff packets. To do this, the internal switches
need to be programmable and they need to know the pattern states (the
edge switch could distribute this information).

The same applies to the de-obfuscation side, where the removal of
padding could also happen over multiple switches.

6.2.3 Towards a general obfuscation framework

NetHide, ditto, and most related works are isolated systems that obfuscate
one property of a network (e.g., the topology or the traffic) using one plat-
form (e.g., programmable switches). For future work, we see an opportunity
to combine many obfuscation techniques into one framework. This frame-
work could then leverage multiple platforms (e.g., hosts, network interfaces
and switches) to obfuscate various properties of networks (following the
concept of “deep programmability” discussed in [298]).

Developing such a framework would involve research to answer the
following questions:

• Which properties can and should be obfuscated? We have shown how to
obfuscate the topology and traffic. However, these are not the only
properties of a network that can be obfuscated. Other properties in-
clude, for example, the number and type of hosts or the configuration
(such as firewall rules or load balancing).

• How can we specify an obfuscation policy? Depending on the network,
there will be different requirements regarding what needs to be ob-
fuscated. To specify these requirements, a policy language should
be developed. The policies could be based on concepts such as k-
anonymity [299] (e.g., to specify that the traffic of one host is indistin-
guishable of at least k other hosts).

• How can we perform the obfuscation? Given the properties that need to
be obfuscated and the policies that need to hold, there should be a
compiler that translates them into programs and configurations for
hosts, network interfaces, switches, and other middleboxes such as
firewalls.

O W N P U B L I C AT I O N S

[1] Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever,
and Martin Vechev. “NetHide: Secure and Practical Network Topol-
ogy Obfuscation”. In: Proceedings of the USENIX Security Symposium.
2018.

[2] Roland Meier, Vincent Lenders, and Laurent Vanbever. “ditto: WAN
Traffic Obfuscation at Line Rate”. In: Proceedings of the Symposium on
Network and Distributed System Security (NDSS). 2022.

[3] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias
Bühler, and Laurent Vanbever. pForest: In-Network Inference with
Random Forests. https://arxiv.org/abs/1909.05680. arXiv preprint.
2019.

[4] Ege Cem Kirci, Maria Apostolaki, Roland Meier, Ankit Singla, and
Laurent Vanbever. “Mass Surveillance of VoIP Calls through Pro-
grammable Data Planes”. In: Proceedings of the ACM Symposium on
SDN Research (SOSR). 2022.

[5] Roland Meier, David Gugelmann, and Laurent Vanbever. “iTAP:
In-network Traffic Analysis Prevention using Software-Defined Net-
works”. In: Proceedings of the ACM Symposium on SDN Research
(SOSR). 2017.

[6] Roland Meier, Cornelia Scherrer, David Gugelmann, Vincent
Lenders, and Laurent Vanbever. “FeedRank: A Tamper-resistant
Method for the Ranking of Cyber Threat Intelligence Feeds”. In:
Proceedings of the International Conference on Cyber Conflict (CyCon).
2018.

[7] Nicolas Känzig, Roland Meier, Luca Gambazzi, Vincent Lenders,
and Laurent Vanbever. “Machine Learning-based Detection of C&C
Channels with a Focus on the Locked Shields Cyber Defense Exer-
cise”. In: Proceedings of the International Conference on Cyber Conflict
(CyCon). 2019.

[8] Pierre Dumont, Roland Meier, David Gugelmann, and Vincent
Lenders. “Detection of Malicious Remote Shell Sessions”. In: Pro-
ceedings of the International Conference on Cyber Conflict (CyCon). 2019.

125

https://arxiv.org/abs/1909.05680

126 bibliography

[9] Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli,
Vincent Lenders, Ankit Singla, and Laurent Vanbever. “(Self) Driving
Under the Influence: Intoxicating Adversarial Network Inputs”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets).
2019.

[10] Roland Meier, Arturs Lavrenovs, Kimmo Heinäaro, Luca Gambazzi,
and Vincent Lenders. “Towards an AI-powered Player in Cyber
Defence Exercises”. In: Proceedings of the International Conference on
Cyber Conflict (CyCon). 2021.

[11] Lina Gehri, Roland Meier, Daniel Hulliger, and Vincent Lenders.
Generalizing Machine Learning Models to Detect Command and Control
Attack Traffic. Under submission. 2022.

R E F E R E N C E S

[12] The New York Times. Strava Fitness App Can Reveal Military Sites, An-
alysts Say (01/29/2018). https://www.nytimes.com/2018/01/29/world/
middleeast/strava-heat-map.html. (Accessed on 07/25/2022).

[13] TIME. And Bomb The Anchovies (08/13/1990). http://content.time.
com/time/subscriber/article/0,33009,970860,00.html. (Accessed
on 06/10/2021).

[14] Washington Post. With Capital in Panic, Pizza Deliveries Soar (12/19/1998).
https : / / www . washingtonpost . com / wp - srv / politics / special /

clinton/stories/pizza121998.htm. (Accessed on 07/25/2022).

[15] Lawrence G Roberts. “The evolution of packet switching”. In: Pro-
ceedings of the IEEE 66.11 (1978).

[16] Michael Hauben. Behind the Net: The Untold History of the ARPANET
and Computer Science. http://www.columbia.edu/~rh120/ch106.x07.
(Accessed on 06/11/2022). 1995.

[17] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts,
and Stephen Wolff. “A Brief History of the Internet”. In: ACM
SIGCOMM Computer Communication Review (CCR) 39.5 (2009).

[18] Juniper Research. IoT Connected Devices to Triple to Over 38Bn
Units (07/28/2020). https://www.juniperresearch.com/press/iot-
connected- devices- to- triple- to- 38- bn- by- 2020. (Accessed on
06/11/2022).

[19] Cisco. Cisco Annual Internet Report (2018-2023). https://www.cisco.
com / c / en / us / solutions / collateral / executive - perspectives /

annual-internet-report/white-paper-c11-741490.html. (Accessed
on 06/11/2022). 2020.

[20] The Washington Post. The real story of how the Internet became so vul-
nerable (05/30/2015). https://www.washingtonpost.com/sf/business/
2015/05/30/net-of-insecurity-part-1/. (Accessed on 07/27/2022).

[21] Kenneth Ingham, Stephanie Forrest, et al. A history and survey of
network firewalls. Tech. rep. University of New Mexico, 2002.

127

https://www.nytimes.com/2018/01/29/world/middleeast/strava-heat-map.html
https://www.nytimes.com/2018/01/29/world/middleeast/strava-heat-map.html
http://content.time.com/time/subscriber/article/0,33009,970860,00.html
http://content.time.com/time/subscriber/article/0,33009,970860,00.html
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
http://www.columbia.edu/~rh120/ch106.x07
https://www.juniperresearch.com/press/iot-connected-devices-to-triple-to-38-bn-by-2020
https://www.juniperresearch.com/press/iot-connected-devices-to-triple-to-38-bn-by-2020
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1/

128 bibliography

[22] Google Transparency Report. HTTPS encryption on the web. https:
//transparencyreport.google.com/https/overview. (Accessed on
07/27/2022).

[23] Bingdong Li, Esra Erdin, Mehmet Hadi Gunes, George Bebis, and
Todd Shipley. “An overview of anonymity technology usage”. In:
Computer Communications 36.12 (2013).

[24] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017–2022.
https : / / twiki . cern . ch / twiki / pub / HEPIX / TechwatchNetwork /

HtwNetworkDocuments/white-paper-c11-741490.pdf. 2019.

[25] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
“OpenFlow: enabling innovation in campus networks”. In: ACM
SIGCOMM Computer Communication Review (CCR) 38.2 (2008).

[26] PCWorld. This startup may have built the world’s fastest networking
switch chip (06/14/2016). https://www.pcworld.com/article/415231/
this- startup- may- have- built- the- worlds- fastest- networking-

switch-chip.html. (Accessed on 06/23/2022).

[27] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford.
“Network-wide heavy hitter detection with commodity switches”.
In: Proceedings of the ACM Symposium on SDN Research (SOSR). 2018.

[28] Diogo Barradas, Nuno Santos, Luis Rodrigues, Salvatore Signorello,
Fernando MV Ramos, and André Madeira. “FlowLens: Enabling
Efficient Flow Classification for ML-based Network Security Appli-
cations.” In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). 2021.

[29] Qun Huang, Patrick PC Lee, and Yungang Bao. “Sketchlearn: re-
lieving user burdens in approximate measurement with automated
statistical inference”. In: Proceedings of the ACM SIGCOMM Confer-
ence. 2018.

[30] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Min-
lan Yu. “Silkroad: Making stateful layer-4 load balancing fast and
cheap using switching asics”. In: Proceedings of the ACM SIGCOMM
Conference. 2017.

[31] Jiao Zhang, Shubo Wen, Jinsheng Zhang, Hua Chai, Tian Pan,
Tao Huang, Linquan Zhang, Yunjie Liu, and F Richard Yu. “Fast
switch-based load balancer considering application server states”.
In: IEEE/ACM Transactions on Networking 28.3 (2020).

https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://www.pcworld.com/article/415231/this-startup-may-have-built-the-worlds-fastest-networking-switch-chip.html
https://www.pcworld.com/article/415231/this-startup-may-have-built-the-worlds-fastest-networking-switch-chip.html
https://www.pcworld.com/article/415231/this-startup-may-have-built-the-worlds-fastest-networking-switch-chip.html

bibliography 129

[32] Shie-Yuan Wang, Jun-Yi Li, and Yi-Bing Lin. “Aggregating and
disaggregating packets with various sizes of payload in P4 switches
at 100 Gbps line rate”. In: Journal of Network and Computer Applications
165 (2020).

[33] Jiamin Cao, Jun Bi, Yu Zhou, and Cheng Zhang. “Cofilter: A high-
performance switch-assisted stateful packet filter”. In: Proceedings of
the ACM SIGCOMM Conference (Posters). 2018.

[34] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. “Aggregate-Based Congestion Control for Pulse-Wave
DDoS Defense”. In: Proceedings of the ACM SIGCOMM Conference.
2022.

[35] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong, Ang Chen,
Guofei Gu, and Haixin Duan. “Nethcf: Enabling line-rate and adap-
tive spoofed ip traffic filtering”. In: Proceedings of the IEEE Interna-
tional Conference on Network Protocols (ICNP). 2019.

[36] Elie F Kfoury, Jorge Crichigno, and Elias Bou-Harb. “An Exhaus-
tive Survey on P4 Programmable Data Plane Switches: Taxonomy,
Applications, Challenges, and Future Trends”. In: IEEE Access 9

(2021).

[37] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks
(5th Edition). Morgan Kaufmann, 2011.

[38] CIDR Report. https://www.cidr-report.org/as2.0/. (Accessed on
06/02/2022).

[39] Cisco Press. The Switched Environment. https://www.ciscopress.

com / articles / article . asp ? p = 2181835 & seqNum = 5. (Accessed on
07/26/2022).

[40] IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged
Local Area Networks. IEEE Std 802.1Q-1998. 1999.

[41] John Moy. OSPF Version 2. RFC 2328. http://www.rfc-editor.org/
rfc/rfc2328.txt. 1998.

[42] Yakov Rekhter and Tony Li. A Border Gateway Protocol 4 (BGP-4).
RFC 1654. http://www.rfc-editor.org/rfc/rfc1654.txt. 1994.

[43] IEEE Standard for Ethernet. IEEE Std 802.3-2018. 2018.

[44] Google. IPv6 Statistics. https://www.google.com/intl/en/ipv6/

statistics.html. (Accessed on 06/23/2022).

https://www.cidr-report.org/as2.0/
https://www.ciscopress.com/articles/article.asp?p=2181835&seqNum=5
https://www.ciscopress.com/articles/article.asp?p=2181835&seqNum=5
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc1654.txt
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html

130 bibliography

[45] IPv4 Market Group. A Brief History of IPv4. https://ipv4marketgroup.
com/a-brief-history-of-ipv4/. (Accessed on 07/28/2022).

[46] RIPE Network Coordination Centre. What is IPv4 Run Out? https://

www.ripe.net/manage-ips-and-asns/ipv4/ipv4-run-out. (Accessed
on 07/28/2022).

[47] IANA. ICMP Parameters. https://www.iana.org/assignments/icmp-
parameters/icmp-parameters.xhtml. (Accessed on 06/05/2022).

[48] ping(8) - Linux man page. https : / / linux . die . net / man / 8 / ping.
(Accessed on 08/08/2022).

[49] traceroute(8) - Linux manual page. http://man7.org/linux/man-pages/
man8/traceroute.8.html. (Accessed on 08/09/2022).

[50] J. Postel. User Datagram Protocol. RFC 768. http://www.rfc-editor.
org/rfc/rfc768.txt. 1980.

[51] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Inter-
net Assigned Numbers Authority (IANA) Procedures for the Management
of the Service Name and Transport Protocol Port Number Registry. RFC
6335. http://www.rfc-editor.org/rfc/rfc6335.txt. 2011.

[52] Jon Postel. Transmission Control Protocol. RFC 793. http://www.rfc-
editor.org/rfc/rfc793.txt. 1981.

[53] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. http://www.rfc-editor.org/rfc/rfc8446.txt. 2018.

[54] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. Hy-
pertext Transfer Protocol – HTTP/1.0. RFC 1945. http://www.rfc-

editor.org/rfc/rfc1945.txt. 1996.

[55] W3Techs. Usage Statistics of Default protocol https for Websites, July
2022. https://w3techs.com/technologies/details/ce-httpsdefault.
(Accessed on 07/26/2022).

[56] Paul Göransson and Chuck Black. Software Defined Networks, A Com-
prehensive Approach. Morgan Kaufmann, 2014.

[57] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, et al. “P4: Programming protocol-independent
packet processors”. In: ACM SIGCOMM Computer Communication
Review (CCR) 44.3 (2014).

[58] P4-16 Portable Switch Architecture (PSA). https://p4.org/p4-spec/
docs/PSA-v1.1.0.html. (Accessed on 08/09/2022).

https://ipv4marketgroup.com/a-brief-history-of-ipv4/
https://ipv4marketgroup.com/a-brief-history-of-ipv4/
https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-run-out
https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-run-out
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://linux.die.net/man/8/ping
http://man7.org/linux/man-pages/man8/traceroute.8.html
http://man7.org/linux/man-pages/man8/traceroute.8.html
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc6335.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
https://w3techs.com/technologies/details/ce-httpsdefault
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html

bibliography 131

[59] Intel Tofino Series Programmable Ethernet Switch ASIC. https://www.
intel.com/content/www/us/en/products/network-io/programmable-

ethernet - switch / tofino - series / tofino . html. (Accessed on
08/09/2022).

[60] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
“Programmable Calendar Queues for High-speed Packet Schedul-
ing”. In: Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 2020.

[61] Péter Vörös and Attila Kiss. “Security middleware programming
using P4”. In: Proceedings of the International Conference on Human
Aspects of Information Security, Privacy, and Trust. 2016.

[62] Rakesh Datta, Sean Choi, Anurag Chowdhary, and Younghee Park.
“P4guard: Designing p4 based firewall”. In: Proceedings of the IEEE
Military Communications Conference (MILCOM). 2018.

[63] Ali AlSabeh, Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb.
“P4DDPI: Securing P4-Programmable Data Plane Networks via DNS
Deep Packet Inspection”. In: Proceedings of the Workshop on Measure-
ments, Attacks, and Defenses for the Web (MADWeb). 2022.

[64] Amar Almaini, Ahmed Al-Dubai, Imed Romdhani, and Martin
Schramm. “Delegation of authentication to the data plane in
software-defined networks”. In: Proceedings of the IEEE International
Conference on Smart Computing, Networking and Services (SmartCNS).
2019.

[65] Eder Ollora Zaballa, David Franco, Zifan Zhou, and Michael S
Berger. “P4Knocking: Offloading host-based firewall functionalities
to the network”. In: Proceedings of the IEEE Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN). 2020.

[66] Amar Almaini, Ahmed Al-Dubai, Imed Romdhani, Martin Schramm,
and Ayoub Alsarhan. “Lightweight edge authentication for software
defined networks”. In: Computing 103.2 (2021).

[67] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and
Xiapu Luo. “Programmable In-Network Security for Context-aware
BYOD Policies”. In: Proceedings of the USENIX Security Symposium.
2020.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

132 bibliography

[68] Harsh Gondaliya, Ganesh C Sankaran, and Krishna M Sivalingam.
“Comparative evaluation of IP address anti-spoofing mechanisms us-
ing a P4/NetFPGA-based switch”. In: Proceedings of the P4 Workshop
in Europe. 2020.

[69] Peng Kuang, Ying Liu, and Lin He. “P4DAD: securing duplicate
address detection using P4”. In: Proceedings of the IEEE International
Conference on Communications (ICC). 2020.

[70] Aldo Febro, Hannan Xiao, and Joseph Spring. “Telephony Denial of
Service defense at data plane (TDoSD@ DP)”. In: Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS).
2018.

[71] Goksel Simsek, Hakan Bostan, Alper Kaan Sarica, Egemen Sarikaya,
Alperen Keles, Pelin Angin, Hande Alemdar, and Ertan Onur.
“Dropppp: a P4 approach to mitigating dos attacks in SDN”. In:
Proceedings of the International Workshop on Information Security Appli-
cations. 2019.

[72] Damu Ding, Marco Savi, Federico Pederzolli, Mauro Campanella,
and Domenico Siracusa. “In-Network Volumetric DDoS Victim Iden-
tification Using Programmable Commodity Switches”. In: IEEE
Transactions on Network and Service Management 18.2 (2021).

[73] Francesco Musumeci, Valentina Ionata, Francesco Paolucci, Filippo
Cugini, and Massimo Tornatore. “Machine-learning-assisted DDoS
attack detection with P4 language”. In: Proceedings of the IEEE Inter-
national Conference on Communications (ICC). 2020.

[74] Jiarong Xing, Wenqing Wu, and Ang Chen. “Ripple: A Program-
mable, Decentralized Link-Flooding Defense Against Adaptive Ad-
versaries”. In: Proceedings of the USENIX Security Symposium. 2021.

[75] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen,
Hongxin Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu.
“Poseidon: Mitigating volumetric ddos attacks with programmable
switches”. In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). 2020.

[76] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. “Jaqen: A High-Performance Switch-Native Approach for
Detecting and Mitigating Volumetric DDoS Attacks with Program-
mable Switches”. In: Proceedings of the USENIX Security Symposium.
2021.

bibliography 133

[77] Jiarong Xing, Wenqing Wu, and Ang Chen. “Architecting program-
mable data plane defenses into the network with FastFlex”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets).
2019.

[78] Garegin Grigoryan and Yaoqing Liu. “Lamp: Prompt layer 7 attack
mitigation with programmable data planes”. In: Proceedings of the
IEEE International Symposium on Network Computing and Applications
(NCA). 2018.

[79] Aldo Febro, Hannan Xiao, and Joseph Spring. “Distributed SIP DDoS
defense with P4”. In: Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC). 2019.

[80] Yu Mi and An Wang. “ML-pushback: Machine learning based push-
back defense against DDoS”. In: Proceedings of the ACM Conference
on emerging Networking EXperiments and Technologies (CoNEXT). 2019.

[81] Libardo Andrey Quintero González, Lucas Castanheira, Jonatas
Adilson Marques, Alberto Schaeffer-Filho, and Luciano Paschoal
Gaspary. “BUNGEE: An Adaptive Pushback Mechanism for DDoS
Detection and Mitigation in P4 Data Planes”. In: Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management
(IM). 2021.

[82] Ângelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano
Paschoal Gaspary. “Offloading real-time DDoS attack detection to
programmable data planes”. In: Proceedings of the IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM). 2019.

[83] Xin Zhe Khooi, Levente Csikor, Dinil Mon Divakaran, and Min Suk
Kang. “DIDA: Distributed in-network defense architecture against
amplified reflection DDoS attacks”. In: Proceedings of the IEEE Confer-
ence on Network Softwarization (NetSoft). 2020.

[84] Marinos Dimolianis, Adam Pavlidis, and Vasilis Maglaris. “A multi-
feature ddos detection schema on p4 network hardware”. In: Pro-
ceedings of the IEEE Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN). 2020.

[85] Kurt Friday, Elie Kfoury, Elias Bou-Harb, and Jorge Crichigno. “To-
wards a unified in-network DDoS detection and mitigation strategy”.
In: Proceedings of the IEEE Conference on Network Softwarization (Net-
Soft). 2020.

134 bibliography

[86] Ya Gao and Zhenling Wang. “A Review of P4 Programmable Data
Planes for Network Security”. In: Mobile Information Systems 2021

(2021).

[87] TechTarget. What is obfuscation and how does it work? https://www.

techtarget.com/searchsecurity/definition/obfuscation. (Accessed
on 07/20/2022).

[88] Tor Project. Pluggable Transports. https://2019.www.torproject.org/
docs/pluggable-transports. (Accessed on 07/20/2022).

[89] Philipp Winter, Tobias Pulls, and Juergen Fuss. “ScrambleSuit: A
polymorphic network protocol to circumvent censorship”. In: Pro-
ceedings of the Workshop on Privacy in the Electronic Society (WPES).
2013.

[90] Brandon Wiley. Dust: A blocking-resistant internet transport protocol.
Tech. rep. 2011.

[91] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briese-
meister, Steven Cheung, Frank Wang, and Dan Boneh. “Stegotorus:
a camouflage proxy for the tor anonymity system”. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2012.

[92] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani,
and Ian Goldberg. “Skypemorph: Protocol obfuscation for tor
bridges”. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2012.

[93] Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and Andrew C
Singer. “I want my voice to be heard: IP over Voice-over-IP for unob-
servable censorship circumvention.” In: Proceedings of the Symposium
on Network and Distributed System Security (NDSS). 2013.

[94] Shuai Li, Mike Schliep, and Nick Hopper. “Facet: Streaming over
videoconferencing for censorship circumvention”. In: Proceedings of
the Workshop on Privacy in the Electronic Society (WPES). 2014.

[95] Jeroen Massar, Ian Mason, Linda Briesemeister, and Vinod Yeg-
neswaran. “Jumpbox–a seamless browser proxy for tor pluggable
transports”. In: Proceedings of the International Conference on Security
and Privacy in Communication Networks. 2014.

[96] Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and Nikita
Borisov. “Sweet: Serving the web by exploiting email tunnels”. In:
IEEE/ACM Transactions on Networking 25.3 (2017).

https://www.techtarget.com/searchsecurity/definition/obfuscation
https://www.techtarget.com/searchsecurity/definition/obfuscation
https://2019.www.torproject.org/docs/pluggable-transports
https://2019.www.torproject.org/docs/pluggable-transports

bibliography 135

[97] Qiyan Wang, Xun Gong, Giang TK Nguyen, Amir Houmansadr, and
Nikita Borisov. “Censorspoofer: asymmetric communication using
ip spoofing for censorship-resistant web browsing”. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2012.

[98] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. “Cloud-
transport: Using cloud storage for censorship-resistant networking”.
In: Proceedings of the International Symposium on Privacy Enhancing
Technologies (PoPETs). 2014.

[99] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas
Shrimpton. “Protocol misidentification made easy with format-
transforming encryption”. In: Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS). 2013.

[100] Kevin P Dyer, Scott E Coull, and Thomas Shrimpton. “Marionette: A
programmable network traffic obfuscation system”. In: Proceedings
of the USENIX Security Symposium. 2015.

[101] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Tech. rep. Naval Research Lab Wash-
ington DC, 2004.

[102] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Ya-
mada, Samuel C Nelson, Marco Gruteser, and Wei Meng. “LAP:
Lightweight anonymity and privacy”. In: Proceedings of the IEEE
Symposium on Security and Privacy (S&P). 2012.

[103] Jody Sankey and Matthew Wright. “Dovetail: Stronger anonymity in
next-generation internet routing”. In: Proceedings of the International
Symposium on Privacy Enhancing Technologies (PoPETs). 2014.

[104] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and
Adrain Perrig. “HORNET: High-speed onion routing at the network
layer”. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2015.

[105] Chen Chen and Adrian Perrig. “Phi: Path-hidden lightweight
anonymity protocol at network layer”. In: Proceedings on Privacy
Enhancing Technologies 2017.1 (2017).

[106] Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George
Danezis, and Carmela Troncoso. “TARANET: Traffic-Analysis Resis-
tant Anonymity at the Network Layer”. In: Proceedings of the IEEE
European Symposium on Security and Privacy (Euro S&P) (2018).

136 bibliography

[107] Taeho Lee, Christos Pappas, David Barrera, Pawel Szalachowski,
and Adrian Perrig. “Source accountability with domain-brokered
privacy”. In: Proceedings of the ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT). 2016.

[108] Taeho Lee, Christos Pappas, Pawel Szalachowski, and Adrian Perrig.
“Communication based on per-packet One-Time Addresses”. In:
Proceedings of the IEEE International Conference on Network Protocols
(ICNP). 2016.

[109] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang.
“spine: Surveillance protection in the network elements”. In: Proceed-
ings of the USENIX Workshop on Free and Open Communications on the
Internet (FOCI). 2019.

[110] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford.
“Programmable In-Network Obfuscation of Traffic”. In: arXiv preprint
arXiv:2006.00097 (2020).

[111] Yashodhar Govil, Liang Wang, and Jennifer Rexford. “MIMIQ: Mask-
ing IPs with Migration in QUIC”. In: Proceedings of the USENIX
Workshop on Free and Open Communications on the Internet (FOCI).
2020.

[112] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. http://www.rfc-editor.org/rfc/rfc9000.
txt. 2021.

[113] Ahren Studer and Adrian Perrig. “The coremelt attack”. In: Pro-
ceedings of the European Symposium on Research in Computer Security
(ESORICS). 2009.

[114] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. “The crossfire
attack”. In: Proceedings of the IEEE Symposium on Security and Privacy
(S&P). 2013.

[115] Jinwoo Kim and Seungwon Shin. “Software-Defined HoneyNet:
Towards Mitigating Link Flooding Attacks”. In: Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W) (2017).

[116] Qian Wang, Feng Xiao, Man Zhou, Zhibo Wang, Qi Li, and Zhetao Li.
“Linkbait: Active Link Obfuscation to Thwart Link-flooding attacks”.
In: arXiv preprint arXiv:1703.09521 (2017).

http://www.rfc-editor.org/rfc/rfc9000.txt
http://www.rfc-editor.org/rfc/rfc9000.txt

bibliography 137

[117] Samuel T Trassare, Robert Beverly, and David Alderson. “A tech-
nique for network topology deception”. In: Proceedings of the IEEE
Military Communications Conference (MILCOM). 2013.

[118] Jinwoo Kim, Eduard Marin, Mauro Conti, and Seungwon Shin.
“EqualNet: A Secure and Practical Defense for Long-term Network
Topology Obfuscation”. In: Proceedings of the Symposium on Network
and Distributed System Security (NDSS). 2022.

[119] B. Coskun and N. Memon. “Tracking encrypted VoIP calls via robust
hashing of network flows”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing. 2010.

[120] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir,
and O. Pele. “Analyzing HTTPS encrypted traffic to identify user’s
operating system, browser and application”. In: Proceedings of the
IEEE Consumer Communications Networking Conference (CCNC). 2017.

[121] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder,
Markus Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza
Sadeghi, and Selcuk Uluagac. “Peek-a-Boo: I See Your Smart Home
Activities, Even Encrypted!” In: Proceedings of the ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec). 2020.

[122] Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson, Yonghwi
Kwon, Qi Zhang, Xiangyu Zhang, Dongyan Xu, and John Qian.
“Eavesdropping on Fine-Grained User Activities Within Smartphone
Apps Over Encrypted Network Traffic”. In: Proceedings of the USENIX
Workshop on Offensive Technologies (WOOT). 2016.

[123] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas
Engel. “Website fingerprinting in onion routing based anonymiza-
tion networks”. In: Proceedings of the ACM workshop on Privacy in the
electronic society. 2011.

[124] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Marti-
novic. “Robust smartphone app identification via encrypted network
traffic analysis”. In: IEEE Transactions on Information Forensics and
Security 13.1 (2018).

[125] Mikhail Andreev, Avi Klausner, Trishita Tiwari, Ari Trachtenberg,
and Arkady Yerukhimovich. “Nothing But Net: Invading Android
User Privacy Using Only Network Access Patterns”. In: arXiv preprint
arXiv:1807.02719 (2018).

138 bibliography

[126] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright.
“Deep Fingerprinting: Undermining Website Fingerprinting De-
fenses with Deep Learning”. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2018.

[127] Michael Backes, Goran Doychev, Markus Dürmuth, and Boris Köpf.
“Speaker recognition in encrypted voice streams”. In: Proceedings of
the European Symposium on Research in Computer Security (ESORICS).
2010.

[128] R. Dubin, A. Dvir, O. Pele, and O. Hadar. “I Know What You
Saw Last Minute—Encrypted HTTP Adaptive Video Streaming Title
Classification”. In: IEEE Transactions on Information Forensics and
Security 12.12 (2017).

[129] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. “Beauty and
the Burst: Remote Identification of Encrypted Video Streams”. In:
Proceedings of the USENIX Security Symposium. 2017.

[130] Y. Shi and S. Biswas. “Website fingerprinting using traffic analysis of
dynamic webpages”. In: Proceedings of the IEEE Global Communications
Conference. 2014.

[131] Se Eun Oh, Shuai Li, and Nicholas Hopper. “Fingerprinting key-
words in search queries over tor”. In: Proceedings on Privacy Enhancing
Technologies 2017.4 (2017).

[132] Fan Zhang, Wenbo He, Xue Liu, and Patrick G Bridges. “Inferring
users’ online activities through traffic analysis”. In: Proceedings of the
ACM conference on Wireless network security. 2011.

[133] Jamie Hayes and George Danezis. “K-Fingerprinting: A Robust
Scalable Website Fingerprinting Technique”. In: Proceedings of the
USENIX Security Symposium. 2016.

[134] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. “Touch-
ing from a distance: Website fingerprinting attacks and defenses”.
In: Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). 2012.

[135] Yong Guan, Xinwen Fu, Dong Xuan, P.U. Shenoy, R. Bettati, and Wei
Zhao. “NetCamo: camouflaging network traffic for QoS-guaranteed
mission critical applications”. In: IEEE Transactions on Systems, Man,
and Cybernetics 31.4 (2001).

bibliography 139

[136] Wei Wang, Mehul Motani, and Vikram Srinivasan. “Dependent link
padding algorithms for low latency anonymity systems”. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2008.

[137] Xiang Cai, Rishab Nithyanand, and Rob Johnson. “CS-BuFlo: A
congestion sensitive website fingerprinting defense”. In: Proceedings
of the Workshop on Privacy in the Electronic Society (WPES). 2014.

[138] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. “Toward an Efficient Website Fingerprinting Defense”. In:
Proceedings of the European Symposium on Research in Computer Security
(ESORICS). 2016.

[139] Data Center Knowledge. How to Fight the New Breed of DDoS Attacks
on Data Centers. http://www.datacenterknowledge.com/security/
how-fight-new-breed-ddos-attacks-data-centers. (Accessed on
08/09/2022).

[140] Akamai. Q2 2017 State of the Internet. https://www.akamai.com/

newsroom / press - release / akamai - releases - second - quarter -

2017 - state - of - the - internet - security - report. (Accessed on
08/09/2022).

[141] Dyn. Dyn Statement on 10/21/2016 DDoS Attack. https://dyn.com/
blog / dyn - statement - on - 10212016 - ddos - attack/. (Accessed on
08/09/2022).

[142] WIRED. Github survived the biggest DDoS attack ever recorded (03/01/2018).
https://www.wired.com/story/github-ddos-memcached/. (Accessed
on 08/09/2022).

[143] Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel, Philipp
Richter, Anja Feldmann, and Arthur Berger. “Inferring BGP Black-
holing Activity in the Internet”. In: Proceedings of the ACM Internet
Measurement Conference (IMC). 2017.

[144] Cloudflare. Unmetered Mitigation: DDoS Protection Without Limits.
https://blog.cloudflare.com/unmetered-mitigation/. (Accessed on
08/09/2022).

[145] Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor. “CoDef: Col-
laborative Defense Against Large-scale Link-flooding Attacks”. In:
Proceedings of the ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT). 2013.

http://www.datacenterknowledge.com/security/how-fight-new-breed-ddos-attacks-data-centers
http://www.datacenterknowledge.com/security/how-fight-new-breed-ddos-attacks-data-centers
https://www.akamai.com/newsroom/press-release/akamai-releases-second-quarter-2017-state-of-the-internet-security-report
https://www.akamai.com/newsroom/press-release/akamai-releases-second-quarter-2017-state-of-the-internet-security-report
https://www.akamai.com/newsroom/press-release/akamai-releases-second-quarter-2017-state-of-the-internet-security-report
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
https://www.wired.com/story/github-ddos-memcached/
https://blog.cloudflare.com/unmetered-mitigation/

140 bibliography

[146] Ars Technica. Can a DDoS break the Internet? Sure... just not all of
it (04/02/2013). https://arstechnica.com/information-technology/
2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-

it/. (Accessed on 08/09/2022).

[147] ProtonMail. Message Regarding the ProtonMail DDoS Attacks (11/10/2015).
https : / / protonmail . com / blog / protonmail - ddos - attacks/. (Ac-
cessed on 08/09/2022).

[148] TechRepublic. Exclusive: Inside the ProtonMail siege: how two small
companies fought off one of Europe’s largest DDoS attacks (11/13/2015).
http : / / www . techrepublic . com / article / exclusive - inside - the -

protonmail-siege-how-two-small-companies-fought-off-one-of-

europes-largest-ddos/. (Accessed on 08/09/2022).

[149] Neil Spring, Ratul Mahajan, and David Wetherall. “Measuring ISP
topologies with Rocketfuel”. In: ACM SIGCOMM Computer Commu-
nication Review (CCR) 32.4 (2002).

[150] RIPE Atlas. https://atlas.ripe.net/.

[151] Min Suk Kang, Virgil D Gligor, and Vyas Sekar. “SPIFFY: Inducing
Cost-Detectability Tradeoffs for Persistent Link-Flooding Attacks”.
In: Proceedings of the Symposium on Network and Distributed System
Security (NDSS). 2015.

[152] Christos Liaskos, Vasileios Kotronis, and Xenofontas Dimitropoulos.
“A novel framework for modeling and mitigating distributed link
flooding attacks”. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM). 2016.

[153] Thomas Holterbach, Cristel Pelsser, Randy Bush, and Laurent Van-
bever. “Quantifying Interference between Measurements on the RIPE
Atlas Platform”. In: Proceedings of the ACM Internet Measurement Con-
ference (IMC). 2015.

[154] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David
Wetherall, Thomas E Anderson, and Yatin Chawathe. “Towards IP
geolocation using delay and topology measurements.” In: Proceedings
of the ACM Internet Measurement Conference (IMC). 2006.

[155] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992.
http://www.rfc-editor.org/rfc/rfc2992.txt. 2000.

[156] The P4 Language Specification - Version 1.0.4. https://p4.org/p4-
spec/p4-14/v1.0.4/tex/p4.pdf. (Accessed on 08/09/2022).

https://arstechnica.com/information-technology/2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-it/
https://arstechnica.com/information-technology/2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-it/
https://arstechnica.com/information-technology/2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-it/
https://protonmail.com/blog/protonmail-ddos-attacks/
http://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off-one-of-europes-largest-ddos/
http://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off-one-of-europes-largest-ddos/
http://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off-one-of-europes-largest-ddos/
https://atlas.ripe.net/
http://www.rfc-editor.org/rfc/rfc2992.txt
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

bibliography 141

[157] Lei Xue, Xiapu Luo, Edmond WW Chan, and Xian Zhan. “Towards
Detecting Target Link Flooding Attack”. In: Proceedings of the USENIX
Large Installation System Administration Conference (LISA). 2014.

[158] Fabien A. P. Petitcolas. “Kerckhoffs’ Principle”. In: Encyclopedia of
Cryptography and Security. Ed. by Henk C. A. van Tilborg and Sushil
Jajodia. Springer US, 2011.

[159] Gurobi Mathematical Programming Solver. http://www.gurobi.com/
products/gurobi-optimizer.

[160] VI Levenshtein. “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals”. In: Soviet Physics Doklady 10 (1966).

[161] E. W. Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische Mathematik 1 (1959).

[162] Daniel Schoepe and Andrei Sabelfeld. “Understanding and Enforc-
ing Opacity”. In: Proceedings of the IEEE Computer Security Foundations
Symposium. 2015.

[163] The Internet Topology Zoo. http://topology-zoo.org/.

[164] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. “Semi-Oblivious
Traffic Engineering: The Road Not Taken”. In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2018.

[165] J. M. Smith and M. Schuchard. “Routing Around Congestion: De-
feating DDoS Attacks and Adverse Network Conditions via Reactive
BGP Routing”. In: Proceedings of the IEEE Symposium on Security and
Privacy (S&P). 2018.

[166] Muoi Tran, Min Suk Kang, Hsu-Chun Hsiao, Wei-Hsuan Chiang,
Shu-Po Tung, and Yu-Su Wang. “On the feasibility of rerouting-
based DDoS defenses”. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P). 2019.

[167] Tao Hou, Zhe Qu, Tao Wang, Zhuo Lu, and Yao Liu. “ProTO: Proac-
tive topology obfuscation against adversarial network topology in-
ference”. In: Proceedings of the IEEE Conference on Computer Communi-
cations (INFOCOM). 2020.

[168] Tao Hou, Tao Wang, Zhuo Lu, and Yao Liu. “Combating adversarial
network topology inference by proactive topology obfuscation”. In:
IEEE/ACM Transactions on Networking 29.6 (2021).

http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
http://topology-zoo.org/

142 bibliography

[169] Yaqun Liu, Jinlong Zhao, Guomin Zhang, and Changyou Xing. “Ne-
tObfu: A lightweight and efficient network topology obfuscation
defense scheme”. In: Computers & Security 110 (2021).

[170] Jinwoo Kim, Jaehyun Nam, Suyeol Lee, Vinod Yegneswaran, Phillip
Porras, and Seungwon Shin. “BottleNet: Hiding Network Bottlenecks
Using SDN-Based Topology Deception”. In: IEEE Transactions on
Information Forensics and Security 16 (2021).

[171] Yaqun Liu, Changyou Xing, Guomin Zhang, Lihua Song, and
Hongxiu Lin. “AntiTomo: Network topology obfuscation against
adversarial tomography-based topology inference”. In: Computers &
Security 113 (2022), 102570.

[172] Fida Gillani, Ehab Al-Shaer, Samantha Lo, Qi Duan, Mostafa Ammar,
and Ellen Zegura. “Agile virtualized infrastructure to proactively
defend against cyber attacks”. In: Proceedings of the IEEE Conference
on Computer Communications (INFOCOM). 2015.

[173] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee,
Yih-Chun Hu, and Adrian Perrig. “Lightweight Source Authenti-
cation and Path Validation”. In: Proceedings of the ACM SIGCOMM
Conference. 2014.

[174] Cristina Basescu, Raphael M Reischuk, Pawel Szalachowski, Adrian
Perrig, Yao Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei
Urakawa. “SIBRA - Scalable Internet Bandwidth Reservation Archi-
tecture”. In: Proceedings of the Symposium on Network and Distributed
System Security (NDSS). 2016.

[175] Giacomo Giuliari, Dominik Roos, Marc Wyss, Juan Angel García-
Pardo, Markus Legner, and Adrian Perrig. “Colibri: a cooperative
lightweight inter-domain bandwidth-reservation infrastructure”. In:
Proceedings of the ACM Conference on emerging Networking EXperiments
and Technologies (CoNEXT). 2021.

[176] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. “B4: Experience with a globally-deployed soft-
ware defined WAN”. In: ACM SIGCOMM Computer Communication
Review (CCR) 43.4 (2013).

[177] Amazon. Global Infrastructure. https : / / aws . amazon . com / about -

aws/global-infrastructure. (Accessed on 06/15/2021).

https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure

bibliography 143

[178] Microsoft Azure. Backbone Networking Infrastructure. https://azure.
microsoft.com/en-us/global-infrastructure/global-network. (Ac-
cessed on 06/15/2021).

[179] Schweizer Armee. IKT-Systeme der Armee. https://www.vtg.admin.
ch/de/aktuell/themen/programme-projekte/ikt-systeme-der-armee.

html. (Accessed on 06/10/2021).

[180] SWAN Scottish Wide Area Network. https://www.scottishwan.com.

[181] North Dakota ITD. Wide Area Network (WAN). https://www.nd.gov/
itd/services/wide-area-network-wan. (Accessed on 06/10/2021).

[182] Department of Administrative Services Connecticut. Wide Area Net-
works. https://portal.ct.gov/DAS/BEST/Network-Services/Wide-
Area-Networks. (Accessed on 06/10/2021).

[183] Georgia Technology Authority. WAN Service. https://gta.georgia.
gov / gta - services / georgia - enterprise - technology - services -

gets/managing- your- gets- services/wan- service. (Accessed on
06/15/2021).

[184] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. “Achieving high
utilization with software-driven WAN”. In: Proceedings of the ACM
SIGCOMM Conference. 2013.

[185] The Atlantic. The Creepy, Long-Standing Practice of Undersea Cable Tap-
ping (06/13/2013). https://www.theatlantic.com/international/

archive / 2013 / 07 / the - creepy - long - standing - practice - of -

undersea-cable-tapping/277855/. (Accessed on 04/06/2021).

[186] The Guardian. GCHQ taps fibre-optic cables for secret access to world’s
communications (06/21/2013). https://www.theguardian.com/uk/2013/
jun/21/gchq-cables-secret-world-communications-nsa. (Accessed
on 06/08/2021).

[187] Sandra Kay Miller. Hacking at the Speed of Light. Securitysolu-
tions.com. 2006.

[188] Network Critical. Passive Fiber TAPs. https://www.networkcritical.
com/fiber-taps. (Accessed on 06/08/2021).

[189] Gigamon. Passive Fiber Optic Network Tap. https://www.gigamon.

com/products/access-traffic/network-taps/g-tap-m-series.html.
(Accessed on 06/08/2021).

https://azure.microsoft.com/en-us/global-infrastructure/global-network
https://azure.microsoft.com/en-us/global-infrastructure/global-network
https://www.vtg.admin.ch/de/aktuell/themen/programme-projekte/ikt-systeme-der-armee.html
https://www.vtg.admin.ch/de/aktuell/themen/programme-projekte/ikt-systeme-der-armee.html
https://www.vtg.admin.ch/de/aktuell/themen/programme-projekte/ikt-systeme-der-armee.html
https://www.scottishwan.com
https://www.nd.gov/itd/services/wide-area-network-wan
https://www.nd.gov/itd/services/wide-area-network-wan
https://portal.ct.gov/DAS/BEST/Network-Services/Wide-Area-Networks
https://portal.ct.gov/DAS/BEST/Network-Services/Wide-Area-Networks
https://gta.georgia.gov/gta-services/georgia-enterprise-technology-services-gets/managing-your-gets-services/wan-service
https://gta.georgia.gov/gta-services/georgia-enterprise-technology-services-gets/managing-your-gets-services/wan-service
https://gta.georgia.gov/gta-services/georgia-enterprise-technology-services-gets/managing-your-gets-services/wan-service
https://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
https://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
https://www.theatlantic.com/international/archive/2013/07/the-creepy-long-standing-practice-of-undersea-cable-tapping/277855/
https://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://www.networkcritical.com/fiber-taps
https://www.networkcritical.com/fiber-taps
https://www.gigamon.com/products/access-traffic/network-taps/g-tap-m-series.html
https://www.gigamon.com/products/access-traffic/network-taps/g-tap-m-series.html

144 bibliography

[190] Keysight. Flex Tap Passive Fiber Optical Taps. https://www.keysight.
com/ch/de/products/network-visibility/network-taps/flex-tap-

fiber-optical.html. (Accessed on 06/08/2021).

[191] APCON. Passive Optical Tap. https://www.apcon.com/hardware/

network-taps/apcon-tap. (Accessed on 06/08/2021).

[192] Profitap. Fiber TAPs. https://www.profitap.com/fiber-taps/. (Ac-
cessed on 06/08/2021).

[193] IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Security. IEEE Std 802.1AE-2006. 2006.

[194] Microsoft. Azure encryption overview. https://docs.microsoft.com/
en - us / azure / security / fundamentals / encryption - overview. (Ac-
cessed on 08/09/2022). 2022.

[195] Aviatrix. Is Amazon inter-region peering encrypted? https://aviatrix.

com / learn - center / answered - access / is - amazon - inter - region -

peering-encrypted/. (Accessed on 08/09/2022).

[196] Arturo Cabanas. Managing Security on AWS. https://d1.awsstatic.
com/events/Summits/PublicSector2020/Managing_Security_on_AWS_

MGMT104_ENGLISH.pdf. (Accessed on 08/09/2022). 2020.

[197] OVH. OVH Tasks. http://travaux.ovh.net/?do=details&id=10705&.
(Accessed on 08/09/2022). 2014.

[198] C. Hopps. IP-TFS: IP Traffic Flow Security Using Aggregation and
Fragmentation. https://datatracker.ietf.org/doc/draft- ietf-

ipsecme-iptfs/. (Accessed on 08/09/2022). 2021.

[199] Don Fedyk. Ethernet-Traffic Flow Security. https : / / www . ieee802 .

org/1/files/public/docs2019/new-fedyk-traffic-flow-security-

0219.pdf. (Accessed on 08/09/2022). 2019.

[200] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam
Mamun, and Ali A Ghorbani. “Characterization of encrypted and
vpn traffic using time-related”. In: Proceedings of the international
conference on information systems security and privacy (ICISSP). 2016.

[201] Hong-Yen Chen and Tsung-Nan Lin. “The Challenge of Only One
Flow Problem for Traffic Classification in Identity Obfuscation Envi-
ronments”. In: IEEE Access 9 (2021).

[202] Tal Shapira and Yuval Shavitt. “Flowpic: Encrypted internet traffic
classification is as easy as image recognition”. In: Proceedings of the
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 2019.

https://www.keysight.com/ch/de/products/network-visibility/network-taps/flex-tap-fiber-optical.html
https://www.keysight.com/ch/de/products/network-visibility/network-taps/flex-tap-fiber-optical.html
https://www.keysight.com/ch/de/products/network-visibility/network-taps/flex-tap-fiber-optical.html
https://www.apcon.com/hardware/network-taps/apcon-tap
https://www.apcon.com/hardware/network-taps/apcon-tap
https://www.profitap.com/fiber-taps/
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://aviatrix.com/learn-center/answered-access/is-amazon-inter-region-peering-encrypted/
https://aviatrix.com/learn-center/answered-access/is-amazon-inter-region-peering-encrypted/
https://aviatrix.com/learn-center/answered-access/is-amazon-inter-region-peering-encrypted/
https://d1.awsstatic.com/events/Summits/PublicSector2020/Managing_Security_on_AWS_MGMT104_ENGLISH.pdf
https://d1.awsstatic.com/events/Summits/PublicSector2020/Managing_Security_on_AWS_MGMT104_ENGLISH.pdf
https://d1.awsstatic.com/events/Summits/PublicSector2020/Managing_Security_on_AWS_MGMT104_ENGLISH.pdf
http://travaux.ovh.net/?do=details&id=10705&
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-iptfs/
https://datatracker.ietf.org/doc/draft-ietf-ipsecme-iptfs/
https://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf
https://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf
https://www.ieee802.org/1/files/public/docs2019/new-fedyk-traffic-flow-security-0219.pdf

bibliography 145

[203] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. “The Loopix Anonymity System”. In: Proceedings of
the USENIX Security Symposium. 2017.

[204] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan Zhai, Bryan
Ford, Jean-Pierre Hubaux, and Joan Feigenbaum. “PriFi: A Low-
Latency Local-Area Anonymous Communication Network”. In:
arXiv preprint arXiv:1710.10237 (2017).

[205] Yahoo. Barefoot Networks, Google Cloud, ONF and P4.org to Showcase
P4 Runtime-based Control of Network Switches (10/03/2017). https :

//finance.yahoo.com/news/barefoot-networks-google-cloud-onf-

120000850.html. (Accessed on 04/15/2021).

[206] The Fast Mode. Barefoot Networks Wins Deals from AT&T, Tencent,
Alibaba and Baidu for Programmable Switches (06/08/2017). https :

//www.thefastmode.com/technology- solutions/10724- barefoot-

networks-wins-deals-from-at-t-tencent-alibaba-and-baidu-for-

programmable-switches. (Accessed on 04/15/2021).

[207] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301. http://www.rfc-editor.org/rfc/rfc4301.txt. 2005.

[208] Jonas Bushart and Christian Rossow. “Padding Ain’t Enough: As-
sessing the Privacy Guarantees of Encrypted DNS”. In: Proceedings of
the USENIX Workshop on Free and Open Communications on the Internet
(FOCI). 2020.

[209] X. Wang, S. Chen, and S. Jajodia. “Network Flow Watermarking
Attack on Low-Latency Anonymous Communication Systems”. In:
Proceedings of the IEEE Symposium on Security and Privacy (S&P). 2007.

[210] S. Feghhi and D. J. Leith. “A Web Traffic Analysis Attack Using Only
Timing Information”. In: IEEE Transactions on Information Forensics
and Security 11.8 (2016).

[211] Craig Hill and Stephen Orr. Innovations in Ethernet Encryption
(802.1AE - MACsec) for Securing High Speed (1-100GE) WAN De-
ployments. https : / / www . cisco . com / c / dam / en / us / td / docs /

solutions / Enterprise / Security / MACsec / WP - High - Speed - WAN -

Encrypt-MACsec.pdf. (Accessed on 08/09/2022). 2016.

[212] CAIDA. Trace Statistics for CAIDA Passive OC48 and OC192 Traces.
https://www.caida.org/data/passive/trace_stats/. (Accessed on
08/09/2022).

https://finance.yahoo.com/news/barefoot-networks-google-cloud-onf-120000850.html
https://finance.yahoo.com/news/barefoot-networks-google-cloud-onf-120000850.html
https://finance.yahoo.com/news/barefoot-networks-google-cloud-onf-120000850.html
https://www.thefastmode.com/technology-solutions/10724-barefoot-networks-wins-deals-from-at-t-tencent-alibaba-and-baidu-for-programmable-switches
https://www.thefastmode.com/technology-solutions/10724-barefoot-networks-wins-deals-from-at-t-tencent-alibaba-and-baidu-for-programmable-switches
https://www.thefastmode.com/technology-solutions/10724-barefoot-networks-wins-deals-from-at-t-tencent-alibaba-and-baidu-for-programmable-switches
https://www.thefastmode.com/technology-solutions/10724-barefoot-networks-wins-deals-from-at-t-tencent-alibaba-and-baidu-for-programmable-switches
http://www.rfc-editor.org/rfc/rfc4301.txt
https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Security/MACsec/WP-High-Speed-WAN-Encrypt-MACsec.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Security/MACsec/WP-High-Speed-WAN-Encrypt-MACsec.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Security/MACsec/WP-High-Speed-WAN-Encrypt-MACsec.pdf
https://www.caida.org/data/passive/trace_stats/

146 bibliography

[213] CAIDA. The CAIDA Anonymized Internet Traces Dataset (April 2008
- January 2019). https://www.caida.org/data/passive/passive_

dataset.xml. (Accessed on 08/09/2022).

[214] Cisco. System Security Configuration Guide for Cisco 8000 Series Routers,
IOS XR Release 7.0.x - Implementing Trustworthy Systems. https://
www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/70x/b-

system- security- cg- cisco8000- 70x/implementing- trustworthy-

systems.html. (Accessed on 08/09/2022).

[215] Arista. Arista 7170 Series. https://www.arista.com/en/products/
7170-series. (Accessed on 08/09/2022).

[216] Netberg. Aurora 710. https://netbergtw.com/products/aurora-710.
(Accessed on 08/09/2022).

[217] Edgecore Networks. WEDGE 100BF-65X. https://www.edge-core.
com/productsInfo.php?cls=1&cls2=180&cls3=181&id=334. (Accessed
on 08/09/2022).

[218] Scapy. https://scapy.net/.

[219] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian
Wohlfart, and Georg Carle. “MoonGen: A Scriptable High-Speed
Packet Generator”. In: Proceedings of the ACM Internet Measurement
Conference (IMC). Tokyo, Japan, 2015.

[220] iPerf. https://iperf.fr/.

[221] Catapult Project. Web Page Replay. https://github.com/catapult-
project/catapult/tree/master/web_page_replay_go. (Accessed on
04/08/2021).

[222] PJSIP. https://www.pjsip.org/.

[223] Alexa. Top Sites in United States. https://www.alexa.com/topsites/
countries/US. (Accessed on 07/21/2020).

[224] FMAD.IO. 100% Line Rate 100G packet capture. https://www.fmad.io/
products-100G-packet-capture.html. (Accessed on 04/08/2021).

[225] TCPDUMP & LIBPCAP. https://www.tcpdump.org/.

[226] Keras EarlyStopping. https : / / keras . io / api / callbacks / early _

stopping/. (Accessed on 08/09/2022).

[227] David Hancock and Jacobus Van der Merwe. “Hyper4: Using p4

to virtualize the programmable data plane”. In: Proceedings of the
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT). 2016.

https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/70x/b-system-security-cg-cisco8000-70x/implementing-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/70x/b-system-security-cg-cisco8000-70x/implementing-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/70x/b-system-security-cg-cisco8000-70x/implementing-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/70x/b-system-security-cg-cisco8000-70x/implementing-trustworthy-systems.html
https://www.arista.com/en/products/7170-series
https://www.arista.com/en/products/7170-series
https://netbergtw.com/products/aurora-710
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=334
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=334
https://scapy.net/
https://iperf.fr/
https://github.com/catapult-project/catapult/tree/master/web_page_replay_go
https://github.com/catapult-project/catapult/tree/master/web_page_replay_go
https://www.pjsip.org/
https://www.alexa.com/topsites/countries/US
https://www.alexa.com/topsites/countries/US
https://www.fmad.io/products-100G-packet-capture.html
https://www.fmad.io/products-100G-packet-capture.html
https://www.tcpdump.org/
https://keras.io/api/callbacks/early_stopping/
https://keras.io/api/callbacks/early_stopping/

bibliography 147

[228] Wen Ming Liu, Lingyu Wang, Pengsu Cheng, Kui Ren, Shunzhi Zhu,
and Mourad Debbabi. “PPTP: Privacy-Preserving Traffic Padding
in Web-Based Applications”. In: IEEE Transactions on Dependable and
Secure Computing 11.6 (2014).

[229] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian
Goldberg. “Effective Attacks and Provable Defenses for Website
Fingerprinting”. In: Proceedings of the USENIX Security Symposium.
2014.

[230] Tao Wang and Ian Goldberg. “Walkie-talkie: An efficient defense
against passive website fingerprinting attacks”. In: Proceedings of the
USENIX Security Symposium. 2017.

[231] GnuTLS. https://gnutls.org.

[232] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel,
and Nicholas Merritt. “Herd: A scalable, traffic analysis resistant
anonymity network for VoIP systems”. In: ACM SIGCOMM Computer
Communication Review (CCR) 45.4 (2015).

[233] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind
Narayanan, and Nick Feamster. “Keeping the Smart Home Private
with Smart(er) IoT Traffic Shaping”. In: Proceedings on Privacy En-
hancing Technologies 2019.3 (2019).

[234] Tor Project. https://www.torproject.org/.

[235] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253. http://www.rfc-editor.org/rfc/rfc4253.txt.
2006.

[236] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303. http:

//www.rfc-editor.org/rfc/rfc4303.txt. 2005.

[237] Michael G Reed, Paul F Syverson, and David M Goldschlag. “Anony-
mous connections and onion routing”. In: IEEE Journal on Selected
areas in Communications 16.4 (1998).

[238] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim.
“Scalable onion routing with torsk”. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS).
2009.

[239] David Goldschlag, Michael Reed, and Paul Syverson. “Onion rout-
ing”. In: Communications of the ACM 42.2 (1999).

https://gnutls.org
https://www.torproject.org/
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4303.txt
http://www.rfc-editor.org/rfc/rfc4303.txt

148 bibliography

[240] David Chaum. “The dining cryptographers problem: Unconditional
sender and recipient untraceability”. In: Journal of cryptology 1.1
(1988).

[241] Charles V Wright, Scott E Coull, and Fabian Monrose. “Traffic Mor-
phing: An Efficient Defense Against Statistical Traffic Analysis.”
In: Proceedings of the Symposium on Network and Distributed System
Security (NDSS). 2009.

[242] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. “Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail”.
In: Proceedings of the IEEE Symposium on Security and Privacy (S&P).
2012.

[243] Vladimir Gurevich and Andy Fingerhut. P416 Programming for Intel
Tofino Using Intel P4 Studio. Tech. rep. Intel, 2021.

[244] AMS-IX Amsterdam. https://www.ams-ix.net/ams.

[245] AMS-IX. Total Stats AMS-IX Amsterdam. https://www.ams-ix.net/
ams/documentation/total-stats. (Accessed on 06/28/2022).

[246] Techcrunch. WhatsApp Hits 100 Million Calls per Day (06/24/2016).
https://social.techcrunch.com/2016/06/24/whatsapp-hits-100-

million-calls-per-day/. (Accessed on 05/30/2022).

[247] Piotr Jurkiewicz, Grzegorz Rzym, and Piotr Boryło. “Flow length
and size distributions in campus Internet traffic”. In: Computer Com-
munications 167 (2021).

[248] Bright Data. Data Collection Use Cases. https://brightdata.com/use-
cases. (Accessed on 06/15/2022).

[249] FraudLabs. 10 Measures to Reduce Credit Card Fraud for Internet Mer-
chants. https://www.fraudlabspro.com/resources/tutorials/10-
measures-to-reduce-credit-card-fraud-for-internet-merchants/.
(Accessed on 06/15/2022).

[250] IPQualityScore. How Residential Proxies Enable Fraud. https://www.
ipqualityscore.com/articles/view/13/how-residential-proxies-

enable-fraud. (Accessed on 06/16/2022).

[251] Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng
Wang, Feng Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying
Liu. “Resident evil: Understanding residential IP proxy as a dark
service”. In: Proceedings of the IEEE Symposium on Security and Privacy
(S&P). 2019.

https://www.ams-ix.net/ams
https://www.ams-ix.net/ams/documentation/total-stats
https://www.ams-ix.net/ams/documentation/total-stats
https://social.techcrunch.com/2016/06/24/whatsapp-hits-100-million-calls-per-day/
https://social.techcrunch.com/2016/06/24/whatsapp-hits-100-million-calls-per-day/
https://brightdata.com/use-cases
https://brightdata.com/use-cases
https://www.fraudlabspro.com/resources/tutorials/10-measures-to-reduce-credit-card-fraud-for-internet-merchants/
https://www.fraudlabspro.com/resources/tutorials/10-measures-to-reduce-credit-card-fraud-for-internet-merchants/
https://www.ipqualityscore.com/articles/view/13/how-residential-proxies-enable-fraud
https://www.ipqualityscore.com/articles/view/13/how-residential-proxies-enable-fraud
https://www.ipqualityscore.com/articles/view/13/how-residential-proxies-enable-fraud

bibliography 149

[252] Akihiro Hanzawa and Hiroaki Kikuchi. “Analysis on malicious
residential hosts activities exploited by residential IP proxy services”.
In: Proceedings of the International Conference on Information Security
Applications. 2020.

[253] Manos Antonakakis Tim April, Michael Bailey, Matthew Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman,
Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, et al. “Under-
standing the Mirai Botnet”. In: Proceedings of the USENIX Security
Symposium. 2017.

[254] ProxyNova. List of Free Public Proxy Servers. https://www.proxynova.
com/proxy-server-list/. (Accessed on 06/16/2022).

[255] Didsoft. Free Proxy List. https://free-proxy-list.net/. (Accessed
on 06/16/2022).

[256] Bright Data. https://brightdata.com/.

[257] Storm Proxies. https://stormproxies.com/.

[258] GeoSurf. https://www.geosurf.com/.

[259] EarnApp. https://earnapp.com/.

[260] ZDNet. New Windows malware sets up proxies on your PC to relay
malicious traffic (08/01/2019). https : / / www . zdnet . com / article /

new- windows- malware- sets- up- proxies- on- your- pc- to- relay-

malicious-traffic/. (Accessed on 08/05/2022).

[261] Ronan O’Flaherty and Kevin Curran. “Detecting anonymising proxy
usage on the internet”. In: Wireless personal communications 75.4
(2014).

[262] Shane Miller, Kevin Curran, and Tom Lunney. “Securing the internet
through the detection of anonymous proxy usage”. In: Proceedings of
the World Congress on Internet Security (WorldCIS). 2015.

[263] Ruei-Min Lin, Yi-Chun Chou, and Kuan-Ta Chen. “Stepping stone
detection at the server side”. In: Proceedings of the IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 2011.

[264] Yanjie He and Wei Li. “A Novel Lightweight Anonymous Proxy
Traffic Detection Method Based on Spatio-Temporal Features”. In:
Sensors 22.11 (2022).

[265] Vahid Aghaei-Foroushani and A. Nur Zincir-Heywood. “A Proxy
Identifier Based on Patterns in Traffic Flows”. In: Proceedings of the
International Symposium on High Assurance Systems Engineering. 2015.

https://www.proxynova.com/proxy-server-list/
https://www.proxynova.com/proxy-server-list/
https://free-proxy-list.net/
https://brightdata.com/
https://stormproxies.com/
https://www.geosurf.com/
https://earnapp.com/
https://www.zdnet.com/article/new-windows-malware-sets-up-proxies-on-your-pc-to-relay-malicious-traffic/
https://www.zdnet.com/article/new-windows-malware-sets-up-proxies-on-your-pc-to-relay-malicious-traffic/
https://www.zdnet.com/article/new-windows-malware-sets-up-proxies-on-your-pc-to-relay-malicious-traffic/

150 bibliography

[266] Ziye Deng, Zihan Liu, Zhouguo Chen, and Yubin Guo. “The random
forest based detection of shadowsock’s traffic”. In: Proceedings of the
IEEE International Conference on Intelligent Human-Machine Systems
and Cybernetics (IHMSC). 2017.

[267] Xuemei Zeng, Xingshu Chen, Guolin Shao, Tao He, Zhenhui Han,
Yi Wen, and Qixu Wang. “Flow Context and Host Behavior Based
Shadowsocks’s Traffic Identification”. In: IEEE Access 7 (2019).

[268] Shane Miller, Kevin Curran, and Tom Lunney. “Detection of
Anonymising Proxies Using Machine Learning”. In: International
Journal of Digital Crime and Forensics (IJDCF) 13.6 (2021).

[269] Nan Zliang, Tiantian Wu, Yuening Zhang, and Mingzhong Xiao.
“Shadowsocks Traffic Identification Based on Convolutional Neural
Network”. In: Proceedings of the International Conference on Information
Science and Education (ICISE-IE). 2020.

[270] Zhen-Hui Han, Xing-Shu Chen, Xue-Mei Zeng, Yi Zhu, and Ming-
Yong Yin. “Detecting Proxy User Based on Communication Behavior
Portrait”. In: The Computer Journal 62.12 (2019).

[271] Altug Tosun, Michele De Donno, Nicola Dragoni, and Xenofon
Fafoutis. “Resip host detection: Identification of malicious residential
ip proxy flows”. In: Proceedings of the IEEE International Conference on
Consumer Electronics (ICCE). 2021.

[272] Ari Luotonen and Kevin Altis. World-Wide Web Proxies. https://
courses.cs.vt.edu/~cs4244/spring.09/documents/Proxies.pdf.
(Accessed on 07/18/2022). 1994.

[273] Oxylabs. SOCKS vs HTTP Proxy: What Is the Difference? https://

oxylabs.io/blog/socks-vs-http-proxy. (Accessed on 07/18/2022).

[274] CompTIA. Network Address Translation. https://www.comptia.org/
content/guides/what-is-network-address-translation. (Accessed
on 07/18/2022).

[275] Guowu Xie, Marios Iliofotou, Thomas Karagiannis, Michalis Falout-
sos, and Yaohui Jin. “Resurf: Reconstructing web-surfing activity
from network traffic”. In: Proceedings of the IFIP Networking Conference.
2013.

[276] David Gugelmann, Fabian Gasser, Bernhard Ager, and Vincent
Lenders. “Hviz: HTTP (S) traffic aggregation and visualization for
network forensics”. In: Digital Investigation 12 (2015).

https://courses.cs.vt.edu/~cs4244/spring.09/documents/Proxies.pdf
https://courses.cs.vt.edu/~cs4244/spring.09/documents/Proxies.pdf
https://oxylabs.io/blog/socks-vs-http-proxy
https://oxylabs.io/blog/socks-vs-http-proxy
https://www.comptia.org/content/guides/what-is-network-address-translation
https://www.comptia.org/content/guides/what-is-network-address-translation

bibliography 151

[277] Sebastian Reidy, Roland Meier, and Laurent Vanbever. In-Network
Detection of Proxy Servers. Tech. rep. ETH Zürich (Semester thesis),
2022.

[278] P4.org API Working Group. P4Runtime Specification: Digests. https:
//p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html#sec-

digestentry. (Accessed on 07/23/2022). 2020.

[279] Scikit-learn Developers. Clustering. https : / / scikit - learn . org /

stable/modules/clustering.html#k-means. (Accessed on 07/15/2022).

[280] DigitalOcean. https://www.digitalocean.com/.

[281] Selenium. https://www.selenium.dev/.

[282] Bright Initiative. https://brightinitiative.com/.

[283] The Apache HTTP Server Project. https://httpd.apache.org/.

[284] Let’s Encrypt. https://letsencrypt.org/.

[285] AT&T. Internet Plans & Services. https://www.att.com/internet/
internet-service-plans/. (Accessed on 07/21/2022).

[286] ManKier. Package iproute-tc. https://www.mankier.com/package/

iproute-tc. (Accessed on 07/21/2022).

[287] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T.
Wright. Transport Layer Security (TLS) Extensions. RFC 3546. http:
//www.rfc-editor.org/rfc/rfc3546.txt. 2003.

[288] Martin Husak, Milan Cermak, Tomas Jirsik, and Pavel Celeda.
“HTTPS traffic analysis and client identification using passive SS-
L/TLS fingerprinting”. In: EURASIP Journal on Information Security
2016.1 (2016).

[289] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. http://www.rfc-editor.org/
rfc/rfc7230.txt. 2014.

[290] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. http://www.rfc- editor.org/rfc/
rfc7540.txt. 2015.

[291] M. Bishop. HTTP/3. RFC 9114. http://www.rfc-editor.org/rfc/
rfc9114.txt. 2022.

[292] W3Techs. Usage Statistics of HTTP/2 for Websites, July 2022. https:
/ / w3techs . com / technologies / details / ce - http2. (Accessed on
07/23/2022).

https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html#sec-digestentry
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html#sec-digestentry
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html#sec-digestentry
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://www.digitalocean.com/
https://www.selenium.dev/
https://brightinitiative.com/
https://httpd.apache.org/
https://letsencrypt.org/
https://www.att.com/internet/internet-service-plans/
https://www.att.com/internet/internet-service-plans/
https://www.mankier.com/package/iproute-tc
https://www.mankier.com/package/iproute-tc
http://www.rfc-editor.org/rfc/rfc3546.txt
http://www.rfc-editor.org/rfc/rfc3546.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc9114.txt
http://www.rfc-editor.org/rfc/rfc9114.txt
https://w3techs.com/technologies/details/ce-http2
https://w3techs.com/technologies/details/ce-http2

152 bibliography

[293] W3Techs. Usage Statistics of HTTP/3 for Websites, July 2022. https:
/ / w3techs . com / technologies / details / ce - http3. (Accessed on
07/23/2022).

[294] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. “NetCache: Balancing
Key-Value Stores with Fast In-Network Caching”. In: Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP). 2017.

[295] MDN. Base64. https : / / developer . mozilla . org / en - US / docs /

Glossary/Base64. (Accessed on 07/23/2022).

[296] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer
Rexford. “Beaucoup: Answering many network traffic queries, one
memory update at a time”. In: Proceedings of the ACM SIGCOMM
Conference. 2020.

[297] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. “Sonata: Query-driven streaming
network telemetry”. In: Proceedings of the ACM SIGCOMM Conference.
2018.

[298] Nate Foster, Nick McKeown, Jennifer Rexford, Guru Parulkar, Larry
Peterson, and Oguz Sunay. “Using deep programmability to put
network owners in control”. In: ACM SIGCOMM Computer Commu-
nication Review (CCR) 50.4 (2020).

[299] Pierangela Samarati and Latanya Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement through general-
ization and suppression. Tech. rep. SRI International, 1998.

https://w3techs.com/technologies/details/ce-http3
https://w3techs.com/technologies/details/ce-http3
https://developer.mozilla.org/en-US/docs/Glossary/Base64
https://developer.mozilla.org/en-US/docs/Glossary/Base64

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	2.1 Packet-switching networks
	2.2 Network programmability
	2.3 Network obfuscation

	3 Obfuscating network topologies
	3.1 Model
	3.2 NetHide
	3.3 Generating secure topologies
	3.4 Topology deployment
	3.5 Evaluation
	3.6 Frequently asked questions
	3.7 Related work
	3.8 Conclusion

	4 Obfuscating network traffic
	4.1 Model
	4.2 ditto
	4.3 Computing efficient traffic patterns
	4.4 Traffic shaping in the data plane
	4.5 Security analysis and limitations
	4.6 Implementation
	4.7 Evaluation
	4.8 Related work
	4.9 Conclusion

	5 De-obfuscating traffic and users
	5.1 Case study: Proxy server detection
	5.2 Background on proxy servers
	5.3 Model
	5.4 Design overview
	5.5 Extracting features in the data plane
	5.6 Identifying proxies in the control plane
	5.7 Evaluation
	5.8 Discussion and future work
	5.9 Conclusion

	6 Conclusion and outlook
	6.1 Conclusion
	6.2 Open research problems

	 Bibliography
	 Own publications
	 References

