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Quantum Depth in the Random Oracle Model

Atul Singh Arora,1 Andrea Coladangelo,2 Matthew Coudron,3

Alexandru Gheorghiu,4 Uttam Singh,5 and Hendrik Waldner6

Abstract

We give a comprehensive characterization of the computational power of shallow quantum circuits
combined with classical computation. Specifically, for classes of search problems, we show that the fol-
lowing statements hold, relative to a random oracle:

(a) BPPQNC
BPP ≠ BQP. This refutes Jozsa’s conjecture [Joz05] in the random oracle model. As a result,

this gives the first instantiatable separation between the classes by replacing the oracle with a
cryptographic hash function, yielding a resolution to one of Aaronson’s ten semi-grand challenges
in quantum computing [Aar05].

(b) BPPQNC /⊆ QNCBPP and QNCBPP /⊆ BPPQNC. This shows that there is a subtle interplay between
classical computation and shallow quantum computation. In fact, for the second separation, we
establish that, for some problems, the ability to perform adaptive measurements in a single shallow
quantum circuit, is more useful than the ability to perform polynomially many shallow quantum
circuits without adaptive measurements.

(c) There exists a 2-message proof of quantum depth protocol. Such a protocol allows a classical verifier
to efficiently certify that a prover must be performing a computation of some minimum quantum
depth. Our proof of quantum depth can be instantiated using the recent proof of quantumness
construction by Yamakawa and Zhandry [YZ22].
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1 Introduction

High depth circuits are believed to be strictly more powerful than low depth circuits, in the sense that having
deeper circuits allows one to solve a larger set of problems. Indeed, this is a well established fact for both
classical and quantum circuits of depth sub-logarithmic in the size of the input [FSS84; Has86; BGK18;
WKST19]. However, for circuits of (poly)logarithmic depth and general polynomial depth, proving any sort
of unconditional separation is challenging [RR94]. In fact, there is not even an unconditional proof that the
set of problems that can be solved by polylog-depth classical circuits, NC, is a strict subset of the set of
problems solvable by poly-depth classical circuits, P (or BPP when allowing for randomness). The same is
believed to be the case for the quantum analogues of these classes, QNC and BQP, respectively. Nevertheless,
the strict containments NC ⊊ P and QNC ⊊ BQP are known to hold in the oracle setting and, in particular,
relative to a random oracle [Mil92].1 This is a strong indication that there are problems in P (BQP) which
cannot be parallelized so as to be solvable in NC (QNC). Under the random oracle heuristic, by replacing
the random oracle with a cryptographic hash function, one can even provide concrete instantiations of such
problems. A further indication of the separation between low and high depth computations is provided
by certain inherently sequential cryptographic constructions such as time-lock puzzles and verifiable delay
functions [RSW96; BBBF18].

The study of circuit depth can also yield insights into the subtle relationship between quantum and
classical computation by considering hybrid circuit models that combine quantum and classical computa-
tion [CCL20; CM20; AGS22; HG22]. In this setting, one can ask the question: how powerful are poly-depth
classical circuits, when augmented with polylog-depth quantum circuits? Could it be the case that interspers-
ing BPP with QNC computations captures the full power of BQP computations? Jozsa famously conjectured
that the answer is yes [Joz05]. Indeed, there is some evidence to support this conjecture, as the quantum
Fourier transform, a central building block for many quantum algorithms, was shown to be implement-
able with log-depth quantum circuits [CW00]. This also implies that Shor’s algorithm can be performed
by a BPPQNC machine, a polynomial-time classical computer having the ability to invoke a (poly)log depth
quantum computer.2 Moreover, in the oracle setting, a number of problems yielding exponential separations
between quantum and classical computation require only constant quantum-depth to solve, providing further
support for Jozsa’s conjecture [Sim97; Aar10; AA15].

Despite the evidence in support of Jozsa’s conjecture, it was recently shown that, in the oracle setting,
the conjecture is false [CCL20; CM20]. Specifically, the results of [CCL20] (hereafter referred to as CCL)
and [CM20] (hereafter referred to as CM) considered two ways of interspersing poly-depth classical computa-
tion with 𝑑-depth quantum computation. The first is BPPQNCd , denoting problems solvable by a BPP machine
that can invoke 𝑑-depth quantum circuits (whose outputs are measured in the computational basis). The
second, QNCd

BPP, denotes problems solvable by a 𝑑-depth quantum circuit that can invoke a BPP machine
at each layer in the computation.3 Later, borrowing terminology from [CCL20; AGS22], we will refer to the
former circuit model as CQd and the latter as QCd. However, for the purposes of this introduction, we will
stick to the more familiar notation using complexity classes. Intuitively, BPPQNCd captures the setting of a
classical computer that can invoke a 𝑑-depth quantum computater several times. Examples of this include
quantum machine learning algorithms such as VQE or QAOA [PMS+14; FGG14], though as mentioned,
Shor’s algorithm is also of this type. On the other hand, QNCd

BPP captures a 𝑑-depth measurement-based
quantum computation [RB01; BBD+09], where intermediate measurements are performed after each layer
in the quantum computation. The outcomes of those measurements are processed by a poly-depth classical
computation and the results are “fed” into the next quantum layer. CCL and CM showed that there exists
an oracle relative to which BPPQNCd ∪ QNCd

BPP ⊊ BQP, for any 𝑑 = polylog(𝑛), with 𝑛 denoting the size of
the input. Notably, each work considered a different oracle for showing the separation. For CM, the oracle
is the same one as for Childs’ glued trees problem [CCD+03]. For CCL, the oracle is a modified version
of the oracle used for Simon’s problem [Sim97], where the modification involves performing a sequence of
permutations, allowing them to enforce high quantum depth.

CCL and CM were the first results to provide a convincing counterpoint to Jozsa’s conjecture. However,
the main drawback of the CCL and CM results is that they are relative to oracles that are highly structured
and it is unclear if they can be explicitly instantiated based on some cryptographic assumption. Indeed,

1Technically [Mil92] only shows the strict containment NC ⊊ P, relative to a random oracle. However, the quantum version
QNC ⊊ BQP can also be shown as a straightforward extension of that result.

2Note that here and throughout the paper, the QNC oracle can output a string, unlike a decision oracle which outputs a bit.
3Note that the BPP oracle is not invoked coherently. Instead, it is invoked on outcomes resulting from intermediate meas-

urements performed in the layers of the QNCd circuit.
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in his “Ten Semi-Grand Challenges for Quantum Computing Theory”, Aaronson emphasizes this important
distinction, and asks whether there is some instantiatable function that separates the hybrid models from
BQP. In this work, we resolve Aaronson’s question in the affirmative for the search variants of these classes.

In contrast to separations between different models of computation running in polynomial time, such as
P and NP or BPP and BQP, where several plausible candidates exist for separating the classes, the case for
depth separations is much more subtle. As was already observed in [BGJ+16], no standard cryptographic
assumption is known to yield a separation between NC and P. The best candidates for such a separation are
sequential compositions of hash functions (under the random oracle heuristic) as shown in [Mil92] and the
iterated exponentiation scheme of Rivest, Shamir and Wagner [RSW96]. Thus, informally, the best we could
hope for in terms of an instantiatable separation between the hybrid models and BQP is a separation in the
random oracle model which could then be instantiated using cryptographic hash functions.

Our work is concerned not only with separations between the hybrid models and BQP in the random
oracle model, but also with giving a comprehensive characterization of quantum depth in that model. To
that end, we first re-examine Jozsa’s conjecture and argue that the natural class associated to “𝑑-depth
quantum computation combined with polynomial-time classical computation” is not BPPQNCd ∪QNCd

BPP, but

BPPQNCd
BPP

. This is because, if one has the ability to perform QNCd
BPP computations, certainly it should also

be possible to repeat this polynomially-many times as well as perform classical processing in between the

runs. Note that BPPQNCd∪QNCd
BPP ⊆ BPPQNCd

BPP
. The separation we then obtain, relative to a random oracle,

is BPPQNCd
BPP
⊊ BQP, for any fixed 𝑑 ≤ poly(𝑛). Going beyond this separation, we also show that the hybrid

models BPPQNCd and QNCd
BPP are separate from each other in both directions, relative to a random oracle

(in fact, we show that BPPQNCO(1) /⊆ QNCd
BPP and QNCBPP

O(1) /⊆ BPPQNCd), illustrating the subtle interplay
between short-depth quantum computation and classical computation. Lastly, by combining the techniques
that we develop with previous results on proof of quantumness protocols, we obtain proof of quantum depth
protocols—protocols in which a BPP verifier, exchanging 2 messages4 with an untrusted quantum prover, can
certify that the prover has the ability to perform quantum computations of a minimum depth.

1.1 Main Results

We now state our results more formally and provide some intuition about the proofs. From here on, we abuse
the notation slightly and use the standard decision complexity class names to refer to their search variants.

1.1.1 Lower bounds on quantum depth

We first show the following separation.

Theorem 1 (informal). Fix any function 𝑑 ≤ poly(𝑛). Then, relative to a random oracle,5 it holds that

BPPQNC
BPP
𝑑 ⊊ BQP.

As motivated earlier, we take the class BPPQNCd
BPP

to capture computations performed by a combination of
𝑑-depth quantum computation and polynomial-depth classical computation. The interpretation of our result

is that BPPQNCd
BPP

can be separated from BQP using the least structured oracle possible, a random oracle.
Together with the (quantum) random oracle heuristic, by instantiating the oracle with a cryptographic hash
function like SHA-2 or SHA-3, this yields the first plausible instantiation of a problem solvable in BQP but

not in BPPQNCd
BPP

. This provides a resolution to Aaronson’s challenge. The main technical innovation that
allows us to achieve the separation is a general lifting lemma that takes any problem separating BPP from BQP
in the random oracle model, which additionally satisfies a property that we call classical query soundness,

and constructs a problem separating BPPQNCd
BPP

and BQP. We show that several known problems satisfy
this property. Our lifting lemma is inspired by [CCL20], and crucially extends their analysis beyond highly
structured oracles. We describe this lifting lemma more precisely in Subsection 1.2.1.

1.1.2 Proofs of quantum depth

It is natural to wonder whether Theorem 1 yields an efficient test to certify quantum depth, i.e. a proof of
quantum depth. A proof of quantum depth is a more fine-grained version of a proof of quantumness: rather

42 messages in total or a 1 round protocol.
5Here, as well as in all subsequent results, the statements hold with probability 1 over the choice of the random oracle. In

addition, queries to the oracle are viewed as having depth 1.
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(a) Motivating the various hybrid quantum depth classes.
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Figure 1: The four hybrid quantum depth classes we consider. Blue wires carry qubits, black wires carry
bits. Measurements are implicit and performed in the standard basis. 𝑈𝑖s denote depth 1 unitaries, A𝑖 and
A′𝑖 denote poly time classical algorithms.

than distinguishing between quantum and classical computation, a proof of quantum depth protocol can
distinguish between provers having large or small quantum depth. We show that instantiating our lifting
lemma with a problem whose solution is efficiently verifiable immediately yields a proof of quantum depth.
One such problem6 is due to Yamakawa and Zhandry [YZ22]. More precisely, we have the following.

Theorem 2 (informal). Let 𝑛 be the security parameter and fix any function 𝑑 ≤ poly(𝑛). In the random
oracle model, there exists a two-message protocol between a poly-time classical verifier and a quantum prover
such that,

• Completeness: There is a BQP prover which makes the verifier accept with probability at least 1−negl(𝑛)

• Soundness: No malicious BPPQNC
BPP
𝑑 prover can make the verifier accept with probability greater than

negl(𝑛).

We emphasise that considering protocols with more than two messages leads to difficulties in formalising
the notion of quantum depth. For instance, one can construct protocols where the prover is forced to hold 𝑟

single qubit states and subsequently measures them. Information about the basis in which to measure each
of these qubits is sent one at a time by the verifier over 𝑟 messages (the verifier waits for the response to each
measurement, before sending the next basis). The measurement results are used by the verifier to ensure
soundness (each qubit is measured in its preparation basis and so the outcomes are completely determined).
It is not hard to show that if the prover measures these qubits without knowing the measurement basis,
it cannot succeed except with negligible probability. If one attempts to model the prover as a BPPQNC𝑑 or
QNCBPP

𝑑 circuit, then, because of the delay between messages, it appears that 𝑑 ≥ 𝑟 is necessary. However,
this can be seen as an artefact of the modelling choice: in practice, the prover only needs 𝑑 single qubit

6We remark that, if one is only concerned with the complexity-theoretic separation of Theorem 1, and not with efficient
verification, then a much simpler problem suffices (see CollisionHashing in Table 3).
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quantum computers with quantum depth 1 where the last gate can be delayed until the appropriate message
is received in order to pass the test. Essentially, this approach only tests the prover’s ability to maintain the
coherence of the qubits it received, without actually testing the depth of the circuit it has to perform. In
Subsection 1.3, we discuss a possible resolution that captures quantum depth in the interactive setting.

1.1.3 Tighter bounds

While Theorem 1 establishes that BPPQNC
BPP
𝑑 does not capture the computational power of BQP for any fixed

𝑑 ≤ poly(𝑛), it is not a priori clear if, for instance, BPPQNC
BPP
2𝑑+O(1) is strictly larger than BPPQNC

BPP
𝑑 . Indeed,

we show that the answer is affirmative.

Theorem 3 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a random oracle, it holds that7 BPPQNC
BPP
𝑑 ⊊

BPPQNC
BPP
2𝑑+O(1) .

Formally, Theorem 1 treats a call to the quantum random oracle as a depth-1 quantum gate. In practice,
if instead the gate requires depth ℓ, then 𝑑 can be replaced by 𝑑ℓ. We remark that there exist hash functions
that are thought to be quantum-secure which require only logarithmic depth to evaluate [Ajt96; PS19].
Further, there is reason to believe that such hash functions could also be constructed in ℓ = O(1) depth. In
particular, if one is only concerned with specific cryptographic properties (such as collision resistance), then
generic constructions are known which convert log-depth hash functions into ones that require only constant
depth [AIK06].

1.1.4 Separations between hybrid quantum depth classes

While both BPPQNC and QNCBPP capture some notion of a hybrid between efficient classical computation and
shallow quantum computation, the relationship between the two is not immediately clear. To get a slightly
better intuition about the two models, one can think of BPPQNC as capturing an efficient computation that
contains polynomially many shallow quantum circuits (separated by measurements and classical computa-
tion). On the other hand, one can think of QNCBPP as a single shallow quantum circuit, where one is allowed
to make partial measurements of some of the wires, and choose the next gates adaptively. While it may not
be surprising that there exist problems that can be solved in BPPQNC but not in QNCBPP, it turns out that
the two classes are in fact incomparable—each class contains problems that the other does not, relative to a
random oracle.

Theorem 4 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a random oracle, it holds that BPPQNCO(1) ⊈
QNCBPP

𝑑 and QNCBPP
O(1) ⊈ BPP

QNC𝑑 .

The second separation is arguably more surprising. It says that, relative to a random oracle, there are
problems that can be solved by a single shallow (in fact, constant-depth) quantum circuit with adaptive
measurements but cannot be solved by circuits with polynomially many shallow quantum circuits without
adaptive measurements. The problem that shows QNCBPP

O(1) ⊈ BPP
QNC𝑑 is a variant of the proof of quantumness

from [BKVV20]. The key technical innovation to achieve this separation is a theorem that characterises the
structure of strategies that succeed in the protocol of [BKVV20] (this is discussed further in Section 1.2.2 ).
This “structure theorem” crucially strengthens a similar theorem from [CGV22], and may be of independent
interest.

Finally, we examine the relationship between BPPQNC𝑑 ∪ QNCBPP
𝑑 and BPPQNC

BPP
𝑑 . By definition, it is

manifest that BPPQNC𝑑 ∪ QNCBPP
𝑑 ⊆ BPPQNC

BPP
𝑑 . Even though QNCBPP

𝑑 and BPPQNC𝑑 are incomparable, it is
conceivable that their union captures any reasonable notion of quantum depth 𝑑. We show that this is not
the case.

Theorem 5 (informal). Fix any function 𝑑 ≤ poly(𝑛). Relative to a random oracle, it holds that BPPQNC
BPP
O(1) ⊈

BPPQNC𝑑 ∪QNCBPP
𝑑 .

In words, the latter theorem asserts that a computation consisting of polynomially many layers of constant-
depth quantum circuits with adaptive control cannot be simulated by quantum circuits with 𝑑 depth which are
either adaptive (but consisting of a single 𝑑-depth quantum circuit) or consisting of many 𝑑-depth quantum
circuits (but without adaptive control).

7and more generally, that QNC2𝑑+O(1) ⊈ BPPQNC
BPP
𝑑 .
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1.1.5 Summary

Result Remarks

BPPQNC
BPP
⊊ BQP Refutes Jozsa’s conjecture in the random oracle model

BPPQNC
BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) Fine grained advantage of quantum depth

Table 1: (Simplified) Bounds on quantum depth. Separations are with respect to the random oracle and
𝑑 ≤ poly(𝑛) is any fixed function of the input size.

Result Physical Interpretation

BPPQNCO(1) ⊈ QNCBPP Running poly many constant depth quantum circuits
(with no adaptive measurements) cannot be simulated by
running a single log depth quantum circuit with adaptive
measurements.

QNCBPP
O(1) ⊈ BPP

QNC Running a single constant depth quantum circuit with
adaptive measurements cannot be simulated by running
poly many log depth quantum circuits (with no adaptive
measurements).

BPPQNC
BPP
O(1) ⊈ BPPQNC ∪QNCBPP Evidence that it is not enough to consider BPPQNC and

QNCBPP when studying quantum depth.
Running poly many constant depth quantum circuits with
adaptive measurements cannot be simulated using either
(a) poly many log depth quantum circuits with no
adaptive measurements, or by (b) a single log depth
quantum circuit with adaptive measurements.

Table 2: (Simplified) Separations of hybrid quantum depth with respect to the random oracle. The results
hold, not only for log but for any fixed polynomially-bounded function.

Table 1 lists our lower bounds on quantum depth, and Table 2 lists the separations among the hybrid
classes.

1.2 Main technical contributions

1.2.1 Lifting Lemmas

One of the main technical contributions of our work is to prove two general lifting lemmas. These lemmas
take problems, defined relative to a random oracle, that are classically hard (in a stronger sense, defined
next) and create new problems which are, in addition, hard for specific hybrid quantum depth classes. We
describe these lifting lemmas a bit more precisely.

We say that a problem (defined with respect to the random oracle) is classical query sound if the following
holds: any (potentially unbounded time) algorithm which makes only polynomially many classical queries
to the random oracle (i.e. no superposition queries), succeeds at solving the problem with at most negligible
probability. It turns out that the problem introduced by YZ satisfies this property. Another problem which
satisfies this property is inspired by the proof of quantumness protocol defined by Brakerski et al. [BKVV20]
(hereafter referred to as BKVV).8 For such problems, the following holds.

Lemma 6 (informal, simplified). There is a procedure9 that takes a classical query sound problem P ∈ BQP
and creates a new problem P ′ ∶= 𝑑-Rec[P], such that P ′ ∉ BPPQNC

BPP
𝑑 and P ′ ∈ BQP.

8Which we refer to as CollisionHashing later.
9𝑑-Rec[⋅] is meant to be short for 𝑑-Recursive.
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Observe that this lemma makes the problem hard for the most general notion of quantum depth we have
considered. To give some intuition about how it is derived, suppose we have a problem P which is classical
query sound and denote the random oracle as 𝐻 . Then P ′ = 𝑑-Rec[P] is the same problem, defined with
respect to a sequential composition of 𝑑 + 1 random oracles, 𝐻 = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0. In essence, we have substituted
𝐻 with 𝐻 . This new problem will retain classical query soundness, as 𝐻 behaves like a random oracle. But
in addition, we have now made it so that querying 𝐻 effectively requires depth 𝑑 + 1. As QNC𝑑 has depth 𝑑,

only the BPP parts of BPPQNC
BPP
𝑑 will be able to query 𝐻 . We can therefore simulate the BPPQNC

BPP
𝑑 algorithm

with an exponential time algorithm that is limited to polynomially many queries to 𝐻 . By classical query
soundness, such an algorithm cannot solve P ′, which yields the desired result.

This was a simplified description of our result. In fact, we show a more refined statement that relates
the depth required to solve P ′ to the depth required to solve P. In addition, arguing that 𝐻 behaves like
a random oracle and that QNC𝑑 cannot query 𝐻 requires a careful and more involved analysis. We use
Lemma 6 to establish Theorem 3.

Our second lifting lemma produces a problem that is hard for QNCBPP
𝑑 , starting from a problem that

satisfies what we call offline soundness. Consider a two phase algorithm consisting of: an online phase which
is a poly-time classical algorithm with access to the random oracle followed by an offline phase which is an
unbounded(-time) algorithm with no access to the random oracle. Then, offline soundness requires that
no such two phase algorithm succeeds at solving the problem with non-negligible probability. It turns out,
again, that both YZ and BKVV satisfy this property.

Lemma 7 (informal). There is a procedure10 which takes a problem P ∈ QNCO(1) with offline soundness and

creates a new problem P ′ ∶= 𝑑-Ser[P] such that P ′ ∉ QNCBPP
𝑑 and P ′ ∈ BPPQNCO(1) .

Again, we actually show a slightly more general upper bound which depends on the depth required to
solve P. We use Lemma 7 to establish BPPQNCO(1) ⊈ QNCBPP

𝑑 (first separation of Theorem 4). Establishing
the other direction (QNCBPP

O(1) ⊈ BPP
QNC𝑑 ) is quite involved and relies heavily on the structure of the problem

we consider (explained below). Consequently, it is unclear whether there exists a general lifting lemma that
yields hardness for BPPQNC𝑑 .

We remark that, by using Lemma 7 to lift the problem that yields QNCBPP
O(1) ⊈ BPP

QNC𝑑 , we also obtain

Theorem 5, i.e. BPPQNC
BPP
1 ⊈ BPPQNC𝑑 ∪QNCBPP

𝑑 .

1.2.2 A structure theorem for [BKVV20]

Another technical contribution of this work, which may be of independent interest, is to prove a theorem
characterizing the structure of strategies that are successful at the proof of quantumness from [BKVV20]. This
theorem is a crucial strengthening of a theorem from [CGV22]. We employ this theorem as an intermediate
step to establish the hybrid separation, QNCBPP

O(1) ⊈ BPP
QNC𝑑 .

Recall, informally, that the proof of quantumness from [BKVV20] requires the prover to succeed at the
following task: given access to a 2-to-1 function 𝑔, and to a random oracle 𝐻 with a one-bit output, find a
pair (𝑦, 𝑟) such that

𝑟 ⋅ (𝑥0 ⊕ 𝑥1) ⊕𝐻(𝑥0) ⊕𝐻(𝑥1) = 0 ,
where {𝑥0, 𝑥1} = 𝑔−1(𝑦). This can be solved in QNCO(1) as follows:

(i) Evaluate 𝑔 on a uniform superposition of inputs, yielding ∑𝑥 ∣𝑥⟩ ∣𝑔(𝑥)⟩,

(ii) Measure the image register obtaining some outcome 𝑦 and a state (∣𝑥0⟩ + ∣𝑥1⟩) ∣𝑦⟩,

(iii) Query a phase oracle for 𝐻 to obtain ((−1)𝐻(𝑥0) ∣𝑥0⟩ + (−1)𝐻(𝑥1) ∣𝑥1⟩) ∣𝑦⟩,

(iv) Make a Hadamard basis measurement of the first register, obtaining outcome 𝑟 .

Informally, our structure theorem establishes that querying at a superposition of pre-images is essentially
the only way to succeed (provided finding a collision for 𝑔 is hard—this is the case when 𝑔 is a trapdoor
claw-free function, as in [BKVV20], but more generally our theorem also holds e.g. when 𝑔 is a uniformly
random 2-to-1 function). Denote by 𝑛 the bit-length of strings in the domain of 𝑔.

10𝑑-Ser[⋅] is meant to be short for 𝑑-Serial.
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Theorem 8 (informal). Let 𝑃 be any BQP prover that succeeds with 1 − negl(𝑛) probability at the proof of
quantumness protocol from [BKVV20], by making 𝑞 queries to the oracle 𝐻 . Then, with 1−negl(𝑛) probability
over pairs (𝐻,𝑦), the following holds. Let 𝑝𝑦∣𝐻 be the probability that 𝑃𝐻 outputs 𝑦, and let 𝑥0,𝑥1 be the pre-

images of 𝑦. Then, for all 𝑏 ∈ {0, 1}, there exists 𝑖 ∈ [𝑞] such that the state of the query register of 𝑃𝐻 right
before the 𝑖-th query has weight 1

2
𝑝𝑦∣𝐻 ⋅ (1 − negl(𝑛)) on 𝑥𝑏 .

Note that a version of the above theorem that applies to provers who win with probability non-negligibly
greater than 1

2
also holds (but we stated the close-to-ideal version for simplicity). We provide a sketch of

how this theorem is used in the proof of QNCBPP
O(1) ⊈ BPP

QNC𝑑 in Subsection 2.2.2. We refer to Corollary 113
for a formal statement of the theorem.

1.3 Discussion and open problems

Further questions in the random oracle model. Our separations are with respect to search problems.
The main question left open by our work is whether the same separations can be shown with respect to
decision problems. Recall that our approach to proving the separations is to lift a problem that separates
BPP and BQP in the random oracle model (for example a proof of quantumness) to a problem that requires
at least a certain amount of quantum depth. However, we note that this approach is unlikely to yield depth
separations for decision problems. This is because the Aaronson-Ambainis conjecture [AA09] states that one
cannot separate the decision versions of BPP and BQP in the random oracle model. Thus, a different approach
is likely to be necessary.

Another interesting related question is the following. When we instantiate our lifting lemma with the
proof of quantumness from YZ, the resulting problem inherits the property that solutions can be publicly
verified. We thus obtain a proof of quantum depth that is publicly verifiable. Can we further push this
quantum soundness to obtain verification of BQP with a BPP verifier relative to a random oracle?

We have also seen that making use of a problem inspired by the Brakerski et al. [BKVV20] proof of
quantumness allows us to prove more fine grained separations between hybrid classes. It is then natural to
ask, whether these separations also yield finer grained proofs of quantum depth (which are sound against

BPPQNC
BPP
𝑑 provers and complete for a BPPQNC

BPP
2𝑑+O(1) prover). This does not immediately follow from our

results, as the problem we construct from BKVV is not efficiently verifiable, and our current techniques do
not directly extend to the computationally-bounded setting. We therefore leave this as an open problem.

Separations without the random oracle. Our work gives the first instantiatable quantum depth separ-
ation by virtue of being in the random oracle model. It is natural to ask if one can establish this separation
in the plain model. Unfortunately, a separation in the random oracle model seems to be the best that one
can hope for, given that even for classical depth there are no known separations that rely on standard crypto-
graphic assumptions (other than the random oracle). In some sense this is peculiar, since one would imagine
that using more structured problems would allow one to prove stronger separations. The random oracle is the
least structured type of oracle, but the fact that it is an oracle helps in establishing provable lower bounds.

Generalizing beyond BPPQNC
BPP
𝑑 . We have argued that BPPQNC

BPP
𝑑 is the most natural class capturing the

notion of 𝑑-depth quantum computation, combined with polynomial-depth classical computation. However,
for the purpose of certifying quantum depth, as we have mentioned earlier (and as we discuss in more detail
in Example 12), the situation becomes more subtle when the certification protocol involves interaction. We
therefore propose that any protocol which establishes quantum depth 𝑑 and uses 𝑟 rounds of interaction

should be sound against at least an 𝑟 level generalization of BPPQNC
BPP
𝑑 (e.g. a 2 level generalization with

quantum depth 𝑑 would be BPPQNC𝑑
BPP

QNCBPP
𝑑

— here 2 counts the number of times QNC𝑑 appears in the tower
of complexity classes, so that an 𝑟 level generalisation would have 𝑟 appearances of QNC𝑑). In our case, since

the proof of depth protocols are single-round, we show the necessary soundness against a BPPQNC
BPP
𝑑 prover.

Of course, there are other possible ways to define hybrid 𝑑-depth quantum-classical computation. For
instance, one can define the class QDepth𝑑 of problems solved by polynomial sized circuits with quantum
and classical gates where the key constraint is that the longest path connecting quantum gates (with quantum

wires) is at most 𝑑. We expect that the union over all 𝑟 level generalizations of BPPQNC
BPP
𝑑 (where 𝑟 is

polynomially bounded) equals QDepth𝑑 . We also expect our separating problems (and 𝑑-Rec[P] in general,
for classical query sound P) to not be in QDepth𝑑 , but we leave the proof to future work.
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1.4 Previous work

We compare our results to the previous works [CCL20], [CM20], [AGS22], and [CH22].

Comparison to [CCL20], [CM20] and [AGS22]. Compared to previous work on the topic, our work
gives a comprehensive treatment of the complexity of hybrid quantum-classical computation.

As mentioned earlier, the primary difference compared to [CCL20] and [CM20] is that all of our separations
are with respect to a random oracle, rather than with respect to highly structured oracles. However, one
caveat is that our separations are for search problems. Our contribution is also conceptual. We propose

BPPQNC
BPP
𝑑 as the appropriate model to capture “𝑑-depth quantum computation combined with polynomial-

time classical computation”. While [CCL20] and [CM20] showed that BPPQNC𝑑 ∪ QNCBPP
𝑑 ⊈ BQP, we show

the stronger result that BPPQNC
BPP
𝑑 ⊈ BQP.

Our work also shows separations between different hybrid models. Such separations were considered in
[AGS22], where they are again proven only with respect to highly structured oracles.

In terms of techniques, we take inspiration and ideas from both [CCL20] and [AGS22]. In particular we
build on two key ideas—sampling argument and domain hiding. One of the main contribution of our analysis
is to abstract and generalise these techniques beyond their original scope which was tailored to specific
promise problems. While most of our results build on these techniques, we also point out that to prove the
separation between the hybrid models QNCBPP

O(1) ⊈ BPP
QNC𝑑 we use entirely different ideas. In particular, as

an intermediate step, we establish a theorem that characterizes the structure of strategies that succeed at
the proof of quantumness in BKVV, which may be of independent interest.

Comparison to [CH22]. The work of [CH22] was the first to consider proofs of quantum depth. However,
the notion of soundness that they propose, and their corresponding protocol (in the single prover setting),
suffers from the issues that we discussed after Theorem 2 (and in Example 12 below).

In particular, their protocol can be spoofed by a 𝑑 level tower of BPPQNC
BPP
O(1) (as described in Subsec-

tion 1.3). In practical terms, this means that it can be spoofed by running several constant depth quantum
computers in parallel, provided the “idle coherence time” of each quantum computer is longer than the time
that elapses between messages in the protocol. In contrast, our proof of depth protocol does not suffer from

this issue and can be used to certify that the prover is able to perform computations “beyond” BPPQNC
BPP
𝑑 .
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2 Technical Overview

Here we give a high level technical overview of the paper.

2.1 Bounds on quantum depth — BPPQNC
BPP ⊊ BQP

In this subsection, we describe the proof of Theorem 1. As mentioned previously, our main technical con-
tribution is a general lifting lemma that takes any problem separating BPP from BQP in the random oracle
model, which additionally satisfies a property that we call classical query soundness, and constructs a prob-

lem separating BPPQNCd
BPP

and BQP. We first explain the key idea behind this construction. To be concrete,
after describing the key idea, we restrict to an NP search problem due to Yamakawa and Zhandry [YZ22],
which satisfies classical query soundness (this problem is particularly appealing because it is in NP, and thus
solutions can be publicly verified, however we emphasize that other known search problems that are not in NP
can also be used for the separation). We then build towards a proof that this problem is not in BPPQNC

BPP
𝑑 by

considering hardness for the three special cases QNC𝑑 , QNC
BPP
𝑑 and BPPQNC𝑑 . The desired result is obtained

by combining the ideas in these three cases.
Let P be a (search) problem, defined relative to a random oracle 𝐻 , that separates BPP from BQP. Suppose

that P is such that it requires quantum access to 𝐻 in order to be solved with polynomially many queries
(classical query soundness will eventually require a bit more than this). As mentioned in Subsection 1.2.1,
the first natural idea to lift this to a separation between low quantum depth and polynomial quantum depth
is to replace the evaluation of 𝐻 with a sequential evaluation of random oracles. For example, suppose that
originally 𝐻 ∶ Σ → {0, 1}𝑛. Then, let 𝐻0, . . . , 𝐻𝑑−1 ∶ Σ → Σ, and 𝐻𝑑 ∶ Σ → {0, 1}𝑛 be random oracles. Define
𝐻 = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0. Now, let P ′ be the problem that is identical to P except that it is relative to 𝐻 . Then, it is
natural to imagine that P ′ requires quantum depth at least 𝑑 +1 to solve. This idea does not quite work right
away, since 𝐻 , as defined, is not actually a uniformly random oracle any more. This is because with every
𝐻𝑖 that is added, the number of collisions in 𝐻 increases (on average). To remedy this, one could assume
that 𝐻0, . . . , 𝐻𝑑−1 are random permutations (although note that random permutations cannot be generically
constructed from random oracles). A similar idea works in a different setting, for arguing about the post-
quantum security of “proofs of sequential work” [BLZ21]. However, in our case, the analysis is complicated
by the fact that we consider hybrid models. CCL were the first to consider a variant of sequential hashing
(sequential permutations), in the context of hybrid models. However, their analysis only works for certain
structured oracles. In this work, we adapt their ideas to the random oracle setting and overcome these
difficulties.

Lifting P ∉ BPP to P̃ ∉ BPPQNC
BPP
𝑑 . Given a problem P with respect to 𝐻 , we define the problem

P̃ = 𝑑-Rec[P] to be P with respect to 𝐻 = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0 where 𝐻0, . . . , 𝐻𝑑 are independent random oracles with

the following domains and co-domains: 𝐻0 ∶ Σ → Σ𝑑
′

, 𝐻𝑖 ∶ Σ𝑑
′ → Σ𝑑

′

for 𝑖 ∈ {1 . . . 𝑑 − 1}, and 𝐻𝑑 ∶ Σ𝑑
′ → {0, 1}𝑛

with 𝑑 ′ = 2𝑑 + 5.
Notice that 𝐻0 is not surjective, as its codomain is much larger than its image.11 In fact, this is also

true for 𝐻𝑖 ○ ⋅ ⋅ ⋅ ○𝐻0, for all 𝑖 < 𝑑. This and the fact that the 𝐻𝑖 functions are random, have two important
consequences. First, it means that with high probability 𝐻𝑑−1 ○ ⋅ ⋅ ⋅ ○𝐻0 is injective and so 𝐻 behaves like a
random oracle. Consequently, P ′ inherits the soundness and completeness of P. Second, it means that one
can apply a “domain hiding” technique, which, at a high level, works as follows. One way of evaluating 𝐻 at
𝑥 ∈ Σ is to sequentially compose 𝐻0, 𝐻1, . . . , 𝐻𝑑 which would require depth 𝑑 + 1. Intuitively, it seems unlikely
that there is a more depth efficient way of evaluating 𝐻 because the domain on which the 𝐻𝑖 ’s need to be
evaluated (which is 𝐻𝑖−1 ○ ⋅ ⋅ ⋅ ○𝐻0(Σ)) is getting shuffled and lost in an exponentially larger domain (which

is Σ𝑑
′

). Therefore, even though one has access to all L = (𝐻0, 𝐻1, . . . , 𝐻𝑑) oracles at the first layer of depth,
one only knows that 𝐻0 needs to be queried at Σ but the algorithm has no information about where the
relevant domains of 𝐻1 . . . 𝐻𝑑 are. At the second depth layer, the algorithm can learn 𝐻0(Σ) and so learns
where to query 𝐻1 but, and this needs to be shown, it still does not know where the relevant domains of
𝐻2, . . . 𝐻𝑑 are. By starting with a sufficiently large expansion, i.e. a sufficiently large 𝑑 ′ > 𝑑, this argument can
be repeated until depth 𝑑 where the relevant domain of 𝐻𝑑 still remains hidden. Thus, even though P ′ can
potentially be solved with 𝑑 + 1 depth, it cannot be solved with depth 𝑑. This is the basic idea behind why
the problem is not in QNC𝑑 . Instead of working with P and 𝑑-Rec[P] abstractly, we consider the following
concrete problem.

11We sometimes refer to this fact by saying that the function is “expanding”.
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2.1.1 𝑑-CodeHashing — The problem

We refer to the problem introduced by Yamakawa and Zhandry [YZ22] as CodeHashing in this work. The
problem is stated in terms of a family of error-correcting codes called suitable codes. For our purposes, it
suffices to think of suitable codes as a family of sets {𝐶𝜆}𝜆 where each 𝐶𝜆 is a set of codewords {(x1, . . . x𝑛)}
with each coordinate x𝑖 belonging to some alphabet Σ. The size of this alphabet, ∣Σ∣ = 2𝜆Θ(1) is exponential
in 𝜆, and the number of components 𝑛 = Θ(𝜆) essentially equal to 𝜆. CodeHashing is defined as follows.

Definition 9 (CodeHashing; informal). Let {𝐶𝜆}𝜆 be a suitable code and let 𝐻 ∶ {0, 1}log𝑛 × Σ → {0, 1} be a
random oracle. Given a description of the suitable code (e.g. as parity check matrices) and oracle access to 𝐻 ,
on input 1𝜆, the problem is to find a codeword x = (x1 . . . x𝑛) ∈ 𝐶𝜆 such that12 𝐻(𝑖 ∣∣x𝑖) = 1 for all 𝑖 ∈ {1 . . . 𝑛}.

Note that CodeHashing is an NP search problem, since from, e.g. the parity check matrix of the code, it
is easy to verify that x is indeed a codeword and with a single parallel query (𝑛 queries in total) to 𝐻 , one
can check that it hashes correctly.

YZ shows that CodeHashing satisfies the following two properties.

Lemma 10 (Paraphrased from YZ). The following hold.

• Completeness: There is a QPT machine which solves CodeHashing with probability 1 − negl(𝜆) and
makes only one parallel query to 𝐻 .

• Soundness: Every (potentially unbounded time) classical circuit which makes at most 2𝜆
𝑐

queries to 𝐻 ,
with 𝑐 < 1, solves CodeHashing with probability at most 2−Ω(𝜆).

The fact that soundness holds against unbounded time classical circuits which make only poly-many queries

to the random oracle is essential in proving that BPPQNC
BPP
⊊ BQP. Applying our lifting map, 𝑑-Rec[P] on

CodeHashing we obtain the following.13

Definition 11 (𝑑-CodeHashing; informal). Let {𝐶𝜆}𝜆 be a suitable code, and 𝐻 ∶= 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻1 ○𝐻0, where
𝐻0, . . . , 𝐻𝑑 are as in Section 2.1. Given a description of the suitable code, access to random oracles L =
(𝐻0 . . . 𝐻𝑑), on input 1𝜆, find a codeword x = (x1 . . . x𝑛) ∈ 𝐶𝜆 such that bit𝑖[𝐻(x𝑖)] = 1 for all 𝑖 ∈ {1 . . . 𝑛}.

To convey the key ideas behind the proof that 𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑 , we first consider the QNC𝑑

case in some more detail, and extend the analysis to QNCBPP
𝑑 . We then analyse the BPPQNC𝑑 case, which

uses a technique called the “sampling argument” due to [CDGS18]. These ideas were first considered in

the structured oracle setting by [CCL20] and [AGS22]. We adapt them to show 𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑

relative to a random oracle.

2.1.2 𝑑-CodeHashing ∉ QNC𝑑

Base sets. We started our discussion in Subsection 2.1 by observing that the analysis is simplified by taking
𝐻0 . . . 𝐻𝑑−1 to be injective functions. However, for a large enough 𝑑 ′, it is not hard to see that this is indeed
the case on an appropriately restricted domain. The sets which describe this restricted domain are chosen
randomly. We call them base sets and denote them by 𝑆01, . . . 𝑆0𝑑 (corresponding to 𝐻1, . . . 𝐻𝑑 respectively).

Observe that 𝐻0 maps Σ to Σ𝑑
′

(which is exponentially larger than Σ; recall that ∣Σ∣ = 2𝜆Θ(1)) and, since 𝐻0

is a random function, the probability that this mapping is injective is 1 − negl(𝜆). Pick any set 𝑆01 ⊆ Σ𝑑
′

uniformly at random in the domain of 𝐻1 subject to two constraints: (1) it includes 𝐻0(Σ), i.e. the domain
of 𝐻1 on which the value of 𝐻 depends, and (2) its size is ∣𝑆01∣ = ∣Σ∣𝑑+2. The first constraint ensures that
the domain we care about is included in the base sets and the second ensures that: (a) ∣𝑆01∣ is exponentially
smaller than ∣Σ∣𝑑′ and (b) ∣𝑆01∣ is large enough for applying “domain hiding” as mentioned above. Define
𝑆0𝑖 ∶= 𝐻𝑖−1(. . . 𝐻1(𝑆01) . . . ) to be the image of 𝑆01 through the first 1 to (𝑖 − 1)’th oracles for 𝑖 ∈ {2 . . . 𝑑}. Let
𝐸 denote the event that 𝐻0 is injective and 𝐻1 . . . 𝐻𝑑−1 are injective on the base sets. We show that 𝐸 (given
our choice for 𝑑 ′), occurs with overwhelming probability. In the subsequent discussion, we assume that base
sets have been selected and that 𝐸 occurs.

12We use 𝑎∣∣𝑏 to mean concatenation of 𝑎 and 𝑏.
13We used biti[H̃(⋅)] = 1 instead of 𝐻(𝑖∣∣⋅) = 1 for notational convenience later.
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Proof idea. We describe the proof that 𝑑-CodeHashing ∉ QNC𝑑 in some more detail, which implements
the previously described “domain hiding” idea and proceeds via a hybrid argument. Denote a QNC𝑑 circuit
that makes 𝑑 parallel calls to the oracle L = (𝐻0, . . . 𝐻𝑑) by 𝑈𝑑+1 ○ L ○ 𝑈𝑑 . . .𝑈2 ○ L ○ 𝑈1 ○ 𝜌0. Here, 𝜌0 is
some initial state, 𝑈𝑖 are single layered unitaries, and the composition is meant to act as conjugation, i.e.
𝑈1 ○ 𝜌0 = 𝑈1𝜌0𝑈

†
1 . We show that the behaviour of such a circuit, i.e. its probability of outputting a valid

answer, is negligibly close to the behaviour of another circuit 𝑈𝑑+1 ○ M𝑑 ○ 𝑈𝑑 . . .𝑈2 ○ M1 ○ 𝑈1 ○ 𝜌0 where
M1, . . .M𝑑 are “shadow oracles” corresponding to L that contain no information about the values taken by
𝐻 on Σ. Clearly then, this circuit cannot be solving 𝑑-CodeHashing because it never queries 𝐻 . This in turn
means that the original circuit also cannot solve 𝑑-CodeHashing, which implies 𝑑-CodeHashing ∉ QNC𝑑 . It
remains to defineM1 . . .M𝑑 and to argue that the two circuits have essentially the same behaviour. Using
a hybrid argument, one can establish the latter by showing that the following are close in trace distance: (1)
L ○𝑈1 ○ 𝜌0 and M1 ○𝑈1 ○ 𝜌0, (2) L ○𝑈2 ○M1 ○𝑈1 ○ 𝜌0 and M2 ○𝑈2 ○M1 ○𝑈1 ○ 𝜌0, and so on. To convey
intuition, we sketch these steps one at a time, and we defineM1 . . .M𝑑 as we proceed. We restrict to base
sets 𝑆01 . . . 𝑆0𝑑 as described above.

Hybrid 1. L ○𝑈1 ○ 𝜌0 ≈M1 ○𝑈1 ○ 𝜌0.
Let 𝑆11 ⊆ 𝑆01 be a random subset of 𝑆01, subject to the constraints that (a) it includes 𝑆1 ∶= 𝐻0(Σ) and (b)
∣𝑆11∣/∣𝑆01∣ = 1/∣Σ∣ = negl(𝜆). Let 𝑆1𝑗 ∶= 𝐻 𝑗−1(𝑆1, 𝑗−1) be the propagation of 𝑆11 through 𝐻1 to 𝐻 𝑗−1. Here, we are
trying to define a sequence of sets (𝑆11, . . . 𝑆1𝑑) on which we require thatM1 outputs � and outside of these
sets, we require thatM1 behaves just like L, i.e. if one denotesM1 = (𝐻0,𝑀11, . . . 𝑀1𝑑), then we require that
𝑀1𝑖 behaves as 𝐻𝑖 outside 𝑆1𝑖 and outputs ⊥ inside 𝑆1𝑖 . To be concise, we will say thatM1 is a shadow oracle
of L with respect to (𝑆11 . . . 𝑆1𝑑). Why do we want this behaviour? For 𝑆𝑖 ∶= 𝐻𝑖−1(. . . 𝐻0(Σ) . . . ),M1 clearly
contains no information about 𝐻 on Σ, since 𝑆 𝑗 ⊆ 𝑆1𝑗 . But why couldn’t we just have chosen (𝑆1 . . . 𝑆𝑑) instead
of (𝑆11 . . . 𝑆1𝑑) to defineM1? Briefly, this is because choosing to hide an exponentially larger set (note that
∣𝑆11∣ = ∣Σ∣𝑑+1 while ∣𝑆1∣ = ∣Σ∣) allows us to easily apply similar arguments in the subsequent hybrids. This will
become evident shortly. Recalling our goal, we want to establish that L ○𝑈1 ○ 𝜌0 andM1 ○𝑈1 ○ 𝜌0 are close
in trace distance. To do this, we use the so-called one-way to hiding (O2H) lemma [AHU19]. Informally, the
lemma, as applied to our situation, says that if (a) the input state 𝜌0 contains no information about the set
where L andM1 behave differently, and (b) the probability of finding any element inside this set is negligible,
then the trace distance between the two states of interest is negligible. The lemma clearly applies in our case
because (a) initially the algorithm contains no information about L (it has not yet made any queries) and
(b) the probability of finding any element in the set 𝑆1𝑖 where L andM1 behave differently, without knowing
anything about L, is at most ∣𝑆1𝑖 ∣/∣𝑆0𝑖 ∣ = negl(𝜆), for each 𝑖 ∈ {1 . . . 𝑑}, and thus still negligible by a union
bound.

Hybrid 2. L ○𝑈2 ○ 𝜌1 ≈M2 ○𝑈2 ○ 𝜌1 where 𝜌1 =M1 ○𝑈1 ○ 𝜌0.
In this step, we will see the advantage of having chosen a sequence of sufficiently large sets (𝑆11, . . . 𝑆1𝑑) where
M1 outputs ⊥. Let us begin with examining the information contained in 𝜌1 about L. In the previous case,
𝜌0 contained no information about L. Since 𝜌1 only learns about L by queryingM1, it suffices to examine
the information contained inM1. SinceM1 does not hide any information about 𝐻0, 𝜌1 could have learnt
𝑆1 = 𝐻0(Σ). Recall also that 𝑆1 ⊆ 𝑆11. This means that if one were to take M2 equal to M1, then one
cannot expect L ○𝑈2 ○ 𝜌1 to be close toM2 ○𝑈2 ○ 𝜌1 in general because 𝑈2 could query the oracle at 𝑆1 and
the outputs of the two circuits would be different with probability one—M1 outputs ⊥ while L does not.
Consequently, when constructing M2, we do not hide anything about 𝐻1. As for 𝐻2 . . . 𝐻𝑑 , note that, M1

contains no information about the behaviour of L inside 𝑆12, 𝑆13 . . . 𝑆1𝑑 . We can therefore, treat 𝑆12 . . . 𝑆1𝑑
as the new “base sets” and proceed analogously. Let 𝑆22 ⊆ 𝑆12 be a random subset of 𝑆12, subject to the
constraint (as before) that (a) it includes 𝑆2 = 𝐻1(𝐻0(Σ)) and (b) ∣𝑆22∣/∣𝑆12∣ = 1/∣Σ∣ = negl(𝜆). DefiningM2 to
be the shadow oracle of L with respect to (∅, 𝑆22, . . . 𝑆2𝑑), one can again apply the O2H lemma to conclude
that L ○𝑈2 ○ 𝜌1 and M2 ○𝑈2 ○ 𝜌1 are close in trace distance. Note that it is crucial that ∣𝑆12∣ is sufficiently
large such that condition (b) above is satisfied.

Generalising the argument above, one sees that the sets 𝑆𝑖 𝑗 constitute a triangular matrix (where the 𝑖-th
row corresponds to sets on whichM𝑖 outputs ⊥)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆11 𝐻1(𝑆11) 𝐻2(𝐻1(𝑆11) . . . 𝐻𝑑(. . . 𝐻1(𝑆11) . . . )
∅ 𝑆22 𝐻2(𝑆22) . . . 𝐻𝑑(. . . 𝐻2(𝑆22) . . . )
∅ ∅ 𝑆33 . . . 𝐻𝑑(. . . 𝐻3(𝑆33) . . . )

⋱
∅ ∅ ∅ 𝑆𝑑𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which clarifies why the argument can only be applied for 𝑑 steps (as we expect). To see this, note that at
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the 𝑑th step, all oracles except the last have been completely revealed (last row). Crucially, the last oracle
is blocked at 𝑆𝑑 ⊆ 𝑆𝑑𝑑 and therefore reveals no information about 𝐻(Σ). If one proceeds with the (𝑑 + 1)-th
step, all oracles are revealed and one can no longer argue that the algorithm does not access 𝐻(Σ).

Observe that so far, we have not used the fact that CodeHashing is classically hard, only that without
access to the oracle, the problem cannot be solved. The classical hardness comes into play once BPP compu-
tations are allowed.

2.1.3 𝑑-CodeHashing ∉ QNCBPP
𝑑

We now sketch how one goes from arguing 𝑑-CodeHashing ∉ QNC𝑑 to arguing 𝑑-CodeHashing ∉ QNCBPP
𝑑 .

Denote circuits corresponding to QNCBPP
𝑑 by A𝑑+1 ○BL𝑑 ○ ⋅ ⋅ ⋅ ○ BL1 ○ 𝜌0 where BL𝑖 ∶= Π𝑖 ○L○𝑈𝑖 ○AL𝑖 , AL𝑖 denotes

a classical algorithm, and Π𝑖 denotes a (possibly partial) measurement. The analogous circuit with shadow

oracles is denoted by A𝑑+1 ○BM𝑑

𝑑
○ . . .BM1

1 ○𝜌0 where BM𝑖

𝑖 ∶= Π𝑖 ○M𝑖 ○𝑈𝑖 ○AL𝑖 . The idea, again, is to establish,
via a hybrid argument, that the two circuits are close in trace distance. In the QNC𝑑 case, thanks to the
depth of the circuit being 𝑑, we were able to argue that any QNC𝑑 algorithm behaves equivalently if we take
away its access to 𝐻 . When trying to argue that a QNCBPP

𝑑 algorithm cannot solve the problem, we have to
be more careful because the BPP part has sufficient depth to make queries to 𝐻 . In our argument, this will
affect how the shadow oraclesM𝑖 are defined.

In some more detail, we allow the classical algorithm to make “path queries”—which intuitively just
means that if 𝐻𝑖 is queried at 𝑥𝑖 , the algorithm also learns (𝑥0, 𝑥1 . . . 𝑥𝑑) such that14 𝑥 𝑗+1 = 𝐻 𝑗(𝑥 𝑗) for all 𝑗 .
This of course can only help the algorithm.

The key idea is that we account for the “paths” that have been queried classically until depth 𝑖 and define
M𝑖 to be consistent with those (i.e. it never outputs ⊥ on these paths). As before, we can replace queries
to L with queries to M𝑖 that contain no information about 𝐻 except for the paths which were classically
queried. Appealing to the soundness of CodeHashing, such an algorithm cannot succeed. This is because
CodeHashing has the property that even an unbounded classical algorithm cannot succeed if it only makes
polynomially many queries to the oracle.

2.1.4 𝑑-CodeHashing ∉ BPPQNC𝑑

Observe that a poly depth quantum circuit can access 𝐻 and since a BPPQNC𝑑 circuit has poly many QNC𝑑

circuits, it is not a priori clear that BPPQNC𝑑 cannot also access 𝐻 . This is why the approach we used to
prove that 𝑑-CodeHashing ∉ QNC𝑑 cannot be applied directly. Crucially, to argue that the problem is not in
BPPQNC𝑑 , one must use the fact that the contents of each QNC𝑑 circuit are measured entirely, and that each
QNC𝑑 circuit takes only classical inputs. In order to handle the classical information that each QNC𝑑 circuit
receives as input, we use a technique called the “sampling argument”. In essence, this says that if L has high
entropy (which is to say that the oracles being queried are sufficiently random), then conditioned on any
string 𝑠 correlated with it, the resulting L∣𝑠 behaves as a “convex combination” of high entropy distributions
with a small fraction of their values completely fixed. This allows us to reduce the analysis to that of a
particular set of paths being exposed, which we can handle by proceeding as in the QNCBPP

𝑑 case.
A similar argument was used by CCL to establish that a problem is not in BPPQNC𝑑 with respect to a

(structured) oracle. Their analysis used a sequence of permutation oracles and was simplified by viewing the
oracles, equivalently, as distributions over paths (as opposed to a sequence of functions assigning values to
individual points). The paths viewpoint was particularly helpful when considering the “sampling argument”
(the version we use is derived from [CDGS18]). [AGS22] showed that such a sampling argument can be
obtained for almost any oracle which can be viewed as a distribution over paths. In our setting, since the
oracles are random, paths can collide. Thus, one needs to define a suitable notion of “paths” in this setting.
We provide more details in the next three paragraphs. However, since these are relatively more technical,
one may wish to skip directly to Subsection 2.1.5 on a first read.

Sampling argument for Permutations. Suppose 𝑡 is a permutation over 𝑁 elements labelled {0, . . . , 𝑁 −
1}. This permutation 𝑡 is ordinarily viewed as a function, 𝑡(𝑥) specifying how 𝑥 is mapped. However, one
could equivalently view 𝑡 as a collection of pairs (or tuples later) (𝑥,𝑦) such that 𝑡(𝑥) = 𝑦. We call such a
pair a “path”.

14Two caveats: (1) 𝐻0 ∶ Σ → Σ𝑑
′
therefore some of the paths will not have well defined first components and (2) we only care

about queries made inside the base sets where conditioned on 𝐸, 𝐻1 . . . 𝐻𝑑−1 behave as permutations.
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Now consider distributions over permutations. Let’s begin with a uniform distribution F over all per-
mutations 𝑢. One may characterise F as follows: for any 𝑢 ∼ F, i.e. any 𝑢 sampled from F, it holds that
Pr[𝑢(𝑥) = 𝑦] = Pr[(𝑥,𝑦) ∈ paths(𝑢)].

We first state a basic version of the sampling argument. To this end, we define a (𝑝, 𝛿) non-uniform
distribution, F(𝑝,𝛿), which is closely related to the uniform distribution F. At a high level, F(𝑝,𝛿) is “𝛿 close
to” F with at most 𝑝 many paths fixed. What does “𝛿 closeness” mean? Let Pr[𝑆 ⊆ paths(𝑢)] denote
the probability that a collection 𝑆 of (non-colliding) paths is in 𝑢. Then, for any distribution G (over
permutations), a distribution G𝛿 is 𝛿 close to it if the following holds: when 𝑡 ′ ∼ G𝛿 and 𝑡 ∼ G, one has
Pr[𝑆 ⊆ paths(𝑡 ′)] ≤ 2𝛿 ∣𝑆 ∣Pr[𝑆 ⊆ paths(𝑡)] for all 𝑆.

We are almost ready to state the basic sampling argument. We need the notion of a “convex combination”
of random variables. We say a random variable (such as our permutation) 𝑡 is a convex combination of
random variables 𝑡𝑖 , denoted by 𝑡 ≡ ∑𝑖 𝛼𝑖𝑡𝑖 (where ∑𝑖 𝛼𝑖 = 1 and 𝛼𝑖 ≥ 0), if the following holds for all 𝑡 ′:
Pr[𝑡 = 𝑡 ′] = ∑𝑖 𝛼𝑖 Pr[𝑡𝑖 = 𝑡 ′].

Informally, the basic sampling argument is a statement about a uniform permutation 𝑢 ∼ F and how the
distribution F changes if we are given some “advice” about this permutation which is simply a function 𝑔(𝑢).
Roughly speaking, given that 𝑔(𝑢) evaluates to 𝑟 with probability at least 2−𝑚, the distribution F conditioned
on 𝑟 is a convex combination15 of F(𝑝,𝛿) distributions where the number of paths fixed is at most 𝑝 = 2𝑚/𝛿.
Here 𝛿 is a free parameter. We slightly abuse the notation and write this basic sampling argument as

F∣𝑟 ≡ conv(F(𝑝,𝛿)).

If we view 𝑔(𝑢) as the output of the first quantum part of the circuit for BPPQNC𝑑 , and 𝑢 as the oracle of
interest (details are in the next section), it is suggestive that 𝑢∣𝑔(𝑢) will be the oracle for the second quantum
part of the circuit. We can use the sampling argument above and re-use our analysis because F and F(𝑝,𝛿)

have very similar statistical properties. However, it is unclear how to use the sampling argument thereafter
as the basic sampling argument seems to only apply to F (and not to F(𝑝,𝛿)). It turns out that one can extend
the sampling argument to obtain

F(𝑝
′
,𝛿
′
)∣𝑟 ≡ conv(F(𝑝+𝑝

′
,𝛿
′
+𝛿)).

Consequently, if the procedure is successively applied 𝑛 ≤ poly(𝑛) times (starting with F), the convex com-
bination would be over distributions of the form F(𝑛𝑝,𝑛𝛿). The parameters can be appropriately chosen to
ensure that at most polynomially many paths are exposed but we omit the details in this overview.

Sampling argument for Injective Shufflers. The proofs of the previously mentioned statements do not
rely on any special property of the distribution F nor do they depend on the fact that we were considering
permutations. Any object for which we can describe a “reasonable” notion of “paths” admits such a sampling
argument. Therefore, as we did for permutations, to describe the sampling argument, we change our viewpoint
and consider “paths” in L = (𝐻0, . . . 𝐻𝑑) instead of individual values taken by the 𝐻𝑖 ’s. Recall that a “path”
was a tuple of the form (𝑥0, 𝑥1 . . . ) such that 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1) for all 𝑖.

This viewpoint is inadequate for capturing the probabilistic behaviour of L due to two reasons (which

are not hard to rectify). First, since 𝐻0 ∶ Σ → Σ𝑑
′

, it is clear that at least ∣Σ𝑑′−1∣ many points will never be

contained in any “path” as described above. Therefore the behaviour of most points in 𝐻𝑖 (for 𝑖 ∈ {1 . . . 𝑑})
will not be captured by the “paths” viewpoint. Second, even though 𝐻𝑖 maps Σ𝑑

′ → Σ𝑑
′

for 𝑖 ∈ {1, . . . 𝑑 −1}, 𝐻𝑖

may not be injective and therefore the paths might collide, which again would mean the behaviour of many
points would not be captured by the “paths” viewpoint.

To rectify the second issue, we can select base sets (𝑆01, . . . 𝑆0𝑑) =∶ 𝑆0 and condition on the event 𝐸. Since
in our proofs, we only care about the behaviour of L on 𝑆0, it suffices to restrict our attention to 𝑆0. Recall
that L∣𝐸 behaves as a permutation on 𝑆0. Therefore no “path” inside 𝑆0 collides. To rectify the first issue,
we consider two kinds of paths—Type 0 paths and Type 1 paths.16 A Type 0 path is what we described
earlier: a tuple of the form (𝑥0, 𝑥1 . . . ) such that 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1) for all 𝑖. A Type 1 path is a tuple of the form
(⌞⌟, 𝑥1, 𝑥2 . . . ) such that 𝑥1 ∉ 𝐻0(Σ) (i.e. ∄𝑥0 st 𝐻0(𝑥0) = 𝑥1) and 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1) for all 𝑖 ∈ {2, 3 . . . }.

Observe that, restricted to 𝑆0 and conditioned17 on 𝐸, we have the following equivalence: given Pr[𝐻𝑖(𝑥) =
𝑥 ′] for all 𝑖, 𝑥 and 𝑥 ′, one can compute the probability associated with both types of paths and conversely,
given probabilities associated with the paths, one can compute Pr[𝐻𝑖(𝑥) = 𝑥 ′] for all 𝑖, 𝑥 and 𝑥 ′.

15In the convex combination, there is a small component, of weight at most 2−𝑚 , of some arbitrary distribution.
16The 0 and 1 represent where the first non-⌞⌟ component sits.
17Recall, 𝐸 is the event that the oracles 𝐻0 and 𝐻1 . . . 𝐻𝑑 are injective on Σ and 𝑆0 resp.
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As is evident, working with L directly is cumbersome and we therefore define a simpler object, the

injective shuffler. Fix sets 𝑆0𝑖 ⊆ Σ𝑑
′

of size ∣Σ𝑑+2∣ for all 𝑖 ∈ {1, . . . 𝑑}. Let 𝐻 ′0 ∶ Σ → 𝑆01, 𝐻
′
𝑖 ∶ 𝑆0𝑖 → 𝑆0,𝑖+1 for

all 𝑖 ∈ {1, . . . 𝑑 − 1} be injective functions and let 𝐻 ′𝑑 ∶ 𝑆0𝑑 → {0, 1}𝑛 ∪ {⊥} (which may not be injective) such
that 𝐻 ′𝑑 outputs ⊥ for all paths originating from Σ (and no other).18 We define the injective shuffler, K as
(𝐻 ′0, . . . 𝐻 ′𝑑).

Think of K as a simpler way to denote the relevant object associated with L∣𝐸. What do we mean by
the relevant object—not only is it injective, it also never reveals any information19 about the values taken
by 𝐻 in Σ. As alluded to at the beginning of this subsection, since the strings 𝑠𝑖 arise from quantum parts
which only get access to L via shadow oracles, the sampling argument only needs to be applied to parts of
L outside of paths in 𝐻 .

To state the sampling argument for the injective shuffler, we define (𝑝, 𝛿) non-𝛽-uniform distributions

F
(𝑝,𝛿)∣𝛽

inj for the injective shuffler (analogous to the way we defined them for permutations). We begin with
the uniform distribution—it is simply a distribution which assigns equal probabilities to all the possible

injective shufflers, given the sets (𝑆0𝑖)𝑖 . As for 𝛽-uniform distributions, F
∣𝛽

inj, we first need to define the
“paths”, 𝛽. Here, 𝛽 will again be a set of “non-colliding paths” but formalising this requires some care (see
Subsection 7.6.2). Then a 𝛽-uniform distribution is the same as the uniform distribution except that the
paths in 𝛽 are fixed. Omitting further details, one can define F(𝑝,𝛿)∣𝛽 to be a distribution which is “𝛿 close
to” the 𝛽-uniform distribution with at most 𝑝 many paths fixed (in addition to 𝛽).

The sampling argument for injective shufflers is the following. Suppose we start with 𝑡 ∼ F𝛿
′
∣𝛽

inj (i.e.

a distribution which is “𝛿 ′ close to” 𝛽-uniform) and are given some advice ℎ(𝑡) which happens to be 𝑟

with probability at least 2−𝑚. Then the distribution F
𝛿
′
∣𝛽

inj conditioned on 𝑟 is, roughly speaking, a convex

combination20 of F
(𝑝,𝛿+𝛿

′
)∣𝛽

inj distributions where the number of paths fixed (in addition to 𝛽) is at most

𝑝 = 2𝑚/𝛿 and 𝛿 again is a free parameter. Using the previous shorthand, we have

F
𝛿
′
∣𝛽

inj ∣𝑟 ≡ conv(F
(𝑝,𝛿+𝛿

′
)∣𝛽

inj ).

Stitching everything together As asserted before we described the sampling argument, one can replace
all the oracles L in the quantum part of the circuit for BPPQNC𝑑 with appropriate shadow oracles. Let
M11, . . .M1𝑑 denote the shadow oracles for the first quantum part, M21 . . .M2𝑑 for the second quantum
part and so on. Suppose the paths queried by the 𝑖th classical part were 𝛽𝑖 , the string outputted by the 𝑖th
quantum part be 𝑠𝑖 . SupposeM11 . . .M1𝑑 . . .M𝑖−1,1 . . .M𝑖−1,𝑑 have been specified. Now, conditioned on 𝑠𝑖 ,
the sampling argument says L∣𝑠𝑖 behaves as a convex combination of injective shufflers with certain paths
exposed, when restricted to base sets. Let 𝛽(𝑠𝑖) be the random variable which specifies these paths and
occurs with the weights specified in the convex combination. One can define M𝑖1 . . .M𝑖𝑑 as in the QNC𝑑

case, ensuring the paths 𝛽1 . . . 𝛽𝑖−1 and 𝛽(𝑠1) . . . 𝛽(𝑠𝑖−1) have been exposed. Note crucially that 𝑠𝑖 is obtained
by a quantum part which only had access to L via shadow oracles so it does not change the distribution
over 𝐻 (except for polynomially many paths which were already exposed, 𝛽1 . . . 𝛽𝑖−1 and 𝛽(𝑠1) . . . 𝛽(𝑠𝑖−1)).
Using a hybrid argument as in the QNC𝑑 case, and using properties of the injective shuffler which is “𝛿
close” to being uniform, one can apply the O2H lemma and conclude that the hybrids (again, defined as in
the QNC𝑑 case) are close in trace distance. Eventually, this yields that the initial circuit is close in trace
distance to the circuit which only accesses L via the shadowsM11 . . .M1𝑑 . . .M𝑚1 . . .M𝑚𝑑 in the quantum
part (denote the number of quantum parts by 𝑚 ≤ poly(𝜆)). The latter circuit cannot solve 𝑑-CodeHashing
again, because 𝐻 is only accessed by the classical parts of this circuit. More precisely, 𝐻 is only queried at
at most ∣𝛽1 ∪ . . . 𝛽𝑚 ∪ 𝛽(𝑠1) ∪ . . . 𝛽(𝑠𝑚)∣ ≤ poly(𝜆) locations and therefore the whole circuit can be simulated
while only making polynomially many classical queries to 𝐻 . From the soundness of CodeHashing, this entails
𝑑-CodeHashing cannot be solved.

2.1.5 𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑

Just as the analysis of the BPPQNC𝑑 case built on the QNC𝑑 case, one can analyze the BPPQNC
BPP
𝑑 case by

building on the QNCBPP
𝑑 case. While the high level idea stays the same, the details are more involved. This

is partly because, in the QNC𝑑 case, one could construct the shadow oracles M1 . . .M𝑑 “all at once” since

18i.e. 𝐻 ′
𝑑
(𝑥𝑑) =⊥ iff (𝑥0, 𝑥1, . . . 𝑥𝑑 , 𝑥𝑑+1) is a Type 0 path (therefore 𝑥𝑑+1 =⊥).

19Except for polynomially possibly many paths exposed by classical queries; we handle these shortly.
20Again, neglecting a component with weight at most 2−𝑚 .
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Figure 2: Here M⃗𝑖 denotes the shadow oracles (M𝑖1, . . .M𝑖𝑑).

we were assuming the “worst case”, i.e. the quantum algorithm learns everything there is to learn from the
shadow oracles. However, in the QNCBPP

𝑑 case, to defineM𝑖 , one had to know the behaviour of the classical
algorithms in the hybrid circuits which involvedM1 . . .M𝑖−1 (in particular one has to know the “paths” that
have been exposed). We show how one can account for this, but we leave the details to the main body.

2.1.6 Proof of quantum depth

In this subsection, we discuss how our complexity-theoretic separations also yield protocols for certifying
quantum depth, i.e. proofs of quantum depth, in a way that is insensitive to classical polynomial depth. First,
let us be a bit more precise about what we mean by proof of quantum depth.

Definition (informal). A proof of 𝑑 quantum depth is a two-message protocol involving two parties, a verifier
and a prover. Both parties are assumed to have access to the random oracle 𝐻 . The verifier is a PPT machine.
The protocol satisfies the following, where 𝜆 is the security parameter.

• Completeness: There is a prover in BQP which makes the verifier accept with probability 1 − negl(𝜆).

• Soundness: No prover in BPPQNC
BPP
𝑑 makes the verifier accept with probability more than negl(𝜆).

Let 𝑑 be at most a fixed polynomial. Since 𝑑-CodeHashing is in NP, it immediately yields a proof of 𝑑
quantum depth.

We conclude this discussion by illustrating the subtlety of considering proofs of quantum depth with more
than two messages. Consider the following protocol.

Example 12. The verifier, Alice, prepares BB84 states ∣𝑏𝑖⟩𝜃𝑖 ∶= 𝐻
𝜃𝑖 ∣𝑏𝑖⟩ (𝑏𝑖 , 𝜃𝑖 are both chosen uniformly at

random) for 𝑖 ∈ {1, . . . 𝑛} where 𝐻 is the Hadamard operation (not to be confused with the random oracle).
She sends them all to the prover, Bob.

Alice and Bob then engage in an 𝑛 round protocol. In the 𝑖-th round, Alice sends 𝜃𝑖 and Bob sends 𝑏′𝑖 .
Alice accepts if 𝑏1 = 𝑏′1, . . . 𝑏𝑛 = 𝑏′𝑛.

In this example,21 it is not hard to see that Bob has to have 𝑛 layers of unitaries. Could this simple
construction already constitute a proof of quantum depth? Consider the following observations.

• Spoofed by 𝑛 single quantum depth devices. It is easy to see that Bob can pass this test using 𝑛-many
single-qubit quantum devices, each of which need only apply one quantum gate and make one compu-
tational basis measurement. The protocol works by simply delaying the application of the quantum
gate and subsequent measurement. It is therefore difficult to call this a proof of quantum depth in any
meaningful way.

• Interaction seems superfluous. The only use of the interaction is to introduce a delay. The same effect
could be achieved with a single round protocol where Alice delays sending her message. Therefore, this
procedure, at best, certifies “idle coherence” time.

The example shows how defining quantum depth in interactive settings can be quite subtle. We refer the
reader back to the discussion in Section 1.3 for our proposal of what this definition should be.

21While we used quantum communication in the protocol, one could (using known results) delegate the production of these
states to the prover (under computational assumptions) and run a similar protocol using classical communication.

19



2.1.7 Tighter upper bounds

Ideally, one would like to show the more fine-grained separation BPPQNC
BPP
𝑑 ⊊ BPPQNC

BPP
𝑑+1 . Since the best known

algorithm for solving YZ’s CodeHashing uses polynomial depth, 𝑑-CodeHashing inherits this limitation. We
overcome this limitation and show the following.

Theorem 13. Relative to a random oracle, QNC2𝑑+O(1) ⊈ BPPQNC
BPP
𝑑 which implies BPPQNC

BPP
𝑑 ⊊

BPPQNC
BPP
2𝑑+O(1) .

We obtain the above by instantiating our lifting procedure, 𝑑-Rec[⋅], with a variant of the proof of
quantumness from [BKVV20], which we refer to as CollisionHashing (see Table 3). It is straightforward to
show that CollisionHashing also satisfies classical query soundness by using the main argument in [BKVV20]
and the query lower bound for finding collisions proved in [AS04].

Let 𝑔 be a 2→ 1 function for which it is hard to find a collision. Then, the (slightly simplified) problem is
to produce a pair (𝑦, 𝑟) such that 𝑟 ⋅ (𝑥0⊕𝑥1)⊕𝐻(𝑥0)⊕𝐻(𝑥1) = 0 where {𝑥0, 𝑥1} ∈ 𝑔−1(𝑦). This problem can be
solved in QNCO(1) (assuming that calls to 𝑔 take only depth 1) by preparing the superposition ∑𝑥 ∣𝑔(𝑥)⟩ ∣𝑥⟩,
measuring the second register in the standard basis, and the first in the Hadamard basis.

We said simplified because in CollisionHashing, 𝑔 is in fact a uniformly random function 𝑔 (treated as an
oracle) with a domain twice as large as the co-domain. Note that this is not a 2 → 1 function in general.
However, with overwhelming probability, a constant fraction of the elements in the co-domain has exactly two
pre-images. Then, we require a pair (𝑦, 𝑟) such that either 𝑦 has exactly two pre-images and (𝑦, 𝑟) satisfies the
“equation”, or 𝑦 does not have exactly two pre-images. The limitation of CollisionHashing is that solutions
to the problem are not verifiable, so the problem cannot be used to obtain a fine-grained proof of quantum
depth.

2.2 Separations of hybrid quantum depth classes

2.2.1 Establishing BPPQNCO(1) ⊈ QNCBPP
𝑑 .

We describe our second lifting procedure, called 𝑑-Ser[⋅]. This takes any problem P ∉ BPP (relative to
a random oracle) that satisfies offline soundness, and produces a new problem 𝑑-Ser[P] ∉ QNCBPP

𝑑 (see
Lemma 7).

Denote by 𝑅𝐻 the set of solutions to P (defined with respect to 𝐻). Then, the key idea is simple. The
problem 𝑑-Ser[P] is to return a tuple (𝑐0, 𝑐1, . . . , 𝑐𝑑) such that: 𝑐0 is a solution to P, i.e. 𝑐0 ∈ 𝑅𝐻(⋅); 𝑐1 is a
solution to P but with respect to 𝐻(𝑐0∣∣⋅), i.e. 𝑐1 ∈ 𝑅𝐻(𝑐0∣∣⋅), and similarly until 𝑐𝑑 , which should be such that
𝑐𝑑 ∈ 𝑅𝐻(𝑐0 ...𝑐𝑑−1∣∣⋅).

To be a bit more concrete, take P to be CollisionHashing. We know CollisionHashing ∈ QNCO(1). Clearly,
𝑑-Ser[CollisionHashing] ∈ BPPQNCO(1) . This is because BPPQNCO(1) allows one to run polynomially many
QNCO(1) circuits. Consequently, one can use the first circuit to obtain the classical output 𝑐0, use the second

circuit to find 𝑐1 and so on. On the other hand, intuitively, we expect that 𝑑-Ser[CollisionHashing] ∉ QNCBPP
𝑑 .

This is because to solve the (𝑖 + 1)-th sub-problem, one seems to require the solution to all of the previous 𝑖
sub-problems. Since there are 𝑑 + 1 sub-problems in total, QNCBPP

𝑑 does not seem to suffice (here of course
we are implicitly using the fact that P ∉ BPP). Formally, the argument proceeds in a similar way as for the
lifting map 𝑑-Rec in Subsection 2.1.3, except for one subtlety which is handled by requiring that the problem
P satisfies the extra property of offline soundness. We refer the reader to the main text for more details. We
remark that offline soundness follows from classical query soundness and therefore both CollisionHashing and
CodeHashing satisfy it.

Problem Additional
Assumption

Verifiable Classical
Query

Soundness

Offline
Soundness

Completeness

CodeHashing [YZ] None Yes Yes Yes BQP

CollisionHashing None No Yes Yes QNCO(1)

Table 3: Problems in the random oracle model, which are intractable for BPP and used as building blocks for
establishing quantum depth separations.
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The immediate consequence of the existence of the lifting map 𝑑-Ser[⋅] is that BPPQNCO(1) ⊈ QNCBPP
𝑑 (first

part of Theorem 4). However, we can also leverage 𝑑-Ser[⋅], together with the separation from the next

subsection, to show that BPPQNC
BPP
O(1) ⊈ BPPQNC𝑑 ∪QNCBPP

𝑑 (Theorem 5). This is done as follows.
In Subsection 2.2.2, we introduce the problem 𝑑-hCollisionHashing (which also satisfies offline sound-

ness), and argue that it is in QNCBPP
O(1), but not in BPPQNC𝑑 . Now, applying the lifting map to it gives

𝑑-Ser[𝑑-hCollisionHashing] ∉ BPPQNC𝑑 ∪QNCBPP
𝑑 . To obtain the containment, notice that 𝑑-Ser yields a prob-

lem that can be solved by solving 𝑑 + 1 many instances of the original problem. Thus, it follows that

𝑑-Ser[𝑑-hCollisionHashing] ∈ BPPQNC
BPP
O(1) .

2.2.2 Establishing QNCBPP
O(1) ⊈ BPP

QNC𝑑

This is the more surprising of the two hybrid separations, and its proof is more involved. In this section, we
fix 𝑑 ≤ 𝑝𝑜𝑙𝑦(𝜆). The problem that yields this separation is the following variation on CollisionHashing: given
access to a 2-to-1 function 𝑔 22, and to 𝐻0, . . . 𝐻𝑑 (which specify ℎ as ℎ = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0), find a pair (𝑦, 𝑟) such
that

𝑟 ⋅ (𝑥0 ⊕ 𝑥1) ⊕𝐻(ℎ(𝑦)∣∣𝑥0) ⊕𝐻(ℎ(𝑦)∣∣𝑥1) = 0 ,
where {𝑥0, 𝑥1} = 𝑔−1(𝑦). We refer to the new problem as 𝑑-hCollisionHashing.

Without relying on ℎ (that is, requiring that the equation to be satisfied is just 𝑟 ⋅(𝑥0⊕𝑥1)⊕𝐻(𝑥0)⊕𝐻(𝑥1) =
0), this problem is the same as CollisionHashing. This can be solved in QNCO(1) as follows:

(i) Evaluate 𝑔 on a uniform superposition of inputs, obtaining ∑𝑥 ∣𝑥⟩ ∣𝑔(𝑥)⟩,

(ii) Measure the image register obtaining some outcome 𝑦 and a state (∣𝑥0⟩ + ∣𝑥1⟩) ∣𝑦⟩,

(iii) Query a phase oracle for 𝐻 to obtain ((−1)𝐻(𝑥0) ∣𝑥0⟩ + (−1)𝐻(𝑥1) ∣𝑥1⟩) ∣𝑦⟩,

(iv) Make a Hadamard basis measurement of the first register, obtaining outcome 𝑟 .

At a high level, in order to solve the new problem, which includes the evaluation of ℎ as an input to
𝐻 , one needs the ability to perform a (classical) depth 𝑑 computation to evaluate ℎ(𝑦) (since this requires
the sequential evaluations of 𝐻0, . . . , 𝐻𝑑). Note that a QNCBPP algorithm can solve this problem: the only
modification to the algorithm described above is that, at step (iii), the algorithm first computes ℎ(𝑦) (us-
ing polynomial classical computation), and then queries the oracle 𝐻 on a superposition of (ℎ(𝑦), 𝑥0) and
(ℎ(𝑦), 𝑥1). One can easily verify that this leads to a valid 𝑦, 𝑟 for the problem.

Next, we give a sketch of how one can argue that the problem cannot be solved in BPPQNC. The key
technical ingredient is a “structure theorem” that characterizes the structure of efficient quantum strategies
that are successful at CollisionHashing. Our structure theorem applies equally to the proof of quantumness
protocol from [BKVV20] (recall that the latter is just a version of collision hashing where 𝑔 is replaced by a
2-to-1 trapdoor claw-free function).

Theorem 14 (informal). Let 𝑃 be any BQP prover that succeeds with 1 − negl(𝑛) probability at the proof of
quantumness protocol from [BKVV20], by making 𝑞 queries to the oracle 𝐻 . Then, with 1−negl(𝑛) probability
over pairs (𝐻,𝑦), the following holds. Let 𝑝𝑦∣𝐻 be the probability that 𝑃𝐻 outputs 𝑦, and let 𝑥0,𝑥1 be the pre-

images of 𝑦. Then, for all 𝑏 ∈ {0, 1}, there exists 𝑖 ∈ [𝑞] such that the state of the query register of 𝑃𝐻 right
before the 𝑖-th query has weight 1

2
𝑝𝑦∣𝐻 ⋅ (1 − negl(𝑛)) on 𝑥𝑏 .

See Corollary 113 for a formal statement of this result. This is a crucial strengthening of a Theorem from
[CGV22], and employs the compressed oracle technique [Zha19]. A slight adaptation of this to our problem
asserts that a successful strategy must be querying the random oracle 𝐻 at a (close to) uniform superposition
of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1).

Now let 𝐴 be a BPPQNC algorithm that succeeds at 𝑑-hCollisionHashing with high probability and let 𝑞 be
the total number of queries to ℎ made by the algorithm.

Then, one can show that, since the QNC part of the algorithm does not have sufficient depth to evaluate
ℎ (which is a sequential evaluation of 𝐻0, . . . , 𝐻𝑑), we can assume, without loss of generality, the QNC part of
𝐴 has no access to ℎ. In other words, all of the queries to ℎ are classical.

22Since we want our problem to be relative to a uniformly random oracle, in the formal description of the problem in the
main text, we will not assume that 𝑔 is exactly 2-to-1. Rather we will take 𝑔 to be a uniformly random function with domain
twice as large as the co-domain, and simply restrict our attention to 𝑦’s in the co-domain that have exactly two pre-images (this
is a constant fraction of the elements of the co-domain with overwhelming probability).
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Now, Theorem 14 says essentially that, for any 𝑦, the only way to succeed with high probability (condi-
tioned on that 𝑦 being the output) is to query (with as much weight as the probability of outputting 𝑦) a
uniform superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1). However, observe that, for any 𝑦, the only way for 𝐴 to
query 𝐻 (with a high weight) at a uniform superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1) is to correctly guess the
value of ℎ(𝑦). Since this value is uniformly random for any algorithm that has not queried ℎ at 𝑦, it follows
that querying 𝐻 at the uniform superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1) must necessarily happen after the
algorithm has already queried ℎ on 𝑦.

This implies that there must exist an 𝑖∗ ∈ [𝑞] such that, with high probability, 𝐴 outputs 𝑦, 𝑟 such that
𝑦 is contained in the list of classical queries made to ℎ up to the 𝑖∗-th query. Denote such a list by 𝐿𝑖∗ .
Moreover, with high probability over 𝐿𝑖∗ , the continuation of 𝐴 (from that point on) queries 𝐻 at a uniform
superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1) for some 𝑦 ∈ 𝐿𝑖∗ . We show that such an algorithm 𝐴 can be leveraged
to extract a collision for 𝑔.

The key observation is that, since 𝐴 is a BPPQNC algorithm, and all of the queries to ℎ happen in the BPP
portion of 𝐴, the “state” of algorithm 𝐴 right after the 𝑖∗-th query to ℎ is entirely classical. Thus, one can
take a “snapshot” of the state of 𝐴 at that point (i.e. copy it), and simply run two independent executions
of 𝐴 from that point on (with independent classical randomness). By what we argued earlier, with high
probability, there exists 𝑦 ∈ 𝐿𝑖∗ , such that the execution of 𝐴 from that point on, queries 𝐻 at a uniform
superposition of (ℎ(𝑦), 𝑥0) and (ℎ(𝑦), 𝑥1). Since the two executions are identical and independent, it follows
that measuring the query registers of 𝐻 in both executions will yield distinct pre-images of 𝑦 with significant
probability.

Finding collisions of 𝑔 is of course hard (for any query-bounded quantum algorithm) [AS04]. Hence, this
yields a contradiction.
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3 Preliminaries

We state the preliminaries which are common to both parts in this section. Each part also has its own set of
preliminary results.

3.1 Models of Computation

We first list the standard notation we use. PPT denotes a probabilistic polynomial time algorithm, QPT
denotes a quantum polynomial time algorithm. As we primarily focus on search problems, to keep the
presentation clean, we slightly abuse the notation and use decision class names to represent the corresponding
search classes. For instance, we use BPP and BQP to denote the search classes FBPP and FBQP resp. which
in turn are defined as follows.

Definition 15 (FBPP, FBQP; paraphrased from [Aar10; Aar13]). Let FBPP be the set of relations 𝑅 ⊆ {0, 1}∗×
{0, 1}∗ such that for each 𝑅, there is a PPT algorithm A satisfying the following: for all input strings 𝑥 ,

Pr[(𝑥,𝑦) ∈ 𝑅 ∶ 𝑦 ← A(𝑥)] ≥ 1 − 𝑜(1)

FBQP is defined analogously (PPT is replaced with QPT).23

Unlike the decision classes, it is unclear if changing the error from 𝑜(1) to some constant (say 2/3rds)
preserves the class. For our purposes, 𝑜(1) suffices. We now define circuit models and the associated classes,
depending on their depth; we drop the “F” prefix entirely.

Notation 16. A single layer unitary, is defined by a set of one and two-qubit gates which act on disjoint
qubits (so that they can all act in parallel in a single step). The number of single layer unitaries in a circuit
defines its depth.

Definition 17 (QNC𝑑 circuits and QNC𝑑 relations). Denote by QNC𝑑 the set of 𝑑-depth quantum circuits
(see Figure 3a).

Define QNC𝑑 to be the set of all relations 𝑅 ∈ {0, 1}∗×{0, 1}∗ which satisfy the following: for each relation
𝑅 ∈ QNC𝑑 , there is a circuit family {C𝑛 ∶ C𝑛 ∈ QNC𝑑 and acts on poly(𝑛) qubits} and for all strings 𝑥 ,

Pr[(𝑥,𝑦) ∈ 𝑅 ∶ 𝑦 ← C∣𝑥 ∣(𝑥)] ≥ 1 − 𝑜(1).

Definition 18 (QCd circuits and QNCBPP
𝑑 relations). Denote by QCd the set of all circuits which, for each

𝑛 ∈ N, act on poly(𝑛) qubits and bits and can be specified by

• 𝑑 single layered unitaries, 𝑈1,𝑈2 . . .𝑈𝑑 ,

• 𝑑 + 1 poly(𝑛)-sized classical circuits A𝑐,1 . . .A𝑐,𝑑 ,A𝑐,𝑑+1, and

• 𝑑 computational basis measurements

that are connected as in Figure 3b.
Define QNCBPP

𝑑 analogously to QNC𝑑 relations, replacing QNC𝑑 circuits with QCd circuits. When
𝑑(𝑛) = polylog(𝑛), denote the set of relations by QNCBPP.

Definition 19 (CQd circuits and BPPQNC𝑑 relations). Denote by CQd the set of all circuits which, for each
𝑛 ∈ N and 𝑚 = poly(𝑛), act on poly(𝑛) qubits and bits and can be specified by

• 𝑚 tuples of 𝑑 single layered unitaries (𝑈1,𝑖 ,𝑈2,𝑖 . . .𝑈𝑑,𝑖)𝑚𝑖=1,

• 𝑚 + 1, poly(𝑛) sized classical circuits A𝑐,1 . . .A𝑐,𝑚,A𝑐,𝑚+1, and

• 𝑚 computational basis measurements

that are connected as in Figure 3c.
Define, as above, BPPQNC𝑑 analogously to QNC𝑑 relations, replacing QNC𝑑 circuits with CQd circuits.

When 𝑑(𝑛) = polylog(𝑛), denote the set of relations by BPPQNC.
23NB: This, in particular, implies there is at least one 𝑦 for every 𝑥 , s.t. (𝑥, 𝑦) ∈ 𝑅.
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U1 U2 Ud

(a) QNC𝑑 scheme; 𝑈𝑖 are single depth unitaries; the meas-
urement at the end is performed in the computational
basis.

A1 U1 U2 UdA2 A3 Ad+1

(b) QCd circuit; 𝑈𝑖 are single layered unitaries, A𝑐,𝑖 are clas-
sical poly-sized circuits (in the figure, henceforth, we drop the
subscript for A𝑐) and the measurements are in the computa-
tional basis. Dark lines denote qubits.

A1

U1 U2 Ud
A2 A3 Am+1

~U2
~Um

~U1

(c) CQd circuit; for clarity, we dropped the indices in A𝑐 and the
second indices in 𝑈1,𝑖 ,𝑈2,𝑖 . . .𝑈𝑑,𝑖 .

Q1 Q2 Qi Qm

Am+1

Ai,1
Ui,1

Ai,2
Ui,2

Ai,d
Ui,d

(d) CQC𝑑 circuit; Q𝑖 denotes 𝑖th QCd circuit and𝑚 = poly(𝑛).
The measurements after the single layer unitaries are included
in 𝑈𝑖,𝑗 with 𝑗 = 1,⋯, 𝑑. The final classical part is labelled A𝑚+1

instead of A𝑐,𝑚+1,1 for simplicity.

Figure 3: The four circuit models we consider. We draw single wires to represent potentially polynomially
many wires. Black lines and blue lines indicate wires carrying classical and quantum information, respectively.
We implicitly follow this convention henceforth.

Definition 20 (CQC𝑑 circuits and BPPQNC
BPP
𝑑 relations). Denote by CQC𝑑 the set of all circuits which, for

each 𝑛 ∈ N and 𝑚 = poly(𝑛), which can be specified by 𝑚 QCd circuits acting on poly(𝑛) qubits and bits, that
are connected as in Figure 3d.

Define, as above, BPPQNC
BPP
𝑑 analogously to QNC𝑑 relations, replacing QNC𝑑 circuits with CQC𝑑 circuits.

With 𝑑(𝑛) = polylog(𝑛), denote the set of relations by BPPQNC
BPP

.

Remark 21. Connection with the more standard notation: QNC𝑑 has depth 𝑑 and QNC𝑚 has depth log𝑚(𝑛),
i.e. QNC𝑚 = QNClog𝑚(𝑛).

Later, it would be useful to symbolically represent these three circuit models but we mention them here
for ease of reference.

Notation 22. We use the following notation convention.

• Probability: The probability of an event 𝐸 occurring, as a result of a process 𝑃 , is denoted by Pr[𝐸 ∶ 𝑃].
In our context, the probability of a random variable 𝑋 taking the value 𝑥 when process 𝑌 takes place
is denoted by Pr[𝑥 ← 𝑋 ∶ 𝑌 ]. When the process 𝑌 is just a sampling of 𝑋 , we drop the 𝑌 and use
Pr[𝑥 ← 𝑋 ].

• QNC𝑑 : We denote a 𝑑-depth quantum circuit (see Definition 18 and Figure 3a) by A =𝑈𝑑 ○ ⋅ ⋅ ⋅ ○𝑈1 and
(by a slight abuse of notation) the probability that running the algorithm on all zero inputs yields 𝑥 ,
by Pr[𝑥 ← A] while that on some input state 𝜌 by Pr[𝑥 ← A(𝜌)].

• QCd: We denote a QCd circuit (see Definition 18 and Figure 3b) by B = A𝑐,𝑑+1 ○B𝑑 ○B𝑑−1 ⋅ ⋅ ⋅ ○ B1 where
B𝑖 ∶= Π𝑖 ○𝑈𝑖 ○ A𝑐,𝑖 and “○” implicitly denotes the composition as shown in Figure 3b. As above, the
probability of running the circuit A on all zero inputs and obtaining output 𝑥 is denoted by Pr[𝑥 ← B]
while that on some input state 𝜌 by Pr[𝑥 ← B(𝜌)].

• CQd: We denote a CQd circuit (see Definition 19 and Figure 3c) by C = A𝑐,𝑚+1 ○ C𝑚 ○ ⋅ ⋅ ⋅ ○ C1 where
C𝑖 ∶= Π𝑖 ○𝑈𝑑,𝑖 ○ ⋅ ⋅ ⋅ ○𝑈1,𝑖 ○ A𝑐,𝑖 and “○” implicitly denotes the composition as shown in Figure 3c. Again,
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the probability of running the circuit C on all zero inputs and obtaining output 𝑥 is denoted by Pr[𝑥 ← C]
while that on some input state 𝜌 by Pr[𝑥 ← C(𝜌)].

• CQC𝑑 : We denote a CQC𝑑 circuit (see Definition 20 and Figure 3d) by D = A𝑐,𝑚+1,1 ○ D𝑚 ○ ⋅ ⋅ ⋅ ○ D1

where D𝑖 = B𝑖,𝑑 ○B𝑖,𝑑−1 ○ ⋅ ⋅ ⋅ ○ B𝑖,1 is a24 QCd circuit with B𝑖, 𝑗 ∶= Π𝑖, 𝑗 ○𝑈𝑖, 𝑗 ○A𝑐,𝑖, 𝑗 for 𝑖, 𝑗 ∈ {1, . . . 𝑑} and “○”
implicitly denotes the composition as shown in Figure 3d.

3.1.1 The Oracle Versions

We consider the standard Oracle/query model corresponding to functions—the oracle returns the value of
the function when invoked classically and its action is extended by linearity when it is accessed quantumly.

Notation 23. An oracle O𝑓 corresponding to a function 𝑓 is given by its action on “query” and “response”
registers as O𝑓 ∣𝑥⟩𝑄 ∣𝑎⟩𝑅 = ∣𝑥⟩𝑄 ∣𝑎 ⊕ 𝑓 (𝑥)⟩𝑅. An oracle O(𝑓𝑖)𝑘𝑖=1 corresponding to multiple functions 𝑓1, 𝑓2 . . . 𝑓𝑘 is

given by O(𝑓𝑖)𝑘𝑖=1 ∣𝑥1, 𝑥2 . . . 𝑥𝑘⟩𝑄 ∣𝑎1, 𝑎2 . . . 𝑎𝑘⟩𝑅 = ∣𝑥1, 𝑥2 . . . 𝑥𝑘⟩𝑄 ∣𝑎1 ⊕ 𝑓1(𝑥1), 𝑎2 ⊕ 𝑓2(𝑥2), . . . 𝑎𝑘 ⊕ 𝑓𝑘(𝑥𝑘)⟩𝑅.
When O𝑓 is accessed classically, we use O𝑓 (𝑥) to mean it returns 𝑓 (𝑥).
Remark 24 (QNCO𝑑 , QCd

O, CQd
O). The oracle versions of QNC𝑑 , QCd and CQd circuits are as shown in

Figures 4a, 4b, and 4c. We allow (polynomially many) parallel uses of the oracle even though in the figures
we represent these using single oracles. We do make minor changes to the circuit models, following [CCL20]
when we consider QNC𝑑 circuits and CQd circuits—an extra single layered unitary is allowed to process the
final oracle call.

We end by explicitly augmenting Notation 22 to include oracles.

Notation 25. When oracles are introduced, we use the following notation.

• QNCO𝑑 : AO =𝑈𝑑+1 ○ O ○𝑈𝑑 ○ . . .O ○𝑈1 (see Figure 4a)

• QCd
O ∶ BO = AO𝑐,𝑑+1 ○ BO𝑑 ○ . . .BO1 where BO𝑖 = Π𝑖 ○ O ○𝑈𝑖 ○ AO𝑐,𝑖 and AO𝑐,𝑖 can access O classically (see

Figure 4b).

• CQd
O: CO = AO𝑚+1 ○ CO𝑚 ○ . . . CO1 where CO𝑖 ∶= Π𝑖 ○𝑈𝑑+1,𝑖 ○O ○𝑈𝑑,𝑖 ○ ⋅ ⋅ ⋅ ○O ○𝑈1,𝑖 ○AO𝑐,𝑖 where AO𝑐,𝑖 can access

O classically (see Figure 4c).

• CQCO𝑑 : CO = A𝑐,𝑚+1,1 ○ DO𝑚 ○ . . .DO1 where D𝑖 = B𝑖,𝑑 ○ . . .B𝑖,1 with BO𝑖, 𝑗 ∶= Π𝑖, 𝑗 ○ O ○𝑈𝑖, 𝑗 ○ AO𝑐,𝑖, 𝑗 and A𝑐,𝑖, 𝑗

accesses O classically (see Figure 4d

The classes (QNCBPP
𝑑 )O , (BPPQNC𝑑 )O and (BPPQNC

BPP
𝑑 )

O

are implicitly defined to be the query analogues of

QNCBPP
𝑑 ,BPPQNC𝑑 and BPPQNC

BPP
𝑑 (resp.), i.e. class of relations solved by QCd

O,CQd
O and CQCO𝑑 circuits

(resp.).

3.2 The Random Oracle Model

In the random oracle model, all parties are given access to a random function 𝐻 which is defined from
{0, 1}∗ → {0, 1} s.t. it assigns 0 or 1 to each input 𝑥 , independently with probability half. Quantum algorithms
can access 𝐻 in superposition.

3.2.1 Domain Splitting

Using domain splitting, one can efficiently construct expanding (compressing resp.) random functions, i.e.
uniformly random functions 𝐻 ′ from {0, 1}𝑛 → {0, 1}𝑚 where 𝑚 ≥ 𝑛 (𝑚 ≤ 𝑛 resp.) using 𝐻 . By efficiently
(wrt 𝑛) we mean in time poly(𝑛) which translates to 𝑚 ≤ poly(𝑛). More precisely, one can define 𝐻 ′(𝑥) ∶=
(𝐻(𝑥 ∣∣0), 𝐻(𝑥 ∣∣1), . . . 𝐻(𝑥 ∣∣𝑚)) where ∣∣ denotes concatenation and the second part of the string has length
at most log(𝑚). Similarly, one can construct polynomially25 many distinct random compressing/expanding
functions from 𝐻 . One can therefore use such random functions without loss of generality in the random
oracle model.

24except we excluded the last classical circuit A𝑐,𝑖,𝑑+1. This is without loss of generality because A𝑐,𝑖,𝑑+1 can be absorbed in
the first classical circuit, A𝑐,𝑖+1,1, of D𝑖+1.

25In fact, exponentially many as we only need to polynomially many bits to index them.
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U1 U2 Ud+1

(a) A QNC𝑑 circuit with access to oracle
O. Following [CCL20], in the oracle ver-
sion of QNC𝑑 , we allow it to perform one
extra single layered unitary to process the
output.

A1 U1 U2 UdA2 Ad Ad+1

O O O O

O O O

(b) A QCd circuit with access to an oracle O. There is no “extra” single layered
unitary in this model.
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U1 U2 Ud+1
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~UO
m

~UO
1

OOO

O O

(c) A CQd circuit with access to an oracle O. Again, following
[CCL20], we allow an extra single layer unitary to process the
result of the last oracle call.

Q1 Q2 Qi Qm

Am+1

O

Ai,1
Ui,1 O

O

Ai,2
Ui,2 O

O

Ai,3

O

Ui,d+1

(d) A CQC𝑑 circuit with access to oracle O.

Figure 4: The same four circuit models, but with oracle access.
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3.2.2 Oracle Independent, Uniform and Non-Uniform Adversaries

We consider three kinds of adversaries (circuit families {C𝑛}) and their correlation with the random oracle.

• Oracle independent. The circuit family {C𝑛} and 𝐻 are uncorrelated. First the circuit family is chosen,
then 𝐻 is sampled.

• Uniformly oracle dependent. First 𝐻 is chosen; then some fixed length string 𝑎 (possibly correlated
with 𝐻) is given as advice to the circuit family {C𝑛}.

• Non-uniformly oracle dependent. First 𝐻 is chosen; for each input length 𝑛, a potentially different string
𝑎𝑛 is chosen which is given to circuit 𝐶𝑛 as advice.

In the cryptographic setting, security against the third type of adversary is desired. We will prove our results
against oracle independent adversaries and invoke known results to lift the security to non-uniform oracle
dependent adversaries for cryptographic applications.

3.3 Basic Quantum information results

We setup some notation for distances and recall some basic results. Here, all density matrices are defined on
the same Hilbert space.

Definition 26. Let 𝜌, 𝜌 ′ be two mixed states. Then we define

• Fidelity: F(𝜌, 𝜌 ′) ∶= tr(
√√

𝜌𝜌 ′
√
𝜌)

• Trace Distance: TD(𝜌, 𝜌 ′) ∶= 1
2
tr ∣𝜌 − 𝜌 ′∣ and

• Bures Distance: B(𝜌, 𝜌 ′) ∶=
√
2 − 2𝐹(𝜌, 𝜌 ′).

Fact 27. For any set of strings 𝑆, any string 𝑠 and any two mixed states, 𝜌 and 𝜌 ′, and any quantum
algorithm A (which outputs a classical string), we have

∣Pr[𝑠 ∈ 𝑆 ∶ 𝑠 ← A(𝜌)] −Pr[𝑠 ∈ 𝑆 ∶ 𝑠 ← A(𝜌 ′)]∣ ≤ TD(𝜌, 𝜌 ′) ≤ 𝐵(𝜌, 𝜌 ′).

To see this, recall that TD(𝜌, 𝜌 ′) = maxI≥𝑃≥0 ∣𝑃(𝜌 − 𝜌 ′)∣ and therefore ∣Pr[𝑠 ∈ 𝑆 ∶ 𝑠 ← A(𝜌)] − Pr[𝑠 ∈ 𝑆 ∶ 𝑠 ←
A(𝜌 ′)]∣ ≤ TD(𝜌, 𝜌 ′). Recalling also TD(𝜌, 𝜌 ′) ≤

√
1 − 𝐹(𝜌, 𝜌 ′) ≤ 𝐵(𝜌, 𝜌 ′) one obtains the asserted result.

We use the following basic properties repeatedly in our analysis. For any density matrices 𝜌, 𝜌 ′, 𝜎, it holds
that: (1) TD(𝜌, 𝜌 ′) ≤ TD(𝜌, 𝜎) + TD(𝜎, 𝜌 ′), and (2) TD(Φ(𝜌),Φ(𝜎)) ≤ TD(𝜌, 𝜎) for any completely positive
trace non-increasing map Φ (see, e.g., [PGWPR06]).
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Part I

Bounds on Quantum Depth

We first establish that BPPQNC
BPP
𝑑 ⊊ BQP relative to a random oracle. Based on this result, we describe how

to construct a proof of 𝑑 quantum depth which is insensitive to polynomial classical depth. Subsequently,

we tighten the BQP upper bound to obtain a more fine-grained quantum depth separation, BPPQNC
BPP
𝑑 ⊊

BPPQNC
BPP
2𝑑+O(1) .

More precisely, in Section 4, we introduce a map which can be applied to any problem separating BQP
and BPP which additionally specifies what we call classical query soundness, to create a new problem which

separates BPPQNC
BPP
𝑑 and BQP. For concreteness, in Section 6 we apply this procedure to YZ’s CodeHashing

and in Section 7 prove that the resulting problem is not in BPPQNC
BPP
𝑑 . We then, in Section 8, formalise the

notion of a proof of quantum depth and construct a two-message proof of quantum depth protocol based on
the previous result. Finally, in Section 9, we apply the map to a different problem and improve the upper
bound to obtain the previously mentioned fine-grained quantum depth separation. Since this new problem
is not efficiently verifiable, we do not obtain the associated fine-grained proof of quantum depth.

4 𝑑-Recursive[P]
Consider any problem P defined relative to a random oracle. We describe a map, which acts on P and
creates a new problem 𝑑-Rec[P]. If P can be solved quantumly but not classically (in the sense explained
below), then 𝑑-Rec[P] can still be solved quantumly but cannot be solved with less than 𝑑 quantum depth,

i.e. 𝑑-Rec[P] ∈ BQP but 𝑑-Rec[P] ∉ BPPQNC
BPP
𝑑 . In fact, if P can be solved in depth 𝑑 ′ then one can tighten

the upper bound on P from BQP to BPPQNC
BPP
𝑑′′ where 𝑑 ′′ is a function of 𝑑 ′ (which we describe later).

4.1 Definition of P
Any problem P which has the following two properties can be lifted to a problem which is not in BPPQNC

BPP
𝑑 .

The first property, classical query soundness, requires that no unbounded algorithm can solve the problem
by making only polynomially many classical queries to the oracles. The second property, bounded oracle
domain, is also intuitively quite simple. It requires that the problem only depends on a bounded domain of
the random oracle. We formalise this property by requiring that the problem does not change if the random
oracle is replaced with an arbitrary function except that it behaves exactly like the random oracle on the
bounded oracle domain. We include this property for technical reasons and it is possible that it is not really
necessary. However, for the problems we consider, both are easily satisfied. Formally, we have the following.

Definition 28 (Classical query soundness and bounded oracle domain). Denote by 𝐻 ∶ {0, 1}∗ → {0, 1} a
random oracle. Define a problem P by a tuple (X , 𝑅𝐻 ) where X is a procedure which on input 1𝜆 generates
a problem instance of size poly(𝜆) and 𝑅𝐻 = {0, 1}∗ × {0, 1}∗ is a relation which depends on 𝐻 .

• We say P is classical query sound if for any unbounded algorithm A𝐻 which makes at most poly(𝜆)
classical queries to 𝐻 , it holds that

Pr
𝐻
[(𝑥,𝑦) ∈ 𝑅𝐻 ∶ 𝑥 ← X(1𝜆)

𝑦 ← A𝐻 (𝑥) ] ≤ negl(𝜆)

for all sufficiently large 𝜆.

• Let 𝑅𝐻 (𝑥) ∶= {𝑦 ∶ (𝑥,𝑦) ∈ 𝑅𝐻}. We say P has a bounded oracle domain if there is a set {0, 1}𝑝(𝜆) where
𝑝(𝜆) is an integer valued polynomial such that the following holds for each 𝜆,

𝑅𝐻 (𝑥) = 𝑅𝐻 ′(𝑥)

for all 𝑥 ∈ X(1𝜆) and all choices of functions 𝐻 ′ ∶ {0, 1}∗ → {0, 1} such that 𝐻 ′(𝑧) = 𝐻(𝑧) for all
𝑧 ∈ {0, 1}𝑝(𝜆).

When we define YZ’s CodeHashing problem, it would be evident that it satisfies both properties.
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4.2 Definition of 𝑑-Recursive[P]
Let P be any problem satisfying the properties in Definition 28 and which is in BPPQNC

BPP
𝑑′ . We can now

introduce 𝑑-Rec[P], a general construction which, for any 0 ≤ 𝑑 ≤ poly(𝜆), lifts P, to a problem which is not

in BPPQNC
BPP
𝑑 but is in BPPQNC

BPP
poly(𝑑,𝑑′) . More precisely, the polynomial would be (2𝑑 + 1) ⋅𝑑 ′ because for each

oracle call in P, 𝑑-Rec[P] would need 2𝑑 + 1 oracle calls. To see why, we need to know how 𝑑-Rec is defined.
At a high level, instead of asking for P to be solved relative to the random oracle 𝐻 , 𝑑-Rec[P] requires P

to be solved relative to the random oracle 𝐻 composed with itself 𝑑 times. Clearly, 𝐻 cannot be composed
with itself in general because the domain and co-domain may not match. Suppose 𝐻 ∶ Σ → {0, 1}𝑛. Then one
natural choice to consider is 𝐻 ∶= 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0 where 𝐻𝑑 ∶ Σ → {0, 1}𝑛, 𝐻𝑖 ∶ Σ → Σ for 𝑖 ∈ {1 . . . 𝑑}. This has some
issues, for instance the number of collisions in 𝐻 on an average would be larger than those in 𝐻 . It turns
out that for our analysis, enlarging the domain (as a function of ∣Σ∣) is the appropriate choice, as explained
below.

Definition 29 (𝑑-Rec[P]). Let P = (X , 𝑅) be a problem satisfying Definition 28. We define 𝑑-Rec[P] as
follows. On input 1𝜆, proceed as follows:

• Sample an instance of P as 𝑥 ← X(1𝜆), and

• denote its bounded oracle domain by Σ ∶= {0, 1}𝑝(𝜆).

• Define 𝐻 ∶= 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻1 ○𝐻0 where 𝐻0 ∶ Σ → Σ𝑑
′

, for ℓ ∈ {1, . . . 𝑑 − 1}, 𝐻ℓ ∶ Σ𝑑
′ → Σ𝑑

′

and 𝐻𝑑 ∶ Σ𝑑
′ → {0, 1}

are independent random oracles with 𝑑 ′ = 2𝑑 + 5.

The (𝑑-Rec[P]) problem then is, given 𝑥 , and oracle access to (𝐻0, . . . 𝐻𝑑), find a 𝑦 s.t. (𝑥,𝑦) ∈ 𝑅𝐻 .

4.2.1 Upper Bound

It may be the case that the algorithm which solves P makes only, say 1, query to the random oracle while
it still has depth 𝑑 ′ which is some large constant. Clearly, in this case, one can obtain a bound tighter
than (2𝑑 + 1) ⋅ 𝑑 ′ on the depth of the circuit which solves 𝑑-Rec[P]. Indeed, we later consider a problem
(CollisionHashing) which has this property and therefore we formally state this upper bound as follows.

Lemma 30. Suppose P is solved by a family of circuits in QNC𝑑′ with probability 1− 𝜖(𝜆) and by making at
most 𝑡(𝜆) parallel queries. Then there is a family of circuits in QNC𝑑′′ which solves 𝑑-Rec[P] with probability
1 − 𝜖(𝜆) where 𝑑 ′′ ≤min[𝑑 ′ + (2𝑑 + 1) ⋅ 𝑡, (2𝑑 + 1) ⋅𝑑 ′]. The analagous statement holds for QC and CQ as well.

Proof sketch. Fix a 𝜆, let C1 ∈ QNC𝑑′ be the circuit that solves P and let C2 ∈ QNC𝑑′′be a circuit which we
construct and assert that it solves 𝑑-Rec[P], with the same 1 − 𝜖(𝜆) probability.

To obtain 𝑑 ′′ ≤ 𝑑 ′+(2𝑑 +1) ⋅𝑡 , suppose the circuits are identical, except that for each of the 𝑡 set of parallel
oracle calls that C1 makes, C2 makes (2𝑑 + 1) ⋅ 𝑡 set of parallel oracle calls. This allows C2 to compute 𝐻 and
therefore proceed exactly like C1. A simple upper bound on the quantum depth 𝑑 ′′ of C2 then is 𝑑 ′+(2𝑑+1)⋅𝑡 .

To obtain 𝑑 ′′ ≤ (2𝑑 +1) ⋅𝑑 ′, suppose that the oracle is parallel invoked (worst case) at each layer. Then, C2
is identical to C1, except that for each of the 𝑑 ′ layers of C1, C2 gets (2𝑑 +1) layers and can therefore evaluate
𝐻 exactly like C1. An upper bound on the depth of C2 is then 𝑑 ′′ ≤ (2𝑑 + 1) ⋅ 𝑑 ′. �

4.2.2 Lower bound

The main property of 𝑑-Rec[⋅] is the following which we establish in Section 7.

Lemma 31 (𝑑-Rec[P] ∉ BPPQNC
BPP
𝑑 ). Every CQC𝑑 circuit succeeds at solving 𝑑-Rec[P] (see Definition 29)

with probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝑛).

5 Preliminaries

Instead of working with 𝑑-Rec[⋅] abstractly, we apply this map to the CodeHashing problem introduced by
[YZ22]. To use and describe the seminal work of YZ, we need the following notions.
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Problem ∈ ∉ Verification Interpretation Remarks

CodeHashing BQP ⊈ BPP Public Proof of Quantumness [YZ22]; Definition 33

𝑑-CodeHashing BQP ⊈ BPPQNC
BPP
𝑑 Public (𝑑,poly(𝑛))-Proof of Quantum

Depth

Refutes Jozsa’s conjecture

See Definition 35; Equivalent to

𝑑-Rec[CodeHashing]

Table 4: In Part I we started with CodeHashing due to [YZ22] and created a new problem we termed

𝑑-CodeHashing which showed BPPQNC
BPP
𝑑 ⊊ BQP, for any fixed 𝑑 ≤ poly(𝑛). This refutes Jozsa’s conjecture

relative to the random oracle model. This problem also immediately serves as a Proof of 𝑑 Quantum Depth.

Error Correcting Codes

Codes

A code of length 𝑛 ∈ N over an alphabet Σ is a subset 𝐶 ⊆ Σ𝑛.

Linear codes [YZ22]. Let F𝑞 be a finite field of order 𝑞 for some prime power 𝑞 and Σ = F𝑞. A linear code
𝐶 of length 𝑛 ∈ N over the alphabet Σ is defined as a subset 𝐶 ⊆ F𝑛𝑞 , which is also a linear subspace of
F𝑛𝑞 . Further, we define the rank of a linear code 𝐶 as the dimension of the linear subspace 𝐶 ⊆ F𝑛𝑞 .

Folded linear codes [Kra03; GR08; YZ22]. Let F𝑞 be a finite field of order 𝑞 for some prime power 𝑞
and 𝑚 be a positive integer. A code 𝐶 is said to be an 𝑚-folded linear code of length 𝑛 if its alphabet is
Σ = F𝑚𝑞 and 𝐶 ⊆ Σ𝑛 is a linear subspace of 𝐶 ⊆ Σ𝑛, where 𝐶 is embedded into F𝑚𝑛

𝑞 in the canonical way.

It is clear that 1-folded linear codes are just linear codes. In fact, for a positive integer 𝑚 that divides 𝑛
and a linear code 𝐶 ⊆ F𝑛𝑞 , we can define its 𝑚-folded version 𝐶(𝑚) as

𝐶(𝑚) ∶= {(
𝑚

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(𝑥1,⋯, 𝑥𝑚),⋯,

𝑚
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(𝑥𝑛−𝑚+1,⋯, 𝑥𝑛) ) ∶ (𝑥1,⋯, 𝑥𝑛) ∈ 𝐶}.

Conversely, any folded linear code can be written as 𝐶(𝑚) for some linear code 𝐶 and a positive integer 𝑚.

Dual codes [YZ22]. A dual code 𝐶⊥ of a linear code 𝐶 of length 𝑛 and rank 𝑘 over the alphabet F𝑞 is
defined as the orthogonal complement of 𝐶 as a linear subspace over F𝑛𝑞 . That is,

𝐶⊥ ∶= {𝒙 ∈ F𝑛𝑞 ∶ 𝒙 ⋅ 𝒙′ = 0 ∀ 𝒙′ ∈ 𝐶} .

𝐶⊥ is itself a linear code of length 𝑛 and rank 𝑛−𝑘 over F𝑞. Similarly, for an𝑚-folded linear code 𝐶 ∈ F𝑚𝑛
𝑞

of length 𝑛 over the alphabet F𝑚𝑞 , its dual 𝐶
⊥ is defined as

𝐶⊥ ∶= {𝒙 ∈ F𝑚𝑛
𝑞 ∶ 𝒙 ⋅ 𝒙′ = 0 ∀ 𝒙′ ∈ 𝐶} .

Note that for any linear code 𝐶 of length 𝑛 and an integer𝑚 that divides 𝑛, we have (𝐶⊥)(𝑚) = (𝐶(𝑚))⊥.

List recovery [YZ22]. Let 𝐶 ⊆ Σ𝑛 be a code and 𝒙 ∶= (𝑥1,⋯, 𝑥𝑛) ∈ 𝐶 be a codeword. For subsets 𝑆𝑖 ⊆ Σ
such that ∣𝑆𝑖 ∣ ≤ 𝑙 for 𝑖 ∈ [𝑛], define the index set 𝐼𝒙,{𝑆𝑖},𝑙 ∶= {𝑖 ∈ [𝑛] ∶ 𝑥𝑖 ∈ 𝑆𝑖}. Then, we say that 𝐶 ⊆ Σ𝑛 is

(𝜁 , 𝑙, 𝐿)-list recoverable if for any subsets 𝑆𝑖 ⊆ Σ such that ∣𝑆𝑖 ∣ ≤ 𝑙 for 𝑖 ∈ [𝑛], we have 26

∣{𝒙 ∈ 𝐶 ∶ ∣𝐼𝒙,{𝑆𝑖},𝑙 ∣ ≥ (1 − 𝜁 )𝑛}∣ ≤ 𝐿.

Suitable Codes

YZ use folded codes which satisfy certain properties. They call these codes suitable codes. They show that
folded Reed-Solomon codes with appropriate parameters are suitable. We would not need these details for
our result—the following suffices.

26List recovery usually requires efficient computation of all codewords (𝑥1,⋯, 𝑥𝑛) ∈ 𝐶 that satisfy ∣𝐼𝒙,{𝑆𝑖},𝑙 ∣ ≥ (1 − 𝜁 )𝑛 using
{𝑆𝑖}, however, it is not relevant for our purposes, so we don’t demand it here.
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Lemma 32 (Suitable Codes [YZ22]). For any constants 0 < 𝑐 < 𝑐′ < 1, there exists an explicit family {𝐶𝜆}𝜆∈N
of folded linear codes over the alphabet Σ = F𝑚𝑞 of length 𝑛 where ∣Σ∣ = 2𝜆

Θ(1)

, 𝑛 = Θ(𝜆) and ∣𝐶𝜆 ∣ ≥ 2𝑛+𝜆 that

satisfies the following.27

1. 𝐶𝜆 is (𝜁 , ℓ, 𝐿)-list recoverable where 𝜁 = Ω(1), 𝑙 = 2𝜆𝑐 and 𝐿 = 2𝑂(𝜆𝑐
′
).

2. There is an efficient deterministic decoding algorithm Decode𝐶⊥ for 𝐶⊥ that satisfies the following. Let
D be a distribution over Σ that outputs 0 with probability 1/2 and otherwise outputs an element of Σ/{0}
uniformly at random. Then, it holds that

Pr
e←D𝑛

[∀x ∈ 𝐶⊥,Decode𝐶⊥(x + e) = x] = 1 − 2−Ω(𝜆).

3. For all 𝑗 ∈ [𝑛 − 1], Prx←𝐶𝜆
[hw(x) = 𝑛 − 𝑗] ≤ ( 𝑛

∣Σ∣)
𝑗

.

6 The 𝑑-CodeHashing Problem

This section introduces the problem we use for proving our main result.

6.1 Background — CodeHashing Problem [YZ22]

To describe our problem, we first recall that YZ’s proof of quantumness is based on the following problem.

Definition 33 (CodeHashing Problem; Paraphrased from [YZ22]). Let

• {𝐶𝜆}𝜆 be a family of codes over an alphabet Σ = F𝑚𝑞 that satisfies the requirements of Lemma 32 with
arbitrary 1 < 𝑐 < 𝑐′ < 1,

• 𝐻 ∶ Σ → {0, 1}𝑛 be a random oracle.

Given the code family, and access to 𝐻 , on input 1𝜆, the CodeHashing problem is to find an x = (x1,x2, . . . x𝑛) ∈
𝐶𝜆 such that for all 𝑖 ∈ {1 . . . 𝑛}, the 𝑖th bit of 𝐻(x𝑖) equals 1.

Note that for suitable codes, 𝜆 = Θ(𝑛). Also note that the oracle 𝐻 as described in the problem can be
implemented using the standard random oracle from {0, 1}∗ to {0, 1}, as discussed in Section 3.2. YZ showed
that this problem is contained in NP and BQP but not in BPP.

Theorem 34 (Paraphrased from [YZ22]). The following hold in the random oracle model (for oracle-
independent circuits).

CodeHashing ∈ BQP: A QPT machine can solve the code hashing problem with overwhelming probability,
i.e. 1 − negl(𝜆).

CodeHashing ∉ BPP: Every classical circuit which makes at most 2𝜆
𝑐

queries to the oracle solves the code
hashing problem with probability at most 2−Ω(𝜆).

YZ not only show that CodeHashing ∉ BPP, they show that even an unbounded machine would not succeed
at solving CodeHashing with noticeable probability if it makes at most polynomially many (classical) queries
to the random oracle. It is this classical query soundness property that we use later in our proof. Also
observe that a BPP machine can easily check if a solution to CodeHashing is valid.

6.2 The Problem — 𝑑-CodeHashing Problem

We call our problem 𝑑-CodeHashing which is basically28 To be conceret, we explicitly state it. 𝑑-Rec[𝐶𝐻].

Definition 35 (𝑑-CodeHashing Problem). Let

• {𝐶𝜆}𝜆 be a family of codes over an alphabet Σ = F𝑚𝑞 that satisfies the requirements of Lemma 32 with
arbitrary 1 < 𝑐 < 𝑐′ < 1,

27YZ point out that item 3 is not needed for proof of quantumness. It is used for showing one-way-functions. We inherit
these in our construction of proof of depth and one-way functions resp.

28The only difference is in the range of 𝐻 but this is without loss of generality due to domain splitting.
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• 𝐻 ∶= 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻1 ○𝐻0 where 𝐻0 ∶ Σ → Σ𝑑
′

, for ℓ ∈ {1, . . . , 𝑑 − 1}, 𝐻ℓ ∶ Σ𝑑
′ → Σ𝑑

′

and 𝐻𝑑 ∶ Σ𝑑
′ → {0, 1}𝑛 are

independent random oracles with 𝑑 ′ ∶= 2𝑑 + 5,

• Bit𝑖[𝐻] denote the 𝑖th bit of 𝐻 ,

Given the code family {𝐶𝜆}𝜆, access to random oracles 𝐻0, . . . 𝐻𝑑 , on input 1𝜆, the 𝑑-CodeHashing problem is
to find an x = (x1,x2, . . . x𝑛) ∈ 𝐶𝜆 such that for all 𝑖, the 𝑖th bit of 𝐻(x𝑖) is 1, i.e. Bit𝑖[𝐻(x𝑖)] = 1.

7 Lower Bounds

In this section, we establish the following key property of the 𝑑-CodeHashing problem. The proof of Lemma 31
is also immediate from the proof of the following.

Lemma 36 (𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑 ). Every CQC𝑑 circuit29 (which subsumes QCd and CQd circuits)

with oracle access to 𝐻0, . . . 𝐻𝑑 , succeeds at solving 𝑑-CodeHashing with probability at most negl(𝜆) on input
1𝜆.

We prove Lemma 36 in three main steps. First, we establish QNCd hardness. We use this as a warm-up
for introducing notations and concepts (in particular “base sets”) which we build on for establishing QCd
hardness. The basic tools we need are discussed next, in Subsection 7.2. CQd hardness requires more work
(and more technical tools) and we defer that discussion to Subsection 7.5. We then combine the ideas used
in these three main steps to establish CQC𝑑 hardness. Before delving into the proof of Lemma 36, we look
at one of its main consequences.

7.1 Consequence: Jozsa’s conjecture/Aaronson’s challenge

Jozsa had conjectured that BPPQNC = BQP. Lemma 36 and Theorem 34, however, immediately yield the
following theorem. Note that the classes stated below are the corresponding search variants (see Section 3.1).

Theorem 37 (BPPQNC
BPP
⊊ BQP). The following hold (unconditionally) in the random oracle model, for 𝑑 = 𝜆

where 𝜆 is the input size.
𝑑-CodeHashing ∈ BQP: A QPT machine can solve the code hashing problem
with overwhelming probability, i.e. 1 − negl(𝜆), by making O(𝜆) queries to the random oracle.

𝑑-CodeHashing ∉ BPPQNC
BPP

: Every CQClog(𝜆) circuit succeeds at solving 𝑑-CodeHashing with probability

at most negl(𝜆) on input 1𝜆.

We emphasise that QNCBPP ∪ BPPQNC ⊆ BPPQNC
BPP

and so Theorem 37 shows that even a more liberal

interpretation of Jozsa’s conjecture, in the random oracle model, is false. One might wonder if BPPQNC
BPP

is
strictly larger than QNCBPP ∪ BPPQNC . Indeed, this is the case and we show it in Part II.

7.2 Known Results

We first state a simplified version of the so called “one-way to hiding”, or briefly, the O2H lemma (see
Subsection 7.2.1) due originally to Ambainis, Hamburg and Unruh [AHU19]. Our presentation, however, is
inspired by [CCL20] and [AGS22]. We then state a version tailored to our setup (see Subsection 7.2.2) and
end with some elementary results (see Subsection 7.2.3).

7.2.1 The O2H lemma

Informally, the O2H lemma says the following: suppose there are two oraclesO andQ which behave identically
on all inputs except some subset 𝑆 of their input domain. Let AO and AQ be identical quantum algorithms,
except for their oracle access, which is to O and Q respectively. Then, the probability that the result of AO
and AQ will be distinct, is bounded by the probability of finding the set 𝑆. We suppress the details of the
general finding procedure and only focus on the case of interest for us here.

29We assume the circuits are “oracle independent” as described in Subsection 3.2.2.
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We begin by setting up some notation for this section (adapted from [AGS22]). We use the symbol L
for the oracle.30 The workspace register is denoted by 𝑊 which is left untouched by the oracle. The query
register is denoted by 𝑄 and the response register by 𝑅. Suppose we make 𝑚 = poly(𝑛) parallel queries to L.
We use boldface to represent the associated quantities. In particular, the parallel queries (𝑞1, 𝑞2 . . . 𝑞𝑚) are
denoted by the tuple 𝒒, the query registers (𝑄1,𝑄2 . . .𝑄𝑚) which would hold these queries are denoted by 𝑸
and the corresponding response registers (𝑅1, 𝑅2 . . . 𝑅𝑚) are denoted by 𝑹.

Definition 38 (𝑈L/𝑆). Suppose 𝑈 acts on 𝑸𝑅𝑊 , L is an oracle that acts on 𝑸𝑹 and 𝑆 is a subset of the
query domain of L. We define

𝑈L/𝑆 ∣𝜓⟩𝑸𝑹𝑊 ∣0⟩𝐵 ∶= L𝑈𝑆𝑈 ∣𝜓⟩𝑸𝑹𝑊 ∣0⟩𝐵
where 𝐵 is a qubit register, and 𝑈𝑆 flips qubit 𝐵 if any query is made inside the set 𝑆, i.e.

𝑈𝑆 ∣𝒒⟩𝑸 ∣𝑏⟩𝐵 ∶=
⎧⎪⎪⎨⎪⎪⎩

𝑈𝑆 ∣𝒒⟩𝑸 ∣𝑏⟩𝐵 if 𝒒 ∩ 𝑆 = ∅
𝑈𝑆 ∣𝒒⟩𝑸 ∣𝑏 ⊕ 1⟩𝐵 otherwise.

Here31 we treat 𝒒 as a set when we write 𝒒 ∩ 𝑆.

For notational simplicity, in the following, we drop the boldface for the query and response registers as
they do not play an active role in the discussion.

Definition 39 (Pr[find ∶𝑈L/𝑆 , 𝜌]; adapted from [AGS22]). Let 𝑈L/𝑆 be as above and suppose 𝜌 ∈ D(𝑄𝑅𝑊𝐵).
We define

Pr[find ∶𝑈L/𝑆 , 𝜌] ∶= tr[I𝑄𝑅𝑊 ⊗ ∣1⟩ ⟨1∣𝐵𝑈
L/𝑆 ○ 𝜌].

This will depend on L and 𝑆. When L and 𝑆 are random variables, we additionally take expectation over
them.32

Remark 40 (adapted from [AGS22]). Let 𝑈L/𝑆 be as in Definition 38 and let ∣𝜓⟩ ∈ 𝑄𝑅𝑊 . Note that we can
always write

L𝑈 ∣𝜓⟩𝑄𝑅𝑊 = ∣𝜙0⟩𝑄𝑅𝑊 + ∣𝜙1⟩𝑄𝑅𝑊

where ∣𝜙0⟩ and ∣𝜙1⟩ contains queries outside 𝑆 and inside 𝑆 respectively, i.e. ⟨𝜙0∣𝜙1⟩ = 0. Further, we can write

𝑈L/𝑆 ∣𝜓⟩𝑄𝑅𝑊 ∣0⟩𝐵 = ∣𝜙0⟩𝑄𝑅𝑊 ∣0⟩𝐵 + ∣𝜙1⟩𝑄𝑅𝑊 ∣1⟩𝐵 .

The following is a special case of the O2H lemma introduced in [AHU19].

Lemma 41 (O2H lemma; as stated in [AGS22]). Let

• L be an oracle which acts on 𝑄𝑅 and 𝑆 be a subset of the query domain of L,

• G be a shadow of L with respect to 𝑆, i.e. G and L behave identically for all queries outside 𝑆,

• further, suppose that within 𝑆, G responds with ⊥ while (again within 𝑆), L does not respond with ⊥.
Finally, let Π𝑡 be a measurement in the computational basis, corresponding to the string 𝑡 .

Then

∣tr[Π𝑡L ○𝑈 ○ 𝜌] − tr[Π𝑡G ○𝑈 ○ 𝜌]∣ ≤ 𝐵(L ○𝑈 ○ 𝜌,G ○𝑈 ○ 𝜌)

≤
√

2Pr[find ∶𝑈L/𝑆 , 𝜌].

If L and 𝑆 are random variables with a joint distribution, we take the expectation over them in the RHS (see
Definition 39).

The right hand side in Lemma 41 may be bounded using Lemma 42 below. Lemma 42 applies when the
locations queried are independent of the set being hidden.

30Instead of Q as above to avoid confusion.
31i.e. the condition 𝒒 ∩ 𝑆 = ∅ reads there is no 𝑖 for which 𝑞𝑖 ∉ 𝑆.
32i.e. Pr[find ∶𝑈L/𝑆 , 𝜌] ∶= EL,𝑆 tr[I𝑄𝑅𝑊 ⊗ ∣1⟩ ⟨1∣𝐵𝑈L/𝑆 ○ 𝜌].
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Lemma 42 ([CCL20; AHU19] Bounding Pr[find ∶𝑈L/𝑆 , 𝜌]). Suppose 𝑆 is a random variable and Pr[𝑥 ∈ 𝑆] ≤ 𝑝
for some 𝑝. Further, assume that 𝑈 and 𝜌 are uncorrelated33 to 𝑆. Then, (see Definition 38)

Pr[find ∶𝑈L/𝑆 , 𝜌] ≤ 𝑞 ⋅ 𝑝

where 𝑞 is the total number of queries 𝑈 makes to L.

For completeness, we include the proofs in Section A of the Appendix.

7.2.2 O2H adapted to our analysis

Recall that 𝑑-CodeHashing (see Definition 35) is defined using 𝑑 + 1 oracles, {𝐻𝑖}0,1,...𝑑 . Therefore, instead of
considering a set 𝑆 where the oracles (L and G) behave differently, we consider a sequence of sets. Let 𝑆out

denote a sequence of 𝑑 sets and similarly let 𝑆 in denote a sequence of 𝑑 sets contained in 𝑆out (element-wise).
Why we take 𝑑 and not 𝑑 + 1 should become evident later—briefly, it is because the domain of 𝐻0 is known
by construction but the domain of 𝐻1 which is of interest, i.e. 𝐻0(Σ), is what we are trying to hide (and
similarly for 𝐻2, . . . 𝐻𝑑). Observe that in Lemma 41, the state 𝜌 was uncorrelated to the set 𝑆. However, in
our application, the quantum state can potentially contain information about L restricted to values outside
𝑆out. However, within 𝑆out, the values of 𝑆 in stay uncorrelated and we can apply Lemma 41. The following
notation allows us to state this formally.

Notation 43. Consider the following (see Figure 5).

• Let L′ ∶= (𝐻 ′0, 𝐻 ′1, . . . 𝐻 ′𝑑) where the domain and range of 𝐻 ′𝑖 is the same as that of 𝐻𝑖 (as defined in
Definition 35).

– These functions themselves may be sampled from an arbitrary distribution (unlike 𝐻𝑖).

• Let 𝑆out ∶= (𝑆out1 , . . . 𝑆out𝑑 ) and 𝑆 in ∶= (𝑆 in1 , . . . 𝑆 in𝑑 ) be a sequence of (random) subsets such that 𝑆 in𝑖 ⊆ 𝑆out𝑖 ⊆
dom(𝐻 ′𝑖 ).

– Note that 𝑆out and 𝑆 in are random variables which may be arbitrarily correlated with L′.

• Let Ľ′ refer to L′ outside of 𝑆out, i.e. (𝐻 ′0, . . . 𝐻 ′𝑑) where 𝐻 ′𝑖 ∶ dom(𝐻 ′𝑖 )/𝑆out → 𝐻 ′𝑖 (dom(𝐻 ′𝑖 )/𝑆out) and
𝐻 ′𝑖 (𝑥) ∶= 𝐻 ′𝑖 (𝑥) for all 𝑥 ∈ dom(𝐻 ′𝑖 ).

• Let L̂′ refer to L′ inside 𝑆out, i.e. (𝐻 ′0, . . . 𝐻 ′𝑑) where 𝐻 ′𝑖 ∶ 𝑆out𝑖 → 𝐻 ′𝑖 (𝑆out𝑖 ).

We used L′ instead of L because, in our proofs, L will be conditioned on various random variables and it
is this conditioned L we work with.

Corollary 44. Let L′, 𝑆out, 𝑆 in, L̂′, Ľ′ be as in Notation 43 above. Suppose a quantum state 𝜌 and a unitary
𝑈 are drawn from a distribution which may be correlated with L′. Suppose, 𝜎 ∶= 𝜌 ∣Ľ′ and 𝑉 ∶= 𝑈 ∣Ľ′, are
uncorrelated to 𝑅 ∶= 𝑆 in∣Ľ′. Let N ∶= L′∣Ľ′. Given that Pr[𝑥 ∈ 𝑆 in𝑖 ∣Ľ′] ≤ 𝑝 for all 𝑥 ∈ dom(𝐻 ′𝑖 ) and 𝑖 ∈ {1 . . . 𝑑},
it holds that

Pr[find ∶ 𝑉N/𝑅, 𝜎] ≤ 𝑑 ⋅ 𝑞 ⋅ 𝑝
where 𝑞 is the total number of queries 𝑉 makes to the oracles L′.

dom(H0) = Σ

{0, 1}n

dom(H1) = Σd′

Sin
1

Sout
1

dom(H2) = Σd′

Sin
2

Sout
2

dom(Hd) = Σd′

Sin
d

Sout
d

Figure 5

33i.e. the distribution from which 𝑆 is sampled is uncorrelated to the distribution from which 𝑈 and 𝜌 are sampled,
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Proof sketch. We assume that the 𝜌 contains information about Ľ′ and therefore contains information about
𝑆out. At best, 𝑈 can query L at 𝑥 such that 𝑥 ∈ 𝑆out𝑖 for some 𝑖. However, given L̂′ (and therefore 𝑆out),
Pr[𝑥 ∈ 𝑆 in𝑖 ∣L̂] is bounded by 𝑝 so, by argument used in the proof for Lemma 42, together with a union bound,
one obtains the asserted bound. �

When we apply the O2H lemma via the corrollary above, it would be helpful to consider shadows for a
sequence of oracles—the analogue of G in Lemma 41. Defining it formally helps the presentation.

Definition 45 (Shadow oracle wrt 𝑆 ′). Let L′ ∶= (𝐻 ′0, . . . 𝐻 ′𝑑) and Σ be as in Notation 43. Let 𝑆 ′ = (𝑆 ′1, 𝑆 ′2 . . . 𝑆 ′𝑑)
be a tuple of 𝑑 sets where each set 𝑆 ′𝑖 ⊆ Σ𝑑

′

for all 𝑖 ∈ {1, . . . 𝑑}. The shadow oracleM′ of L′ wrt 𝑆 ′ is defined
asM′ ∶= (𝑀 ′0, . . . 𝑀 ′𝑑) where

𝑀 ′𝑖 (l) ∶=
⎧⎪⎪⎨⎪⎪⎩

𝐻 ′𝑖 (l) l ∈ Σ/𝑆 ′𝑖
⊥ l ∈ 𝑆 ′𝑖 .

7.2.3 Elementary results

The following elementary observations will be useful in computing probabilities which arise in our analysis.
We use the following convention: 𝑎𝑃𝑏 ∶= 𝑎!/(𝑎 − 𝑏)! and 𝑎𝐶𝑏 ∶= 𝑎!/(𝑏! ⋅ (𝑎 − 𝑏)!) for 𝑎 ≥ 𝑏.

Fact 46. One has
𝑎𝑃𝑏

𝑎+1𝑃𝑏+1
= 1

𝑎 + 1
and

𝑎𝐶𝑏

𝑎+1𝐶𝑏+1

= 𝑏 + 1

𝑎 + 1
.

Remark 47. Let 𝑀 ≥ 𝑁 be an integer and fix some element 𝑥 ∈ {1, 2 . . . 𝑀}. Suppose 𝑡 is a tuple of size 𝑁 ,
sampled uniformly from the collection of all size 𝑁 tuples containing distinct elements from {1, 2 . . . 𝑀}. Then

Pr(𝑥 ∈ 𝑡) = 𝑀−1𝑃𝑁−1 ⋅ 𝑁
𝑀𝑃𝑁

= 𝑁

𝑀
.

Similarly, suppose 𝑋 is a set of size 𝑁 , sampled uniformly from the collection of all size 𝑁 subsets of {1 . . . 𝑀}.
Then, again,

Pr(𝑥 ∈ 𝑋) = 𝑀−1𝐶𝑁−1

𝑀𝐶𝑁

= 𝑁

𝑀
.

The following elementary calculation was alluded to in the discussion following Definition 35. It allows
us to reduce our problem to permutations, without loss of generality.

Claim 48. Let 𝑓 ∶ 𝐴 → 𝐴 be a random function, i.e. for all 𝑎 ∈ 𝐴, 𝑓 (𝑎) is mapped to 𝑎′ ∈ 𝐴 with probability
1/∣𝐴∣. Let 𝐵 ⊊ 𝐴 be an arbitrary set. Then the probability that ∣𝑓 (𝐵)∣ = ∣𝐵∣ is at least 1−∣𝐵∣2/∣𝐴∣. Equivalently,
the probability that ∣𝑓 (𝐵)∣ < ∣𝐵∣ is at most ∣𝐵∣2/∣𝐴∣.

Proof. It suffices to show that 𝑓 is injective on 𝐵 with the same probability. We have

Pr[∣𝑓 (𝐵)∣ = ∣𝐵∣] = Pr(𝑓 has no collisions in 𝐵)
= 1 −Pr(𝑓 has at least one collision in 𝐵)
≥ 1 − 𝜖

if Pr(𝑓 has at least one collision in 𝐵) ≤ 𝜖. Since 𝑓 is random, the probability that a given 𝑏 collides with
some 𝑏′ is simply the probability that 𝑓 (𝑏′) is assigned the value 𝑓 (𝑏) by 𝑓 which is at most ∣𝐵∣/∣𝐴∣, i.e.
Pr(∃ 𝑏′ ≠ 𝑏 s.t. 𝑓 (𝑏) = 𝑓 (𝑏′)) ≤ ∣𝐵∣/∣𝐴∣. Therefore,

Pr(𝑓 has at least one collision in 𝐵) = Pr(∨𝑏∈𝐵 𝑏 collides under 𝑓 )
≤ ∑

𝑏∈𝐵

Pr(𝑏 collides under 𝑓 )

= ∑
𝑏∈𝐵

Pr(∃ 𝑏′ ≠ 𝑏 s.t. 𝑓 (𝑏) = 𝑓 (𝑏′))

≤ ∣𝐵∣ ⋅ ∣𝐵∣/∣𝐴∣.

�
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7.3 Warm-up — QNC𝑑 exclusion

We have now stated all the preliminaries we need to show our first lower bound. We do this in three stages.
First, we define two algorithms which help us reduce to the case of permutations and allow us to perform
“domain hiding” for each set of parallel calls. The latter is essentially the same as the “russian nesting doll”
technique, as applied by [CCL20], adapted to the random oracle setup. In the second stage, we prove that
the first algorithm does indeed produce permutations with high probability and that the second algorithm
satisfies the properties needed to apply Corollary 44. In the third (final) stage, we combine these into a proof
of QNCd hardness of 𝑑-CodeHashing. The primary purpose here is to setup the basic notation which is used
to show QCd and later CQd hardness.

7.3.1 Shadow oracles for QNC𝑑 hardness

We begin with constructing “base sets” (see Figure 6a). We simply generate a random set 𝑆01 ⊆ dom(𝐻1) and
propagate it through L. Ensuring this set is sufficiently small compared to Σ𝑑

′

, one can later show that L
restricted to the sequence of sets (𝑆01, 𝐻1(𝑆01), 𝐻2(𝐻1(𝑆01)), . . . 𝐻𝑑(. . . 𝐻1(𝑆01) . . . )) behaves as a permutation
with high probability.

Algorithm 49 (Base sets). Let L ∶= (𝐻0, . . . 𝐻𝑑), 𝑑 ′ and Σ be as in Definition 35. Let 𝑆𝑖 ∶= 𝐻𝑖−1(. . . 𝐻0(Σ) . . . ) ⊆
Σ𝑑
′

for 𝑖 ∈ {1, . . . 𝑑}.
1. Base Sets

(a) Sample 𝑆01 ⊆ Σ𝑑
′

uniformly at random,s.t. 𝑆1 ⊆ 𝑆01
and ∣𝑆01∣2/∣Σ𝑑

′ ∣ = 1/∣Σ∣ (i.e. ∣𝑆01∣ = ∣Σ𝑑+2∣).
(b) Define 𝑆0,𝑖+1 ∶= 𝐻𝑖(𝑆0,𝑖) for 𝑖 ∈ {1, . . . 𝑑 − 1}.

2. Abort if any of the following conditions are not met.

(a) ∣𝑆0𝑖 ∣ = ∣Σ∣𝑑+2 for all 𝑖 ∈ {1, . . . 𝑑} (the 𝑖 = 1 condition holds by construction).

(b) ∣𝑆1∣ = ∣Σ∣ (which together with (a) implies ∣𝑆𝑖 ∣ = ∣Σ∣ for all 𝑖 ∈ {1, . . . 𝑑}).

Conditions in item 2 are important because the random function may introduce collisions. The conditions
ensure there are no collisions in the domains of interest.

We now introduce the construction of the sets 𝑆𝑖 𝑗 (see Figure 6b). These are perhaps best viewed as a

matrix whose elements are subsets of Σ𝑑
′

,

𝑆𝑖 𝑗 ≐

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆11 𝐻1(𝑆11) 𝐻2(𝐻1(𝑆11)) . . . 𝐻𝑑(. . . 𝐻1(𝑆11) . . . )
∅ 𝑆22 𝐻2(𝑆22) . . . 𝐻𝑑(. . . 𝐻2(𝑆22) . . . )
∅ ∅ 𝑆33 . . . 𝐻𝑑(. . . 𝐻3(𝑆33) . . . )

⋱
∅ ∅ ∅ 𝑆𝑑𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first row is, element-wise, a subset of (𝑆01, 𝑆02, . . . 𝑆0𝑑). Similarly, each row is an element-wise subset of
the previous row. With each row, the size of the set drops exponentially (in 𝑛, relative to the previous row).
The diagonal sets are chosen uniformly at random, ensuring 𝑆𝑖 are contained within (just as we required for
the “base sets”). Formally, the procedure is defined as follows.

Algorithm 50 (Procedure for constructing 𝑆𝑖 𝑗 ). Let L ∶= (𝐻0, . . . 𝐻𝑑), Σ and 𝑆𝑖 be as in Algorithm 49. Suppose
Algorithm 49 was executed. If Algorithm 49 aborts, define 𝑆𝑖 𝑗 = ∅ for all 𝑖, 𝑗 ∈ {1, . . . 𝑑}. If Algorithm 49 does
not abort then, for each 𝑖 ∈ {1, . . . 𝑑}

1. Define 𝑆𝑖𝑘 = ∅ for 1 ≤ 𝑘 < 𝑖.

2. Sample, uniformly at random, 𝑆𝑖𝑖 ⊆ 𝑆𝑖−1,𝑖 such that 𝑆𝑖 ⊆ 𝑆𝑖𝑖 and ∣𝑆𝑖𝑖 ∣/∣𝑆𝑖−1,𝑖 ∣ = 1/ ∣Σ∣.

3. Define 𝑆𝑖𝑘 = 𝐻𝑘−1(. . . 𝐻𝑖(𝑆𝑖𝑖) . . . ) for 𝑖 < 𝑘 ≤ 𝑑.
In both cases, return 𝑆𝑖 ∶= (𝑆𝑖1, 𝑆𝑖2, . . . 𝑆𝑖𝑑) for each 𝑖 ∈ {1, . . . 𝑑}.

Two short remarks—first, when Algorithm 49 fails, we simply abort and output ∅ as we don’t care what
happens in that case. This is because it fails with vanishing probability as we prove next. Second, it may
help to note that 𝑆𝑖 , in the matrix representation above, is just the 𝑖th row of 𝑆𝑖 𝑗 .
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dom(Hd) = Σd′

Sd

S0d

(a) Base Sets

Σ

{0, 1}n

S1

S01

S11

S2

S02

S12

S22

Sd

S0d

S1d

S2d

(b) 𝑆𝑖 𝑗 inside Base Sets

dom(H0) = Σ

{0, 1}n
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S11

dom(H1) = Σd′

S2

S02

S12

S22

dom(H1) = Σd′
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...
(c) Unified view: Base Sets and 𝑆𝑖 𝑗

Figure 6: Illustrating the sets produced by Algorithm 49 and Algorithm 50
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7.3.2 Properties of the shadow oracles

Like we said, Algorithm 49 fails with vanishing probability.

Claim 51. Algorithm 49 outputs abort with at most (𝑑+1)⋅negl(𝜆) probability where 𝜆 is as in Definition 35.

Proof. We use Claim 48 and a union bound. For each 𝑖 ∈ [𝑑], condition 2 (a) fails with probability at most

1/∣Σ∣. To see this, in Claim 48, set 𝑓 ← 𝐻1, 𝐴 ← Σ𝑑
′

, 𝐵 ← 𝑆01 to conclude that the probability that 𝑆02 = 𝐻1(𝑆01)
has size strictly less than ∣𝑆01∣ is at most ∣𝐵∣2/∣𝐴∣ = 1/∣Σ∣. Proceeding similarly, set 𝑓 ← 𝐻𝑖 , 𝐴 ← Σ𝑑

′

, 𝐵 ← 𝑆0𝑖 to
conclude that the probability that 𝑆0,𝑖+1 = 𝐻𝑖(𝑆0𝑖) has size strictly less than ∣𝑆0𝑖 ∣, is at most 1/∣Σ∣. By a union
bound, condition 2 (a) fails with probability at most 𝑑 ⋅ 1/∣Σ∣.

Similarly, condition 2 (b) fails with probability at most 1/∣Σ∣𝑑′−2 < 1/∣Σ∣ by Claim 48 with 𝑓 ← 𝐻0, 𝐴 ← Σ𝑑
′

and 𝐵 ← Σ (note that the claim is true even when 𝑓 ∶ 𝐵 → 𝐴). Therefore the probability of abort is at most
(𝑑 + 1) ⋅ 1/∣Σ∣ where ∣Σ∣ = 2Θ(𝜆), yielding the asserted bound. �

To apply Corollary 44, we would need a bound on Pr[𝑥 ∈ 𝑆𝑖𝑘 ∣𝑆𝑖,𝑘−1] conditioned on not aborting.

Claim 52. Let L be as in Definition 35, run Algorithm 49 and let 𝐸 be the event that it does not abort.
Obtain 𝑆𝑖 𝑗 by running Algorithm 50. Then, it holds that

Pr[𝑥 ∈ 𝑆𝑖𝑘 ∣(𝑆𝑖−1,𝑘 , 𝐸)] ≤ 1/ ∣Σ∣

and
Pr[𝑥 ∈ 𝑆𝑖𝑘 ∣(Ľ, 𝐸)] ≤ 1/∣Σ∣

where Ľ is L outside (𝑆𝑖−1,1, . . . 𝑆𝑖−1,𝑑) (see Notation 43 with 𝑆out ← (𝑆𝑖−1, 𝑗)𝑗 and L′ ← L) for all 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑑
where the probability is over L, the randomness in Algorithm 49 and in Algorithm 50.

Proof sketch. Consider the 𝑘 = 𝑖 case. Once 𝑆𝑖−1,𝑖 is fixed, 𝑆𝑖𝑖 is a (uniform) random subset of 𝑆𝑖−1,𝑖 and
therefore the probability that any 𝑥 ∈ 𝑆𝑖,𝑖 (assume 𝑥 ∈ 𝑆𝑖−1,𝑖 to get an upper bound), is at most ∣𝑆𝑖,𝑖 ∣ / ∣𝑆𝑖−1,𝑖 ∣ =
1/∣Σ∣ (see Remark 47, first observation). The result continues to hold if L (or in particular Ľ) is specified
because 𝑆𝑖𝑖 is sampled uniformly at random by Algorithm 50. For 𝑘 > 𝑖, note that conditioned on 𝐸, each
𝐻1, 𝐻2 . . . 𝐻𝑑−1 behaves as a random permutation on 𝑆0,1, 𝑆0,2 . . . 𝑆0,𝑑−1. In particular, conditioned on 𝐸, each
𝐻1, . . . 𝐻𝑑−1 behaves as a random permutation on 𝑆𝑖−1,1, 𝑆𝑖−1,2 . . . 𝑆𝑖−1,𝑑−1 (even if Ľ is given since it does not
determine the values within (𝑆𝑖−1, 𝑗)𝑗 ). From the first observation in Remark 47, it follows that 𝑥 ∈ 𝑆𝑖𝑘
conditioned on 𝐸 and 𝑆𝑖−1,𝑘 for 𝑘 > 𝑖, is also at most 1/∣Σ∣. This is because 𝐻𝑖−1 maps every subset of 𝑆𝑖−1,𝑘−1
of size ∣𝑆𝑖−1,𝑘−1∣/∣Σ∣ to another set of the same size in 𝑆𝑖−1,𝑘 (i.e. 𝐻𝑖−1 essentially behaves as a permutation) and
Remark 47 shows the probability that 𝑥 ∈ 𝑆𝑖,𝑘 ∣ (𝑆𝑖−1,𝑘−1, 𝐸) and 𝑥 ∈ 𝑆𝑖,𝑘 ∣(Ľ, 𝐸), are both bounded by 1/∣Σ∣. �

7.3.3 𝑑-CodeHashing is hard for QNC𝑑

With all the intermediate results proven, we can stitch them together to establish the QNCd hardness of
𝑑-CodeHashing.

Lemma 53 (𝑑-CodeHashing ∉ QNC𝑑). Every QNC𝑑 circuit succeeds at solving 𝑑-CodeHashing (see Defini-
tion 35) with probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝑛).

Proof. For clarity of presentation, we omit the input 1𝜆 when convenient. Let L ∶= (𝐻0, . . . 𝐻𝑑) and Σ be as
in Definition 35. Denote an arbitrary QNC𝑑 circuit, AL by

AL ∶= Πx ○𝑈𝑑+1 ○ L ○𝑈𝑑 . . .L ○𝑈2 ○ L ○𝑈1

where Πx is a projector corresponding to output x. Let Πvalid be a projector on the set 𝑋valid = {x} of all
correct solutions to Definition 35. Πvalid implicitly depends on 𝐻 and 𝜆. We use Πvalid later. For now, run
Algorithm 49 and let 𝐸 be the event that it does not abort. Note that34

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← AL] − ∑
x∈𝑋valid

Pr[x← AL∣𝐸]
RRRRRRRRRRR
≤ negl(𝑛). (1)

34Using Pr[𝐴] = Pr[𝐴∣𝐸]Pr[𝐸] +Pr[𝐴∣¬𝐸]Pr[¬𝐸], which yields Pr[𝐴] −Pr[𝐴∣𝐸] ≤ Pr[𝐴∣¬𝐸]Pr[¬𝐸], and that Pr[¬𝐸] = negl(𝜆).
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Let (𝑆𝑖)𝑖∈{1,...𝑑} be the output of Algorithm 50. Define

AM ∶= Πx ○𝑈𝑑+1 ○M𝑑 ○𝑈𝑑 . . .M2 ○𝑈2 ○M1 ○𝑈1

whereM𝑖 is the shadow oracle of L wrt 𝑆𝑖 (see Definition 45).
AM∣𝐸 cannot succeed with non-negligible probability: In this paragraph, we condition on 𝐸 implicitly.

Recall 𝐻 = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○ 𝐻0 ∶ Σ → {0, 1}𝑛 and 𝐻𝑖 is the 𝑖th bit of 𝐻 (see Definition 35). Observe that if x =
(x1, . . . x𝑑) ∈ 𝐶𝜆 is such that 𝐻𝑖(x𝑖) = 1 for all 𝑖, then Pr[x ← AM] ≤ 1/2𝑛. This is because the oracles
M1, . . .M𝑑 contain no information about 𝐻𝑖(x𝑖) therefore x cannot be correlated to the values the random
oracle assigns to 𝐻 . The probability that for any given x, all 𝐻𝑖(x𝑖) output 1 is at most 1/2𝑛.
AM∣𝐸 and AL∣𝐸 have practically the same behaviour: Using a hybrid argument and the O2H lemma (see

Lemma 41), one finds that the output distributions of AM∣𝐸 and AL∣𝐸 cannot be noticeably different. We
have (we dropped the ○ symbol, the conditioning on 𝐸 and the subscript valid from Πvalid for brevity/clarity)

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← AL] − ∑
x∈𝑋valid

Pr[x← AM]
RRRRRRRRRRR

= ∣tr[Πvalid𝑈𝑑+1L𝑈𝑑 . . .L𝑈2L𝑈1𝜌0 − Πvalid𝑈𝑑+1M𝑑𝑈𝑑 . . .M2𝑈2M1𝑈1𝜌0]∣ monotonicity of TD

≤ ∣tr[Π𝑈𝑑+1L𝑈𝑑 . . .L𝑈2L𝑈1𝜌0
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

−Π𝑈𝑑+1L𝑈𝑑 . . .L𝑈2M1𝑈1𝜌0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

]∣ + triangle inequality

∣tr[Π𝑈𝑑+1L𝑈𝑑 . . .𝑈3L𝑈2M1𝑈1𝜌0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−Π𝑈𝑑+1L𝑈𝑑 . . .L𝑈3M2𝑈2M1𝑈1𝜌0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

]∣ +

⋮

∣tr[Π𝑈𝑑+1L𝑈𝑑M𝑑−1𝑈𝑑−1 . . .𝑈3M2𝑈2M1𝑈1𝜌0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−Π𝑈𝑑+1M𝑑𝑈𝑑M𝑑−1 . . .𝑈3M2𝑈2M1𝑈1𝜌0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

]∣

≤ B(L ○𝑈1(𝜌0),M1 ○𝑈1(𝜌0))+ relation b/w TD and B

B(L ○𝑈2(𝜌1),M2 ○𝑈2(𝜌1))+
⋮
B(L ○𝑈𝑑(𝜌𝑑−1),M𝑑 ○𝑈𝑑(𝜌𝑑−1))

≤
𝑑

∑
𝑖=1

√
2Pr[find ∶𝑈L/𝑆𝑖𝑖 , 𝜌𝑖−1] Lemma 41

(2)

where 𝜌0 = ∣1𝜆, 0 . . . 0⟩ ⟨1𝜆, 0 . . . 0∣ and 𝜌𝑖 = M𝑖 ○𝑈𝑖 ○ . . .M1 ○𝑈1(𝜌0) for 𝑖 > 0. To bound the last expression,

one can use Lemma 42 via Corollary 44 (recall that everything is conditioned on 𝐸). Let Ľ𝑖 be L outside
(𝑆𝑖1, . . . 𝑆𝑖𝑑) (see Notation 43 with L′ ← L, 𝑆out ← (𝑆𝑖 𝑗)𝑗 and define Ľ𝑖 ∶= Ľ′) for each 𝑖 ∈ {0, 1 . . . 𝑑} (we include

0 to include the base sets specified by Algorithm 49). Similarly, let L̂𝑖 be L inside (𝑆𝑖1, . . . 𝑆𝑖𝑑) (see Notation 43
with L′ ← L, 𝑆out ← (𝑆𝑖 𝑗)𝑗 and define L̂𝑖 ∶= L̂′). Note that the only information about L contained inM𝑖 , is

Ľ𝑖 , for each 𝑖 ∈ {1, . . . 𝑑}. Consider Pr[find ∶ 𝑈L/𝑆𝑖𝑖 , 𝜌𝑖−1] and note that 𝜌𝑖−1 at most specifies Ľ𝑖−1 (about L).
Let 𝜎𝑖 ∶= 𝜌𝑖−1∣Ľ𝑖−1, 𝑅𝑖 ∶= 𝑆𝑖 ∣Ľ𝑖−1 and N𝑖 ∶= L∣Ľ𝑖−1. Observe that 𝑅𝑖 is uncorrelated to 𝜎𝑖 (because once Ľ𝑖−1 is
fixed, 𝜎𝑖 contains no information about how L behaves in 𝑆𝑖−1 = (𝑆𝑖−1,1 . . . 𝑆𝑖−1,𝑑) and 𝑅𝑖 depends only on the

randomness in Algorithm 50 and on L̂𝑖−1). One can thus apply Corollary 44 with Claim 52 to obtain

Pr[find ∶ 𝑉N𝑖/𝑅𝑖
𝑖 , 𝜎𝑖−1] ≤ 𝑑 ⋅ 𝑞 ⋅

1

∣Σ∣

which entails
Pr[find ∶𝑈L/𝑆𝑖𝑖 , 𝜌𝑖−1] ≤ negl(𝜆)

by using Pr[𝐴] = ∑𝐵=𝑏 Pr[𝐴∣𝐵 = 𝑏]Pr[𝐵 = 𝑏] and the parameters 𝑑,𝑞 ≤ poly(𝜆), and ∣Σ∣ = 2Θ(𝜆).
Plugging these into the last expression above (Equation (2)), yields

∣Pr[x ∈ 𝑋valid∣𝐸 ∶ x← AL] −Pr[x ∈ 𝑋valid∣𝐸 ∶ x← AM∣𝐸]∣ ≤ negl(𝜆) where we now state 𝐸 explicitly. Us-
ing Equation (1) and the triangle inequality, we obtain the asserted result.

�
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7.4 QNCBPP
𝑑

exclusion

Once the analysis of QNCd is clear, extending it to QCd is not too difficult. One needs to account for the
actions of the intermediate classical circuits. The basic approach stays the same. We replace L with shadow
oracles successively. The difference is that after each set of parallel queries, we account for the polynomially
many queries made by the corresponding intermediate classical algorithm by exposing those queries in the
subsequent shadow oracles.

7.4.1 Shadow oracles for QCd hardness

The procedure for constructing base sets stays unchanged. We need the analogue of Algorithm 50. However,
unlike Algorithm 50, this time the procedure cannot directly produce 𝑆𝑖 𝑗 for all 𝑖, 𝑗 , given the base sets. This
is because the sets 𝑆𝑖 𝑗 now must also depend on the queries made by the classical algorithm at intermediate
steps.

Before we present the algorithm, we make the following assumption (which only makes the impossibility
result stronger): the classical algorithm makes “path queries”, i.e. suppose when it queries 𝐻𝑖 at 𝑡𝑖 , it learns
all tuples (𝑡0, 𝑡1, 𝑡2 . . . , 𝑡𝑖 , . . . 𝑡𝑑) such that 𝐻 𝑗−1(𝑡 𝑗−1) = 𝑡 𝑗 for all 𝑗 ∈ {1, . . . 𝑑}. Since 𝐻0 cannot span the domain
of 𝐻1, 𝑡0 may not always exist, corresponding to (𝑡1, 𝑡2 . . . 𝑡𝑑). More formally, we have the following.

Definition 54 (Path Queries). Let L′ ∶= (𝐻 ′0, . . . 𝐻 ′𝑑) be as in Notation 43 and let 𝑇𝑖 ∶= (𝑇𝑖0,𝑇𝑖1, . . .𝑇𝑖𝑑) be a

tuple of sets where for each 0 ≤ 𝑗 ≤ 𝑑, 𝑇𝑖 𝑗 ⊆ Σ𝑑
′

. We say 𝑇𝑖 are path queries if 𝑇𝑖1 ⊇ 𝐻0(𝑇𝑖0), and 𝑇𝑖 𝑗 = 𝐻 𝑗−1(𝑇𝑖, 𝑗−1)
for all 𝑗 ∈ {2, . . . , 𝑑}.

We can now define the algorithm. For context, it may help to recall that (see Notation 25) an arbitrary
QCd circuit with oracle access to L can be represented as

BL ∶= Π ○ AL𝑐,𝑑+1 ○ BL𝑑 ○ . . .BL1 ○ 𝜌0

where BL𝑖 ∶= Π𝑖 ○L○𝑈𝑖 ○AL𝑐,𝑖 , 𝜌0 is the initial state (in our case, encoding 1𝜆) and Π is a measurement. Below,
informally,35 𝑇𝑖 corresponds to the set of queries made by the classical algorithm A𝑐,𝑖 to L.

Algorithm 55 (Procedure for constructing 𝑆𝑖 𝑗 , given𝑇𝑖s). Let L ∶= (𝐻0, . . . 𝐻𝑑), Σ and 𝑆𝑖 be as in Algorithm 49
and suppose the Algorithm 49 was executed.

Input:

1. The previous sequence of sets for creating the shadow oracle: 𝑆𝑖−1 ∶= (𝑆𝑖−1, 𝑗)𝑗∈{1...𝑑} where 𝑆𝑖−1, 𝑗 ⊆ 𝑆0, 𝑗
for all 𝑗 ∈ {1, . . . 𝑑}.

2. The path queries made by the classical algorithm at step 𝑖: 𝑇𝑖 ∶= (𝑇𝑖0,𝑇𝑖1,𝑇𝑖2 . . .𝑇𝑖𝑑)

If Algorithm 49 aborts, define 𝑆𝑖 𝑗 = ∅ for all 𝑖, 𝑗 ∈ {1, . . . 𝑑}. If Algorithm 49 does not abort then, for each
𝑖 ∈ {1, . . . 𝑑} do the following.

1. Define 𝑆𝑖𝑘 = ∅ for 1 ≤ 𝑘 < 𝑖.

2. Sample, uniformly at random, 𝑆𝑖𝑖 ⊆ 𝑆𝑖−1,𝑖/𝑇𝑖𝑖 such that (𝑆𝑖 ∩ 𝑆𝑖−1,𝑖)/𝑇𝑖𝑖 ⊆ 𝑆𝑖𝑖 and ∣𝑆𝑖𝑖 ∣/∣𝑆𝑖−1,𝑖 ∣ = 1/∣Σ∣.

3. Define 𝑆𝑖𝑘 = 𝐻𝑘−1(. . . 𝐻𝑖(𝑆𝑖𝑖) . . . ) for 𝑖 < 𝑘 ≤ 𝑑.

In both cases, return 𝑆𝑖 ∶= (𝑆𝑖1, 𝑆𝑖2 . . . 𝑆𝑖𝑑).

7.4.2 Properties of the shadow oracles

Points

• The following could potentially be more generally stated.

• We take the set 𝑆𝑖−1 to be given (we only impose the bare requirements), and have 𝑇𝑖 be arbitrary poly
sized sets

35We say informally because the queries A𝑐,𝑖 makes depends on the hybrid we are considering; these details appear later in
the proof of Lemma 57.
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• We show that given 𝑆𝑖−1 and the sets 𝑇𝑖 , finding 𝑥 in 𝑆𝑖 would happen with probability poly(𝜆)/∣Σ∣ at
most.

Claim 56. Let L be as in Definition 35, run Algorithm 49 and let 𝐸 be the event that it does not abort. Let
1 ≤ 𝑖 ≤ 𝑑. Obtain 𝑆𝑖 by running Algorithm 55 with the following input:

1. If 𝑖 = 1, use 𝑆0 generated by Algorithm 49.
Else, if 𝑖 > 1, let 𝑆𝑖−1 ∶= (𝑆𝑖−1,1, 𝑆𝑖−1,2 . . . 𝑆𝑖−1,𝑑) be arbitrary sets such that

• for 𝑗 < 𝑖 − 1, 𝑆𝑖−1, 𝑗 = ∅,
• for 𝑗 = 𝑖 − 1, 𝑆𝑖−1,𝑖−1 ⊆ 𝑆0,𝑖−1 and ∣𝑆𝑖−1,𝑖−1∣ = ∣Σ∣𝑑+2−(𝑖−1)∣ = ∣Σ𝑑+1−𝑖 ∣ and finally

• for 𝑗 > 𝑖 − 1, 𝑆𝑖−1, 𝑗 ⊆ 𝐻 𝑗(𝑆𝑖−1, 𝑗−1) = 𝐻 𝑗(. . . 𝐻𝑖−1(𝑆𝑖−1,𝑖−1) . . . ).

2. 𝑇𝑖 ∶= (𝑇𝑖0, . . .𝑇𝑖𝑑) be arbitrary path queries (see Definition 54) such that ∣𝑇𝑖 𝑗 ∣ ≤ poly(𝜆) for all 𝑗 ∈ {0, . . . 𝑑}.

Then, it holds (for a large enough 𝜆) that

Pr[𝑥 ∈ 𝑆𝑖𝑘 ∣(𝑆𝑖−1,𝑘 ,𝑇𝑖 , 𝐸)] ≤ poly(𝜆)/∣Σ∣

and
Pr[𝑥 ∈ 𝑆𝑖𝑘 ∣(Ľ, 𝐸)] ≤ poly(𝜆)/∣Σ∣

where Ľ is L outside (𝑆𝑖−1,1/𝑇𝑖1, . . . 𝑆𝑖−1,𝑑/𝑇𝑖𝑑) (see Notation 43 with 𝑆out ← (𝑆𝑖−1, 𝑗/𝑇𝑖 𝑗)𝑗 and L′ ← L) for all
1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑑 where the probability is over L, the randomness in algorithm 55.

Before looking at the proof, we briefly comment on the claim. Item 1 is meant to enforce the form of
the set 𝑆𝑖−1 which would be produced by repeated applications of Algorithm 55. Therefore the first bullet
ensures all sets before 𝑖 − 1 are empty, the second ensures the diagonal one has the right size (we start with
∣Σ∣𝑑+2 for base sets and at each iteration, the size drops by ∣Σ∣) and the last bullet ensures that the sets are
no larger than if they were propogated through L. Item 2 allows one to specify the classical queries made at
the 𝑖th step. The statement says that if these inputs are used in Algorithm 55 to obtain the next sequence
of sets, 𝑆𝑖 , then one can obtain a bound analogous to that of Claim 52. The difference is that this time, both
the previous sequence of sets 𝑆𝑖−1 and the classical queries 𝑇𝑖 are revealed.

Proof sketch. The idea is the same as that we used in the proof of Claim 52. The only difference is that
instead of considering the sets 𝑆𝑖−1, 𝑗 , one considers 𝑆 ′𝑖−1, 𝑗 ∶= 𝑆𝑖−1, 𝑗/𝑇𝑖, 𝑗 . Let 𝑓 (𝜆) be such that ∣𝑇𝑖 𝑗 ∣ ≤ 𝑓 (𝜆) and
suppose 𝜆 is large enough so that ∣Σ∣ > 𝑓 (𝜆). For the 𝑘 = 𝑖 case, we get 𝑥 ∈ 𝑆𝑖,𝑖 is at most36 ∣𝑆𝑖,𝑖 ∣/ ∣𝑆 ′𝑖−1,𝑖 ∣ =
poly(𝜆)/∣Σ∣. Similarly, for 𝑘 > 𝑖, using Remark 47 (first observation) with 𝑁 ← ∣𝑆𝑖,𝑘 ∣ = ∣Σ𝑑+2−𝑖 ∣ and 𝑀 ←
∣𝑆 ′𝑖−1,𝑘 ∣ = (∣Σ𝑑+1−𝑖 ∣ − poly(𝜆)), one obtains that 𝑥 ∈ 𝑆𝑖𝑘 (conditioned on knowing 𝑇𝑖𝑘 and 𝑆𝑖−1,𝑘 and 𝐸) with
probability at most 𝑁 /𝑀 ≤ poly(𝜆)/∣Σ∣. �

7.4.3 𝑑-CodeHashing is hard for QCd

We can now establish QCd hardness of 𝑑-CodeHashing.

Lemma 57 (𝑑-CodeHashing ∉ QNCBPP
𝑑 ). Every QCd circuit succeeds at solving 𝑑-CodeHashing (see Defini-

tion 35) with probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝑛).

36We have

∣𝑆𝑖𝑖 ∣/∣𝑆 ′𝑖−1,𝑖 ∣ = ∣𝑆𝑖𝑖 ∣/(∣𝑆
′

𝑖−1,𝑖 ∣ − 𝑓 )

= ∣Σ∣𝑑
′
−𝑖−1/(∣Σ∣𝑑

′
−1 − 𝑓 )

=
1

∣Σ∣(1 − 𝑓 /∣Σ∣𝑑′−𝑖−1)

≤
poly(𝜆)
∣Σ∣

.

using, (1 − 𝑥)−1 ≤ 1 + 𝑥 + 𝜖 for small enough 𝑥 , where 𝜖 > 0 is some constant.
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Proof. The proof is similar to that of Lemma 53. Again, we omit the input 1𝜆 when convenient. Let
L ∶= (𝐻0, . . . 𝐻𝑑) and Σ be as in Definition 35. Denote an arbitrary QCd circuit, BL by

BL ∶= Πx ○ AL𝑐,𝑑+1 ○ BL𝑑 ○ . . .BL1
where BL𝑖 ∶= Π𝑖 ○ L ○𝑈𝑖 ○ AL𝑐,𝑖 and Πx is a projector corresponding to output x. Let Πvalid be a projector on
the set 𝑋valid = {x} of all correct solutions to Definition 35. Run Algorithm 49 and let 𝐸 be the event that it
does not abort. Note that

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← BL] − ∑
x∈𝑋valid

Pr[x← BL∣𝐸]
RRRRRRRRRRR
≤ negl(𝑛). (3)

Define
BM ∶= Πx ○ AL𝑐,𝑑+1 ○ BM𝑑 ○ ⋅ ⋅ ⋅ ○ BM1

where BM𝑖 ∶= Π𝑖 ○M𝑖 ○𝑈𝑖 ○ AL𝑐,𝑖 and M𝑖 is the shadow oracle of L wrt 𝑆𝑖 (see Definition 45). We are yet
to define 𝑆𝑖 . Do the following for each 𝑖 ∈ (1, 2 . . . 𝑑). Suppose 𝑆1, . . . 𝑆𝑖−1 (and therefore M1, . . .M𝑖−1) have
been defined and suppose AL𝑐,𝑖 makes path queries 𝑇𝑖 = (𝑇𝑖0,𝑇𝑖1, . . .𝑇𝑖𝑑) to L. Then, let 𝑆𝑖 be the output of
Algorithm 55 with 𝑆𝑖−1 and 𝑇𝑖 as input.
BM∣𝐸 cannot succeed with non-negligible probability: We focus on the intermediate classical algorithms,

{AL𝑐,𝑖}𝑖∈{1,...,𝑑+1} because the quantum parts have no access to 𝐻 (other than that already exposed by classical

queries). Consider the labelling in Figure 7 and suppose that the input to AL𝑐,𝑖 is 𝑐′𝑖−1 and its output is 𝑐𝑖 .
Similarly, suppose the input to Π𝑖M𝑖𝑈𝑖 is 𝑐𝑖 (classical) and 𝑞𝑖−1 (quantum) and its output is 𝑐′𝑖 (classical) and
𝑞𝑖 (quantum). Observe37 that, 𝑐𝑖 , 𝑐

′
𝑖 , 𝑞𝑖 at most reveal 𝐻 at 𝑇𝑖0 ∪𝑇𝑖−1,0 ⋅ ⋅ ⋅ ∪𝑇1,0. Since ∣𝑇𝑖0 ∪𝑇𝑖−1,0 ⋅ ⋅ ⋅ ∪𝑇𝑖,0∣ is at

most polynomial, from Theorem 34 (second part), we conclude that AL𝑐,𝑑+1 succeeds at solving CodeHashing
with probability at most negligible. Note in particular, that since the quantum part, Π𝑖M𝑖𝑈𝑖 does not access
𝐻 outside 𝑇𝑖0, it can be classically simulated without making any calls to 𝐻 . Consequently, one can treat
the entire algorithm as a classical algorithm for applying Theorem 34 (second part) because the theorem
statement only depends on the number of classical queries to 𝐻 (and not on the computational complexity
of the circuit).
BM∣𝐸 and BL∣𝐸 have practically the same behaviour: We use a hybrid argument and the O2H lemma (see

Lemma 41) to obtain the following (we dropped the ○ symbol, the conditioning on 𝐸)

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← BL] − ∑
x∈𝑋valid

Pr[x← BM]
RRRRRRRRRRR

= ∣Πvalid ○ AL𝑐,𝑑+1 ○ BL𝑑 ○ ⋅ ⋅ ⋅ ○ BL1 ○ 𝜌0 − Πvalid ○ AL𝑐,𝑑+1 ○ BM𝑑 ○ ⋅ ⋅ ⋅ ○ BM1 ○ 𝜌0∣

≤
𝑑

∑
𝑖=1

𝐵(BL𝑖 (𝜌𝑖−1),BM𝑖 (𝜌𝑖−1)) ≤
𝑑

∑
𝑖=1

√
2Pr[find ∶𝑈L/𝑆𝑖𝑖 ,AL𝑐,𝑖 ○ 𝜌𝑖−1] (4)

A1

c1

L

Π1M1U1

q1

A2

c′1 c2 c′2

L

Π2M2U2

q2

Ad+1

L

Figure 7: Illustration of the QCd circuit, BM, where all oracles have been replaced by shadow oracles. Note
that we dropped ○ between the operators for brevity.

37To see this, observe that

• 𝑐1 at most reveals 𝑇10

• both 𝑐′1 and 𝑞1 reveal at most 𝑇10

• 𝑐2 at most reveals 𝑇20 ∪𝑇10
• both 𝑐′2 and 𝑞2 reveal at most 𝑇20 ∪𝑇10
• and so on...
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where for 𝑖 ∈ {1, 2 . . . 𝑑 − 1}, 𝜌𝑖 ∶= BM𝑖 ○ . . .BM1 ○ 𝜌0. To bound the last expression, one can use Lemma 42 via
Corollary 44 (recall that everything is conditioned on 𝐸). Let Ľ𝑖 be L outside (𝑆𝑖1/𝑇𝑖+1,1, . . . 𝑆𝑖𝑑/𝑇𝑖+1,𝑑) (see
Notation 43 with L′ ← L, 𝑆out ← (𝑆𝑖 𝑗/𝑇𝑖+1, 𝑗)𝑗∈{1...𝑑} and define Ľ𝑖 ∶= Ľ′) for each 𝑖 ∈ {0, 1 . . . 𝑑} (we include

0 to include the base sets specified by Algorithm 49). Similarly, let L̂𝑖 be L inside (𝑆𝑖1/𝑇𝑖+1,1, . . . 𝑆𝑖𝑑/𝑇𝑖+1,𝑑)
(see Notation 43 with L′ ← L, 𝑆out ← (𝑆𝑖 𝑗/𝑇𝑖+1, 𝑗)𝑗 and L̂𝑖 ∶= L̂′). Note that the only information about L
contained in M𝑖 , is at most Ľ𝑖 , for each 𝑖 ∈ {1, . . . 𝑑} (at most because Ľ also contains information queried

by AL𝑐,𝑖+1). Consider Pr[find ∶ 𝑈L/𝑆𝑖𝑖 ,AL𝑐,𝑖 ○ 𝜌𝑖−1] and note that AL𝑐,𝑖 ○ 𝜌𝑖−1 at most specifies38 Ľ𝑖−1 (about L).
Note also that the queries, 𝑇𝑖 , made by AL𝑐,𝑖 have been exposed in Ľ𝑖−1 and, furthermore, by construction (of

Algorithm 55) are excluded from 𝑆𝑖 . Let 𝜎𝑖 ∶= AL𝑐,𝑖 ○𝜌𝑖−1∣Ľ𝑖−1, 𝑅𝑖 ∶= 𝑆𝑖 ∣Ľ𝑖−1 and N𝑖 ∶= L∣Ľ𝑖−1. After conditioning,

𝜎𝑖 is uncorrelated to 𝑅𝑖 (because once Ľ𝑖−1 is fixed (which also fixes 𝑇𝑖), 𝜎𝑖 contains no information about
how L behaves in 𝑆𝑖−1/𝑇𝑖 and 𝑅𝑖 depends only on the randomness in Algorithm 55 and on L̂𝑖−1). One can
thus apply Corollary 44 with Claim 56 to obtain

Pr[find ∶ 𝑉N𝑖/𝑅𝑖
𝑖 , 𝜎𝑖−1] ≤ 𝑑 ⋅ 𝑞 ⋅

poly(𝜆)
∣Σ∣

which entails
Pr[find ∶𝑈L/𝑆𝑖𝑖 ,AL𝑐,𝑖 ○ 𝜌𝑖−1] ≤ negl(𝜆)

by using Pr[𝐴] = ∑𝐵=𝑏 Pr[𝐴∣𝐵 = 𝑏]Pr[𝐵 = 𝑏] and the parameters 𝑑,𝑞 ≤ poly(𝜆) and ∣Σ∣ = 2𝜆Θ(1) .
Plugging these into Equation (4), yields ∣Pr[x ∈ 𝑋valid∣𝐸 ∶ x← BL] −Pr[x ∈ 𝑋valid∣𝐸 ∶ x← BM]∣ ≤ negl(𝜆)

where we now state conditioning on 𝐸 explicitly. Using Equation (3) and the triangle inequality, we obtain
the asserted result.

�

7.5 BPPQNC𝑑 exclusion — Warm up

Establishing CQd hardness takes more work. We briefly outline the approach first and formalise it in the
following sections. We take inspiration from [CCL20] and adapt the implementation/formalism introduced
in [AGS22]. Let L ∶= (𝐻0, . . . 𝐻𝑑) be as defined in Definition 35.

Consider a CQd circuit. To show that it cannot solve 𝑑-CodeHashing, the first quantum part, can be
analysed as we did the QNC𝑑 part (using domain hiding). Let the output of this quantum part be a string 𝑠1
and suppose the “paths” queried by the subsequent classical part be 𝑌1. To analyse the subsequent quantum
part, one could expose (in the shadow oracles) the paths uncovered by 𝑌1 (as we did in the analysis of QCd
circuits, albeit there we had to do it after every unitary layer). However, this is not enough because the
string 𝑠1 is correlated to the oracle L and it is unclear how our techniques would work with L∣𝑠1 instead of
L. It turns out that if the string 𝑠1 appears with non-negligible probability, then L∣𝑠1 can be viewed as a
“convex combination” of L with a polynomial number of “paths” fixed. One can then proceed (almost) as in
the QNC𝑑 case for the next second quantum part. This procedure can be iterated polynomially many times
to yield the desired hardness.

Before we can make any of this precise, we need to introduce the sampling argument. While the following
overlaps with the informal discussion presented in the Technical Overview, there are more details and precise
statements.

7.6 Technical Results II — The sampling argument

We first describe the sampling argument in its simplest form and subsequently show how to lift the result to
our setting of interest.

7.6.1 Warm up — Sampling argument for Permutations

We informally describe the prerequisites to state the sampling argument for permutations, deferring formal
definitions and proofs to Section C in the Appendix. We are being slightly redundant below to aid readibility
(we overlap slightly with Section 2).

38For 𝑖 = 1, Ľ𝑖−1 = Ľ0 is L outside 𝑆0 (which is rather lenient because 𝜌0 contains no information about L; to be precise, one

could have used (Σ𝑑
′
, . . . Σ𝑑

′
) instead of 𝑆0).
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Suppose 𝑡 is a permutation over 𝑁 elements labelled {0, . . . , 𝑁 −1}. This permutation 𝑡 is ordinarily viewed
as a function, 𝑡(𝑥) which specifies how 𝑥 is mapped. However, one could equivalently view 𝑡 as a collection
of tuples (𝑥,𝑦) such that 𝑡(𝑥) = 𝑦. We call such a tuple a “path” and any set of such “paths” a “part”.

Now consider distributions over permutations. Let’s begin with a uniform distribution F over all per-
mutations 𝑢. One may characterise F as follows: for any 𝑢 ∼ F, i.e. any 𝑢 sampled from F, it holds that
Pr[𝑢(𝑥) = 𝑦] = Pr[(𝑥,𝑦) ∈ paths(𝑢)] = (𝑁 − 1)!/𝑁 !. In fact, it also holds that Pr[𝑆 ⊆ paths(𝑢)] = (𝑁 − ∣𝑆 ∣)!/𝑁 !
where 𝑆 is a collection of (non-colliding) paths. It turns out that this way of viewing the uniform distribution
helps us below.

We first state a basic version of the sampling argument. To this end, we define a (𝑝, 𝛿) non-uniform
distribution, F(𝑝,𝛿), which is closely related to the uniform distribution F. At a high level, F(𝑝,𝛿) is “𝛿 close
to” F with at most 𝑝 many paths fixed. What does “𝛿 closeness” mean? For any distribution G (over
permutations), a distribution G𝛿 is 𝛿 close to it if the following holds: when 𝑡 ′ ∼ G𝛿 and 𝑡 ∼ G, one has
Pr[𝑆 ⊆ paths(𝑡 ′)] ≤ 2𝛿 ∣𝑆 ∣Pr[𝑆 ⊆ paths(𝑡)] for all parts 𝑆.

We are almost ready to state the basic sampling argument. We need the notion of a “convex combination”
of random variables. We say a random variable (such as our permutation) 𝑡 is a convex combination of
random variables 𝑡𝑖 , denoted by 𝑡 ≡ ∑𝑖 𝛼𝑖𝑡𝑖 (where ∑𝑖 𝛼𝑖 = 1 and 𝛼𝑖 ≥ 0), if the following holds for all 𝑡 ′:
Pr[𝑡 = 𝑡 ′] = ∑𝑖 𝛼𝑖 Pr[𝑡𝑖 = 𝑡 ′].

Informally, the basic sampling argument is a statement about a uniform permutation 𝑢 ∼ F and how the
distribution F changes if we are given some “advice” about this permutation which is simply a function 𝑔(𝑢).
Roughly speaking, given that 𝑔(𝑢) evaluates to 𝑟 with probability at least 2−𝑚, the distribution F conditioned
on 𝑟 is a convex combination39 of F(𝑝,𝛿) distributions where the number of paths fixed is at most 𝑝 = 2𝑚/𝛿.
Here 𝛿 is a free parameter. We slightly abuse the notation and write this basic sampling argument as

F∣𝑟 ≡ conv(F(𝑝,𝛿)).

The formal statement is as follows.

Proposition 58 (F∣𝑟 ≡ conv(F(𝑝,𝛿))). Let 𝑢 ∼ F(𝑁 ) be a uniformly random permutation over 𝑁 = 2𝑛 elements
and 𝑔(𝑢) be an arbitrary function. Fix any 𝛿 > 0, 𝛾 = 2−𝑚 > 0 where 𝑚 =𝑚(𝑛) and suppose Pr[𝑔(𝑢) = 𝑟] ≥ 𝛾 .
Then

𝑡 ≡ ∑
𝑖

𝛼𝑖𝑡𝑖 +𝛾 ′𝑡 ′

where 𝑡 = 𝑢∣(𝑔(𝑢) = 𝑟), 𝑡𝑖 ∼ F(𝑝,𝛿)𝑖 and F
(𝑝,𝛿)

𝑖 is (𝑝, 𝛿) non-uniform with 𝑝 = 2𝑚
𝛿
. The coefficients sum to 1, i.e.

∑𝑖 𝛼𝑖 + 𝛾 ′ = 1 and the number of coefficients is finite. The permutation 𝑡 ′ is sampled from an arbitrary (but
normalised) distribution over permutations and 𝛾 ′ ≤ 𝛾 .

If we view 𝑔(𝑢) as the output of the first quantum part of our CQd circuit, and 𝑢 as the oracle of interest
(details are in the next section), it is suggestive that 𝑢∣𝑔(𝑢) will be the oracle for the second quantum part
of CQd. We can use the sampling argument above and re-use our analysis because F and F(𝑝,𝛿) have very
similar statistical properties. However, it is unclear how to use the sampling argument thereafter as the basic
sampling argument seems to only apply to F (and not to F(𝑝,𝛿)).

To state the more general version of the sampling argument, we need to define a (𝑝, 𝛿) non-𝛽-uniform
distribution F(𝑝,𝛿)∣𝛽 . Just as we defined F(𝑝,𝛿) using F, we can define F(𝑝,𝛿)∣𝛽 using F∣𝛽 , i.e. F(𝑝,𝛿)∣𝛽 is a
distribution which is “𝛿 close to” the 𝛽-uniform distribution F∣𝛽 , with at most 𝑝 many paths fixed. It remains
to define F∣𝛽 . In this case, 𝛽 ∶= {(𝑥𝑖 ,𝑦𝑖)}𝑖 simply specifies an explicit set of paths contained in the uniform
distribution F. Note that these paths are distinct from those associated with 𝑝. Why do we introduce 𝛽

when 𝑝 was already present? The parameter 𝑝 simply says there exist at most 𝑝 paths which are fixed while
𝛽 explicitly fixes certain paths. This becomes useful in stating the (general) sampling argument.

Suppose we start with 𝑡 ∼ F𝛿 ′∣𝛽 (i.e. a distribution which is “𝛿 ′ close to” 𝛽-uniform) and are given some

advice ℎ(𝑡) which happens to be 𝑟 with probability at least 2−𝑚. Then the distribution F𝛿
′
∣𝛽 conditioned on

𝑟 is, roughly speaking, a convex combination40 of F(𝑝,𝛿+𝛿
′
)∣𝛽 distributions where the number of paths fixed is

at most 𝑝 = 2𝑚/𝛿 and 𝛿 again is a free parameter. Using the previous shorthand, we have

F𝛿
′
∣𝛽 ∣𝑟 ≡ conv(F(𝑝,𝛿+𝛿

′
)∣𝛽).

The formal statement is as follows.
39In the convex combination, there is a small component, of weight at most 2−𝑚 , of some arbitrary distribution.
40Again, neglecting a component with weight at most 2−𝑚 .
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Proposition 59 (F𝛿
′
∣𝛽 ∣𝑟 ′ = conv(F(𝑝,𝛿+𝛿 ′)∣𝛽)). Let 𝑡 ∼ F𝛿 ′∣𝛽(𝑁 ) be sampled from a 𝛿 ′ non-𝛽-uniform distribu-

tion with 𝑁 = 2𝑛. Fix any 𝛿 > 0 and let 𝛾 = 2−𝑚 be some function of 𝑛. Let 𝑠 ∼ F𝛿 ′∣𝛽 ∣𝑟 , i.e. 𝑠 = 𝑡 ∣(ℎ(𝑡) = 𝑟) and
suppose Pr[ℎ(𝑡) = 𝑟] ≥ 𝛾 where ℎ is an arbitrary function and 𝑟 some string in its range. Then 𝑠 is “𝛾-close”
to a convex combination of finitely many (𝑝, 𝛿 + 𝛿 ′) non-𝛽-uniform distributions, i.e.

𝑠 ≡ ∑
𝑖

𝛼𝑖𝑠𝑖 +𝛾 ′𝑠′

where 𝑠𝑖 ∼ F𝑝,𝛿+𝛿
′
∣𝛽

𝑖 with 𝑝 = 2𝑚/𝛿. The permutation 𝑠′ may have an arbitrary distribution (over Ω(2𝑛)) but
𝛾 ′ ≤ 𝛾 .

How does this solve the limitation of the basic sampling method—which was, how do we apply the

sampling argument to F(𝑝
′
,𝛿
′
)? Using the observation that F(𝑝

′
,𝛿
′
) = F𝛿 ′∣𝛽 for some 𝛽 which fixes at most 𝑝′

paths, it is not hard to see that the sampling argument yields

F(𝑝
′
,𝛿
′
)∣𝑟 ≡ conv(F(𝑝+𝑝

′
,𝛿
′
+𝛿)),

and in particular, if the procedure is successively applied 𝑛 ≤ poly(𝑛) times (starting with F), the convex
combination would be over distributions of the form F(𝑛𝑝,𝑛𝛿). How the parameters are chosen is discussed
later.

The proofs of these statements do not rely on any special property of the distribution F nor do they depend
on the fact that we were considering permutations. Any object for which we can describe a “reasonable”
notion of “parts” admits such a sampling argument. We don’t attempt to formalise what we mean by
“reasonable”—we simply construct such a notation for our oracle and inspect that the properties required in
the proof are satisfied.

7.6.2 Definitions and Notation — Sampling argument for Injective Shufflers

As we did for permutations, to describe the sampling argument, we change our viewpoint and look at
probabilities associated with “paths” in L = (𝐻0, . . . 𝐻𝑑) instead of looking at probabilities associated with
the individual outcomes of 𝐻𝑖s. By a “path”, we mean tuples of the form (𝑥0, 𝑥1 . . . ) such that 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1)
for all 𝑖.

This viewpoint is inadequate for capturing the probabilistic behaviour of L due to two reasons (which

are not hard to rectify). First, since 𝐻0 ∶ Σ → Σ𝑑
′

, it is clear that at least ∣Σ𝑑′−1∣ many points will never be

contained in any “path” as described above. Therefore the behaviour of most points in 𝐻𝑖 (for 𝑖 ∈ {1 . . . 𝑑})
will not be captured by the “paths” viewpoint. Second, even though 𝐻𝑖 maps Σ𝑑

′ → Σ𝑑
′

for 𝑖 ∈ {1, . . . 𝑑 −1}, 𝐻𝑖

may not be injective and therefore the paths might collide, which again would mean the behaviour of many
points would not be captured by the “paths” viewpoint.

To rectify the second issue, we can run Algorithm 49 and condition on the event 𝐸, i.e. that the algorithm
does not abort. Since in our proofs, we only care about the behaviour of L on 𝑆0 = (𝑆01, . . . 𝑆0𝑑), it suffices
to restrict our attention to 𝑆0. By construction (of Algorithm 49), L∣𝐸 behaves as a permutation on 𝑆0.
Therefore no “path” inside 𝑆0 collides. To rectify the first issue, we consider two kinds of paths—Type 0
paths and Type 1 paths.41 A Type 0 path is what we described earlier: a tuple of the form (𝑥0, 𝑥1 . . . ) such
that 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1) for all 𝑖. A Type 1 path is a tuple of the form (⌞⌟, 𝑥1, 𝑥2 . . . ) such that 𝑥1 ∉ 𝐻0(Σ) (i.e. ∄𝑥0
st 𝐻0(𝑥0) = 𝑥1) and 𝑥𝑖 = 𝐻𝑖−1(𝑥𝑖−1) for all 𝑖 ∈ {2, 3 . . . }.

Observe that, restricted to 𝑆0 and conditioned on 𝐸, we have the following equivalence: given Pr[𝐻𝑖(𝑥) = 𝑥 ′]
for all 𝑖, 𝑥 and 𝑥 ′, one can compute the probability associated with both types of paths and conversely, given
probabilities associated with the paths, one can compute Pr[𝐻𝑖(𝑥) = 𝑥 ′] for all 𝑖, 𝑥 and 𝑥 ′.

To simplify the notation, we define the injective shuffler. Fix sets 𝑆0𝑖 ⊆ Σ𝑑
′

of size ∣Σ𝑑+2∣ for all 𝑖 ∈ {1, . . . 𝑑}.
Let 𝐻 ′0 ∶ Σ → 𝑆01, 𝐻

′
𝑖 ∶ 𝑆0𝑖 → 𝑆0,𝑖+1 for all 𝑖 ∈ {1, . . . 𝑑 − 1} be injective functions and let 𝐻 ′𝑑 ∶ 𝑆0𝑑 → {0, 1}𝑛 ∪ {⊥}

(which may not be injective) such that 𝐻 ′𝑑 outputs ⊥ for all paths originating from Σ (and no other).42 We
define the injective shuffler, K as (𝐻 ′0, . . . 𝐻 ′𝑑). Think of K as a simpler way to denote the relevant object
associated L∣𝐸 (with 𝑆0 being the output of Algorithm 49). What do we mean by the relevant object—as
we saw in the QNC𝑑 and QCd analysis, it helps to use shadow oracles in the analysis which never reveal any

41The 0 and 1 represent where the first non-⌞⌟ component sits.
42i.e. 𝐻 ′

𝑑
(𝑥𝑑) =⊥ iff (𝑥0, 𝑥1, . . . 𝑥𝑑 , 𝑥𝑑+1) is a Type 0 path (therefore 𝑥𝑑+1 =⊥)
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information43 about the values taken by 𝐻𝑑(. . . (𝐻0(ℓ)) . . . ) for any ℓ ∈ Σ. We capture this limitation in K by
ensuring 𝐻 ′𝑑 outputs ⊥ for these queries.

To state the sampling argument for the injective shuffler, we define (𝑝, 𝛿) non-𝛽-uniform distributions
for the injective shuffler (analogous to the way we defined them for permutations). However, this time we
also give formal definitions (it may help to look at the analogous formal definitions for permutations first, as
detailed in Section C of the Appendix). We begin with the uniform distribution—it is simply a distribution
which assigns equal probabilities to all the possible injective shufflers, given the sets (𝑆0𝑖)𝑖 . As for 𝛽-uniform
distributions, we first need to define the “paths”, 𝛽. Here, 𝛽 will again be a set of “non-colliding paths”
but formalising this requires some care (discussed later). Then a 𝛽-uniform distribution is the same as the
uniform distribution except that the paths in 𝛽 are fixed.

We first define “base sets” for convenience as they are repeatedly used in this section. Using these, we
define (valid) injective shuffler wrt base sets. Then, one can trivially define Fshuff , as the uniform distribution
over injective shufflers.

Definition 60 (Base sets). Let Σ and 𝑑 ′ be as in Definition 35. For each 𝑖 ∈ {1, . . . 𝑑}, suppose 𝑆0𝑖 ⊆ Σ𝑑
′

are
subsets of size ∣Σ𝑑+2∣ then we call 𝑆0 ∶= (𝑆01, . . . 𝑆0𝑑) base sets.

Definition 61 ((valid) Injective Shuffler wrt base sets 𝑆0.). Let Σ, 𝑑 ′ be as in Definition 35 and let 𝑆0 =
(𝑆01 . . . 𝑆0𝑑) be a base set (see Definition 60). Then a (valid) Injective Shuffler wrt 𝑆0 is a sequence of
functions (𝐻 ′0 . . . 𝐻 ′𝑑) where 𝐻 ′0 ∶ Σ → 𝑆01, 𝐻

′
𝑖 ∶ 𝑆0𝑖 → 𝑆0,𝑖+1 for all 𝑖 ∈ {1 . . . 𝑑 − 1} are injective functions and

𝐻 ′𝑑 ∶ 𝑆0𝑑 → {0, 1}𝑛 ∪ {⊥} is an arbitrary function satisfying the following constraint:

𝐻 ′𝑑(𝑥) ∈
⎧⎪⎪⎨⎪⎪⎩

{⊥} 𝑥 ∈ 𝐻 ′𝑑−1(. . . 𝐻 ′0(Σ) . . . )
{0, 1}𝑛 𝑥 ∈ 𝑆0𝑑/𝐻 ′𝑑−1(. . . 𝐻 ′0(Σ) . . . ).

The conditions on 𝐻 ′0, . . . 𝐻
′
𝑑−1 are straightforward. The conditions on 𝐻 ′𝑑 ensures that all paths originating

from Σ (i.e. Type 0 paths) output ⊥ which, as we remarked earlier, ensures our definition can be used with
shadow oracles.

Definition 62 (Finj—Uniform Distribution over Injective Shufflers). Let 𝑆0 be base sets (see Definition 60)
for 𝑑-CodeHashing (see Definition 35). Then Finj is the uniform distribution over all injective shufflers wrt 𝑆0
(see Definition 61).

So far everything was intuitive. To proceed, we would need to condition these injective shufflers. The
conditioning will be in terms of existence of certain non-colliding paths, 𝛽, in the injective shuffler. There
are two subtleties when we do this, as we alluded to. The first is that there are Type 0 and Type 1 paths
and thus one must be careful in how collisions are defined. The second is that an injective shuffler is defined
to yield ⊥ on paths originating from Σ (i.e. on Type 0 paths) and yet, (as we shall see) we would like to
be able to condition on polynomially many paths originating from Σ which yield non-⊥ responses. This
corresponds to (excluding from the shadow oracles) the paths queried by the classical algorithm because the
classical algorithm will have access to L (and not its shadow). These concerns are addressed in the following
definition.

Definition 63 ((valid) paths, 𝛽, wrt 𝑆0. 𝑋𝑖(𝛽)). Let 𝑆0 be base sets (see Definition 60) for 𝑑-CodeHashing
(see Definition 35) and let 𝛽 = {(𝑥 𝑗,0, . . . 𝑥 𝑗,𝑑+1)}𝑗∈{1...∣𝛽 ∣} be a set of tuples with 𝑑 + 2 elements. We say 𝛽

specifies (valid) paths wrt 𝑆0 if it satisfies the following:

1. (domain validation) For each 𝑗 ∈ {1 . . . ∣𝛽 ∣}, it holds that (a) 𝑥 𝑗,0 ∈ Σ∪{⌞⌟}; (b) for all 𝑖 ∈ {1 . . . 𝑑}, 𝑥 𝑗,𝑖 ∈ 𝑆0𝑖
and (c) 𝑥 𝑗,𝑑+1 ∈ {0, 1}𝑛 (but cannot output ⊥),

2. (no collisions) for each distinct pair 𝑗, 𝑗 ′ ∈ {1 . . . ∣𝛽 ∣}, 𝑥 𝑗,𝑖 ≠ 𝑥 𝑗 ′,𝑖 , for all 𝑖 ∈ {1 . . . 𝑑} and

3. (handling Type 0 paths) for any distinct pair 𝑗, 𝑗 ′ ∈ {1 . . . ∣𝛽 ∣}, 𝑥 𝑗,0 = 𝑥 𝑗 ′,0 ⇐⇒ 𝑥 𝑗,0 = 𝑥 𝑗 ′,0 = ⌞⌟.

Notation: For (valid) paths 𝛽, define (for 𝑖 ∈ {0, . . . 𝑑 + 1}

• 𝑋𝑖(𝛽) ∶= {𝑥 𝑗,𝑖}𝑗∈{1...∣𝛽 ∣}, using this, define 𝑋𝑖∶𝑖′(𝛽) = (𝑋𝑖(𝛽), . . . 𝑋 𝑗(𝛽)) for 𝑖 ≤ 𝑖′ and let 𝑋(𝛽) = 𝑋1∶𝑑(𝛽),

• 𝑋
(0)
𝑖 (𝛽) ∶= {𝑥 𝑗,𝑖}𝑗 ∶𝑥 𝑗0≠⌞⌟, and

43Except for polynomially possibly many paths exposed by classical queries; we handle these shortly.
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• 𝑋
(1)
𝑖 (𝛽) ∶= {𝑥 𝑗,𝑖}𝑗 ∶𝑥 𝑗0=⌞⌟.

The first condition simply requires that the paths are inside 𝑆0. The second condition ensures that the
paths don’t collide but excluding the first component. The third condition ensures that the only way the
first component can “collide” is if the path is Type 1; Type 0 paths cannot have the same first component.
With (valid) paths 𝛽 defined, we can define a (valid) injective shuffler conditioned on 𝛽 and the associated
uniform distribution.

Definition 64 ((valid) Injective Shuffler conditioned on 𝛽 wrt base sets 𝑆0). Let Σ, 𝑑 ′ be as in Definition 35,
let 𝑆0 = (𝑆01 . . . 𝑆0𝑑) be base sets (see Definition 60) and let 𝛽 =∶ {(𝑥 𝑗,0, . . . 𝑥 𝑗,𝑑+1)}𝑗∈{1...∣𝛽 ∣} denote (valid)
paths wrt 𝑆0 (see Definition 63). Then, a (valid) Injective Shuffler conditioned on 𝛽 wrt 𝑆0 is a sequence of
functions (𝐻 ′0, . . . 𝐻 ′𝑑) where 𝐻 ′0 ∶ Σ → 𝑆01, 𝐻

′
𝑖 ∶ 𝑆0𝑖 → 𝑆0,𝑖+1 for all 𝑖 ∈ {1, . . . 𝑑 − 1} are injective functions and

𝐻 ′𝑑 ∶ 𝑆0𝑑 → {0, 1}𝑛 ∪ {⊥} is an arbitrary function which satisfy the following constraints:

• 𝐻 ′0: it holds that 𝐻 ′0(𝑥 𝑗0) = 𝑥 𝑗1 for all 𝑗 ∈ {1 . . . ∣𝛽 ∣} such that 𝑥 𝑗0 ≠ ⌞⌟ and 𝐻 ′0(Σ) ∩ 𝑋
(1)
1 (𝛽) = ∅ (see

Definition 63)

• 𝐻 ′𝑖 : it holds that 𝐻
′
𝑖 (𝑥 𝑗,𝑖) = 𝑥 𝑗,𝑖+1 for all 𝑖 ∈ {1 . . . 𝑑 − 1} and 𝑗 ∈ {1 . . . ∣𝛽 ∣}

• 𝐻 ′𝑑 : it holds that

1. 𝐻 ′𝑑(𝑥 𝑗,𝑑) = 𝑥 𝑗,𝑑+1 for all 𝑗 ∈ {1 . . . ∣𝛽 ∣}
2. 𝐻 ′𝑑(𝑥) =⊥ for all 𝑥 ∈ 𝐻 ′𝑑−1(. . . 𝐻 ′0(Σ) . . . )/𝑋𝑑(𝛽)
3. 𝐻 ′𝑑(𝑥) ∈ {0, 1}𝑛 otherwise, i.e. for all 𝑥 ∈ 𝑆0𝑑/ (𝐻 ′𝑑−1(. . . 𝐻 ′0(Σ) . . . ) ∪𝑋𝑑(𝛽)).

The requirements on 𝐻 ′1, . . . 𝐻
′
𝑑−1 are quite clear. On 𝐻 ′0, the first condition is enforcing consistency with

Type 0 paths and the second one is enforcing that none of the Type 1 paths could possibly have originated
from44 Σ. For 𝐻 ′𝑑 , we enforce that it is consistent with the

paths in 𝛽 and that it outputs ⊥ for all remaining paths originating in Σ (Type 1 paths) while for all other
paths, it outputs non-⊥. We can finally define the uniform distribution over injective shufflers conditioned
on 𝛽.

Definition 65 (F
∣𝛽

inj—𝛽-uniform distribution over injective shufflers). Let 𝑆0 be base sets (see Definition 60)

for 𝑑-CodeHashing (see Definition 35), and let 𝛽 denote a (valid) set of paths wrt 𝑆0 (see Definition 63). Then,

F
∣𝛽

inj is the uniform distribution over all (valid) injective shufflers conditioned on 𝛽 wrt 𝑆0 (see Definition 64).
We can now introduce some notation for describing paths of injective shufflers. These paths are slightly

different from (valid) paths 𝛽 wrt 𝑆0 (see Definition 63)—these paths must assign ⊥ to paths originating from
Σ (Type 0 paths) to any injective shuffler.45 This is required to stay consistent with the definition of injective
shufflers.

We use these paths to define the parts notation explicitly. These in turn, would allow us to easily obtain
the analogue of Proposition 59 for injective shufflers.46

Notation 66. Let Ξ be an injective shuffler (possibly conditioned on paths 𝛽) wrt base sets 𝑆0 (see Defini-
tion 64). Denote by

• func𝑖,Ξ the function 𝐻 ′𝑖 where (𝐻 ′0, . . . 𝐻 ′𝑑) ∶= Ξ

• cfunc𝑖∶𝑗,Ξ the function 𝐻 ′𝑗(. . . 𝐻 ′𝑖 (⋅) . . . ) where 𝐻 ′𝑖 is as above for 𝑖, 𝑗 ∈ {0 . . . 𝑑} satisfying 𝑖 ≤ 𝑗 .

• paths(Ξ) the set of all tuples (𝑥0, 𝑥1 . . . 𝑥𝑑 , 𝑥𝑑+1) where 𝑥0 ∈ Σ ∪ {⌞⌟}, 𝑥1 ∈ 𝑆01, . . . , 𝑥𝑑 ∈ 𝑆0𝑑 and 𝑥𝑑+1 ∈
{0, 1}𝑛 ∪ {⊥} satisfy the following

– for 𝑖 ∈ {1, . . . 𝑑}, it holds that 𝑥𝑖+1 = func𝑖,Ξ(𝑥𝑖)
– if 𝑥0 = ⌞⌟, it holds that 𝑥1 ∉ func0,Ξ(Σ)
– if 𝑥0 ∈ Σ, it holds that 𝑥1 = func0,Ξ(𝑥0)

44The reason is that that this avoids double counting; otherwise a Type 1 path could be treated as a partially specified Type
0 path and our sampling argument is not a priori robust to these.

45If the injective shuffler is conditioned on 𝛽, then the statement holds excluding the Type 1 paths specified by 𝛽.
46Notation: We are using both K and Ξ to refer to injective shufflers.
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As stated, we now describe the parts notation for injective shufflers.

Notation 67. Suppose 𝛽 is a (valid) path wrt base sets 𝑆0. Let Ξ be an arbitrary injective shuffler conditioned
on 𝛽 wrt base sets 𝑆0 (see Definition 64).

• Parts: Any set 𝑆 is a part if it holds that 𝑆 ⊆ paths(Ξ) for some Ξ.

– Denote by Ω
𝛽
parts the set of all such “parts”.

– Call two parts 𝑆, 𝑆 ′ ∈ Ω𝛽
parts distinct if 𝑆 ∩ 𝑆 ′ = ∅ and 𝑆 ∪ 𝑆 ′ ⊆ paths(Ξ) for some Ξ.

– Denote by Ω
𝛽
parts(𝑆) the set of all parts 𝑆 ′ ∈ Ω𝛽

parts distinct from 𝑆.

• Suppose Ξ is a random variable.

– Probability of a part 𝑆: The probability that Ξ maps paths as described in 𝑆 is denoted by
Pr[𝑆 ⊆ paths(Ξ)].

– Conditioning Ξ on a part: We use the notation Ξ𝑆 to denote the random variable Ξ conditioned
on the event 𝑆 ⊆ paths(Ξ).

Before we use these definitions for stating and proving the sampling argument for injective shufflers, we use
them to define (𝑝, 𝛿) non-𝛽-uniform distributions for injective shufflers.

Definition 68 (G(𝑝,𝛿)∣𝛽—a (𝑝, 𝛿) non-G∣𝛽 distribution). Suppose 𝛽 is a valid path wrt base sets 𝑆0 (see
Definition 63). Let Ξ ∼ G∣𝛽 be a an injective shuffler conditioned on 𝛽 wrt 𝑆0 (see Definition 64), sampled
from some arbitrary distribution G∣𝛽 . Let 𝑝, 𝛿 ≥ 0. Then, we say Ξ′ ∼ G(𝑝,𝛿)∣𝛽 is sampled from a (𝑝, 𝛿) non-G∣𝛽
distribution47 if for all parts 𝑆 ∈ Ω𝛽

parts(𝑆 ′) it holds that

Pr[𝑆 ⊆ paths(Ξ′)∣𝑆 ′ ⊆ paths(Ξ′)] ≤ 2∣𝑆 ∣𝛿 Pr[𝑆 ⊆ paths(Ξ)∣𝑆 ′ ⊆ paths(Ξ)]

for some part 𝑆 ′ ∈ Ω𝛽
parts of size ∣𝑆 ′∣ ≤ 𝑝.

Using different distributions in place of G∣𝛽 , one can obtain the following which will be relevant to the
sampling argument.

Notation 69. The distribution specified in Definition 68

• with F
∣𝛽

inj ← G∣𝛽 , 0← 𝑝 is termed F
𝛿 ∣𝛽

inj ,

• with F
∣𝛽

inj ← G∣𝛽 is termed F
(𝑝,𝛿)∣𝛽

inj , and

• with F
𝛿
′
∣𝛽

inj ← G∣𝛽 is termed F
(𝑝,𝛿+𝛿

′
)∣𝛽

inj .

We call F
(𝑝,𝛿)∣𝛽

inj a (𝑝, 𝛿) non-𝛽-uniform distribution.

7.6.3 Statement — Sampling argument for Injective Shufflers

We now state the sampling argument and prove its basic variant to convey the idea, deferring the general
proof to the appendix.

Proposition 70 (F
𝛿
′
∣𝛽

inj ∣𝑟 ′ ≡ conv(F
(𝑝,𝛿+𝛿

′
)∣𝛽

inj )). Suppose 𝛽 is a valid path wrt base sets 𝑆0 (see Definition 63).

Let Ξ𝑡 ∼ F𝛿
′
∣𝛽

inj be sampled from a 𝛿 ′ non-𝛽-uniform distribution. Fix any 𝛿 > 0 and let 𝛾 = 2−𝑚 be some

function of 𝑛 (where 𝑛 is as in Definition 35). Let Ξ𝑠 ∼ F𝛿
′
∣𝛽

inj ∣𝑟 , i.e. Ξ𝑠 ∶= Ξ𝑡 ∣(ℎ(Ξ𝑡) = 𝑟) and suppose that

Pr[ℎ(Ξ𝑡) = 𝑟] ≥ 𝛾 where ℎ is an arbitrary function and 𝑟 some string in its range. Then Ξ𝑠 is “𝛾-close” to a
convex combination of finitely many injective shufflers sampled from (𝑝, 𝛿 + 𝛿 ′) non-𝛽-uniform distributions,
i.e.

Ξ𝑠 ≡ ∑
𝑖

𝛼𝑖Ξ
𝑠
𝑖 +𝛾 ′Ξ𝑠′

where there are finitely many 𝛼𝑖 , ∑𝑖 𝛼𝑖 + 𝛾 ′ = 1, Ξ𝑠
𝑖 ∼ F

(𝑝,𝛿+𝛿
′
)∣𝛽

inj,𝑖 with48 𝑝 = 2𝑚/𝛿. The injective shuffler

(conditioned on 𝛽), Ξ𝑠′, may have arisen from an arbitrary distribution, however, 𝛾 ′ ≤ 𝛾 .
47(over injective shuffler conditioned on 𝛽)
48(the 𝑖 in F

(𝑝,𝛿+𝛿
′
)∣𝛽

inj,𝑖 , indicates that each Ξ𝑠
𝑖 can come from a different distribution which is still (𝑝, 𝛿 + 𝛿 ′) non-𝛽-uniform;

e.g. they may be fixing different paths but there are at most 𝑝 such paths)
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7.6.4 Properties of the 𝛿 non-𝛽-uniform injective shuffler

Suppose L′ ∼ Finj and Ξ ∼ F𝛿inj. It would be useful to go back from the paths perspective to functions and see
how their behaviour is related, i.e. we relate the behaviour of func𝑖,L′ to that of func𝑖,Ξ (or more generally,
cfunc𝑖∶𝑗,L′ to that of cfunc𝑖∶𝑗,Ξ).

Claim 71. Suppose Ξ ∼ F∣𝛽inj and K ∼ F
𝛿 ∣𝛽

inj be injective shufflers wrt base sets 𝑆0 (see Definition 61). Then, for
all 𝑥𝑖 ∈ 𝑆0,𝑖 and 𝑥𝑖+1 ∈ 𝑆0,𝑖+1, it holds that

Pr[cfunc𝑖∶𝑗,K(𝑥𝑖) = 𝑥 𝑗+1] ≤ 2𝛿 Pr[cfunc𝑖∶𝑗,Ξ(𝑥𝑖) = 𝑥 𝑗+1]

which in particular entails

Pr[func𝑖,K(𝑥𝑖) = 𝑥𝑖+1] ≤ 2𝛿 Pr[func𝑖,Ξ(𝑥𝑖) = 𝑥𝑖+1].

Proof. First consider 𝛽 = ∅ and 𝑖 = 𝑗 . In the paths notation cfunc𝑖∶𝑖 corresponds to func𝑖 , so we have

Pr[func𝑖,K(𝑥 ′𝑖 ) = 𝑥 ′𝑖+1] = ∑
𝑥 𝑗 ∈𝑆0, 𝑗 , 𝑗∈{1...𝑑}/{𝑖,𝑖+1}

𝑥𝑖=𝑥
′
𝑖

𝑥𝑖+1=𝑥
′
𝑖+1

𝑥0∈Σ∪{⌞⌟}

Pr[(𝑥0, 𝑥1, . . . 𝑥𝑑) ∈ paths(K)]

≤ ∑
...

2𝛿 Pr[(𝑥0, . . . 𝑥𝑑) ∈ paths(Ξ)] 69 and 68

= 2𝛿 Pr[func𝑖,Ξ(𝑥 ′𝑖 ) = 𝑥 ′𝑖+1]

where the second sum is over the same variables as the first sum. For 𝛽 ≠ ∅, the same calculation goes
through—some of the paths might be assigned zero probability (e.g. if they conflict with the values assigned
by paths in 𝛽). Similarly for 𝑗 > 𝑖. �

7.7 BPPQNC𝑑 exclusion

The analysis would be very similar to the QNC𝑑 case, once we use the sampling argument is invoked. We
would construct shadows for L directly as before, except that certain paths 𝛽 would be fixed The injective
shuffler will show up at two places.

• We will state the probability of finding in terms of a distribution over injective shufflers.

• When we apply the sampling argument, we would only focus on how the distribution restricted to 𝑆0
changes, i.e. over injective shufflers.

How many times are the algorithms for generating 𝑆 called?

• The base algorithm, for generating 𝑆0, is called once, at the very beginning of the analysis.

• The other algorithm, for generating (𝑆 𝑗)𝑗∈{1...𝑑}, is called after each C𝑖 is applied

7.7.1 Shadow oracles for CQd hardness

Here, we can state everything in terms of L and we simply need to add a condition for the event 𝐸 happening
which is meant to denote that Algorithm 49 succeeding.

Algorithm 72 (Procedure for generating 𝑆𝑖 𝑗 , given 𝛽). Let L′ = (𝐻 ′0 . . . 𝐻 ′𝑑) and Σ be as in Notation 43 and
Definition 35. Let 𝑆𝑖 = 𝐻𝑖−1(. . . 𝐻0(Σ) . . . ) (as defined in Algorithm 49).
Input:

1. Base sets 𝑆0 (see Definition 60)

2. (valid) paths 𝛽 wrt 𝑆0 (see Definition 63)

3. Whether or not event 𝐸 happened.
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Output:
If 𝐸 did not happen, set 𝑆𝑖𝑘 = ∅ for all 𝑖, 𝑘 ∈ {1 . . . 𝑑}.
Otherwise, for each 𝑖 ∈ {1 . . . 𝑑}, do the following:

1. Define 𝑆𝑖𝑘 ∶= ∅ for 1 ≤ 𝑘 < 𝑖.

2. Sample, uniformly at random, 𝑆𝑖𝑖 ⊆ 𝑆𝑖−1,𝑖/𝑋𝑖(𝛽) such that 𝑆𝑖/𝑋𝑖(𝛽) ⊆ 𝑆𝑖𝑖 and ∣𝑆𝑖𝑖 ∣/∣𝑆𝑖−1,𝑖 ∣ = 1/∣Σ∣.

3. Define 𝑆𝑖𝑘 ∶= 𝐻 ′𝑘−1(. . . 𝐻 ′𝑖 (𝑆𝑖𝑖) . . . ) for 𝑖 < 𝑘 ≤ 𝑑.

In both cases, return 𝑆𝑖 ∶= (𝑆𝑖1, . . . 𝑆𝑖𝑑) for each 𝑖 ∈ {1 . . . 𝑑}.

7.7.2 Properties of the shadow oracles

We would need the analogue of Claim 52 and Claim 56 which in this case turns out to be the following.
Note that the probability of interest can be computed by looking at the injective shuffler associated with the
oracle.

Claim 73. Let K ∼ F𝛿 ∣𝛽inj be an injective shuffler conditioned on 𝛽 wrt base sets 𝑆0, sampled from a 𝛿 non-𝛽-

uniform distribution (see Definition 64 and Notation 69) where ∣𝛽 ∣ ≤ poly(𝑛). Suppose L′ is L conditioned
on some variable 𝜏 such that L′ restricted to 𝑆0 is exactly K. Suppose Algorithm 72 is run with inputs 𝑆0, 𝛽
and the assertion that 𝐸 happened and let its output be 𝑆𝑖 𝑗 for 𝑖, 𝑗 ∈ {1 . . . 𝑑}. Then,

Pr [𝑥 ∈ 𝑆𝑖 𝑗 ∣Ľ′] ≤ (2𝛿 + 𝑐) ⋅ poly(𝑛) ⋅ negl(𝑛)

where 𝑐 is some constant (independent of 𝛿, 𝑑 etc.) Ľ′ is L′ outside 𝑆𝑖−1 (see Notation 43 with 𝑆out ← 𝑆𝑖−1

and L′ ← L′) for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑 where the probability is over the randomness in K (i.e. from F
𝛿 ∣𝛽

inj ) and the
randomness in Algorithm 72.

Proof sketch. Our strategy is to reduce the analysis to the case where the injective shuffler is uniformly
distributed. We show this for 𝛽 = ∅ (the 𝛽 ≠ ∅ case follows by reasoning as we did for the proof of Claim 56).

Consider the 𝑘 = 𝑖 case (see Figure 8 left). Let 𝑆𝑖 be as in Algorithm 72, i.e. 𝑆𝑖+1 = cfunc0∶𝑖,K(Σ) using
Notation 66 for 𝑖 ∈ {0, . . . 𝑑}. We have

Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑆𝑖−1;𝑆𝑖−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

] = Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑥 ∈ 𝑆𝑖 ,I]Pr[𝑥 ∈ 𝑆𝑖 ∣I] +Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑥 ∉ 𝑆𝑖 ,I]Pr[𝑥 ∉ 𝑆𝑖 ∣I]

≤ Pr[𝑥 ∈ 𝑆𝑖 ∣I]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

+Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑥 ∉ 𝑆𝑖 ,I]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

where observe that Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑥 ∈ 𝑆𝑖 ,I] = 1 because by construction, 𝑆𝑖 ⊆ 𝑆𝑖𝑖 and where we use the trivial bound
Pr[𝑥 ∉ 𝑆𝑖 ∣I] ≤ 1 (which as we shall see is almost saturated).

Si−1

Si−1,i

Si,i

Si

(a) For analysing Pr(𝑥 ∈ 𝑆𝑖𝑖).

Si−1

Si−1,j

Si,j

Sj

(b) For analysing Pr(𝑥 ∈ 𝑆𝑖 𝑗 ) for 𝑗 > 𝑖

Figure 8: Visual aid for analysing Pr[𝑥 ∈ 𝑆𝑖 𝑗 ].
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Bounding Term I. The first term may be bounded as

Pr[𝑥 ∈ 𝑆𝑖 ∣I] ≤ ∑
𝑥 ′∈𝑆𝑖−1

Pr[func𝑖−1,K(𝑥 ′) = 𝑥]

≤ ∑
𝑥 ′∈𝑆𝑖−1

2𝛿 Pr[func𝑖−1,Ξ(𝑥 ′) = 𝑥] (5)

= 2𝛿 ∣𝑆𝑖−1∣∣𝑆𝑖−1,𝑖 ∣

where the first inequality is just a union bound, the second follows from Definition 61 where Ξ ∼ Finj, and
the third is computed by proceeding as follows.

For 𝑖 > 1, func𝑖−1,Ξ is just a uniformly random permutation from 𝑆𝑖−1,𝑖−1 → 𝑆𝑖−1,𝑖 (which have the same
size) and we are asking for the probability that one of the elements is mapped as we like. This is readily
computed to be

Pr[func𝑖−1,Ξ(𝑥 ′) = 𝑥] =
(𝑍 − 1)!

𝑍 !
= 1

𝑍

where 𝑍 = ∣𝑆𝑖−1,𝑖 ∣. One can therefore bound Equation (5) as 2𝛿 ∑𝑥 ′∈𝑆𝑖−1
1
𝑍
= 2𝛿 ∣𝑆𝑖−1∣/∣𝑆𝑖−1,𝑖 ∣ as asserted.

For 𝑖 = 1, the function func𝑖−1,Ξ is a uniformly random injective function from Σ → 𝑆𝑖−1,0. The probability
that one element maps as we like is given by

Pr[func𝑖−1,Ξ(𝑥 ′) = 𝑥] =
𝑍−1𝑃∣Σ∣−1

𝑍𝑃∣Σ∣
= 1

𝑍

as we observed in Fact 46. Proceeding as before, one can again bound Equation (5) as asserted.
Bounding Term II. The second term may be bounded as

Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑥 ∉ 𝑆𝑖 ,I] ≤
∣𝑆𝑖𝑖 ∣ − ∣𝑆𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣ − ∣𝑆𝑖 ∣

where we use Remark 47 (second observation) with 𝑀 = ∣𝑆𝑖−1,𝑖/𝑆𝑖 ∣ and 𝑁 = ∣𝑆𝑖𝑖/𝑆𝑖 ∣. Note that the randomness
used in this bound comes from that of Algorithm 72 while in the previous step (for “Bounding Term 1”), we
had to use the fact that K is sampled from F𝛿inj and Definition 61.

We therefore get

Pr[𝑥 ∈ 𝑆𝑖𝑖 ∣𝑆𝑖−1;𝑆𝑖−1] ≤ 2𝛿
∣𝑆𝑖−1∣
∣𝑆𝑖−1,𝑖 ∣

+ ∣𝑆𝑖𝑖 ∣ − ∣𝑆𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣ − ∣𝑆𝑖 ∣

≤ (2𝛿 + 𝑐)negl(𝑛) (6)

where 𝑐 is some constant (independent of 𝛿 etc; see Subsection B.1 for details).
We now consider the 𝑗 > 𝑖 case (see Figure 8 right). We proceed analogously to the 𝑖 = 𝑗 case and see

that almost nothing changes. In particular, one has

Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑆𝑖−1;𝑆𝑖−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

] = Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑥 ∈ 𝑆 𝑗 ;I]Pr[𝑥 ∈ 𝑆 𝑗 ∣I] +Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑥 ∉ 𝑆 𝑗 ;I]Pr[𝑥 ∉ 𝑆 𝑗 ;I]

≤ Pr[𝑥 ∈ 𝑆 𝑗 ∣I]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I

+Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑥 ∈ 𝑆 𝑗 ,I]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II

.

Bounding Term I. One can write

Pr[𝑥 ∈ 𝑆 𝑗 ∣I] ≤ ∑
𝑥 ′∈𝑆𝑖−1

Pr[cfunc𝑖−1∶𝑗−1,K(𝑥 ′) = 𝑥]

≤ ∑
𝑥 ′∈𝑆𝑖−1

2𝛿 Pr[cfunc𝑖−1∶𝑗−1,Ξ(𝑥 ′) = 𝑥]

= 2𝛿 ∣𝑆𝑖−1∣∣𝑆𝑖−1, 𝑗 ∣

where the second inequality follows from Definition 61 where Ξ ∼ Finj, and the third is computed as in the
𝑗 = 𝑖 case. More precisely, for the 𝑖 = 1 sub-case (within this 𝑗 > 𝑖 case), cfunc𝑖−1∶𝑗−1 is a concatenation of
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uniformly random injective functions, where the first goes from Σ → 𝑆𝑖−1,1 and the subsequent ones from
𝑆𝑖−1,𝑙 → 𝑆𝑖−1,𝑙+1. This concatenation may be treated as a uniformly random injective function from Σ → 𝑆𝑖−1, 𝑗
and one can then proceed as in the 𝑖 = 1 sub-case (within the 𝑗 = 𝑖 case). As for the 𝑖 > 1 sub-case (within
this 𝑗 > 𝑖 case), cfunc𝑖−1∶𝑗−1 is a concatenation of uniform permutations from 𝑆𝑖−1,𝑙 → 𝑆𝑖−1,𝑙+1 which may be
viewed as a single uniform permutation from 𝑆𝑖−1,𝑖−1 → 𝑆𝑖−1, 𝑗−1. Therefore, again, one can proceed as in the
𝑖 > 0 sub-case (within the 𝑗 = 𝑖 case).
Bounding Term II. One can write

Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑥 ∉ 𝑆 𝑗 ;I] ≤
∣𝑆𝑖 𝑗 ∣ − ∣𝑆 𝑗 ∣
∣𝑆𝑖−1, 𝑗 ∣ − ∣𝑆 𝑗 ∣

where we can use Remark 47 (second observation) with 𝑀 = ∣𝑆𝑖−1, 𝑗/𝑆 𝑗 ∣ and 𝑁 = ∣𝑆𝑖 𝑗/𝑆 𝑗 ∣. This is because the
set 𝑆𝑖𝑖 was chosen uniformly at random (excluding the 𝑆𝑖 part which we have anyway accounted for) and
therefore 𝑆𝑖 𝑗 = cfunc𝑖, 𝑗−1,K(𝑆𝑖𝑖) may also be viewed as set which is chosen uniformly at random (excluding the
𝑆 𝑗 part). This is because cfunc𝑖, 𝑗−1,K is just a permutation (its distribution does not matter as long as 𝑆𝑖𝑖 is
chosen uniformly at random49). Thereafter, one can proceed as in the 𝑗 = 𝑖 case.

This yields the analogue of Equation (6), i.e.

Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣𝑆𝑖−1;𝑆𝑖−1] ≤ (2𝛿 + 𝑐) ⋅ negl(𝑛).

The result directly generalises for the 𝛽 ≠ ∅ case which at most adds a poly(𝑛) factor in the final calculations
with uniform distributions by changing the sizes of the exponential sized sets by a polynomial factor. �

7.7.3 𝑑-CodeHashing is hard for CQd

We now state the main lemma of this subsection.

Lemma 74 (𝑑-CodeHashing ∉ BPPQNC𝑑 ). Every CQd circuit succeeds at solving 𝑑-CodeHashing (see Defini-
tion 35) with probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝑛).

We begin with setting up the notation we use in the proof. It helps to recall that50 𝑛 = Θ(𝜆).

• Denote by 𝜎0 the initial state (containing the input 1𝜆 and ancillae initialised to zero)

• From Notation 22, recall that CQd circuits can be represented as C = C𝑛 ○ . . . C2 ○ C1 where 𝑛 ≤ poly(𝑛).
We write C𝑖 ∶= 𝑈𝑖 ○ A𝑐,𝑖 where 𝑈𝑖 denotes 𝑑 layers of unitaries, followed by a measurement. For brevity,
we drop the subscript “𝑐” from A𝑐,𝑖 and even “○” to aid readibility.

• Let L = (𝐻0, . . . 𝐻𝑑+1), 𝑑 ′ and Σ be as in Definition 35.

• Denote by CL ∶= AL𝑛+1𝑈L𝑛 AL𝑛 . . .𝑈L1 AL1 (𝜎0), i.e. a CQd circuit with oracle access to L.
We make the following assumptions which only makes the result stronger (compare Figure 9a with
Figure 9b; also see Example 75 below)

– A𝑖 ensures that its input is forwarded with its output

– 𝑈𝑖 forwards all classical information it receives as output

– For 𝑖 > 1, A𝑖 receives an extra random variable (a set of paths, details appear later), correlated
with L as input, labelled 𝛽∗(𝑠𝑖−1).

– both 𝑈𝑖 and A𝑖 (implicitly) receive the transcript (classical input/output messages) until they are
invoked.

• In the analysis below, we consider 𝑛 sequences of shadow oracles. Each sequence is denoted by M⃗𝑖 =
(M𝑖,1,M𝑖,2 . . .M𝑖,𝑑), one set for each C𝑖 .

– We use 𝑈 M⃗𝑖

𝑖 to denote Π𝑖 ○𝑈𝑖,𝑑+1 ○M𝑖,𝑑 ○𝑈𝑖,𝑑 ○ . . .M𝑖,1 ○𝑈𝑖,1.

– (M𝑖, 𝑗)𝑗 are shadows of L using the sets outputted by Algorithm 72 (and are conditioned on
Algorithm 49 succeeding). The input to the algorithm is described later.

49Just as for any 𝑥, 𝑟 ∈ {0, 1}, 𝑟 ⊕ 𝑥 is uniformly random if 𝑟 is uniformly random.
50See the definition of suitable codes (see Lemma 32) and 𝑑-CodeHashing (see Definition 35).
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• Denote by CM ∶= AL𝑛+1𝑈
M⃗𝑛

𝑛
AL𝑛 . . .𝑈

M⃗1

1 AL1 (𝜎0), i.e. a CQd circuit with access to only shadow oracles.

• After each circuit C𝑖 , the state is classical and this allows us to consider “transcripts” which we denote
by 𝑇 (the details appear later).

• Parameters for the sampling argument: Use 𝛿 = Δ/𝑛, 𝛾 = 2−𝑚 where Δ > 0 is an arbitrary, small constant
and 𝑚 is such that 𝑚−𝑚̃ ≥ Ω(𝑛) where 𝑚̃ is the length of the “advice”, i.e. the number of bits A𝑖 sends
to 𝑈𝑖 .

• Shorthand for the Pr[find ∶ . . . ] notation: Suppose L is an oracle, 𝑆 is a sequence of sets, 𝜌 is a quantum

state and 𝑇 is some variable. We use Pr[find ∶ 𝑈L/𝑆 , 𝜌 ∣𝑇 ] to denote the expression Pr[find ∶ 𝑉N/𝑅, 𝜎]
where 𝑉 =𝑈 ∣𝑇 , N = L∣𝑇 , 𝜎 = 𝜌 ∣𝑇 .

Before we begin with the proof, we briefly illustrate how giving additional information to the classical al-
gorithm (and conditioning at the same time) only strengthens our result.

Example 75. Suppose O is an oracle for Simon’s Problem, encoding the period 𝑠. Let A denote an algorithm
which takes no input and B denote an algorithm which takes an input 𝑆 which is some variable correlated to
O. Then51

max
A

Pr[𝑠 ← AO] =max
A
∑
𝑆

Pr[𝑠 ← AO∣𝑆]Pr[𝑆]

≤max
B
∑
𝑆

Pr[𝑠 ← BO∣𝑆(𝑆)]Pr[𝑆].

Proof. For the overall template, we follow the proof of QNC𝑑 hardness (see Lemma 53). Run algorithm 49
on L and let 𝐸 be the event that it does not abort. Observe that

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← CL] − ∑
x∈𝑋valid

Pr[x← CL∣𝐸]
RRRRRRRRRRR
≤ negl(𝑛) (7)

as was the case before (recall 𝑋valid was the set of valid solutions to 𝑑-CodeHashing). We will show in step
one, that CL∣𝐸 and CM∣𝐸 have essentially the same behaviour, i.e.

RRRRRRRRRRR
∑

x∈𝑋valid

Pr[x← CL∣𝐸] − ∑
x∈𝑋valid

Pr[x← CM∣𝐸]
RRRRRRRRRRR
≤ negl(𝑛) (8)

and then in step two, that CM∣𝐸 succeeds with at most negligible probability at solving 𝑑-CodeHashing (see
Definition 35). These two steps, together with Equation (7), entail that CL solves 𝑑-CodeHashing with at
most negl(𝑛) probability.

In the rest of this proof, we implicitly condition everything on the event 𝐸 and do not explicitly state
this, for notational convenience. Let 𝑆0 be the output of Algorithm 49. Figure 9 may help in conveying the
overarching idea.

Step One. CL∣𝐸 and CM∣𝐸 have essentially the same behaviour,
Using a hybrid argument, one can bound the LHS of Equation (8) by bounding

TD[CL, CM] = TD [AL𝑛+1𝑈L𝑛 AL𝑛 . . .𝑈L1 AL1 (𝜎0), AL𝑛+1𝑈 M⃗𝑛

𝑛
AL𝑛 . . .𝑈

M⃗1

1 AL1 (𝜎0)]

with

≤
𝑛

∑
𝑖=1

TD[AL𝑛+1𝑈L𝑛 AL𝑛 . . .𝑈L𝑖+1AL𝑖+1 𝑈L𝑖 AL𝑖 . . .𝑈L1 AL1 (𝜎0),

AL𝑛+1𝑈L𝑛 AL𝑛 . . .𝑈L𝑖+1AL𝑖+1 𝑈
M⃗𝑖

𝑖 AL𝑖 . . .𝑈
M⃗1

1 AL1 (𝜎0)]

≤
𝑛

∑
𝑖=1

TD [𝑈L𝑖 AL𝑖 𝑈 M⃗𝑖−1

𝑖−1 . . .𝑈
M⃗1

1 AL1 (𝜎0), 𝑈
M⃗𝑖

𝑖 AL𝑖 𝑈 M⃗𝑖−1

𝑖−1 AL𝑖−1 . . .𝑈 M⃗1

1 AL1 (𝜎0)] . (9)

51For concreteness, if A and B are classical algorithms, and 𝑆 is the period encoded in O, then clearly the upper bound
becomes 1 but it is not achievable; illustrating that this procedure can only strengthen the hardness result.
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(a) Initial CQd circuit
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β1

L

~U1
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β∗(s1)

L

~M1

A2

β2

L

~U2

s2

β∗(s2)

L

~M2

Am+1

L

(b) CQd circuit with 𝛽∗ from the sampling argument

A1

β1

L

~U1

s1

β∗(s1)

~M1

A2

β2

L

~U2

s2

β∗(s2)

~M2

Am+1

L

(c) CQd circuit with 𝛽∗ where all oracles replaced with shadow oracles.

Figure 9: Variants of the CQd circuit which arise in establishing hardness of solving 𝑑-CodeHashing. Observe
that Figure 9b can simulate Figure 9a. We analyse the latter and show its behaviour is essentially the same
as that of Figure 9c.
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The 𝑖 = 1 case
Begin with 𝑖 = 1. Let AL1 (𝜎0) =∶ 𝜎1. One can write

TD[𝑈L1 (𝜎1),𝑈 M⃗1

1 (𝜎1)] = TD[L𝑈1,𝑑 . . .L𝑈1,1(𝜎1), M1,𝑑𝑈1,𝑑 . . .M1,1𝑈1,1(𝜎1)]

≤
𝑑

∑
𝑗=1

TD[L𝑈1, 𝑗 M1, 𝑗−1𝑈1, 𝑗−1 . . .M1,1𝑈1,1(𝜎1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=𝜌1, 𝑗−1

, hybrid argument

M1, 𝑗𝑈1, 𝑗

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M1, 𝑗−1𝑈1, 𝑗−1 . . .M1,1𝑈1,1(𝜎1)].

Our goal is to bound each term in the sum using the O2H lemma (Lemma 41) as

𝐵(L𝑈1, 𝑗𝜌1, 𝑗−1,M1, 𝑗𝑈1, 𝑗𝜌1, 𝑗−1) ≤
√

Pr[find ∶𝑈L/𝑆1, 𝑗1, 𝑗 , 𝜌1, 𝑗−1] (10)

whereM1, 𝑗 is the shadow of L wrt 𝑆1, 𝑗 and 𝑆1, 𝑗 is defined as follows.
Denote by 𝛽1 the set of all paths queried AL1 . Denote by 𝛽′1 ⊆ 𝛽1 the subset of paths queried by AL1 wrt

𝑆0 (see Definition 63), i.e. let 𝛽′1 denote the set of path queries made by the first classical part of the CQd
circuit within the base sets 𝑆0. Run Algorithm 72 with 𝛽 ← 𝛽′1, 𝑆0 ← 𝑆0 as inputs and define 𝑆1, 𝑗 ← 𝑆 𝑗 where

𝑆 𝑗 is the output of the algorithm for 𝑗 ∈ {1 . . . 𝑑}. Let L̂1, 𝑗 (resp. Ľ1, 𝑗 ) be L inside (resp. outside) 𝑆1, 𝑗 (see
Notation 43).

To apply Corollary 44 we condition the RHS of Equation (10) on Ľ1, 𝑗 to write Pr[find ∶
𝑈
L/𝑆1, 𝑗
1, 𝑗 , 𝜌1, 𝑗−1∣Ľ1, 𝑗−1]. The conditioning ensures that 𝜌1, 𝑗−1∣Ľ1, 𝑗−1 is uncorrelated52 with 𝑆1, 𝑗 ∣Ľ1, 𝑗−1. Using

Claim 73, with 𝛿 ← 0, 𝛽 ← 𝛽′1 and 𝑆0 ← 𝑆0, one can apply Corollary 44 to obtain

Pr[find ∶𝑈L/𝑆1, 𝑗1, 𝑗 , 𝜌1, 𝑗−1∣Ľ1, 𝑗−1] ≤ negl(𝑛)

which in turn bounds Equation (10) by negl(𝑛). �

Before moving to the 𝑖 = 2 and then the general case, we describe an intuitive picture to keep in mind.
Observe that the shadow oracles {M1, 𝑗}𝑗 were determined, in particular, by the set of paths 𝛽1 queried by
the classical algorithm.

In step 2, the shadow oracles {M2, 𝑗}𝑗 would be determined by (in addition to 𝛽1) both, the set of paths
𝛽2 queried by the classical algorithm AL2 and by the set of paths 𝛽(𝑠1) the classical algorithm AL2 receives
as an extra input.53 We have not yet defined how the paths 𝛽(𝑠1) are specified. They are specified by the
sampling argument (Proposition 70). As illustrated in Figure 9, treat the sampling argument as an algorithm
which interacts withM1,𝑑 and produces 𝛽∗(𝑠1) as output (the star indicates that the last coordinate of some
of the paths may be ⊥; in 𝛽(𝑠1) all coordinates are non-⊥ as A2 has access to L). Using the notation in
Proposition 70, it outputs the 𝑝-many paths (as 𝛽∗(𝑠1)), which are present in G1 with probability 𝛼𝑘 , for each
𝑘.

In step 𝑖, proceeding analogously, the shadow oracles {M𝑖, 𝑗}𝑗 would be determined by 𝛽1 ∪ 𝛽2 ⋅ ⋅ ⋅ ∪ 𝛽𝑖 and
by 𝛽(𝑠1)∪⋅ ⋅ ⋅∪𝛽(𝑠𝑖−1), i.e. by the “transcript” encoding the paths exposed so far. We would then condition on
these paths and use the fact that after conditioning, these distributions stay (𝑖𝑝, 𝑖𝛿) uniform, which in turn

allows us to argue that the analogue of Equation (10) (i.e. Pr[find ∶𝑈L/𝑆𝑖,𝑗𝑖, 𝑗 , 𝜌𝑖, 𝑗−1] below) stays negligible.
To apply the sampling argument, it would be useful to restrict to the distribution over the base sets which

is facilitated by the following notation.

Notation 76 (inj[L′∣𝛽] wrt to 𝑆0). Suppose L′ = (𝐻 ′0, . . . 𝐻 ′𝑑) (as in Notation 43) is a random variable sampled
from some arbitrary distribution. Let 𝛽 be a set of paths in L′. Then inj[L′∣𝛽] =∶ Ξ wrt 𝑆0 denotes a

52This is because, given Ľ1, 𝑗−1 (which, in particular, specifies 𝑆1, 𝑗−1 but not the values of L inside 𝑆1, 𝑗−1), 𝑆1, 𝑗 ∣Ľ1, 𝑗−1 is,
by construction, a (component-wise) subset of 𝑆1, 𝑗−1 but within 𝑆1, 𝑗−1, the distribution of 𝑆1, 𝑗 ∣Ľ1, 𝑗−1 is determined by the

randomness in Algorithm 72 and by the distribution of L̂1, 𝑗−1. The randomness of the algorithm Algorithm 72 is independent
of L and 𝜌1, 𝑗−1 contains at most as much information about L as is present in Ľ1, 𝑗−1 (that is because 𝜌1, 𝑗−1 only has access to
M1,1 . . .M1, 𝑗−1 which block all information about L inside 𝑆 𝑗−1).

53Strictly, (as explained later) it receives 𝛽∗(𝑠1) which may have some paths with ⊥ as the last coordinate but since AL2 can
access L, we assume it learns the last coordinates of all paths in 𝛽∗(𝑠1) and denote the complete paths as 𝛽(𝑠1).

55



(random) injective shuffler conditioned on 𝛽 wrt base sets 𝑆0 (see Definition 64) such that for all 𝑥0 ∈ Σ,
𝑥1 ∈ 𝑆01, . . . 𝑥𝑑 ∈ 𝑆0𝑑 , 𝑥𝑑+1 ∈ {0, 1}𝑛 ∪ {⊥}

Pr[(𝑥0, . . . 𝑥𝑑+1) ∈ paths(Ξ)] =
⎧⎪⎪⎨⎪⎪⎩

Pr[𝐻0(𝑥0) = 𝑥1 ∧ . . . 𝐻𝑑−1(𝑥𝑑−1) = 𝑥𝑑] for 𝑥0 ∈ Σ/𝑋0(𝛽)
Pr[𝐻0(𝑥0) = 𝑥1 ∧ . . . 𝐻𝑑(𝑥𝑑) = 𝑥𝑑+1] otherwise.

We now resume with the proof.

Proof (cont.) The 𝑖 = 2 case

Let AL2𝑈 M⃗1

1 AL1 (𝜎0) =∶ 𝜎2. One can write the 𝑖 = 2 term in the RHS of Equation (9) as

TD[𝑈L2 (𝜎2),𝑈 M⃗2

2 (𝜎2)] ≤
𝑑

∑
𝑗=1

TD[L𝑈2, 𝑗𝜌2, 𝑗−1, M2, 𝑗𝑈2, 𝑗𝜌2, 𝑗−1]

where 𝜌2, 𝑗−1 ∶= M2, 𝑗−1𝑈2, 𝑗−1 . . .M2,1𝑈2,1(𝜎2). Using Lemma 41, one can write

𝐵[L𝑈2, 𝑗𝜌2, 𝑗−1, M2, 𝑗𝑈2, 𝑗𝜌2, 𝑗−1] ≤
√

Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 , 𝜌2, 𝑗−1] (11)

whereM2, 𝑗 is the shadow of L wrt 𝑆2, 𝑗 and 𝑆2, 𝑗 is defined as follows.
Recall that 𝛽1 denoted the paths queried by AL1 . Note that inj[L∣𝛽1] (see Notation 76) is distributed as

F
∣𝛽1
inj . Let the output of 𝑈

M⃗1

1 be54 𝑠1. Given that Pr[𝑠1∣𝛽1] ≥ 𝛾 , inj[L∣𝛽1𝑠1] which is distributed as F
∣𝛽1
inj may be

expressed as a convex combination (as described in Proposition 70) inj[L∣𝑠1𝛽1𝛽∗(𝑠1)] distributed as F
(𝑝,𝛿)∣𝛽1
inj

where ∣𝛽∗(𝑠1)∣ ≤ 𝑝 ≤ 2𝑚/𝛿 whenever the convex coefficient is larger than 𝛾 . When Pr[𝑠1∣𝛽1] < 𝛾 , let 𝛽∗(𝑠1) = ∅.
Note that this implicitly defines the random variable 𝛽∗(𝑠1) which we had initially left unspecified. AL2 takes
as input 𝑠1 and 𝛽∗(𝑠1). AL2 learns 𝛽(𝑠1) which is 𝛽∗(𝑠1) with ⊥s replaced by the value L takes in the last
coordinate. Let 𝛽2 denote the addition paths queried by AL2 .

We are now ready to define 𝑆2, 𝑗 . Let 𝛽′2 ⊆ 𝛽2 be the subset of paths in 𝛽2 which are within the base sets
𝑆0. Run Algorithm 72 with 𝛽 ← 𝛽′2 ∪ 𝛽(𝑠1) ∪ 𝛽′1, 𝑆0 ← 𝑆0 as inputs and define 𝑆2, 𝑗 ← 𝑆 𝑗 where 𝑆 𝑗 is the output

of the algorithm, for 𝑗 ∈ {1, . . . 𝑑}. Let L̂2, 𝑗 (resp. Ľ2, 𝑗 ) be L inside (resp. outside) 𝑆2, 𝑗 (see Notation 43).
To apply Corollary 44 we condition the RHS of Equation (11) on Ľ2, 𝑗−1 to write Pr[find ∶

𝑈
L/𝑆2, 𝑗
2, 𝑗 , 𝜌2, 𝑗−1∣Ľ2, 𝑗−1]. The conditioning, as before, ensures that 𝜌2, 𝑗−1∣Ľ2, 𝑗−1 is uncorrelated with 𝑆2, 𝑗 ∣Ľ2, 𝑗−1

(for exactly the same reason as the 𝑖 = 1 case). However, to apply Claim 73 we condition on the “transcript”

until the output of AL2 , i.e. 𝑇 (𝜎2) ∶= (𝛽1, 𝑠1, 𝛽(𝑠1), 𝛽2), by writing Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 , 𝜌2, 𝑗−1∣Ľ2, 𝑗−1]

= ∑
𝑠1,𝛽1,𝛽(𝑠1),𝛽2

Pr[𝑇 (𝜎2)] ⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 , 𝜌2, 𝑗−1∣Ľ2, 𝑗−1 𝑇 (𝜎2)]

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚

𝛽1,𝛽(𝑠1),𝛽2

Pr[𝛽2∣𝑠1𝛽1𝛽(𝑠1)]Pr[𝛽(𝑠1)∣𝑠1𝛽1]Pr[𝑠1∣𝛽1]Pr[𝛽1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pr[𝑇 (𝜎2)]

⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 , 𝜌2, 𝑗−1∣Ľ2, 𝑗−1 𝑇 (𝜎2)] + 2−(𝑚−𝑚̃)

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚

𝛽(𝑠1)∶Pr[𝛽(𝑠1)∣𝑠1𝛽1]≥2
−𝑚

𝛽1,𝛽2

Pr[𝛽2∣𝑠1𝛽1𝛽(𝑠1)]Pr[𝛽(𝑠1)∣𝑠1𝛽1]Pr[𝑠1∣𝛽1]Pr[𝛽1] ⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 , 𝜌2, 𝑗−1∣Ľ2, 𝑗−1 𝑇 (𝜎2)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

+2 ⋅ 2−(𝑚−𝑚̃)

≤ negl(𝑛)

where to obtain the first inequality, we note that for each 𝑠1 ∶ Pr[𝑠1∣𝛽1] ≥ 2−𝑚, one can use Proposition 70
and one can account for all 𝑠1 ∶ Pr[𝑠1∣𝛽1] < 2−𝑚, by simply upper bounding the sum by 2−(𝑚−𝑚̃) because 𝑠1 is
of length 𝑚̃. In the second inequality, we use the fact that either the convex weight (i.e. Pr[𝛽(𝑠1)∣𝑠1𝛽1]) as
specified in Proposition 70 is less than 2−𝑚 (for at most each 𝑠1, therefore it contributes at most 2−(𝑚−𝑚̃) to

the sum) or it is greater than 2−𝑚. In the latter case, the injective shuffler is F
(𝑝,𝛿)∣𝛽

inj distributed and therefore

one can apply Corollary 44 together with Claim 73 with 𝛿 ← 𝛿, 𝛽 ← 𝛽′2 ∪ 𝛽(𝑠1) ∪ 𝛽′1 and 𝑆0 ← 𝑆0 to obtain
Term I ≤ 2𝛿 ⋅ poly(𝑛) ⋅ negl(𝑛).

54which in particular, contains 𝛽1
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The general 𝑖 ∈ {1 . . . 𝑛} case.
This is a straightforward generalisation of the 𝑖 = 2 case and hence we only outline the

key steps. Let 𝜎𝑖 ∶= AL𝑖 𝑈 M⃗𝑖−1

𝑖−1 . . .AL2𝑈 M⃗1

1 AL1 (𝜎0) where M𝑖−1, 𝑗 is the shadow of L wrt
𝑆𝑖−1, 𝑗 , let 𝑇 (𝜎𝑖) ∶= (𝛽1, 𝑠1, 𝛽(𝑠1), . . . 𝛽𝑖−1, 𝑠𝑖−1, 𝛽(𝑠𝑖−1), 𝛽𝑖) where 𝛽𝑖 denotes the paths queried by

AL𝑖 , 𝑠𝑖−1 denotes the output of 𝑈
M⃗𝑖−1

𝑖−1 , 𝛽∗(𝑠𝑖−1) be the paths as in Proposition 70 when

Pr[𝑠𝑖−1∣𝛽𝑖−1 . . . 𝛽(𝑠1)𝑠1𝛽1] ≥ 𝛾 , inj[L∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1, 𝑠𝑖−1] is distributed as F
(𝑖−2)𝛿 ∣𝛽𝑖−1∪𝛽(𝑠𝑖−2)∪𝛽𝑖−2⋅⋅⋅∪𝛽1
inj so that55

inj[L∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1𝑠𝑖−1𝛽∗(𝑠𝑖−1)] is distributed as F
(𝑝,(𝑖−2)𝛿)∣𝛽𝑖−1∪⋅⋅⋅∪𝛽1
inj whenever the convex coefficient is lar-

ger than 𝛾 = 2−𝑚. 𝛽(𝑠𝑖−1) is 𝛽∗(𝑠𝑖−1) with ⊥s replaced be the values taken by L at those coordinates. Let
𝛽′𝑖 ⊆ 𝛽𝑖 be the subset of paths in 𝑆0. Run Algorithm 72 with 𝛽 ← 𝛽′𝑖 ∪ 𝛽(𝑠𝑖−1) ∪ ⋅ ⋅ ⋅ ∪ 𝛽′1, 𝑆0 ← 𝑆0 as inputs and
define 𝑆𝑖, 𝑗 to be 𝑆 𝑗 which is the output of the algorithm for 𝑗 ∈ {1 . . . 𝑑}. Let L̂𝑖, 𝑗 (resp. Ľ𝑖, 𝑗 ) be L inside (resp.
outside) 𝑆𝑖, 𝑗 (see Notation 43). LetM𝑖, 𝑗 be the shadow of L wrt 𝑆𝑖, 𝑗 . The 𝑖th term in Equation (9) can then
be expressed as

TD[𝑈L𝑖 (𝜎𝑖),𝑈 M⃗𝑖

𝑖 (𝜎𝑖)] ≤
𝑑

∑
𝑗=1

TD[L𝑈𝑖, 𝑗𝜌𝑖, 𝑗−1, M𝑖, 𝑗𝑈𝑖, 𝑗𝜌𝑖, 𝑗−1]

where 𝜌𝑖, 𝑗−1 ∶= M𝑖, 𝑗−1𝑈𝑖, 𝑗−1 . . .M𝑖,1𝑈𝑖,1(𝜎𝑖). The square of the 𝑗th term, can then be bounded (using

Lemma 41) by Pr[find ∶𝑈L/𝑆𝑖,𝑗𝑖, 𝑗 , 𝜌𝑖, 𝑗−1] which is

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚
,...𝑠𝑖−1∶Pr[𝑠𝑖−1∣𝛽1 ... ]≥2

−𝑚

𝛽(𝑠1)∶Pr[𝛽(𝑠1)∣𝑠1𝛽1]≥2
−𝑚

,...𝛽(𝑠𝑖−1)∶Pr[𝛽(𝑠𝑖−1)∣𝑠1𝛽1 ... ]≥2
−𝑚

𝛽1,𝛽2 ...𝛽𝑖

𝛼(𝑇 (𝜎𝑖)) ⋅Pr[find ∶𝑈L/𝑆𝑖,𝑗𝑖, 𝑗 , 𝜌𝑖, 𝑗−1∣Ľ𝑖, 𝑗−1 𝑇 (𝜎𝑖)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

+2 ⋅ (𝑖 − 1) ⋅ 2−(𝑚−𝑚̃)

≤ 2Δ ⋅ poly(𝑛) ⋅ negl(𝑛) + 2 ⋅ (𝑖 − 1) ⋅ 2−(𝑚−𝑚̃) ≤ negl(𝑛)
where 𝛼 is the probability coefficient (bounded by 1), and the distribution of the injective shuffler in Term I
is F𝑖⋅𝛿 ∣𝛽

′
𝑖∪𝛽(𝑠𝑖−1)∪⋅⋅⋅∪𝛽

′
1 . This is obtained by repeatedly applying Proposition 70 (for the 𝑘th application, 𝛿 ′ ←

(𝑘 −1)𝛿, 𝛽 ← 𝛽′𝑘 ∪𝛽(𝑠𝑘−1) ⋅ ⋅ ⋅∪𝛽′1 and 𝑆0 ← 𝑆0) and arguing as before to collect terms for which the distribution
over the injective shuffler is unknown (but which occur with probability at most 2−𝑚). Independence of 𝑆𝑖, 𝑗
from 𝜌𝑖, 𝑗−1 can be argued as before once it is conditioned on Ľ𝑖, 𝑗−1 and one can apply Corollary 44 together
with Claim 73 (with 𝛿 ← 𝑖 ⋅𝛿, 𝛽 ← 𝛽′𝑖 ∪𝛽(𝑠𝑖−1) ⋅ ⋅ ⋅∪𝛽′1 and 𝑆0 ← 𝑆0) to obtain the stated bound on Term I (recall
𝛾 = 2−𝑚 and 𝛿 = Δ/𝑛).

Step Two. CM∣𝐸 succeeds at solving 𝑑-CodeHashing with at most negligible probability. This is analogous
to how we argued in the proof of Lemma 57. The quantum part never has any information about 𝐻 (recall
𝐻(⋅) = 𝐻𝑑 ○ . . . 𝐻0(⋅)) which the classical algorithm before it does not already have. Therefore the success
probability of CM∣𝐸 is limited by the number of classical queries it makes. Since this is polynomial, from
Theorem 34 (second part), it follows that CM∣𝐸 succeeds with negligible probability.

�

7.8 BPPQNC
BPP
𝑑 exclusion

The proof of CQC𝑑 hardness of 𝑑-CodeHashing is, conceptually, a straightforward combination of QCd hardness
and of CQd hardness. In the proof of CQd hardness, we analysed each QNC𝑑 circuit by following the ideas
behind the QNC𝑑 hardness proof. The difference was that instead of using the random oracles in L directly
(see Definition 35), we used the conditioned oracle L∣𝑠 and then relied on the behaviour of the injective
shuffler inj[L∣𝑠] to argue indistinguishability from the appropriate shadow oracles.

We now proceed almost exactly as in the CQd hardness case and analyse each QCd circuit by following
the ideas behind the QCd hardness proof. As before, the difference would be that we would use properties
of inj[L∣𝑠] (see Notation 76) instead of L. Recall that in the analysis of QCd we had to introduce the notion
of “query paths” (see Definition 54). However, we already introduced “paths” more carefully for analysing
CQd hardness and this makes it easier to analyse CQC𝑑 hardness (see Definition 63). Compared to CQd, at a
high level, the difference would just be that we expose additional paths 𝛽 after each layer of unitaries. This
slightly changes the way shadows are defined, i.e. we need to adapt Algorithm 72 to our setting (currently
it is closer to the QNC𝑑 case, Algorithm 50, and we want it to be more like the QCd case, Algorithm 55).
However, one can still use Claim 56 which was used to argue that shadow oracles are hard to distinguish
from the originals as this already accounts for paths 𝛽 exposed.

55Note that 𝑖 ≥ 2 when this reasoning is applied because 𝑠𝑖−1 is 𝑠1 for 𝑖 = 2.
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7.8.1 Shadow oracles for CQC𝑑 hardness and their properties

The procedure for generating the sets 𝑆𝑖, 𝑗 in this case, is essentially the same as Algorithm 72 with only
one difference: the procedure is applied to each index 𝑖 ∈ {1 . . . 𝑑} because the paths exposed by the classical
algorithm are only determined after each layer of unitary is applied. To contrast, in the CQd case, these paths
(queried by the classical algorithm) were determined before the quantum part of the circuit was executed
and one could therefore construct the all {𝑆𝑖, 𝑗}𝑖, 𝑗 at once.

Algorithm 77 (Procedure for generating 𝑆𝑖, 𝑗 , given 𝛽, and the previous sets 𝑆𝑖−1). Let L′ = (𝐻 ′0, . . . 𝐻 ′𝑑) be L
conditioned on some variable, as in Notation 43, Σ be as in Definition 35 and 𝑆𝑖 = 𝐻 ′𝑖−1(. . . 𝐻 ′0(Σ) . . . ) be as
in Algorithm 49.
Input:

1. Index: 𝑖 ∈ {1 . . . 𝑑}

2. Base sets 𝑆0 = (𝑆0, 𝑗)𝑗∈{1...𝑑} (see Definition 60)

3. The set of paths queried: (valid) paths 𝛽 wrt 𝑆0 (see Definition 63)

4. The previous sequence of sets for creating the shadow oracle: If 𝑖 > 0, then 𝑆𝑖−1 ∶= (𝑆𝑖−1, 𝑗)𝑗∈{1...𝑑} where
𝑆𝑖−1, 𝑗 ⊆ 𝑆0, 𝑗 for all 𝑗 ∈ {1 . . . 𝑑}.

5. Whether or not event 𝐸 happened.

Output:
If 𝐸 did not happen, set 𝑆𝑖𝑘 = ∅ for all 𝑖, 𝑘 ∈ {1, . . . 𝑑}. Otherwise, for each 𝑖 ∈ {1 . . . 𝑑} do the following.

1. Define 𝑆𝑖𝑘 = ∅ for 1 ≤ 𝑘 < 𝑖.

2. Sample, uniformly at random, 𝑆𝑖𝑖 ⊆ 𝑆𝑖−1,𝑖/𝑋𝑖(𝛽) such 𝑆𝑖/𝑋𝑖(𝛽) ⊆ 𝑆𝑖𝑖 , and ∣𝑆𝑖𝑖 ∣/∣𝑆𝑖−1,𝑖 ∣ = 1/∣Σ∣

3. Define 𝑆𝑖𝑘 ∶= 𝐻 ′𝑘−1(. . . 𝐻 ′𝑖 (𝑆𝑖𝑖) . . . ) for 𝑖 < 𝑘 ≤ 𝑑.

In both cases, return 𝑆𝑖 ∶= (𝑆𝑖1, . . . 𝑆𝑖𝑑).

The key property satisfied by Algorithm 72 was Claim 73. The analogous property for Algorithm 77 is
the following which is almost identical to Claim 73 except that one specifies some conditions to ensure 𝑆𝑖−1
is appropriately defined. When we apply the algorithm, as in the QCd case, we would begin with 𝑆0 and
successively apply Algorithm 77 to produce 𝑆1, . . . 𝑆𝑑 and the stated conditions would automatically hold.

Claim 78. Let K ∼ F𝛿 ∣𝛽inj be an injective shuffler conditioned on 𝛽 wrt base sets 𝑆0, sampled form a 𝛿 non-𝛽-

uniform distribution (see Definition 64 and Notation 69) where ∣𝛽 ∣ ≤ poly(𝑛). Suppose L′ is L conditioned on
some variable 𝜏 such that inj[L′] wrt 𝑆0 (see Notation 76) is exactly K. Suppose Algorithm 77 is run with the
following inputs: an index 𝑖 ∈ {1 . . . 𝑑}, the base sets 𝑆0, valid paths 𝛽, a sequence of sets 𝑆𝑖−1 (defined next) and
the assertion that 𝐸 happened and let its output be 𝑆𝑖 𝑗 for 𝑗 ∈ {1, . . . 𝑑}. If 𝑖 > 1, 𝑆𝑖−1 ∶= (𝑆𝑖−1,1, 𝑆𝑖−1,2, . . . 𝑆𝑖−1,𝑑)
are arbitrary sets such that

• for 𝑗 < 𝑖 − 1, 𝑆𝑖−1, 𝑗 = ∅

• for 𝑗 = 𝑖 − 1, 𝑆𝑖−1,𝑖−1 ⊆ 𝑆0,𝑖−1, 𝑆𝑖−1/𝑋𝑖−1(𝛽) ⊆ 𝑆𝑖−1,𝑖−1 (where 𝑆𝑖 is as in Algorithm 49) and ∣𝑆𝑖−1,𝑖−1∣ =
∣Σ∣𝑑+2−(𝑖−1) = ∣Σ∣𝑑+1−𝑖

• for 𝑗 > 𝑖 − 1, 𝑆𝑖−1, 𝑗 = 𝐻 𝑗(𝑆𝑖−1, 𝑗−1) = 𝐻 𝑗(. . . 𝐻𝑖−1(𝑆𝑖−1,𝑖−1) . . . ).

Then,
Pr[𝑥 ∈ 𝑆𝑖 𝑗 ∣Ľ′] ≤ (2𝛿 + 𝑐) ⋅ poly(𝑛) ⋅ negl(𝑛)

where 𝑐 is some constant (independent of 𝛿, 𝑑 etc.) Ľ′ is L′ outside 𝑆𝑖−1 (see Notation 43 with 𝑆out ← 𝑆𝑖−1

and L′ ← L′) for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑 where the probability is over the randomness in K (i.e. from F
𝛿 ∣𝛽

inj ) and the
randomness in Algorithm 77.

Proof. The same as that of Claim 73 except that there, the proof worked for all 𝑖, 𝑗 ∈ {1 . . . 𝑑}. Here, the same
arguments apply for a fixed 𝑖 and 𝛽 over all values of 𝑗 ∈ {1 . . . 𝑑}. �
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It might not be clear why it suffices to consider only one path, 𝛽 in the claim if different paths 𝛽𝑖 are
specified for different 𝑖s when 𝑆𝑖 are created using Algorithm 77.

Remark 79. Suppose 𝑆𝑖 are created successively using Algorithm 77 with 𝛽 ← ∪𝑖′∈{1...,𝑖−1}𝛽𝑖′ =∶ 𝛽1∶𝑖−1 and 𝑆𝑖−1
as inputs for index 𝑖. Then, the condition 𝑆𝑖−1/𝑋𝑖−1(𝛽1∶𝑖−1) ⊆ 𝑆𝑖−1,𝑖−1 holds by construction, and it trivially
holds that 𝑆𝑖−1/𝑋𝑖−1(𝛽1∶𝑖) ⊆ 𝑆𝑖−1/𝑋𝑖−1(𝛽1∶𝑖−1) because 𝛽1∶𝑖 ⊇ 𝛽1∶𝑖−1. If Claim 78 is invoked with 𝑆𝑖−1 and 𝛽 ← 𝛽1∶𝑖 ,
then the condition 𝑆𝑖−1/𝑋𝑖−1(𝛽) ⊆ 𝑆𝑖−1,𝑖−1 is satisfied as required.

7.8.2 𝑑-CodeHashing is hard for CQC𝑑

Lemma 80 (𝑑-CodeHashing ∉ BPPQNC
BPP
𝑑 ). Every CQC𝑑 circuit succeeds at solving 𝑑-CodeHashing (see Defin-

ition 35) with probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝜆).

Following the previous proof, we begin with setting up the notation (recall 𝑛 = Θ(𝜆)).

• Denote by 𝜎0 the initial state (containing the input 1𝜆 and ancillae initialised to zero).

• From Notation 22, recall that CQC𝑑 circuits can be represented as56 D = D𝑛 ○ ⋅ ⋅ ⋅ ○ D1 where D𝑖 =
B𝑖,𝑑 ○B𝑖,𝑑−1 ○ ⋅ ⋅ ⋅ ○ B𝑖,1 is a QCd circuit with B𝑖, 𝑗 ∶= Π𝑖, 𝑗 ○𝑈𝑖, 𝑗 ○A𝑐,𝑖, 𝑗 . Here 𝑈𝑖, 𝑗 is a single layer unitary and
A𝑐,𝑖, 𝑗 is a poly sized classical circuit. We drop the subscript “𝑐” from A𝑐,𝑖, 𝑗 for brevity.

• Let L = (𝐻0, . . . 𝐻𝑑+1), 𝑑 ′ and Σ be as in definition 35.

• Denote by DL ∶= DL𝑛 . . .DL1 where DL𝑖 = BL𝑖,𝑑BL𝑖,𝑑−1 . . .BL𝑖,1 and BL𝑖, 𝑗 = Π𝑖, 𝑗 ○ L ○𝑈𝑖, 𝑗 ○ AL𝑖, 𝑗 .
We make the following assumptions which only makes the result stronger (as explained in the CQd
case)

– Classical information entering 𝑈𝑖, 𝑗 and A𝑖, 𝑗 is forwarded with their output (for all 𝑖, 𝑗 in their
domain).

– For 𝑖 > 1, A𝑖,1 receives an extra random variable (a set of paths) correlated with L as input, labelled
𝛽∗(𝑠𝑖−1).

• In the analysis below, we consider 𝑛 sequences of shadow oracles. Each sequence is denoted by M⃗𝑖 =
(M𝑖,1,M𝑖,2 . . .M𝑖,𝑑), one for each D𝑖 .

– We use DM⃗𝑖

𝑖 to denote BM⃗𝑖

𝑖,𝑑
BM⃗𝑖

𝑖,𝑑−1
. . .BM⃗𝑖

𝑖,1 where57 BM⃗𝑖

𝑖, 𝑗 = Π𝑖, 𝑗 ○M𝑖, 𝑗 ○𝑈𝑖, 𝑗 ○ AL𝑖, 𝑗 .

– M⃗𝑖 = (M𝑖, 𝑗)𝑗 are a sequence of shadows of L created using the sets outputted by Algorithm 77
(and are conditioned on Algorithm 49 succeeding). The input to the algorithm is described later.

• Denote by DM ∶= DM⃗𝑛

𝑛
. . .DM⃗1

1 , i.e. a CQC𝑑 circuit with access to only shadow oracles.

The following are essentially unchanged from the CQd case.

• After each circuit D𝑖 , the state is classical and this allows us to consider “transcripts” which we denote
by 𝑇 (the details appear later).

• Parameters for the sampling argument: Same as the CQd case (the advice is now the number of bits
sent by A𝑖,1 to 𝑈𝑖,1).

• Shorthand for Pr[find ∶ . . . ] notation: Same as the CQd case.

Proof. Proceeding as in the CQd case, we run algorithm 49 on L and let 𝐸 be the event that it does not
abort. Observe that RRRRRRRRRRR

∑
x∈𝑋valid

Pr[x← DL] − ∑
x∈𝑋valid

Pr[x← DL∣𝐸]
RRRRRRRRRRR
≤ negl(𝑛) (12)

56We dropped the preceding A𝑐,𝑚+1,1 classical circuit. This is without loss of generality because it can be accounted for by
adding a D𝑛+1; but 𝑛 is just an arbitrary polynomial of 𝑛.

57This is a slight abuse of notation because M⃗𝑖 is just a tuple (M𝑖,1 . . .M𝑖,𝑑) but B
M⃗𝑖
𝑖,𝑗 has AL𝑖,𝑗 which depends on L explicitly.
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as was the case before (recall 𝑋valid was the set of valid solutions to 𝑑-CodeHashing). We will show in step
one, that DL∣𝐸 and DM∣𝐸 have essentially the same behaviour, i.e.

∣Pr[x← DL∣𝐸] −Pr[x← DM∣𝐸]∣ ≤ negl(𝑛) (13)

and then in step two, that DM∣𝐸 succeeds with at most negligible probability at solving 𝑑-CodeHashing (see
Definition 35). These two steps, together with Equation (12), entail that DL solves 𝑑-CodeHashing with at
most negl(𝑛) probability.

In the rest of the proof, we implicitly condition everything on the event 𝐸. Let 𝑆0 be the output of
Algorithm 49. Figure 10 may aid in visualising the overarching idea. We also make the simplifying assumption
that all classical algorithms only query paths inside the base set 𝑆0. The general case changes almost nothing,
but makes the notation more involved (especially since in this case we have classical algorithms after every
layer of unitaries) and can be handled as in the proof of CQd hardness.

Step One. DL∣𝐸 and DM∣𝐸 have essentially the same behaviour.
Using a hybrid argument, one can bound the LHS of Equation (13) by bounding

TD[DL,DM] = TD[DL𝑛 . . .DL1 (𝜎0), DM⃗𝑛

𝑛
. . .DM⃗1

1 (𝜎0)]

with

≤
𝑛

∑
𝑖=1

TD[DL𝑛 . . .DL𝑖+1 DL𝑖 . . .DL1 , DL𝑛 . . .DL𝑖+1 DM⃗𝑖

𝑖 . . .DM⃗1

1 ]

≤
𝑛

∑
𝑖=1

TD[DL𝑖 . . .DL1 , DM⃗𝑖

𝑖 . . .DM⃗1

1 ]. (14)

The 𝑖 = 1 case:
This 𝑖 = 1 case may be seen as an adaptation of the QCd hardness proof, using a slightly more general notation

suited for our analysis here. Our goal is to bound TD[DL1 ,DM⃗1

1 ] but we have not completely specified M⃗1.

To this end, consider DM⃗1

1 = BM⃗1

1,𝑑
. . .BM⃗1

1,1 where recall BM⃗1

1, 𝑗 = Π1, 𝑗 ○M1, 𝑗 ○𝑈1, 𝑗 ○AL1, 𝑗 . Let 𝛽1, 𝑗 denote the set

of paths (wrt 𝑆0; see Definition 63) queried by AL1, 𝑗 when DM⃗1

1 is executed. For 𝑗 ∈ {1 . . . 𝑑}, let 𝑆1, 𝑗 be the
output of Algorithm 77 with the index 𝑖 ← 𝑗 , base sets 𝑆0 ← 𝑆0, the paths 𝛽 ← ∪𝑗 ′∈{1... 𝑗}𝛽1, 𝑗 ′ and the previous

sequence of sets 𝑆𝑖−1 ← 𝑆1, 𝑗−1 as inputs.58 When 𝑗 = 1, instead of 𝑆1, 𝑗−1 use 𝑆𝑖−1 ← 𝑆0. Finally, defineM1, 𝑗 as
the shadow of L wrt 𝑆1, 𝑗 .

Returning to the bound, one can write

TD[DL1 ,DM⃗1

1 ] = TD[BL1,𝑑 . . .BL1,1(𝜎0), BM⃗1

1,𝑑
. . .BM⃗1

1,1 (𝜎0)]

≤
𝑑

∑
𝑗=1

TD[BL1, 𝑗(𝜌1, 𝑗−1),BM⃗1

1, 𝑗 (𝜌1, 𝑗−1)]

≤
𝑑

∑
𝑗=1

√
Pr[find ∶𝑈L/𝑆1, 𝑗1, 𝑗 ,AL1, 𝑗(𝜌1, 𝑗−1)] (15)

where for 𝑗 ∈ {1 . . . 𝑑 − 1}, 𝜌1, 𝑗 ∶= BM⃗1

1, 𝑗 . . .BM⃗1

1,1 (𝜎0) and we used Lemma 41 (and the relation between TD
and B) to obtain the last inequality. To bound the RHS of Equation (15), one can apply Corollary 44. Use
𝑆1, 𝑗/𝑋(𝛽1, 𝑗+1) (see Definition 63) to denote the sequence of sets (𝑆1, 𝑗,𝑘/𝑋𝑘(𝛽1, 𝑗+1))𝑘∈{1...𝑑}. Let Ľ1, 𝑗 be L outside

𝑆1, 𝑗/𝑋(𝛽1, 𝑗+1) (see Notation 43). Observe that 𝜌1, 𝑗−1∣Ľ1, 𝑗−1 is uncorrelated with 𝑆1, 𝑗 ∣Ľ1, 𝑗−1 because AL1, 𝑗(𝜌1, 𝑗−1)
at most specifies Ľ1, 𝑗−1; the queries made by A1, 𝑗 have been exposed in Ľ1, 𝑗−1 and are by construction of
Algorithm 77, excluded from 𝑆1, 𝑗 . Using the notation for conditioning Pr[find ∶ . . . ], one can apply, for each
𝑗 ∈ {1 . . . 𝑑}, Corollary 44 together with Claim 78 (where 𝛿 ← 0, 𝛽 ← ∪𝑗 ′∈{1,... 𝑗}𝛽1, 𝑗 ′ , 𝑆0 ← 𝑆0 and 𝑆𝑖−1 ← 𝑆1, 𝑗−1)
to obtain

Pr[find ∶𝑈L/𝑆1, 𝑗1, 𝑗 ,AL1, 𝑗(𝜌1, 𝑗−1)∣Ľ1, 𝑗−1] ≤ negl(𝑛).
This in turn bounds the RHS of Equation (15) by negl(𝑛).

The 𝑖 = 2 case:
Since we analysed the 𝑖 = 1 case using a more general notation (than both the CQd case and the QCd case),

58And the assertion that 𝐸 happened. We don’t explicitly state this any more.
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Figure 10: Black lines indicate wires carrying classical information. It is assumed that all circuits append their
classical inputs into their classical outputs. The blue wires represent wires carrying quantum information.
The figure is meant to illustrate three types of CQC𝑑 circuit, obtained by replacing the red blocks with the
three respective circuits enclosed in red boxes. The second circuit is at least as powerful as the first, which in
turn is the circuit we wish to study. The shaded circuit in the second red box represents the implementation
of the sampling argument.
Notation in the third circuit: For each classical wire, only new information contained in that wire is labelled.
For 𝑖 ∈ {1 . . . 𝑛} and 𝑗 ∈ {1 . . . 𝑛}, 𝛽𝑖, 𝑗 represents the paths in L queried by A𝑖, 𝑗 , 𝑠𝑖 denotes the measurement
outcome after 𝑈𝑖,𝑑 , and 𝛽∗(𝑠𝑖) denotes the paths exposed by the sampling argument (the ∗ indicates that the
last coordinate may not be known). For 𝑗 = 1, A𝑖, 𝑗 also outputs 𝛽(𝑠𝑖−1) which specifies the path 𝛽∗(𝑠𝑖−1) with
the last coordinate also revealed.
We show that the behaviour of the second and third circuits is essentially the same where the third has its
quantum parts only connected to shadow oracles. It is not hard to establish that the third circuit only solves
𝑑-CodeHashing with at most negligible probability. Together, these prove 𝑑-CodeHashing is hard for CQC𝑑 .
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we proceed as in that case but additionally, apply the sampling argument to account for the output of DM⃗1

1 .

Let 𝜎1 ∶= DM⃗1

1 (𝜎0). Our goal is to bound TD[DL2 (𝜎1),DM⃗2

2 (𝜎1)] but we have not yet specified M⃗2.
To this end, we apply the sampling argument. Let59 𝛽1 ∶= ∪𝑑𝑗=1𝛽1, 𝑗 be the set of paths queried by the

classical algorithms in DM⃗1

1 . Note that inj[L∣𝛽1] (see Notation 76) is distributed as F
∣𝛽1
inj . Let the string 𝑠1

denote the output of DM⃗1

1 . Given that Pr[𝑠1∣𝛽1] ≥ 𝛾 , inj[L∣𝛽1𝑠1]may be expressed as a convex combination (as

described in Proposition 70) over inj[L∣𝑠1𝛽1𝛽∗(𝑠1)] which are distributed as F
(𝑝,𝛿)∣𝛽1
inj where ∣𝛽∗(𝑠1)∣ ≤ 𝑝 ≤ 2𝑚/𝛿

whenever the convex coefficient is larger than 𝛾 . When Pr[𝑠1∣𝛽1] < 𝛾 , let 𝛽∗(𝑠1) = ∅. This implicitly defines

the random variable 𝛽∗(𝑠1) which was initially left unspecified. The first (classical) circuit of DM⃗2

2 , i.e. AL2,1,
takes as input 𝑠1 and 𝛽∗(𝑠1). We assume (without loss of generality) AL2,1 learns 𝛽(𝑠1) which is 𝛽∗(𝑠1) with
⊥s replaced by the value L takes in the last coordinate.

We now proceed as in the 𝑖 = 1 case and consider DM⃗2

2 = BM⃗2

2,𝑑
. . .BM⃗2

2,1 acting on 𝜎1 where BM⃗2

2, 𝑗 =
Π2, 𝑗 ○M2, 𝑗 ○𝑈2, 𝑗 ○AL2, 𝑗 . Let 𝛽1, 𝑗 denote the set of paths queried by AL2, 𝑗 when DM⃗2

2 is executed (for 𝑗 = 1, 𝛽1, 𝑗
counts paths distinct from 𝛽(𝑠1)). For 𝑗 ∈ {1 . . . 𝑑}, let 𝑆2, 𝑗 be the output of Algorithm 77 with index 𝑖 ← 𝑗 ,
base sets 𝑆0 ← 𝑆0, the paths 𝛽 ← ∪𝑗 ′∈{1... 𝑗}𝛽2, 𝑗 ′ ∪ 𝛽1 ∪ 𝛽(𝑠1), and the previous sequence of sets 𝑆𝑖−1 ← 𝑆2, 𝑗−1 as
inputs. When 𝑗 = 1, instead use 𝑆𝑖−1 ← 𝑆0. Finally, defineM2, 𝑗 as the shadow of L wrt 𝑆2, 𝑗 .

Returning to the bound, one can write

TD[DL2 (𝜎1),DM⃗2

2 (𝜎1)] ≤
𝑑

∑
𝑗=1

TD[BL2, 𝑗(𝜌2, 𝑗−1),BM⃗2

2, 𝑗 (𝜌2, 𝑗−1)]

≤
𝑑

∑
𝑗=1

√
Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 ,AL2, 𝑗(𝜌2, 𝑗−1) (16)

where for 𝑗 ∈ {1 . . . 𝑑}, 𝜌2, 𝑗 ∶= BM⃗2

2, 𝑗 . . .BM⃗2

2,1 (𝜎1) and we used Lemma 41 to get the last inequality. To bound

the RHS Equation (16), one can apply Corollary 44. Let Ľ2, 𝑗 be L outside 𝑆2, 𝑗/𝑋(𝛽2, 𝑗+1) (see Notation 43).
Observe that 𝜌2, 𝑗−1∣Ľ2, 𝑗−1 is uncorrelated with 𝑆2, 𝑗 ∣Ľ2, 𝑗−1 (for the same reason as the 𝑖 = 1 case). However,
to apply Claim 78 we condition on the “transcript” until the output of A2,1, i.e. 𝑇2 ∶=∶ 𝑇 (A2,1(𝜎1)) ∶=
(𝛽1, 𝑠1, 𝛽(𝑠1), 𝛽2,1), by writing Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 ,AL2, 𝑗(𝜌2, 𝑗−1)∣Ľ2, 𝑗−1]

= ∑
𝑠1,𝛽1,𝛽(𝑠1),𝛽2,1

Pr[𝑇2] ⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 ,AL2, 𝑗(𝜌2, 𝑗−1)∣Ľ2, 𝑗−1𝑇2]

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚

𝛽1,𝛽(𝑠1),𝛽2,1

Pr[𝛽2,1∣𝑠1𝛽1𝛽(𝑠1)]Pr[𝛽(𝑠1)∣𝑠1𝛽1]Pr[𝑠1∣𝛽1]Pr[𝛽1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pr[𝑇2]

⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 ,AL2, 𝑗(𝜌2, 𝑗−1)∣Ľ2, 𝑗−1𝑇2] + 2−(𝑚−𝑚̃)

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚

𝛽(𝑠1)∶Pr[𝛽(𝑠1)∣𝑠1𝛽1]≥2
−𝑚

𝛽1,𝛽2,1

Pr[𝛽2,1∣𝑠1𝛽1𝛽(𝑠1)]Pr[𝛽(𝑠1)∣𝑠1𝛽1]Pr[𝑠1∣𝛽1]Pr[𝛽1] ⋅Pr[find ∶𝑈L/𝑆2, 𝑗2, 𝑗 ,AL2, 𝑗(𝜌2, 𝑗−1)∣Ľ2, 𝑗−1𝑇2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

+2 ⋅ 2−(𝑚−𝑚̃)

≤ negl(𝑛)

where to obtain the first inequality (proceeding almost exactly as in the CQd case), we note that for each
𝑠1 ∶ Pr[𝑠1∣𝛽1] ≥ 2−𝑚, one can use Proposition 70 and one can account for all 𝑠1 ∶ Pr[𝑠1∣𝛽1] < 2−𝑚, by simply
upper bounding the sum by 2−(𝑚−𝑚̃) because 𝑠1 is of length 𝑚̃. In the second inequality, we use the fact
that either the convex weight (i.e. Pr[𝛽(𝑠1)∣𝑠1𝛽1]) as specified in Proposition 70 is less than 2−𝑚 (for at most
each 𝑠1, there it contributes at most 2−(𝑚−𝑚̃) to the sum) or it is greater than 2−𝑚. In the latter case, the

injective shuffler is distributed as F
𝛿 ∣𝛽

inj where 𝛽 ← 𝛽1 ∪ 𝛽(𝑠1) ∪ 𝛽2,1. Therefore, one can apply Corollary 44

together with Claim 78 (where 𝛿 ← 𝛿, 𝛽 ← ∪𝑗 ′∈{1,... 𝑗}𝛽2, 𝑗 ′ ∪ 𝛽1 ∪ 𝛽(𝑠1), 𝑆0 ← 𝑆0 and 𝑆𝑖−1 ← 𝑆2, 𝑗−1) to obtain

Term 1 ≤ 2𝛿 ⋅ poly(𝑛) ⋅ negl(𝑛).
The general 𝑖 ∈ {1 . . . 𝑛} case:

This is a straightforward generalisation of the 𝑖 = 2 case and hence we only outline the key steps. Let

𝜎𝑖 ∶= DM⃗𝑖

𝑖 . . .DM⃗1

1 (𝜎0) where M𝑖−1, 𝑗 is the shadow of L wrt 𝑆𝑖−1, 𝑗 which in turn are defined below. It may

help to keep the last circuit of Figure 10 in mind. Consider DM⃗𝑖

𝑖 = BM⃗𝑖

𝑖,𝑑
. . .BM⃗𝑖

𝑖,1 acting on 𝜎𝑖−1 where recall

59We slightly abuse the notation. By ∪𝑑𝑗=1𝛽1, 𝑗 we mean component-wise union as each 𝛽1, 𝑗 is a sequence of sets.
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BM⃗2

𝑖, 𝑗 = Π𝑖, 𝑗 ○M𝑖, 𝑗 ○𝑈𝑖, 𝑗 ○ AL𝑖, 𝑗 . Let 𝛽𝑖, 𝑗 denote the set of paths queried by AL𝑖, 𝑗 when DM⃗𝑖

𝑖 is executed. Let

𝛽𝑖 ∶= ∪𝑗∈{1,...𝑑}𝛽𝑖, 𝑗 . Let 𝑠𝑖 denote the string output by DM⃗𝑖

𝑖 (𝜎𝑖−1).
Now, we apply the sampling argument to inj[L∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1]. Let 𝛽∗(𝑠𝑖−1) be the paths

as in Proposition 70 such that when Pr[𝑠𝑖−1∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1] ≥ 𝛾 , inj[L∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1𝑠𝑖−1] is dis-

tributed as F
(𝑖−2)𝛿 ∣𝛽1∪⋅⋅⋅∪𝛽𝑖−1∪𝛽(𝑠1)∪...𝛽(𝑠𝑖−1)
inj so that60 inj[L∣𝛽1𝑠1𝛽(𝑠1) . . . 𝛽𝑖−1𝑠𝑖−1𝛽∗(𝑠𝑖−1)] is distributed as

F
(𝑝,(𝑖−2)𝛿)∣𝛽1∪⋅⋅⋅∪𝛽𝑖−1∪𝛽(𝑠1)∪⋅⋅⋅∪𝛽(𝑠𝑖−1)
inj whenever the convex coefficient (i.e. probability associated with 𝛽∗(𝑠𝑖−1))

is larger than 𝛾 = 2−𝑚. 𝛽(𝑠𝑖−1) is 𝛽∗(𝑠𝑖−1) with ⊥s replaced by the values taken by L at those coordinates.
Returning to 𝑆𝑖, 𝑗 , define it to be the output of Algorithm 77 with index 𝑖 ← 𝑗 , base sets 𝑆0 ← 𝑆0, the paths

𝛽 ← (∪𝑗 ′∈{1... 𝑗}𝛽𝑖, 𝑗 ′) ∪ (𝛽𝑖−1 ∪ ⋅ ⋅ ⋅ ∪ 𝛽1) ∪ (𝛽(𝑠𝑖−1) ∪ ⋅ ⋅ ⋅ ∪ 𝛽(𝑠1)), and the previous sequence of sets 𝑆𝑖−1 ← 𝑆𝑖, 𝑗−1 as
inputs. When 𝑗 = 1, use 𝑆𝑖−1 ← 𝑆0 instead.

To obtain the bound, we need two more definitions. Let the “transcript” be denoted by 𝑇𝑖 ∶=∶
𝑇 (A𝑖,1(𝜎𝑖−1)) ∶= (𝛽1, 𝑠1, 𝛽(𝑠1), . . . 𝛽𝑖−1, 𝑠𝑖−1, 𝛽(𝑠𝑖−1), 𝛽𝑖,1). Let Ľ𝑖, 𝑗 be L outside 𝑆𝑖, 𝑗/𝑋(𝛽𝑖, 𝑗+1) (see Notation 43).

We bound the 𝑖th term in Equation (14) by expressing it as

TD[DL𝑖 (𝜎𝑖−1),DM⃗𝑖

𝑖 (𝜎𝑖−1)] ≤
𝑑

∑
𝑗=1

TD[BL𝑖, 𝑗(𝜌𝑖, 𝑗−1),BM⃗𝑖

𝑖, 𝑗 (𝜌𝑖, 𝑗−1)]

where 𝜌𝑖, 𝑗 ∶= BM⃗𝑖

𝑖, 𝑗 . . .BM⃗𝑖

𝑖, 𝑗 (𝜎𝑖−1). The square of the 𝑗th term can then be bounded (using Lemma 41) by

Pr[find ∶𝑈L/𝑆𝑖,𝑗𝑖, 𝑗 ,AL𝑖, 𝑗(𝜌𝑖, 𝑗−1)] which is

≤ ∑
𝑠1∶Pr[𝑠1∣𝛽1]≥2

−𝑚
,...,𝑠𝑖−1∶Pr[𝛽1 ... ]≥2

−𝑚

𝛽(𝑠1)∶Pr[𝛽(𝑠1)∣𝑠1𝛽1]≥2
−𝑚

,...𝛽(𝑠𝑖−1)∶Pr[𝛽(𝑠𝑖−1)∣𝑠1𝛽1 ... ]≥2
−𝑚

𝛽1,𝛽2 ...𝛽𝑖−1, 𝛽𝑖,1

Pr[𝑇𝑖] ⋅Pr[find ∶𝑈L/𝑆𝑖,𝑗𝑖, 𝑗 ,AL𝑖, 𝑗(𝜌𝑖, 𝑗−1)∣Ľ𝑖, 𝑗−1,𝑇𝑖]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

+2 ⋅ (𝑖 − 1) ⋅ 2−(𝑚−𝑚̃)

≤ 2Δ ⋅ poly(𝑛) ⋅ negl(𝑛) + 2 ⋅ (𝑖 − 1) ⋅ 2−(𝑚−𝑚̃) ≤ negl(𝑛)

where the distribution of the injective shuffler in Term I is F𝑖⋅𝛿 ∣(𝛽(𝑠𝑖−1)∪...𝛽(𝑠1))∪(𝛽𝑖−1∪...𝛽1)∪𝛽𝑖,1 . This is obtained
by repeatedly applying Proposition 70 (for the 𝑘th application, 𝛿 ′ ← (𝑘 −1)𝛿, 𝛽 ← 𝛽𝑘,1 ∪(𝛽(𝑠𝑘−1) ∪ . . . 𝛽(𝑠1))∪
(𝛽𝑘−1 ∪ . . . 𝛽1) and 𝑆0 ← 𝑆0) and arguing as before to collect terms for which the distribution over the injective
shuffler is unknown (but which occur with probability at most 2−𝑚). Independence of 𝑆𝑖, 𝑗 from 𝜌𝑖, 𝑗−1 can
be argued as before once it is conditioned on Ľ𝑖, 𝑗−1 and one can apply Corollary 44 together with Claim 78
(with 𝛿 ← 𝑖 ⋅ 𝛿, 𝛽 ← (∪𝑗 ′∈{1,... 𝑗}𝛽𝑖, 𝑗 ′) ∪ (𝛽𝑖−1 ∪ . . . 𝛽1) ∪ (𝛽(𝑠𝑖−1) ∪ . . . 𝛽(𝑠1)), 𝑆0 ← 𝑆0 and 𝑆𝑖−1 ← 𝑆𝑖, 𝑗−1) to obtain
the stated bound on Term I (recall 𝛾 = 2−𝑚 and 𝛿 = Δ/𝑛).

Step Two. DM∣𝐸 succeeds at solving 𝑑-CodeHashing with at most negligible probability. The argument
for the CQd case go through with the only change that there are more classical algorithms to account for but
this does not affect the conclusion. �

8 Proof of Quantum Depth

Since YZ’s CodeHashing can be efficiently verified (i.e. it is NP), it is evident that 𝑑-CodeHashing can also
be efficiently verified. Therefore 𝑑-CodeHashing also serves a proof of quantum depth. However, in the
cryptographic context, one would ideally like security against oracle dependent adversaries (in our proofs
so far, we assumed the adversary is oracle independent). Fortunately, this issue can be resolved generically
and to this end, we first formalise what we mean by a proof of quantum depth. YZ also followed a similar
approach for their proof of quantumness which is based on CodeHashing.

8.1 The Definition

It may help to recall the definitions of uniform and non-uniform oracle dependent adversaries (see Subsec-
tion 3.2.2).

Definition 81 (Proof of 𝑑 Quantum Depth in the Random Oracle Model). Consider three algorithms,
(Gen,Verify𝐻 ) and Prove𝐻 .

60Note that 𝑖 ≥ 2 here because 𝑠𝑖−1 is 𝑠1 when 𝑖 = 2.
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Gen(1𝜆). A PPT algorithm which returns (sk, pk).

Verify𝐻 (sk, pk, 𝜋). A PPT algorithm that makes at most poly(𝜆) queries to 𝐻 and outputs 0 or 1.

Prove𝐻 (pk). Consider an oracle independent quantum circuit family {C𝑛}𝑛. Prove𝐻 (pk) executes C∣pk∣ with
input pk.

The algorithms (Gen,Verify𝐻 ) and Prove𝐻 constitute a Proof of 𝑑 Quantum Depth in the Random Oracle
Model, if the following holds for every sufficiently large security parameter 𝜆.

• Completeness. There is an honest prover which applies a poly-sized quantum circuit, i.e. {C𝑛} ∈ QPT
for all 𝑛, with the following property. Let Prove𝐻 (pk) be C∣pk∣ with input pk. Then, the verifier interacts
with the prover and accepts with overwhelming probability, i.e.

Pr
𝐻
[Verify𝐻 (sk, pk, 𝜋) = 1 ∶ (sk,pk)←Gen(1𝜆)

𝜋←Prove𝐻 (pk)
] ≥ 1 − negl(𝜆).

• Soundness. Consider any arbitrary prover which applies a CQC𝑑 circuit, i.e. {C𝑛}𝑛 where each C𝑛 ∈
CQC𝑑 . Let Prove𝐻 (pk) be C∣pk∣ with input pk. Then, the verifier interacting with any such prover
accepts with negligible probability, i.e.

Pr
𝐻
[Verify𝐻 (sk, pk, 𝜋∗) = 1 ∶ (sk,pk)←Gen(1𝜆)

𝜋
∗
←Prove𝐻 (pk)

] ≤ negl(𝜆)

for all Prove𝐻 .

Soundness against uniformly and non-uniformly oracle dependent provers is defined analogously. When
∣pk∣ = 0, the prover is given 1𝜆 as input.

Observe that the protocol above is a two-message protocol (the verifier sends pk and the prover sends 𝜋).
In fact, observe that any two-message protocol (where the verifier is classical and sends the first message)
can be cast in the aforementioned form by splitting the verification algorithm into two (Gen,Verify) and have
all the information from Gen passed to Verify and some information from Gen passed to Prove as the first
message. In addition to being two-message, the protocol above may also have the following properties if the
appropriate conditions are satisfied.

Publicly verifiable: If ∣sk∣ = 0 the proof can be publicly verified by looking at the transcript.61 If, in
addition, ∣pk∣ > 0, then we call the proof of quantum depth keyed.

Non-interactive (or keyless): If ∣pk∣ = 0 the verifier does not need to send any information to the prover.
Note that soundness in this case cannot hold against non-uniform adversaries.62

We conclude by noting that in our definition of proof of quantum depth, we allowed the completeness to
be BQP which may not be practical. This is analogous to the definition of proof of quantumness where the
soundness is against BPP and completeness is again BQP. In both cases, it is desirable to have low depth
circuits63 suffice for establishing completeness. Nonetheless, they are meaningful formalisations because they
do certify the respective notions of quantum depth and quantumness.

8.2 Salting and oracle dependent adversaries

For non-interactive proofs of quantum depth (as for non-interactive proofs of quantumness [YZ22]) in the
random oracle model, security holds only against oracle-independent adversaries, i.e. adversaries that are
fixed before the random oracle is chosen, but not against non-uniform oracle-dependent adversaries, i.e.
adversaries that receive advice strings after the random oracle has been chosen. To see this, observe that the
advice can be arbitrarily correlated with the chosen random oracle. For instance, in our setting, the advice
could simply be the codeword that hashes as required. Then, an adversary which simply outputs the advice
it receives can already break the security of the proof of quantum depth protocol.

61It is standard practice to assume that the algorithms themselves are public knowledge.
62The proof can be hardcoded into the prover’s advice.
63Ideally, QNC

O(1) for quantumness and QNC
O(𝑑+1) for quantum depth
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To also achieve security against non-uniform oracle-dependent adversaries, we rely on a result of Chung
et al. [CGLQ20]. In this work, it was shown (among other results) that salting, i.e. appending a random
string to the query, can be used to render the oracle-dependent advice useless. This is a quantum adaptation
of the results of [CDGS18] and can be used in our setting to turn a non-interactive proof of quantum depth
secure against oracle-independent adversaries into an interactive (two message) proof of quantum depth
secure against non-uniform oracle-dependent adversaries, in which the first message (sent by the verifier)
only consists simply of a random string. More formally, the following holds.

Theorem 82. Let PoQD = (Prove𝐻 ,Verify𝐻 (𝜋)) be a keyless proof of quantum depth secure against oracle-
independent adversaries, then PoQD′ = (Gen′(1𝜆),Prove′𝐻 (pk),Verify′𝐻 (pk, 𝜋)) is a keyed proof of quantum
depth secure against oracle-dependent non-uniform adversaries, where Gen(1𝜆) simply outputs a random pk,
i.e. pk← {0, 1}𝜆.

This theorem is an immediate consequence of [CGLQ20, Theorem 7.4] where a proof of quantum depth
is viewed as a publicly verifiable security game [CGLQ20, Definition 3.3]. Yamakawa and Zhandry used
the same result to lift their oracle-independent security to non-uniform security for the case of proofs of
quantumness, one-way functions and collision resistant functions [YZ22, Theorem 3.7 & 3.8].

8.3 A Proof of 𝑑 Quantum Depth

We give a non-interactive Proof of 𝑑 Quantum Depth protocol, sound against oracle independent adversaries
(see Definition 81). In the following, let 𝐻 , and C be as in Definition 35.

Verify𝐻 (1𝜆, 𝜋). Verify𝐻 parses 𝜋 as x = (x1, . . . x𝑛) and checks if (a) x ∈ C and (b) 𝐻(x) = 1. If both conditions
are satisfied, it outputs 1, otherwise it outputs 0.

Prove𝐻 (1𝜆). It runs the QPT machine in Theorem 34 with 𝐻 as the random oracle and returns the output x
as 𝜋 .

Completeness is immediate from Theorem 34. Soundness against oracle independent 𝑑 depth circuits (i.e.
circuits in CQC𝑑) follows directly from Lemma 36. As discussed in Section 8 above, using known results, we
obtain the following.

Theorem 83 (𝑑-Proof of Quantum Depth). There is a publicly verifiable Proof of 𝑑 Quantum Depth (see
Definition 81) sound against non-uniform oracle dependent adversaries.

9 Improved Upper Bound

To obtain the fine-grained separation BPPQNC
BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) , we introduce CollisionHashing.

9.1 CollisionHashing

CollisionHashing is essentially the same problem used by [BKVV20] to obtain a proof of quantumness pro-
tocol except that instead of using claw-free function, we use a random function. CollisionHashing shows
QNCO(1) ⊈ BPP, relative to a random oracle and satisfies classical query soundness. The main limitation of
CollisionHashing is that it cannot be efficiently verified, unlike YZ’s CodeHashing.

The following elementary result about the probability of producing a superposition of two pre-images
relative to a random oracle, would be useful in analysing CollisionHashing.

Claim 84. Let 𝑔 ∶ 𝐴 → 𝐵 be a random function where 𝐴 and 𝐵 are finite sets with ∣𝐴∣ ≥ ∣𝐵∣ and log ∣𝐴∣ , log ∣𝐵∣ ≤
poly(𝑛). Then there is a QNC2 circuit with oracle access to 𝑔 which produces the state

∣𝑎0⟩ + ∣𝑎1⟩√
2

(17)

with probability at least 𝑐 where {𝑎0, 𝑎1} = 𝑔−1(𝑏) for some 𝑏 ∈ 𝐵 and 0 < 𝑐 < 1 depends only on ∣𝐴∣ and ∣𝐵∣.
Further, lim∣𝐴∣→∞ 𝑐 ≥ 𝑘2/2(𝑒𝑘 − 1) when ∣𝐴∣ = 𝑘 ∣𝐵∣ for 𝑘 ∈ N.
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Proof. Producing∑𝑎∈𝐴 ∣𝑎⟩ ∣𝑔(𝑎)⟩ /
√
∣𝐴∣ takes one layer of Hadamards and a call to the oracle for 𝑔 and therefore

QNC2 can prepare this state. If the second register is measured, the probability that the first register holds (up

to normalisation) ∣𝑎0⟩ + ∣𝑎1⟩ is then Pr[∣𝑔−1(𝑏)∣ = 2∣𝑏 ∈ 𝑔(𝐴)] where the probability is over 𝑔
$← Functions(𝐴 →

𝐵). That in turn, for any fixed 𝑏, may be computed as follows64

𝑐(∣𝐴∣, ∣𝐵∣) =
∣{𝑔 ∶ ∣𝑔−1(𝑏)∣ = 2}∣
∣{𝑔 ∶ 𝑏 ∈ 𝑔(𝐴)}∣ =

∣𝐴∣⋅(∣𝐴∣−1)
2!

⋅ (∣𝐵∣ − 1)∣𝐴∣−2

(∣𝐵∣∣𝐴∣ − (∣𝐵∣ − 1)∣𝐴∣)

where to obtain the numerator, we count the number of ways of choosing exactly two points in 𝐴 (which are
mapped to 𝑏) and the number of ways of assigning non-𝑏 values to the remaining ∣𝐴∣ − 2 points. To obtain
the denominator, we count the number of functions from 𝐴 to 𝐵 and subtract from it all functions which do

not map to 𝑏, i.e. none of the ∣𝐴∣ points are assigned the value 𝑏. Using ∣𝐴∣ = 𝑘 ∣𝐵∣, lim∣𝐴∣→∞ (1 − 𝑘/∣𝐴∣)∣𝐴∣ = 𝑒−𝑘
and with some simplification, one obtains lim∣𝐴∣→∞ 𝑐 ≥ 𝑘2/2(𝑒𝑘 − 1). �

We now state the CollisionHashing problem as follows.

Definition 85 (CollisionHashing). The CollisionHashing problem is defined by (Gen, 𝑅𝐻 ) where Gen(1𝜆) = 1𝜆
and the relation 𝑅𝐻 is specified as follows: Let 𝑔 ∶ {0, 1}𝜆+1 → {0, 1}𝜆 be a random function, let 𝐻 ′ ∶ {0, 1}∗ →
{0, 1} be another random function (both generated using 𝐻 in some canonical way) and let 𝑐 be as in Claim 84.
We say (1𝜆, ((𝑦𝑖 ,𝑚𝑖 , 𝑟𝑖)𝑖∈{1...𝜆}) ∈ 𝑅𝐻 if the following hold

1. all 𝑦𝑖 are distinct

2.
∣𝐼 ∣

𝜆
> 3𝑐

4
where 𝐼 ⊆ [1 . . . 𝜆] is the subset of indices satisfying ∣𝑔−1(𝑦𝑖)∣ = 2 for all 𝑖 ∈ 𝐼 .

3. count
∣𝐼 ∣
> 3

4
where count = ∑𝑖∈𝐼 valid(𝑖) and

valid(𝑖) returns 1 if the following holds, otherwise it returns 0:
𝑚𝑖 = 𝑟𝑖 ⋅ (𝑧𝑖0 ⊕ 𝑧𝑖1) ⊕𝐻 ′(𝑧𝑖0) ⊕𝐻 ′(𝑧𝑖1) where {𝑧𝑖0, 𝑧𝑖1} = 𝑔−1(𝑦𝑖).

CollisionHashing satisfies the following properties.

Lemma 86. Let CollisionHashing be as stated in Claim 84. It satisfies the following properties

• Completeness: QNC10 can solve CollisionHashing with probability 1 − negl(𝜆)

• Soundness: CollisionHashing satisfies classical query soundness.

• Bounded Oracle Domain: CollisionHashing has a bounded oracle domain of size at most 23𝜆.

Proof sketch. Completeness: [BKVV20] showed that if one is given poly(𝜆) copies of the state Equation (17),
then using at most 7 layers of quantum operations, one can solve CollisionHashing with probability 1−negl(𝜆).
The aforesaid state can be generated with probability 𝑐 (in at most 2 quantum layers) therefore the probability
of generating 0.75𝑐𝜆 states is 1−negl(𝑛) (using Chernoff). Thus, QNC10 can solve the problem with 1−negl(𝑛)
probability.

Classical query soundness: [BKVV20] showed that every PPT machine solves CollisionHashing with prob-
ability at most65 negl(𝜆). Their argument is more general. Their proof showed that succeeding with non-
negligible probability implies one can find collisions which is assumed to be hard. More precisely, they neither
require the machine to be PPT (only that access to the oracle 𝐻 ′ is classical), nor that PPT machines cannot
find collisions in the function (which is 𝑔 in this case) but only assert that collisions can be extracted. For
establishing classical query soundness, it suffices to show that with only polynomially many classical queries
to 𝐻 , no (potentially unbounded) machine can solve CollisionHashing. It is known that finding collisions in
𝑔 (a random function) with non-negligible probability requires at least Ω(2𝑛/𝑂(1)) (quantum) queries. Using
[BKVV20]’s argument (see their Section 3.2) on elements in the set 𝐼 ⊆ {1 . . . 𝜆}, we deduce that solving
CollisionHashing with non-negligible probability implies there is an algorithm that finds collisions in 𝑔 by
making only polynomially many (classical) queries to 𝑔 which in turn violates the previous statement. Thus,
we conclude CollisionHashing satisfies classical query soundness.

64Note that the aforementioned probability is the same for every fixed 𝑏 and the probability (over 𝑔) of getting any fixed 𝑏

upon measurement of the second register is also the same by symmetry.
65They show it for their problem but the results carry over unchanged.
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Bounded Oracle Domain: By inspection, it is clear that 𝐻 ′ is only queried on a domain of size 22𝜆 and
𝑔 is only queried on a domain of size 22𝜆. Since both are generated using 𝐻 , we take 23𝜆 as a loose upper
bound on the oracle domain. �

Problem ∈ ∉ Assumption Verification Interpretation Remarks

CollisionHashing QNC
O(1) ⊈ BPP RO No Even the

simplest

constant

quantum depth

is hard to

simulate

Definition 85

𝑑-Rec[CollisionHashing] QNC2𝑑+O(1) ⊆ BPP
QNCBPP

2𝑑+O(1) ⊈ BPPQNC
BPP
𝑑 RO No Finer refutation

of Jozsa’s

conjecture in

ROM

Theorem 87

Table 5: We tighten the quantum depth bounds to BPPQNC
BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) relative to the random oracle.

9.2 Jozsa’s conjecture/Aaronson’s challenge

Using Lemma 30, observe that 𝑑-Rec[CollisionHashing] can be solved in QNC2𝑑+O(1). From Lemma 31,
observe that 𝑑-Rec[CollisionHashing] cannot be solved in CQC𝑑 . We therefore have the following.

Theorem 87 (Stronger refutation of Jozsa’s conjecture.). With respect to a random oracle, the following

hold: QNC2𝑑+O(1) ⊈ BPPQNC
BPP
𝑑 , which implies BPPQNC

BPP
𝑑 ⊊ BPPQNC

BPP
2𝑑+O(1) .
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Part II

Separations of Hybrid Quantum Depth

In the previous discussions, we studied the relation of BPPQNC
BPP
𝑑 with BPPQNC

BPP
𝑑′ . In particular, we showed

that relative a random oracle, BQP /⊆ BPPQNC
BPP
𝑑 and we tightened this result to BPPQNC

BPP
𝑑 ⊈ BPPQNC

BPP
𝑑+O(1) .

We now study the relation between BPPQNC
BPP
𝑑 , QNCBPP

𝑑 and BPPQNC𝑑 . We define a problem and prove that it
can be solved by QNCBPP

O(1) but not by BPPQNC𝑑 and conversely, a problem that can be solved by BPPQNCO(1)

but not by QNCBPP
𝑑 . The former shows that having constant quantum depth with adaptive control cannot

be simulated by repeating constant quantum depth machines without adaptive control. The latter does not
seem to have as clear an interpretation. However, we can combine these ideas to construct another problem

which also shows BPPQNC
BPP
O(1) ⊈ QNCBPP

𝑑 ∪ BPPQNC𝑑 . giving further evidence that it is important to show

soundness against BPPQNC
BPP
𝑑 when considering quantum depth because even with constant quantum depth,

BPPQNC
BPP
O(1) already contains problems which are neither in BPPQNC𝑑 nor in QNCBPP

𝑑 . Therefore, it is crucial

establishing that every proof of quantum depth is sound against BPPQNC
BPP
𝑑 .

The results in this section are summarised in Table 6. Establishing BPPQNC𝑑 ⊈ QNCBPP
𝑑 is the most

involved and requires the use of the compressed oracle simulation technique. We defer it to the end and
instead first establish a general lifting theorem which takes almost any proof of quantumness and excludes it
from QNCBPP

𝑑 . We apply it to CollisionHashing to establish that BPPQNCO(1) ⊈ QNCBPP
𝑑 in the random oracle

model.

10 BPPQNCO(1) ⊈ QNCBPP
𝑑

The idea behind 𝑑-Ser[P] is quite intuitive. Suppose P is a problem which is specified by the relation 𝑅𝐻
where 𝐻 is the random oracle. For simplicity, suppose the input to the problem is 1𝜆 and (1𝜆, 𝑐) ∈ 𝑅𝐻 means
that 𝑐 is a solution. Then 𝑑-Ser[P] is a relation 𝑅′𝐻 where (1𝜆, (𝑐0 . . . 𝑐𝑑)) ∈ 𝑅′𝐻 if (1𝜆, 𝑐0) ∈ 𝑅𝐻 , (1𝜆, 𝑐1) ∈ 𝑅𝐻(𝑐0∣∣⋅),
(1𝜆, 𝑐2) ∈ 𝑅𝐻(𝑐0,𝑐1∣∣⋅) and so on. The rationale is that until the first problem is solved, the subsequent problems
are not even specified. The problems must therefore be solved serially—they cannot be solved in parallel.
So far, we have not constrained the model of computation. We want 𝑑-Ser[P] to be hard for QCd whenever
P is hard for BPP (but can be solved by adding quantumness, e.g. in QNC0). Recall that for 𝑑-Rec[P] we
wanted P to satisfy classical query soundness. In this case, we require P to satisfy a different property which
we call offline soundness. Intuitively, suppose after running a classical algorithm to solve P, access to 𝐻 is
revoked and thereafter unbounded computation is allowed. Offline soundness requires that even in this case,
P cannot be solved with non-negligible probability.

The main difference between 𝑑-Ser and 𝑑-Rec is that in 𝑑-Ser one need not maintain “coherence” across
all the problems (which use different oracles); it suffices to individually solve the problems. In 𝑑-Rec, even to
access the oracle 𝐻 = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻0, one had to maintain coherence across 𝑑 layers.

10.1 Offline Soundness

We state offline soundness formally first.

Definition 88 (Offline Soundness). As in Definition 28, let 𝐻 ∶ {0, 1}∗ → {0, 1} be a random oracle. Define a
problem P by a tuple (X , 𝑅𝐻 ) where X is a procedure which on input 1𝜆 generates a problem instance of size
poly(𝜆) and 𝑅𝐻 = {0, 1}∗ × {0, 1}∗ is a relation which depends on 𝐻 . We define offline soundness as follows.

Let A𝐻 be a PPT algorithm with access to 𝐻 . Let 𝜏[A𝐻 (𝑥)] be the tableaux (or the computational
transcript) obtained by running A𝐻 on input 𝑥 ∈ X . Let B be an unbounded machine with no access to 𝐻

which takes 𝜏 as input. We say P satisfies offline soundness if

Pr
𝐻
[(𝑥,𝑦) ∈ 𝑅𝐻 ∶

(𝑥,𝑦)←B(𝜏)

𝜏=𝜏[A
𝐻
(𝑥)]

𝑥←X(1𝜆)

] ≤ negl(𝜆)

for all B and A𝐻 .

Offline soundness is clearly a special case of classical query soundness and therefore both CollisionHashing
and CodeHashing satisfy it.
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Problem ∈ ∉ Assumption Verification Interpretation Remarks

𝑑-hCollisionHashing QNCBPP
O(1)

⊈ BPPQNC𝑑 RO No Even the simplest

constant depth

adaptive quantum

control cannot be

simulated by

running a 𝑑 depth

quantum circuit

poly many times.

Subsection 11.1

𝑑-Ser[CollisionHashing] BPPQNCO(1) ⊈ QNCBPP
𝑑

RO No (Perhaps

unsurprisingly)

repeating a

constant depth

quantum circuit

cannot be

simulated with

running a 𝑑

adaptive quantum

depth circuit once.

Subsection 10.5

𝑑-Ser[𝑑-hCollisionHashing] BPP
QNCBPP

O(1) ⊈ BPPQNC𝑑 ∪QNCBPP
𝑑

RO No Evidence that

CQC𝑑 is the right

notion of depth.

Subsection 11.2

Table 6: A summary of the relations between BPPQNC
BPP
𝑑 , QNCBPP

𝑑 and BPPQNC𝑑 .

Lemma 89. CodeHashing and CollisionHashing satisfy offline soundness.

It appears reasonable to expect offline soundness to be a strictly weaker requirement than classical query
soundness. Indeed, this is true because there are problems which satisfy offline soundness but not classical
query soundness, e.g. the problem considered by [BKVV20].

10.2 The 𝑑-Ser[P] Problem

With offline soundness in place, we can define 𝑑-Ser[P] as follows.

Definition 90 (𝑑-Ser[P]). Let P = (X , 𝑅) be a problem (see Definition 28) defined with respect to a random
oracle 𝐻 ∶ {0, 1}∗ → {0, 1}, having a bounded oracle domain (as specified in Definition 28) and satisfying
offline soundness (as defined in Definition 88).

Define 𝑑-Ser[P] as follows: On input 1𝜆, sample 𝑑 + 1 independent instances of P as (𝑥0, . . . 𝑥𝑑) where
𝑥𝑖 ← X(1𝜆) for each 𝑖 ∈ {0 . . . 𝑑}. Accept (𝑦0, . . .𝑦𝑑) if for each 𝑖 ∈ {1 . . . 𝑑}, (𝑥𝑖 ,𝑦𝑖) ∈ 𝑅𝐻((𝑥0,𝑦0,...𝑥𝑖−1,𝑦𝑖−1)∣∣⋅) and
for 𝑖 = 0, (𝑥0,𝑦0) ∈ 𝑅𝐻(⋅).

10.3 Lower-bounds

In this section, we analyse everything for a fixed 𝜆 and introduce some notation to that end. Since P has
bounded oracle domain, one can consider 𝑑+1 oracles with bounded domains which in turn make the analysis
easier.

Notation 91. Fix a 𝜆. Let P = (X , 𝑅) be as in Definition 90 where the bounded oracle domain of P is D ∶=
{0, 1}𝑝(𝜆). Fix an input instance (𝑥0 . . . 𝑥𝑑) of 𝑑-Ser[P]. With respect to this, let S𝑖,𝐻 ∶= {(𝑥𝑖 ,𝑦𝑖) ∶ (𝑥𝑖 ,𝑦𝑖) ∈ 𝑅𝐻}
denote all pairs (𝑥𝑖 ,𝑦𝑖) in 𝑅𝐻 . Let S ∶= X ×Y where Y is the set of all 𝑦s. It would be useful to consider 𝑑 + 1
oracles with bounded domains instead of considering 𝐻 ∶ {0, 1}∗ → {0, 1}. More precisely, let 𝐻0 ∶ D → {0, 1},
𝐻1 ∶ S × D → {0, 1}, . . . 𝐻𝑑 ∶ S𝑑 ×D → {0, 1}. Let L ∶= (𝐻0, . . . 𝐻𝑑) denote the sequence of oracles 𝐻𝑖s.

It would be helpful to define the analogue of Definition 45 for our sequence of oracles.

Definition 92 (Shadow Oracles wrt 𝑆 for 𝑑-Ser[P]). Let L = (𝐻0 . . . 𝐻𝑑), 𝑝 and S be as in Notation 91.
Let 𝑆 = (𝑆1, . . . 𝑆𝑑) be a tuple of 𝑑 sets where each set 𝑆𝑖 ⊆ S𝑖 × {0, 1}𝑝 . The random shadow oracle M of L
wrt 𝑆 is defined as M ∶= (𝑀0, . . . 𝑀𝑑) where for each 𝑖 ∈ {1 . . . 𝑑}, 𝑀𝑖 is the shadow oracle of 𝐻𝑖 wrt 𝑆𝑖 (as in
Definition 45) and 𝑀0 = 𝐻0.
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10.3.1 Exclusion from QNC𝑑

We first show that 𝑑-Ser[P] is hard for QNC𝑑 and then extend the analysis to QCd. To this end, we first
introduce the shadow oracles by describing the sets we hide. Let D = {0, 1}𝑝 denote the oracle domain of P.

• Define the hidden sets for 𝑖, 𝑗 ∈ {1 . . . 𝑑} as 𝑆𝑖 𝑗 ≐
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S𝐻0
×D S𝐻0

× S ×D S𝐻0
× S2 ×D . . . S𝐻0

× S𝑑−1 ×D
∅ ⋃

(𝑥0𝑦0)∈S0

(𝑥0𝑦0) × S𝐻1(𝑥0,𝑦0∣∣⋅) ×D ⋃
(𝑥0𝑦0)∈S0

(𝑥0𝑦0) × S𝐻1(𝑥0,𝑦0∣∣⋅) × S ×D . . . ⋃
(𝑥0𝑦0)∈S0

(𝑥0𝑦0) × S𝐻1(𝑥0,𝑦0∣∣⋅) × S𝑑−2 ×D

∅ ∅ ⋃
(𝑥0𝑦0𝑥1𝑦1)∈S0∶1

(𝑥0𝑦0𝑥1𝑦1) × S𝐻2(𝑥0𝑦0𝑥1𝑦1∣∣⋅) ×D . . . ⋃
(𝑥0𝑦0𝑥1𝑦1)∈S0∶1

(𝑥0𝑦0𝑥1𝑦1) × S𝐻2(𝑥0𝑦0𝑥1𝑦1∣∣⋅) × S𝑑−3 ×D

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S0∶0 ×D S0∶0 × S ×D S0∶0 × S2 ×D . . . S0∶0 × S𝑑−1 ×D
∅ S0∶1 ×D S0∶1 × S ×D . . . S0∶1 × S𝑑−2 ×D
∅ ∅ S0∶2 ×D . . . S0∶2 × S𝑑−3 ×D

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where the union in the first matrix is over “correct solutions”, i.e. (a) S0∶0 ∶=∶ S0 ∶= S𝐻0
= S𝐻 , de-

notes the set of solutions (corresponding to 𝜆) to P wrt 𝐻0, (b) S0∶1 = ∪(𝑥0,𝑦0)∈S0
(𝑥0,𝑦0) × S𝐻1(𝑥0𝑦0∣∣⋅),

denotes the set of solutions to P wrt 𝐻0 (in the first two coordinates) and corresponding to each
solution, the set of solutions to P wrt 𝐻1(𝑥0𝑦0∣∣⋅) (in the last two coordinates) and (c) in general
S0∶𝑖 = ∪(𝑥0,𝑦0 ...𝑥𝑖−1𝑦𝑖−1)∈S0∶𝑖−1

(𝑥0𝑦0 . . . 𝑥𝑖−1𝑦𝑖−1) × S𝐻𝑖(𝑥0 ...𝑦𝑖−1∣∣⋅). By S𝐻𝑖(𝑠∣∣⋅) we mean S𝑖,𝐻𝑖(𝑠∣∣⋅) where 𝑠 is
some string.

• We now try to justify this definition. The main structure of the proof is similar to the proof of QNC𝑑

hardness of 𝑑-CodeHashing, i.e. Lemma 53. Let 𝑆𝑖 = (𝑆𝑖1, . . . 𝑆𝑖𝑑) denote the 𝑖th row of the matrix above.
Let M1 denote the shadow of L wrt 𝑆1. As in the proof of Lemma 53, we want to ensure that the
information contained in M1 is not enough to guess 𝑆2 which will be used to define M2. This would
allow us to apply Lemma 42 as before. Once this is clear, the remaining steps are straightforward.
Observe that M1 specifies 𝐻0 and therefore (information theoretically) specifies S𝐻0

. It also specifies
𝐻1 partially—it does not specify 𝐻1 on S𝐻0

×D. Note that, in particular, this means thatM1 contains
no information about S𝐻1(𝑥0𝑦0∣∣⋅) for (𝑥0𝑦0) ∈ S𝐻0

= S0∶0. That, in turn, means that none of the sets in
𝑆2∣𝐻0 are correlated withM1∣𝐻0.

• Let us look at the next case as well, as it would help with the general argument in the proof. Suppose
M2 is the shadow of L wrt 𝑆2. We want to argue that even knowingM2 it is hard to find 𝑆3. Observe
thatM2 specifies 𝐻0 and 𝐻1. It also specifies 𝐻2 partially—it does not specify 𝐻2 at ⋃

(𝑥0𝑦0)∈S0

(𝑥0𝑦0) ×

S𝐻1(𝑥0𝑦0∣∣⋅) × D. This, in particular, means that M2 contains no information about S𝐻2(𝑥0𝑦0𝑥1𝑦1∣∣⋅) for
(𝑥0𝑦0𝑥1𝑦1) ∈ S0∶1. That in turn means that none of the sets in 𝑆3 are correlated withM2, given 𝐻0, 𝐻1.

• Intuitively,M𝑖−1 completely specifies 𝐻0, . . . 𝐻𝑖−2 but it does not specify 𝐻𝑖−1 completely and 𝑆𝑖 (condi-
tioned on 𝐻0 . . . 𝐻𝑖−2) depends only on this unspecified part of 𝐻𝑖−1.

Algorithm 93. Let L = (𝐻0 . . . 𝐻𝑑), S, S𝑖,𝐻 and 𝑝 be as in Notation 91. Assume 𝜆 and the input instance
(𝑥0, . . . 𝑥𝑑) have been implicitly specified. We use S𝐻𝑖(𝑠∣∣⋅) to denote S𝑖,𝐻𝑖(𝑠∣∣⋅). Define, for each 𝑖 ∈ {1, . . . 𝑑}, 𝑆𝑖 𝑗
as follows.

1. If 𝑖 = 1, define 𝑆1𝑗 ∶= S𝐻0
× S 𝑗−1 ×D

2. If 𝑖 > 1,

(a) Define 𝑆𝑖 𝑗 ∶= ∅ for 1 ≤ 𝑗 < 𝑖 and
(b) otherwise,

𝑆𝑖 𝑗 ∶= ⋃
(𝑥0𝑦0 ...𝑥𝑖−2𝑦𝑖−2)∈S0∶𝑖−2

(𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2) × S𝐻𝑖−1(𝑥0𝑦0 ...𝑥𝑖−2𝑦𝑖−2∣∣⋅) × S
𝑖−𝑗 ×D

= S0∶𝑖−1 × S𝑖−𝑗 ×D

where

S0∶𝑖 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S0 ∶= S𝐻0
𝑖 = 0

⋃
(𝑥0,𝑦0 ...𝑥𝑖−1𝑦𝑖−1)∈S0∶𝑖−1

(𝑥0𝑦0 . . . 𝑥𝑖−1𝑦𝑖−1) × S𝐻𝑖(𝑥0 ...𝑦𝑖−1∣∣⋅) 𝑖 > 0.
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Let 𝑆𝑖 ∶= (𝑆𝑖1, . . . 𝑆𝑖𝑑). Return (𝑆1, . . . 𝑆𝑑).

Lemma 94 (𝑑-Ser[P] ∉ QNC𝑑). Every QNC𝑑 circuit succeeds at solving 𝑑-Ser[P] (see Definition 90) with
probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝜆).

Proof. Fix a 𝜆. Let L = (𝐻0, . . . 𝐻𝑑) be as in Notation 91. Suppose the problem instance 𝑑-Ser[P] is specified
by (𝑥0, . . . 𝑥𝑑) and let 𝜌0 be the initial state, containing this input. Denote by AL an arbitrary QNC𝑑 circuit

AL(𝜌0) ∶= Πvalid ○𝑈𝑑+1 ○ L ○𝑈𝑑 ○ . . .L ○𝑈2 ○ L ○𝑈1 ○ 𝜌0

where Πvalid corresponds to projection on all output strings which solve 𝑑-Ser[P] (for a fixed 𝜆). let (𝑆1, . . . 𝑆𝑑)
be the output of Algorithm 93. Define

AM(𝜌0) ∶= Πvalid ○𝑈𝑑+1 ○M𝑑 ○𝑈𝑑 . . .M2 ○𝑈2 ○M1 ○𝑈1 ○ 𝜌0

whereM𝑖 is the random shadow oracle of L wrt 𝑆𝑖 (see Definition 92). We proceed in two steps.
Step 1: AL and AM behave the same. We show that the probability that AL and AM produce a valid

output is negligibly close, i.e. we bound

∣tr[Πvalid ○𝑈𝑑+1 ○ L ○𝑈𝑑 ○ . . .L ○𝑈2 ○ L ○𝑈1 ○ 𝜌0] − tr[Πvalid ○𝑈𝑑+1 ○M𝑑 ○𝑈𝑑 . . .M2 ○𝑈2 ○M1 ○𝑈1 ○ 𝜌0]∣

≤
𝑑

∑
𝑖=1

𝐵[L ○𝑈𝑖(𝜌𝑖−1),M𝑖 ○𝑈𝑖(𝜌𝑖−1)] ≤
𝑑

∑
𝑖=1

√
2Pr[find ∶𝑈L/𝑆𝑖𝑖 , 𝜌𝑖−1]

where 𝜌𝑖 =M𝑖 ○𝑈𝑖 ○ . . .M1 ○𝑈1 ○ 𝜌0 for 𝑖 > 0, we used (as in the proof of Lemma 53) the triangle inequality,
monotonicity of the trace distance, the relation between trace distance and Bures distance and finally applied
Lemma 41. To bound the RHS above, one can use Lemma 42 if it holds that 𝜌𝑖−1 is uncorrelated with 𝑆𝑖 . It
suffices to show that M𝑖−1 is uncorrelated with 𝑆𝑖 , given 𝐻0, . . . 𝐻𝑖−2. We argued the 𝑖 = 1, 2 case above. In
general, for 𝑖 > 2 (for notational ease), observe thatM𝑖−1 specifies 𝐻0, . . . 𝐻𝑖−2 completely and specifies 𝐻𝑖−1

at all points except at ⋃(𝑥0𝑦0 ...𝑥𝑖−3𝑦𝑖−3)∈S0∶𝑖−3
(𝑥0𝑦0 . . . 𝑥𝑖−3𝑦𝑖−3) × S𝐻𝑖−2(𝑥0𝑦0 ...𝑥𝑖−3𝑦𝑖−3∣∣⋅) × D = S0∶𝑖−2 × D. This in

particular means thatM𝑖−1 contains no information about S𝐻𝑖−1(𝑥0𝑦0 ...𝑥𝑖−2𝑦𝑖−2∣∣⋅) for (𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2) ∈ S0∶𝑖−2
where {S0∶𝑖}𝑖 are as defined in Algorithm 93. This, in turn, entails that 𝑆𝑖 is uncorrelated withM𝑖−1, given
𝐻0, . . . 𝐻𝑖−2 as asserted. From offline soundness of P, and the aforesaid, it follows that

Pr [(𝑥𝑖 ,𝑦𝑖) ∈ 𝑅𝐻𝑖(𝑥0𝑦0 ...𝑥𝑖−1𝑦𝑖−1∣∣⋅)∣M𝑖−1 ∶ 𝐻
$
←Funcs[{0,1}∗→{0,1}]

(𝑥0,...𝑥𝑖)←X(1
𝜆
)
] ≤ negl(𝜆)

for all (𝑥0𝑦0 . . . 𝑥𝑖−1𝑦𝑖−1) ∈ S0∶𝑖−1. This entails that, for 𝑖 ≤ 𝑘 ≤ 𝑑, Pr[(𝑥0𝑦0 . . . 𝑥𝑘𝑦𝑘) ∈ 𝑆𝑖𝑘 ∣M𝑖−1] ≤ negl(𝜆) which
means, via Lemma 42, Pr[find ∶𝑈L/𝑆𝑖𝑖 , 𝜌𝑖−1∣M𝑖−1] ≤ negl(𝜆) (the conditioning notation for Pr[find ∶ . . . ] is the
same as the last bullet after the CQd Lemma 74; all variables involved (𝜌𝑖−1, 𝑆𝑖 ,L) are conditioned onM𝑖−1).

Step 2: AM cannot succeed with non-negligible probability. Note that by construction, M𝑑 contains
all the information in M1 . . .M𝑑−1. Further, observe that M𝑑 does not contain any information about
S𝐻𝑑(𝑥0𝑦0 ...𝑥𝑑−1𝑦𝑑−1∣∣⋅)

for (𝑥0𝑦0 . . . 𝑥𝑑−1𝑦𝑑−1) ∈ S0∶𝑑−1 (which includes the set of valid answers until 𝑑 − 1). From

offline soundness of P, it follows that AM cannot find (𝑥𝑑 ,𝑦𝑑) ∈ S𝐻𝑑(𝑥0 ...𝑦𝑑−1∣∣⋅)
with probability greater than

negl(𝜆) which upper bounds the success probability of AM. �

10.3.2 Exclusion from QNCBPP
𝑑

Recall that QCd circuits are represented as BL = AL𝑐,𝑑+1 ○ BL𝑑 ○ . . .BL1 ○ 𝜌0 where BL𝑖 ∶= Π𝑖 ○ L ○𝑈𝑖 ○ AL𝑐,𝑖 . Here

AL𝑐,𝑖 represent classical algorithms and we drop “c” in this section. Since the oracles 𝐻0, . . . 𝐻𝑑 have different
domains, we make the following assumption about the classical algorithms in the QCd circuit. This simplifies
our analysis and only makes our impossibility result stronger.

Assumption: if 𝐻𝑘 is queried at (𝑥0𝑦0 . . . 𝑥𝑘𝑦𝑘), then for all 𝑖 ∈ {0 . . . 𝑘−1} 𝐻𝑖 is also queried at (𝑥0𝑦0 . . . 𝑥𝑖𝑦𝑖).
It would also be helpful to setup some notation for describing the classical queries. Since A makes queries

on different domains, the set of queries is simply a collection of strings with varying number of “coordinates”.
For example, if 𝐻𝑘 is queried at (𝑥0𝑦0 . . . 𝑥𝑘𝑦𝑘), by the 𝑗th coordinate we would mean (𝑥 𝑗𝑦 𝑗).

Suppose 𝑇 abstractly denotes all the queries made by a classical algorithm A. We use 𝑋𝑌𝑖∶𝑘(𝑇 ) to denote
all the tuples (𝑥𝑖𝑦𝑖 . . . 𝑥𝑘𝑦𝑘) queried by A𝑐 from the 𝑖th to 𝑘th coordinate. We use 𝑋𝑌𝑖(𝑇 ) to denote 𝑋𝑌𝑖∶𝑖(𝑇 ),
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i.e. pairs (𝑥𝑖𝑦𝑖) queried by 𝑇 at the 𝑖th coordinate. In the following, when not explicitly stated, we assume
the security parameter is fixed to be 𝜆 and assume that the problem instance for 𝑑-Ser[P] is specified by
(𝑥0, . . . 𝑥𝑑).

As before, we use Notation 91 below.

• The following simple but crucial observation will be used repeatedly in our analysis. It adapts offline
soundness to our setting.

– Let 𝑥 ← X(1𝜆). Let AL be a PPT algorithm (trying to solve P, i.e. finding an (𝑥,𝑦) ∈ S𝐻0
). Run

A𝐻 (𝑥) and denote its query transcript by 𝑇 .

– Let 𝐸 denote the event that 𝑋𝑌0(𝑇 ) ∩ 𝑆𝐻0
= ∅.

– Fix any 𝑦 ∈ Y. The assertion is that for any fixed (𝑥,𝑦), it holds that Pr[(𝑥,𝑦) ∈ S𝐻0
∣𝑇 ∧𝐸] ≤ negl(𝜆)

when A𝐻 is executed.

* Suppose the assertion is false. Then for some (𝑥,𝑦) it holds that Pr[(𝑥,𝑦) ∈ S𝐻0
∣𝑇 ∧ 𝐸] ≥ 𝜇(𝜆)

where 𝜇 is noticeable (i.e. non-negligible).

* If 𝐸 does not happen, then 𝑇 already contains some (𝑥,𝑦′) ∈ S𝐻0
. If 𝐸 does happen, then

(𝑥,𝑦) ∈ S𝐻0
with non-vanishing probability (as stated above). In both cases, an element in

S𝐻0
is found with non-negligible probability. However, this violates offline soundness of P.

• Let us build some intuition by starting with a simple circuit of the form L○𝑈1○AL1 (on input (𝑥0 . . . 𝑥𝑑))
and comparing it toM1○𝑈1○AL1 whereM1 is going to be the shadow of L wrt some sequence of sets 𝑆1.
Take 𝑆1 to be as in the QNC𝑑 case, i.e. 𝑆1 = (S𝐻0

×D,S𝐻0
×S ×D, . . . ). Let 𝑇1 denote the queries made

by AL1 . If 𝑋𝑌0(𝑇1) contains any pair (𝑥0,𝑦0) ∈ S𝐻0
, then L andM1 can be distinguished (i.e. L○𝑈1 ○AL1

andM1 ○𝑈1 ○ AL1 can behave differently) because they can be queried at 𝑆1 (which is precisely where
L andM1 behave differently). Denote by 𝐸1 the event that 𝑋𝑌0(𝑇1) ∩ S𝐻0

= 𝑋𝑌0(𝑇1) ∩ S0∶0 = ∅. Using
the fact that P satisfies offline soundness (in fact just from soundness against PPT machines), one has
that Pr[¬𝐸1] ≤ negl(𝜆). From the discussion above, it is also clear that offline soundness ensures

Pr[(𝑥0,𝑦0) ∈ S𝐻0
∣𝑇1𝐸1] ≤ negl(𝜆) (19)

for all 𝑦0 ∈ Y. To apply Lemma 42 we would need to ensure that the state received by 𝑈1 is independent
of 𝑆1. Conditioned on 𝑇1 and 𝐸1, this is clearly the case (conditioning only reduces polynomially many
possible values of S𝐻0

). Further, the probability of finding an element in 𝑆1 is negligible because of
Equation (19).

• This argument can also be applied to L○𝑈2 ○AL2 ○𝜌1 andM2 ○𝑈2 ○AL2 ○𝜌1 where 𝜌1 =M1 ○𝑈1 ○AL1 (𝜌0),
once we appropriately condition the variables. It may help to look at the first matrix Equation (18).
M1 corresponds to the first row. We argue that M1 does not specify 𝐻1 at S𝐻0

× D and since the
second row, i.e. 𝑆2, depends on precisely the values of 𝐻1 on S𝐻0

× D, knowing 𝜌1 does not help in
determining 𝑆1. This is the same as the QNC𝑑 case. To account for the classical algorithm, we simply
condition AL1 on not querying 𝐻0 inside S𝐻0

and AL2 on not querying 𝐻1 inside S𝐻1
(or more precisely,

inside S0∶1). The previous argument then goes through unchanged.
We now make this reasoning more precise. Let us condition on the event 𝐸1. Then, it is clear that 𝜌1
contains no information about 𝐻1(𝑥0,𝑦0∣∣⋅) for any (𝑥0,𝑦0) ∈ S𝐻0

. This is because, by definition of 𝐸1, the
classical algorithm AL1 never accessed 𝐻1 on the said domain, andM1 contains no information about 𝐻1

on that domain (by definition of 𝑆1). (Note that information about 𝐻0 was present inM1 and therefore,
information theoretically, S𝐻0

could have been determined.) Let 𝑇2 denote the queries made by AL2 in
the circuits above and denote by 𝐸2 the event that 𝑋𝑌0∶1(𝑇2) ∩ S0∶1 = ∅, i.e. the query transcript so far
does not contain a solution to P corresponding to 𝐻1(𝑥0𝑦0∣∣⋅) for any (𝑥0,𝑦0) ∈ S𝐻0

. Again, from (offline)
soundness of P, it follows that Pr[¬𝐸2∣𝐸1] ≤ negl(𝜆), i.e. AL2 solves P corresponding to 𝐻1(𝑥0𝑦0∣∣⋅) for
(𝑥0𝑦0) ∈ S0 given 𝐸1, because AL2 does not learn anything about 𝐻1(𝑥0𝑦0∣∣⋅) for (𝑥0𝑦0) ∈ S0 and 𝐸1
guarantees AL1 did not even query at (𝑥0𝑦0) ∈ S0. Given 𝑇2, 𝐸2, 𝐸1,M1, from offline soundness of P
corresponding to 𝐻1(𝑥0𝑦0∣∣⋅), it holds that

Pr[(𝑥1,𝑦1) ∈ S𝐻1(𝑥0𝑦0∣∣⋅)∣𝑇2𝑇1𝐸2𝐸1M1] ≤ negl(𝜆) (20)

for all 𝑦1 ∈ Y and (𝑥0,𝑦0) ∈ S0∶0 = S𝐻0
follow. To apply Lemma 42 one needs to ensure that AL2 ○ 𝜌1 is

independent of 𝑆2. Conditioning on 𝑣2 ∶= (𝑇2𝑇1𝐸2𝐸1M1), it is clear that AL2 ○𝜌1 contains no information
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about 𝐻1(𝑥0𝑦0∣∣⋅) for (𝑥0𝑦0) ∈ S0∶0. Further, 𝑆2, conditioned on 𝑣2 only depends on 𝐻1(𝑥0𝑦0∣∣⋅) for
(𝑥0𝑦0) ∈ S0∶0 (again, excluding the values in 𝑇2). Therefore, 𝑆2∣𝑣2 and AL2 ○ 𝜌1∣𝑣2 are uncorrelated.
Finally, the probability of finding an element in 𝑆2∣𝑣2 is negligible due to Equation (20).

This readily generalises and accounting for these arguments in the QNC𝑑 case yields the following.

Lemma 95 (𝑑-Ser[P] ∉ QNCBPP
𝑑 ). Every QCd circuit succeeds at solving 𝑑-Ser[P] (see Definition 90) with

probability at most negl(𝜆) on input 1𝜆 for 𝑑 ≤ poly(𝑛).

Proof. Fix a 𝜆. Let L = (𝐻0, . . . 𝐻𝑑) be as in Notation 91. Suppose the problem instance 𝑑-Ser[P] is specified
by (𝑥0 . . . 𝑥𝑑) and let 𝜌0 be the initial state. Denote by BL an arbitrary QCd circuit

BL(𝜌0) ∶= Πvalid ○ AL𝑑+1 ○ BL𝑑 ○ . . .BL1 ○ 𝜌0

where BL𝑖 ∶= Π𝑖 ○ L ○𝑈𝑖 ○ AL𝑖 and Πvalid corresponds to projection on all output strings which solve 𝑑-Ser[P].
Let (𝑆1 . . . 𝑆𝑑) be the output of Algorithm 93. Define

BM(𝜌0) ∶= Πvalid ○ AL𝑑+1 ○ BM𝑑 ○ ⋅ ⋅ ⋅ ○ BM1 ○ 𝜌0 (21)

where BM𝑖 ∶= Π𝑖 ○M𝑖 ○𝑈𝑖 ○ AL𝑖 andM𝑖 is the shadow oracle of L wrt 𝑆𝑖 (see Definition 92). We proceed in
two steps.

Step 1: BL and AM behave the same. We show that the probability that AL and AM produce a valid
output is negligibly close, i.e. we bound

∣tr[Πvalid ○ AL𝑑+1 ○ BL𝑑+1 ○ . . .BL1 ○ 𝜌0 − Πvalid ○ AL𝑑+1 ○ BM𝑑+1 ○ . . .BM1 ○ 𝜌0]∣

≤
𝑑

∑
𝑖=1

𝐵(BL𝑖 (𝜌𝑖−1),BM𝑖 (𝜌𝑖−1)) ≤
𝑑

∑
𝑖=1

√
2Pr[find ∶𝑈L/𝑆𝑖𝑖 ,AL𝑖 ○ 𝜌𝑖−1]

where for 𝑖 ∈ {1, 2 . . . 𝑑 −1}, 𝜌𝑖 ∶= BM𝑖 ○ . . .BM1 ○𝜌0, proceeding as in the QNC𝑑 case. To bound the RHS above,
one can use Lemma 42 if it holds that AL𝑖 ○ 𝜌𝑖−1 is uncorrelated with 𝑆𝑖 , upon appropriate conditioning.
Let 𝑣𝑖 ∶= (𝑇𝑖 . . .𝑇1𝐸𝑖 . . . 𝐸1M𝑖−1) denote the random variables we condition on, where 𝑇𝑖 is the transcript
of queries made by AL𝑖 , 𝐸𝑖 is the event that 𝑋𝑌0∶𝑖−1(𝑇𝑖) ∩ S0∶𝑖−1 = ∅, i.e. the transcript does not contain
a solution to P corresponding to 𝐻𝑖−1(𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2∣∣⋅) for any (𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2) ∈ S0∶𝑖−2 (S𝑖∶𝑗 are as in
Algorithm 93) andM𝑖−1 is the shadow oracle wrt 𝑆𝑖−1 and contains all the information inM1 . . .M𝑖−2. As
argued above, it is the case that AL𝑖 ○𝜌𝑖−1∣𝑣𝑖 is uncorrelated with 𝑆𝑖 ∣𝑣𝑖 because no classical query has been made
to 𝐻𝑖−1(𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2∣∣⋅) for (𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2) ∈ S0∶𝑖−2 and all previous shadow oracles,M1 . . .M𝑖−1 output
⊥ on the aforesaid domain of 𝐻𝑖−1 while 𝑆𝑖 conditioned on 𝑣𝑖 depends only on 𝐻𝑖−1 at the aforementioned
domain. It remains to bound the probability of finding an element in 𝑆𝑖 ∣𝑣𝑖 . To this end, note that given 𝑣𝑖 ,
from the offline soundness of P corresponding to 𝐻𝑖−1(𝑥0𝑦0 . . . 𝑥𝑖−2𝑦𝑖−2∣∣⋅), it follows that

Pr[(𝑥𝑖 ,𝑦𝑖) ∈ S𝐻𝑖(𝑥0 ...𝑦𝑖−2∣∣⋅)∣𝑣𝑖] ≤ negl(𝜆)

for all 𝑦𝑖 ∈ Y and (𝑥0 . . .𝑦𝑖−2) ∈ S0∶𝑖−2. This entails that for 𝑖 ≤ 𝑘 ≤ 𝑑, Pr[(𝑥0𝑦0 . . . 𝑥𝑘𝑦𝑘) ∈ 𝑆𝑖𝑘 ∣𝑣𝑖] ≤ negl(𝜆).
(Offline) soundness of P also implies that Pr[¬𝐸𝑖 ∣𝐸1 . . . 𝐸𝑖−1] ≤ negl(𝜆). Together, these yield Pr[find ∶
𝑈
L/𝑆𝑖
𝑖 ,AL𝑖 ○ 𝜌𝑖−1] ≤ negl(𝜆).
Step 2: BM cannot succeed with non-negligible probability. Consider BM as in Equation (21) and let 𝐸𝑖

and 𝑣𝑖 be as defined above. Since Pr[¬𝐸𝑖 ∣𝐸𝑖−1 . . . 𝐸1] ≤ negl(𝜆), it holds that Pr[𝐸1 . . . 𝐸𝑑] ≥ 1 − negl(𝜆). Con-
ditioned on 𝐸1 . . . 𝐸𝑑 , note thatM1 . . .M𝑑 do not specify 𝐻𝑑(𝑥0 . . .𝑦𝑑−1∣∣⋅) for (𝑥0 . . .𝑦𝑑−1) ∈ S0∶𝑑−1. Therefore,
𝜌𝑑 also does not specify 𝐻𝑑(𝑥0 . . .𝑦𝑑 ∣∣⋅) in the aforesaid domain. From (offline) soundness of P, it follows
that AL𝑑+1(𝜌𝑑)∣𝑣𝑑 outputs a solution to P corresponding to 𝐻𝑑(𝑥0 . . .𝑦𝑑 ∣∣⋅) is negligible. Together, these yield
Pr[𝑠 ∈ S0∶𝑑 ∶ 𝑠 ← BM] ≤ negl(𝜆) proving the assertion.

�

10.4 Upper-bounds

If P can be solved using QNC𝑑′ , then it is evident that for any 𝑑 ≤ poly(𝜆), 𝑑-Ser[P] can be solved in CQd′ .
One simply solves P corresponding to 𝐻0 using the first QNC𝑑′ circuit in CQd′ , then using this result, solves
P corresponding to 𝐻1 and so son. Since 𝑑 ≤ poly(𝜆), it follows that CQd′ is sufficient to solve the problem.
Similarly, if P can be solved in QCd′ , then 𝑑-Ser[P] can be solved in CQC𝑑′ . This yields the following.
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Lemma 96 (P ∈ QNC𝑑′ Ô⇒ 𝑑-Ser[P] ∈ BPPQNC𝑑′ and P ∈ QNCBPP
𝑑′ Ô⇒ 𝑑-Ser[P] ∈ BPPQNC

BPP
𝑑′ ). Let P be a

problem (see Definition 28) which can be solved in QNC𝑑′ (resp. QCd′). Then, for any 𝑑 ≤ poly(𝜆), it holds
that 𝑑-Ser[P] (see Definition 90) can be solved in CQd′ (resp. CQC𝑑′).

10.5 Consequences

Theorem 97. Fix any 𝑑 ≤ poly(𝑛). Then, with respect to a random oracle, it holds that BPPQNCO(1) ⊈
QNCBPP

𝑑 .

Proof. Recall CollisionHashing from Definition 85. One has that (using Definition 90)
𝑑-Ser[CollisionHashing] ∈ BPPQNCO(1) using the fact that CollisionHashing ∈ QNCO(1) (see Lemma 86)

and Lemma 96 with 𝑑 ′ = O(1). One also has that 𝑑-Ser[CollisionHashing] ∉ QNCBPP
𝑑 because CollisionHashing

satisfies all properties required of P in the definition of 𝑑-Ser[P] (see Definition 90, Lemma 86, Lemma 89)
and therefore Lemma 95 applies, yielding the asserted exclusion. �

The rest of this article is dedicated to establishing 𝑑-hCollisionHashing is not in BPPQNC𝑑 . Using

𝑑-Ser[𝑑-hCollisionHashing] one immediately obtains the separation, BPPQNC𝑑 ∪QNCBPP
𝑑 ⊈ BPPQNC

BPP
𝑑 .

11 QNCBPP
O(1) ⊈ BPPQNC𝑑

In this section, we define the problem 𝑑-hCollisionHashing, which is a variant of CollisionHashing. This
problem shows that QNCBPP

O(1) ⊈ BPP
QNC𝑑 , relative to a random oracle.

11.1 The Problem

Some notation before we proceed: for 𝑑 ∈ N and Σ ⊂ {0, 1}∗ define ℎ ∶= 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○𝐻1 ○𝐻0 where 𝐻0 ∶ Σ → Σ𝑑
′

, for

𝑗 ∈ {1, . . . 𝑑 − 1}, 𝐻 𝑗 ∶ Σ𝑑
′ → Σ𝑑

′

and 𝐻𝑑 ∶ Σ𝑑
′ → Σ are independent random oracles with 𝑑 ′ = 2𝑑 + 5.

Definition 98 (𝑑-hCollisionHashing or simply Problem). Let 𝑑 ∶ N → N, and66 𝐶 = 1/(2(𝑒2 − 1)). The
𝑑-hCollisionHashing problem is defined as follows. Let 𝜆 denote be a security parameter for the problem.
Consider the following oracles.

• 𝐺0,𝐺1 ∶ {0, 1}𝜆 → {0, 1}𝜆 is a random oracle with domain twice as large as co-domain.

• ℎ ∶ {0, 1}𝜆 → {0, 1}𝜆 is a composition of 𝑑(𝜆) + 1 random oracles (as described above with Σ = {0, 1}𝜆).

• 𝐻 ∶ {0, 1}𝜆 × {0, 1}𝜆 → {0, 1} is a random oracle with one-bit output.

Let TwoToOne(𝐺0,𝐺1) ∶= {𝑦 ∈ {0, 1}𝜆 ∶ ∣𝐺−10 (𝑦)∣ = ∣𝐺−11 (𝑦)∣ = 1}. Then, the 𝑑-hCollisionHashing problem (later
referred to simply as Problem) is, given access to the oracles 𝐺0,𝐺1, 𝐻,𝐻0, . . . 𝐻𝑑 (but not to ℎ directly) return
(𝑦1, . . . ,𝑦𝜆), (𝑟1, . . . , 𝑟𝜆), and (𝑚1, . . . ,𝑚𝜆) such that the following conditions are satisfied.

• All 𝑦𝑖 ’s are distinct.

• Let I = {𝑖 ∶ 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)}. Then, ∣I∣ ≥ 3
4
𝐶𝜆.

• Let Iwin = {𝑖 ∶ 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1) and 𝑟𝑖 ⋅ (𝑥𝑦𝑖0 ⊕ 𝑥
𝑦𝑖
1 ) ⊕𝐻(𝑥𝑦𝑖0 , ℎ(𝑦𝑖)) ⊕𝐻(𝑥𝑦𝑖1 , ℎ(𝑦𝑖)) =𝑚𝑖}, where 𝑥

𝑦𝑖
0

and 𝑥
𝑦𝑖
1 are the pre-images of 𝑦𝑖 . Then ∣Iwin∣ ≥ 3∣I∣/4.

It is helpful to also consider a “single-copy” version of 𝑑-hCollisionHashing, that we refer to as subProblem
and define as follows Given the same oracles as in 𝑑-hCollisionHashing, output (𝑦, 𝑟,𝑚) such that, 𝑦 ∈
TwoToOne(𝐺) and 𝑟 ⋅ (𝑥𝑦0 ⊕ 𝑥

𝑦

1 ) ⊕ 𝐻(𝑥𝑦0 , ℎ(𝑦)) ⊕ 𝐻(𝑥𝑦1 , ℎ(𝑦)) = 𝑚, where 𝑥
𝑦

0 and 𝑥
𝑦

1 are the pre-images of 𝑦
under 𝐺0 and 𝐺1 respectively. We call such a (𝑦, 𝑟,𝑚) a “valid equation”.

From Lemma 86 it is clear that 𝑑-hCollisionHashing ∈ QNCBPP
O(1). The main result of this section is the

following.

Lemma 99. Fix any function 𝑑 ≤ poly. Relative to a random oracle, 𝑑-hCollisionHashing ∉ BPPQNC𝑑 .

66Obtained by setting 𝐶 ∶= 𝑐/4 where 𝑐 is as in 𝐶𝑙𝑎𝑖𝑚 84 with ∣𝐴∣ = 2𝜆+1 and ∣𝐵∣ = 2𝜆 in the limit 𝜆 →∞; the 1/4 factor relates
the 𝐺0,𝐺1 based construction to the 𝑔 based construction. One can treat 𝐺0,𝐺1 as special cases of 𝑔 with the first input bit 0
or 1.
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11.2 Consequences

Before we get into the proof of Lemma 99, we concisely state its consequences.

Theorem 100. Fix any function 𝑑 ≤ poly. Then, relative to a random oracle, it holds that QNCBPP
O(1) ⊈

BPPQNC𝑑 .

Note that 𝑑-hCollisionHashing satisfies offline soundness because CollisionHashing satisfies offline sound-
ness. Therefore, using 𝑑-Ser[𝑑-hCollisionHashing] and Lemma 95, we conclude the following.

Theorem 101. Fix any function 𝑑 ≤ poly. Then, relative to a random oracle, it holds that BPPQNC
BPP
O(1) ⊈

QNCBPP
𝑑 ∪ BPPQNC𝑑 .

The rest of this section is dedicated to proving Lemma 99. Since our proof makes use of the compressed
oracle technique, we start by introducing it below.

11.3 The compressed oracle technique

11.3.1 An informal overview

In this subsection, we give an informal exposition of Zhandry’s compressed oracle technique. This subsection
is taken almost verbatim from [CGV22]. A reader who is familiar with the technique should feel free to skip
this subsection.

Let 𝐻 ∶ {0, 1}𝑛 → {0, 1} be a fixed function. For simplicity, in this overview we restrict ourselves to
considering boolean functions (since this is also the relevant case for our scheme).

While classically it is always possible to record the queries of the algorithm, in a way that is undetectable
to the algorithm itself, this is not possible in general in the quantum case. The issue arises because the
quantum algorithm can query in superposition. We illustrate this with an example.

Consider an algorithm that prepares the state 1√
2
(∣𝑥0⟩ + ∣𝑥1⟩) ∣𝑦⟩, and then makes an oracle query to 𝐻 .

The state after the query is
1√
2
∣𝑥0⟩ ∣𝑦 ⊕𝐻(𝑥0)⟩ +

1√
2
∣𝑥1⟩ ∣𝑦 ⊕𝐻(𝑥1)⟩ . (22)

Suppose we additionally “record” the query made, i.e. we copy the queried input into a third register. Then
the state becomes:

1√
2
∣𝑥0⟩ ∣𝑦 ⊕𝐻(𝑥0)⟩ ∣𝑥0⟩ +

1√
2
∣𝑥1⟩ ∣𝑦 ⊕𝐻(𝑥1)⟩ ∣𝑥1⟩ (23)

Now, suppose that 𝐻(𝑥0) = 𝐻(𝑥1), then it is easy to see that, in the case where we didn’t record queries,
the state of the first register after the query is exactly 1√

2
(∣𝑥0⟩ + ∣𝑥1⟩). On the other hand, if we recorded the

query, then the third register is now entangled with the first, and as a result the state of the first register
is no longer 1√

2
(∣𝑥0⟩ + ∣𝑥1⟩) (it is instead a mixed state). Thus, recording queries is not possible in general

without disturbing the state of the oracle algorithm.
Does this mean that all hope of recording queries is lost in the quantum setting? It turns out, surprisingly,

that there is a way to record queries when 𝐻 is a uniformly random oracle.
When thinking of an algorithm that queries a uniformly random oracle, it is useful to purify the quantum

state of the algorithm via an oracle register (which keeps track of the function that is being queried). An
oracle query is then a unitary that acts in the following way on a standard basis element of the query register
(where we omit writing normalizing constants):

∣𝑥⟩ ∣𝑦⟩∑
𝐻

∣𝐻⟩ ↦∑
𝐻

∣𝑥⟩ ∣𝑦 ⊕𝐻(𝑥)⟩ ∣𝐻⟩ .

It is well known that, up to applying a Hadamard gate on the 𝑦 register before and after a query, this oracle
is equivalent to a “phase oracle”, which acts in the following way:

∣𝑥⟩ ∣𝑦⟩∑
𝐻

∣𝐻⟩ ↦∑
𝐻

(−1)𝑦⋅𝐻(𝑥) ∣𝑥⟩ ∣𝑦⟩ ∣𝐻⟩ (24)

Now, to get a better sense of what is happening with each query, let’s be more concrete about how we
represent 𝐻 using the qubits in the oracle register.
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A natural way to represent 𝐻 is to use 2𝑛 qubits, with each qubit representing the output of the oracle
at one input, where we take the inputs to be ordered lexicographically. In other words, if ∣𝐻⟩ = ∣𝑡⟩, where
𝑡 ∈ {0, 1}2𝑛 , then this means that 𝐻(𝑥𝑖) = 𝑡𝑖 , where 𝑥𝑖 is the 𝑖-th 𝑛-bit string in lexicographic order. Using this
representation, notice that

1√
2𝑛
∑
𝐻

∣𝐻⟩ = ∣+⟩⊗2
𝑛

.

Now, notice that we can write the RHS of Equation (24) as

∣𝑥⟩ ∣𝑦⟩∑
𝐻

(−1)𝑦⋅𝐻(𝑥) ∣𝐻⟩ ,

i.e. we can equivalently think of the phase in a phase oracle query as being applied to the oracle register.
Thus, when a phase oracle query is made on a standard basis vector of the query register ∣𝑥⟩ ∣𝑦⟩, all that

happens is

∑
𝐻

∣𝐻⟩ ↦∑
𝐻

(−1)𝑦⋅𝐻(𝑥) ∣𝐻⟩ .

Notice that, using the representation for 𝐻 that we chose above, the latter transformation is:

• When 𝑦 = 0,
∣+⟩⊗2

𝑛

↦ ∣+⟩⊗2
𝑛

.

• When 𝑦 = 1,
∣+⟩⊗2

𝑛

↦ ∣+⟩⋯ ∣+⟩𝑖−1 ∣−⟩𝑖 ∣+⟩𝑖+1⋯∣+⟩ ,
where 𝑖 is such that 𝑥 is the 𝑖-th string in lexicographic order.

In words, the query does not have any effect when 𝑦 = 0, and the query flips the appropriate ∣+⟩ to a ∣−⟩ when
𝑦 = 1. Then, when we query on a general state ∑𝑥,𝑦 𝛼𝑥𝑦 ∣𝑥⟩ ∣𝑦⟩, the state after the query can be written as:

∑
𝑥,𝑦

𝛼𝑥𝑦 ∣𝑥⟩ ∣𝑦⟩ ∣𝐷𝑥𝑦⟩ ,

where 𝐷𝑥𝑦 is the all ∣+⟩ state, except for a ∣−⟩ corresponding to 𝑥 if 𝑦 = 1.
The crucial observation now is that all of these branches are orthogonal, and thus it makes sense to talk

about “the branch on which a particular query was made”: the state of the oracle register reveals exactly the
query that has been made on that branch. More generally, after 𝑞 queries, the state will be in a superposition
of branches on which at most 𝑞 of the ∣+⟩’s have been flipped to ∣−⟩’s. These locations correspond exactly to
the queries that have been made.

Moreover, the good news is that there is a way to keep track of the recorded queries efficiently : one does
not need to store all of the (exponentially many) ∣+⟩’s, but it suffices to keep track only of the locations that
have flipped to ∣−⟩ (which is at most 𝑞). If we know that the oracle algorithm makes at most 𝑞 queries, then
we need merely 𝑛 ⋅ 𝑞 qubits to store the points that have been queried. We will refer to the set of queried
points as the database. Formally, there is a well-defined isometry that maps a state on 2𝑛 qubits where 𝑞 of
them are in the ∣−⟩ state, and the rest are ∣+⟩, to a state on 𝑛 ⋅𝑞 qubits, which stores the 𝑞 points corresponding
to the ∣−⟩’s in lexicographic order.

Let 𝐷 denote an empty database of queried points. Then a query to a uniformly random oracle can be
thought of as acting in the following way:

⎧⎪⎪⎨⎪⎪⎩

∣𝑥⟩ ∣𝑦⟩ ∣𝐷⟩ ↦ ∣𝑥⟩ ∣𝑦⟩ ∣𝐷⟩ , if 𝑦 = 0
∣𝑥⟩ ∣𝑦⟩ ∣𝐷⟩ ↦ ∣𝑥⟩ ∣𝑦⟩ ∣𝐷 ∪ {𝑥}⟩ , if 𝑦 = 1 .

Such an implementation a uniformly random oracle is referred to as a compressed phase oracle simulation
[Zha19]. Formally, the fact that the original and the compressed oracle simulations are identical from the
point of view of the oracle algorithm (which does not have access to the oracle register) is because at any
point in the execution of the algorithm, the states in the two simulations are both purifications of the same
mixed state on the algorithm’s registers.

We point out that there are two properties of a uniformly random oracle that make a compressed oracle
simulation possible:
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• The query outputs at each point are independently distributed, which means that the state of the oracle
register is always a product state across all of the 2𝑛 qubits.

• Each query output is uniformly distributed. This is important because in general 𝛼 ∣0⟩+𝛽 ∣1⟩ /⊥ 𝛼 ∣0⟩−𝛽 ∣1⟩
unless ∣𝛼 ∣ = ∣𝛽 ∣.

Notice that the above compressed oracle simulation does not explicitly keep track of the value of the
function at the queried points (i.e. a database is just a set of queried points). In the following slight variation
on the compressed oracle simulation, also from [Zha19], a database is instead a set of pairs (𝑥,𝑤) representing
a queried point and the value of the function at that point. This variation will be more useful for our analysis.

Here 𝐷 is a database of pairs (𝑥, 𝑣), which is initially empty. A query acts as follows on a standard basis
element ∣𝑥⟩ ∣𝑦⟩ ∣𝐷⟩:

• If 𝑦 = 0, do nothing.

• If 𝑦 = 1, check if 𝐷 contains a pair of the form (𝑥, 𝑣) for some 𝑣 .

– If it does not, add (𝑥, ∣−⟩) to the database, where by this we formally mean: 𝐷 ↦ ∑𝑣(−1)𝑣 ∣𝐷 ∪ (𝑥, 𝑣)⟩
– If it does, apply the unitary that removes (𝑥, ∣−⟩) from the database.

One way to understand this compressed simulation is that our database representation only keeps track of
pairs (𝑥, ∣−⟩) (corresponding to the queried points), and it does not keep track of the other unqueried points,
which in a fully explicit simulation would correspond to ∣+⟩’s. One can think of the outputs at the unqueried
points as being “compressed” in this succinct representation.

It is easy to see that the map above can be extended to a well-defined unitary. In the rest of this overview,
we will take this to be our compressed phase oracle. For an oracle algorithm 𝐴, we will denote by 𝐴comp the
algorithm 𝐴 run with a compressed phase oracle.

11.3.2 A formal introduction

In this subsection, we formally introduce Zhandry’s technique for recording queries [Zha19]. This section
is loosely based on the explanation in [Zha19]. For a more informal treatment, which carries most of the
essence, we suggest starting from the previous section.

Standard and Phase Oracles The quantum random oracle, which is the quantum analogue of the classical
random oracle, is typically presented in one of two variations: as a standard or as a phase oracle.

The standard oracle is a unitary acting on three registers: an 𝑛-qubit register representing the input to
the function, an 𝑚-qubit register for writing the response, and an 𝑚2𝑛 qubit register representing the truth
table of the queried function 𝐻 ∶ {0, 1}𝑛 → {0, 1}𝑚. The algorithm that queries the standard oracle has access
to the first two registers, while the third register, the oracle’s state, is hidden from the algorithm except by
making queries. The standard oracle unitary acts in the following way on standard basis states:

∣𝑥⟩ ∣𝑦⟩ ∣𝐻⟩ ↦ ∣𝑥⟩ ∣𝑦 ⊕𝐻(𝑥)⟩ ∣𝐻⟩ .

For a uniformly random oracle, the oracle register is initialized in the uniform superposition 1√
𝑚2𝑛
∑𝐻 ∣𝐻⟩.

This initialization is of course equivalent to having the oracle register be in a completely mixed state (i.e. a
uniformly chosen 𝐻). This equivalence can be seen by just tracing out the oracle register. We denote the
standard (uniformly random) oracle unitary by StO. Moreover, for an oracle algorithm 𝐴, we will denote by
𝐴StO the algorithm 𝐴 interacting with the standard oracle, implemented as above.

The phase oracle formally gives a different interface to the algorithm making the queries, but is equivalent
to the standard oracle up to Hadamard gates. It again acts on three registers: an 𝑛-qubit register for the
input, an𝑚-qubit “phase” register, and an𝑚2𝑛-qubit oracle register. It acts in the following way on standard
basis states:

∣𝑥⟩ ∣𝑠⟩ ∣𝐻⟩ ↦ (−1)𝑠⋅𝐻(𝑥) ∣𝑥⟩ ∣𝑠⟩ ∣𝐻⟩ .
For a uniformly random oracle, the oracle register is again initialized in the uniform superposition. One
can easily see that the standard and phase oracles are equivalent up to applying a Hadamard gate on the
phase register before and after a query. We denote the phase oracle unitary by PhO. Moreover, for an oracle
algorithm 𝐴, we will denote by 𝐴PhO the algorithm 𝐴 interacting with the phase oracle.
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Compressed oracle The compressed oracle technique, introduced by Zhandry [Zha19], is an equivalent
way of implementing a quantum random oracle which (i) is efficiently implementable, and (ii) keeps track of
the queried inputs in a meaningful way. This paragraph is loosely based on the explanation in [Zha19].

In a compressed oracle, the oracle register does not represent the full truth table of the queried function.
Instead, it represents a database of queried inputs, and the values at those inputs. More precisely, if we have
an upper bound 𝑡 on the number of queries, a database 𝐷 is represented as an element of the set 𝑆𝑡 where
𝑆 = ({0, 1}𝑛 ∪{⊥})×{0, 1}𝑚. Each value in 𝑆 is a pair (𝑥,𝑦): if 𝑥 ≠⊥, then the pair means that the value of the
function at 𝑥 is 𝑦, which we denote by 𝐷(𝑥) = 𝑦; and if 𝑥 =⊥, then the pair is not currently used, which we
denote by 𝐷(𝑥) =⊥. Concretely, let 𝑙 ≤ 𝑡 . Then, for 𝑥1 < 𝑥2 < . . . < 𝑥𝑙 and 𝑦1, . . . ,𝑦𝑙 , the database representing
𝐷(𝑥𝑖) = 𝑦𝑖 for 𝑖 ∈ [𝑙], with the other 𝑡 − 𝑙 points unspecified, is represented as

((𝑥1,𝑦1), (𝑥2,𝑦2), . . . , (𝑥𝑙 ,𝑦𝑙), (⊥, 0𝑚), . . . , (⊥, 0𝑚))

where the number of (⊥, 0𝑚) pairs is 𝑡 − 𝑙 . We emphasise that in this database representation, the pairs are
always ordered lexicographically according to the input value, and the (⊥, 0𝑚) pairs are always at the end.

In order to define precisely the action of a compressed oracle query, we need to introduce some additional
notation. Let ∣𝐷 ∣ denote the number of pairs (𝑥,𝑦) in database 𝐷 with 𝑥 ≠⊥. Let 𝑡 be an upper bound on
the number of queries. Then, for a database 𝐷 with ∣𝐷 ∣ < 𝑡 and 𝐷(𝑥) =⊥, we write 𝐷 ∪ (𝑥,𝑦) to denote the
new database obtained by deleting one of the (⊥, 0𝑚) pairs, and by adding the pair (𝑥,𝑦) to 𝐷, inserted at
the appropriate location (to respect the lexicographic ordering of the input values).

We also define a “decompression” procedure. For 𝑥 ∈ {0, 1}𝑛, Decomp𝑥 is a unitary operation on the
database register. If 𝐷(𝑥) =⊥, it adds a uniform superposition over all pairs (𝑥,𝑦) (i.e. it “uncompressed” at
𝑥). Otherwise, if 𝐷 is specified at 𝑥 , and the corresponding 𝑦 register is in a uniform superposition, Decomp
removes 𝑥 and the uniform superposition from 𝐷. If 𝐷 is specified at 𝑥 , and the corresponding 𝑦 register is
in a state orthogonal to the uniform superposition, then Decomp acts as the identity. More precisely,

• For 𝐷 such that 𝐷(𝑥) =⊥ and ∣𝐷 ∣ < 𝑡 ,

Decomp𝑥 ∣𝐷⟩ =
1√
2𝑚
∑
𝑦

∣𝐷 ∪ (𝑥,𝑦)⟩ .

• For 𝐷 such that 𝐷(𝑥) =⊥ and 𝐷 = 𝑡 ,
Decomp𝑥 ∣𝐷⟩ = ∣𝐷⟩ .

• For 𝐷 such that 𝐷(𝑥) ≠⊥ and ∣𝐷 ∣ < 𝑡 ,

Decomp𝑥
⎛
⎝

1√
2𝑚
∑
𝑦

(−1)𝑧⋅𝑦 ∣𝐷 ∪ (𝑥,𝑦)⟩
⎞
⎠
=
⎧⎪⎪⎨⎪⎪⎩

1√
2𝑚
∑𝑦(−1)𝑧⋅𝑦 ∣𝐷 ∪ (𝑥,𝑦)⟩ if 𝑧 ≠ 0

∣𝐷⟩ if 𝑧 = 0
(25)

Note that we have specified the action of Decomp𝑥 on an orthonormal basis of the database register (with
a bound of 𝑡 on the size of the database). Moreover, it is straightforward to verify that Decomp𝑥 maps this
orthonormal basis to another orthonormal basis, and is thus a well-defined unitary. Furthermore, observe
that applying Decomp𝑥 twice gives the identity. Let Decomp be the related unitary acting on all the registers
𝑥,𝑦,𝐷 which acts as

Decomp ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ = ∣𝑥,𝑦⟩ ⊗Decomp𝑥 ∣𝐷⟩ .
So far, we have considered a fixed upper bound on the number of queries. However, one of the advantages

of the compressed oracle technique is that an upper bound on the number of queries does not need to be
known in advance. To handle a number of queries that is not fixed, we defined the procedure Increase which
simply increases the upper bound on the size of the database by initialising a new register in the state ∣(⊥, 0𝑛)⟩,
and appending it to the end. Formally, Increase ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ = ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ ∣(⊥, 0𝑛)⟩.

Now, define the unitaries CStO′ and CPhO′ acting as

CStO′ ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ = ∣𝑥,𝑦 ⊕𝐷(𝑥)⟩ ⊗ ∣𝐷⟩
CPhO′ ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ = (−1)𝑦⋅𝐷(𝑥) ∣𝑥,𝑦⟩ ⊗ ∣𝐷⟩ (26)
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Finally, we define the compressed standard and phase oracles CStO and CPhO as:

CStO = Decomp ○CStO′ ○Decomp ○ Increase
CPhO = Decomp ○CPhO′ ○Decomp ○ Increase (27)

For an oracle algorithm 𝐴, we denote by 𝐴CStO (resp. 𝐴CPhO), the algorithm 𝐴 run with the compressed
standard (resp. phase) oracle, implemented as described above. The following lemma establishes that regular
and compressed oracles are equivalent.

Lemma 102 ([Zha19]). For any oracle algorithm 𝐴, and any input state ∣𝜓⟩, Pr[𝐴StO(∣𝜓⟩) = 1] =
Pr[𝐴CStO(∣𝜓⟩) = 1]. Similarly, for any oracle algorithm 𝐵, Pr[𝐵PhO(∣𝜓⟩) = 1] = Pr[𝐵CPhO(∣𝜓⟩) = 1].

In the rest of the section, we choose to work with phase oracles and compressed phase oracles. Moreover,
to use a more suggestive name, we will denote the compressed phase oracle CPhO by comp.

11.4 𝑑-hCollisionHashing ∉ BPPQNC𝑑

Theorem 103. Let 𝑑 ≤ poly. Then, any CQd algorithm solves 𝑑-hCollisionHashing with probability at most
1/(1 + 𝐶

3
) + negl, for some negligible function negl where 𝐶 = 1/(2(𝑒2 − 1)).

The following lemma captures the intuition that the quantum part of a CQd algorithm does not have
sufficient depth to evaluate ℎ = 𝐻𝑑 ○ ⋅ ⋅ ⋅ ○ 𝐻0 on its own. We show that, without loss of generality, we can
restrict our analysis to potentially unbounded hybrid classical-quantum algorithms where queries to 𝐺0,𝐺1, 𝐻

and 𝐻𝑑 are polynomially bounded, and moreover the quantum part of the algorithm does not have access to
𝐻𝑑 at all. To help state this reduction formally, we denote a potentially unbounded hybrid classical-quantum
algorithm by CQ∞. In other words, a CQ∞ algorithm has the same structure as a CQd algorithm except that
its classical and quantum parts are computationally unbounded (but they may be query bounded). Then,
for 𝑑 ≤ poly, we denote by W𝑑 be the set of algorithms 𝐵 ∈ CQ∞ for 𝑑-hCollisionHashing that satisfy the
following properties:

1. 𝐵 only makes polynomially many queries to 𝐺0,𝐺1, 𝐻 , and a (potentially) unbounded number of queries
to 𝐻0, . . . , 𝐻𝑑−1.

2. The quantum part of 𝐵 does not have access to 𝐻𝑑 .

3. The classical part of 𝐵 only makes polynomially many queries to 𝐻𝑑 .

Lemma 104. Let 𝑑 ≤ poly. Suppose 𝐴 is a CQd algorithm that solves 𝑑-hCollisionHashing with probability
𝑝. Then, there exists a negligible function negl and an algorithm 𝐵 ∈ W𝑑 that solves the same problem with
probability at least 𝑝 − negl.

Proof sketch. Following an argument similar to that in the proof of Lemma 74 (on 𝐻0 . . . 𝐻𝑑 which when
composed yield ℎ), one can show that a circuit in Figure 9a behaves like the circuit in Figure 9c, i.e. their
trace distance is negligible. By inspection, it follows that Figure 9c can be simulated by circuit 𝐵 above.
Therefore if 𝐴 succeeds with 𝑝 at any task, 𝐵 succeeds at the same task with probability at least 𝑝 −negl(𝜆).

�

From now on, without loss of generality, we restrict to considering algorithms for 𝑑-hCollisionHashing that
are in W𝑑 . We will show that no such algorithm can solve 𝑑-hCollisionHashing with probability greater than
1/(1 + 𝐶

3
) + negl.

It may be surprising that a seemingly strong class of algorithmsW𝑑 cannot solve 𝑑-hCollisionHashing with
probability close to 1. Indeed, the crucial resource that is missing from algorithms in W𝑑 is that they are
unable to maintain coherence while making new queries to 𝐻𝑑 . This is because, by definition, 𝐻𝑑 can only
be queried by the classical part.

From here on, we fix a 𝑑 ≤ poly, and we simply refer to 𝑑-hCollisionHashing as Problem, and to the single-
copy version as subProblem. The first step in our proof is to reduce the analysis of algorithms for Problem to
algorithms for subProblem.

Lemma 105. Suppose there exists an algorithm 𝐵 ∈ W𝑑 that solves Problem with probability non-negligibly
greater than 1/(1+ 𝐶

3
). Then, there exists an algorithm 𝐴 = {𝐴𝜆}𝜆∈N ∈ W𝑑 for subProblem, and a non-negligible

function non-negl such that, for all 𝜆,
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• Pr[𝐴𝜆 outputs 𝑦 s.t. 𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≥ non-negl(𝜆), and

• Pr[𝐴𝜆 wins ∣𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≥ 1
2
+ non-negl(𝜆) ,

where “𝐴𝜆 wins” is shorthand for “𝐴𝜆 outputs a valid equation”.

Proof. Let 𝐵 = {𝐵𝜆}𝜆∈N be a W𝑑 algorithm that solves Problem with probability non-negligibly greater than
1
2
. Suppose for a contradiction that the lemma does not hold. This implies that, for all W𝑑 algorithms

𝐴 = {𝐴𝜆}𝜆∈N for subProblem, there exists a negligible function negl such that, for all 𝜆,

• Pr[𝐴𝜆 outputs 𝑦 s.t. 𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ negl(𝜆), or

• Pr[𝐴𝜆 wins ∣𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ 1
2
+ negl(𝜆).

Let 𝐵𝑖 = {𝐵𝑖𝜆}𝜆∈N be the algorithm for subProblem that runs algorithm 𝐵 and returns the 𝑖-th answer of 𝐵
as output. Since 𝐵𝑖 is a W𝑑 algorithm, the hypothesis above implies that there exists a negligible function
negl𝑖 such that, for all 𝜆,

• Pr[𝐵𝑖𝜆 outputs 𝑦 s.t. 𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ negl𝑖(𝜆), or

• Pr[𝐵𝑖𝜆 wins ∣𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ 1
2
+ negl𝑖(𝜆).

Let negl =max𝑖 negl𝑖 . This is still a negligible function. Then, we have that, for all 𝑖 ∈ [𝜆],

(i) 𝑝𝑖,𝜆 ∶= Pr[𝐵𝑖𝜆 outputs 𝑦 s.t. 𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ negl(𝜆), or

(ii) 𝑞𝑖,𝜆 ∶= Pr[𝐵𝑖𝜆 wins ∣𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≤ 1
2
+ negl(𝜆).

Let J𝜆 = {𝑖 ∶ 𝑝𝑖,𝜆 ≤ negl(𝜆)}, and let J̄𝜆 ∶= [𝜆] ∖ J𝜆.
For brevity, denote by y = 𝑦1, . . . ,𝑦𝜆, and similarly for r,m. It follows from the above and a union bound

that, for all 𝜆,
Pr[∃ 𝑖 ∈ J𝜆 s.t. 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1) ∶ (y, r,m) ← 𝐵𝜆] ≤ negl′(𝜆) , (28)

where negl′(𝜆) = 𝜆 ⋅ negl(𝜆). We can rewrite the latter as

Pr[I ∩ J𝜆 ≠ ∅] ≤ negl′(𝜆) . (29)

Using the same notation as in the description of Problem, we have

Pr[𝐵 wins] ≤ Pr [∣Iwin∣ ≥
3

4
⋅ ∣I∣] , (30)

since the event “𝐵 wins” is a subset of the event “∣Iwin∣ ≥ 3
4
⋅ ∣I∣”. Now, we have

Pr [∣Iwin∣ ≥
3

4
⋅ ∣I∣] =Pr[I ∩ J𝜆 = ∅] ⋅Pr [∣Iwin∣ ≥

3

4
⋅ ∣I∣ ∣ I ∩ J𝜆 = ∅]

+Pr[I ∩ J𝜆 ≠ ∅] ⋅Pr [∣Iwin∣ ≥
3

4
⋅ ∣I∣ ∣ I ∩ J𝜆 ≠ ∅]

≤Pr[I ∩ J𝜆 = ∅] ⋅Pr [∣Iwin∣ ≥
3

4
⋅ ∣I∣ ∣ I ∩ J𝜆 = ∅] + negl′(𝜆)

=Pr[I ∩ J𝜆 = ∅] ⋅Pr [∣Iwin ∩ J̄𝜆 ∣ ≥
3

4
⋅ ∣I ∩ J̄𝜆 ∣ ∣ I ∩ J𝜆 = ∅] + negl′(𝜆) . (31)

where the first inequality is implied by Equation (29), and the final equality is because, conditioned on
I ∩ J𝜆 = ∅, we have that Iwin = Iwin ∩ J̄𝜆, and I = I ∩ J̄𝜆.

Finally, notice that

Pr[I ∩ J𝜆 = ∅] ⋅Pr [∣Iwin ∩ J̄𝜆 ∣ ≥
3

4
⋅ ∣I ∩ J̄𝜆 ∣ ∣ I ∩ J𝜆 = ∅]

=Pr [∣Iwin ∩ J̄𝜆 ∣ ≥
3

4
⋅ ∣I ∩ J̄𝜆 ∣ and I ∩ J𝜆 = ∅]

≤Pr [∣Iwin ∩ J̄𝜆 ∣ ≥
3

4
⋅ ∣I ∩ J̄𝜆 ∣] (32)
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Combining Equation (30), Equation (31), and Equation (32) gives

Pr[𝐵 wins] ≤ Pr [∣Iwin ∩ J̄𝜆 ∣ ≥
3

4
⋅ ∣I ∩ J̄𝜆 ∣] + negl′(𝜆) . (33)

Now, notice first that,

Pr [∣I ∩ J̄𝜆 ∣ ≥
3

4
𝐶𝜆] ≥ Pr [∣I ∩ J̄𝜆 ∣ ≥

3

4
𝐶𝜆 and I ∩ J𝜆 = ∅]

= Pr [∣I∣ ≥ 3

4
𝐶𝜆 and I ∩ J𝜆 = ∅]

≥ Pr [∣I∣ ≥ 3

4
𝐶𝜆] − negl′(𝜆)

≥ Pr[𝐵 wins] − negl′(𝜆) , (34)

where the second inequality follows from Equation (29). This implies that

E[∣I ∩ J̄𝜆 ∣] ≥ Pr[𝐵 wins] ⋅ 3
4
𝐶𝜆 − negl′(𝜆) . (35)

Next, we proceed to upper bound Pr [∣Iwin∩J̄𝜆 ∣ ≥ 3
4
⋅ ∣I ∩J̄𝜆 ∣]. Together with Equation (33), this will yield

a contradiction.
Notice that, by (i) and (ii), for all 𝑖 ∈ J̄𝜆,

Pr[𝐵𝑖𝜆 wins ∣𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)] ≤
1

2
+ negl(𝜆) . (36)

Now, for 𝑖 ∈ J̄𝜆, define 𝐸𝑖 to be the random variable such that:

𝐸𝑖 =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝐵𝑖𝜆 wins and 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)
0 otherwise

(37)

Define 𝐹𝑖 to be the random variable such that:

𝐹𝑖 =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)
0 otherwise

(38)

Let 𝐸 ∶= 1
𝜆 ∑𝑖∈J̄𝜆

𝐸𝑖 , and 𝐹 ∶= 1
𝜆 ∑𝑖∈J̄𝜆

𝐹𝑖 . Note that 𝐸 = ∣Iwin ∩ J̄𝜆 ∣/𝜆, and 𝐹 = ∣I ∩ J̄𝜆 ∣/𝜆 Then,

E[𝐸] = ∑
𝑖∈J̄𝜆

E[𝐸𝑖]

= ∑
𝑖∈J̄𝜆

Pr[𝐵𝑖𝜆 wins and 𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)]

= ∑
𝑖∈J̄𝜆

Pr[𝐵𝑖𝜆 wins ∣𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)] ⋅Pr[𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)]

≤ (1
2
+ negl(𝜆)) ⋅ ∑

𝑖∈J̄𝜆

Pr[𝑦𝑖 ∈ TwoToOne(𝐺0,𝐺1)]

= (1
2
+ negl(𝜆)) ⋅ ∑

𝑖∈J̄𝜆

E[𝐹𝑖]

= (1
2
+ negl(𝜆)) ⋅ E[𝐹 ] . (39)

We make use of the following:

Claim 106. Let 𝐸 and 𝐹 be random variables taking values in [0, 1]. Let 𝛾 ∈ [0, 1].

Pr[𝐸 ≥ 𝛾 ⋅ 𝐹 ] ≤ 1 − E(𝐹)(1 − E(𝐸)
𝛾 ⋅ E(𝐹))
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Proof. The proof is straightforward and follows from some averaging arguments. It is included in the Ap-
pendix for completeness. �

We invoke the claim with 𝐸 and 𝐹 defined earlier, and 𝛾 = 3
4
. In our case, by Equation (35),

E(𝐹) ≥ Pr[𝐵 wins] ⋅ 3
4
𝐶 − negl′(𝜆) ,

and, by Equation (39),
E(𝐸)
E(𝐹) ≤

1

2
+ negl(𝜆) .

Then, by Claim 106, we have

Pr [𝐸 ≥ 3

4
𝐹] ≤ 1 − Pr[𝐵 wins] ⋅𝐶

3
− negl′′(𝜆) , (40)

for some negligible function negl′′. Combining Equation (40) with Equation (33), and recalling the Definition
of 𝐸 and 𝐹 , we have

Pr[𝐵 wins] − negl(𝜆)′ ≤ 1 − Pr[𝐵 wins] ⋅𝐶
3

− negl′′(𝜆) ,

which implies

Pr[𝐵 wins] ≤ 1/(1 + 𝐶

3
) + negl′′′(𝜆) ,

for some negligible function negl′′′. This is a contradiction.
�

Lemma 107. Let 𝐴 = {𝐴𝜆}𝜆∈N ∈ W𝑑 be an algorithm for subProblem. Suppose there exists a function 𝜀 such
that, for all 𝜆,

• Pr[𝐴𝜆 outputs 𝑦 s.t. 𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≥ 𝜀(𝜆), and

• Pr[𝐴𝜆 wins ∣𝑦 ∈ TwoToOne(𝐺0,𝐺1)] ≥ 1
2
+ 𝜀(𝜆) .

Then, there exists a (potentially unbounded) oracle algorithm that makes polynomially many queries to 𝐺0,𝐺1

and outputs a collision with probability at least
𝑝𝑜𝑙𝑦(𝜀)

𝑞3 , where 𝑞 is the total number of queries to 𝐺0,𝐺1, 𝐻,𝐻𝑑

made by 𝐴.

Recall that 𝑞 is polynomially bounded, so this quantity is non-negligible when 𝜀 is non-negligible. Lemma
104, Lemma 105, and Lemma 107 together clearly imply Theorem 103. The rest of the section is dedicated
to proving Lemma 107.

Algorithm 1 below is the algorithm that extracts a collision. We introduce some notation before describing
it. Recall that 𝐴 alternates classical and quantum circuits. Without loss of generality, we can take 𝐴𝜆 to be
a quantum circuit that applies the unitary:

(CNOT(work,query)→rec(𝑈𝑄𝑂
𝐺𝑂𝐻 )𝐿

′

(𝑈𝐶𝑂
𝐺𝑂𝐻𝑂𝐻𝑑 )𝐿)𝑁 ,

where:

• 𝑈𝐶 is a “classical” unitary that is diagonal in the standard basis, and acts on registers work, query. We
assume that 𝑈𝐶 also includes (a potentially unbounded number of) queries to oracles 𝐻0, . . . , 𝐻𝑑−1.

• 𝑈𝑄 is a unitary acting on registers work, query. We again assume that 𝑈𝑄 includes (a potentially
unbounded number of) quantum queries to oracles 𝐻0, . . . , 𝐻𝑑−1.

• 𝑁 is the total number of quantum circuits. 𝐿 and 𝐿′ are respectively the number of oracles calls in each
classical and quantum part.

• CNOT(work,query)→rec is a CNOT gate that “measures” all of the registers after each QNC execution by
copying them in another register rec.
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Note that we are assuming, without loss of generality, that the BPP and QNC parts share the same registers,
but all registers are measured after each QNC call.

Finally, for 𝑦 in the range of 𝐺0,𝐺1, and 𝑐0, 𝑐1 ∈ {0, 1}, denote by 𝐴
𝑦,𝑐0,𝑐1
𝜆

the algorithm that is identical to

𝐴, except for the following modification: replace oracle queries 𝑂𝐻 with 𝑂𝐻
𝑦,𝑐0,𝑐1

defined as follows:

𝑂𝐻
𝑦,𝑐0,𝑐1

∣𝑥,𝑤⟩ ∣𝑧⟩ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−1)𝑧⋅𝐻(𝑥) ∣𝑥,𝑤⟩ ∣𝑧⟩ , if 𝐺0(𝑥),𝐺1(𝑥) ≠ 𝑦
(−1)𝑧⋅𝑐0 ∣𝑥,𝑤⟩ ∣𝑧⟩ , if 𝐺0(𝑥) = 𝑦
(−1)𝑧⋅𝑐1 ∣𝑥,𝑤⟩ ∣𝑧⟩ , if 𝐺0(𝑥) ≠ 𝑦 and 𝐺1(𝑥) = 𝑦

where𝑂𝐻
𝑦,𝑐0,𝑐1

is implemented “in place”, by querying𝐺0,𝐺1(𝑥), computing in an auxiliary register which of the
three cases one is in, applying a controlled unitary based on the value of the control register, and uncomputing
everything except the controlled unitary (which returns the auxiliary register to zero). Crucially, 𝑂𝐻

𝑦,𝑐0,𝑐1
can

be computed at the cost of one query to 𝐺0 and 𝐺1.

Algorithm 1 (Extract a collision).
Input: a security parameter 1𝜆

Oracle access to: 𝐺0,𝐺1 ∶ {0, 1}𝑛(𝜆) → {0, 1}𝑛(𝜆)

Run a simulation of the following algorithm, where oracle calls to 𝐻 are simulated via a compressed oracle
simulation, and calls to 𝐻0, . . . , 𝐻𝑑 are simulated inefficiently (by sampling these functions uniformly at random
and using a truth table to answer queries). Calls to 𝐺0, 𝐺1 are made directly to the oracles 𝐺0,𝐺1.

(i) Pick 𝑖 ← [𝑁 ⋅𝐿] (where notice that the latter is the total number of oracle calls that 𝐴𝜆 makes to ℎ). Let
𝑁𝑖 , 𝐿𝑖 be such that 𝑖 = 𝑁𝑖 ⋅ 𝐿 + 𝐿𝑖 , with 0 ≤ 𝐿𝑖 < 𝑁 .

(ii) Run 𝐴𝜆 up until just before the 𝑖-th query to 𝐻𝑑 , i.e. apply the unitary

(𝑈𝐶𝑂
𝐺𝑂𝐻𝑂𝐻𝑑 )𝐿𝑖−1 ○ (CNOTout,rec(𝑈𝑄𝑂

𝐺𝑂𝐻 )𝐿
′

(𝑈𝐶𝑂
𝐺𝑂𝐻𝑂𝐻𝑑 )𝐿)

𝑁𝑖

.

Then, measure registers work and query, and let 𝑎𝑑𝑣 be the outcome. Moreover, let 𝑧 be the 𝑖-th query
to 𝐻𝑑 . Let h𝑖data denote the set h𝑖data = ℎ−1(𝐻𝑑(𝑧)) (this set can be computed inefficiently by querying
𝐻0, . . . , 𝐻𝑑−1 everywhere).

(iii) Pick 𝑦 ← h𝑖data. Pick 𝑐0, 𝑐1, 𝑐
′
0, 𝑐
′
1 ← {0, 1}, and 𝑗, 𝑗 ′ ← [(𝑁 −𝑁𝑖) ⋅ (𝐿 +𝐿′)−𝐿𝑖] (where notice that the latter

is the total number of remaining oracle calls to 𝐻 that the partial run of 𝐴𝜆 in step (ii) did not perform).
Let 𝑉𝑗 and 𝑉 ′𝑗 ′ be unitaries corresponding to the continuation of the execution of 𝐴 from where it stopped

in step (ii), for respectively 𝑗 and 𝑗 ′ additional queries to 𝐻 , where we additionally replace oracle calls
𝑂𝐻 with oracle calls 𝑂𝐻

𝑦,𝑐0,𝑐1
and 𝑂𝐻

𝑦,𝑐′0,𝑐
′
1
for 𝑉𝑗 and 𝑉 ′𝑗 ′ respectively (we describe these formally after the

description of the algorithm).

(iv) Initialize new registers work′ and query′ in the state ∣𝑎𝑑𝑣⟩. Run67

(𝑉𝑗 ⊗𝑉 ′𝑗 ′)( ∣𝑎𝑑𝑣⟩work,query ⊗ ∣𝑎𝑑𝑣⟩work′,query′ )

(vi) Measure the query registers of 𝐻 in query and query′ and output a collision if one is found.

To avoid any confusion, we give a formal definition of 𝑉𝑗 and 𝑉 ′𝑗 ′ . Let 𝑁 𝑗 , 𝐿 𝑗 be such that 𝑗 = 𝑁 𝑗 ⋅(𝐿+𝐿′)+𝐿 𝑗 ,

where 0 ≤ 𝐿 𝑗 < 𝐿 + 𝐿′. Let CNOT→rec be short for CNOT(work,query)→rec. Define

𝑉𝑗 ∶=𝑊𝑗 ○ ((𝑈𝐶𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
𝑂𝐻𝑑 )𝐿𝑖−1CNOT→rec(𝑈𝑄𝑂

𝐺𝑂𝐻
𝑦,𝑐0,𝑐1

)𝐿
′

(𝑈𝐶𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
𝑂𝐻𝑑 )𝐿−𝐿𝑖+1)

𝑁 𝑗

,

where

𝑊𝑗 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝑈𝐶𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
𝑂𝐻𝑑 )𝐿𝑗 if 𝐿 𝑗 ≤ 𝐿 − 𝐿𝑖 + 1

(𝑈𝑄𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
)𝐿𝑗−(𝐿−𝐿𝑖+1)(𝑈𝐶𝑂

𝐺𝑂𝐻
𝑦,𝑐0,𝑐1

𝑂𝐻𝑑 )𝐿−𝐿𝑖+1 if 𝐿 − 𝐿𝑖 + 1 < 𝐿 𝑗 ≤ 𝐿 − 𝐿𝑖 + 1 + 𝐿′

(𝑈𝐶𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
𝑂𝐻𝑑 )𝐿𝑗−(𝐿

′
+𝐿−𝐿𝑖+1)CNOT→rec(𝑈𝑄𝑂

𝐺𝑂𝐻
𝑦,𝑐0,𝑐1

)𝐿′(𝑈𝐶𝑂
𝐺𝑂𝐻

𝑦,𝑐0,𝑐1
𝑂𝐻𝑑 )𝐿−𝐿𝑖+1 otherwise

(41)

𝑉 ′𝑗 ′ is defined analogously (with 𝑐0, 𝑐1 replaced by 𝑐′0, 𝑐
′
1).

67Note that, while the oracle queries in the “left” and “right” unitaries act on distinct registers query and query′, one can
equivalently replace this unitary with one in which there is a single shared query register, by having one algorithm swap the
contents of a local register into the shared query register, query the oracle, and swap out the contents back into the local register.
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11.4.1 A technical lemma

Let 𝐴 be an oracle algorithm making 𝑞 queries to a uniformly random function 𝐻 ∶ {0, 1}𝑛 → {0, 1}. Denote
by work and query the registers of 𝐴, where the former is a work register and the latter a query register to 𝐻 .

Suppose one runs a compressed oracle simulation of 𝐴 on some initial state ∣𝜓⟩. We prove an intuitive
lemma that directly relates the probability of the final database register containing a particular query 𝑥∗ to
the probability of finding the register query in the state 𝑥∗, if this were to be measured before a uniformly
selected query. A bit more precisely, we show that if the final compressed oracle state has weight Δ on
databases containing a particular query 𝑥∗, then if one were to run 𝐴 and measure register query before one
of the 𝑞 queries, selected uniformly at random, the measurement outcome would be 𝑥∗ with probability at
least Δ/𝑞. In fact, we show an even more general statement that will be useful in our proof, which lower
bounds the probability that measuring a uniformly random query yields 𝑥∗, and that decompressing the
database everywhere yields a particular 𝐻 .

We denote by Decomp the unitary that decompresses the database at every point. Formally, Decomp
applies StdDecompx for every 𝑥 . For a set 𝑆 ⊆ {0, 1}𝑛, denote by F({0, 1}𝑛 ∖𝑆, {0, 1}) the set of functions from
{0, 1}𝑛 ∖ 𝑆 to {0, 1}. For 𝐻 ∈ F({0, 1}𝑛 ∖ 𝑆, {0, 1}), let Π𝐻 , acting on the (decompressed) database register, be

the projector onto functions 𝐻 that are consistent with 𝐻 outside of 𝑆. Formally,

Π𝐻 ∶= ∑
𝐻 ∶𝐻 ∣{0,1}𝑛∖𝑆=𝐻

∣𝐻⟩ ⟨𝐻 ∣ ,

where here we are implicitly identifying databases with the functions they specify.
For convenience, we will abuse notation slightly and write 𝐷 ∋ 𝑥 to mean that 𝐷 contains a pair (𝑥,𝑤) for

some 𝑤 . Moreover, for 𝑥 ∈ {0, 1}, let Π𝐷∋𝑥 , acting on the compressed database register D, be the projector
onto databases containing 𝑥 , i.e.

Π𝐷∋𝑥 = ∑
𝐷∋𝑥

∣𝐷⟩ ⟨𝐷 ∣

Without loss of generality, we let 𝐴 be the algorithm that applies the unitary (𝑈𝑂)𝑞 followed by a
measurement of an output register, where 𝑈 acts on work, query and 𝑂 represents the oracle call, which
we think of as acting on query, and an “oracle register” O containing the description of 𝐻 . When running
a compressed oracle simulation of 𝐴, the unitary 𝑂 is replaced by the compressed oracle call 𝑂comp, where
Decomp ○𝑂comp = 𝑂 ○Decomp.

Denote by X the domain of 𝐻 . In what follows, we use the following notation. For 𝐷 ⊆ X , we let

∣𝐷⟩ ∶= ∑
𝑤𝑥 ∈{0,1}∶𝑥∈𝐷

(−1)𝑤𝑥 ∣{(𝑥,𝑤𝑥) ∶ 𝑥 ∈ 𝐷⟩

Denote by Scomp the set of all (normalized) states of the form:

∑
𝑧,𝑥,𝑒,𝐷

𝛼𝑧,𝑥,𝑒,𝐷 ∣𝑧⟩work ∣𝑥, 𝑒⟩query ∣𝐷⟩O . (42)

These are states that can be reached by running a compressed oracle simulation.

Lemma 108. Let 𝑥∗ ∈ {0, 1}𝑛. Let 𝑆 ⊆ {0, 1}𝑛 be such that 𝑥∗ ∈ 𝑆. Let 𝐻 ∈ F({0, 1}𝑛 ∖ 𝑆, {0, 1}). Let
∣Ψ0⟩ ∈ 𝑆comp. Let ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ = (𝑈𝑂comp) ∣Ψ0⟩. Let

Δ0,𝑥∗,𝐻 ∶= ∥Π𝐻DecompΠ𝐷∋𝑥∗ ∣Ψ0⟩ ∥2 ,

and let
Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗,𝐻 ∶= ∥Π𝐻DecompΠ𝐷∋𝑥∗ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 .

Then,

E𝑙←{0,...,𝑞−1}∥ ∣𝑥∗⟩ ⟨𝑥∗∣ (𝑈𝑂)𝑙Π𝐻Decomp ∣Ψ0⟩ ∥2 ≥
1

𝑞
(Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗,𝐻 − Δ0,𝑥∗,𝐻 ) .

The special case where 𝑆 = {0, 1}𝑛 gives the following corollary.

Corollary 109. Let 𝑥∗ ∈ {0, 1}𝑛. Let ∣Ψ0⟩ ∈ 𝑆comp. Let ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ = (𝑈𝑂comp) ∣Ψ0⟩. Let

Δ0,𝑥∗ ∶= ∥Π𝐷∋𝑥∗ ∣Ψ0⟩ ∥2 ,
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and let
Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗ ∶= ∥Π𝐷∋𝑥∗ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 .

Then,

E𝑙←{0,...,𝑞−1}∥ ∣𝑥∗⟩ ⟨𝑥∗∣ (𝑈𝑂)𝑙Decomp ∣Ψ0⟩ ∥2 ≥
1

𝑞
(Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗ − Δ0,𝑥∗) .

Proof of Lemma 108. For the rest of the section, we write E𝑙 as short for E𝑙←{0,...,𝑞−1}. Using the fact that

Π𝐻 commutes with both (𝑈𝑂)𝑙 and ∣𝑥∗⟩ ⟨𝑥∗∣, that Decomp ○𝑂comp = 𝑂 ○Decomp, and that ∣𝑥∗⟩ ⟨𝑥∗∣ commutes
with Decomp, we have that

E𝑙∥ ∣𝑥∗⟩ ⟨𝑥∗∣ (𝑈𝑂)𝑙Π𝐻Decomp ∣Ψ0⟩ ∥2

=E𝑙∥ ∣𝑥∗⟩ ⟨𝑥∗∣Π𝐻Decomp(𝑈𝑂comp)𝑙 ∣Ψ0⟩ ∥2

=E𝑙∥Π𝐻Decomp ∣𝑥∗⟩ ⟨𝑥∗∣ (𝑈𝑂comp)𝑙 ∣Ψ0⟩ ∥2 (43)

We can write the state (𝑈𝑂comp)𝑙 ∣Ψ0⟩ as

(𝑈𝑂comp)𝑙 ∣Ψ0⟩ = ∑
𝑧,𝑥,𝑒

𝐷 ∶∣𝐷 ∣≤𝑙

𝛼𝑙𝑧,𝑥,𝑒,𝐷 ∣𝑧⟩work ∣𝑥, 𝑒⟩query ∣𝐷⟩ . (44)

for some 𝛼𝑙𝑧,𝑥,𝑒,𝐷 . For brevity, we will denote by 𝐷𝑙 a database with at most 𝑙 pairs.
Then, by Equation (43), we have

E𝑙∥ ∣𝑥∗⟩ ⟨𝑥∗∣ (𝑈𝑂)𝑙Π𝐻Decomp ∣Ψ0⟩ ∥2

=E𝑙∥Π𝐻Decomp ∑
𝑧,𝑒,𝐷𝑙

𝛼𝑙
𝑧,𝑥∗,𝑒,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒⟩ ∣𝐷𝑙 ⟩ ∥

2

. (45)

Now, notice that, for any 𝐷 /∋ 𝑥∗ and 𝐷 ′ ∋ 𝑥∗, we have Π𝐻Decomp ∣𝐷⟩ ⊥ Π𝐻Decomp ∣𝐷 ′⟩. This is because we
can write

Decomp ∣𝐷⟩ = ⊗
𝑥∈𝐷

∣−⟩x ⊗⊗
𝑥∉𝐷

∣+⟩x = ∣+⟩x∗ ⊗ ⊗
𝑥∈𝐷
𝑥≠𝑥

∗

∣−⟩x ⊗ ⊗
𝑥∉𝐷

𝑥≠𝑥
∗

∣+⟩x ,

and
Decomp ∣𝐷 ′⟩ = ⊗

𝑥∈𝐷′
∣−⟩x ⊗ ⊗

𝑥∉𝐷′
∣+⟩x = ∣−⟩x∗ ⊗ ⊗

𝑥∈𝐷
′

𝑥≠𝑥
∗

∣−⟩x ⊗ ⊗
𝑥∉𝐷

′

𝑥≠𝑥
∗

∣+⟩x ,

where x denotes the sub-register of the decompressed database register corresponding to the value of the
oracle at 𝑥 . Finally, notice that Π𝐻 acts as the identity on register 𝑥∗, since 𝐻 ∈ F({0, 1}𝑛 ∖ 𝑆, {0, 1}) and
𝑥∗ ∈ 𝑆. Thus, Π𝐻Decomp ∣𝐷⟩ and Π𝐻Decomp ∣𝐷 ′⟩ are orthogonal, since they are orthogonal on register x∗.

Then, we have

Equation (45) = E𝑙∥Π𝐻Decomp ∑
𝑧,𝑒,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒,𝐷𝑙 ∣𝑦, 𝑥∗, 𝑒⟩ ∣𝐷𝑙 ⟩ ∥

2

+ E𝑙∥Π𝐻Decomp ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩ ∥

2

+ E𝑙∥Π𝐻Decomp ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

≥ E𝑙∥Π𝐻Decomp ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

(46)

where the first equality is due to the fact that components with 𝐷 /∋ 𝑥∗ and with 𝐷 ∋ 𝑥∗ are orthogonal, and,
of course, components with 𝑒 = 0 and with 𝑒 = 1 are also orthogonal.

We will prove the following lemma.
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Lemma 110.

E𝑙∥Π𝐻Decomp ∑
𝑧

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

≥ 1

𝑞
(Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗,𝐻 − Δ0,𝑥∗,𝐻 ) . (47)

Combining Equation (45), Equation (46), and Lemma (110) immediately yields Lemma 108.
Thus, to conclude the proof of Lemma 108, we are left with proving Lemma 110.

Proof. Notice, via a telescopic sum, that

E𝑙←{0,...,𝑞−1}

⎡⎢⎢⎢⎢⎣
∥Π𝐻Decomp ∑

𝑧,𝑥,𝑒,

𝐷
𝑙+1
∋𝑥
∗

𝛼𝑙+1
𝑧,𝑥,𝑒,𝐷𝑙+1 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷𝑙+1⟩ ∥

2

− ∥Π𝐻Decomp ∑
𝑧,𝑥,𝑒,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒,𝐷𝑙 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷𝑙 ⟩ ∥

2
⎤⎥⎥⎥⎥⎦

≥ 1

𝑞
(∥Π𝐻Decomp ∑

𝑧,𝑥,𝑒,

𝐷∋𝑥
∗

𝛼
𝑞

𝑧,𝑥,𝑒,𝐷 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷⟩ ∥
2

− ∥Π𝐻Decomp ∑
𝑧,𝑥,𝑒,

𝐷∋𝑥
∗

𝛼0
𝑧,𝑥,𝑒,𝐷 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷⟩ ∥

2

)

= 1

𝑞
(Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗,𝐻 − Δ0,𝑥∗,𝐻 ) . (48)

For convenience, we will denote the quantities inside the square brackets on the LHS of Equation (48) as
𝑋𝑙+1 and 𝑋𝑙 .

Then,

𝑋𝑙+1 ∶=∥Π𝐻Decomp ∑
𝑧,𝑥,𝑒,

𝐷
𝑙+1
∋𝑥
∗

𝛼𝑙+1
𝑧,𝑥,𝑒,𝐷𝑙+1 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷𝑙+1⟩ ∥

2

=∥(𝑈 −1 ⊗ Π𝐻Decomp) ∑
𝑧,𝑥,𝑒,

𝐷
𝑙+1
∋𝑥
∗

𝛼𝑙+1
𝑧,𝑥,𝑒,𝐷𝑙+1 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷𝑙+1⟩ ∥

2

=∥Π𝐻Decomp ○ 𝑂comp
⎡⎢⎢⎢⎢⎣
∑
𝑧,𝑥,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑧,𝑥≠𝑥

∗
,𝑤,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

⎤⎥⎥⎥⎥⎦
∥
2

(49)

where the last equality follows from the definition of the compressed oracle call 𝑂comp and the 𝛼𝑙 coefficients.
In words, the three terms in the last expression correspond to the three ways in which a database containing
𝑥∗ after the (𝑙 + 1)-th query can originate.

Using the fact that Decomp ○𝑂comp = 𝑂 ○Decomp, and that Π𝐻 commutes with 𝑂 (since Π𝐻 is diagonal in
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the control basis of 𝑂), we have

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(49) =∥𝑂 ○ (Π𝐻Decomp)
⎡⎢⎢⎢⎢⎣
∑
𝑧,𝑥,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑦,𝑥≠𝑥

∗
,𝑤,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

⎤⎥⎥⎥⎥⎦
∥
2

=∥Π𝐻Decomp
⎡⎢⎢⎢⎢⎣
∑
𝑧,𝑥,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑧,𝑥≠𝑥

∗
,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

+ ∑
𝑦,𝑤,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

⎤⎥⎥⎥⎥⎦
∥
2

=∥Π𝐻Decomp ∑
𝑧,𝑥,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩ ∥

2

+∥Π𝐻Decomp ∑
𝑧,𝑥≠𝑥

∗
,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

+∥Π𝐻Decomp ∑
𝑧,

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

, (50)

where the last equality is because the three terms in the sum are orthogonal.
Now,

𝑋𝑙 ∶=∥Π𝐻Decomp ∑
𝑧,𝑥,𝑒,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒,𝐷𝑙 ∣𝑧, 𝑥, 𝑒⟩ ∣𝐷𝑙 ⟩ ∥

2

=∥Π𝐻Decomp ∑
𝑧,𝑥,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=0,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 0⟩ ∣𝐷𝑙 ⟩ ∥

2

+∥Π𝐻Decomp ∑
𝑧,𝑥≠𝑥

∗
,

𝐷
𝑙
∋𝑥
∗

𝛼𝑙
𝑧,𝑥,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

+∥Π𝐻Decomp ∑
𝑧,𝐷𝑙 ∋𝑥∗

𝛼𝑙
𝑧,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩

⎤⎥⎥⎥⎥⎦
∥
2

(51)

Equations Equation (50) and Equation (51) imply

∥Π𝐻Decomp ∑
𝑧,𝐷𝑙 /∋𝑥∗

𝛼𝑙
𝑦,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

(52)

≥ 𝑋 𝑙+1 −𝑋 𝑙 . (53)
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Thus, we have

E𝑙∥Π𝐻Decomp ∑
𝑧

𝐷
𝑙
/∋𝑥
∗

𝛼𝑙
𝑦,𝑥∗,𝑒=1,𝐷𝑙 ∣𝑧, 𝑥∗, 𝑒 = 1⟩ ∣𝐷𝑙 ⟩ ∥

2

(54)

≥ E𝑙 [𝑋 𝑙+1 −𝑋 𝑙 ] (55)

≥ 1

𝑞
(Δ𝑓 𝑖𝑛𝑎𝑙,𝑥∗,𝐻 − Δ0,𝑥∗,𝐻 ) . (56)

where the last line is from Equation (48). This concludes the proof of Lemma 110, and thus the proof of
Lemma 108.

�

�

11.4.2 The structure of strategies that produce valid equations

In this section, we prove properties about the structure of strategies that succeed at subProblem. We will
later leverage these properties to argue that any algorithm in W𝑑 (where recall that W𝑑 was defined before
Lemma 104) that succeeds at subProblem with non-negligible advantage implies there exists an efficient an
algorithm to extract collisions of 𝐺0,𝐺1. We emphasize that all of the results in this subsection hold for any
algorithm that makes a polynomially-bounded number of queries to 𝐺0,𝐺1 and 𝐻 . Only later in Subsection
11.4.3, we will make use of the additional structure of algorithms in W𝑑 .

Let 𝐻 ∶ {0, 1}𝑛 → {0, 1} be a uniformly random oracle. Let 𝑆comp be the set of compressed oracle states on
registers Y,D,M,AUX,O, where Y, D, M correspond to outputs 𝑦,𝑑,𝑚68 for subProblem, AUX includes auxiliary
registers, input registers, and query registers, and O is the compressed database register for 𝐻 . Formally,
𝑆comp is defined as in Equation (42), except with a different naming of the registers.

Fix oracles 𝐺0,𝐺1, ℎ for subProblem. Let 𝑦 ∈ TwoToOne(𝐺0,𝐺1). For 𝑏 ∈ {0, 1}, we denote 𝑥
𝑦

𝑏
∶= (𝑥𝑦

𝑏
, ℎ(𝑦)).

Let Πvalid, acting on decompressed databases, be the projector onto valid equations, i.e.

Πvalid ∶= ∑
𝑦,𝑑,𝑚,𝐷 ∶

𝑚=𝑑 ⋅(𝑥
𝑦

0⊕𝑥
𝑦

1 )⊕𝐷(𝑥
𝑦

0 )⊕𝐷(𝑥
𝑦

1 )

∣𝑦,𝑑,𝑚⟩ ⟨𝑦,𝑑,𝑚∣ ⊗ ∣𝐷⟩ ⟨𝐷 ∣ .

We invoke the following “structure” theorem, adapted from [CGV22]. We will then extend this structure
theorem in Lemma 112.

Note that, in general 𝑥
𝑦

𝑏
could be any function of 𝑦, and the following structure theorem would hold

verbatim. However, for concreteness, we consider 𝑥
𝑦

𝑏
= (𝑥𝑦

𝑏
, ℎ(𝑦)) as this is the relevant choice for subProblem.

When a state ∣Ψ⟩ ∈ Scomp is clear from the context, we denote

Pr[win] ∶= ∥ΠvalidDecomp ∣Ψ⟩ ∥2 ,

and we denote

Pr[win∣𝑦] ∶= ∥ΠvalidDecomp ∣𝑦⟩ ⟨𝑦∣ ∣Ψ⟩ ∥2
∥ ∣𝑦⟩ ⟨𝑦∣ ∣Ψ⟩ ∥2 . (57)

As earlier, denote by 𝑂 the unitary that performs an oracle query, and by 𝑂comp the compressed oracle
version of it.

Lemma 111 (Adapted from [CGV22]). Fix 𝐺0,𝐺1, ℎ. Let ∣Ψ⟩ ∈ 𝑆comp. Suppose

∣Ψ⟩ = ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷

𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ .

Let 𝑦∗ ∈ TwoToOne(𝐺0,𝐺1). Let 𝑥0, 𝑥1 be such that 𝐺0(𝑥0) = 𝐺1(𝑥1) = 𝑦∗. Let 𝑥0 = (𝑥0, ℎ(𝑦∗)) and 𝑥1 =
(𝑥1, ℎ(𝑦∗)). Let 𝜖 ∶= Pr[win∣𝑦∗] − 1

2
. Suppose, for some 𝛿 ≥ 0, that

∑
𝑑,𝑚,𝑎𝑢𝑥,
𝐷∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 ≤ 𝛿 ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ⟩ ∥2 .

Then,

68From here on, for the rest of the proof, we switch notation and denote the outputs of the algorithm by 𝑦,𝑑,𝑚 instead of
𝑦, 𝑟,𝑚.
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(i)

∑
𝑑,𝑚,𝑎𝑢𝑥,

∣𝐷∩{𝑥0,𝑥1}∣=1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 ≥ 2(𝜀 −
√
𝛿) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ⟩ ∥2 .

(ii)

∑
𝑑,𝑚,𝑎𝑢𝑥,
𝐷/∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥0} − 𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥1}
∣2 ≤ ∑

𝑑,𝑚,𝑎𝑢𝑥,
∣𝐷∩{𝑥0,𝑥1}∣=1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 − 2(𝜀 −
√
𝛿) .

Proof. This is a simple adaptation of the proof of a similar lemma in [CGV22]. �

We now prove a refinement of the structural property about strategies that produce valid equations, by
combining Lemma 108 with Lemma 111. The following lemma essentially establishes that strategies that are
successful at producing valid equations are such that, with high probability over oracles 𝐻 , the algorithm
queries 𝐻 at a superposition of pre-images the output 𝑦. In what follows, for 𝐻 ∈ F(𝑆, {0, 1}), we denote by
∣𝐻⟩ ⟨𝐻 ∣ the projector onto oracles 𝐻 such that 𝐻 ∣𝑆 = 𝐻 . Let Π𝐻 ∶= Decomp−1 ∣𝐻⟩ ⟨𝐻 ∣Decomp. Moreover, recall
the notation Pr[win∣𝑦] from Equation (57).

In the following Lemma, Ξ ∶ [0, 1
2
] × [0, 1] × [0, 1] → [0, 1] is a function with the following properties.

Suppose 𝛿1, 𝛿2 ∶ N→ [0, 1] are non-negligible functions. Then,

• If 𝜀1 ∶ N→ [0, 12 ] is a non-negligible function, then 1 − Ξ(𝜀1, 𝛿1, 𝛿2) is a non-negligible function.

• There exists a constant 𝑐 > 0 such that, for any 𝜇 ∈ [0, 1
2
],

Ξ(1
2
− 𝜇, 𝛿1, 𝛿2) ≤ 𝜇𝑐 .

The exact form of Ξ is given in Equation (72).

Lemma 112. Fix any 𝐺0,𝐺1, ℎ. Let ∣Ψ0⟩ ∈ 𝑆comp. Suppose ∣Ψ0⟩ = ∑𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩. Let
𝑦∗ ∈ TwoToOne(𝐺0,𝐺1). Let 𝑥0, 𝑥1 be such that 𝐺0(𝑥0) =𝐺1(𝑥1) = 𝑦∗. Let 𝑥0 = (𝑥0, ℎ(𝑦∗)) and 𝑥1 = (𝑥1, ℎ(𝑦∗)).
Let

𝛿1 ∶= ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0 or 𝑥1

∣𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 .

Let 𝑈 be a local unitary, and 𝑂comp a compressed oracle call, and 𝑞 ∈ N. Let

∣Ψfinal⟩ = (𝑈𝑂comp)𝑞 ∣Ψ0⟩ = ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷

𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ .

Let 𝜀1 ∶= Pr[win∣𝑦∗] − 1
2
. Let 𝛿2 ∶= ∑𝑑,𝑚,𝑎𝑢𝑥

𝐷∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2/∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψfinal⟩ ∥2. Then, there exists H𝑔𝑜𝑜𝑑 ⊆

F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) such that

(i)

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
≥ 1 − Ξ(𝜀1, 𝛿1, 𝛿2) .

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥ ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂)𝑞 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2

≥ 1

2𝑞
⋅ (1 − Ξ(𝜀1, 𝛿1, 𝛿2)) ,

As a special case, Lemma 112 gives the following characterization of strategies that succeed at the proof
of quantumness of [BKVV20]. In the following, denote by 𝐺0,𝐺1 ∶ X → Y the pair of trapdoor claw-free
functions used in the proof of quantumness69. Denote by 𝐻 the random oracle. For a set 𝑆 ⊆ X , denote by
F(𝑆, {0, 1}) the set of all functions from 𝑆 to {0, 1}. Denote by 𝐻 ∣𝑆 the restriction of 𝐻 to domain 𝑆. Moreover,

69Our characterization applies equally when 𝐺0,𝐺1 are a pair of uniformly random permutations. It suffices for our charac-
terization that it is hard to find collisions between 𝐺0 and 𝐺1.
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for an oracle algorithm 𝐴, and 𝑙 ∈ N, denote by Ext𝑙(𝐴) the oracle algorithm that runs 𝐴 up until right before
the 𝑙-th query, and outputs the outcome of measuring the query register. We include a subscript 𝜆 when we
intend to make the dependence on the security parameter explicit. In the following Lemma, Ξ′ ∶ [0, 1

2
] → [0, 1]

are functions with the following properties.

• If 𝜀 ∶ N→ [0, 1
2
] is a non-negligible function, then 1 − Ξ′(𝜀) is also a non-negligible function.

• There exists a constant 𝑐 > 0 such that, for any 𝜇 ∈ [0, 1
2
],

Ξ′ (1
2
− 𝜇) ≤ 𝜇𝑐 .

Corollary 113 (Structure theorem for BKVV). Let 𝐴 be an algorithm that succeeds at the (single-copy)
proof of quantumness of [BKVV20] with probability 1−𝜇, where 𝜇 is a function of the security parameter such
that 1− 𝜇 is at least non-negligibly greater than 1

2
. Then, there exists a negligible function negl such that, for

all 𝜆, there exists a set Y ′𝜆 ⊆ Y𝜆 such that

• Pr[𝑦 ∈ Y ′𝜆 ∶ (𝑦,𝑑,𝑚) ← 𝐴𝐻
𝜆 ] ≥ 1 − Ξ′(𝜇(𝜆)) − negl(𝜆).

• For all 𝑦 ∈ Y ′𝜆 the following holds. Let 𝑥0 = 𝐺−10 (𝑦) and 𝑥1 = 𝐺−11 (𝑦). Let 𝑆 = X ∖ {𝑥0, 𝑥1}. Then, there
exists a set H𝑔𝑜𝑜𝑑 ⊆ F(𝑆, {0, 1}) such that

Pr[𝐻 ∣𝑆 ∈ H𝑔𝑜𝑜𝑑 ∣𝐴𝐻
𝜆 outputs 𝑦] ≥ 1 − Ξ′(𝜇(𝜆)) − negl(𝜆) .

Moreover, for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞] [Pr[𝐻 ∣𝑆 = 𝐻 ∧ Ext𝐻𝑙 (𝐴) outputs 𝑥𝑏]] ≥
1

2𝑞
⋅ (1−Ξ′(𝜇(𝜆))−negl(𝜆)) ⋅Pr[𝐻 ∣𝑆 = 𝐻 ∧ 𝐴𝐻

𝜆 outputs 𝑦] .

Proof. First, notice that, when considering the proof of quantumness from BKVV, there is no function ℎ.
So, in Lemma 112, one can take 𝑥0 = 𝑥0 and 𝑥1 = 𝑥1.

Since by hypothesis Pr[𝐴𝜆 wins] ≥ 1
2
+ 𝜀, we deduce by an averaging argument that, for all 𝜆, there exists

a set Y ′𝜆 ⊆ Y𝜆 such that

(a) Pr[𝑦 ∈ Y ′𝜆 ∶ (𝑦,𝑑,𝑚) ← 𝐴𝐻
𝜆 ] ≥ 1 −

√
1 − 2𝜀.

(b) For all 𝑦 ∈ Y ′𝜆, Pr[𝐴𝜆 wins∣𝐴𝜆 outputs 𝑦] ≥ 1 −
√
1 − 2𝜀 .

Denote by Y,D,M,AUX the register on which 𝐴 acts. Consider a compressed oracle simulation of 𝐴 and
additionally denote by O the compressed oracle register. Let ∣Ψ0⟩ = ∣0⟩Y,D,M,AUX ∣𝐷 = ∅⟩O be the initial state of
a compressed oracle simulation of 𝐴. Let ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ = ∑𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ be the final state of
a compressed simulation of 𝐴, right before the final measurement. Notice that there must exist a negligible
function negl, such that, for all 𝜆, there exists a set Y ′′𝜆 ⊆ Y ′𝜆 such that:

• Pr[𝑦 ∈ Y ′′𝜆 ∶ (𝑦,𝑑,𝑚) ← 𝐴𝐻
𝜆 ] ≥ 1 −

√
1 − 2𝜀 − negl(𝜆) ,

• for all 𝑦∗ ∈ Y ′′𝜆 ,
∑

𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2/∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψfinal⟩ ∥2 ≤ negl(𝜆) . (58)

Suppose for a contradiction that the above were not the case, then it is easy to see that by running a
compressed simulation of 𝐴, and measuring the database register, one finds a collision with non-negligible
probability.

Now, fix any 𝜆 and any 𝑦 ∈ Y ′′𝜆 . Using the notation from Lemma 112, we invoke Lemma 112 with 𝑦∗ = 𝑦,
and:

• 𝛿1 = 0, which holds since the database is empty in ∣Ψ0⟩.

• 𝜀1 = 1 −
√
1 − 2𝜀 − 1

2
= 1

2
−
√
1 − 2𝜀, which holds by condition (b), since Y ′′𝜆 ⊆ Y ′𝜆,

• 𝛿2 = negl(𝜆), which we established in (58).
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It is straightforward to verify that one obtains a function Ξ′(𝜀) with the desired properties. �

The crux in proving Lemma 112 is to prove the following.

Lemma 114. Let ∣Ψ⟩ = ∑𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩. Fix 𝑦∗, 𝑥0, 𝑥1. Let 𝑥0, 𝑥1 as in Lemma 111.
Suppose, for some 𝜇2 > 0,

∑
𝑑,𝑚,𝑎𝑢𝑥,
𝐷/∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥0} − 𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥1}
∣2 ≤ (1 − 𝜇2) ∑

𝑑,𝑚,𝑎𝑢𝑥,
∣𝐷∩{𝑥0,𝑥1}∣=1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 . (59)

For 𝑏 ∈ {0, 1}, let ∣𝜙𝑏⟩ be the un-normalized state

∣𝜙𝑏⟩ ∶ = ∑
𝑑,𝑚,𝑎𝑢𝑥

𝐷∋𝑥𝑏∧𝐷/∋𝑥𝑏

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩

= ∑
𝑑,𝑚,𝑎𝑢𝑥
𝐷/∋𝑥0,𝑥1

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥𝑏}
∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ 𝑥𝑏⟩ .

Then, there exists H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) such that

(i)

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2
≥ 1 −

√
1 − 𝜇2 ,

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

∥Π𝐻 ∣𝜙𝑏⟩ ∥
2

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2
≥ 1

2
−
√
1 − (1 −√1 − 𝜇2)2

2

Assuming Lemma 114, we can prove Lemma 112.

Proof of Lemma 112. Since by hypothesis 𝜖2 = Pr[win∣𝑦∗] − 1
2
and

𝛿2 ∶=
∑𝑑,𝑚,𝑎𝑢𝑥

𝐷∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
,

we can apply Lemma 111 to deduce that

(a)

∑
𝑑,𝑚,𝑎𝑢𝑥,

∣𝐷∩{𝑥0,𝑥1}∣=1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 ≥ 2(𝜀1 −
√
𝛿2) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 , (60)

(b)

∑
𝑑,𝑚,𝑎𝑢𝑥,
𝐷/∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥0} − 𝛼𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥1}
∣2 ≤ ∑

𝑑,𝑚,𝑎𝑢𝑥,
∣𝐷∩{𝑥0,𝑥1}∣=1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣2 − 2(𝜀1 −
√
𝛿2) .

For 𝑏 ∈ {0, 1}, let ∣𝜙𝑏⟩ be the un-normalized state

∣𝜙𝑏⟩ ∶ = ∑
𝑑,𝑚,𝑎𝑢𝑥

𝐷∋𝑥𝑏∧𝐷/∋𝑥𝑏

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩

= ∑
𝑑,𝑚,𝑎𝑢𝑥
𝐷/∋𝑥0,𝑥1

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥𝑏}
∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ 𝑥𝑏⟩ .

Then, we can write (a) equivalently as

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2 ≥ 2(𝜀1 −
√
𝛿2) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 , (61)

We can apply Lemma 114 with 𝜇2 = 2(𝜀1 −
√
𝛿2) to deduce that there exists H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖

{𝑥0, 𝑥1}, {0, 1}) such that
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(i)

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2
≥ 1 −

√
1 − 2(𝜀1 −

√
𝛿2) =∶ 1 − 𝜉1(𝜀1, 𝛿2) ,

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

∥Π𝐻 ∣𝜙𝑏⟩ ∥
2

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2
≥ 1

2
−

√
1 − (1 −

√
1 − 2(𝜀1 −

√
𝛿2))2

2
=∶ 1

2
− 𝜉2(𝜀1, 𝛿2) .

Using Lemma 108, we get that, for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]

≥ 1

𝑞
(∥Π𝐻 ∣𝜙𝑏⟩ ∥

2 − ∥Π𝐻 ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥𝑏

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥2)

≥
1
2
− 𝜉2(𝜀1, 𝛿2)

𝑞
⋅ (∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2)

− 1

𝑞
∥Π𝐻 ∑

𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0 or 𝑥1

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥2 .

= 1

2𝑞
⋅ ((1 − 2𝜉2(𝜀1, 𝛿2) ⋅ (∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2)

− 2∥Π𝐻 ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0 or 𝑥1

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥2)

∶= 1

2𝑞
⋅ Δ𝐻 . (62)

where the second inequality uses (ii) as well as the fact that, for any 𝐻 ∈ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}), we have

∥Π𝐻 ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥𝑏

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥2 ≤ ∥Π𝐻 ∑
𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0 or 𝑥1

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥2 .

Now, notice that

∑
𝐻∈H𝑔𝑜𝑜𝑑

Δ𝐻 ≥ (1 − 𝜉1(𝜀1, 𝛿2) − 2𝜉2(𝜀1, 𝛿2) + 𝜉1(𝜀1, 𝛿2) ⋅ 𝜉2(𝜀1, 𝛿2) − 2𝛿1) ⋅ (∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2)

≥ (1 − 𝜉1(𝜀1, 𝛿2) − 2𝜉2(𝜀1, 𝛿2) − 2𝛿1) ⋅ (∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2) . (63)

where the first inequality uses (i) and the definition of 𝛿1.
We can rewrite Equation (63) as

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2
⋅ Δ′

𝐻
≥ 1 − 𝜉1(𝜀1, 𝛿2) − 2𝜉2(𝜀1, 𝛿2) − 2𝛿1 . (64)

where

Δ′
𝐻
∶= 1 − 2𝜉2(𝜀1, 𝛿2) − 2 ⋅

∥Π𝐻 ∑ 𝑦,𝑑,𝑚,𝑎𝑢𝑥
𝐷∋𝑥0 or 𝑥1

𝛽𝑦,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦,𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩ ∥
2

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2
.

An averaging argument applied to Equation (64) implies that there exists a set H′𝑔𝑜𝑜𝑑 ⊆ H𝑔𝑜𝑜𝑑 such that:

(i’)

∑
𝐻∈H′

𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2
≥ 1 −

√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 ,
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(ii’) for all 𝐻 ∈ H′𝑔𝑜𝑜𝑑 ,
Δ′
𝐻
≥ 1 −

√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 (65)

Since H′𝑔𝑜𝑜𝑑 ⊆ H𝑔𝑜𝑜𝑑 , we can plug the latter bound on Δ′
𝐻

into Equation (62) to obtain that, for all

𝐻 ∈ H′𝑔𝑜𝑜𝑑 ,

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]

≥ 1

2𝑞
⋅ (∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2) ⋅ (1 −

√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1) (66)

Using Equation (61), we can rewrite (i’) as

∑
𝐻∈H′

𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
≥ (1 −

√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1) ⋅ 2(𝜀1 −

√
𝛿2)

= (1 −
√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1) ⋅ (1 − (1 − 2(𝜀1 −

√
𝛿2)))

= (1 −
√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1) ⋅ (1 − 𝜉21(𝜀1, 𝛿2))

≥ 1 −
√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2) . (67)

We can further rewrite Equation (67) as

∑
𝐻∈H′

𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
⋅ ∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

≥ 1 −
√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2) . (68)

By an averaging argument, there exists a set H′′𝑔𝑜𝑜𝑑 ⊆ H′𝑔𝑜𝑜𝑑 such that

(i”)

∑
𝐻∈H′′

𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
≥ 1 −

√√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2) ,

(ii”) for all 𝐻 ∈ H′′𝑔𝑜𝑜𝑑 ,

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
≥ 1 −

√√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2) . (69)

Plugging (69) into (66), we obtain

(ii”’) For all 𝐻 ∈ H′′𝑔𝑜𝑜𝑑 ,

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

≥ 1

2𝑞
⋅ (1 −

√√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2)) ⋅ (1 −

√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1) (70)

≥ 1

2𝑞
⋅ (1 − Ξ(𝜀1, 𝛿2, 𝛿1)) , (71)

where

Ξ(𝜀1, 𝛿2, 𝛿1) ∶=
√√

𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 − 𝜉21(𝜀1, 𝛿2) +
√
𝜉1(𝜀1, 𝛿2) + 2𝜉2(𝜀1, 𝛿2) + 2𝛿1 . (72)

Finally, using the facts that:

• Decomp acts only on the oracle register and Decomp ○𝑂comp = 𝑂 ○Decomp,
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• ∣𝐻⟩ ⟨𝐻 ∣ commutes with the local unitary evolution and any local measurement,

we have that, for any 𝐻,𝑦∗,

∥Π𝐻 ∣𝑦
∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 = ∥ ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂comp)𝑞 ∣Ψ0⟩ ∥2 (73)

= ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂)𝑞 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2 . (74)

Thus, we can replace the denominator in the LHS of (71) with ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂)𝑞 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2.
Then, H′′𝑔𝑜𝑜𝑑 is the desired set and (i”) and (ii”’) are the desired conditions. It is also straightforward to

check that Ξ as defined above satisfies the desired properties. �

We are left with proving Lemma 114.

Proof of Lemma 114. For 𝑏 ∈ {0, 1}, let ∣𝜙𝑏⟩ be the un-normalized state

∣𝜙𝑏⟩ ∶ = ∑
𝑑,𝑚,𝑎𝑢𝑥

𝐷∋𝑥𝑏∧𝐷/∋𝑥𝑏

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷 ∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷⟩

= ∑
𝑑,𝑚,𝑎𝑢𝑥
𝐷/∋𝑥0,𝑥1

𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥𝑏}
∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ 𝑥𝑏⟩ .

First notice that, for any 𝐻 ∈ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}),

∥Π𝐻 ∣𝜙1⟩ ∥2 = ∑
𝑑,𝑚,𝑎𝑢𝑥

∥Π𝐻 ∑
𝐷/∋𝑥0,𝑥1

𝛼𝑦∗,𝑑,𝑎𝑢𝑥,𝐷∪{𝑥1} ∣𝑦
∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ {𝑥1}⟩ ∥2

= ∑
𝑑,𝑎𝑢𝑥

∥Π𝐻 ∑
𝐷/∋𝑥0,𝑥1

(−1)𝑚+𝑑 ⋅(𝑥0⊕𝑥1)𝛼𝑦∗,𝑑,𝑎𝑢𝑥,𝐷∪{𝑥0} ∣𝑦
∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ {𝑥0}⟩ ∥2

= ∥Π𝐻 ∣𝜙
′
1⟩ ∥2 (75)

where ∣𝜙 ′1⟩ ∶= ∑𝑑,𝑚,𝑎𝑢𝑥
𝐷/∋𝑥0,𝑥1

(−1)𝑚+𝑑 ⋅(𝑥0⊕𝑥1)𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥1} ∣𝑦∗, 𝑑,𝑚,𝑎𝑢𝑥⟩ ∣𝐷 ∪ 𝑥0⟩. The second equality in Equation

(75) holds because the unitary ∣𝐷 ∪ {𝑥1}⟩ ↦ ∣𝐷 ∪ {𝑥0}⟩ commutes with Π𝐻 and thus does not affect the norm,

and the phase (−1)𝑚+𝑑 ⋅(𝑥0⊕𝑥1) clearly also does not affect the norm. Hence, we have

∥Π𝐻 ∣𝜙1⟩ ∥ = ∥Π𝐻 ∣𝜙
′
1⟩ ∥ . (76)

In the following calculation, the sum is over 𝐻 ∈ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}). Notice that

∑
𝐻

(∥Π𝐻 ∣𝜙0⟩ ∥ − ∥Π𝐻 ∣𝜙1⟩ ∥)2

= ∑
𝐻

(∥Π𝐻 ∣𝜙0⟩ ∥ − ∥Π𝐻 ∣𝜙
′
1⟩ ∥)2 by Equation (76)

≤ ∑
𝐻

∥Π𝐻 (∣𝜙0⟩ − ∣𝜙 ′1⟩)∥2 by the triangle inequality

= ∥ ∣𝜙0⟩ − ∣𝜙 ′1⟩ ∥2

= ∑
𝑑,𝑚,𝑎𝑢𝑥,
𝐷/∋𝑥0,𝑥1

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥0} − (−1)
𝑚+𝑑 ⋅(𝑥0⊕𝑥1)𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥1}∣

2

≤ ∑
𝑑,𝑚,𝑎𝑢𝑥,

𝐷/∋𝑥0,𝑥1,𝑏∈{0,1}

∣𝛼𝑦∗,𝑑,𝑚,𝑎𝑢𝑥,𝐷∪{𝑥𝑏}
∣2 ⋅ (1 − 𝜇2) by Equation (59)

= (∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2) ⋅ (1 − 𝜇2) (77)

We can equivalently rewrite Equation (77) as

∑
𝐻

𝑝𝐻 ⋅ 𝛿𝐻 ≤ (1 − 𝜇2) ,

where

𝑝𝐻 ∶= ∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2

∥ ∣𝜙0⟩ ∥2 + ∥ ∣𝜙1⟩ ∥2
,
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and

𝛿𝐻 ∶= (∥Π𝐻 ∣𝜙0⟩ ∥ − ∥Π𝐻 ∣𝜙1⟩ ∥)2

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2
.

Note that ∑𝐻 𝑝𝐻 = 1. Then, by an averaging argument, there must exist H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1} such
that

(a)

∑
𝐻∈H𝑔𝑜𝑜𝑑

𝑝𝐻 ≥ 1 −
√
1 − 𝜇2 , (78)

(b) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 ,

𝛿𝐻 ≤
√
1 − 𝜇2 . (79)

We use the following lemma omitting the proof.

Lemma 115. Let 0 ≤ 𝛾 ≤ 1, and 𝑣,𝑤 vectors in a Hilbert space. If
(∥𝑣∥−∥𝑤∥)

2

∥𝑣∥2+∥𝑤∥2
≤ 𝛾 , then

min(∥𝑣∥2, ∥𝑤∥2)
∥𝑣∥2 + ∥𝑤∥2 ≥ 1

2
−
√
1 − (1 −𝛾)2

2
.

Using Lemma 115 we have that (b) implies

(b’) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , for 𝑏 ∈ {0, 1},

∥Π𝐻 ∣𝜙𝑏⟩ ∥2

∥Π𝐻 ∣𝜙0⟩ ∥2 + ∥Π𝐻 ∣𝜙1⟩ ∥2
≥ 1

2
−
√
1 − (1 −√1 − 𝜇2)2

2
. (80)

(a) and (b’) are the desired conditions. �

We now state Lemma 112 in a form which will be useful in our proof later on. Let Ξ be the same function
as in Lemma 112.

Corollary 116. Suppose the hypothesis of Lemma 112 holds. Then, there exists H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖
{𝑥0, 𝑥1}, {0, 1}) such that

(i)

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣Ψ0⟩ ∥2 ≥ 1 −
√
Ξ(𝜀1, 𝛿1, 𝛿2) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 .

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣Ψ0⟩ ∥2

≥ 1

2𝑞
(1−
√
Ξ(𝜀1, 𝛿1, 𝛿2)−Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 .

(81)

Proof. From Lemma 112, we have that there exists H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) such that

(i)

∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2
≥ 1 − Ξ(𝜀1, 𝛿1, 𝛿2) .

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥ ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂)𝑞 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2

≥ 1

2𝑞
⋅ (1 − Ξ(𝜀1, 𝛿1, 𝛿2))
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We can rewrite (i) as

∑
𝐻∈H𝑔𝑜𝑜𝑑

𝑝𝑡𝑜𝑡
𝐻

⋅
∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

𝑝𝑡𝑜𝑡
𝐻

≥ 1 − Ξ(𝜀1, 𝛿1, 𝛿2) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ,

where 𝑝𝑡𝑜𝑡
𝐻

∶= ∥Π𝐻 ∣Ψ0⟩ ∥2. Then, by an averaging argument, there exists H′𝑔𝑜𝑜𝑑 ⊆ H𝑔𝑜𝑜𝑑 such that

(a)

∑
𝐻∈H′

𝑔𝑜𝑜𝑑

𝑝𝑡𝑜𝑡
𝐻
≥ 1 −

√
Ξ(𝜀1, 𝛿1, 𝛿2) , (82)

(b) for all 𝐻 ∈ H′𝑔𝑜𝑜𝑑 ,

∥Π𝐻 ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

𝑝𝑡𝑜𝑡
𝐻

≥ 1

2𝑞
(1 −
√
Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅ (1 − Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 (83)

Now, notice that
∥ ∣𝑦∗⟩ ⟨𝑦∗∣ (𝑈𝑂)𝑞 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2 = ∥Π𝐻 ∣𝑦

∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 .
Then, since H′𝑔𝑜𝑜𝑑 ⊆ H𝑔𝑜𝑜𝑑 , (ii) and (b) together imply

(b’) for all 𝐻 ∈ H′𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
𝑝𝑡𝑜𝑡
𝐻

≥ 1

2𝑞
(1−
√
Ξ(𝜀1, 𝛿1, 𝛿2) −Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2

(84)

H′𝑔𝑜𝑜𝑑 is the desired set, and (a) and (b’) are the desired conditions. �

We state a simple consequence of Corollary 116, which we will use directly in our proof later on. Let
𝑥0 ≠ 𝑥1 be in the domain of 𝐻 , and let 𝑐0, 𝑐1 ∈ {0, 1}. Let 𝑂𝐻

(𝑥0,𝑐0),(𝑥1,𝑐1)
be defined as:

𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

∣𝑥⟩ ∣𝑧⟩ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑂𝐻 ∣𝑥⟩ ∣𝑧⟩ , if 𝑥 ≠ 𝑥0, 𝑥1
(−1)𝑧⋅𝑐0 ∣𝑥⟩ ∣𝑧⟩ , if 𝑥 = 𝑥0
(−1)𝑧⋅𝑐1 ∣𝑥⟩ ∣𝑧⟩ , if 𝑥 = 𝑥1

Corollary 117. Suppose the conditions of Lemma 112 hold. Then, there exists H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖
{𝑥0, 𝑥1}, {0, 1}) such that

(i) ∑𝐻∈H𝑔𝑜𝑜𝑑
∥Π𝐻 ∣Ψ0⟩ ∥2 ≥ (1 −

√
Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ,

(ii) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑐0,𝑐1←{0,1}E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈𝑂(𝑥0,𝑐0),(𝑥1,𝑐1))𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣Ψ0⟩ ∥2

(85)

≥
1 −
√
Ξ(𝜀1, 𝛿1, 𝛿2) − Ξ(𝜀1, 𝛿1, 𝛿2)

8𝑞
⋅ ∥ ∣𝑦∗⟩ ⟨𝑦∗∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 . (86)

Proof. This is immediate since one of the four possible assignments of oracle outputs at 𝑥0, 𝑥1 agrees with
𝐻(𝑥0), 𝐻(𝑥1). �
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11.4.3 The structure of successful CQd strategies

By Lemma 104, recall that it suffices to restrict our analysis toW𝑑 strategies that are successful at subProblem,
in the sense of Lemma 105. Let 𝐴 be a W𝑑 strategy for subProblem. Since 𝐻𝑑 is only queried by classical
circuits, we assume that all queries to 𝐻𝑑 are recorded by measuring the query register, without any disturb-
ance to the state of the algorithm. We denote by 𝑄 the total number of queries to 𝐻𝑑 made by the algorithm.
We moreover assume that all points at which 𝐻𝑑 is queried by the algorithm are distinct.

For a security parameter 𝜆 ∈ N, we denote by G𝜆 the set of all possible functions 𝐺𝑏 , by Y𝜆 the co-domain
of such functions, and by H′𝜆 the set of all possible functions ℎ. We denote by V𝜆 the set of all possible
outcomes 𝑎𝑑𝑣 that one can obtain by measuring the registers work, query of 𝐴. We omit writing 𝜆 when this
is clear from the context.

Throughout the section, 𝑝𝑜𝑙𝑦 denotes a polynomial, not always the same one. Let 𝑍 𝑖 be a random
variable for the 𝑖-th (classical) query to 𝐻𝑑 . In the following theorem, we denote by h𝑖data the random variable
representing the set ℎ−1(𝐻𝑑(𝑍 𝑖)). Moreover, for simplicity and ease of notation, we assume that h𝑖data consists
of a single element, and we identify the set with that element. The argument is virtually unchanged without
this assumption since ℎ is injective with overwhelming probability.

Lemma 118. Let 𝜀 ∶ N→ R. Suppose, for all 𝜆, Pr[𝑦 ∈ TwoToOne(𝐺0,𝐺1) ∶ 𝑦,𝑑,𝑚 ← 𝐴𝜆] > 𝜀, and Pr[𝐴 wins∣𝑦 ∈
TwoToOne(𝐺0,𝐺1),𝑦,𝑑,𝑚 ← 𝐴𝜆] > 1

2
+ 𝜖(𝜆). Consider a simulation 𝐴 of 𝐴, where calls to 𝐻 are simulated via

a compressed oracle.
For 𝑖 ∈ [𝑄], let h𝑖data be the random variable for the 𝑖-th classical query to ℎ made by 𝐴. Let 𝐷𝑖 be a random

variable obtained by measuring the compressed database (in the standard basis) just before the 𝑖-th query to
ℎ, and 𝑌𝑜𝑢𝑡 be a random variable for the 𝑦 output of 𝐴. The random variables are implicitly functions of 𝜆,
but we omit writing this.

Then, there exists a negligible function negl such that, for all 𝜆, there exists 𝑖∗ ∈ [𝑄], and W ⊆ V𝜆 × Y𝜆 ×
G𝜆 × G𝜆 ×H′𝜆 such that:

Pr[(𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ≥ 𝑝𝑜𝑙𝑦(𝜀) .

Moreover, for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W:

• 𝑦 ∈ TwoToOne(𝐺0,𝐺1) ,

• Pr[(𝑥, ℎ̃(𝑦)) ∈ 𝐷𝑖
∗

for some 𝑥 ∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ h𝑖
∗

data = 𝑦] = negl(𝜆) ,

• Pr[𝑌𝑜𝑢𝑡 = 𝑦∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ h𝑖
∗

data = 𝑦] ≥ 𝑝𝑜𝑙𝑦(𝜀) .

• Pr[𝐴 wins∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ 𝑌𝑜𝑢𝑡 = h𝑖
∗

data = 𝑦] ≥ 1
2
+ 𝑝𝑜𝑙𝑦(𝜀(𝜆)) .

We will prove the following Lemma first.

Lemma 119. Suppose the hypothesis of Lemma 118 holds. Then, either there exists a negligible function
negl such that

Pr[𝑌𝑜𝑢𝑡 ∉ hdata ∧𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] = negl(𝜆) ,
or there exists a negligible function such that

Pr[𝐴 wins ∣𝑌𝑜𝑢𝑡 ∉ hdata ∧ 𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] ≤
1

2
+ negl(𝜆) .

Proof. Suppose there exists a non-negligible function non-negl such that, for all 𝜆,

Pr[𝑌𝑜𝑢𝑡 ∉ hdata ∧ 𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] = non-negl(𝜆) .

Suppose for a contradiction that there exists a non-negligible function non-negl′ such that, for all 𝜆,

Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 ∉ hdata ∧𝑌 ∈ TwoToOne(𝐺0,𝐺1)] >
1

2
+ non-negl’(𝜆) .

Fix 𝜆. Let Q be the set of possible values that hdata can take. Then, by an averaging argument, there exists
S ⊆ Y×Q×G0×G1 such that Pr[(𝑌𝑜𝑢𝑡 ,hdata,𝐺0,𝐺1) ∈ S] = non-negl(𝜆), and moreover, for all (𝑦, h̃data,𝐺0,𝐺1) ∈ S,

• 𝑦 ∉ h̃data, and 𝑦 ∈ TwoToOne(𝐺0,𝐺1).
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• Pr[𝐴 wins ∣ (𝑌𝑜𝑢𝑡 ,hdata,𝐺0,𝐺1) = (𝑦, h̃data,𝐺0,𝐺1)] ≥ 1
2
+ non-negl(𝜆) .

Let 𝐷 𝑓 𝑖𝑛𝑎𝑙 be a random variable for the the outcome of measuring the final state of the compressed database
(in the standard basis). Then, we can apply Lemma 111 to deduce that

Pr[𝐷 𝑓 𝑖𝑛𝑎𝑙 ∋ (𝑥,ℎ(𝑌𝑜𝑢𝑡)) ∧ 𝑌𝑜𝑢𝑡 ∉ hdata ∧ 𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1) ∧ 𝑥 ∈{𝐺−10 (𝑌𝑜𝑢𝑡),𝐺−11 (𝑌𝑜𝑢𝑡)}]
= non-negl”(𝜆) ,

for some non-negligible function non-negl”. This straightforwardly implies that there exist an algorithm
that only makes classical queries to ℎ, and correctly predicts the value of ℎ at an unqueried point with
non-negligible probability. This is a contradiction. �

Proof of Lemma 118. Fix 𝜆. For the rest of the proof, we omit writing any 𝜆 dependence. By hypothesis,
Pr[𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] > 𝑝𝑜𝑙𝑦(𝜀), and Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] > 1

2
+ 𝜀. Then, using Lemma

119, it is straightforward to see that there exists a negligible function negl such that:

(i) Pr[𝑌𝑜𝑢𝑡 ∈ hdata∣𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] >min(𝑝𝑜𝑙𝑦(𝜀), 1 − negl), and

(ii) Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 ∈ hdata ∧𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)] ≥ 1
2
+ 𝑝𝑜𝑙𝑦(𝜀)

In what follows, for ease of notation, we denote the event “𝑌𝑜𝑢𝑡 ∈ TwoToOne(𝐺0,𝐺1)” as 𝐸. We can equivalently
rewrite (ii) as

∑
𝑖∈[𝑄]

Pr[𝑌𝑜𝑢𝑡 = h𝑖data ∣𝐸]
Pr[𝑌𝑜𝑢𝑡 ∈ hdata ∣𝐸]

⋅
Pr[𝐴 wins ∧ 𝑌𝑜𝑢𝑡 = h𝑖data ∣𝐸]

Pr[𝑌𝑜𝑢𝑡 = h𝑖data ∣𝐸]
≥ 1

2
+ 𝑝𝑜𝑙𝑦(𝜀) (87)

By an averaging argument, there exists 𝑖∗ ∈ [𝑄] such that

• Pr[𝑌𝑜𝑢𝑡 = h𝑖
∗

data ∣𝐸] ≥ Pr[𝑌𝑜𝑢𝑡 ∈ hdata ∣𝐸] ⋅
𝑝𝑜𝑙𝑦(𝜀)

𝑄
≥ 𝑝𝑜𝑙𝑦(𝜀)

𝑄
, and

• Pr[𝐴 wins ∣𝑌𝑜𝑢𝑡 = h𝑖
∗

data ∧ 𝐸] > 1
2
+ 𝑝𝑜𝑙𝑦(𝜀)

Since Pr[𝐸] ≥ 𝜀 by hypothesis, the former implies Pr[𝑌𝑜𝑢𝑡 = h𝑖
∗

data ∧ 𝐸] ≥ 𝑝𝑜𝑙𝑦(𝜀)

𝑄
⋅Pr[𝐸] ≥ 𝑝𝑜𝑙𝑦(𝜀)

𝑄
.

By another averaging argument, there exists W ⊆ V × Y × G × G ×H′ such that:

Pr[𝑌𝑜𝑢𝑡 = h𝑖
∗

data ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ≥
𝑝𝑜𝑙𝑦(𝜀)

𝑄
.

Moreover, for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W:

• 𝑦 ∈ TwoToOne(𝐺0,𝐺1) ,

• Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 = hdata𝑖∗ = 𝑦 ∧ (𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃)] ≥ 1
2
+ 𝑝𝑜𝑙𝑦(𝜀) .

Notice that, trivially, for any 𝑦, the distribution of ℎ(𝑦) is uniform, conditioned on the values of 𝐻𝑑 at any
subset of points that does not contain 𝐻𝑑−1 ○⋯○𝐻0𝑦. Thus, since we assumed without loss of generality that
𝐴 never queries 𝐻𝑑 at the same point twice, this clearly implies that, for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃),

• Pr[(𝑥,ℎ(𝑦)) ∈ 𝐷𝑖
∗

for some 𝑥 ∣(𝐺0,𝐺1) = (𝐺0,𝐺1) ∧ h𝑖
∗

data = 𝑦] = negl(𝜆) ,

This implies that there exists W ′ ⊆ W such that:

Pr[𝑌𝑜𝑢𝑡 = h𝑖
∗

data ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ≥
𝑝𝑜𝑙𝑦(𝜀)

𝑄
.

Moreover, for all (𝑦,𝐺0,𝐺1, ℎ̃) ∈ W ′:

• 𝑦 ∈ TwoToOne(𝐺0,𝐺1) ,

• Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 = hdata𝑖∗ = 𝑦 ∧ (𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃)] ≥ 1
2
+ 𝑝𝑜𝑙𝑦(𝜀) ,

and, for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ) ∈ W ′,

• Pr[(𝑥, ℎ̃(𝑦)) ∈ 𝐷𝑖
∗

for some 𝑥 ∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ h𝑖
∗

data = 𝑦] = negl(𝜆) ,
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By one final averaging argument, there exists W ′′ ⊆ W ′ such that

Pr[(𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W ′′] ≥
𝑝𝑜𝑙𝑦(𝜀)

𝑄
,

and for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W ′′,

• Pr[𝑌𝑜𝑢𝑡 = h𝑖
∗

data∣(𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃)] ≥ 𝑝𝑜𝑙𝑦(𝜀)

𝑄
,

• 𝑦 ∈ TwoToOne(𝐺0,𝐺1) ,

• Pr[𝐴 wins∣𝑌𝑜𝑢𝑡 = h𝑖
∗

data = 𝑦 ∧ (𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃)] ≥ 1
2
+ 𝑝𝑜𝑙𝑦(𝜀) .

• Pr[(𝑥,ℎ(𝑦)) ∈ 𝐷𝑖
∗

for some 𝑥 ∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ h𝑖
∗

data = 𝑦] = negl(𝜆) .

This concludes the proof of Lemma 118.
�

11.4.4 Putting things together

In this subsection, we complete the proof of Lemma 107. Let 𝜀 ∶ N → [0, 1]. Suppose, for all 𝜆, Pr[𝑦 ∈
TwoToOne(𝐺0,𝐺1) ∶ 𝑦,𝑑,𝑚 ← 𝐴𝜆] ≥ 𝜀(𝜆), and Pr[𝐴 wins∣𝑦 ∈ TwoToOne(𝐺0,𝐺1),𝑦,𝑑,𝑚 ← 𝐴𝜆] ≥ 1

2
+ 𝜖(𝜆). Let 𝑞

be the total number of queries made by 𝐴.
We will show that Algorithm 1 extracts a collision with probability at least 𝑝𝑜𝑙𝑦(𝜀, 1/𝑞).
We can apply Lemma 118. Using the notation of Lemma 118, we have that there exists a negligible

function negl such that, for all 𝜆, there exists 𝑖∗ ∈ [𝑄], and W ⊆ V × Y × G × G ×H′ such that:

Pr[(𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ≥ 𝑝𝑜𝑙𝑦(𝜀) . (88)

Moreover, for all ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W:

(i) 𝑦 ∈ TwoToOne(𝐺0,𝐺1) ,

(ii) Pr[(𝑥,ℎ(𝑦)) ∈ 𝐷𝑖
∗

for some 𝑥 ∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ h𝑖
∗

data = 𝑦] = negl(𝜆) ,

(iii) Pr[𝑌𝑜𝑢𝑡 = 𝑦∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ hdata𝑖∗ = 𝑦] ≥ 𝑝𝑜𝑙𝑦(𝜀) .

(iv) Pr[𝐴 wins∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ 𝑌𝑜𝑢𝑡 = hdata𝑖∗ = 𝑦] ≥
1
2
+ 𝑝𝑜𝑙𝑦(𝜀) .

Notice then that, at step (ii) of Algorithm 1,

Pr[𝑖 = 𝑖∗ ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ≥
𝑝𝑜𝑙𝑦(𝜀)

𝑄
.

Fix ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W. Let ∣Ψ0⟩ be the state of the compressed oracle simulation after step (ii),
conditioned on 𝑖 = 𝑖∗ and ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃. Let 𝑥0 =𝐺−10 (𝑦), and 𝑥1 =𝐺−11 (𝑦).

Let ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ be the final state of the compressed oracle simulation (continuing from ∣Ψ0⟩), i.e. ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ =
(𝑈 ′𝑂comp)𝑞 ∣Ψ0⟩, where 𝑞 denotes the number of remaining queries to 𝐻 , and we are absorbing in 𝑈 ′ all queries
to 𝐺0,𝐺1, ℎ as well as the unitaries 𝑈𝐶 and 𝑈𝑄 .

Condition (ii) implies that

𝛿1 ∶= ∥Π𝐷∩{(𝑥,ℎ(𝑦)∶𝑥∈X}≠∅ ∣Ψ0⟩ ∥2 = negl(𝜆) .

Condition (iii) implies that
∥ ∣𝑦⟩ ⟨𝑦∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ≥ 𝑝𝑜𝑙𝑦(𝜀) , (89)

and condition (iv) implies that

𝜀1 ∶= Pr[𝐴 wins ∣(𝑎𝑑𝑣,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝐺0,𝐺1, ℎ̃) ∧ 𝑌𝑜𝑢𝑡 = hdata𝑖∗ = 𝑦] −
1

2
≥ 𝑝𝑜𝑙𝑦(𝜀) .
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Finally notice that there exists a negligible function negl′, such that except with negl′ probability over
( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃) ∈ W, it must be that 𝛿2 ∶= ∥Π𝐷∋(𝑥0,ℎ(𝑦)),(𝑥1,ℎ(𝑦)) ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ≤ negl′(𝜆). Otherwise, the algorithm
that simply runs a compressed oracle simulation of 𝐴 and measures the compressed database at the end,
recovers a collision with non-negligible probability. We restrict to this “good” subset of W from here on.

We are now ready to apply Corollary 117 with 𝜀1, 𝛿1, and 𝛿2 as above. We deduce that there exists
H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) such that

(a) ∑𝐻∈H𝑔𝑜𝑜𝑑
∥Π𝐻 ∣Ψ0⟩ ∥2 ≥ (1 −

√
Ξ(𝜀1, 𝛿1, 𝛿2)) ⋅ ∥ ∣𝑦⟩ ⟨𝑦∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ≥ 𝑝𝑜𝑙𝑦(𝜀) − negl′′(𝜆) ,

(b) for all 𝐻 ∈ H𝑔𝑜𝑜𝑑 , 𝑏 ∈ {0, 1},

E𝑐0,𝑐1←{0,1}E𝑙←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈 ′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑙 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣Ψ0⟩ ∥2

≥
1 −
√
Ξ(𝜀1, 𝛿1, 𝛿2) − Ξ(𝜀1, 𝛿1, 𝛿2)

8𝑞
⋅ ∥ ∣𝑦⟩ ⟨𝑦∣ ∣Ψ𝑓 𝑖𝑛𝑎𝑙 ⟩ ∥2 ≥

𝑝𝑜𝑙𝑦(𝜀)
𝑞

− negl′′(𝜆) .

where negl′′ is a non-negligible function. To obtain the final inequalities in (a) and (b) we used the bounds
on 𝜀1, 𝛿1, and 𝛿2 and Equation (89).

Now, notice that, at step (ii) of Algorithm 1, conditioned on ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃), the state ∣Ψ0⟩ takes the
form ∣Ψ0⟩ = ∣𝑎𝑑𝑣⟩work,query⊗ ∣Φ⟩O, where ∣Φ⟩O is some state on the compressed database register for 𝐻 that can

depend on ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃. Now, let H𝑔𝑜𝑜𝑑 ⊆ F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) be the set that is guaranteed to exist
from the argument above. In the following calculation, we abbreviate F({0, 1}𝑛 ∖ {𝑥0, 𝑥1}, {0, 1}) as F𝑥0,𝑥1

.
Then, for 𝑏,𝑏′ ∈ {0, 1},

Pr[Algorithm 1 outputs 𝑥𝑏, 𝑥𝑏′ ∣ 𝑖 = 𝑖∗ ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) = ( ˜𝑎𝑑𝑣,𝑦,𝐺0,𝐺1, ℎ̃)]

= ∑
𝐻∈F𝑥0,𝑥1

⎛
⎝
∥Π𝐻 ∣𝑎𝑑𝑣⟩ ⊗ ∣Φ⟩ ∥

2

⋅ E𝑐0,𝑐1←{0,1}
𝑐0,𝑐

′
1←{0,1}

𝑗, 𝑗
′
←[𝑞]

[∥( ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ ⊗ ∣𝑥𝑏′⟩ ⟨𝑥𝑏′ ∣ )((𝑈 ′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑗 ⊗ (𝑈 ′𝑂𝐻
(𝑥0,𝑐

′
0),(𝑥1,𝑐

′
1)
)𝑗
′

) ∣𝑎𝑑𝑣⟩work,query ⊗ ∣𝑎𝑑𝑣⟩work′,query′ ∥
2]
⎞
⎠

= ∑
𝐻∈F𝑥0,𝑥1

⎛
⎝
∥Π𝐻 ∣𝑎𝑑𝑣⟩ ⊗ ∣Φ⟩ ∥

2 ⋅ E𝑐0,𝑐1←{0,1}E𝑗, 𝑗 ′←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈
′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑗 ∣𝑎𝑑𝑣⟩ ∥2]

⋅ E𝑐′0,𝑐′1←{0,1}E𝑗 ′←[𝑞][∥ ∣𝑥𝑏′⟩ ⟨𝑥𝑏′ ∣ (𝑈
′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑗
′

∣𝑎𝑑𝑣⟩ ∥2]
⎞
⎠

= ∑
𝐻∈F𝑥0,𝑥1

⎛
⎝
∥Π𝐻 ∣Ψ0⟩ ∥2 ⋅

E𝑐0,𝑐1←{0,1}E𝑗←[𝑞][∥ ∣𝑥𝑏⟩ ⟨𝑥𝑏 ∣ (𝑈 ′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑗 ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣Ψ0⟩ ∥2

⋅
E𝑐′0,𝑐′1←{0,1}E𝑗 ′←[𝑞][∥ ∣𝑥𝑏′⟩ ⟨𝑥𝑏′ ∣ (𝑈

′𝑂𝐻
(𝑥0,𝑐0),(𝑥1,𝑐1)

)𝑗 ′ ∣𝐻⟩ ⟨𝐻 ∣Decomp ∣Ψ0⟩ ∥2]
∥Π𝐻 ∣Ψ0⟩ ∥2

⎞
⎠

≥ ∑
𝐻∈H𝑔𝑜𝑜𝑑

∥Π𝐻 ∣Ψ0⟩ ∥2 ⋅ (
𝑝𝑜𝑙𝑦(𝜀)

𝑞
)
2

− negl′′ using (b)

≥ 𝑝𝑜𝑙𝑦(𝜀)
𝑞2

− negl′′ using (a) ,

where the first equality implicitly uses the equivalence between compressed an uncompressed simulations.
All in all, we have

Pr[Algorithm 1 outputs 𝑥𝑏, 𝑥𝑏′]

≥ Pr[Algorithm 1 outputs 𝑥𝑏, 𝑥𝑏′ ∣ 𝑖 = 𝑖∗ ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W] ⋅Pr[𝑖 = 𝑖∗ ∧ (𝑎𝑑𝑣,h𝑖
∗

data,𝐺0,𝐺1, ℎ) ∈ W]

≥ 𝑝𝑜𝑙𝑦(𝜀)
𝑄 ⋅ 𝑞2 − negl′′ ,
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where we used Equation (88).

When 𝑏 ≠ 𝑏′, we get that Algorithm 1 outputs a collision with probability
𝑝𝑜𝑙𝑦(𝜀)

𝑄 ⋅𝑞2 − negl′′ ≥ 𝑝𝑜𝑙𝑦(𝜀)

𝑞3 − negl′′,
where 𝑞 is the total number of queries made by 𝐴 to 𝐺0,𝐺1, 𝐻, and 𝐻𝑑 .

101



References

[AA09] Scott Aaronson and Andris Ambainis. ‘The need for structure in quantum speedups’. In: arXiv
preprint arXiv:0911.0996 (2009).

[AA15] Scott Aaronson and Andris Ambainis. ‘Forrelation: A Problem That Optimally Separates
Quantum from Classical Computing’. In: Proceedings of the Forty-Seventh Annual ACM Sym-
posium on Theory of Computing. STOC ’15. Portland, Oregon, USA: Association for Com-
puting Machinery, 2015, 307–316. isbn: 9781450335362. doi: 10.1145/2746539.2746547.

[AGS22] Atul Singh Arora, Alexandru Gheorghiu and Uttam Singh. ‘Oracle Separations of Hybrid
Quantum-Classical Circuits’. 5th Jan. 2022. doi: 10.48550/arXiv.2201.01904. arXiv: 2201.
01904 [quant-ph].

[AHU19] Andris Ambainis, Mike Hamburg and Dominique Unruh. ‘Quantum Security Proofs Using
Semi-classical Oracles’. In: Advances in Cryptology – CRYPTO 2019. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Springer International Publishing, 2019, pp. 269–295. isbn:
978-3-030-26951-7. doi: https://doi.org/10.1007/978-3-030-26951-7_10.

[AIK06] Benny Applebaum, Yuval Ishai and Eyal Kushilevitz. ‘Cryptography in $NC0̂$’. In: SIAM
Journal on Computing 36.4 (Jan. 2006), pp. 845–888. issn: 0097-5397, 1095-7111. doi:
10 . 1137 / S0097539705446950. url: http : / / epubs . siam . org / doi / 10 . 1137 /
S0097539705446950 (visited on 21/04/2021).

[AS04] Scott Aaronson and Yaoyun Shi. ‘Quantum lower bounds for the collision and the element
distinctness problems’. In: Journal of the ACM (JACM) 51.4 (2004), pp. 595–605.

[Aar05] Scott Aaronson. Ten Semi-Grand Challenges for Quantum Computing Theory. 2005. url:
https://www.scottaaronson.com/writings/qchallenge.html.

[Aar10] Scott Aaronson. ‘BQP and the Polynomial Hierarchy’. In: Proceedings of the Forty-Second
ACM Symposium on Theory of Computing. STOC ’10. Cambridge, Massachusetts, USA: As-
sociation for Computing Machinery, 2010, 141–150. isbn: 9781450300506. doi: 10 . 1145 /
1806689.1806711.

[Aar13] Scott Aaronson. ‘The Equivalence of Sampling and Searching’. In: Theory of Computing Sys-
tems 55 (2013), pp. 281–298.

[Ajt96] Miklós Ajtai. ‘Generating hard instances of lattice problems’. In: Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing. 1996, pp. 99–108.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz and Ben Fisch. ‘Verifiable Delay Functions’. In:
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I. Ed. by Hovav Shacham
and Alexandra Boldyreva. Vol. 10991. Lecture Notes in Computer Science. Springer, 2018,
pp. 757–788. doi: 10.1007/978-3-319-96884-1\_25.

[BBD+09] Hans J Briegel, David E Browne, Wolfgang Dür, Robert Raussendorf and Maarten Van den
Nest. ‘Measurement-based quantum computation’. In: Nature Physics 5.1 (2009), pp. 19–26.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan and
Brent Waters. ‘Time-lock puzzles from randomized encodings’. In: Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science. 2016, pp. 345–356.

[BGK18] Sergey Bravyi, David Gosset and Robert König. ‘Quantum advantage with shallow circuits’.
In: Science 362.6412 (2018), pp. 308–311.

[BKVV20] Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani and Thomas Vidick. ‘Simpler Proofs of
Quantumness’. In: 15th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2020, June 9-12, 2020, Riga, Latvia. Ed. by Steven T. Flammia.
Vol. 158. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 8:1–8:14. doi:
10.4230/LIPIcs.TQC.2020.8. url: https://doi.org/10.4230/LIPIcs.TQC.2020.8.

[BLZ21] Jeremiah Blocki, Seunghoon Lee and Samson Zhou. ‘On the Security of Proofs of Sequential
Work in a Post-Quantum World’. 18th May 2021. arXiv: 2006.10972 [cs]. url: http:
//arxiv.org/abs/2006.10972 (visited on 25/05/2022).

102

https://doi.org/10.1145/2746539.2746547
https://doi.org/10.48550/arXiv.2201.01904
https://arxiv.org/abs/2201.01904
https://arxiv.org/abs/2201.01904
https://doi.org/https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1137/S0097539705446950
http://epubs.siam.org/doi/10.1137/S0097539705446950
http://epubs.siam.org/doi/10.1137/S0097539705446950
https://www.scottaaronson.com/writings/qchallenge.html
https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1007/978-3-319-96884-1\_25
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://arxiv.org/abs/2006.10972
http://arxiv.org/abs/2006.10972
http://arxiv.org/abs/2006.10972


[CCD+03] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann and Daniel
A Spielman. ‘Exponential algorithmic speedup by a quantum walk’. In: Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing. 2003, pp. 59–68.

[CCL20] Nai-Hui Chia, Kai-Min Chung and Ching-Yi Lai. ‘On the Need for Large Quantum Depth’. In:
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. STOC
2020. New York, NY, USA: Association for Computing Machinery, 8th June 2020, pp. 902–
915. isbn: 978-1-4503-6979-4. doi: 10.1145/3357713.3384291.

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo and John P. Steinberger. ‘Random Oracles and
Non-uniformity’. In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part I. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Vol. 10820. Lecture Notes in Computer Science. Springer, 2018, pp. 227–258. doi: 10.1007/
978-3-319-78381-9\_9. url: https://doi.org/10.1007/978-3-319-78381-9\_9.

[CGLQ20] Kai-Min Chung, Siyao Guo, Qipeng Liu and Luowen Qian. ‘Tight Quantum Time-Space
Tradeoffs for Function Inversion’. In: 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020. Ed. by Sandy Irani.
IEEE, 2020, pp. 673–684. doi: 10.1109/FOCS46700.2020.00068. url: https://doi.org/
10.1109/FOCS46700.2020.00068.

[CGV22] Andrea Coladangelo, Shafi Goldwasser and Umesh Vazirani. ‘Deniable encryption in a
Quantum world’. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing. 2022, pp. 1378–1391.

[CH22] Nai-Hui Chia and Shih-Han Hung. Classical verification of quantum depth. 2022. doi: 10.
48550/ARXIV.2205.04656. url: https://arxiv.org/abs/2205.04656.

[CM20] Matthew Coudron and Sanketh Menda. ‘Computations with Greater Quantum Depth Are
Strictly More Powerful (Relative to an Oracle)’. In: Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2020. 2020, pp. 889–901. isbn: 978-1-
4503-6979-4. doi: 10.1145/3357713.3384269. url: https://doi.org/10.1145/3357713.
3384269.

[CW00] R. Cleve and J. Watrous. ‘Fast Parallel Circuits for the Quantum Fourier Transform’. In:
Proceedings 41st Annual Symposium on Foundations of Computer Science. Vol. 1. 2000, p. 526.
doi: 10.1109/SFCS.2000.892140. url: https://doi.ieeecomputersociety.org/10.1109/
SFCS.2000.892140.

[FGG14] Edward Farhi, Jeffrey Goldstone and Sam Gutmann. ‘A quantum approximate optimization
algorithm’. In: arXiv preprint arXiv:1411.4028 (2014).

[FSS84] Merrick Furst, James B Saxe and Michael Sipser. ‘Parity, circuits, and the polynomial-time
hierarchy’. In: Mathematical systems theory 17.1 (1984), pp. 13–27.

[GR08] Venkatesan Guruswami and Atri Rudra. ‘Explicit Codes Achieving List Decoding Capacity:
Error-Correction With Optimal Redundancy’. In: IEEE Transactions on Information Theory
54.1 (2008), pp. 135–150. doi: 10.1109/TIT.2007.911222.

[HG22] Atsuya Hasegawa and François Le Gall. An optimal oracle separation of classical and quantum
hybrid schemes. 2022. doi: 10.48550/ARXIV.2205.04633. url: https://arxiv.org/abs/
2205.04633.

[Has86] John Hastad. ‘Almost optimal lower bounds for small depth circuits’. In: Proceedings of the
eighteenth annual ACM symposium on Theory of computing. 1986, pp. 6–20.

[Joz05] Richard Jozsa. ‘An introduction to measurement based quantum computation’. In: Quantum
Information Processing 199 (Sept. 2005).

[Kra03] V.Y. Krachkovsky. ‘Reed-Solomon codes for correcting phased error bursts’. In: IEEE Trans-
actions on Information Theory 49.11 (2003), pp. 2975–2984. doi: 10.1109/TIT.2003.819333.

[Mil92] Peter Bro Miltersen. ‘Circuit Depth Relative to a Random Oracle’. In: Inf. Process. Lett. 42.6
(1992), pp. 295–298. doi: 10.1016/0020-0190(92)90225-K. url: https://doi.org/10.
1016/0020-0190(92)90225-K.

103

https://doi.org/10.1145/3357713.3384291
https://doi.org/10.1007/978-3-319-78381-9\_9
https://doi.org/10.1007/978-3-319-78381-9\_9
https://doi.org/10.1007/978-3-319-78381-9\_9
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.48550/ARXIV.2205.04656
https://doi.org/10.48550/ARXIV.2205.04656
https://arxiv.org/abs/2205.04656
https://doi.org/10.1145/3357713.3384269
https://doi.org/10.1145/3357713.3384269
https://doi.org/10.1145/3357713.3384269
https://doi.org/10.1109/SFCS.2000.892140
https://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892140
https://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892140
https://doi.org/10.1109/TIT.2007.911222
https://doi.org/10.48550/ARXIV.2205.04633
https://arxiv.org/abs/2205.04633
https://arxiv.org/abs/2205.04633
https://doi.org/10.1109/TIT.2003.819333
https://doi.org/10.1016/0020-0190(92)90225-K
https://doi.org/10.1016/0020-0190(92)90225-K
https://doi.org/10.1016/0020-0190(92)90225-K
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Appendix

A The O2H lemma

The following proofs of the O2H lemma (due originally to [AHU19; CCL20]) as used in our setting are taken
almost verbatim from [AGS22].

A.1 Proof of Lemma 41

Proof of Lemma 41. We begin by assuming that L and 𝑆 are fixed (and so is G). In that case, we can assume
𝜌 is pure. If not, we can purify it and absorb it in the work register. (The general case should follow from
concavity). From Remark 40, we have

∣𝜓𝐿⟩ ∶= L𝑈 ∣𝜓⟩𝑄′
40= ∣𝜙0⟩𝑄′ + ∣𝜙1⟩𝑄′ .

L𝑈𝑆𝑈 ∣𝜓⟩𝑄′ ∣0⟩𝐵 = ∣𝜙0⟩𝑄′ ∣0⟩𝐵 + ∣𝜙1⟩𝑄′ ∣1⟩𝐵
where 𝑄 ′ is a shorthand for 𝑄𝑅𝑊 . Similarly let

∣𝜓𝐺⟩ ∶= G𝑈 ∣𝜓⟩𝑄′ = ∣𝜙0⟩𝑄′ + ∣𝜙
⊥
1 ⟩𝑄′

where note that
⟨𝜙1∣𝜙⊥1 ⟩𝑄𝑅𝑊

= 0 (90)

because ∣𝜙1⟩ and ∣𝜙⊥1 ⟩ are the states where the queries were made on 𝑆, and on 𝑆 G responds with ⊥ while L
does not. Further, we analogously have

G𝑈𝑆𝑈 ∣𝜓⟩𝑄′ ∣0⟩𝐵 = ∣𝜙0⟩𝑄′ ∣0⟩𝐵 + ∣𝜙
⊥
1 ⟩𝑄′ ∣1⟩𝐵 .

We show that the difference between ∣𝜓𝐿⟩ and ∣𝜓𝐺⟩ is bounded by 𝑃find(L, 𝑆) ∶= Pr[find ∶ 𝑈L/𝑆 , 𝜌], which in
turn can be used to bound the quantity in the statement of the lemma.

∥∣𝜓𝐿⟩ − ∣𝜓𝐺⟩∥2 = ∥∣𝜙1⟩ − ∣𝜙⊥1 ⟩∥
2

(90)= ∥∣𝜙1⟩∥2 + ∥∣𝜙⊥1 ⟩∥
2

= 2 ∥∣𝜙1⟩∥2 ∵∥∣𝜙1⟩∥2 = ∥∣𝜙⊥1 ⟩∥
2 = 1 − ∥∣𝜙0⟩∥2

= 2𝑃find(L, 𝑆).

If L and 𝑆 are random variables drawn from a (possibly) joint distribution Pr(L, 𝑆), the analysis can be
generalised as follows. Let

𝜌𝐿 ∶= ∑
L,𝑆

Pr(L, 𝑆) ∣𝜓𝐿⟩ ⟨𝜓𝐿 ∣

𝜌𝐺 ∶= ∑
L,𝑆

Pr(L, 𝑆) ∣𝜓𝐺⟩ ⟨𝜓𝐺 ∣

where ∣𝜓𝐺⟩ is fixed by L and 𝑆 because 𝐺 itself is fixed once L and 𝑆 is fixed (by assumption). One can then
use monotonicity of fidelity to obtain

𝐹(𝜌𝐿, 𝜌𝐺) ≥ ∑
𝐿,𝑆

Pr(L, 𝑆)𝐹(∣𝜓𝐿⟩ , ∣𝜓𝐺⟩)

≥ 1 − 1

2
.∑
𝐿,𝑆

Pr(L, 𝑆) ∥∣𝜓𝐿⟩ − ∣𝜓𝐺⟩∥2 ∵1 − 1

2
𝐹(∣𝑎⟩ , ∣𝑏⟩) ≥ ∥∣𝑎⟩ − ∣𝑏⟩∥2

≥ 1 −
�
��1

2
∑
𝐿,𝑆

Pr(L, 𝑆)�2𝑃find(L, 𝑆)

= 1 − 𝑃find

where 𝑃find is the expectation of 𝑃find(L, 𝑆) over L and 𝑆. It is known that the trace distance bounds the LHS
of the Lemma and the trace distance itself is bounded by

√
2 − 2𝐹 .

�
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A.2 Proof of Lemma 42

Proof of Lemma 42. We resume the use of boldface for the query and response registers as they do play an
active role in the discussion. Let us begin with the case where the oracle is applied only once, i.e. 𝑸 is a
single query register 𝑄. Since the 𝑅𝑊 registers don’t play any significant role, we denote it by 𝐿. Let

𝑈 ∣𝜓⟩ = ∑
𝑞,𝑙

𝜓(𝑞, 𝑙) ∣𝑞, 𝑙, 0⟩𝑄𝐿𝐵

Ô⇒ 𝑈𝑆𝑈 ∣𝜓⟩ = ∑
𝑞∉𝑆

⎛
⎝∑𝑟,𝑙

𝜓(𝑞, 𝑙) ∣𝑞, 𝑙⟩𝑄𝐿

⎞
⎠
∣0⟩𝐵 +∑

𝑞∈𝑆

⎛
⎝∑𝑟,𝑙

𝜓(𝑞, 𝑙) ∣𝑞, 𝑙⟩𝑄𝐿

⎞
⎠
∣1⟩𝐵 .

Since L leaves registers 𝑄𝐵 unchanged,

tr[I𝑄𝐿 ⊗ ∣1⟩ ⟨1∣𝐵 (L ○𝑈𝑆 ○𝑈 ○ ∣𝜓⟩ ⟨𝜓 ∣)] = tr[I𝑄𝐿 ⊗ ∣1⟩ ⟨1∣𝐵 (𝑈𝑆 ○𝑈 ○ ∣𝜓⟩ ⟨𝜓 ∣)]
= ∑

𝑞

∣𝜓(𝑞)∣2 𝜒𝑆(𝑞)

where 𝜓(𝑞) = ∑𝑙 𝜓(𝑞, 𝑙) and 𝜒𝑆 is the characteristic function for 𝑆, i.e.

𝜒𝑆(𝑞) =
⎧⎪⎪⎨⎪⎪⎩

1 𝑞 ∈ 𝑆
0 𝑞 ∉ 𝑆.

We are yet to average over the random variable 𝑆. Clearly, E(𝜒𝑆(𝑞)) = Pr[𝑞 ∈ 𝑆] ≤ 𝑝, yielding

Pr[find ∶𝑈L/𝑆 , 𝜌] ≤ 𝑝.

In the general case, everything goes through unchanged except the string 𝑞 is now a set of strings 𝒒 and

𝜒𝑆(𝒒) =
⎧⎪⎪⎨⎪⎪⎩

1 𝒒 ∩ 𝑆 ≠ ∅
0 𝒒 ∩ 𝑆 = ∅.

Consequently, one evaluates E(𝜒𝑆(𝒒)) = Pr[𝒒 ∩ 𝑆 ≠ ∅] ≤ ∣𝒒∣ ⋅ 𝑝 = 𝑞 ⋅ 𝑝, by the union bound, yielding

Pr[find ∶𝑈L/𝑆 , 𝜌] ≤ 𝑞 ⋅ 𝑝.

�

B Misc calculations

B.1 Proof of Claim 56 — Deferred steps

B.1.1 Proof of Equation (6)

First, note that 2𝛿
∣𝑆𝑖−1∣

∣𝑆𝑖−1,𝑖 ∣
≤ 2𝛿 1

∣Σ∣ because ∣𝑆𝑖−1∣ = Σ and 1/∣𝑆𝑖−1,𝑖 ∣ ≤ 1/∣Σ∣2 by construction (see Algorithm 72 or

Algorithm 50 for simplicity).
Second, observe that

∣𝑆𝑖𝑖 ∣ − ∣𝑆𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣ − ∣𝑆𝑖 ∣

≤ ∣𝑆𝑖𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣ − ∣𝑆𝑖 ∣

=
∣𝑆𝑖𝑖 ∣

∣𝑆𝑖−1,𝑖 ∣

1 − ∣𝑆𝑖 ∣

∣𝑆𝑖−1,𝑖 ∣

= 1

∣Σ∣ (1 −
∣𝑆𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣

)
−1

≤ 1

∣Σ∣ (1 +
∣𝑆𝑖 ∣
∣𝑆𝑖−1,𝑖 ∣

+ 𝜖)

≤ 1

∣Σ∣ (1 +
1

∣Σ∣2
+ 𝜖)
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where 𝜖 is a small fixed constant 𝜖 and we used the fact that the inequality (1 − 𝑥)−1 ≤ 1 + 𝑥 + 𝜖 holds for a

small enough 0 ≤ 𝑥 . Combining these, and recalling ∣Σ∣ = 2𝜆Θ(1) and 𝑛 = Θ(𝜆), one obtains Equation (6).

B.2 Proof of Claim 106

We prove the following.

Claim 106. Let 𝐸 and 𝐹 be random variables taking values in [0, 1]. Let 𝛾 ∈ [0, 1].

Pr[𝐸 ≥ 𝛾 ⋅ 𝐹 ] ≤ 1 − E(𝐹)(1 − E(𝐸)
𝛾 ⋅ E(𝐹))

Proof. Let 𝑝 ∶= Pr[𝐸 ≥ 𝛾 ⋅ 𝐹 ]. Then,

E[𝐸] = 𝑝 ⋅ E[𝐸 ∣𝐸 ≥ 𝛾 ⋅ 𝐹 ] + (1 − 𝑝) ⋅ E[𝐸 ∣𝐸 < 𝛾 ⋅ 𝐹 ] (91)

Notice that E[𝐸 ∣𝐸 ≥ 𝛾𝐹 ] ≥ 𝛾 ⋅ E[𝐹 ∣𝐸 ≥ 𝛾𝐹 ]. Plugging this into (91), we get

E[𝐸] = 𝑝 ⋅𝛾 ⋅ E[𝐹 ∣𝐸 ≥ 𝛾 ⋅ 𝐹 ] + (1 − 𝑝) ⋅ E[𝐸 ∣𝐸 < 𝛾 ⋅ 𝐹 ]
≥ 𝑝 ⋅𝛾 ⋅ E[𝐹 ∣𝐸 ≥ 𝛾 ⋅ 𝐹 ] . (92)

Now, notice that
E[𝐹 ] = 𝑝 ⋅ E[𝐹 ∣𝐸 ≥ 𝛾 ⋅ 𝐹 ] + (1 − 𝑝) ⋅ E[𝐹 ∣𝐸 < 𝛾 ⋅ 𝐹 ] (93)

Rearranging the latter, and plugging this into (92) gives

E[𝐸] ≥ 𝛾 ⋅ (E[𝐹 ] − (1 − 𝑝) ⋅ E[𝐹 ∣𝐸 < 𝛾 ⋅ 𝐹 ])
≥ 𝛾 ⋅ (E[𝐹 ] − (1 − 𝑝))

Solving for 𝑝 gives the desired inequality. �

C Sampling argument for Permutations

To keep the proof self-contained, we include the proof of the sampling argument for permutations, taken
almost verbatim70 from [AGS22]. The key idea has been adapted from [CDGS18] and slightly generalised.

C.1 Sampling argument for Uniformly Distributed Permutations

C.1.1 Convex Combination of Random Variables

We first make the notion of “convex combination of random variables” precise. Consider a function 𝑓 which
acts on a random permutation, say 𝑡 , to produce an output, i.e. 𝑓 (𝑡) = 𝑟 where 𝑟 is an element in the range
of 𝑓 .71 This range can be arbitrary. We say a convex combination ∑𝑖 𝑝𝑖𝑡𝑖 of random variables 𝑡𝑖 is equivalent
to 𝑡 if for all functions 𝑓 , and all outputs 𝑠 in its range, ∑𝑖 𝑝𝑖 Pr[𝑓 (𝑡𝑖) = 𝑠] = Pr[𝑓 (𝑡) = 𝑠]. This relation is
denoted by ∑𝑖 𝑝𝑖𝑡𝑖 ≡ 𝑡 .

C.1.2 The “parts” notation

While permutations are readily defined as an ordered set of distinct elements, it would nonetheless be useful
to introduce what we call the “parts” notation which allows one to specify parts of the permutation.

Notation 120. Consider a permutation 𝑡 over 𝑁 elements, labelled {0, 1 . . . 𝑁 − 1}.

• Parts: Let 𝑆 = {(𝑥𝑖 ,𝑦𝑖)}𝑀𝑖=1 denote the mapping of 𝑀 ≤ 𝑁 elements under some permutation, i.e. there
is some permutation 𝑡 , such that 𝑡(𝑥𝑖) = 𝑦𝑖 . Call any such set 𝑆 a “part” and its constituents “paths”.

– Denote by Ωparts(𝑁 ) the set of all such “parts”.

70We fixed some notation.
71The function will later be interpreted as an algorithm and the random permutation accessed via an oracle.
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– Call two parts 𝑆 = {(𝑥𝑖 ,𝑦𝑖)}𝑖 and 𝑆 ′ = {(𝑥 ′𝑖′ ,𝑦′𝑖′)}𝑖′ distinct if for all 𝑖, 𝑖′ (a) 𝑥𝑖 ≠ 𝑥𝑖′ , and (b) there is
a permutation 𝑡 such that 𝑡(𝑥𝑖) = 𝑦𝑖 and 𝑡(𝑥𝑖′) = 𝑦𝑖′ .

– Denote by72 Ωparts(𝑁,𝑆) the set of all parts 𝑆 ′ ∈ Ωparts(𝑁 ) such that 𝑆 ′ is distinct from 𝑆.

• Parts in 𝑡 : The probability that 𝑡 maps the elements as described by 𝑆 may be expressed as
Pr[∧𝑀𝑖=1(𝑡(𝑥𝑖) = 𝑦𝑖)] = Pr[𝑆 ⊆ paths(𝑡)] where paths(𝑡) ∶= {(𝑥, 𝑡(𝑥))}𝑁−1𝑥=0 .

• Conditioning 𝑡 based on parts: Finally, use the notation 𝑡𝑆 to denote the random variable 𝑡 conditioned
on 𝑆 ⊆ paths(𝑡).

To clarify the notation, consider the following simple example.

Example 121. Let 𝑁 = 2. Then Ωparts(𝑁 ) = {{(0, 0)}, {(1, 1)}, {(0, 0), (1, 1)}, {(0, 1)}, {(1, 0)}, {(0, 1), (1, 0)}}
and there are only two permutations, 𝑡(𝑥) = 𝑥 and 𝑡 ′(𝑥) = 𝑥 ⊕ 1 for all 𝑥 ∈ {0, 1}. An example of a part 𝑆 is
𝑆 = {(0, 0)}. A part (in fact the only part) distinct from 𝑆 is (1, 1), i.e. Ωparts(𝑁,𝑆) = {(1, 1)}.

C.1.3 𝛿 non-uniform distributions

Using the “parts” notation (see Notation 120), we define uniform distributions over permutations and a
notion of being 𝛿 non-uniform—distributions which are at most 𝛿 “far from” being being uniform.73

Definition 122 (uniform and 𝛿 non-uniform distributions). Consider the set, Ω(𝑁 ), of all possible permuta-
tions of 𝑁 objects labelled {0, 1, 2 . . . 𝑁 − 1}. Let F be a distribution over Ω. Call F a uniform distribution if

for 𝑢 ∼ F, Pr[𝑆 ⊆ paths(𝑢)] = (𝑁−𝑀)!
𝑁 !

for all parts 𝑆 ∈ Ωparts(𝑁 ) where we are using Notation 120.

An arbitrary distribution F𝛿 over Ω is 𝛿 non-uniform if it satisfies for 𝑡 ∼ F𝛿

Pr[𝑆 ⊆ paths(𝑡)] ≤ 2𝛿 ∣𝑆 ∣ ⋅Pr[𝑆 ⊆ paths(𝑢)]

for all parts 𝑆 ∈ Ωparts(𝑁 ).
Finally, F𝑝,𝛿 over Ω is (𝑝, 𝛿) non-uniform if there is a subset of parts 𝑆 of size ∣𝑆 ∣ ≤ 𝑝 such that the

distribution conditioned on 𝑆 specifying a part of the permutation, becomes 𝛿 non-uniform over parts distinct
from 𝑆. Formally, let 𝑡 ′ ∼ F𝑝,𝛿 . Then 𝑡 ′ is (𝑝, 𝛿) non-uniformly distributed if 𝑡 ′𝑆 is 𝛿 non-uniformly distributed
over all 𝑆 ′ ∈ Ωparts(𝑁,𝑆) (see Notation 120), i.e.

Pr[𝑆 ′ ⊆ paths(𝑡 ′)∣𝑆 ⊆ paths(𝑡 ′)] ≤ 2𝛿 ∣𝑆
′
∣ ⋅Pr[𝑆 ′ ⊆ paths(𝑢)∣𝑆 ⊆ paths(𝑢)]. (94)

In Equation (94), we are conditioning a uniform distribution using the “paths/parts” notation which may
be confusing. The following should serve as a clarification.

Note 123. Let 𝑢 ∼ F as above. Then, we have Pr[𝑆 ′ ⊆ paths(𝑢)∣𝑆 ⊆ paths(𝑢)] = (𝑁−∣𝑆 ∣−∣𝑆
′
∣)!

(𝑁−∣𝑆 ∣)!
where 𝑆 ′ ∈

Ωparts(𝑁,𝑆) and 𝑆 ∈ Ωparts(𝑁 ). Let 𝑆 = {(𝑥𝑖 ,𝑦𝑖)}∣𝑆 ∣𝑖=1. Then, the conditioning essentially specifies that the

∣𝑆 ∣ elements in 𝑋 = (𝑥𝑖)∣𝑆 ∣𝑖=1 must be mapped to 𝑌 = (𝑦𝑖)∣𝑆 ∣𝑖=1 by 𝑢, i.e. 𝑢(𝑥𝑖) = 𝑦𝑖 , but the remaining elements
{0, 1 . . . 𝑁 − 1}/𝑋 are mapped uniformly at random to {0, 1 . . . 𝑁 − 1}/𝑌 .

Clearly, for 𝛿 = 0, the 𝛿 non-uniform distribution becomes a uniform distribution. However, this can be
achieved by relaxing the uniformity condition in many ways. The 𝛿 non-uniform distribution is defined the
way it is to have the following property. Notice that ∣𝑆 ∣ appears in a form such that the product of two
probabilities, Pr[𝑆1 ⊆ parts(𝑡)] and Pr[𝑆2 ⊆ parts(𝑡)] yields ∣𝑆1∣ + ∣𝑆2∣, e.g. (1+𝛿)∣𝑆 ∣ instead of 2𝛿 ∣𝑆 ∣ would also
have worked.74 This property plays a key role in establishing that in the main decomposition (as described
informally in Subsection C.1), the number of “paths” (in the informal discussion it was bits) fixed is small.
We chose the pre-factor 2∣𝑆 ∣ for convenience—unlikely events in our analysis are those which are exponentially
suppressed, and we therefore take the threshold parameter to be 𝛾 = 2−𝑚. These choices result in a simple
relation between ∣𝑆 ∣ and 𝑚.

Notation 124. To avoid double negation, we use the phrase “𝑡 is more than 𝛿 non-uniform” to mean that 𝑡 is
not 𝛿 non-uniform. Similarly, we use the phrase “𝑡 is at most 𝛿 non-uniform” to mean that 𝑡 is 𝛿 non-uniform.

72We use Ωparts because the symbol Ω is often used for the sample space; for parts, Ωparts plays an analogous role.
73Clarification to a possible conflict in terms: We use the word uniform in the sense of probabilities—a uniformly distributed

random variable—and not quite in the complexity theoretic sense—produced by some Turing Machine without advice.
74The former was chosen by Chia, Chung and Lai [CCL20] while the latter by Coretti, Dodis, Guo and Steinberger [CDGS18]

and possibly others.
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As shall become evident, the only property of a uniform distribution we use in proving the main proposition
of this section, is the following. It not only holds for all distributions over permutations, but also for 𝑑-Shuffler.
We revisit this later.

Note 125. Let 𝑡 be a permutation sampled from an arbitrary distribution F′ over Ω(𝑁 ). Let 𝑆, 𝑆 ′ ⊆ Ωparts(𝑁 )
be distinct parts (see Notation 120). Then,

Pr[𝑆 ⊆ paths(𝑡) ∧ 𝑆 ′ ⊆ paths(𝑡)] = Pr[𝑆 ∪ 𝑆 ′ ⊆ paths(𝑡)].

If 𝑆 ∩ 𝑆 ′ = ∅ and the parts are not distinct, then both expressions vanish.

C.1.4 Advice on uniform yields 𝛿 non-uniform

We are now ready to state and prove the simplest variant of the main proposition of this section.

Proposition 126 (F∣𝑟 ′ ≡ conv(F𝑝,𝛿)). Premise:

• Let 𝑢 ∼ F where F is a uniform distribution over all permutations, Ω, on {0, 1 . . . 𝑁 − 1}, as in Defini-
tion 122 with 𝑁 = 2𝑛.

• Let 𝑟 be a random variable which is arbitrarily correlated to 𝑢, i.e. let 𝑟 = 𝑔(𝑢) where 𝑔 is an arbitrary
function.

• Fix any 𝛿 > 0, 𝛾 = 2−𝑚 > 0 (𝑚 may be a function of 𝑛) and some string 𝑟 ′.

• Suppose
Pr[𝑟 = 𝑟 ′] ≥ 𝛾 . (95)

• Let 𝑡 denote the variable 𝑢 conditioned on 𝑟 = 𝑟 ′, i.e. let 𝑡 = 𝑢∣(𝑔(𝑢) = 𝑟 ′).
Then, 𝑡 is “𝛾-close” to a convex combination of finitely many (𝑝, 𝛿) non-uniform distributions, i.e.

𝑡 ≡ ∑
𝑖

𝛼𝑖𝑡𝑖 +𝛾 ′𝑡 ′

where 𝑡𝑖 ∼ F𝑝,𝛿𝑖 and F
𝑝,𝛿

𝑖 is (𝑝, 𝛿) non-uniform with 𝑝 = 2𝑚
𝛿
. The permutation 𝑡 ′ is sampled from an arbitrary

(but normalised) distribution over Ω and 𝛾 ′ ≤ 𝛾 .

Proof. Suppose that 𝑡 is more than 𝛿 non-uniformly distributed (see Definition 122 and Notation 124),
otherwise then there is nothing to prove (set 𝛼1 to 1, and 𝑡𝑖 to 𝑡 , remaining 𝛼𝑖s and 𝛾 ′ to zero). Recall
Ωparts(𝑁 ) is the set of all parts (see Notation 120). Let the subset 𝑆 ∈ Ωparts(𝑁 ) be the maximal subset of
paths (i.e. subset with the largest size) such that

Pr[𝑆 ⊆ paths(𝑡)] > 2𝛿 ⋅∣𝑆 ∣ ⋅Pr[𝑆 ⊆ paths(𝑢)]. (96)

Claim 127. Let 𝑆 and 𝑡 be as described above. The random variable 𝑡 conditioned on being consistent with
the paths in 𝑆 ∈ Ωparts(𝑁 ), i.e. 𝑡𝑆 , is 𝛿 non-uniformly distributed over 𝑆 ′ ⊆ Ωparts(𝑁,𝑆), is 𝛿 non-uniformly
distributed.

We prove Claim 127 by contradiction. Suppose that 𝑡𝑆 is “more than” 𝛿 non-uniform. Then, there exists
some 𝑆 ′ ∈ Ωparts(𝑁,𝑆) such that

Pr[𝑆 ′ ⊆ paths(𝑡𝑆)] = Pr[𝑆 ′ ⊆ paths(𝑡)∣𝑆 ⊆ paths(𝑡)] > 2𝛿 ⋅∣𝑆
′
∣ ⋅Pr[𝑆 ′ ⊆ paths(𝑢)∣𝑆 ⊆ paths(𝑢)]. (97)

Since 𝑆 ′ violates the 𝛿 non-uniformity condition for 𝑡𝑆 , the idea is to see if the union 𝑆 ∪ 𝑆 ′ violates the 𝛿

non-uniformity condition for 𝑡 . If it does, we have a contradiction because 𝑆 was by assumption the maximal
subset satisfying this property. Indeed,

Pr[𝑆 ∪ 𝑆 ′ ⊆ paths(𝑡)] = Pr[𝑆 ⊆ paths(𝑡) ∧ 𝑆 ′ ⊆ paths(𝑡)] ∵ 𝑆 and 𝑆 ′ are distinct

= Pr[𝑆 ⊆ paths(𝑡)]Pr[𝑆 ′ ⊆ paths(𝑡)∣𝑆 ⊆ paths(𝑡)] conditional probability

> 2𝛿 ⋅(∣𝑆 ∣+∣𝑆
′
∣) ⋅Pr[𝑆 ⊆ paths(𝑢)]Pr[𝑆 ′ ⊆ paths(𝑢)∣𝑆 ⊆ paths(𝑢)] using (96) and (97)

= 2𝛿 ⋅∣𝑆∪𝑆
′
∣ ⋅Pr[𝑆 ∪ 𝑆 ′ ⊆ paths(𝑢)] ∵ 𝑆 and 𝑆 ′ are disjoint
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which completes the proof.
Claim 127 shows how to construct a 𝛿 non-uniform distribution after conditioning but we must also bound

∣𝑆 ∣. This is related to how likely is the 𝑟 ′ we are conditioning upon, i.e. the probability of 𝑔(𝑢) being 𝑟 ′.

Claim 128. One has
∣𝑆 ∣ < 𝑚

𝛿
.

While Equation (96) lower bounds Pr[𝑆 ⊆ paths(𝑡)], the upper bound is given by

Pr[𝑆 ⊆ paths(𝑡)] = Pr[𝑆 ⊆ paths(𝑢)∣(𝑔(𝑢) = 𝑟 ′)]
= Pr[𝑆 ⊆ paths(𝑢) ∧𝑔(𝑢) = 𝑟 ′]/Pr[𝑔(𝑢) = 𝑟 ′]
≤ Pr[𝑆 ⊆ paths(𝑢) ∧𝑔(𝑢) = 𝑟 ′] ⋅𝛾−1

≤ Pr[𝑆 ⊆ paths(𝑢)] ⋅𝛾−1 (98)

where recall that 𝛾 = 2−𝑚. Combining these, we have 2𝛿 ⋅∣𝑆 ∣ < 2𝑚, i.e., ∣𝑆 ∣ < 𝑚
𝛿
.

Using Bayes rule on the event that 𝑆 ⊆ paths(𝑡) we conclude that

𝑡 ≡ 𝛼1𝑡1 + 𝛼 ′1𝑡 ′1

where 𝛼1 = Pr[𝑆 ⊆ paths(𝑡)], 𝑡1 = 𝑡𝑆 , i.e. 𝑡 conditioned on 𝑆 ⊆ paths(𝑡), 𝛼 ′1 = 1 − 𝛼1 and 𝑡 ′1 is 𝑡 conditioned
on 𝑆 ⊈ paths(𝑡). Further, while 𝑡1 is (𝑝, 𝛿) non-uniform (from Claim 127 and Claim 128), 𝑡 ′1 may not be.
Proceeding as we did for 𝑡 , if 𝑡 ′1 is itself 𝛿 non-uniform, there is nothing left to prove (we set 𝛼2 = 𝛼 ′1 and
𝑡2 = 𝑡 ′1 and the remaining 𝛼𝑖s and 𝛾 ′ to zero). Also assume that 𝛼 ′1 > 𝛾 because otherwise, again, there is
nothing to prove.

Therefore, suppose that 𝑡 ′1 is not 𝛿 non-uniform. Note that the proof of Claim 127 goes through for any
permutation which is not 𝛿 non-uniform. Thus, the claim also applies to 𝑡 ′1 where we denote the maximal set
of parts by 𝑆1. Let 𝑡2 be 𝑡 ′1 conditioned on 𝑆1 ⊆ paths(𝑡 ′1) and 𝑡 ′2 be 𝑡 ′1 conditioned on 𝑆1 ⊈ paths(𝑡 ′1). Using
Bayes rule as before, we have

𝑡 ≡ 𝛼1𝑡1 + 𝛼2𝑡2 + 𝛼 ′2𝑡 ′2.
Adapting the statement of Claim 127 (with 𝑡 ′1 playing the role of 𝑡 and 𝑆1 playing the role of 𝑆) to this
case, we conclude that 𝑡2 is 𝛿 non-uniform but we still need to show that ∣𝑆1∣ ≤ 𝑝. We need the analogue of
Claim 128 which we assert is essentially unchanged.

Claim 129. One has

∣𝑆𝑖 ∣ <
2𝑚

𝛿
. (99)

The proof is deferred to Subsection C.2. The factor of two appears because for the general case, we use
both 𝛼 ′𝑖 > 𝛾 and Pr[𝑔(𝑢) = 𝑟 ′] > 𝛾 . One can iterate the argument above. Suppose

𝑡 ≡ 𝛼1𝑡1 + . . . 𝛼 𝑗𝑡 𝑗 + 𝛼 ′𝑗𝑡 ′𝑗 (100)

where 𝑡1, . . . 𝑡 𝑗 are (𝑝, 𝛿) non uniformly distributed while 𝑡 ′𝑗 is not and for 𝛼 ′𝑗 ∶= Pr[𝑆 ⊈ paths(𝑡) ∧ ⋅ ⋅ ⋅ ∧ 𝑆 𝑗−1 ⊈
paths(𝑡)] it holds that 𝛼 ′𝑗 > 𝛾 (else one need not iterate). Let 𝑆 𝑗 be the maximal set such that 𝑡 𝑗+1 ∶=
𝑡 ′𝑗 ∣𝑆 𝑗 ⊆ paths(𝑡 ′𝑗) is 𝛿 non-uniform (which must exist from Claim 127) and let 𝑡 ′𝑗+1 ∶= 𝑡 ′𝑗 ∣𝑆 𝑗 ⊈ paths(𝑡 ′𝑗). Let
𝛼 ′𝑗+1 ∶= Pr[𝑆 𝑗 ⊈ paths(𝑡 ′𝑗)] which equals Pr[𝑆 ⊈ paths(𝑡) ∧ ⋅ ⋅ ⋅ ∧ 𝑆 𝑗 ⊈ paths(𝑡)]. From Claim 129, ∣𝑆 𝑗 ∣ < 2𝑚/𝛿 ≤ 𝑝
therefore 𝑡 𝑗+1 is (𝑝, 𝛿) non-uniform.

We now argue that the sum in Claim 129 contains finitely many terms. At every iteration, 𝛼 ′𝑖 strictly
decreases because at each step, more constraints are added; 𝑆𝑖 ≠ 𝑆 𝑗 for all 𝑖 ≠ 𝑗 (otherwise conditioning on 𝑆 𝑗
(if 𝑗 ≥ 𝑖) as in Claim 127 could not have any effect). Since Ωparts(𝑁 ) is finite, the decreasing sequence 𝛼 ′1 . . . 𝛼

′
𝑖

must, for some integer 𝑖, satisfy 𝛼𝑖 ≤ 𝛾 after finitely many iterations. �

C.1.5 Iterating advice and conditioning on uniform distributions — 𝛿 non-𝛽-uniform distri-
butions

Once generalised to the 𝑑-Shuffler (which, as we shall, see is surprisingly simple), recall that the way we intend
to use the above result is to repeatedly get advice from a quantum circuit, a role played by 𝑔 in the previous
discussion. However, the way it is currently stated, one starts with a uniformly distributed permutation 𝑢 for
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which some advice 𝑔(𝑢) is given but one ends up with (𝑝, 𝛿) non-uniform distributions. We want the result
to apply even when we start with a (𝑝, 𝛿) non-uniform distribution.

As should become evident shortly, the right generalisation of Proposition 126 for our purposes is as follows.
Assume that the advice being conditioned occurs with probability at least 𝛾 = 2−𝑚 and think of 𝑚 as being
polynomial in 𝑛; 𝛿 > 0 is some constant and 𝑝 = 2𝑚/𝛿.

• Step 1: Let 𝑡 ∼ F𝛿 ′ be 𝛿 ′ non-uniform75 and 𝑠 ∼ F𝛿 ′ ∣𝑟 be 𝑡 ∣(𝑔(𝑡) = 𝑟). Then it is straightforward to show
that 𝑠 ≡ ∑𝑖 𝛼𝑖𝑠𝑖 where 𝑠𝑖 are (𝑝, 𝛿 + 𝛿 ′) non-uniform, which we succinctly write as

F𝛿
′

∣𝑟 ≡ conv(F𝑝,𝛿+𝛿
′

).

Observation: If 𝑡 ∼ F𝑝,𝛿 is (𝑝, 𝛿) non-uniform, then there is some 𝑆 of size at most 𝑝 such that 𝑡 ∼ F𝛿 ∣𝛽 is 𝛿
non-𝛽-uniform where76 𝛽 ∶= (𝑆). A 𝛽-uniform distribution is simply a uniform distribution conditioned on
having 𝑆 as parts. This amounts to basically making the conditioning explicit. Having this control will be of
benefit later.

• Step 2: It is not hard to show that Step 1 goes through unchanged if non-uniform is replaced with
non-𝛽-uniform for an arbitrary 𝛽.

These combine to yield the following. Let 𝑡 ∼ F𝛿 ′∣𝛽 be a 𝛿 ′ non-𝛽-uniform distribution and 𝑠 ∼ F𝛿 ′∣𝛽 ∣𝑟 be

𝑡 ∣(𝑔(𝑡) = 𝑟). Then 𝑡 ≡ ∑𝑖 𝛼𝑖𝑠𝑖 where 𝑠𝑖 ∼ F𝑝,𝛿+𝛿
′
∣𝛽 are (𝑝, 𝛿 + 𝛿 ′) non-𝛽-uniform,77 which we briefly express as

F𝛿
′
∣𝛽 ∣𝑟 ≡ conv(F𝑝,𝛿+𝛿

′
∣𝛽).

Observe that this composes well,

F𝑝,𝛿+𝛿
′
∣𝛽 ∣𝑟 ≡ conv(F2𝑝,2𝛿+𝛿

′
∣𝛽). (101)

To see this, consider the following:

• For some 𝑆𝑖 , 𝑠𝑖 (as defined in the statement above) is 𝛿 ′′ ∶= 𝛿 + 𝛿 ′ non-𝛽′-uniform where 𝛽′ ∶= (𝑆 ∪ 𝑆𝑖) if
𝛽 = (𝑆).

• With 𝑡 set to 𝑠𝑖 , 𝛽 set to 𝛽′, one can apply the above to get 𝑠𝑖 ∣(ℎ(𝑠𝑖) = 𝑟 ′) ≡ ∑𝑖 𝛼
′
𝑖𝑞𝑖 where 𝑞𝑖 are (𝑝, 𝛿+𝛿 ′′)

non-𝛽′-uniform.

• Note that 𝑞𝑖 are also (2𝑝, 2𝛿 + 𝛿 ′) non-𝛽-uniform; which we succinctly denoted as F2𝑝,2𝛿+𝛿
′
∣𝛽 .

Clearly, if this procedure is repeated 𝑛 ≤ poly(𝑛) times, starting from 𝛿 = 0 and 𝛽 = (∅), then the final convex
combination would be over F𝑛𝑝,𝑛𝛿 . As we shall see, for our use, it suffices to ensure that 𝑛𝛿 is a small constant

and that 𝑛𝑝 = 𝑛𝑚
𝛿
≤ poly(𝑛). Choosing 𝛿 = Δ/𝑛 for some small fixed Δ > 0 yields 𝑛𝛿 = Δ and 𝑛𝑝 = 𝑛

2
𝑚
Δ which is

indeed bounded by poly(𝑛) (recall 𝑚 and 𝑛 are bounded by poly(𝑛)).
One can define a notion of closeness to any arbitrary distribution, as we did for closeness to uniform. To

this end, first consider the following.

Definition 130 (𝛿 non-G distributions—G𝛿). Let 𝑠 be sampled from an arbitrary distribution, G, over the
set of all permutations Ω(𝑁 ) of 𝑁 objects and fix any 𝛿 > 0.

Then, a distribution G𝛿 is 𝛿 non-G if 𝑠′ ∼ G𝛿 satisfies

Pr[𝑆 ⊆ paths(𝑠′)] ≤ 2𝛿 ∣𝑆 ∣ ⋅Pr[𝑆 ⊆ paths(𝑠)]

for all 𝑆 ∈ Ωparts(𝑁 ).
Similarly, a distribution G𝑝,𝛿 is (𝑝, 𝛿) non-G if there is a subset 𝑆 ′ ∈ Ωparts(𝑁 ) of size at most ∣𝑆 ′∣ ≤ 𝑝 such

that conditioned on 𝑆 ′ ⊆ parts(𝑠), 𝑠′′ ∼ G𝑝,𝛿 satisfies

Pr[𝑆 ⊆ paths(𝑠′′)∣𝑆 ′ ⊆ paths(𝑠′′)] ≤ 2𝛿 ∣𝑆
′
∣ ⋅ [𝑆 ⊆ paths(𝑠)∣𝑆 ′ ⊆ paths(𝑠)]

for all 𝑆 ∈ Ωparts(𝑁,𝑆 ′), i.e. conditioned on 𝑆 ′ is a part of both 𝑠 and 𝑠′′, 𝑠′′ is 𝛿 non-G.

75Notation: When I say 𝑡 is 𝛿 non-uniform, it is implied that 𝑡 is sampled from a 𝛿 non-uniform distribution.
76The conditioning is in superscript because it is non-standard; standard would be 𝑆 ⊆ parts(𝑡) which is too long.
77The last term with 𝛼𝑘 < 𝛾 is suppressed for clarity in this informal discussion.
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We now define 𝛽-uniform as motivated above and using the previous definition, define 𝛿 non-𝛽-uniform.

Definition 131 (𝛽-uniform and 𝛿 non-𝛽-uniform distributions—F∣𝛽 and F𝛿 ∣𝛽). Let 𝑢 ∼ F(𝑁 ) be sampled from
a uniform distribution over all permutations, Ω(𝑁 ), of {0, 1 . . . 𝑁 − 1} as in Notation 124. A permutation
𝑠 ∼ F∣𝛽(𝑁 ) sampled from a 𝛽-uniform distribution is 𝑠 = 𝑢∣(𝑆 ⊆ paths(𝑢)) where78 𝛽 =∶ (𝑆) and 𝑆 ∈ Ωparts(𝑁 ).

A distribution F𝛿 ∣𝛽 is 𝛿 non-𝛽-uniform if it is 𝛿 non-G with G set to a 𝛽-uniform distribution (see Defini-
tion 130, above). Similarly, a distribution F𝑝,𝛿 ∣𝛽 is (𝑝, 𝛿) non-𝛽-uniform if it is (𝑝, 𝛿) non-G with G, again, set
to a 𝛽-uniform distribution.

We now state the general version of Proposition 126.

Proposition 132 (F𝛿
′
∣𝛽 ∣𝑟 ′ = conv(F(𝑝,𝛿+𝛿 ′)∣𝛽)). Let 𝑡 ∼ F𝛿 ′∣𝛽(𝑁 ) be sampled from a 𝛿 ′ non-𝛽-uniform distribu-

tion with 𝑁 = 2𝑛. Fix any 𝛿 > 0 and let 𝛾 = 2−𝑚 be some function of 𝑛. Let 𝑠 ∼ F𝛿 ′∣𝛽 ∣𝑟 , i.e. 𝑠 = 𝑡 ∣(ℎ(𝑡) = 𝑟) and
suppose Pr[ℎ(𝑡) = 𝑟] ≥ 𝛾 where ℎ is an arbitrary function and 𝑟 some string in its range. Then 𝑠 is “𝛾-close”
to a convex combination of finitely many (𝑝, 𝛿 + 𝛿 ′) non-𝛽-uniform distributions, i.e.

𝑠 ≡ ∑
𝑖

𝛼𝑖𝑠𝑖 +𝛾 ′𝑠′

where 𝑠𝑖 ∼ F𝑝,𝛿+𝛿
′
∣𝛽

𝑖 with 𝑝 = 2𝑚/𝛿. The permutation 𝑠′ may have an arbitrary distribution (over Ω(2𝑛)) but
𝛾 ′ ≤ 𝛾 .

The proof follows from minor modifications to that of Proposition 126 (see below).

C.2 Technical results for 𝛿 non-uniform distributions

Proof of Claim 129. To see this for 𝑆1, we proceed as before and recall the lower bound Pr[𝑆1 ⊆ paths(𝑡 ′1)] >
2𝛿 ∣𝑆1∣Pr[𝑆1 ⊆ paths(𝑢)]. The upper bound may be evaluated as

Pr[𝑆1 ⊆ paths(𝑡 ′1)] = Pr[𝑆1 ⊆ paths(𝑡)∣𝑆 ⊈ paths(𝑡)]

= Pr[𝑆1 ⊆ paths(𝑡) ∧ 𝑆 ⊈ paths(𝑡)]
Pr[𝑆 ⊈ paths(𝑡)]

= Pr[𝑆1 ⊆ paths(𝑢) ∧ 𝑆 ⊈ paths(𝑢) ∧𝑔(𝑢) = 𝑟 ′]
Pr[𝑆 ⊈ paths(𝑡)]Pr[𝑔(𝑢) = 𝑟 ′]

≤ Pr[𝑆1 ⊆ paths(𝑢)] ⋅𝛾−2

where we used 𝛼 ′1 = 1 − Pr[𝑆 ⊆ paths(𝑡)] = Pr[𝑆 ⊈ paths(𝑡)] ≥ 𝛾 , and Pr[𝑔(𝑢) = 𝑟 ′] ≥ 𝛾 . In the general case,
suppose 𝑡 ′𝑖 s, 𝑡𝑖s and 𝑆𝑖s are as described in the proof of Proposition 126. Then, one would have

Pr[𝑆𝑖 ⊆ paths(𝑡 ′𝑖 )] =
Pr[𝑆𝑖 ⊆ paths(𝑢) ∧ 𝑆𝑖−1 ⊈ paths(𝑢) ∧ . . . 𝑆 ⊈ paths(𝑢) ∧𝑔(𝑢) = 𝑟 ′]

Pr[𝑆𝑖−1 ⊈ paths(𝑡) ∧ . . . 𝑆 ⊈ paths(𝑡)]Pr[𝑔(𝑢) = 𝑟 ′] (102)

≤ Pr[𝑆𝑖 ⊆ paths(𝑢)] ⋅𝛾−2

where 𝛼 ′𝑖 = Pr[𝑆𝑖−1 ⊈ paths(𝑡) ∧ . . . 𝑆 ⊈ paths(𝑡)] > 𝛾 is assumed (else there is nothing to prove). �

Proposition (Proposition 59 restated with slightly different parameters). Let 𝑡 ∼ F𝛿 ′∣𝛽(𝑁 ) be sampled from
a 𝛿 ′ non-𝛽-uniform distribution with 𝑁 = 2𝑛. Fix any 𝛿 > 𝛿 ′ and let 𝛾 = 2−𝑚 be some function of 𝑛. Let
𝑠 = 𝑡 ∣(ℎ(𝑡) = 𝑟 ′) and suppose Pr[ℎ(𝑡) = 𝑟 ′] ≥ 𝛾 where ℎ is an arbitrary function and 𝑟 ′ some string in its range.
Then 𝑠 is “𝛾-close” to a convex combination of finitely many (𝑝, 𝛿) non-𝛽-uniform distributions, i.e.

𝑠 ≡ ∑
𝑖

𝛼𝑖𝑠𝑖 +𝛾 ′𝑠′

where 𝑠𝑖 ∼ F𝑝,𝛿 ∣𝛽𝑖 with 𝑝 = 2𝑚/(𝛿 − 𝛿 ′). The permutation 𝑠′ may have an arbitrary distribution (over Ω(2𝑛))
but 𝛾 ′ ≤ 𝛾 .

78As alluded to earlier, we define 𝛽 to be a redundant-looking “one-tuple” (𝑆) here but this is because later when we generalise
to 𝑑-Shufflers, we set 𝛽 = (𝑆,𝑇 ) where 𝑇 encodes paths not in 𝑢.
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Proof. While redundant, we follow the proof of Proposition 126 adapting it to this general setting and
omitting full details this time.

(For comparison: We replace 𝑡 with 𝑠 and 𝑢 with 𝑏)
Step A: Lower bound on Pr[𝑆 ⊆ paths(𝑠)].
Let 𝑏 ∼ F∣𝛽(𝑁 ). Suppose 𝑠 is not 𝛿 non-𝛽-uniform. Then consider the largest 𝑆 ∈ Ωparts(𝑁 ) such that

Pr[𝑆 ⊆ paths(𝑠)] > 2𝛿 ⋅∣𝑆 ∣ ⋅Pr[𝑆 ⊆ paths(𝑏)]. (103)

Claim 133. Let 𝑆 and 𝑠 be as described. The random variable 𝑠 conditioned on being consistent with the
paths in 𝑆 ∈ Ωparts(𝑁 ), i.e. 𝑠𝑆 ∶= 𝑠 ∣(𝑆 ⊆ parts(𝑠)), is 𝛿 non-𝛽-uniformly distributed.

We give a proof by contradiction. Suppose 𝑠𝑆 is “more than” 𝛿 non-𝛽-uniform. Then there exist some
𝑆 ′ ∈ Ωparts(𝑁,𝑆) such that

Pr[𝑆 ′ ⊆ paths(𝑠)∣𝑆 ⊆ paths(𝑠)] > 2𝛿 ⋅∣𝑆
′
∣Pr[𝑆 ′ ⊆ paths(𝑏)∣𝑆 ⊆ paths(𝑏)].

Then

Pr[𝑆 ∪ 𝑆 ′ ⊆ paths(𝑠)] = Pr[𝑆 ⊆ paths(𝑠)]Pr[𝑆 ′ ⊆ paths(𝑠)∣𝑆 ⊆ paths(𝑠)]

> 2𝛿 ⋅∣𝑆∪𝑆
′
∣ ⋅Pr[𝑆 ∪ 𝑆 ′ ⊆ paths(𝑏)]

using Equation (103) and Equation (97). That’s a contradiction to 𝑆 being maximal.
Step B: Upper bound on Pr[𝑆 ⊆ paths(𝑠)].

Claim 134. One has ∣𝑆 ∣ <𝑚/(𝛿 − 𝛿 ′).
To see this, observe that

Pr[𝑆 ⊆ paths(𝑠)] = Pr[𝑆 ⊆ paths(𝑡) ∧ℎ(𝑡) = 𝑟 ′] ⋅Pr[ℎ(𝑡) = 𝑟 ′]
≤ Pr[𝑆 ⊆ paths(𝑡)] ⋅𝛾−1

≤ 2𝛿
′
∣𝑆 ∣Pr[𝑆 ⊆ paths(𝑏)] ⋅𝛾−1

and comparing this with the lower bound, one obtains ∣𝑆 ∣ <𝑚/(𝛿 − 𝛿 ′).
The remaining proof Proposition 126 similarly generalises by proceeding in the same vein. More concretely,

suppose 𝑆𝑖 , 𝑠𝑖 , 𝑠
′
𝑖 are defined analogously. Then the lower bound goes through almost unchanged while for

the upper bound, the analogue of Equation (102) becomes

Pr[𝑆𝑖 ⊆ paths(𝑠′𝑖 )] =
Pr[𝑆𝑖 ⊆ paths(𝑠) ∧ 𝑆𝑖−1 ⊈ paths(𝑠) ∧ . . . 𝑆 ⊈ paths(𝑠)]

Pr[𝑆𝑖−1 ⊈ paths(𝑠) ∧ . . . 𝑆 ⊈ paths(𝑠)]
≤ Pr[𝑆𝑖 ⊆ paths(𝑡) ∧ 𝑆𝑖−1 ⊈ paths(𝑡) ∧ . . . 𝑆 ⊈ paths(𝑡)∣ℎ(𝑡) = 𝑟 ′] ⋅𝛾−1

≤ Pr[𝑆𝑖 ⊆ paths(𝑡)]
Pr[ℎ(𝑡) = 𝑟 ′] ⋅𝛾−1 ≤ 2𝛿

′
∣𝑆𝑖 ∣Pr[𝑆𝑖 ⊆ paths(𝑏)] ⋅𝛾−2.
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