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Summary

Couples generally manage chronic diseases together and the management takes
an emotional toll on both patients and their romantic partners. Consequently,
recognizing the emotions of each partner in daily life could provide an insight
into their emotional well-being in chronic disease management. The emotions of
partners are currently inferred in the lab and daily life using self-reports which
are not practical for continuous emotion assessment or observer reports which
are manual, time-intensive, and costly. Currently, there exists no comprehen-
sive overview of works on emotion recognition among couples. Furthermore,
approaches for emotion recognition among couples have (1) focused on English-
speaking couples in the U.S., (2) used data collected from the lab, and (3)
performed recognition using observer ratings rather than partner’s self-reported
/ subjective emotions.

In this body of work contained in this thesis (8 papers — 5 published and
3 currently under review in various journals), we fill the current literature gap
on couples’ emotion recognition, develop emotion recognition systems using 161
hours of data from a total of 1,051 individuals, and make contributions towards
taking couples’ emotion recognition from the lab which is the status quo, to
daily life. First, we provided a comprehensive survey of the research field of
emotion recognition among couples (Paper 1). Second, we leveraged insights
from psychology research and deep transfer learning approaches to develop ma-
chine learning systems to recognize each partner’s emotions using lab data from
Dutch-speaking couples in Belgium (Paper 2) and German-speaking couples in
Switzerland (Papers 3 and 4). We also performed emotion recognition using
data from German-speaking elderly individuals (not romantic partners) in Ger-
many (Paper 5) given the target use case for our emotion recognition system
consisted of partners who were elderly and spoke German. Third, we developed
ubiquitous smartwatch and smartphone systems — VADLite and DyMand —
to collect relevant multimodal sensor data and self-report emotion data from the
daily life interactions of German-speaking, Swiss-based couples managing type 2
diabetes (Papers 6 and 7). Finally, we developed and evaluated machine learning
systems for recognizing each partner’s emotions using the collected multimodal
real-world smartwatch data — heart rate, accelerometer, gyroscope, and speech
(Paper 8).

This thesis contributes toward building automated emotion recognition sys-
tems that would eventually enable partners to monitor their emotions in daily
life and enable the delivery of interventions to improve their emotional well-
being.
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Résumé

Les couples gèrent généralement ensemble les maladies chroniques et la gestion
a un impact émotionnel sur les patients et leurs partenaires amoureux. Par
conséquent, la reconnaissance des émotions de chaque partenaire dans la vie
quotidienne pourrait donner un aperçu de leur bien-être émotionnel dans la
gestion des maladies chroniques. Les émotions des partenaires sont actuelle-
ment déduites en laboratoire et dans la vie quotidienne à l’aide d’auto-rapports
qui ne sont pas pratiques pour l’évaluation continue des émotions ou de rap-
ports d’observateurs qui sont manuels, chronophages et coûteux. Actuellement,
il n’existe pas de synthèse exhaustive des travaux sur la reconnaissance des
émotions chez les couples. De plus, les approches de reconnaissance des émotions
chez les couples se sont (1) concentrées sur les couples anglophones aux États-
Unis, (2) ont utilisé des données recueillies auprès du laboratoire et (3) ont
effectué une reconnaissance en utilisant les évaluations des observateurs plutôt
que les émotions autodéclarées / subjectives du partenaire. .

Dans cet ensemble de travaux contenus dans cette thèse (8 articles — 5
publiés et 3 actuellement en cours de révision dans diverses revues), nous comblons
le vide bibliographique actuel sur la reconnaissance des émotions des couples,
développons des systèmes de reconnaissance des émotions en utilisant 161 heures
de données provenant d’un total de 1,051 personnes et contribuent à faire passer
la reconnaissance des émotions des couples du laboratoire, qui est le statu quo,
à la vie quotidienne. Tout d’abord, nous avons fourni une enquête complète
sur le domaine de recherche de la reconnaissance des émotions chez les cou-
ples (article 1). Deuxièmement, nous avons tiré parti des connaissances de
la recherche en psychologie et des approches “deep transfer learning” pour
développer des systèmes d’apprentissage automatique permettant de reconnâıtre
les émotions de chaque partenaire à l’aide de données de laboratoire de cou-
ples néerlandophones en Belgique (article 2) et de couples germanophones en
Suisse (articles 3 et 4). Nous avons également effectué la reconnaissance des
émotions à l’aide de données provenant de personnes âgées germanophones
(pas de partenaires romantiques) en Allemagne (article 5), étant donné que
le cas d’utilisation cible de notre système de reconnaissance des émotions était
composé de partenaires âgés et parlant allemand. Troisièmement, nous avons
développé des systèmes ubiquitaires de montres intelligentes et de smartphones
— VADLite et DyMand — pour collecter des données de capteurs multimodaux
pertinentes et auto-déclarer des données émotionnelles à partir des interactions
quotidiennes de couples germanophones basés en Suisse qui gèrent le diabète de
type 2 (articles 6 et 7) . Enfin, nous avons développé et évalué des systèmes
d’apprentissage automatique pour reconnâıtre les émotions de chaque parte-
naire à l’aide des données de smartwatch multimodales du monde réel collectées
- fréquence cardiaque, accéléromètre, gyroscope et parole (article 8).

Cette thèse contribue à la construction de systèmes automatisés de recon-
naissance des émotions qui permettraient éventuellement aux partenaires de
surveiller leurs émotions dans la vie quotidienne et de permettre la réalisation
d’interventions pour améliorer leur bien-être émotionnel.
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Introduction

Romantic partners’ emotions have links with the quality of their relationship,
and disease management when one partner has a chronic disease. Couples head-
ing for break-up show more negative emotions and less positive emotions than
happy couples [12, 16]. And for couples in which one partner has a chronic dis-
ease such as cancer and diabetes, its joint management called dyadic coping [2,
11, 21] takes an emotional toll on both patients and spouses [26]. Consequently,
recognizing the emotions of each partner could unobtrusively provide an insight
into the quality of their relationship, and the emotional well-being of each part-
ner, and enable the triggering of interventions to improve their relationship and
chronic disease management.

There are mainly two models of emotions: categorical and dimensional. Cat-
egorical emotions are based on the six basic emotions proposed by Ekman: hap-
piness, sadness, fear, anger, disgust, and surprise [15]. Dimensional approaches
mainly use two dimensions: valence (pleasure) and arousal which are based on
Russell’s circumplex model of emotions [24]. Valence refers to how negative
to positive a person feels and arousal refers to how sleepy to active a person
feels. Using these two dimensions, several categorical emotions can be placed
and grouped into the four quadrants: high arousal and negative valence (e.g.,
angry), low arousal and negative valence (e.g., depressed), low arousal and pos-
itive valence (e.g., relaxed), and high arousal and positive valence (e.g., excited)
[24].

Currently, the emotions of romantic partners are inferred in the lab and in
daily life using two approaches: self-report and observer reports [4]. In the lab,
couples are asked to have an emotionally charged conversation that is video-
taped. Afterward, each partner provides emotion ratings, for example, by ad-
justing a joystick while watching the videos [23] or by using a validated affect
instrument such as the Multidimensional Mood questionnaire [27]. Also, people
are trained to watch the video recordings and use a coding scheme (e.g., SPAFF
[14]) to rate the emotional behavior of each partner. In the case of daily life,
couples are periodically asked to complete self-reports [25] such as the PANAS
[28] or observers can code audio data collected from couples’ daily life interac-
tions [22]. Collecting self-reports in daily life are obtrusive and impractical for
continuous emotion assessment (e.g., every minute). Furthermore, self-reports
could be biased (for example, if the partner desires to project a certain emo-
tion rating rather than how they really feel) and may not reflect the partner’s
true emotion. The manual coding process with observer reports is costly and
time-consuming as multiple coders need to be trained for this task [18] and suf-
fers from inter-rater reliability issues [17, 19]. Additionally, observer reports do
not reflect the subjective emotions of partners, but rather, an external person’s
assessment based on expressed behavior. Automated recognition of each part-
ner’s emotion could potentially address these limitations by leveraging sensor
data (e.g., audio).

Emotion recognition among couples is the task of automatically recognizing
the emotions of romantic partners based on their conversation or interaction
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context [4]. In particular, it entails recognizing each partner’s emotions for ev-
ery utterance/speaker turn or every few seconds — local emotion — or for the
whole conversation — global emotion. These emotion ratings are the self-reports
provided by the partners or observer ratings provided by external individuals.
This task differs from other kinds of emotion recognition tasks mainly by the
kind of stimuli that induces emotions. Some stimuli are driving [29], listening to
music or watching a movie [1], and conversation between people [20]. Couples’
emotion recognition is similar to emotion recognition tasks whose stimuli are
conversations since it uses a conversational context. However, its uniqueness
lies in the fact that the two interacting individuals are in a romantic relation-
ship. Consequently, various insights from psychology about couples’ interaction
dynamics could be leveraged to recognize each partner’s emotions. For example,
romantic partners influence each other when interacting, and that insight has
been used for couples’ emotion recognition (e.g., [13, 7]). Currently, there ex-
ists no comprehensive overview of works on emotion recognition among couples.
Furthermore, approaches for emotion recognition among couples have (1) fo-
cused on English-speaking couples in the U.S., (2) used data collected from the
lab, and (3) performed recognition using observer ratings rather than partner’s
self-reported / subjective emotions.

In this body of work contained in this thesis (8 papers), we fill the cur-
rent literature gap on couples’ emotion recognition, develop emotion recogni-
tion systems using 161 hours of data from a total of 1,051 individuals, and
make contributions towards taking couples’ emotion recognition from the lab
which is the status quo, to daily life. First, we provided a comprehensive sur-
vey of the research field of emotion recognition among couples (Paper 1 [4]).
Second, we leveraged insights from psychology research and deep transfer learn-
ing approaches to develop machine learning systems to recognize each partner’s
emotions using lab data from Dutch-speaking couples in Belgium (Paper 2 [9])
and German-speaking couples in Switzerland (Paper 3 [3] and Paper 4 [7]).
We also performed emotion recognition using data from German-speaking el-
derly individuals (not romantic partners) in Germany (Paper 5 [5]) given the
target use case for our emotion recognition system consisted of partners who
were elderly and spoke German. Third, we developed ubiquitous smartwatch
and smartphone systems — VADLite and DyMand — to collect relevant multi-
modal sensor data and self-report emotion data from the daily life interactions
of German-speaking, Swiss-based couples managing type 2 diabetes (Paper 6
[10] and Paper 7 [8]). Finally, we developed and evaluated machine learning
systems for recognizing each partner’s emotions using the collected multimodal
real-world smartwatch data — heart rate, accelerometer, gyroscope, and speech
(Paper 8 [6]). Of the 8 papers included in this thesis, 5 have been published
and 3 are currently under review in various journals. The rest of the thesis
contains an overview of the 8 papers with the reference of each paper provided,
an abstract of the papers, their scientific contributions, my specific contribution
to each of the works, and the full text of all 8 papers.
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Paper 1: Survey of Couples’ Emotion Recognition

Reference

George Boateng, Elgar Fleisch, Tobias Kowatch. “Emotion Recognition
among Couples: A Survey”. ACM Computing Surveys (under review). https:
//arxiv.org/abs/2202.08430

Abstract

Couples’ relationships affect the physical health and emotional well-being of
partners. Automatically recognizing each partner’s emotions could give a better
understanding of their individual emotional well-being, enable interventions and
provide clinical benefits. In the paper, we summarize and synthesize works that
have focused on developing and evaluating systems to automatically recognize
the emotions of each partner based on couples’ interaction or conversation con-
texts. We identified 28 articles from IEEE, ACM, Web of Science, and Google
Scholar that were published between 2010 and 2021. We detail the datasets,
features, algorithms, evaluation, and results of each work as well as present main
themes. We also discuss current challenges, research gaps and propose future
research directions. In summary, most works have used audio data collected
from the lab with annotations done by external experts and used supervised
machine learning approaches for binary classification of positive and negative
affect. Performance results leave room for improvement with significant research
gaps such as no recognition using data from daily life. This survey will enable
new researchers to get an overview of this field and eventually enable the devel-
opment of emotion recognition systems to inform interventions to improve the
emotional well-being of couples.

Contribution

Our contributions are as follows: (1) the first survey and comprehensive overview
of the field of emotion recognition among couples which would enable new re-
searchers to get started in the field easily (2) background on emotion mod-
els, elicitation, and annotation approaches (3) details of the datasets, features,
modalities, algorithms, evaluation, and results of each work (4) modeling ap-
proaches that consider the unique context of couples’ interactions (5) discussion
of current challenges, research gaps and proposal of future research directions.
For this paper, I performed the search of key terms in various databases, selected
papers based on the inclusion and exclusion criteria, read and wrote summaries
of the selected papers, wrote the first draft of this paper, and then the final
draft after receiving feedback.
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Paper 2: Peak-End Rule

Reference

George Boateng, Laura Sels, Peter Kuppens, Peter Hilpert, Urte Scholz, and
Tobias Kowatsch. 2020. “Speech Emotion Recognition among Couples using the
Peak-End Rule and Transfer Learning”. In Companion Publication of the 2020
International Conference on Multimodal Interaction (ICMI ’20 Companion),
October 25–29, 2020, Virtual event, Netherlands. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3395035.3425253

Abstract

Extensive couples’ literature shows that how couples feel after a conflict is pre-
dicted by certain emotional aspects of that conversation. Understanding the
emotions of couples leads to a better understanding of partners’ mental well-
being and consequently their relationships. Hence, automatic emotion recogni-
tion among couples could potentially guide interventions to help couples improve
their emotional well-being and their relationships. It has been shown that peo-
ple’s global emotional judgment after an experience is strongly influenced by
the emotional extremes and ending of that experience, known as the peak-end
rule. In this work, we leveraged this theory and used machine learning to inves-
tigate which audio segments can be used to best predict the end-of-conversation
emotions of couples. We used speech data collected from 101 Dutch-speaking
couples in Belgium who engaged in 10-minute long conversations in the lab. We
extracted acoustic features from (1) the audio segments with the most extreme
positive and negative ratings — the peak, and (2) the ending of the audio —
the end. We used transfer learning in which we extracted these acoustic fea-
tures with a pre-trained convolutional neural network (YAMNet). We then used
these features to train machine learning models — support vector machines —
to predict the end-of-conversation valence ratings (positive vs negative) of each
partner. From our results (balanced accuracy), the segments from the peak were
the best for recognizing the emotions of female partners and outperformed male
partners’ perception of their female partners’ emotions. The results of this work
could inform how to best recognize the emotions of couples after-conversation
sessions and eventually, lead to a better understanding of couples’ relationships
either in therapy or in everyday life.

Contribution

Our contributions are as follows: (1) exploration of the best way to recognize
the emotions of couples after a conversation (5 - 10 minutes) through the peak-
end rule lens using deep transfer learning — classification of end-of-conversation
valence using acoustic features from the emotional peaks and end of the audio
(2) use of a unique dataset — real-world data collected from Dutch- speaking
couples with self-ratings of emotions (3) proposal and computation of a “part-
ner perception baseline” for emotion recognition within the context of couples
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interactions that leverage each partner’s perception of their partner’s emotions
and gives an estimate of how well each partner could infer their partner’s emo-
tion. For this paper, I conceptualized the key idea, preprocessed the dataset,
extracted features, implemented the machine learning experiments, wrote the
first draft of the paper, and then the final draft after receiving feedback.

Paper 3: BERT meets LIWC

Reference

Jacopo Biggiogera, George Boateng, Peter Hilpert, Matthew Vowels, Guy Bo-
denmann, Mona Neysari, Fridtjof Nussbeck, Tobias Kowatsch. “BERT meets
LIWC: Exploring State-of-the-Art Language Models for Predicting Communi-
cation Behavior in Couples’ Conflict Interactions”. In Companion Publication of
the 2021 International Conference on Multimodal Interaction (ICMI ’21 Com-
panion), October 18–22, 2021, Montréal, QC, Canada. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3461615.3485423

Abstract

Many processes in psychology are complex, such as dyadic interactions between
two interacting partners (e.g., patient-therapist, intimate relationship partners).
Nevertheless, many basic questions about interactions are difficult to investigate
because dyadic processes can be within a person and between partners, they are
based on multimodal aspects of behavior and unfold rapidly. Current analyses
are mainly based on the behavioral coding method, whereby human coders
annotate behavior based on a coding schema. But coding is labor-intensive,
expensive, slow, focuses on few modalities, and produces sparse data which
has forced the field to use average behaviors across entire interactions, thereby
undermining the ability to study processes on a fine-grained scale. Current
approaches in psychology use LIWC for analyzing couples’ interactions. How-
ever, advances in natural language processing such as BERT could enable the
development of systems to potentially automate behavioral coding, which in
turn could substantially improve psychological research. In this work, we train
machine learning models to automatically predict positive and negative com-
munication behavioral codes of 368 German-speaking Swiss couples during an
8-minute conflict interaction on a fine-grained scale (10-seconds sequences) us-
ing linguistic features and paralinguistic features derived with openSMILE. Our
results show that both simpler TF-IDF features as well as more complex BERT
features performed better than LIWC, and that adding paralinguistic features
did not improve the performance. These results suggest it might be time to
consider modern alternatives to LIWC, the de facto linguistic features in psy-
chology, for prediction tasks in couples research. This work is a further step
towards the automated coding of couples’ behavior which could enhance couple
research and therapy, and be utilized for other dyadic interactions as well.
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Contribution

Our contributions are as follows: (1) an evaluation of the predictive capability
of BERT vis-à-vis LIWC in the context of the automatic recognition of couples’
communication behavioral codes on a fine-grained time scale (every 10 seconds)
(2) an investigation into how the addition of paralinguistic features affects pre-
diction performance (3) the use of a unique dataset — spontaneous, naturalis-
tic, speech data collected from German-speaking Swiss couples (n=368 couples,
N=736 participants), and the largest ever such dataset used in the literature
for automatic coding of couples’ behavior. For this paper, I co-conceptualized
the key idea, extracted paralinguistic and linguistic (BERT) features, provided
feedback on the machine learning experiments, and co-wrote the first and final
drafts of the paper.

Paper 3: You made me feel this way

Reference

George Boateng, Peter Hilpert, Guy Bodenmann, Mona Neysari, Tobias
Kowatsch. ““You made me feel this way”: Investigating Partners’ Influence in
Predicting Emotions in Couples’ Conflict Interactions using Speech Data”. In
Companion Publication of the 2021 International Conference on Multimodal In-
teraction (ICMI ’21 Companion), October 18–22, 2021, Montréal, QC, Canada.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3461615.

3485424

Abstract

How romantic partners interact with each other during a conflict influences
how they feel at the end of the interaction and is predictive of whether the
partners stay together in the long term. Hence understanding the emotions
of each partner is important. Yet current approaches that are used include
self-reports which are burdensome and hence limit the frequency of this data
collection. Automatic emotion prediction could address this challenge. Insights
from psychology research indicate that partners’ behaviors influence each other’s
emotions in conflict interaction and hence, the behavior of both partners could
be considered to better predict each partner’s emotion. However, it is yet to be
investigated how doing so compares to only using each partner’s own behavior
in terms of emotion prediction performance. In this work, we used BERT to
extract linguistic features (i.e., what partners said) and openSMILE to extract
paralinguistic features (i.e., how they said it) from a data set of 368 German-
speaking Swiss couples (N = 736 individuals) who were videotaped during an
8-minutes conflict interaction in the laboratory. Based on those features, we
trained machine learning models to predict if partners feel positive or negative
after the conflict interaction. Our results show that including the behavior of
the other partner improves the prediction performance. Furthermore, for men,
considering how their female partners spoke is most important and for women
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considering what their male partner said is most important in getting better
prediction performance. This work is a step towards automatically recognizing
each partner’s emotion based on the behavior of both, which would enable a
better understanding of couples in research, therapy, and the real world.

Contribution

This work builds upon Paper 2 by using (1) the same data set, (2) global
emotion ratings rather than local emotion ratings, (3) self-reports rather than
observer reports, and (4) BERT which was shown to perform well for linguistic
feature extraction in Paper 2. Our contributions are as follows: (1) an evalu-
ation of how well a partner’s own linguistic and paralinguistic features predict
one’s own end-of-conversation emotion (2) an investigation of how the predic-
tion performance changes when including one’s partner’s features (linguistic,
paralinguistic, and both) (3) the use of a unique dataset — spontaneous, nat-
uralistic, speech data collected from German-speaking, Swiss couples (n=368
couples, N=736 participants), which is the largest ever such dataset used in the
literature for automatic recognition of partners’ end-of-conversation emotion.
For this paper, I co-conceptualized the key idea, preprocessed the dataset, ex-
tracted features, implemented the machine learning experiments, and co-wrote
the first and final drafts of the paper.

Paper 5: Elderly Emotion Recognition

Reference

George Boateng and Tobias Kowatsch. 2020. “Speech Emotion Recogni-
tion among Elderly Individuals using Multimodal Fusion and Transfer Learn-
ing”. In Companion Publication of the 2020 International Conference on Multi-
modal Interaction (ICMI ’20 Companion), October 25–29, 2020, Virtual event,
Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3395035.3425255

Abstract

Recognizing the emotions of the elderly is important as it could give an insight
into their mental health. Emotion recognition systems that work well on the
elderly could be used to assess their emotions in places such as nursing homes
and could inform the development of various activities and interventions to
improve their mental health. However, several emotion recognition systems are
developed using data from younger adults. In this work, we trained machine
learning models to recognize the emotions of elderly individuals via performing a
3-class classification of valence and arousal as part of the INTERSPEECH 2020
Computational Paralinguistics Challenge (COMPARE). We used speech data
from 87 participants who gave spontaneous personal narratives. We leveraged a
transfer learning approach in which we used pretrained CNN and BERT models
to extract acoustic and linguistic features respectively and fed them into separate
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machine learning models. Also, we fused these two modalities in a multimodal
approach. Our best model used a linguistic approach and outperformed the
official competition of unweighted average recall (UAR) baseline for valence
by 8.8% and the mean of valence and arousal by 3.2%. We also showed that
feature engineering is not necessary as transfer learning without fine-tuning
performs as well or better and could be leveraged for the task of recognizing the
emotions of elderly individuals. This work is a step towards better recognition
of the emotions of the elderly which could eventually inform the development
of interventions to manage their mental health.

Contribution

Our contribution is the evaluation of transfer learning approaches to recognize
the emotions of elderly individuals using a novel dataset — speech data collected
from German-speaking elderly individuals via using a pretrained CNN model
(YAMNET) to extract acoustic features and a pretrained Transformer language
model — Bidirectional Encoder Representations from Transformers (BERT)
to extract linguistic features. For this paper, I conceptualized the key idea,
preprocessed the dataset, extracted features, implemented the machine learning
experiments, wrote the first draft of the paper, and then the final draft after
receiving feedback.

Paper 6: VADLite

Reference

George Boateng, Prabhakaran Santhanam, Janina Lüscher, Urte Scholz, and
Tobias Kowatsch. 2019. “VADLite: An Open-Source Lightweight System for
Real-Time Voice Activity Detection on Smartwatches”. In Adjunct Proceed-
ings of the 2019 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing and the 2019 International Symposium on Wearable Com-
puters (UbiComp/ISWC ’19 Adjunct), September 9–13, 2019, London, United
Kingdom. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3341162.3346274

Abstract

Smartwatches provide a unique opportunity to collect more speech data because
they are always with the user and also have a more exposed microphone com-
pared to smartphones. Speech data could be used to infer various indicators of
mental well-being such as emotions, stress, and social activity. Hence, real-time
voice activity detection (VAD) on smartwatches could enable the development of
applications for mental health monitoring. In this work, we present VADLite,
an open-source, lightweight, system that performs real-time VAD on smart-
watches. It extracts mel-frequency cepstral coefficients and classifies speech
versus non-speech audio samples using a linear Support Vector Machine. The
real-time implementation is done on the Wear OS Polar M600 smartwatch. An
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offline and online evaluation of VADLite using real-world data showed better
performance than WebRTC’s open-source VAD system. VADLite can be easily
integrated into Wear OS projects that need a lightweight VAD module running
on a smartwatch.

Contribution

Our contribution is the development and evaluation of VADLite, an open-source
lightweight software system 1 that performs real-time voice activity detection
(VAD) on smartwatches and runs efficiently on constrained systems via using
a linear support vector machine, consequently addressing the gap in obtaining
an easy-to-use smartwatch VAD system. For this paper, I ran the user study
to collect data, preprocessed the data, extracted features, implemented the ma-
chine learning experiments, designed and implemented the VADLite smartwatch
app, wrote the first draft of the paper, and then the final draft after receiving
feedback.

Paper 7: DyMand

Reference

George Boateng, Prabhakaran Santhanam, Elgar Fleisch, Janina Lüscher,
Theresa Pauly, Urte Scholz, and Tobias Kowatsch. “Development, Deploy-
ment, and Evaluation of DyMand–An Open-Source Smartwatch and Smart-
phone System for Capturing Couples’ Dyadic Interactions in Chronic Disease
Management in Daily Life”. Sensors (under review). https://arxiv.org/

abs/2205.07671

Abstract

Dyadic interactions of couples are of interest as they provide insight into rela-
tionship quality and chronic disease management. Currently, ambulatory as-
sessment of couples’ interactions entails collecting data at random or scheduled
times which could miss significant couples’ interaction/conversation moments.
In this work, we developed, deployed, and evaluated DyMand, a novel open-
source smartwatch and smartphone system for collecting self-report and sensor
data from couples based on partners’ interaction moments. Our smartwatch-
based algorithm uses the Bluetooth signal strength between two smartwatches
each worn by one partner, and a voice activity detection machine-learning al-
gorithm to infer that the partners are interacting, and then to trigger data col-
lection. We deployed the DyMand system in a 7-day field study and collected
data about social support, emotional well-being, and health behavior from 13
(N=26) Swiss-based heterosexual couples managing diabetes mellitus type 2 of
one partner. Our system triggered 99.1% of the expected number of sensor and
self-report data when the app was running, and 77.6% of algorithm-triggered

1https://https://bitbucket.org/Jojo29/vadlite/
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recordings contained partners’ conversation moments compared to 43.8% for
scheduled triggers. The usability evaluation showed that DyMand was easy to
use. DyMand can be used by social, clinical, or health psychology researchers to
understand the social dynamics of couples in everyday life, and for developing
and delivering behavioral interventions for couples who are managing chronic
diseases.

Contribution

This work incorporates VADLite from Paper 6. Our contributions are as fol-
lows: (1) designed and developed DyMand, a novel open-source smartwatch 2,
and smartphone 3 system that uses the Bluetooth signal strength between two
smartwatches each worn by one partner, and a voice activity detection machine-
learning algorithm to infer that the partners are interacting, and then to trigger
sensor and self-report data collection (2) deployment and evaluation of DyMand
in a field study with heterosexual couples in Switzerland that are managing type
2 diabetes (T2DM) of one partner. For this paper, I co-designed the DyMand
system, implemented the DyMand smartwatch app, co-ran the user study to
collect data, preprocessed the data, performed data analysis, wrote the first
draft of the paper, and then the final draft after receiving feedback.

Paper 8: Are you ok, honey?

Reference

George Boateng, Xiangyu Zhao, Malgorzata Speichert, Elgar Fleisch, Janina
Lüscher, Theresa Pauly, Urte Scholz, Guy Bodenmann and Tobias Kowatsch.
““Are you okay, honey?”: Recognizing Emotions among Couples Managing Di-
abetes in Daily Life using Multimodal Smartwatch Data”. ACM Interact. Mob.
Wearable Ubiquitous Technol (under review). http://arxiv.org/abs/2208.
08909

Abstract

Couples generally manage chronic diseases together and the management takes
an emotional toll on both patients and their romantic partners. Consequently,
recognizing the emotions of each partner in daily life could provide an insight
into their emotional well-being in chronic disease management. Currently, the
process of assessing each partner’s emotions is manual, time-intensive, and
costly. Despite the existence of works on emotion recognition among couples,
none of these works have used data collected from couples’ interactions in daily
life. In this work, we collected 85 hours (1,021 5-minute samples) of real-world
multimodal smartwatch sensor data (speech, heart rate, accelerometer, and gy-
roscope) and self-reported emotion data (n=612) from 26 partners (13 couples)

2https://bitbucket.org/mobilecoach/dymandwatchclient/src/master/
3https://bitbucket.org/mobilecoach/dymand-mobilecoach-client/src/master/
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managing diabetes mellitus type 2 in daily life. We extracted physiological,
movement, acoustic, and linguistic features, and trained machine learning mod-
els (support vector machine and random forest) to recognize each partner’s
self-reported emotions (valence and arousal). Our results from the best models
— balanced accuracies of 63.8% and 78.1% for arousal and valence respectively
— are better than chance and our prior work that also used data from German-
speaking, Swiss-based couples, albeit, in the lab. This work contributes toward
building automated emotion recognition systems that would eventually enable
partners to monitor their emotions in daily life and enable the delivery of inter-
ventions to improve their emotional well-being.

Contributions

This final paper builds upon all previous 7 papers. It summarizes and integrates
the content of the survey paper (Paper 1), uses the data preprocessing, feature
extraction and machine learning approaches detailed in Papers 2, 3, 4, and 5,
and uses the smartwatch and smartphone systems from Papers 6 and 7 for data
collection. This work is the first to recognize the emotions of romantic partners
using data collected from everyday life. Our contributions are as follows (1)
collection and use of a unique dataset — real-world, multimodal smartwatch
sensor data from German-speaking, Swiss-based couples (N=13 couples, n=26
participants), which is the first such dataset used in the literature for automatic
recognition of partners’ emotions (2) approaches for validating and quantifying
data quality on manually coded, annotated and transcribed real-world speech
data (3) development and evaluation of a machine learning system to recognize
the emotions of each partner using a wide variety of sensor data — acoustic,
linguistic, heart rate, accelerometer, and gyroscope (4) an investigation of the
sensor modality combinations which result in the best emotion recognition per-
formance of romantic partners. For this paper, I conceptualized the key idea,
preprocessed the dataset, extracted features, implemented the machine learning
experiments, wrote the first draft of the paper, and then the final draft after
receiving feedback.
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Emotion Recognition among Couples: A Survey
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Couples’ relationships affect the physical health and emotional well-being of partners. Automatically recognizing each
partner’s emotions could give a better understanding of their individual emotional well-being, enable interventions and
provide clinical benefits. In the paper, we summarize and synthesize works that have focused on developing and evaluating
systems to automatically recognize the emotions of each partner based on couples’ interaction or conversation contexts. We
identified 28 articles from IEEE, ACM, Web of Science, and Google Scholar that were published between 2010 and 2021. We
detail the datasets, features, algorithms, evaluation, and results of each work as well as present main themes. We also discuss
current challenges, research gaps and propose future research directions. In summary, most works have used audio data
collected from the lab with annotations done by external experts and used supervised machine learning approaches for binary
classification of positive and negative affect. Performance results leave room for improvement with significant research gaps
such as no recognition using data from daily life. This survey will enable new researchers to get an overview of this field
and eventually enable the development of emotion recognition systems to inform interventions to improve the emotional
well-being of couples.

CCS Concepts: • General and reference → Surveys and overviews; • Human-centered computing → Human com-
puter interaction (HCI); • Applied computing→ Psychology.

Additional Key Words and Phrases: Couples, emotion recognition, affective computing, literature survey

1 INTRODUCTION
The emotions experienced by romantic partners are linked with relationship quality and the management of
chronic diseases. Couples’ emotions experienced during conflicts predict if these couples stay together in the long
term ([41]). For example, couples heading for break-up show more negative emotions and less positive emotions
than happy couples [19, 40]. For couples with one partner having a chronic disease, the burden of the disease
management is shared by both partners and it takes a toll on the emotional well-being of not just the patient
but also on the supporting partner. Furthermore, social support from partners in chronic disease management
has been shown to either have positive or negative effects on the emotional well-being of patients [15, 50, 76].
Because of the importance of emotions among couples, researchers are working towards understanding the
emotional processes that take place in intimate relationships (e.g., [34, 90]) and the link between emotions and
social support in couples’ dyadic management of chronic diseases [64]. Consequently, being able to automatically
recognize each partner’s emotions could enable the research of social and health psychologists, and also inform
the development of dyadic interventions (where partners are both involved e.g., [54]) to improve the emotional
well-being, relationship quality, and chronic disease management of couples.

Emotion recognition among couples entails the recognition of the emotions of each romantic partner based
on the context of their interaction. This task has a number of differences and similarities with other kinds of
emotion recognition tasks. Standard emotion recognition attempts to recognize the emotion of each individual
and uses various kinds of stimuli to induce an emotional reaction such as driving [104], listening to music or
watching a movie [1], giving a speech [85] and engaging in a conversation with another person [75].

The stimuli used for couples’ emotion recognition is a conversational context and hence, it has some similarities
to emotion recognition tasks based on individuals having a conversation. The conversational context has the

Authors’ addresses: George Boateng, gboateng@ethz.ch, ETH Zürich, Zurich, Switzerland; Elgar Fleisch, efleisch@ethz.ch, ETH Zürich, Zurich,
Switzerland and University of St. Gallen, St. Gallen, Switzerland; Tobias Kowatsch, tkowatsch@ethz.ch, ETH Zürich, Zurich, Switzerland and
University of St. Gallen, St. Gallen, Switzerland.
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unique challenge of turn-taking dynamics which requires the system to correctly identify who is speaking for
each speech segment, termed speaker diarization, consequently making this kind of emotion recognition task
more challenging than others that employ stimuli such as listening to music or watching a video.
Most emotion recognition tasks using conversational contexts tend to use actors acting out hypothetical

scenarios [17, 18, 66]. Actors tend to exaggerate their emotional expressions and the models trained with that
type of data have been shown to perform better than models trained on real-world data [30]. It is not clear if
such emotion recognition systems will perform well on data from non-actors. On the other hand, some emotion
recognition tasks employ people (e.g., 2 strangers) having real conversations [43, 71]. This type of emotion
recognition is the closest to couples’ emotion recognition in terms of the conversational context and the dyadic
and realistic nature of the interaction. However, for the couples’ context, because the two individuals involved are
in a romantic relationship, various insights from psychology research about couples can be leveraged to better
recognize the emotion of each partner. For example, partners tend to influence each other’s emotions throughout
an interaction [3], and hence various interpersonal dynamics could be leveraged to adequately recognize each
partner’s emotions (e.g., [11, 70]).
Because of the uniqueness of couples’ emotion recognition and the potential clinical utility, there is a need

to synthesize emotion recognition approaches focused on the couples’ context. Several works have developed
systems to automatically recognize the emotions of couples. In this paper, we describe and discuss these works
and give a comprehensive overview of this research field. We surveyed 28 articles published over the past 11
years (2010 - 2021) given the first set of works on this topic were published in 2010. We detail the datasets,
features, algorithms, evaluation, and results of each work as well as present main themes. We also discuss current
challenges, research gaps and propose future research directions. There are surveys of emotion recognition
works focused on specific modalities such as visual and speech modalities ([103]), wearables ([86]), multimodality
([30, 74]) and contexts such as driving ([104]) and conversation ([75]). However, this is the first survey of works
that focus on emotion recognition within the context of couples’ interactions or conversations.

The rest of this paper is organized as follows. In Section 2, we describe the scope of the survey and the approach
used to select the papers. In Section 3, we give an overview of the surveyed works. In Section 4, we describe
emotion models, elicitation, and annotation approaches that have been used. In Section 5, we give an overview of
the datasets that have been used in the surveyed works. In Section 6, we describe the modalities used, how they
have been preprocessed, and the features extracted from them. In Section 7, we discuss the algorithms that have
been used, modeling approaches considering the unique context of couples’ interactions, evaluation approaches,
and the results obtained. In Section 8, we discuss research gaps, challenges, and future directions. We conclude in
Section 9.

2 SURVEY SCOPE AND METHODOLOGY
Our methodology is similar to those of Zepf et al. [104]. We sought to survey papers that used data to automatically
recognize the emotions of each romantic partner based on the couple’s interaction or conversation context. We
developed a list of search terms that covered three concepts: (1) emotions/emotional behavior (emotion, affect,
affective, moods, behavior), (2) recognition (recognition, prediction, classification, behavior signal processing,
affective computing, machine learning, deep learning, neural networks) and (3) couples (couples, dyad, spouse,
married). We entered the search terms into the following databases: IEEE, ACM, Web of Science, and Google
Scholar. We also looked through the references of relevant papers.

To be included, the papers had to perform automatic recognition of each partner’s emotions (e.g., positive or
negative valence), emotional behavior or emotional states (e.g., positive affect/positivity, negative affect/negativity,
sadness), employed statistical or machine learning approaches, and used data collected from the context of couples’



Emotion Recognition among Couples: A Survey • 3

interaction or conversations. We included papers that were not peer-reviewed yet but were on archival databases
such as arXiv for completeness.

We excluded papers that used data from interacting partners that are not real couples, i.e., individuals acting
out dyadic interactions either using a script or engaging in spontaneous sessions such as the following datasets
[17, 18, 66, 69]. We also excluded papers that recognized couple behavior which are not emotional states such
as level of blame [7], conflict [92], suicidal risk [23]. In particular, we excluded one paper [2] that focused on
recognizing stressful conversations from other kinds of stressful situations among couples. We also excluded
papers that recognized couples’ relationship state (e.g., happy vs sad couple) [97] rather than each partner’s
emotions. Another related paper that we excluded is [9] which proposed a research plan for emotion recognition
but does not present performed analysis and results in the paper. After using these inclusion and exclusion
criteria, we had 28 relevant articles published between 2010 and 2021 (Table 2).

3 OVERVIEW OF WORKS
Out of the 28 surveyed papers, a majority of the works (n=24) have been done primarily by the Signal Analysis
and Interpretation Laboratory (SAIL) team at the University of Southern California which published the first
set of works on this topic in 2010 [6, 56]. Subsequent works extended or built upon previous works from the
research group. Few works have been done by researchers outside this research lab and include the following
[5, 11, 13, 26].

Together, these works have used 5 datasets that were collected from a laboratory setting (Table 1). Most of these
works used emotion labels from external raters with few using self-reported data from the couples themselves.
Only three modalities have been used — acoustic, lexical, and visual — with acoustic being the most used modality.
Multimodal fusion has been done mostly for acoustic and lexical modalities using feature-level and decision-level
fusion. Support vector machines are the most used algorithm. Various intrapersonal considerations (e.g., saliency)
and interpersonal considerations (e.g., synchrony) have been leveraged (details in a future section). Evaluations
have mostly been done with leave-one-couple-out cross-validation with accuracy being used as the metric.
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Table 1. Overview of datasets

Dataset

No
of
Cou-
ples

Couples Con-
text Data Hours

of
Data

Session Type

Mins
per
Ses-
sion

Anno-
tation
Type

Anno-
tation
Scope

Emotion
Model Emotions

UCLA / UW
Couples
Therapy

134

English-
speaking,
Chronically
distressed
couples

Video, audio,
transcripts 96 Relationship prob-

lem (1) 10 Observer Global
Dimen-
sional,
Categorical

Positive affect, Negative
affect, Sadness, Anger,
Anxiety

Moffit Center
Cancer Con-
versation

85
English-
speaking,
Couples man-
aging cancer

Video, audio,
transcripts 27

Neutral (1), Cancer
management issue
(1)

10 Observer
Local (ut-
terance /
speaker-
turn)

Categorical
Hostile (Negative), Posi-
tive, Constructive (Neu-
tral)

KU Leu-
ven Dyadic
Interaction

101
Dutch-
speaking
Couples

Video, audio 51
Neutral (1), Posi-
tive (1), Negative
(1)

10 Self
Global, Lo-
cal (contin-
uous)

Cate-
gorical,
Dimen-
sional

Categorical: anger, sad-
ness, anxiety, relaxation,
happiness, Dimensional:
Valence and Arousal

Stanford Psy-
chotherapy 3

English-
speaking
Couples Ther-
apy

Video, audio,
transcripts 18 Relationship

discussion (1) 60 Observer Local
(utterance) Categorical Anger, sadness, joy, ten-

sion, neutral

UZH Couples
Interaction 368

German-
speaking
couples in
Switzerland

Video, audio,
transcripts 637

Conflict discussion
(1), Mutual support
discussion (2)

8 Self, Ob-
server

Global,
Local
(utterance)

Dimen-
sional

Positive, negative, happy
vs sad, goodmood vs bad
mood, relaxed vs angry,
calm vs stressed
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Table 2. Studies focused on emotion recognition among couples. ACC=Accuracy, Corr=Spearman Correlation, CV=cross validation, DD=Diversity
Density, DNN=Deep neural network, GMM=Gaussian Mixture Models, HMM=Hidden Markov Model, LDA=Linear discriminant analysis, LR=Logistic
Regression, LNCO=Leave-n-couple-out, LOCO= Leave-one-couple-out, MAE=Mean Average Error, ML=Maximum Likelihood, MM=Markov Model,
RBF=Radial Basis Function, RF=Random Forest, SPRT=Sequential Probability Ratio Test, SVM=Support vector machine, UAR=Unweighted Average
Recall

Ref Dataset Modalities Features Interper-
sonal

Intraper-
sonal Algorithms Evalu-

ation
Met-
ric Class Main Best Results

Biggiogera et
al., 2021 [5]

UZH Couples
Interaction

Acoustic (A), Lexi-
cal (L)

A: Prosodic and spec-
tral eGeMAPS features,
L: Ngram + TFIDF,
LIWC, Deep sentence
embeddings

No No Linear SVM
10-fold
CV
couple
disjoint

UAR 2 Negative vs Positive af-
fect: 69.2%

Black et al.,
2010 [6]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral No No Linear SVM,
LDA

LOCO
CV ACC 2

Positive affect: 82% (fe-
male), 75% (male), Nega-
tive affect: 77% (female),
76% (male)

Black et al.,
2013 [8]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral No No Linear SVM, LR LOCO
CV ACC 2

Positive affect: 77.9% (fe-
male), 72.9 (male), Nega-
tive affect: 80% (female),
85.7% (male)

Boateng et
al., 2020 [13]

KU Leu-
ven Dyadic
Interaction

Acoustic
Deep acoustic embed-
dings (Spectrograms +
Pretrained CNN)

No Yes Linear SVM LOCO
CV UAR 2

Negative vs Positive
valence: 74.8% (female),
53.3% (male)

Boateng et
al., 2021 [11]

UZH Couples
Interaction

Acoustic (A), Lexi-
cal (L); Fusion: Fea-
ture level

A: Prosodic and spec-
tral eGeMAPS features,
L: Deep sentence em-
beddings

Yes (Dyadic
Influence) No Linear SVM,

RBF SVM, RF

10-fold
CV
couple
disjoint

UAR 2
Negative vs Positive
valence: 64.8% (female),
56.1% (male)

Chakravarthula
et al., 2015
[21]

UCLA / UW
Couples
Therapy

Lexical Unigram No
Yes (Dy-
namic
modeling)

ML as baseline,
HMM

LOCO
CV ACC 2 Negative affect: 88.57%

(female), 83.57% (male)

Chakravarthula
et al., 2018
[70]

UCLA / UW
Couples
Therapy

Lexical Ngram Yes (Dyadic
Influence)

Yes (Dy-
namic
modeling)

ML as baseline,
HMM

LOCO
CV ACC 2 Negative affect: 88.93%

Chakravarthula
et al., 2019
[22]

Moffit Center
Cancer Con-
versation

Acoustic, Lexical;
Fusion: Feature
level, Decision
level

Acoustic: Prosodic and
spectral eGeMAPS fea-
turesLexical: Deep sen-
stence embedding

No No DNN LOCO
CV UAR 3 Positive vs Negative vs

Neutral: 57.42%

Chakravarthula
et al., 2021
[20]

UCLA / UW
Couples
Therapy

Lexical N-gram, ELMo No No ML, GRU
6-fold
CV
couple
disjoint

Corr N/A

Positive affect: 0.5, Nega-
tive affect: 0.58, Anxiety:
0.18,Anger: 0.52, Sadness:
0.34

Crangle et al.,
2019 [26]

Stanford Psy-
chotherapy Acoustic Prosodic and spectral

features No No RF Hold
out ACC 5

Anger, sadness, joy, ten-
sion, neutral, Couple A:
87% (male), 90% (female),
Couple B: 78% (male),
84% (female), Couple C:
95% (male), 88% (female)

Georgiou et
al., 2011 [37]

UCLA / UW
Couples
Therapy

Lexical Unigram No No ML LOCO
CV ACC 2

Positive affect: 88.9%,
Negative affect: 86.7%,
Sadness: 61.6%
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Table 2. Studies focused on emotion recognition among couples. ACC=Accuracy, Corr=Spearman Correlation, CV=cross validation, DD=Diversity
Density, DNN=Deep neural network, GMM=Gaussian Mixture Models, HMM=Hidden Markov Model, LDA=Linear discriminant analysis, LR=Logistic
Regression, LNCO=Leave-n-couple-out, LOCO= Leave-one-couple-out, MAE=Mean Average Error, ML=Maximum Likelihood, MM=Markov Model,
RBF=Radial Basis Function, RF=Random Forest, SPRT=Sequential Probability Ratio Test, SVM=Support vector machine, UAR=Unweighted Average
Recall

Ref Dataset Modalities Features Interper-
sonal

Intraper-
sonal Algorithms Evalu-

ation
Met-
ric Class Main Best Results

Gibson et al.,
2011 [38]

UCLA / UW
Couples
Therapy

Acoustic Spectral No Yes (Sai-
lency)

RBF SVM as
baseline, DD
SVM

10-fold
CV
couple
disjoint

ACC 2

Positive affect: 74.3%
(female), 58.6 (male),
Negative affect: 77.9%
(female), 71.4% (male),
Sadness: 66.4% (female),
63.6% (male)

Gibson et al.,
2015 [39]

UCLA / UW
Couples
Therapy

Acoustic (A), Lexi-
cal (L), Visual (V);
Fusion: Feature
level, Decision
level

A: Prosodic and spec-
tral, L: TFIDF, V: Power
spectral density (PSD)
of head motion vectors

No Yes (Sai-
lency)

DD, Linear
SVM

LOCO
CV ACC 2

Positive affect: 65.13% (all
modalities), Negative af-
fect: 70.34% (lexical)

Katsamanis
et al., 2011
[52]

UCLA / UW
Couples
Therapy

Acoustic, Lexical;
Fusion: Unclear MFCC, TFIDF No Yes (Sai-

lency)
RBF SVM as
baseline, DD
SVM.

10-fold
CV
couple
disjoint

ACC 2
Positive affect: 93% (lexi-
cal), Negative affect: 95%
(lexical), Sadness: 80%
(lexical)

Lee et al.,
2010 [56]

UCLA / UW
Couples
Therapy

Acoustic Prosodic Yes (Syn-
chrony) No MM LOCO

CV ACC 2 Positive vs negative af-
fect: 76%

Lee et al.,
2011a [58]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral Yes (Syn-
chrony) No RBF SVM LOCO

CV ACC 2 Positive vs negative af-
fect: 51.79%

Lee et al.,
2011b [59]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral Yes (Syn-
chrony)

Yes (Sai-
lency) DD LOCO

CV ACC 2 Positive vs negative af-
fect: 53.93%

Lee et al.,
2012 [60]

UCLA / UW
Couples
Therapy

Lexical TFIDF No Yes (Sai-
lency) DD, SPRT

10-fold
CV
couple
disjoint

ACC 2
Positive affect: 76.1%,
Negative affect: 74.2%,
Sadness: 54.2%

Lee et al.,
2014 [57]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral Yes (Syn-
chrony) No HMM, Facto-

rial HMM
LOCO
CV ACC 2 Positive vs negative af-

fect: 62.86%

Li et al., 2016
[61]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral
features No No SVM as base-

line, DNN
LOCO
CV ACC 2 Negative affect: 77.14%

Li et al., 2017
[62]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral No No DNN (autoen-
coder)

LOCO
CV ACC 2 Negative affect: 69.64%,

Positive affect: 66.43 %

Li et al., 2020
[63]

UCLA / UW
Couples
Therapy

Acoustic
Prosodic and spectral,
Deep acoustic embed-
dings

No No CNN, GRU LNCO
(n=4) ACC 2

Positive affect: 65.36%,
Negative affect: 76.07%,
Sadness: 59.29%

Tseng et al.,
2016 [95]

UCLA / UW
Couples
Therapy

Lexical word2vec No No
ML as baseline,
LSTM + RBF
SVR

LOCO
CV ACC 2 Negative affect: 88.93%
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Table 2. Studies focused on emotion recognition among couples. ACC=Accuracy, Corr=Spearman Correlation, CV=cross validation, DD=Diversity
Density, DNN=Deep neural network, GMM=Gaussian Mixture Models, HMM=Hidden Markov Model, LDA=Linear discriminant analysis, LR=Logistic
Regression, LNCO=Leave-n-couple-out, LOCO= Leave-one-couple-out, MAE=Mean Average Error, ML=Maximum Likelihood, MM=Markov Model,
RBF=Radial Basis Function, RF=Random Forest, SPRT=Sequential Probability Ratio Test, SVM=Support vector machine, UAR=Unweighted Average
Recall

Ref Dataset Modalities Features Interper-
sonal

Intraper-
sonal Algorithms Evalu-

ation
Met-
ric Class Main Best Results

Tseng et al.,
2017 [94]

UCLA / UW
Couples
Therapy

Lexical word2vec, Deep sen-
tence embeddings No No LSTM + RBF

SVR
LOCO
CV MAE N/A Negative affect: 1.37

Tseng et al.,
2018 [96]

UCLA / UW
Couples
Therapy

Acoustic (A), Lex-
ical (L); Fusion:
Feature level, Deci-
sion level, Gender
based, Therapy
stage

A: Prosodic and spec-
tral features, L: Deep
sentence embeddings

No No LSTM, DNN LOCO
CV MAE 2 Negative affect: 1.22

Tseng et al.,
2019 [93]

UCLA / UW
Couples
Therapy

Lexical Deep sentence embed-
dings No No LSTM LOCO

CV ACC 2 Positive affect: 86.8%Neg-
ative affect: 87.9%

Xia el al.,
2015 [101]

UCLA / UW
Couples
Therapy

Acoustic Prosodic and spectral No
Yes (Dy-
namic
modeling)

SVM, LDA,
Voted Per-
ceptron as
baseline, HMM
+ SVM, LDA,
Voted Percep-
tron

LOCO
CV ACC 2

Positive affect: 81% (fe-
male), 78% (male), Nega-
tive affect: 79% (female),
84% (male), Sadness: 65%
(female), 61% (male)

Xiao et al.,
2015 [102]

UCLA / UW
Couples
Therapy

Visual
Line Spectral Frequen-
cies of head motion
vectors

Yes (Syn-
chrony) No GMM + Linear

SVM
LOCO
CV ACC 2 Positive affect: 63%, Neg-

ative affect: 57%
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4 BACKGROUND
In this section, we describe various emotion models and approaches to eliciting and annotating emotion data
from couples.

4.1 Emotion Models
There aremainly twomodels of emotions used in the literature in emotion recognition: categorical and dimensional.
Categorical emotions are based on the six basic emotions proposed by Ekman: happiness, sadness, fear, anger,
disgust, and surprise [31]. Over time, additional emotion categories have been included and used in literature
such as anxiety, frustration, etc. Dimensional approaches mainly use two dimensions: valence (pleasure) and
arousal (activation) which are based on Russell’s circumplex model of emotions [82]. Valence refers to how
negative to positive the person feels and arousal refers to how sleepy to active a person feels. Using these two
dimensions, several categorical emotions can be placed and grouped into the four quadrants: high arousal and
negative valence (e.g., stressed, angry), low arousal and negative valence (e.g., depressed), low arousal and positive
valence (e.g., relaxed), and high arousal and positive valence (e.g., excited).

4.2 Elicitation
Approaches for eliciting emotions in couples have generally happened in the lab/controlled settings and in daily
life. In the lab, couples are asked to have emotionally charged conversations that are videotaped [80]. Some of
these conversations center on topics that cause distress in their relationship. These conversations elicit emotions
during and after the conversations which are then annotated. In daily life, sensor data (e.g., audio) is collected
from couples periodically [79] or when conversation moments are detected [12].

4.3 Annotation
Two approaches are used for emotion annotations by social psychologists: self-report and observer reports, and
two scales: global and local (continuous, utterance-level). For self-reports, each partner provides emotion ratings
right after the whole interaction/conversation (global/session ratings) with validated instruments such as the
Affect Grid questionnaire [83] and Multidimensional Mood questionnaire [91] or they are asked to watch a video
recording of the conversation while providing continuous (moment-by-moment) emotion ratings using a joystick
(e.g., [80]). In the case of daily life, couples are periodically asked to complete self-reports such as the PANAS
[100], Affect Grid questionnaire [83] and Affective Slider [4] at random time [87, 89] or after sensor data recording
[12]. Additionally, the dyadic nature of couples’ interactions enables the collection of partner-perceived emotions
where each partner (e.g., partner A) is asked to provide a rating of their perception of the emotion of their partner
(e.g., partner B) emotion after an interaction in the lab (e.g., sels2019a, sels2019b) or in daily life (e.g., sels2020).
All these types of self-reports enable the collection of the subjective and perceived emotions of each partner.
However, these ratings could be biased and may not reflect each partner’s actual emotions about the interaction.
For observer reports, people are trained to watch the video recordings (e.g., in the case of lab data) and use

a coding scheme to rate the interaction on specific emotional behaviors (e.g., SPAFF [25]) using continuous or
utterance-level ratings (e.g., every 10 seconds or speaker turn) or global ratings (of the whole interaction). Such
coding is also done for example, for audio data collected from couples’ daily life interactions [79]. This manual
coding process is costly and time-consuming as multiple coders need to be trained for this task [53] and suffers
from inter-rater reliability issues [47, 67]. Furthermore, these ratings reflect the observers’ perceived emotions of
the partners and they do not represent the subjective emotions of the partners.
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5 STUDIES AND DATASETS
In this section, we describe all the datasets that have been used in the surveyed emotion recognition works, how
they were collected and annotated. The surveyed papers used five (5) datasets, all of which were collected in
the lab. Three (3) were observer annotated, one (1) was self annotated, and one (1) had both self and observer
annotations (Table 1). The distribution of papers that have used the five datasets is as follows: UCLA/UW Couples
Therapy (23), Cancer Conversation (1), KU Leuven Dyadic Interaction (1), Stanford Psychotherapy (1), and UZH
Couples’ Interactions (2).

5.1 UCLA/UW Couples Therapy
Researchers conducted a longitudinal lab study at the University of California, Los Angeles, and the University of
Washington in the U.S. with 134 seriously and chronically distressed heterosexual married couples [6]. Their
age statistics were as follows: the range is 22 to 72 years, the median age for men was 43 years (SD = 8.8), and
the median age for women was 42 years (SD = 8.7). They were, on average, college-educated (median level of
education for both men and women was 17 years, SD = 3.2). The sample was largely Caucasian (77%), with 8%
African American, 5% Asian or Pacific Islander, 5% Latino/Latina, 1% Native American, and 4% Other. Couples
were married for an average of 10.0 years (SD = 7.7) [24].

Couples received couples therapy for 1 year. They had conversations and discussed a problem in their relation-
ship with no therapist or research staff present. They discussed the wife’s chosen topic for 10 minutes and the
husband’s chosen topic for 10 minutes which were considered separate sessions. The sessions were recorded at
three points in time: before the therapy, 26 weeks into it, and two years after the therapy sessions ended. There
were 96 hours of data across 574 sessions. The sessions were videotaped and later transcribed and annotated
by 3-4 trained coders. The annotators assigned 33 session-level (global) behavioral codes for each spouse on a
scale of 1 - 9 using two coding schemes. The coding schemes are the Social Support Interaction Rating System
(SSIRS) which consists of 20 codes that measure the emotional component of the interaction and the topic of
conversation [51] and the Couples Interaction Rating System 2 (CIRS2) which consist of 13 codes and were
specifically designed for conversations involving a problem in a relationship [44]. There were no local (utterance-
or speaker-turn-level) annotations.
Authors that used this dataset for emotion recognition tasks used only six codes in experiments due to low

inter-evaluator agreement for the other codes. The codes that were used are level of blame, level of acceptance
towards the other spouse, global positive affect, global negative affect, level of sadness, use of humor. They used
the manual transcript of the data to automatically create word and speaker turn alignments which resulted in a
smaller number of sessions and unique couples data used for the recognition experiments: 293 sessions. Also,
they computed the mean values across raters and then selected data whose ratings were in the top 20% and
bottom 20% for each of the codes. Consequently, the data used for analysis was from 60 - 85 unique husband/wife
pairs. The task was cast as a binary classification for the two extremes for each code. In this survey, we consider
works that used the affect-related codes: global positive affect, global negative affect, level of sadness, anxiety,
and anger.

5.2 Moffit Center Cancer Conversation
Researchers conducted a study in which they collected data from 85 couples in the U.S. who were coping with
advanced cancer (one spouse having cancer and the other being a caregiver) [22, 77, 78]. Here is the demographic
data of the 82 couples whose data was eventually used: 29.3% of patients were female and 70.7% of caregivers were
female, the mean age for patients was 66.8 years (SD = 9.2), and the mean age for caregivers was 64.8 years (SD =
9.4). On average, they had college or vocational education. The patient sample was largely Caucasian (92.7%),
with 6.1% African American, 3.7% Latino/Latina, 1.2% Native American, and 0% Other. The caregiver sample was



10 • Boateng et al.

also largely Caucasian (90.2%), with 4.9% African American, 3.7% Latino/Latina, 2.4% Native American, and 1.2%
Other. Couples were married for an average of 35 years (SD = 15.8) [77].
They engaged in a 10-minute neutral discussion (daily routine) and a 10-minute stressor discussion about

an issue related to cancer management in controlled settings (e.g., clinic consult rooms, participant homes)
with an experimenter present without facilitating. The issue was decided based on their ratings on Cancer
Inventory of Problem Situations, [46] in which a list of 20 common cancer concerns (e.g., lack of energy, finances,
over-protection) are rated as being not a problem, somewhat of a problem, or a severe problem. The interactions
were audio-recorded. We estimated that a total of 27 hours of data was collected.

The audio was annotated on an utterance / speaker-turn level by 2 trained coders using the Rapid Marital
Interaction Coding System, 2nd Edition [48, 49] with inter-rater reliability scores of Kappas above 0.88 for 20% of
all codes). Each utterance was assigned one behavioral code out of 7 codes which were then grouped into three:
positive (low and high positive), hostile/negative (low and high hostile), neutral/constructive (constructive problem
discussion). Additional codes were dysphoric affect and other which were not used for the recognition task.
Hence, the task was framed as a 3-class classification problem. They used the manual transcripts to automatically
create word, speaker turn and label alignments. This dataset has been used by [22].

5.3 KU Leuven Dyadic Interaction
Researchers conducted a Dyadic Interaction lab study in Leuven, Belgium with 101 heterosexual, Dutch-speaking
couples [13, 87, 88]. The majority (n=96) cohabited and 7 were married. The average age was 26 years (SD=5),
ranging from 18 to 53 years. The partners were together for 4.5 years (SD=2.8), ranging from 7 months to 21
years. There was no information about the ethnicity and education levels of participants.

These couples were first asked to have a neutral 10-minute conversation, then a 10-minute conversation about a
negative topic (a characteristic of their partner that annoys them the most), followed by a 10-minute conversation
about a positive topic (a characteristic of their partner that they value the most) [27, 87, 88].

After each conversation, each partner completed self-reports on various emotion labels such as anger, sadness,
anxiety, relaxation, and happiness using a 7-point Likert scale ranging from strongly disagree (1) to strongly
agree (7). Additionally, each partner watched the video recording of the conversation separately on a computer
and rated his or her emotion on a moment-by-moment basis by continuously adjusting a joystick to the left (very
negative) and the right (very positive), so that it closely matched their feelings, resulting in valence scores on a
continuous scale from -1 to 1 [42, 81]. Additionally, each partner reported how they felt after the interaction and
how they thought their partner felt, using the Affect Grid questionnaire [83] which captures the valence and
arousal dimensions of Russell’s circumplex model of emotions [82] resulting in values between 0 and 8 each for
pleasure and arousal.
Trained research assistants (5) listened and visually inspected the audios, and annotated the exact start and

end of each talking turn for each partner. Authors that used this data categorized the valence scores into two
classes, negative (0-4) and positive valence (5-8) for males and females, consequently framing the task as a binary
classification task. This dataset was used by [13]

5.4 Stanford Psychotherapy
Researchers collected audio, and video data from 3 heterosexual couples at Stanford University in the U.S. over
18-hour-long couple therapy sessions (18 sessions, 1 hour each for each couple A, B, and C) undergoing therapy
over a period of 2 years [26]. We estimated that a total of 18 hours of data was collected. No demographic
information about the couples was available.

The audio was first transcribed manually, including the start and end times of each word. Then trained coders
watched the video and used the transcript to code the data by marking start and end times of any of the following
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4 emotions: anger, sadness, joy, tension, and neutral (defined as the absence of the 4 emotions). Each label was
given a rating of low, medium, or high but the levels were not used in the analysis. These codes were adapted
from Gottman’s 19 SPAFF affective codes [25]. To assign labels, annotators had to mark the start and end times of
the occurrence of one of the emotions. Hence, no two emotion-labeled segments could overlap. Only audio data
was used for recognition which was framed as a 5-class classification task. This dataset has been used by the
work [26].

5.5 UZH Couples Interactions
Researchers collected data from 368 heterosexual German-speaking, Swiss couples (N=736 participants; age 20-80)
at the University of Zurich, Switzerland over 10 years [55, 98]. The longitudinal study sought to investigate the
impact of stress on the relationship development of couples and children across their lifespan. The average age
was 47 (SD = 18.4) for women and 49 (SD = 18.2) for men, the mean relationship duration was 21 years (SD =
17.9) with 66% being married. For women, 6% attended the mandatory school years (9 years), 40% completed
vocational training, 21% completed high school, and 32% completed college or university. For men, 3% attended
the mandatory school years, 35% completed vocational training, 12% completed high school, and 49% completed
an academic degree.
Couples participated in three videotaped conversations in the lab each for 8 minutes — one conflict and two

mutual support conversations from years 1 to 6 (one session per year). Video-recorded data from 3 couples were
not available resulting in 365 couples’ data. The number of couples that took part reduced over the years with
the details available at [98]. Based on the data collected over the years, our estimate of the total amount of data is
637 hours.
For the conflict interaction which was used for emotion recognition, couples had to choose one problematic

topic for the conflict interaction from a list of common problems (PAQ A; [45]), and participants were then
videotaped as they discussed the selected issue for 8 minutes. After each conversation, each partner provided self-
report responses to the Multidimensional Mood questionnaire [91] of their emotions on four bipolar dimensions
— namely “good mood versus bad mood,” “relaxed versus angry,” “happy versus sad” and “calm versus stressed” —
with the scale: 1 — very much, 2 — much, 3 — a little, 4 — a little, 5 — much, 6 — very much. The authors that used
the dataset preprocessed these responses by averaging the “good mood versus bad mood” and “happy versus sad”
scales and then binarized the averaged values such that values greater than or equal to 3.5 were negative (0) and
the rest were positive (1).

Additionally, two research assistants were trained to code communication behaviors (interobserver agreement,
k = 0.9) using an adapted version of the Specific Affect Coding System (SPAFF) [25]. The most prevalent code
from the list was assigned every 10 seconds resulting in 48 sequences for each interaction. The codes were then
grouped into positive and negative for emotion recognition.

The speech was manually annotated with the start and end of each speaker’s turn, along with pauses and noise.
The speech was manually transcribed in 15-second chunks separately for each partner. Given that Swiss German
is mostly spoken with different dialects across Switzerland, the spoken words were written as the corresponding
German word equivalent. The following two works — [11] and [5] — used this data to recognize global and local
emotions respectively, all framed as binary classification tasks.

6 MODALITIES, DATA PREPROCESSING AND FEATURE EXTRACTION
In this section, we describe the modalities of the data used for emotion recognition in the surveyed works along
with preprocessing approaches and features that were extracted from each modality. The surveyed papers used
three distinct modalities with acoustic being the most represented modality: acoustic (19), lexical (9), and visual
(2).
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6.1 Acoustic
Given that the audio data is collected in the context of conversations, it is generally annotated manually or
automatically with the segments that contain speech vs no speech (voice activity detection), and additionally,
those segments are annotated to correspond to the speech of each partner, which is known as speaker diarization.

Next, various features are extracted either using feature engineering or transfer learning. Feature engineering
entails using handcrafted features that have been shown to be discriminative for the recognition task. For feature
engineering, standard acoustics features such as prosodic (e.g., pitch, energy, speaking rate), spectral (e.g., mel
frequency cepstral coefficients) and voice quality (shimmer and jitter) are extracted over frames of short durations
(e.g., 25 ms) known as low-level descriptors (LLDs) using a sliding window (e.g., 10 ms) which may or may not
be overlapping [5, 6, 8, 11, 13, 22, 26, 38, 39, 52, 56–59, 61–63, 96, 101]. Various statistics called functionals (e.g.,
mean, median, percentiles, etc) are computed over these frames to get features for a segment (e.g., 2 seconds) or
the whole audio (8-10 mins). In particular, a set of 88 features called eGeMAPS [32] have been shown to be a
minimalist feature set that is effective for emotion recognition tasks and have been used in the following works
[5, 11, 22]. The openSMILE toolkit [33] has been mostly used for acoustic feature extraction. Other tools such as
Praat [14] have been used. Due to the likelihood of having a lot of features, various features selection methods
such as forward feature selection has been used [6]. Additionally, various approaches have been used to remove
the speaker, microphone, and environmental variability of the audio signal by performing mean normalizing of
the LLDs for the whole session audio (e.g., [8]).
Transfer learning is an approach used to circumvent the need to develop hand-crafted features and entails

using a model pre-trained on a different but related task ([35]). This process entails using the model for feature
extraction or fine-tuning in which the whole model or later layers are retrained. For example, Boateng et al.
took a CNN model called the YAMNET that was pretrained on an audio event classification task and used it to
extract feature embeddings from spectrograms over 1-second time windows ([13]). Also, Li et al pretrained a
deep learning model (CNN) on an emotion recognition task that used acted data and then used the model to
extract acoustic embeddings for the recognition task [63].

6.2 Lexical
The audio is generally transcribed automatically or manually in order to use the content of the speech for emotion
recognition. Various linguistic features ranging from simple features (bag of words and TF-IDF), dictionary-based
features used in psychology such as LIWC [72], more advanced ones such as word embeddings (word2vec [68]
and ELMo [73]) to deep learning models such as BERT [28] which are currently the state-of-the-art for computing
linguistic features.
Here are examples of works that have used those lexical features: bag-of-words (unigram [21, 37], ngram

[5, 20, 70]), TF-IDF [39, 52, 60], LIWC [5], word embeddings (word2vec [94, 95], ELMo [20]), deep sentence
embeddings (seq-to-seq models [22, 93, 94, 96], BERT and Sentence-BERT [5, 11]). Transfer learning has also
been used for the lexical data. For example, various sentence embeddings have been computed using pretrained
models [5, 11, 22, 93, 94, 96].

6.3 Visual
Few works used the visual modality and in particular head movements in the videos that were recorded. The
following features have been extracted: line spectral frequencies/power spectral density of head motion vectors
to capture the vertical and horizontal directions of the head motion [39, 102]. Facial expressions were not used
in those works because the quality of the video was not good enough to compute features from the face (e.g.,
varying sitting positions, camera distance/angle, and lighting conditions) [39].
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7 DATA ANALYSIS AND EVALUATION
In this section, we describe various algorithms that have been used for emotion recognition, multimodal fusion
approaches, intrapersonal and interpersonal considerations, evaluation, and results.

7.1 Algorithms
The surveyed works used mostly supervised learning approaches with a few using semi-supervised [21, 38, 39,
52, 59, 60, 101] and unsupervised learning [62, 93]. The algorithms used range from simple statistical algorithms
and traditional machine learning to deep learning methods. Support vector machines (SVM) have been the most
used algorithm.
Here are the algorithms used by various works: SVM [5, 6, 8, 11, 13, 38, 39, 52, 58, 61, 94, 95, 101, 102], linear

discriminant analysis (LDA) [6, 101], markov models [21, 56, 57, 70, 101], multiple instance learning (diversity
density [39, 59, 60], diversity density SVM [38, 52]), maximum likelihood [20, 21, 37, 70], sequential probability
ratio test [60], logistic regression [8], perceptron [101], gaussian mixture model (GMM) [102], deep neural
networks [22, 61, 62, 96], LSTM [93–96], GRU [20, 63], random forest [11, 26], CNN [63].

7.2 Multimodal Fusion
Modalities that have been combined include acoustic and lexical data [11, 22, 52, 96], and acoustic, lexical, and
visual [39]. Various fusion methods have been used such as feature-level fusion in which the features of each
modality are concatenated and decision-level fusion in which each modality is trained with a separate model and
the predictions from the models are combined using various approaches such as majority vote. The following
papers used feature-level fusion [11, 22, 39, 96] and decision-level fusion [22, 39, 96]. Additionally, knowledge-
driven expert fusion approaches have been explored by Tseng et al. as follows: gender-based and therapy-stage
fusion [96].

7.3 Intrapersonal Considerations
One challenge with recognizing global emotion labels — one emotion label for a long interaction duration such as
8-10 minutes — is that there is a whole range of emotions experienced and expressed throughout the interaction
with different intensities. One naive approach to address this challenge is to assign every segment (e.g., 2 seconds)
with the label of the whole audio and then train the model with this modified data-label pairings. This approach is
used in various fields such as physical activity recognition [10] since an activity label (e.g., walking) is consistent
over different segments. However, such an approach is error-prone for the context of emotion recognition as it
erroneously assumes that the emotion label is the same for all segments. The standard approach used in various
works is to compute statistics such as mean, median, etc., over the features that have been computed over short
windows as previously seen in the approach used for extracting acoustic features.

However, the emotion recognition task may benefit from more creative modeling approaches. One such
approach relates to the concept of saliency. Some interaction segments might be more salient for recognizing
that one label assigned to the whole audio. Some works have leveraged some methods to identify those salient
segments. One such saliency-based method is multiple instance learning which automatically identifies salient
instances from a bag of instances in a semi-supervised learning fashion [29]. For example, the following works
leveraged multiple instance learning to identify salient instances to use for recognition using acoustic features
[38, 59], lexical features [60], both acoustic and lexical features [52], and all three modalities — acoustic, lexical,
and visual [39]. Another saliency-based method used the concept of the peak-end rule which posits that how
people feel after an emotional experience is predicted by the emotional extremes and the end of that experience
[36]. The theory was leveraged to identify salient segments, extract features from those segments, and then
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perform the recognition task [13]. Another modeling approach leveraged dynamic modeling of all segments with
a Markov model using acoustic features [101] and lexical features [21, 70].

7.4 Interpersonal Considerations
The dyadic nature of couples’ interactions offers the opportunity to leverage various interaction dynamics to
perform recognition of emotions. One major dyadic dynamic that has been used is synchrony/entrainment which
refers to how similar/aligned/synchronized partners are when interacting. Various quantitative measures for
synchrony have been computed for various modalities. For acoustic, some examples include prosodic entrainment
measures computed with the following similarity measures (1) square of correlation coefficient, (2) mutual
information, and (3) mean of spectral coherence over pitch and energy between the sequential turns of partner A
and partner B when there is turn change [56]. Another approach leverages principal component analysis (PCA)
to compute both prosodic and spectral entrainment while providing information about the directionality of the
entrainment [57, 58]. For the visual modality, the Kullback-Leibler (KL) divergence of the features extracted from
the head motion of the partners was used as the similarity measure for synchrony [102]. Another dyadic dynamic
derives from the idea that partners generally influence each other while interacting. Dyadic influence has been
modeled using lexical features from both partners [70] and both acoustic and lexical features from both partners
[11].

7.5 Evaluation
Three works performed regression [20, 94, 96] with the rest performing classification. All works that performed
classification trained models to perform binary classification except [22] and [26] which performed 3-class and
5-class classification respectively. All works performed global emotion recognition except [22] and [5] which
performed utterance-level recognition for every speaker turn and every 10 seconds respectively. All works
have used accuracy as the evaluation metric except the following which used unweighted average recall (UAR)
[5, 11, 13, 22], Spearman correlation [20] and mean absolute error (MAE) [94, 96]. It is important to note that all
the works that used accuracy as the metric had balanced classes (except [26]) and hence, there should not be any
concern about it not being an appropriate metric.
Most evaluations have been done with leave-one-couple-out (LOCO) cross-validation which is a robust

evaluation approach as it gives a sense of how the model will perform on an unseen couple. With this approach,
models are trained using data from all couples but one, and then the prediction is done on the remaining couple’s
data as the test set. This process is repeated till each couple has been used as a test set. Hence, if there are 300
couples, the evaluation is done 300 times. In the end, the predictions of each test couple are combined either
by computing the evaluation metric (e.g., accuracy) separately for each couple and then computing the mean
and standard deviation of the accuracies, or concatenating all the predictions and computing one accuracy value
for all the combined predictions. LOCO is a variation of the standard leave-one-subject-out cross-validation but
more robust for the context of couples data as it ensures that there is no data leakage from the same audio (as an
example) being in both train and test sets. One challenge with LOCO is that the evaluation could take a long time
when there are a lot of couples as it is done as many times as there are couples.

Other similarly robust evaluation approaches that have been used which also ensure that there is no data
leakage but reduces the amount of time relatively are leave-N-couples-out cross-validation (LNCO) (e.g., [63] with
n=4) and K-fold cross-validation (CV) couple disjoint (k=10: [5, 11, 38, 52, 60], k=6: [20]). The “couple disjoint”
refers to the fact that a couple is never in both the train and test set for the same evaluation run.

Another approach that has been used is the standard hold out (train test split) evaluation [26]. That work also
performed couple-dependent evaluation [26]. That is, the authors trained and evaluated models within each
couple separately. Hence, the concept of “couple disjoint” does not apply. The results from such an evaluation
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could be inflated as it could leverage particularities of the data to produce high results and does not give a sense
of how the model will perform on an unseen couple. Nonetheless, it gives a sense of how well the model may
perform if personalized models are trained.
Furthermore, several works have performed gender-specific evaluations where the model is trained and

evaluated separately for male and female partners [6, 8, 11, 13, 21, 22, 26, 38, 96, 101]. The motivation for this
approach is that gender differences affect how people express their emotions [16] and in particular how they
speak and hence training approaches may benefit from using models separately for each gender.

7.6 Results
In this section, we summarize the main results across the works and also provide some context to enable the
correct interpretation of the results.
The best result for the work that performed 3-class classification (positive, negative, neutral) is 57.4% UAR

[22]. The best result for the 5-class classification (anger, sadness, joy, and tension, neutral) which also used
couple-dependent evaluation ranged from 78% to 95% for different couples and genders [26].

For binary classification, we provide results for 2 groups of works — (1) works that used the UCLA/UW Couples
Therapy dataset in which they only considered ratings at the 2 extremes and (2) works that used other datasets
without only considering the extreme ratings. We separate the two because the first task is easier than the second
since only extremes are being considered rather than all ratings regardless of the intensity.
For the first group, here are the best accuracies for each emotion task and gender with the corresponding

modality shown:
• Positive affect: 82% (female) [6] (acoustic), 78% (male) [101] (acoustic), 93% (combined male and female)
[52] (lexical)

• Negative affect: 88.57% (female) [21] (lexical), 85.7% (male) [8] (acoustic), 95% [52] (combined male and
female) (lexical)

• Sadness: 66.4% (female) [38] (acoustic), 63.6% (male) [38] (acoustic), 80% [52] (combined male and fe-
male)(lexical)

• Positive vs negative: 76% [56] (combined male and female) (lexical)
In light of these high accuracy results, it is worth noting that they are not reflective of true emotion recognition

performance since the data was partitioned into two extreme ratings (top 20% and bottom 20%). Consequently,
the performance would likely be much lower if all the data were used.
The best results for the second group are the following UAR for positive vs negative: 74.8% (female) [13]

(acoustic), 56.1% (male) [11] (acoustic and lexical), 69.2% (combined male and female) [5] (lexical).
For the regression tasks, the best results are 1.22 MAE for negative affect [96] (acoustic and lexical) and

Spearman correlation of 0.5 for positive affect, 0.58 for negative affect, 0.18 for anxiety, 0.52 for anger and 0.28 for
sadness [20] (lexical).
For works that use gender-specific evaluations, performance for female partners tends to be better than for

male partners. These results might suggest that it is more difficult recognizing the emotions of male partners and
consistent with insights from psychology that suggest that female partners are more emotionally expressive [16].
Also, in works that consider multiple modalities, lexical modality tends to outperform other modalities including
multimodal ones [5, 22, 39, 52]. Considering the different evaluation contexts (e.g., different number of classes,
data subsamples, etc.), it is difficult to compare results directly. Nonetheless, excluding results from UCLA/UW
Couples Therapy dataset (because of the data selection bias issue) and the Stanford Lab dataset (because of the
use of couple-dependent evaluation) both of which produce inflated results, it is clear that all of the best accuracy
results are below 75% with most below 70%. As a reference, the partner-perceived result reported in Boateng et al
([13]) — how well partner A could tell the emotions of their partner B — were 73.2% (male) and 74.3% (female).
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Hence, there is more room for improvement to have performance results that are on par with or exceed how well,
for example, husbands or wives could tell the emotions of their wives or husbands.

8 DISCUSSION: RESEARCH GAP, CHALLENGES AND FUTURE DIRECTION
Despite the contributions of these works, there are still significant research gaps. In this section, we discuss these
research gaps, challenges, and future directions in this area of research.

8.1 Unexplored Modalities
Only two modalities — acoustic and lexical — have been mostly used for recognition with the visual modality
explored only superficially. Several modalities such as physiological data (heart rate, heart rate variability,
skin temperature, skin conductance), body and hand gestures using accelerometer, gyroscope, or even the
visual modality, and facial expression are unexplored. Additionally, only standard and simple multimodal fusion
approaches have been used. More complex fusion approaches such as model-level and hybrid [74] could be
explored in the future.

8.2 Cross-lingual and Cross-cultural evaluation
None of these works have performed cross-lingual and cross-cultural evaluations. Models in these works have been
developed in lingual silos (English, German, and Dutch language speakers) and cultural silos (North Americans,
Western Europeans). More effort would be needed to develop and evaluate recognition systems that work across
languages since multilingual language models would need to be used. Furthermore, culture affects how people
experience and express emotions [65, 84]. Currently, it is not clear how well the recognition systems would work
across cultural contexts. Hence, more work is needed to perform these kinds of evaluations as it is important for
building systems that are easily generalizable to other contexts.

8.3 Intrapersonal and Interpersonal Modeling
Further intrapersonal and interpersonal modeling approaches could be explored. For example, attention mecha-
nisms [99] could be leveraged to automatically learn the salient segments as part of the training process. Also,
synchrony measures have only been computed for individual modalities. Computing and using synchrony
measures multimodally is a possible future direction. Additionally, more complex dyadic influence modeling
could be used such as on a turn-by-turn basis rather than only including the features of the interacting partner
as was done in [11]. Other kinds of dyadic dynamics from [23] can be used such as the ratio of both partners’
counts of positive and negative words and turn-taking patterns (e.g., the ratio of partners’ speaker turn duration,
pauses, number of words, etc).

8.4 Observed vs Self-Reported Emotion Data
Most of these works have used observed emotion labels from external raters with only a few works using
self-reported labels from the partners themselves [11, 13]. One challenge with observed labels is that they are
based on the perceptions of external individuals and consequently, do not reflect the subjective emotions of the
partners. Though similar, performing recognition of these two groups is distinct and important to be mindful of
depending on the downstream use case of the system. For example, if the intended use case and intervention is
that partner A shows empathy to partner B based on how partner A is feeling, for example, a recognition system
that only looks at emotional behavior or emotional expression will not be the best to use but rather, one that can
adequately quantify partner A’s subjective emotions. More work is needed to be done using self-reported labels.
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8.5 Data from Daily Life
Currently, there is no work that has performed emotion recognition using data collected from couples’ interactions
in uncontrolled settings in daily life. Data from thewild tend to be noisy and could havemore potential confounders
such as increased heart rate arising from physical activity rather than from high emotional arousal such as stress
or anger which could be the likely reason in a controlled lab conversation setting. Hence, the recognition task
would be more challenging than the context of the datasets used in these works, which are couples sitting at one
place, with limited mobility, and having an 8-10 minute conversation. Consequently, models developed with lab
data will likely not perform well on data from daily life. Future work is needed to collect this kind of data and
perform recognition with it. This work [9] is a step in that direction.
Though not unique to the context of data from daily life, it is more critical that performance evaluations go

beyond the standard accuracy metrics and include detailed error analyses and assessments of conditions under
which the model performs poorly. For example, the model might perform poorly when the signal-to-noise ratio is
above a certain threshold (as was considered by [6]) or if the transcript has way too few words per speaker turn.
The model could be preempted from performing recognition when these conditions are encountered to reduce
the likelihood of the model performing poorly. Error analyses would reveal more detailed information such as
these. These are key requirements for building robust systems that work using data from uncontrolled settings.

8.6 Real-Time Recognition Systems
Furthermore, none of the works surveyed have actually implemented systems that perform real-time recognition
either in the lab or in the real world which is the holy grail of a system for couples’ emotion recognition. The real
test of such a machine learning system is its deployment and evaluation in the contexts in which they are to be
used.
Key challenges related to the turn-taking nature of couples’ interactions need to be addressed towards ac-

complishing this goal especially for the two most used modalities — acoustic and lexical. These include having
automatic speech preprocessing pipelines — voice activity detection, speaker diarization, and speech recognition
systems — that work accurately on the fly without time lags for audio data. Several of the surveyed works used
manually annotated data in the preprocessing stage and hence it is a key challenge for future works to address.
Additionally, the recognition algorithm would also need to work accurately and without lag, on the systems

that they are deployed on. For ubiquitous devices such as smartphones, smartwatches, or edge devices, the
model would have to be small enough to fit on the device and perform computation without hoarding all the
compute resources. Most of the works have used simple algorithms such as SVM which will work well for such
contexts. But for the deep learning models, there might be potential challenges because of their size and compute
requirements. This issue is more pertinent for the lexical modality since current start-of-the-art language models
(e.g., BERT) are huge and might be impossible to fit on edge devices in their original form. Various approaches to
compress, distill and quantize large models would need to be explored.

9 CONCLUSION
In this work, we survey 28 works that have developed and evaluated systems for emotion recognition using
data collected from couples’ interactions or conversations. Overall, the works in this survey have mostly used
one specific data set — UCLA/UW Couples Therapy data. All works have used data collected from lab contexts.
Most works used the acoustic modality and the SVM algorithm for binary classification of positive and negative
affect. Various multimodal fusion and intrapersonal and interpersonal modeling approaches have been explored.
Robust evaluation approaches (e.g., LOCO, LNCO, and 10-fold CV couple disjoint) and metrics (UAR and accuracy
with balanced data) have been used. Performance results leave room for improvement. Substantial research gaps
remain with several opportunities for future research directions such as exploring more modalities and advanced
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fusion approaches, performing cross-lingual and cross-cultural evaluations, leveraging other intrapersonal
and interpersonal modeling approaches, using data from daily life, and performing real-time and real-world
deployment and evaluation of the recognition system. Insights from this survey would enable future research
towards having better couples’ emotion recognition system that would enable social and health psychology
research and the development of interventions to improve the emotional well-being, relationship quality, and
chronic disease management of couples.
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Extensive couples’ literature shows that how couples feel after a conflict is predicted by certain emotional aspects of that
conversation. Understanding the emotions of couples leads to a better understanding of partners’ mental well-being and
consequently their relationships. Hence, automatic emotion recognition among couples could potentially guide interventions
to help couples improve their emotional well-being and their relationships. It has been shown that people’s global emotional
judgment after an experience is strongly influenced by the emotional extremes and ending of that experience, known as the
peak-end rule. In this work, we leveraged this theory and used machine learning to investigate, which audio segments can be
used to best predict the end-of-conversation emotions of couples. We used speech data collected from 101 Dutch-speaking
couples in Belgium who engaged in 10-minute long conversations in the lab. We extracted acoustic features from (1) the audio
segments with the most extreme positive and negative ratings, and (2) the ending of the audio. We used transfer learning
in which we extracted these acoustic features with a pre-trained convolutional neural network (YAMNet). We then used
these features to train machine learning models — support vector machines — to predict the end-of-conversation valence
ratings (positive vs negative) of each partner. From our results (balanced accuracy), the segments from the peak were the
best for recognizing the emotions of female partners and outperformed male partners’ perception of their female partners’
emotions. The results of this work could inform how to best recognize the emotions of couples after-conversation sessions
and eventually, lead to a better understanding of couples’ relationships either in therapy or in everyday life.
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1 INTRODUCTION
Couples’ observation research has shown that the emotions that couples experience during a conflict predict
if these couples stay together in the long-term (for an overview, see [19]). For instance, couples heading for
break-up show more negative emotions and less positive emotions than happy couples, and are stuck in certain
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emotional patterns [7, 18]. Although couples’ observation research has delivered valuable clinical insights, it
also suffers from measurement issues such as low cross-validity and interrater reliability [23] and entails some
methodological challenges. One important methodological challenge is the manual coding of audio-video data,
which is very costly and time-consuming [27]. Automated emotion recognition could alleviate these limitations,
and therefore advance the field in important ways [36].
Several emotion recognition works on couple dyads use data that is collected from individuals acting out

dyadic interactions either using a script or engaging in spontaneous sessions [5, 6, 32, 34]. A lot of emotion
recognition works use such data sets [38]. The emotions are later rated by others amidst several challenges [33]
and do not necessarily reflect the subjective emotions of the individuals. Additionally, these algorithms are likely
to perform poorly on naturalistic data [10].

On the other hand, there are few works on detecting the emotional behavior of real couples. Some leveraged
interaction dynamics among the partners (e.g., entrainment — synchrony between partners) [2, 28, 29] and salient
instances [16, 17, 26] to perform recognition. These works tend to use emotion labels from external raters rather
than the couples and hence do not reflect the subjective emotions of the couples.

Our aim is to build upon recent findings from fundamental psychological research to automatically recognize
couples’ self-reported emotions. Specifically, couples literature has shown that how couples feel after a conflict is
predicted by certain emotional aspects of that conversation (e.g., [13, 14, 21, 30, 31]); and recently, it has been
suggested that the emotional extremes and ending of the conversation might be particularly valuable [44]. In fact,
in a variety of domains, it has been shown that judgments of emotional experiences are most impacted by the
most extreme moments (peaks) and the end of that particular experience, known as the peak-end rule [12, 25].
The peak-end rule could be leveraged to develop systems to better recognize the emotions of couples.

Building upon our recommendations in [4], we investigate through a machine learning perspective which
segment(s) of an audio conversation could be used to best recognize the emotions of each partner after a
conversation. Our research question is as follows:

Using features of which of the following audio segments produce the best emotion recognition result: a) segments
with the most extreme positive and negative ratings, b) the ending of the audio or c) a combination of the extremes
and ending?
In this first of its kind work, our primary contribution is the exploration of the best way to recognize the

emotions of couples after a conversation (5 - 10 minutes) through the peak-end rule lens using deep learning
approaches. Our secondary contribution is the use of a unique dataset — real-world data collected from Dutch-
speaking couples with self-ratings of emotions. Our third contribution is our proposal and computation of a
"partner perception baseline" for emotion recognition within the context of couples’ interactions that leverage
each partner’s perception of his/her partner’s emotions.

We classified the end-of-conversation valence (positive vs negative) of Dutch-speaking couples using acoustic
features from various segments of the audio and compared with the partner perception baseline. We used transfer
learning, an approach used in deep learning to circumvent the need to develop hand-crafted features [11]. It is
used to address the limitations of using small labeled datasets and has shown success in various fields including
emotion recognition tasks ([35, 42]). The results of this work would inform the best way to recognize the emotions
of couples’ after-conversation sessions and eventually, lead to a better understanding of couples’ relationships
either in therapy or in everyday life.

The rest of this paper is organized as follows: In Section 2, we describe our method. In Section 3, we describe
our experiments In Section 4, we show and discuss the results. In Section 5, we present limitations of this work
and future work, and we conclude in Section 6.
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Fig. 1. Overview of Approach

2 METHODS
In this section, we describe the dataset and preprocessing, and the transfer learning approach (Figure 1).

2.1 Dataset and Preprocessing
A Dyadic Interaction lab study was conducted in Belgium with 101 Dutch-speaking, heterosexual couples. These
couples were first asked to have a 10-minute conversation about a negative topic (a characteristic of their partner
that annoys them the most), followed by a 10-minute conversation about a positive topic (a characteristic of
their partner that they value the most) [9, 43–45]. During both conversations, couples were asked to wrap up
the conversation after 8 minutes. For the negative topic, they were also asked to end on good terms. After each
conversation, each partner watched the video recording of the conversation separately on a computer and rated
his or her emotion on a moment-by-moment basis by continuously adjusting a joystick to the left (very negative)
and the right (very positive), so that it closely matched their feelings, resulting in valence scores on a continuous
scale from -1 to 1 [20, 39]. Additionally, each partner reported how they felt after the interaction and also what
they thought their partner felt, using the Affect Grid questionnaire [41]. The Affect Grid captures the valence
and arousal dimensions of Russell’s circumplex model of emotions [40].

Valence refers to how negative to positive the person feels and arousal refers to how sleepy to active a person
feels. Using these two dimensions, categorical emotions can be placed and grouped into the four quadrants: high
arousal and negative valence (e.g. stressed), low arousal and negative valence (e.g. depressed), low arousal and
positive valence (e.g. relaxed) and high arousal and positive valence (e.g. excited). Subjects had to place an ‘x’ on
any square on the Affect Grid corresponding to their feelings about each conversation, which translates to a
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value of between 0 and 8 each for pleasure and arousal. We only used the valence dimension of the Affect Grid
because the continuous rating that the end-of-conversation emotion was compared with was done only using
valence. The continuous rating was restricted to valence to minimize the time spent by subjects in the lab and
also because it is standard practice in such dyadic interaction designs. We categorized the valence scores into
two classes, negative (0-4) and positive valence (5-8) for males and females. Also, we only used audios from the
negative/conflict conversation in this work. We could use only 92 out of the 101 audios in this work as some of
the data was unavailable due to several issues peculiar of real-world data collection such as missing self-ratings
due to failure of the recording device, lack of speaker annotations for all couples among others. In total, for
males, we had 22 negative and 70 positive ratings and for females, we had 16 negative and 76 positive ratings.
This distribution shows how significantly imbalanced the dataset is which is reflective of real-world data and
consistent with other couple emotion recognition works (e.g. [8]).

The audio was manually annotated showing which partner was speaking at various points of the audio. Trained
research assistants (5) were instructed to listen and visually inspect the audios, and annotate the exact start and
end of each talking turn for each partner. In addition, students coded pauses, cross-talk, and noise and laughter.
Multiple rounds of checking were done to ensure this process was precisely done. We used the segments of the
audio where the male or female spoke to extract audio segments corresponding to the peaks and ends for each
partner. For the peaks, we used the continuous valence rating to find the specific second with the largest negative
value (minimum) and the specific second with the largest positive value (maximum). We then used the speaker
turn containing that specific second as the peak segment (each for the minimum and maximum). The average
duration of the peak segments for all the couples was 3.5 seconds. For the ending, we used the last 60 seconds of
the audio corresponding to 10% of the whole audio (600 seconds). There was no reference in the literature for the
duration to use for the end and so we picked 60 secs (the last 10%) as we reasoned it will capture a good enough
duration of each couple’s interaction without being too long.

Finally, we computed a partner perception baseline for the context of emotion recognition among couples. We
used the assessment of each partner’s perception of his/her partner’s emotion at the end of the conversation
to compute the baseline. This baseline gives an estimate of how well each partner could infer his/her partner’s
emotion after an interaction. We argue this is a good enough human baseline with which to compare the machine
learning approach since a person’s partner, in theory, is the best person to know him or her albeit this perception
is biased in practice [46].

2.2 Transfer Learning Approach
Given that the data set is small, we sought to leverage work that has been done for a related task and hence used
transfer learning [35] where we used a model that is pre-trained on a similar problem. We extracted spectrograms
and used a pretrained convolutional neural network (CNN) to compute embeddings as acoustic features which
we used to perform classification with machine learning models. We used the YAMNet model [1] which is a CNN
that was pretrained on the AudioSet dataset to predict 521 audio event classes [15, 22]. YAMNet is based on the
MobileNet architecture [24]. We used the YAMNet model as a feature extractor and hence replaced the original
final logistic layer which outputs 521 class with a linear support vector machine (SVM) which we trained.

We extracted a spectrogram as an input into the YAMNet model in the same way as was done for the trained
model. The audio’s sample rate is 16 kHz. A spectrogram is computed using magnitudes of the Short-Time
Fourier Transform with a window size of 25 ms, a window hop of 10 ms, and a periodic Hann window. A mel
spectrogram is computed by mapping the spectrogram to 64 mel bins covering the range 125-7500 Hz. A stabilized
log mel spectrogram is computed by applying log(mel-spectrum + 0.01) where the offset is used to avoid taking a
logarithm of zero. These features are then framed into non-overlapping examples of 0.96 seconds, where each
example covers 64 mel bands and 96 frames of 10 ms each [1]. This resulted in a 2D data of size 96 x 64 for each
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Table 1. Results for Peak, End and Peak-End Approaches and Baseline

Approach Balanced Accuracy (%)
Male Female

Partner perception 73.2 74.3
Peak 48.8 74.8
End 50 58.6
Peak-End 53.3 54.4

second, which we used as a data point input to the YAMNet model. The output of the model is a 1024-dimensional
feature vector per data point input of size 96 x 64. We then normalized the vectors to be zero mean and unit
variance and then used the features vectors as inputs to a linear SVM.

3 EXPERIMENTS
We performed various experiments using a linear SVM and the scikit-learn library [37]. We trained models
separately for males and females to perform binary classification of valence. Our main models were trained
using features from the peak, end, and peak and end (peak-end). We used majority voting of the classification for
all features to decide the class for the audio segment. We performed an evaluation with leave-one-couple-out
cross-validation similar to [8] which is a robust evaluation approach and gives an estimate of how well the model
will perform on an unseen couple. We used confusion matrices and the metric balanced accuracy for evaluation
since the data is imbalanced. Balanced accuracy is the unweighted average of the recall of each class. We used
different values of the hyperparameter “C” ranging from 10−4 to 101 for separate models and present results for
the hyperparameter that produced the best results. We used the “balanced” hyperparameter for all models of the
SVM to account for the class imbalance while training. We compared our results to a random baseline equivalent
to 50% balanced accuracy and our proposed partner perception baseline.

4 RESULTS AND DISCUSSION
We report the results of the best performing models in Table 1. The peak approach which used about only 1.1%
of the whole 10 minute audio performed the best for the female model with 74.8%, outperforming both the
random and partner perception baselines. Yet, it performed the worst for the male model. The peak-end approach
performed the best for the male model with 53.3% albeit worse than the partner perception baseline and slightly
better than the random baseline. Figure 2 and 3 show the confusion matrices of the best models for male and
female respectively.

The peaks performing better than the end in predicting end-of-conversation affect (though for female partners
only) is consistent with the results of [44], in which the peak rating was more predictive than the end. The peak
approach produced the best results likely because the peak segments contained the most extreme emotional
expressions (acoustically). This result was not the same for the male partners for whom the results for peak and
ends were similar and worse than the baselines. This result suggests that the male partners may not have been
more emotionally expressive (acoustically) at the peak segments than at the end. This reasoning is speculative
and hence further investigation is needed using, for example, linguistic features before any conclusions can be
drawn. These results points to the need to develop methods that can automatically identify the speaker turns
with the most extreme emotional expressions, after which acoustic features can be extracted to get accurate
end-of-conversation emotion predictions. This work is one step towards our goal to recognize the emotions of
German-speaking couples in daily life based on 5 minutes of multimodal data from conversation moments which
we are currently collecting [3].
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Fig. 2. Best Male Result Confusion Matrix (Peak-End Approach)

Fig. 3. Best Female Result Confusion Matrix (Peak Approach)
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5 LIMITATIONS AND FUTURE WORK
In this work, we did not perform an evaluation with the whole audio or random segments as the focus was on
the peaks and ends. Hence, we used random and partner perception baselines for comparison. Future work will
use the whole audio, and random segments. Also, we focused on valence since that was the only dimension rated
in the continuous rating. Future work will need to collect data with the arousal dimension and explore using
the arousal dimension. Those results could be used together with this work to identify the right quadrant of the
Affect grid and consequently, the kinds of emotions the person may be feeling. Additionally, we only used the
negative/conflict conversation. These experiments will be repeated with the positive conversation and results
will be compared to the results of this work. Furthermore, this work focused on evaluating the segments using
acoustic features. We currently do not have manual transcripts of the data and automatic speech recognition
systems that we tried out did not work well for this Dutch-based speech data. Hence, we plan to get manual
transcript of this data and use linguistic features also. Additionally, given that the continuous ratings were done
for the whole conversation including the speech of both partners, the peak rating of each partner may not
always overlap with a speech segment of that partner. Hence, we first extracted the speaker turns of each partner,
and then found the speaker turn with the peak rating. Consequently, the most extreme rating overall may not
have used. We extracted and used features from both positive and negative peaks. Future work will evaluate
using the positive and negative peaks separately and using different durations surrounding the peaks and ends.
Additionally, we plan to perform a similar evaluation using self-reports other than the Affect Grid such as ratings
for happy, sad, etc.

6 CONCLUSION
In this work, we performed an evaluation of the segments of an audio conversation that best predicts the end-
of-conversation emotions of couples. We leveraged the peak-end rule, and used a transfer learning approach to
extract features from (1) the audio segments with the most extreme positive and negative ratings, and (2) the
ending of the audio. We used a pre-trained CNN to extract these acoustic features and a linear SVM to perform
binary classification of the valence of partners. Our results showed that the segments from the peak produce
the best results for recognizing the emotions of female partners and the approach was better than the partner
perception baseline. This first-of-its-kind work contributes an evaluation of an approach that could be leveraged
to best recognize the emotions of couples and then potentially used to improve the emotional well-being and
relationship quality of couples via interventions.
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Many processes in psychology are complex, such as dyadic interactions between two interacting partners (e.g., patient-
therapist, intimate relationship partners). Nevertheless, many basic questions about interactions are difficult to investigate
because dyadic processes can be within a person and between partners, they are based on multimodal aspects of behavior
and unfold rapidly. Current analyses are mainly based on the behavioral coding method, whereby human coders annotate
behavior based on a coding schema. But coding is labor-intensive, expensive, slow, focuses on few modalities, and produces
sparse data which has forced the field to use average behaviors across entire interactions, thereby undermining the ability to
study processes on a fine-grained scale. Current approaches in psychology use LIWC for analyzing couples’ interactions.
However, advances in natural language processing such as BERT could enable the development of systems to potentially
automate behavioral coding, which in turn could substantially improve psychological research. In this work, we train machine
learning models to automatically predict positive and negative communication behavioral codes of 368 German-speaking
Swiss couples during an 8-minute conflict interaction on a fine-grained scale (10-seconds sequences) using linguistic features
and paralinguistic features derived with openSMILE. Our results show that both simpler TF-IDF features as well as more
complex BERT features performed better than LIWC, and that adding paralinguistic features did not improve the performance.
These results suggest it might be time to consider modern alternatives to LIWC, the de facto linguistic features in psychology,
for prediction tasks in couples research. This work is a further step towards the automated coding of couples’ behavior which
could enhance couple research and therapy, and be utilized for other dyadic interactions as well.
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1 INTRODUCTION
There are many processes in the field of psychology that are very complex such as dyadic interactions —
interactions between two people [23]. These processes are difficult to investigate because each person’s behavior
is multimodal, both persons influence each other’s behavior mutually, and this process unfolds rapidly [21]. Such
dynamic processes are relevant for a large number of human interactions (e.g., romantic partners, patient-therapist,
student-teacher, buyer-seller).
Of the different human interactions, conflict interactions in intimate relationships have been well studied

over the last decades [11]. Results indicate two principal types of communication behaviors: functional and
dysfunctional. For example, contempt and criticism are a reliable predictor for later divorce and therefore seen
as negative or dysfunctional, whereas providing appreciation and taking responsibility are considered to be
functional and are associated with stable relationships [19, 20, 22]. It is therefore important to understand conflict
interactions better as divorces are not only often emotionally and financially difficult for partners, but also have
long-term negative consequences on the children involved [2].

The major reason for the disappointing progress of understanding behavioral processes during conflict interac-
tions is the lack of methods that enable an automated approach for a fine-grained understanding of behavior.
Traditionally, analyses in interaction research are mainly undertaken using data obtained from observer rating
methods which are labor-intensive, expensive and time-consuming [27]. Consequently, codes are generally
assigned on a global scale (e.g., one rating for 8-10 minutes sessions) rather than on a fine-grain scale (e.g., every
talk turn or 10 seconds) resulting in sparse data. While observer ratings provide a means to capture global aspects
of behavior (e.g., positive behavior), the analysis of such global behavioral aspects and sparse data has forced
the field to focus on predictions based on average behaviors across entire interactions, thereby undermining the
ability to study intra- and inter-individual processes [23].

Beyond observer rating methods, psychology has also included technology to extract linguistic (i.e., what was
said) and paralinguistic features (i.e., how it was said). Various paralinguistic features have been extracted mainly
using Praat [10] and openSMILE [18] which are software tools that compute various acoustic features over audio
signals (e.g., pitch, fundamental frequency) over sequential time segments (e.g., 25 ms). They have been used in
various works for example to show that the fundamental frequency of oscillation of the vocal folds is a valid
proxy for emotional arousal [25] and a larger range in fundamental frequency is associated with more conflict
interactions [4, 5]. Furthermore, a specific set of 88 features computed called eGeMAPS have been shown to be a
minimalist feature set that performs well for affective recognition tasks [17].
Linguistic features have mainly been extracted through word-count-based programs like Linguistic Inquiry

and Word Count (LIWC) [36] which is a software for extracting the count of words using an existing list of words
and categories (e.g., positive/negative words, personal pronouns, social process). Its usage in couples research for
example has shown the words partners utilize during conflict significantly affect interaction and overall marital
quality. Findings indicate that greater first-person plural pronoun usage (‘we’), compared to first-person singular
pronoun usage (‘I’) produces more positive resolutions to conflicts [34, 38]. Tools such as LIWC however are
not without their limitations. In fact, they depend on the accuracy and comprehensiveness of the dictionary
they are based upon, together with not being able to take into account both the context that words are placed in
and the different meanings they might hold [3]. In a context such as conflict interactions where specific word
choices and their meanings are important in affecting how the conflict unfolds [38], such limitations hold great
significance for the validity and accuracy of applications that use such tools. However, recent advances in natural
language processing such as Bidirectional Encoder Representations and Transformations (BERT) [16] based
on the Transformer architecture [44] have been shown to set new state-of-the-art records in various natural
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language understanding tasks such as natural language inference, question answering, and sentiment analysis.
Some prior works have evaluated the predictive capability of BERT relative to LIWC in psychotherapy and mental
health classification with BERT outperforming models based on LIWC features in populations with mental health
diagnosis [24, 39]. Yet, BERT features have not yet been used in couples’ interaction research for prediction tasks.
Some studies have used linguistic and or paralinguistic features specifically to predict behavioral codes for

interacting romantic partners with the goal of automating behavioral coding. Most of these works have focused on
session-level prediction — predicting one code for the whole 8-10 minute session [7, 8, 12, 13, 26, 30–32, 40–42, 46]
with a scarcity of works focused on prediction of fine-grained behavioral codes such as at the speaker turn
level or every few seconds. One such work is that of Chakravarthula et al [14] in which they trained machine
learning models to predict 3 behavioral codes on a speaker turn level of 85 couples’ 10-minute conversations
using paralinguistic features (from openSMILE) and linguistic features (custom sentence embedding model) and
achieved 57.4% unweighted average recall (balanced accuracy) for 3-class classification. Leveraging advanced
sentence embedding methods such as BERT could potentially improve performance and increase the potential of
automating behavioral coding. Yet, it has not been investigated in the context of couples research. Furthermore,
including paralinguistic features could potentially enable better recognition.

In order to overcome current limitations, we utilized a data set collected from 368 couples (N = 736 participants)
who were recorded during an 8-minute conflict interaction. Our main goal is to examine how linguistic and
paralinguistic features in 10-second sequences can be used to predict how the same sequence is perceived and
rated by human coders as positive or negative communication behavior. We aim to answer the following research
questions (RQs):

RQ1:Which linguistics features — LIWC or BERT — are better for predicting sequences-to-sequences-rated positive
and negative communication behavior of partners?

RQ2:Given that the raters focused on coding linguistic aspects of behavior, how does adding openSMILE’s eGeMAPS
paralinguistic features affect the prediction performance?
Our contributions are (1) an evaluation of the predictive capability of BERT vis-à-vis LIWC in the context of

the automatic recognition of couples’ communication behavioral codes on a fine-grained time-scale (every 10
seconds) (2) an investigation into how the addition of paralinguistic features affects prediction performance (3)
the use of a unique dataset — spontaneous, real-life, speech data collected from German-speaking Swiss couples
(n=368 couples, N=736 participants), and the largest ever such dataset used in the literature for automatic coding
of couples’ behavior. The insights from our work would enable the usage of new technologies to potentially
automate the behavioral coding of couples, which could substantially improve the efficiency of couples research.

2 METHODOLOGY
Data Collection and Preprocessing: This work used data from a larger dyadic interaction laboratory project
conducted at the premises of the University of Zurich, Switzerland over 10 years with 368 heterosexual German-
speaking, Swiss couples (N=736 participants; age 20-80) [29, 43]. The inclusion criterion was to have been in the
current relationship for at least 1 year. Couples had to choose one problematic topic for the conflict interaction
from a list of common problems, and participants were then videotaped as they discussed the selected issue for
8 minutes. The data used in this work had one interaction from each couple and consequently, 368 8-minute
interactions.

Two research assistants were trained to code communication behaviors using an adapted version of the Specific
Affect Coding System (SPAFF) [15, 29]. Both raters practiced coding for at least 60 hours on videotapes that
were not part of the study, with Cohen’s kappa indicating that they had achieved an acceptable interobserver
agreement (k = 0.9). Each interaction was rated by both raters, with one rater focusing on the male partner and the
other rater focusing on the female partner. Ratings were produced every 10 seconds to account for the behavior
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unfolding during each sequence, resulting in 48 sequences for each interaction. Positive communication: (1) careful
listening, interest, curiosity, (2) recognition, approval, factual praise, (3) affective communication, caring, (4)
constructive criticism, and negative communication: (1) blaming, criticism, (2) defensiveness, (3) domineering,
(4) withdrawal, stonewalling, (5) formally negative interaction, (6) contempt, (7) provocation, belligerence. For
each 10-second sequence, raters would thus assign the code representing the communication behavior that was
most prevalent out of the ones listed above. Raters were asked to focus on the verbal aspect of the behavior in
assigning the codes. Due to the vast variety of codes present, we categorized all types of positive and negative
as 1 and 2 respectively, and then passed them to machine learning models in the form of a binary classification
problem.

The speech was manually annotated with the start and end of each speaker’s turn, along with pauses and noise.
The speech was manually transcribed in 15-second chunks separately for each partner. Given that Swiss German
is mostly spoken with different dialects across Switzerland, the spoken words were written as the corresponding
German word equivalent. Transcripts and audio recordings acquired from the interactions were divided along
the same 10-second sequence to match the 10-second sequences used for behavioral coding. This process was
done separately for each partner’s transcript and speech data. Consequently, we dropped 10-second matched
transcript-audio-code sequences that contained no speech and transcribed words.
Of the original 368 Swiss heterosexual couples that took part in the study, we could only use 345 because

some couples requested their data to be removed and some data were missing arising from technical problems
in data collection. In addition, while the orignal dataset presented instances where behaviors had been coded
as neutral/no communication, these were dropped from the analyses since no accurate description for what
constituted neutral communication was given in the codebook, and no differentiation with instances of no
communication was provided. This thus resulted in a total of 9930 10-seconds speech sequences with their
matching behavioral codes. Out of that number, 6978 were instances where communication had been coded as
positive, while 2952 were instances where it had been coded as negative, highlighting a significant class imbalance
that is characteristic of real-world datasets and partners’ behavior as seen in other works (e.g., [14]).

Linguistic Features: We extracted linguistic features from each 10-second transcript sequence using the
LIWC software for German [33]. It utilizes an existing list of words and categories (e.g., positive/negative words,
personal pronouns, social process) to count the number of the corresponding words in the transcript sequences
and categorize them across 97 different features. The internal German LIWC dictionary was used to analyze
the transcript and extract the features. We normalized each transcript sequence’s feature vector by dividing the
value of all the other features by the “word count” feature which represents the number of words present in each
transcript sequence. We then dropped the word count feature. This procedure thus left 96 normalized features
that were passed as input to the machine learning models.

Also, we extracted features from each 10-second sequence using a pretrained Sentence-BERT (SBERT) model
[37]. Sentence-BERT is a modification of the BERT architecture with siamese and triplet networks to compute
sentence embeddings such that semantically similar sentences are close in vector space. Sentence-BERT has
been shown to outperform the mean and CLS token outputs of regular BERT models for semantic similarity
and sentiment classification tasks. Given that the text is in German, we used the German BERT model [1] as
SBERT’s Transformer model and the mean pooling setting. The German BERT model was pretrained using the
German Wikipedia dump, the OpenLegalData dump, and German news articles. The extraction resulted in a
768-dimensional feature vector.

Paralinguistic Features: We extracted acoustic features from the voice recordings. For each 10-second
sequence, we first used the speaker annotations to get the acoustic signal for each partner separately. Next, we
used openSMILE [17] to extract the 88 eGeMAPS acoustic features which have been shown to be a minimalist set
of features for affective recognition tasks [18]. The original audio was encoded with 2 channels. As a result, we
extracted the features for each channel resulting in a 176-dimensional feature vector.

4



BERT meets LIWC ICMI ’21 Companion, October 18–22, 2021, Montréal, QC, Canada

3 EXPERIMENTS AND EVALUATION
We performed multiple experiments using the support vector machine (SVM) algorithm with the radial basis
function (RBF) kernel and the scikit-learn library [35]. We used RBF since it performed the best in as our initial
explorations in comparison to random forests, XGBoost, and linear SVM. We trained models to perform binary
classification of the behavioral codes for positive and negative communication using different feature sets.
Specifically, we used features from LIWC, BERT, openSMILE. Also, we explored multimodal fusion at the features
level of BERT and openSMILE by concatenating features from both groups. We used TF-IDF unigram and bigram
features (using the most frequent 1000 features) of the transcripts as a linguistic baseline. To train and evaluate
the models, we used nested K-fold cross-validation (CV). The nested procedure consisted of utilizing an “inner”
run of 3-fold CV for hyperparameter tuning, followed by an “outer” run of 5-fold CV which utilizes the best
values for each hyperparameter found by the “inner” run. We prevented data from the same couple from being in
both the train and test folds, thereby evaluating the model’s performance on data from unseen couples. As the
data was imbalanced, we utilized the metric balanced accuracy which is the unweighted average of the recall of
each class, and confusion matrices for evaluation. We used different values of the hyperparameter “C”, presenting
results for the hyperparameter that produced the best results. We used the “balanced” hyperparameter for all the
SVM models to mitigate the class imbalance while training. Standard errors were computed by running models
repeatedly, randomizing the groups used for the K fold CV and thus gathering a set of 20 accuracy measures for
each model.

4 RESULTS AND DISCUSSION
Table 1 presents the results of the best performing models for each of the feature modalities. The model that
used only the BERT features performed the best with 69.4% accuracy, compared to the LIWC model with 65.4%
accuracy. The BERT only approach also performed better than combining paralinguistic features to the BERT
features. The latter performed closely with 69.2% accuracy, but still significantly worse than the BERT only
model (p<.001 on a Wilcoxon signed rank test). Indeed, the paralinguistic baseline approach using openSMILE
features performed the worst, 61.3%, being outperformed by TF-IDF linguistic baseline (65.6%) which also slightly
outperformed LIWC. The worse performance of the paralinguistic features is expected given that raters in the
study were instructed to focus on the verbal aspect of the interaction rather than nonverbal behavior in assigning
codes.
Our results indicate that LIWC features do not have as much discriminative potential for prediction tasks

compared both with even simpler approaches such as TF-IDF, as well as more advanced methods such as
BERT. One likely explanation for BERT’s superior performance is its ability to capture the semantics of text via
contextualized embeddings. These results have also been shown in a similar work using emotion psychotherapy
or mental health data [24, 39]. The performance gain afforded by BERT notwithstanding, the simpler approaches
did perform better than expected, with the performance improvement between TF-IDF and BERT being less
than 4%. It is worth noting that this BERT model is used out-of-the-box and it is out-of-domain without any
customization on the couples conversational text. The results indicate that researchers in social psychology ought
to consider alternatives to LIWC, such as BERT, for extracting features for prediction tasks such as automated
behavioral coding and emotion recognition. Although LIWC features (and indeed, TF-IDF) have the advantage of
being simpler and more easily interpretable, various approaches are being developed to make BERT features
more interpretable via its multi-head attention mechanism [45] and Shapley [28]. Finally, the result of the BERT
model performing better than the multimodal approach is consistent with other works that found a similar
result for emotion [9] and behavioral recognition [14]. Including paralinguistic features did not seem to add any
more predictive information especially considering the context of the study in which assigning codes focused on
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Table 1. Results across 20 runs (with standard errors) for models using LIWC, BERT, openSMILE and multimodal input
features

Input Features Balanced Accuracy (% +/- S.E.)
openSMILE 61.28 ± .07
TF-IDF + ngrams 65.61 ± .08
LIWC 65.41 ± .05
BERT 69.39 ± .06
BERT and openSMILE 69.18 ± .06

verbal behavior. Further approaches need to be explored to better combine the openSMILE and BERT features for
improved results.

5 LIMITATIONS AND FUTURE WORK
In this work, we used manual transcripts. To accomplish true automated behavioral coding, our approach needs
to use and work for automated transcriptions. Current speech recognition systems do not work for this unique
dataset given that couples speak Swiss German, which is (1) a spoken dialect and not written, and (2) varies across
different parts of the German-speaking regions of Switzerland. Further work is needed to develop automatic
speech recognition systems for Swiss German.

Also, we only used the BERT model as a feature extractor to make a fair comparison with the LIWC features.
Fine-tuning the BERT model on this task and domain to update the weights of the model would potentially
improve the prediction results. This approach will be explored in future work. Finally, BERT models have been
shown to encode gender and racial bias because of the data they are trained on. This consideration needs to be
factored in for the specific prediction task and context [6].

6 CONCLUSION
In this work, we investigated the predictive potential of BERT features for automated coding of couples’ commu-
nication behavior compared to LIWC features, the de facto linguistic features in social psychology. We extracted
and compared LIWC and BERT features, used openSMILE features as a paralinguistic baseline and TF-IDF with
ngrams as a linguistic baseline. We trained an RBF SVM to classify positive and negative communication behavior
of each romantic partner on a 10-second granularity. Our results showed that both simple TF-IDF features as well
as more complex BERT features both outperform LIWC, indicating that it might be time for researchers to consider
alternatives to LIWC for predictive tasks in couples interactions. Additionally, adding paralinguistic features
did not perform better than the BERT-only approach. Our work is a further step towards better approaches in
automating the coding of couples’ behavior which could enhance couples research and assessments in couples
therapy.
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How romantic partners interact with each other during a conflict influences how they feel at the end of the interaction and
is predictive of whether the partners stay together in the long term. Hence understanding the emotions of each partner is
important. Yet current approaches that are used include self-reports which are burdensome and hence limit the frequency of
this data collection. Automatic emotion prediction could address this challenge. Insights from psychology research indicate
that partners’ behaviors influence each other’s emotions in conflict interaction and hence, the behavior of both partners
could be considered to better predict each partner’s emotion. However, it is yet to be investigated how doing so compares
to only using each partner’s own behavior in terms of emotion prediction performance. In this work, we used BERT to
extract linguistic features (i.e., what partners said) and openSMILE to extract paralinguistic features (i.e., how they said it)
from a data set of 368 German-speaking Swiss couples (N = 736 individuals) who were videotaped during an 8-minutes
conflict interaction in the laboratory. Based on those features, we trained machine learning models to predict if partners feel
positive or negative after the conflict interaction. Our results show that including the behavior of the other partner improves
the prediction performance. Furthermore, for men, considering how their female partners spoke is most important and for
women considering what their male partner said is most important in getting better prediction performance. This work is a
step towards automatically recognizing each partners’ emotion based on the behavior of both, which would enable a better
understanding of couples in research, therapy, and the real world.
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1 INTRODUCTION
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study focuses on one fundamental aspect of the conflict mechanism — how the emotional experience within each
partner is influenced by the behavioral exchange between partners.
A crucial aspect of conflict interaction in couples is how the behavioral exchange makes each person feel

during and after the interaction [25]. But although both partners experience the same interaction, they can feel
very differently about it. For example, if we assume that partner A shows contempt and criticizes partner B,
we can assume that partner A might feel angry or superior whereas partner B might feel hurt or humiliated.
Thus, the experience can be very different for the partner who communicates something compared to the partner
who perceives it [7]. This differentiation allows us to reflect on another mechanism, namely that the emotions
a person experiences are the results of two kinds of influences. Obviously, a person’s emotional experience is
constantly influenced by a partner’s behavior as a kind of co-regulating force, talk turn by talk turn. In addition,
however, each person has the ability to regulate one’s own emotional response (e.g., cognitive appraisal, emotion
regulation) [16], which then affects one’s own subsequent behavioral response. Thus, what partners experience
emotionally during and at the end of a conflict interaction is a reflection of the co-regulation and self-regulation
processes [6].
To better understand emotions in couples and their impact on relationships, often self-report assessments

are used in which each partner is asked to provide a rating of their own emotions right after an interaction,
or partners are asked to watch a video recording of the interaction and provide continuous ratings using a
joystick, for example, [17, 25]. Self-reports are burdensome to complete and may not be collected frequently. This
means that the relationship between behavior and emotions cannot be studied often. Thus, an automatic emotion
recognition system would allow scaling of couples research.

Various works have used linguistic features (i.e., what has been said) and paralinguistic features (i.e., how it was
said) to predict the emotions of each partner in couples interactions more broadly [3, 4, 8, 9, 19, 20, 22, 28–30, 32]
and in conflict interactions in particular [5, 10]. Most of these works have used observer ratings (perceived
emotions) as labels rather than self-reports (one’s actual emotions). Hence, the prediction task becomes that of
recognizing external individuals’ perception of each partner’s emotion rather than each partner’s emotion per
their own assessment. Though similar, the latter is more challenging than the former for a number of reasons.
First, the rating might be biased and may not reflect their actual emotions over the period the rating is for (e.g.,
the past 5 minutes). Whereas for observer ratings, coders are generally trained over several weeks, it is done by
more than one person and various approaches are employed to resolve ratings that are not in agreement and
ensure the validity of the labels. Second, the self-reported emotion may not be reflected in that partner’s behavior
in comparison to observer ratings which are purely based on behavioral observation.
Despite these challenges, insights from psychology research could be leveraged to make the prediction task

easier. Specifically, given that partners’ behaviors influence each other’s emotions in conflict interaction, the
behavior of both partners could be considered to better predict each partner’s end-of-conversation emotion.
However, it is yet to be investigated how doing so compares to using each partner’s own behavior only in terms
of emotion prediction performance. In this work, we used a dataset collected from 368 couples who were recorded
during an 8-minute conflict interaction, extracted linguistic and paralinguistic features, and used machine learning
approaches to predict how each partner felt directly after the conflict interaction (self-reported emotion). We
answer the following research questions (RQs)

RQ1: How well can the end-of-conversation emotion of each partner be predicted by their own behavior — a
combination of linguistic and paralinguistic data? (self-regulation)

RQ2: How does the prediction performance change when including the other partner’s behavior — (a) linguistic
only, (b) paralinguistic only, and (c) combination of linguistic and paralinguistic data? (co-regulation)
Our contributions are (1) an evaluation of how well a partner’s own linguistic and paralinguistic features

predict one’s own end-of-conversation emotion (2) an investigation of how the prediction performance changes
when including one’s partner’s features (linguistic, paralinguistic, and both) (3) the use of a unique dataset

2



You made me feel this way ICMI ’21 Companion, October 18–22, 2021, Montréal, QC, Canada

— spontaneous, real-life, speech data collected from German-speaking, Swiss couples (n=368 couples, N=736
participants), which is the largest ever such dataset used in the literature for automatic recognition of partners’
end-of-conversation emotion. The insights from our work would advance the use of methods to automatically
recognize the emotions of each partner which could enable research and applications to better understand couples’
relationships in therapy and the real world.

The rest of the paper is organized as follows: In Section 2, we describe our data collection, preprocessing and
feature extraction, in Section 3, we describe our experiments and evaluation, in Section 4 we present and discuss
our results, in Section 5, we present limitations and future work, and we conclude in Section 6.

2 METHODOLOGY

2.1 Data Collection and Preprocessing
This work used data from a larger dyadic interaction laboratory project conducted at the premises of the University
of Zurich, Switzerland over 10 years with 368 heterosexual German-speaking, Swiss couples (N=736 participants;
age 20-80) [18, 31]. The inclusion criterion was to have been in the current relationship for at least 1 year. Couples
had to choose one problematic topic for the conflict interaction from a list of common problems, and participants
were then videotaped as they discussed the selected issue for 8 minutes. The data used in this work had one
interaction from each couple and consequently, 368 8-minute interactions.
After each conversation, each partner provided self-reported responses to the Multidimensional Mood ques-

tionnaire [27] of their emotions on four bipolar dimensions — namely “good mood versus bad mood,” “relaxed
versus angry,” “happy versus sad” and “calm versus stressed” — with the scale: 1 — very much, 2 — much, 3 —
a little, 4 — a little, 5 — much, 6 — very much. In this work, we sort to focus on predicting emotional valence
(positive or negative) based on Russell’s circumplex model of emotions [26]. Hence, we used an average of the
“good mood versus bad mood” and “happy versus sad” scales which enables us to get a more valid score since
several dimensions that measure similar constructs are combined. We did not use the other two scales because
their polarity also could represent the arousal dimension of emotion (low vs high arousal). We then binarized the
averaged values similar to prior works (e.g., [3, 5]) such that values greater than or equal to 3.5 were negative
(0) and the rest were positive (1). Binarization enables us to map the data into Russell’s circumplex model of
emotions which has 4 quadrants for emotions, further enabling its real-world utility — easily being able to tell
which group of emotions are being felt by each partner using binarized valence and arousal dimensions.

The speech data were manually annotated with the start and end of each speaker’s turn, along with pauses and
noise. This was necessary in order to later be able to extract linguistic and paralinguistic features for each partner
separately. In addition, speech content of both partners was manually transcribed for each partner separately and
stored in 15-second chunks. Given that Swiss German is mostly spoken with different dialects across Switzerland,
the spoken words were written as the corresponding German word equivalent.
Some couples requested their data to be removed and some data were missing due to technical problems in

data collection. Of the original 368 couples that took part in the study, we could use 338 samples for females (46
negative labels) and 341 samples for males (32 negative labels). The distribution highlights a significant class
imbalance that is characteristic of real-world datasets and partners’ emotions as seen in other similar works (e.g.,
[5]).

2.2 Linguistic Features
We extracted linguistic features from the transcripts of the whole 8-minute interaction using a pre-trained model
— Sentence-BERT (SBERT) [24]. Sentence-BERT is a modification of the BERT architecture with siamese and
triplet networks to compute sentence embeddings such that semantically similar sentences are close in vector
space. Sentence-BERT has been shown to outperform the mean and CLS token outputs of regular BERT models for
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semantic similarity and sentiment classification tasks. Given that the text is in German, we used the German BERT
model [1] as SBERT’s Transformer model and the mean pooling setting. The German BERT model was pre-trained
using the German Wikipedia dump, the OpenLegalData dump, and German news articles. The extraction resulted
in a 768-dimensional feature vector.

2.3 Paralinguistic Features
We extracted acoustic features from the voice recordings. First, we used the speaker annotations to get the
acoustic signal for each gender separately. Next, we used openSMILE [11] to extract the 88 eGeMAPS acoustic
features which have been shown to be a minimalist set of features for affective recognition tasks [12]. The features
are extracted in 25 ms sequences and then various functions (e.g., mean, median, range, etc.) are computed over
the sequences resulting in 88 features for the whole 8-minute audio. The original audio was encoded with 2
channels. As a result, we extracted the features for each channel resulting in a 176-dimensional feature vector.

2.4 Multimodal and Dyadic Feature Fusion
Given that emotions are reflected in what and how people say things, we performed multimodal fusion (early
fusion) by concatenating the linguistic and paralinguistic features resulting in a 944-dimensional feature. We
did this separately for each partner. This feature vector was used as the baseline approach to answer research
question (1).

Additionally, we fused features from both partners to answer research question (2). Specifically, for partner A,
we concatenated their multimodal feature vector with the features of partner B and used it to predict partner
A’s emotion label. This process was done for partner B as well. In order to investigate which behavioral data of
the interacting partner was most important in the prediction of the emotions, we included the features in the
following order (1) linguistic only, (2) paralinguistic only, and (3) multimodal fusion of both.
Consequently, we had four feature sets: (1) Multimodal fusion (baseline — own features), (2) Multimodal +

Dyadic Fusion (with partner’s linguistic only), (2) Multimodal + Dyadic Fusion (with partner’s paralinguistic
features only) (4) Multimodal + Dyadic Fusion (with partner’s combined linguistic and paralinguistic only). These
were passed to machine learning models to answer the two research questions.

3 EXPERIMENTS AND EVALUATION
We ran experiments using scikit-learn [23] the following machine learning models: support vector machine (SVM)
algorithm with linear and radial basis function kernel, and random forests. We trained models to perform binary
classification of each partner’s self-reported positive and negative emotion using different feature sets. We used
the four feature sets described in the previous section. To train and evaluate the models, we used nested K-fold
cross-validation (CV). The nested procedure consisted of utilising an “inner” run of 5-fold CV for hyperparameter
tuning, followed by an “outer” run of 10-fold CV which utilizes the best values for each hyperparameter found by
the “inner” run. We prevented data from the same couple from being in both the train and test folds, thereby
evaluating the model’s performance on data from unseen couples. As the data was imbalanced, we used the
metric balanced accuracy which is the unweighted average of the recall of each class and confusion matrices
for evaluation. We used the “balanced” hyperparameter for all the models to mitigate the class imbalance while
training. We compare to a random baseline of 50% balanced accuracy.

4 RESULTS AND DISCUSSION
Our results are shown in Table 1. The baseline approach with multimodal fusion was not better than chance in
predicting men’s emotions at the end of the conflict interaction (49.8%). This result is unexpected as this indicates
that men’s own behaviors during the interaction are not related to how they feel at the end of the interaction. It
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Table 1. Prediction Results of the Best Models for the Fusion Approaches

Approach Balanced
Accuracy (%)
Male Female

Multimodal fusion (baseline) 49.8 59
Multimodal + Dyadic Fusion (with partner’s
combined linguistic and paralinguistic only) 52.3 63.2

Multimodal + Dyadic Fusion (with partner’s
linguistic features only) 53.5 64.8

Multimodal + Dyadic Fusion (with partner’s
paralinguistic only) 56.1 59.9

might be due to self-regulation processes or not showing much emotions during the interaction. This finding is
clearly different from women as their emotions can be predicted by their own behavior (59%). Thus, it seems
that women seem to express their emotions more clearly in their behavior. These results of poorer prediction
performance for men compared to women is consistent with the results of [5].

Including features from the interacting partner improved the results for both men (52.3%) and women (63.2%).
These results are consistent with psychology research that the behavior of partners’ have an effect on each
other’s emotions in conflict interaction [7, 14]. These results are a crucial finding because (i) previous research
shows that the behavior of one person influences the behavior of the other person [13] and (ii) that the emotional
changes of one person affect the emotions of the other [7]. However, this is the first study showing that behavioral
features assessed during the conflict interaction can be used to predict one partner’s emotion at the end of the
conversation. In addition, the improvement in women’s emotion prediction at the end of interaction is greater
when including their partner’s linguistic data (64.8%) whereas there is hardly any difference when including
partner’s paralinguistic features. This result is a surprising finding as women generally pay more attention to
paralinguistic cues [15]. Notably, the results are different for men. The prediction for men’s emotions slightly
increases when including their partner’s linguistic features but the prediction improves substantially when
including women’s paralinguistic features. Although we do not know which specific paralinguistic features are
the main drivers for predicting the emotions, this finding is in line with prior findings — when women “nag”,
men experience strong negative physiologic reactions and tend to withdraw [13, 15]. Future research is needed to
investigate which aspects of one’s partner’s behavior exactly causes their own emotion prediction performance
to decline. In addition, these results have implications for the kind of behavioral information to consider to best
predict each partner’s end-of-conversation emotions.
We show the confusion matrices for the best models for the men and women in Figures 1 and 2 respectively.

They reveal the models’ challenges at recognizing positive emotions (1), resulting in them being misclassified as
negative emotions (0).

5 LIMITATIONS AND FUTURE WORK
Further work is needed to investigate if these results are the same for couples in a different cultural context and
also explore the effect of the interacting partners’ behavior at a more granular level such as on a talk-turn basis.
More fine-grained emotion ratings may be needed to investigate that. Other fusion approaches like late fusion
can be explored.
We used BERT as a feature extractor in this work. Generating domain-specific sentence embeddings via

fine-tuning the BERT model and exploring deep transfer learning models for the paralinguistic features may
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Fig. 1. Confusion matrix for best performing model for male partners (Multimodal + Dyadic Fusion with partner’s linguistic
features only)

improve the results. BERT models have been shown to encode gender and racial bias because of the models they
are trained on. Further investigations are needed in the future of potential biases in prediction [2].

Finally, we used manual annotations and transcripts. To accomplish true automatic emotion prediction, speaker
annotations need to be done automatically and our approach needs to use and work for automated transcriptions.
Current speech recognition systems do not work for this unique dataset given that couples speak Swiss German,
which is (1) a spoken dialect and not written, and (2) varies across different parts of the German-speaking regions
of Switzerland. Further work is needed to develop automatic speech recognition systems for Swiss German.

6 CONCLUSION
In this work, we investigated one’s own and the partner’s behavior in predicting end-of-conversation emotions
in the context of conflict interactions in German-speaking Swiss couples. We extracted linguistic features using
BERT and paralinguistic features using openSMILE. We fused both features in a multimodal approach for each
partner. We also fused the features of both partners to predict the emotions of each partner. Our results show
that including the behavior of the other partner improves the prediction performance. Furthermore, for men,
considering how their female partners spoke is most important, and for women considering what their male
partners said is most important in getting better prediction performance. These insights have implications for
the behavioral information to (not) include to better predict each partner’s end-of-conversation emotions which
will enable a better understanding of couples relations in research, therapy, and the real world.
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Fig. 2. Confusion matrix for best performing model for female partners (Multimodal + Dyadic Fusion with partner’s
paralinguistic features only)
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Recognizing the emotions of the elderly is important as it could give an insight into their mental health. Emotion recognition
systems that work well on the elderly could be used to assess their emotions in places such as nursing homes and could inform
the development of various activities and interventions to improve their mental health. However, several emotion recognition
systems are developed using data from younger adults. In this work, we trained machine learning models to recognize the
emotions of elderly individuals via performing a 3-class classification of valence and arousal as part of the INTERSPEECH
2020 Computational Paralinguistics Challenge (COMPARE). We used speech data from 87 participants who gave spontaneous
personal narratives. We leveraged a transfer learning approach in which we used pretrained CNN and BERT models to extract
acoustic and linguistic features respectively and fed them into separate machine learning models. Also, we fused these two
modalities in a multimodal approach. Our best model used a linguistic approach and outperformed the official competition of
unweighted average recall (UAR) baseline for valence by 8.8% and the mean of valence and arousal by 3.2%. We also showed
that feature engineering is not necessary as transfer learning without fine-tuning performs as well or better and could be
leveraged for the task of recognizing the emotions of elderly individuals. This work is a step towards better recognition of the
emotions of the elderly which could eventually inform the development of interventions to manage their mental health.
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1 INTRODUCTION
Digital technologies are needed to aid in managing the physical and emotional well-being of elderly individuals
[24]. Awareness of the emotions of the elderly could give an insight into their mental health. Emotion recognition
systems that work well on the elderly could be used to assess their emotions in places such as nursing homes and
could inform the development of various activities and interventions to improve their mental health. However,
several emotion recognition works use data collected from actors and younger adults for their development and
evaluation (e.g. IEMOCAP dataset [3]). In this work, we develop and evaluate emotion recognition models using
the first public speech data collected from elderly individuals in the real world for emotion recognition as part of
the INTERSPEECH 2020 Computational Paralinguistics Challenge (COMPARE) [26]. The task was to perform
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a 3-class classification of the arousal and valence dimensions of emotions based on speech data from elderly
individuals.

Deep learning has been used for speech emotion recognition involving various approaches such as convolutional
neural networks (CNN), Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) — with
and without attention — bidirectional LSTM (BLSTM), mostly together with handcrafted features ([17]). Other
approaches have used the raw signal in an end-to-end approach leveraging 1D CNNs and LSTMs [29]. Transfer
learning is another approach used in deep learning to circumvent the need to develop hand-crafted features
and also deals with the challenge off small labeled datasets. Transfer learning entails pretraining a model on a
different but related task and using it for feature extraction or fine-tuning in which the whole model or later
layers are retrained ([7]). Transfer learning has shown success in various fields such as computer vision ([13, 16]),
speech processing ([15]), and natural language processing ([12, 23]). Transfer learning has also been used in
emotion recognition tasks ([7, 14, 25]).
Our contribution is the evaluation of transfer learning approaches to recognize the emotions of elderly

individuals using a novel dataset — speech data collected from German-speaking elderly individuals. Specifically,
we used a pretrained CNN model to extract acoustic features and a pretrained Transformer language model —
Bidirectional Encoder Representations from Transformers (BERT) [6] — to extract linguistic features. We trained
and evaluated separate models for acoustic and linguistic modalities. Also, we used a multimodal approach in
which we fused the features (early fusion) and trained models using the combined features [20].

The rest of our paper is organized as follows. In Section 2, we describe our methodology. In Section 3, we
describe our experiments. In Section 4, we show the results, discuss them and present future work. We conclude
in Section 5.

2 METHODS
In this section, we describe the dataset, the competition baseline approaches, and our acoustic, linguistic, and
multimodal approaches as shown in Figure 1.

2.1 Dataset
We used the Ulm State of mind elderly (USOMS-e) database collected from German-speaking elderly individuals
[26]. The dataset contains speech data of 87 participants (55 f, 32 m, age 60–95 years, mean 71.01 years, std. dev.
9.14 years), each of whom told two negative and one positive personal narrative. Participants’ emotions were
assessed post every narrative by the subject and later by 4 experts on a scale of 0 (very sleepy and very bad)
to 10 (very excited and very good) for the "arousal" and "valence" dimensions respectively. The audio data was
converted to 16 KHz mono and was segmented into 5-sec chunks. The audio was also transcribed manually and
automatically. The mean values of each dimension were used to create 3 classes: low (0-6), medium (7-8), and
high (9-10).

2.2 Competition Baseline Approach
The organizers of the competition used various approaches to generate the baseline results for the competition
such as feature engineering, transfer learning, unsupervised learning and end-to-end learning [26]. For feature
engineering, they used the openSMILE toolkit to extract 6373 static features (functionals), and the OPENXBOW
toolkit to extract Bag of Audio Words (BoAW) features. For transfer learning, they used the DEEP SPECTRUM
toolkit which used a pretrained CNN (ResNet50) to extract embeddings from the spectrograms of the audio. They
also used the LinguistIc Feature Extractor (LIFE) toolkit to extract linguistic embeddings which used a BERT
model that was pretrained on German text followed by Global Maximum pooling or bidirectional LSTM with
attention. For unsupervised learning, they used the AUDEEP toolkit which used recurrent sequence-to-sequence
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Fig. 1. Overview of Acoustic, Linguistic and Multimodal Approaches

autoencoders to learn representations of mel-spectrograms of the audio in an unsupervised manner. These
different feature sets were then fed into separate linear support vector machines with different hyperparameters.

2.3 Acoustic Approach
We used the acoustic characteristics of the audio to perform classification. We extracted spectrograms and used
a pretrained CNN to compute embeddings which we used as acoustic features to perform classification with
various machine learning models (Figure 1). We used the YAMNet model which is a CNN that was pretrained on
the AudioSet dataset to predict 521 audio event classes [8, 9]. YAMNet is based on the MobileNet architecture
[11]. We used the YAMNet model as a feature extractor and hence replaced the original final logistic layer which
outputs 521 class with various machine learning algorithms.

We extracted a spectrogram as an input into the YAMNet model in the same way as was done for the trained
model. The audio is downsampled from 44.1Kz to 16 kHz mono. A spectrogram is computed using magnitudes of
the Short-Time Fourier Transform with a window size of 25 ms, a window hop of 10 ms, and a periodic Hann
window. A mel spectrogram is computed by mapping the spectrogram to 64 mel bins covering the range 125-7500
Hz. A stabilized log mel spectrogram is computed by applying log(mel-spectrum + 0.01) where the offset is used to
avoid taking a logarithm of zero. These features are then framed into non-overlapping examples of 0.96 seconds,
where each example covers 64 mel bands and 96 frames of 10 ms each. This resulted in a 2D data of size 96 x

3



ICMI ’20 Companion, October 25–29, 2020, Virtual event, Netherlands Boateng et al.

64 for each second, which we used as a data point input to the YAMNet model. The output of the model is a
1024-dimensional feature vector per data point input of size 96 x 64. We then normalized the feature vectors to be
zero mean and unit variance and then used them as inputs to various machine learning models.

2.4 Linguistic Approach
We used the content of the speech — the manual transcript — to perform classification. Specifically, we used
pretrained Transformer language models to extract linguistic features and then performed classification with
various models (Figure 1). We used a pretrained BERT model to extract a 768-dimensional embedding vector for
each narrative [6]. BERT is a deep learning model that has achieved state-of-the-art results for several natural
language tasks. The BERT model we used is a case sensitive German BERT that was trained using a German
Wikipedia dump, the OpenLegalData dump, and news articles [2]. We preprocessed each story’s transcript by first
tokenizing each word and ensuring that the total number of tokens was less than or equal to the 512 maximum
that the BERT model takes. Hence, we ignored subsequent words in each story which was over 512 length. We
added special tokens for sentence classification (such as [CLS] at the first position). After passing each story
into the model, we took the 768-dimensional embedding vector of the first token [CLS] of the last hidden layer
and used that as the embedding for the whole story. We then normalized the vectors to be zero mean and unit
variance and then used the features vectors as inputs to various machine learning models.

We also used Sentence BERT (SBERT), a modification of the BERT architecture with siamese and triplet
network structures for generating sentence embeddings such that semantically similar sentences are close in
vector space [21]. The SBERT network was shown to outperform state-of-the-art sentence embedding methods
such as BERT and Universal Sentence Encoder for semantic similarity and sentence classification tasks such as
sentiment detection. We used the multilingual version of the SBERT model [22]. The network, like the original
BERT outputs a 768-dimensional embedding for each story. We normalized the vectors to be zero mean and unit
variance and then used the feature vectors as inputs to various machine learning models.

2.5 Multimodal Approach
We also explored using a multimodal approach in which we fused aspects of the acoustic and linguistic modalities
because multimodal approaches have been shown to outperform unimodal approaches in emotion recognition
tasks [20]. Specifically, we fused the feature vectors from the acoustic and linguistic approaches producing a
1792-dimensional feature vector for each story (Figure 1). Since there were several acoustic feature vectors for
each story, we performed a weighted sum of the acoustic feature vectors for each story. We then normalized
the vectors to be zero mean and unit variance and then used these fused vectors as inputs to various machine
learning models.

3 EXPERIMENTS
We performed various experiments using the following libraries scikit-learn [19], keras [5], and PyTorch [18]. We
trained models separately for valence and arousal, and used a hyperparameter search to get models that produced
the best results. We used a linear support vector machine (SVM), and a 2-layer LSTM [10] with 16 and 8 units,
and 50% dropout [27] after each layer. We used the LSTM model for the acoustic approach to take advantage of
the sequential nature of the acoustic embeddings. Also, for the acoustic approach, we used majority voting of
the classification of the 5-sec audio chunks to decide the class for each story. For evaluation, we used the metric
unweighted average recall (UAR) which is used for unbalanced data and confusion matrices.
Given that the data is imbalanced, we upsampled the minority classes so the data was balanced using the

SMOTE algorithm [28] and imblearn library [1]. We used the train and development data sets provided by the
competition organizers for developing the model. The organizers had a held-out test whose labels were not
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Table 1. Results for Competition Baseline Approaches and our Acoustic, Linguistic, and Multimodal Approaches

Model Dev (UAR %) Test (UAR %)
Val Arous Val Arous

Competition Baseline Approach
Functionals + SVM 33.3 39.1 33.3 47.9
BoAW + SVM 33.3 40.5 31.5 49.1
Autoencoder + SVM 36.7 34.9 33.8 44.3
ResNet50 + SVM 31.6 35.0 40.3 50.4
BERT + LSTM + SVM 49.2 40.6 49.0 44.0

Acoustic Approach
YAMNet + SVM 44.3 43.9 34.7 43.9
YAMNet + LSTM 37 40.2 — 47.9

Linguistic Approach
BERT + SVM 51.1 45.7 56.3 48
SBERT + SVM 57.42 30.33 57.8 —

Multimodal Approach
Fusion + SVM 49 43.8 52.3 47.4

made available to researchers. We had to submit our predictions on the held-out test which was evaluated by the
organizers, and the prediction result sent to us. Also, we had a constraint of five submissions on the held-out test
set and hence we used only our best models for those submissions. The official competition baseline was based
on the performance on the held-out test set.

4 RESULTS, DISCUSSION AND FUTURE WORK
We present the results for the competition baseline, and our acoustic, linguistic, and multimodal approaches in
Table 1 where a "—" means that the model was not used for the held-out test. The best results for the competition
baseline and our approaches in the valence and arousal columns are highlighted in bold. Also, we show the
confusion matrices of the best models in Figure 2 (valence) and 3 (arousal).

The competition organizers’ best methods which produced the results that were used as the official competition
baseline results were the DEEP SPECTRUM (ResNet50 + SVM) for acoustic (50.4%) and LIFE (BERT + LSTM +
SVM) for valence (49.0%) and an average of valence and arousal of 49.7%.
Among our approaches, the linguistic models performed the best for both valence and arousal, with the

multimodal model being the second best for valence and the acoustic model being the second best for arousal.
Our best model for valence was SBERT + SVM with a UAR of 57.8% and the best model for arousal is BERT + SVM
with UAR of 48% and an overall mean UAR of valence and arousal being 52.9%. Our best models outperformed the
official baseline (using the held-out test set) for valence by 8.8% and the mean of valence and arousal by 3.2%. Our
best arousal model is however below the official arousal baseline by 2.4%. Our acoustic models not performing
better than the baseline suggests that using the pretrained YAMNet model as feature extractor is not adequate.
Hence, fine-tuning the model additionally or pretraining the model on a related emotion recognition task might
be necessary for good performance.
The linguistic model performing better than the acoustic model is consistent with the results of other works

such as an emotion recognition task among real-world couples whose best recognition result for a 3-class
classification of valence was 57.42% (UAR) [4]. A possible explanation is that we used the manual transcript
which is a perfect representation of the narratives which the linguistic model used as compared to the acoustic
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Fig. 2. Confusion matrix for development set evaluation for the best model for valence — SBERT + SVM: 57.4%

models which worked on raw, noisy, audio data. The model might have performed poorly with the automatic
transcript but we did not evaluate that as we used only the best model for evaluation. Also, the SBERT model
performed better than the regular BERT model for valence. This result is consistent with [21] which showed that
SBERT extracts better sentence embeddings than BERT for sentiment detection tasks.
The multimodal model surprising did not perform the best considering multimodal approaches have been

shown to perform better than unimodal approaches. This performance is however consistent with the result of
[4]. It is possible that the limitations of the acoustic features affected the multimodal results since we performed
feature-level fusion. Exploring other forms of fusion like decision-level and hybrid may improve the results of
the multimodal approach.
Our transfer learning approaches performed as well or better than the competition baseline approaches that

used feature engineering (static features and BoAW). These results show that feature engineering is not necessary
to get good emotion classification results for real-world speech data from older adults. This work focused on
using pretrained models as feature extractors. Hence, we did not fine-tune the pretrained YAMNet and BERT
models on this data. Doing so in the future could improve the recognition results.

Finally, this work is a key step towards recognizing the emotions of elderly individuals in daily life. We have
collected speech and video data with self-reported emotion labels from German-speaking elderly individuals in
their daily life after they underwent inpatient cardiovascular rehabilitation. Our future work will build upon this
work and explore emotion recognition within that unique context.

5 CONCLUSIONS
In this work, we used a transfer learning approach to classify low, medium, and high emotion labels of the valence
and arousal dimension of audio data collected from German-speaking elderly individuals. We used pretrained
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Fig. 3. Confusion matrix for development set evaluation for the best model for arousal: BERT + SVM: 45.7%

CNN and BERT models to extract acoustic and linguistic features respectively and fed them into separate machine
learning models. Additionally, we fused the features in a multimodal approach and fed them to machine learning
models. Our models using a linguistic approach performed better than the official competition baseline for the
valence recognition task by 8.8%. Also, our results showed that feature engineering is not necessary and transfer
learning can be leveraged to produce decent performance for the task of recognizing the emotions of elderly
individuals. This work is a step towards better recognition of the emotions of the elderly which could eventually
inform the development of interventions to manage their mental health.
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Smartwatches provide a unique opportunity to collect more speech data because they are always with the user and also have
a more exposed microphone compared to smartphones. Speech data could be used to infer various indicators of mental well
being such as emotions, stress and social activity. Hence, real-time voice activity detection (VAD) on smartwatches could
enable the development of applications for mental health monitoring. In this work, we present VADLite, an open-source,
lightweight, system that performs real-time VAD on smartwatches. It extracts mel-frequency cepstral coefficients and classifies
speech versus non-speech audio samples using a linear Support Vector Machine. The real-time implementation is done on
the Wear OS Polar M600 smartwatch. An offline and online evaluation of VADLite using real-world data showed better
performance than WebRTC’s open-source VAD system. VADLite can be easily integrated into Wear OS projects that need a
lightweight VAD module running on a smartwatch.
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1 INTRODUCTION
Smartwatches as a platform provide a unique opportunity to assesses the mental health of individuals because of
their sensors which have high proximity to the human body. Multimodal sensing of gestures (from the gyroscope
and accelerometer), heart rate, physical activity, ambient light, Bluetooth signal strength, among others could be
used to infer the mental state of people [1].

On the specific topic of audio data, smartwatches provide a unique opportunity to collect more speech data in
the everyday lives of individuals since they are more likely to always be with the user given they are worn on
the wrist. Additionally, the microphone is also prone to be more exposed as compared to a smartphone, which
might be in a bag or a pocket.
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Speech data could be used to infer various indicators of mental well being such as emotions [27], stress
[18] and social activity [29]. Hence, real-time voice activity detection (VAD) on smartwatches could enable the
development of applications for mental health monitoring. Researchers and developers that need real-time VAD
on smartwatches, which use the Wear OS operating system have to build their own custom module since an API
is not provided.
Prior work have developed VAD systems but they have not focused on real-time implementation of the

developed algorithms [10, 24, 30, 36]. Important aspects such as computational efficiency, latency and accuracy in
a naturalistic context were not addressed. Hence, it is not clear howwell they will perform if they are implemented
to run in real-time on smartwatches.
On the other hand, there are VAD systems that have been implemented to run in real-time as a smartphone

app [19, 34, 35]. Unfortunately, the machine learning models that were used are not easily available for others
who want to simply use those pre-trained models in their work. It is also not clear how well the models will work
when they run on smartwatches with reference to computational efficiency and latency.

There was another VAD system developed to run on a smartwatch as a component of a context recognizer [12].
The authors use 13 mel-frequency cepstral coefficients (MFCC) features and a convolutional neural network. Using
three seconds of data, it takes 1.9 seconds to give a classification. The performance evaluation (e.g., accuracy)
is not provided and most importantly, the software component is not available for others to easily use in their
smartwatch-based sensing work.

Then there are also open-source VAD systems such as WebRTC’s VAD [13]. It is, however, a computer-based
system, which does not have a module for smartwatches. Additionally, it has been reported that WebRTC’s VAD
performs poorly on real-world data collected with smartwatches [17].
Given the gap in obtaining an easy-to-use smartwatch-based VAD system, we developed VADLite, an open-

source lightweight software system that performs real-time voice activity detection on smartwatches. VADLite
extracts MFCC as features and classifies speech versus non-speech audio samples using a linear Support Vector
Machine (SVM). We designed VADLite to meet our specific requirements; it is lightweight (i.e., runs efficiently
on a constrained system such as a smartwatch), and also performs well in a real-world context in which we
will be deploying the devices. In this work, we describe the process of developing and evaluating VADLite, and
comparing its performance to WebRTC’s VAD system since it is a widely used open-source VAD system.

The real-time implementation is done on a Wear OS smartwatch and our project files with the source code are
available for use by others 1. VADLite can be used by including the Java source code files in a Wear OS project.
Also, the parameters of the trained model are in the Java files and hence, users can use our model parameters to
build their own VAD pipeline for their Wear OS projects.

The rest of this paper is organized as follows. First, we give the motivation and use case of VADLite. Next, we
give an overview and describe the development of VADLite. Then, we describe the real-time implementation of
VADLite. After, we detail our experiments and results including a comparison of VADLite with WebRTC’s VAD
system. We address ethical implications and privacy concerns of our work. Finally, we summarize and conclude.

2 MOTIVATION
Our primary motivation for developing VADLite was our previous work DyMand, an open-source mobile and
wearable system for assessment of couples’ dyadic management of chronic diseases in everyday life [7, 8]. The
DyMand system collects self-report data about health behavior, and emotions, and sensor data about couples’
dyadic management of chronic diseases. DyMand first determines if the partners are close using the Bluetooth
signal strength between their watches. Then, VADLite is used as the next optimizing step to trigger collection of
multimodal sensor data (heart rate, accelerometer, gyroscope,and ambient light) ensuring that data is collected

1https://bitbucket.org/Jojo29/vadlite/
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Fig. 1. Overview of VADLite System

only when the partners are speaking. This two-step process in which VADLite plays a key role ensures that
DyMand collects more relevant speech data which is an improvement over how social psychologists currently
collect ambulatory audio data for analysis: triggering data collection at random times of the day. [21, 22, 31, 32, 37].
Our secondary motivation for developing VADLite is for it to be used in the development of a real-time

smartwatch-based app for recognizing emotions of couples using speech prosody and the semantics of speech
[27]. Emotion recognition from speech will then be used in combination with other sensor modalities from the
smartwatch to perform real-time multimodal emotion recognition among couples [6]. Prior work has shown that
social support among couples results in better health behavior when one partner has diabetes and it also affects
the emotions of the couple [15, 23, 28]. Real-time emotion recognition among couples would give an assessment
of a key outcome of social support which could be used to develop just-in-time adaptive interventions [25] to
enable couples better manage chronic diseases. In order to accomplish that goal, speech episodes in everyday life
need to be recognized accurately and efficiently. VADLite fills that gap.

Beyond these specific use cases, real-time VAD in combination with other sensors could be used to infer social
isolation or a lack of social activity, which is a predictor of mental health issues such as depression or suicidal
ideation [29, 38]. An accurate measure of speech data could enable better prediction of social isolation. Using
VADLite which runs on a smartwatch will adequately enable the accomplishment of this goal.

3 OVERVIEW AND DEVELOPMENT OF VADLITE
VADLite is a 2-stage system consisting of a no-silence detector as the first part, and a voice activity detector as the
second part (Figure 1). In developing VADLite, we used the pipeline of data collection and preprocessing, feature
extraction and classification. We used a linear SVM. An SVM is a classifier that constructs a high-dimensional
hyperplane to separate data of different classes [14]. SVM selects a hyperplane that maximizes the distance to the
nearest data points on either side of the hyperplane in the case of binary classification. Previous work have used
SVM for VAD successfully [2, 9, 10, 16, 30].

We used a linear SVM because it is memory and computationally efficient when incoming data is classified. For
example, in comparison with a linear SVM, a radial basis function (RBF) SVM though only slightly outperformed
a linear SVM for VAD took twice as much time for classification [16]. Prior work have used an implementation of
linear SVM for real-time prediction on smartwatches for stress detection [5] and activity detection [3, 4].

3.1 Data Collection
We collected real-world data using a protocol that was approved by the ethics commission of ETH Zurich. We
collected data using a Polar M600 smartwatch where subjects (1) in the lab read a written text as a smartwatch
recorded audio data for approximately 1-2 mins and (2) in the everyday life wore a smartwatch during waking
hours as it continuously collected audio data. We used 16-PCM mono audio data and a sampling frequency of
8KHz. The data was annotated as speech or non-speech data. The speech data contained mostly conversations
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among several people (with at least 10 distinct speakers) at varying distances from the smartwatch’s microphone.
The non-speech data contained sounds from cars, trams, buses, wind, and music. The overall duration of the
recorded sound data was 3.5 hours.

3.2 Data Preprocessing
We processed the data by first removing silence portions of the data using a one-second time window. Liaqat
et al. found out that the real-world audio data they collected contained about 61.7% of silence and hence they
implemented a silence detection algorithm to remove the silence part of their data [17]. Given that we used
real-world audio data, we also removed silence segments of the data. We computed the root mean square (RMS) of
each one-second time window of the whole data. We then checked if the RMS value is below a certain threshold,
in which case we marked that segment as silence and then removed it. To determine the threshold, we created a
scatter plot of the RMS values of silence, speech and noise signals and then chose the value that separates silence
from both speech and noise.

3.3 Feature Extraction
We extracted 13 MFCC features and use 12 of them (excluding the 1st coefficient, which is the DC component)
over a time window of 25 ms. MFCC features have been widely used for VAD [12]. The parameters we used are
as follows: 8KHz sample rate, window length of 25 ms, window step, 12 coefficients, 26 filters in the filterbank,
FFT size of 512, 0 Hz as lowest band edge of mel filters, 4KHz as highest band edge of mel filter of (i.e., half the
sampling rate), 22 lifters to apply to final cepstral coefficients and a Hamming windowing function. We used a
Java implementation for the feature extraction.

3.4 Classification
Using the feature sets, we trained a linear SVM to classify speech or non-speech. We also performed grid search
to pick the most optimal hyper-parameters of the linear SVM. We first normalized the features by subtracting
the mean and dividing by the variance. This normalization is important for various algorithms such as SVM
whose optimization assume that the features have a normal distribution [14]. We used the following metrics for
evaluation: accuracy, speech hit rate (SHR), and false alarm rate (FAR). The SHR is the ratio of correctly detected
speech frames to the total number of speech frames. By contrast, FAR is one minus the noise hit rate, where noise
hit rate is the ratio of correctly detected noise frames to the total number of noise frames.

4 REAL-TIME IMPLEMENTATION
We coded VADLite in Java for smartwatches that use the Wear OS operating system (formerly Android Wear).
We used the Android Studio Integrated Development Environment (IDE) and the Android Software Development
Environment (SDK). VADLite can potentially work on every Wear OS device. We used a Polar M600 smartwatch
running Wear OS version 2.1 for testing which has the following specifications: Dual-Core 1.2GHz processor
based on ARM Cortex-A7, 512MB RAM, 4GB flash storage, 500 mAh Battery.
Our implementation of VADLite is a Wear OS app, which collects 16-PCM mono audio data every second

at a frequency of 8KHz (see Figure 2). We check if the one-second data is a non-silence segment by using an
implementation of the non-silence detector from the previous section. We then process the data if it is non-silence.
The one-second non-silence signal is then segmented into 25 ms frames. We then extract 12 MFCC features for
each frame, which is then fed to a linear SVM for classification. We used the settings described in the previous
section for the feature extraction. We used the Java implementation from the offline evaluation for extracting the
MFCC features online.
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Fig. 2. Real-time running of VADLite

We normalized the features using the stored normalization vectors before performing classification with a
linear SVM. Our implementation of the linear SVM is a dot product of the stored coefficients with the features:

y = wx + b (1)
where y is the result of the evaluation, w is the coefficient vector of length 12, and b is the intercept. We then

assigned y to be 1 (speech) if it is greater than zero, otherwise we assign it to be 0 (non-speech). We obtained
w and b from the previously trained linear SVM. We output speech or non-speech classification for the whole
one-second data. To accomplish this, we used majority voting of all the classified 25 ms samples within the
one-second data.
VADLite had an average processing time of 2 ms for each 25 ms frame and 76 ms for the total one-second

duration. As a result, throughput was met since the frame processing time was less than the 25 ms segment
duration. Likewise, the processing time for whole duration was less than one second.

5 EXPERIMENTS AND RESULTS
We evaluated VADLite offline and also online. Additionally, we compared the classification performance of
VADLite with a popular open-source VAD system, WebRTC’s VAD [13]. WebRTC’s VAD uses frequency band
features and a pre-trained Gaussian Mixture Model (GMM) classifier [33]. We used a Python implementation of
the system [39]. It gives the option to set an aggressiveness mode using an integer from zero to three with zero
being the least aggressive about filtering non-speech audio. It only accepts 16-bit PCM mono audio sampled at

5



UbiComp/ISWC ’19 Adjunct, September 9–13, 2019, London, United Kingdom Boateng et al.

Table 1. Evaluation results from the offline evaluation of VADLite and WebRTC’s VAD

Model Accuracy SHR(%) FAR(%)

WebRTC(0) 66.7 91.6 60.7
WebRTC(1) 71.7 89.0 47.4
WebRTC(2) 71.4 79.5 37.5
WebRTC(3) 75.9 55.3 2.1
VADLite 83.7 83.4 16.0

8KHz, 16KHz, 32KHz or 48KHz. It also processes data in frames with a duration of either 10, 20 or 30 ms. Our
implementation used 8 KHz sampling rate and 20 ms time window to match the settings of VADLite.

5.1 Offline Evaluation
We split the data into train and test using about 70%-30% split. The speech and noise train data were 73.9 and 71.8
minutes long respectively. The speech and noise test were 24.6 and 22.4 minutes long respectively. We performed
10-fold stratified cross-validation on the train data using VADLite’s linear SVM model. We used the scikit-learn
library for our experiments [26]. The model achieved 82.6% accuracy, 80.2% SHR and 14.9% FAR. We then trained
the VADLite model on the whole train dataset and then we used the test data to evaluate both the VADLite’s
model and those of WebRTC’s VAD. The results of the evaluation are shown in Table 1.

VADLite’s model outperforms WebRTC’s VAD when its aggressiveness mode is two and three. WebRTC’s VAD
with settings zero and one though have very high SHR, their FAR are high, which will result in a lot of noise
being classified as speech, which is not acceptable. VADLite’s model provides a good enough tradeoff between
SHR and FAR. These results indicate that VADLite is better than WebRTC’s VAD. These results support those by
Liaqat el al. who found that WebRTC’s VAD performed poorly on real-world smartwatch-based audio [17].

5.2 Online Evaluation
To evaluate the real-time performance of VADLite with real-world data, we recorded audio data from a naturalistic
context. We then played the recorded audio through a loudspeaker as the VADLite app performed real-time
classification of the audio just like was done by Feng et al [11]. The audio had a duration of 15 minutes each
for speech and noise. We stored the classification and compared it with real labels of the audio. We report
the classification results below. We also ran the audio data through WebRTC’s VAD. VADLite had SHR and
FAR of 91.6% and 5.5% respectively. WebRTC’s VAD’s best performing mode had SHR and FAR of 73% and 18%
respectively. Consistent with the results from the offline evaluation, VADLite outperforms WebRTC’s VAD. Once
again, these results supports those by Liaqat el al. who found that WebRTC’s VAD performed poorly on real-world
smartwatch-based audio [17].

6 ETHICAL IMPLICATIONS AND PRIVACY CONCERNS
This work has ethical implications as the system could be used in a manner that violates the privacy of others.
We envision that this system can be used in two main ways.

The first is that it could be used to collect raw speech data from subjects, which will be stored for processing
later. For this approach, it is especially important that the study protocol is subjected to review and approval
from the ethics committee of the overseeing institution, as is standard practice. And additional steps need to be
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taken such as giving subjects the option to listen to the recorded audio and to delete any as they wish without
any explanation. This approach has been used in our studies [20] and those of others [31, 32]. Depending on the
use case, the app may need to give subjects the option to completely disable audio recording as needed. Also, to
protect the privacy of subjects not taking part in the study, it might be necessary to have subjects wear a tag
indicating to others around them that they may be recorded.
The other way we envision this system being used is to derive important summary statistics. In this case, no

raw audio will be stored. Rather, various inference such as conversation frequency and duration (total duration of
speech per day, times of the day with most speech etc.) will be computed [29]. This use case is less invasive but
again as usual, ethical approval needs to be obtained for such a study since summary data could be considered
personal and private for some subjects.

7 FUTURE WORK
VADlite could be extended so that it additionally makes various inference such as conversation frequency and
duration. These additions would make VADLite more useful in smartwatch-based applications that seek to
improve the mental well-being of people.

8 CONCLUSION
In this work, we developed VADLite an open-source lightweight software system for real-time VAD on smart-
watches. VADLite uses MFCC as features and classifies speech versus non-speech audio samples using linear SVM
with a real-time implementation on a Wear OS smartwatch. Our evaluation of VADLite showed SHR and FAR of
83.4% and 16.0% respectively for offline, and 91.6% and 5.5% respectively for real-time classification. Benchmarking
of our system against WebRTC’s VAD showed better performance. Our open-source system, VADLite can be
easily integrated into Wear OS projects that need a lightweight voice activity module running on a smartwatch.
VADLite can be integrated into the development of various well-being specific apps.
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Dyadic interactions of couples are of interest as they provide insight into relationship quality and chronic disease management.
Currently, ambulatory assessment of couples’ interactions entails collecting data at random or scheduled times which could
miss significant couples’ interaction/conversation moments. In this work, we developed, deployed and evaluated DyMand,
a novel open-source smartwatch and smartphone system for collecting self-report and sensor data from couples based on
partners’ interaction moments. Our smartwatch-based algorithm uses the Bluetooth signal strength between two smartwatches
each worn by one partner, and a voice activity detection machine-learning algorithm to infer that the partners are interacting,
and then to trigger data collection. We deployed the DyMand system in a 7-day field study and collected data about social
support, emotional well-being, and health behavior from 13 (N=26) Swiss-based heterosexual couples managing diabetes
mellitus type 2 of one partner. Our system triggered 99.1% of the expected number of sensor and self-report data when the
app was running, and 77.6% of algorithm-triggered recordings contained partners’ conversation moments compared to 43.8%
for scheduled triggers. The usability evaluation showed that DyMand was easy to use. DyMand can be used by social, clinical,
or health psychology researchers to understand the social dynamics of couples in everyday life, and for developing and
delivering behavioral interventions for couples who are managing chronic diseases.

CCS Concepts: •Human-centered computing→Ubiquitous andmobile computing; •Applied computing→ Consumer
health; Psychology.

Additional Key Words and Phrases: Multimodal Sensor Data; Couples; Smartwatches; Smartphones; Mobile Computing;
Wearable Computing; Machine Learning; Speech Processing; Chronic Disease Management; Social Support

1 INTRODUCTION
Romantic relationships have powerful effects on people’s mental and physical health (see [51] for an overview).
For instance, conflicts and negative qualities of one’s intimate relationship are associated prospectively with
morbidity and mortality [41]. Romantic or social relationships play an important role in illness management
if partners share the responsibility and consider the disease to be their joint problem instead of being only the
problem of the afflicted partner [48, 55] and it can involve social support and common dyadic coping (CDC) [14].
Social support entails providing resources to help a receiver cope in a time of need and can be emotional (e.g.,
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providing comfort or encouragement) or instrumental (e.g., help with practical problems and tasks; [24, 43, 54]).
CDC is the "we approach" to dealing with stressors in a couple’s relationship [22] which can be assessed objectively
by counting first-person plural pronouns [52], by questionnaire or behavioral observation. Social support among
couples and CDC in chronic disease management have been shown to have mostly positive effects on emotional
well-being [23, 32, 53, 60], and result in healthier eating habits among diabetes patients [46]. Consequently, it
is of interest to better understand couples’ dyadic interactions in-situ, for example, in couples’ management of
diabetes in daily life [35, 42] as they could enable the development and delivery of behavioral interventions to,
for example, improve physical activity, diet, and medication adherence.

Ubiquitous devices such as smartphones and smartwatches provide a good opportunity to collect relevant data
such as sensor and self-report data from couples in daily life. Smartwatches in particular could be leveraged to
collect data on couples’ dyadic interactions and chronic disease management. Several features of smartwatches
make them uniquely positioned for this task. Firstly, they are mostly with the wearer since they are worn on the
wrist in comparison with a smartphone which could be in various places like the pocket, or bag, and just not in
proximity to the user, or devices like Amazon Echo or Google Home which can only be in one place and not
always around the owners. Additionally, commercial smartwatches could be used to collect a wide variety of
sensor data such as audio and heart rate (for stress detection, emotion recognition), Bluetooth (for proximity
detection), accelerometer, and gyroscope (for gestures and physical activity), and ambient light (to detect context).
Finally and importantly, smartwatches could be leveraged in novel ways to capture dyadic interactions of partners
(e.g., triggering data collection when partners are close and speaking) as we do in this work.

In this work, we describe the development, deployment, and evaluation of DyMand, a novel open-source
smartwatch 1, and smartphone 2 system for ambulatory assessment of couples’ Dyadic Management of chronic
diseases in daily life. The DyMand system collects self-report and sensor data based on partners’ interaction
moments. In particular, we developed a smartwatch-based algorithm that uses the Bluetooth signal strength
between two smartwatches each worn by one partner, and a voice activity detection machine-learning algorithm
to infer that the partners are interacting, and then to trigger data collection. We deployed the system in a field
study with heterosexual couples in Switzerland that are managing type 2 diabetes (T2DM) of one partner, a
common chronic disease affecting 6% of the Swiss population [31]. The specific use case in this work was to
collect data to understand the association between multimodal sensor data and self-report data of social support,
and CDC in the context of diabetes management. This understanding will provide a sound basis for theory- and
evidence-based development of dyadic interventions in the context of couples’ dyadic illness management. The
DyMand system can be used by, for example, social psychologists to understand the social dynamics of couples in
everyday life and their impact on relationship quality, and also by clinical or health psychologists for developing
and delivering behavioral interventions for couples who are managing chronic diseases. This work builds upon a
study protocol published in 2019 [42] and it is an extension of our prior work [16, 20] and it includes a more
detailed description of our DyMand system and its real-world deployment and evaluation.
This paper is organized as follows. Next, we discuss related work (Section 2). We then describe the system

design (Section 3) and its implementation (Section 4). In Section 5, we describe the deployment of the system in a
user study and, in Section 6, we evaluate its technical performance and usability. Finally, we describe limitations
and future work in Section 7 and conclude this work in Section 8 with a summary.

2 RELATED WORK
Various smartphone applications have been developed for ambulatory data collection by social and health
psychologists. For example, the Electronic Activated Recorder (EAR) has been used in several studies [44, 49],

1https://bitbucket.org/mobilecoach/dymandwatchclient/src/master/
2https://bitbucket.org/mobilecoach/dymand-mobilecoach-client/src/master/
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especially for the collection of audio data in various couples’ interactions such as couples managing breast
cancer[34, 50]. The EAR triggers data collection at random or scheduled times in the day and collects snippets of
ambient sound (e.g., 50 seconds every 9 minutes), which are later transcribed and coded. The EAR does not collect
self-report data. On the other hand, a mobile and wearable system was used to collect sensor and self-report
data for conflict detection among couples [57, 58]. Similar to the EAR, audio data were collected at random or
scheduled times in the day (3 minutes of audio every 12 minutes). Another work [47] used a digital recorder for a
whole-day recording of couples managing cancer.

Despite these advances in the ambulatory assessment of couples’ interactions, there are still gaps. Firstly,
any random or scheduled triggering of data collection does not take advantage of the dyadic nature of couples
interactions (e.g., by inferring if partners are actually interacting) and could miss key conversations/interaction
moments. The EAR collects only audio and does not leverage potentially more information from other sensor data
or self-reports. The all-day recording of [47] has significant privacy concerns. Consequently, there is currently
no ubiquitous system that leverages the dyadic nature of couples’ interaction for the collection of sensor and
self-report data that are relevant for social interactions and chronic disease management in everyday life.

3 DEVELOPMENT: SYSTEM DESIGN
In developing DyMand, experts from the field of computer science, information systems, and health psychology
used justificatory knowledge from prior work [19, 32, 42, 46, 58] about social support, CDC, health behavior, and
emotional well-being to derive a list of design specifications that are important for collecting corresponding data
in-situ, in the context of chronic disease management. We describe the specifications.

3.1 Physical Closeness Monitoring
The system should track the physical closeness of the partners during waking hours. This information can be
used to infer how much time romantic partners spend in various forms of daily interactions (engaging in a
shared activity, talking, and arguing), which could be used to predict the couple’s relationship outcomes [28].
Furthermore, physical closeness tracking can be used in combination with other kinds of data to capture moments
when partners are interacting, which would enable the collection of data relevant to chronic disease management
such as emotional well-being, social support, and CDC based on partners’ interaction context.

3.2 Multimodal Sensor Data Collection
The system should collect relevant 5-minutes worth of multimodal sensor data (in particular audio) once each
hour during waking hours (set by couples), ideally when partners are interacting. We restricted the data collection
requirement so that we collect only one 5-minute sample per hour (audio data) for privacy reasons to ensure that
we do not collect too much audio of the couples’ daily life. Furthermore, the requirement for collecting this data
when partners are interacting ensures there is a high likelihood of capturing conversations between partners
as compared to collecting data at a random or scheduled time. Sensor data such as audio, heart rate, gestures,
physical activity, and step count could be used to manually and automatically infer behavioral information
such as social support, CDC, emotional well-being, and health behavior, which are relevant for chronic disease
management [42]. Audio for example can be used to code constructs such as emotions, social support, and CDC.
Also, audio together with other data such as heart rate and movements data could be used to automatically detect
the emotions of each partner [13].

3.3 Self-report Data Collection
The system should collect self-report data immediately after sensor data collection and at the end of the day.
This requirement ensures that various validated self-reported instruments also collect relevant data about social



4 • Boateng et al.

Fig. 1. Overview of the DyMand system

support, CDC, emotional well-being, and health behavior. Collecting this data right after sensor data collection
enables matching the responses to the inferences made from the sensor data based on the partners’ interactions.
Additionally, collecting this data at the end of the day enables relevant daily summative data such as whether the
patient took their medication for the day.

4 DEVELOPMENT: SYSTEM IMPLEMENTATION
In this section, we describe our implementation of the system requirements to develop the DyMand system
consisting of an overview of the DyMand system, devices used, the MobileCoach platform, smartphone app, and
smartwatch app.

4.1 Overview of the DyMand system
The DyMand system (Figure 1) consists of a smartwatch app (section 4.7), and a smartphone app (section 4.6)
built on top of the MobileCoach platform (section 4.3) [26, 38] that consists of a web-based intervention designer
and backend. Each partner is given a smartwatch and a smartphone (both paired) running the DyMand apps.
The smartwatch app collects 5-mins of sensor data (section 4.7.4) based on the detection of the partners’

interactions via Bluetooth Low Energy (BLE) and Voice Activity Detection (VAD) (Figure 2). After data collection,
it gives a vibration alert on the smartwatch, and then sends an intent to the smartphone app to also give an
alert (push notification) and trigger the self-report for each partner to complete separately. The smartphone app
then sends a signal to the MobileCoach backend (section 4.5) to trigger the showing of the self-report on the
smartphone. The smartphone app is customized with two digital coaches PIA (interacting with the partner with
diabetes) and PETE (interacting with the partner without diabetes) that send various messages to each partner
(e.g., “it is time to complete the self-report”). MobileCoach is also used for collecting data from the partners
during the setup phase of the devices and also triggers end-of-the-day diary questionnaires. MobileCoach also
sends reminders and escalation messages when the expected number of self-reports is not completed.



Development, Deployment, and Evaluation of DyMand • 5

Fig. 2. Use case of DyMand system

4.2 Devices: Polar M600 Smartwatch and Nokia 6.1 Smartphone
For implementing the data collection from partners during their conversation moments, we decided to use two
smartwatches (one for each partner) as they are more likely to be with wearers often compared to a smartphone,
and could better capture physical closeness and interactions. Furthermore, a smartwatch has a better chance of
capturing conversations if audio is recorded on it than a smartphone that may not be in the proximity of the
partners. Additionally, relevant data of interest such as heart rate and gestures can be captured on a smartwatch
and not a smartphone.

We started working with Apple’sWatchOS platform but to the best of our knowledge at the time of development,
we could not find a solution to start an audio recording as a background process. Hence we moved on to use
smartwatches with the Wear OS (based on Android) platform because it provided a lot of flexibility for data
collection. We chose a device from the company, Polar as their devices are regularly used in research [11] and we
found the Polar M600 smartwatch to be practically priced and the battery seemed to last well with continuous
sensing and with a daily charge cycle. Additionally, the heart rate sensor had good performance in a comparison
study in which it was shown to be accurate during periods of steady-state activities like cycling, walking, jogging,
and running, but less accurate during some exercise intensity changes [29].
We decided to use a smartphone to collect self-report data as the screen size of the watch was too small for

filling out self-reports, and to serve as an intermediary between the MobileCoach server and the smartwatch
app. We used two Nokia 6.1 smartphones running Android 9.0 — one per partner — which we outfitted with SIM
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cards for Internet access. We found Nokia 6.1 to be practically priced, with a moderate screen size (5.5”) and with
good haptics.

4.3 MobileCoach Platform
We implemented the DyMand system on top of MobileCoach, an open-source software platform for the design
of behavioral interventions and ecological momentary assessments [26, 38]. MobileCoach provides a server
setup and a mobile client app. The server offers a web-based intervention designer, called MobileCoach Designer
(section 4.5). The intervention author can use this interface to design dialogues that can be sent to the mobile app.
The author can also put together rules in the designer and connect them to these dialogues so that the messages
can be sent when the conditions in these rules are satisfied. The rules could be based on intent from the user (e.g.,
button press in the mobile app), time range (e.g., between 2 and 3 pm), and other variables which can be created
and used in the designer. When the mobile app is opened for the first time, it can show information to the user
about the app and let the user pick a conversational agent, i.e. a computer program that imitates the conversation
with a human being [37]. By default, the app provides two conversational agents and after one is chosen, the
agent can communicate with the user. The agent converses using the dialogues designed in the MobileCoach
Designer. With some customizations and a smartwatch app connected with the MobileCoach framework, it fitted
the DyMand system’s use case.

4.4 MobileCoach Backend
The MobileCoach server (Figure 3) of the DyMand system is hosted in an Ubuntu 16.04 virtual machine in
the ETH Zurich network. The framework provides a Docker-based setup. The Docker platform [45] performs
OS-level virtualization and helps in the portability of software. The server setup of MobileCoach comes with
containers running Tomcat [1], DeepStream [3], MongoDB [7] and Nginx [8]. Tomcat provides a Java web server
environment and it serves the MobileCoach Designer (section 4.5) which is built using the Vaadin framework [12].
The intervention engine of MobileCoach processes the rules and schedules the messages. It connects with the user
interface (UI) of the MobileCoach Designer and communicates (i.e., sends/receives the messages) with the mobile
app using the real-time server DeepStream. DeepStream allows clients and backend services to synchronize
data. The database is managed by MongoDB, which is a NoSQL database program. The communication between
the server and the mobile app happens through secure SSL [61] encrypted connections. We used the certificate
authority Let’s Encrypt [5] for setting up the free SSL certificates. We performed regular security upgrades and
monitored the server. In addition to sending messages via chat, the MobileCoach framework was configured to
send SMS or emails. For emails, we used the SMTP server provided by ETH Zurich. For SMS, we used ASPSMS [2]
service. Additionally, for the questionnaires, we hosted a LimeSurvey setup in the DyMand server. LimeSurvey
[40] is a free and open-source online survey tool we used to create our questionnaires. We picked LimeSurvey
because it provides free community editions and detailed setup instructions, it is easily customizable, and we
could host it on our DyMand server so that the data can reside within the ETH Zurich network.

4.5 MobileCoach Intervention Designer
The MobileCoach intervention designer has user interface (UI) elements (Figure 4) where dialogs can be created
with messages using multiple answer option types. The conversational agent (PIA or PETE) serves these dialogues
to the partners. There are three main modes of rule execution in MobileCoach designer as follows: (1) daily
execution (once every day at midnight), (2) almost-continuously execution (every 5 minutes) and (3) event-
triggered execution (e.g., events can be triggered passively by sensor inputs or manually by user interactions in
the mobile application). Each dialogue is connected to either of these rules. When conditions of rules are satisfied,
then corresponding dialogues are sent. The conditions are designed based on system and user-defined variables
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Fig. 3. DyMand MobileCoach Server and its functions

available in the MobileCoach Designer. Each participant has a copy of these variables, which defines the state of
the participant. The MobileCoach designer also provides an interface through which study participants and their
states (based on the variables) can be monitored. This interface also allows the export of all messages sent and
received with timestamps, and the most-recent variable values for each participant for data analyses. For the
DyMand system, we designed the following dialogues:

(1) Onboarding dialogue is sent when the app is opened for the first time during the setup of the study apps.
It is used to get the personal information from each partner (e.g., to approach them by their nicknames),
to complete the baseline questionnaire before the start of the study, to deliver relevant study information,
and help with onboarding the participants for the study.

(2) Reminder messages in the form of text messages (SMS) were sent to the personal phones of the couples
on Sunday evening and again on Monday morning reminding them to take their study smartphones and
wear the study smartwatches directly after getting up to prepare them for the 7-day data collection.

(3) Self-report dialogue requests participants to fill a self-report questionnaire after the sensor data collection
on the smartwatch. The self-report was a LimeSurvey questionnaire that asked questions about social
support, CDC, health behavior, and emotions (e.g., short form of the PANAS self-report [59]). This dialogue
used the event-triggered rule execution mode which was initiated when the sensor data collection was
successful. In particular, the MobileCoach designer provides various commands to be sent to the mobile
app. These commands can have different purposes in the app. For example, a command “show-web
<https://abc.de> <Button-name>”, will show a button with the name “Button-name” which when pressed
would open the link “https://abc.de” in a new screen within the app. These links in the DyMand system
(Figure 2) were our pre-configured questionnaire from LimeSurvey which additionally provided choices
to enter JavaScript code. We added codes in each of our surveys that enabled the app to close the survey
screen and continue the dialog with the conversational agent. Using JavaScript code, we added timers
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Fig. 4. MobileCoach Intervention Designer

to the surveys. They were set to expire after 4 minutes to ensure that partners started filling out the
self-report within 4 minutes of getting the alert. Given that the self-report questions were about the
previous 5 minutes of the couple’s interaction when the sensor data was collected, the time limit helped
to ensure the survey data matches the sensor data.

(4) End-of-day diary questionnaire dialogue requests the partners to fill a self-report survey at the end of
the day with more comprehensive questions on social support and CDC, healthy eating, medication
adherence, and emotional well-being [42]. Similar to the implementation for the self-report dialogue, they
were set to expire after 45 minutes.

(5) Follow-up dialogue was sent when the 7-day field study was finished. This dialogue asked partners to fill
out a follow-up survey about their study experience [42].

(6) Escalation messages were designed as both text messages and emails that were sent to the partners and
study supervisors when the partners were less adherent to completing self-reports in the study. As shown
in Figure 5, there were two checks done by the system automatically every day during the 7-day study
period — one at 2 pm, and another one at the end of the day, after the end-of-day dairy is sent. As shown
in Figure 5, when the partners do not fill at least 60% percent of the self-reports in the morning or the
evening period, a reminder SMS is sent to them. Additionally, if the end-of-day dairy is not completed
or if the total number of the self-reports done for the whole day was less than 30%, then the participant
received an SMS and the study supervisor was sent an email additionally to follow up with the couple via
phone call.

4.6 MobileCoach Smartphone App
MobileCoach provides a skeleton app in React Native, which is a framework for building cross-platform applica-
tions for Android and iOS devices. We customized it for the DyMand system and used only the Android app.
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Fig. 5. DyMand Escalation mechanism: The values X, Y, and Z are calculated every day based on the number of hours
the participants specify that they are available for the study in the morning or the evening period and the percentages of
self-reports that we set as thresholds for escalation.

We customized it to have the two conversational agents PIA (interacting with the partner with diabetes) and
PETE (interacting with the partner without diabetes). The smartphone app acts as an intermediary between the
smartwatch and the server. It relays the “user intent” messages that indicate that “a recording in the smartwatch
has been completed” to the server and also informs the smartwatch as soon as the user has finished completing
the self-report triggered by the server. The self-report (Figure 6) contains a questionnaire in LimeSurvey [40]
and the Affective Slider, a digital emotion measuring instrument that assesses emotions along the dimensions of
valence and arousal [15]. Furthermore, the app collects video, audio, and ambient light for three seconds when
each partner is completing the Affective Slider on their smartphone. When a user needs to fill a questionnaire
prepared in LimeSurvey, the user sees a button that says “Fragebogen ausfüllen” (Start the survey). When the
button is pressed, the link to the survey is opened. The link also includes relevant metadata such as participant
code that uniquely identifies the participant, which is needed to link survey answers to the specific partner in
LimeSurvey.

4.6.1 Continuously Running Smartphone Android App. For the DyMand system to function properly, the mobile
app is required to run continuously (in the background) on the smartphone. As the smartwatch app was not
expected to connect to the Internet on its own, if the connection to the smartphone app was lost, we could not
relay the “recording done” message to the server. We implemented a Foreground service [4] in the mobile app
which ran continuously and kept the app in a ready state throughout the study. In addition to the Foreground
service, we changed the settings on the study phones that we gave to the couples such that the Android OS did
not optimize the battery for our DyMand app. Even then, we found that in Nokia 6.1, one of the system apps
(com.evenwell.powersaving.g3) still shut down our app after a few hours. We disabled this system app by using
the Android Debug Bridge (ADB) and logging into the shell of the device.



10 • Boateng et al.

Fig. 6. Screenshots from the DyMand smartphone app. (1) Onboarding screen: These screens welcome the participants to
the study. (2) Chat screen: The digital coach Pia or Pete chats with the participant on this screen. (3) Affective slider screen:
The participants can choose their pleasure and arousal levels in the slider and submit them. (4) LimeSurvey screen: The
self-reports, the end of the day dairy, baseline, and follow-up surveys are filled by the couples on this screen.

4.6.2 Smartphone Data Collection. When the Affective Slider is shown on the smartphone, a 3-second sensor data
recording is made on the smartphone. The recording includes video from the front camera and continuous data
from the ambient light sensor. For the video recording from the front camera, we used Android’s MediaRecorder
API [6]. For the ambient light sensor, we used the SensorManager API [10]. We registered this sensor with the
parameter “SENSOR_DELAY_FASTEST” to get the sensor data as fast as possible. We stored the data locally on
the phone which was retrieved when the couples returned their devices after they finished the study.

4.6.3 Smartphone and Smartwatch Communication. For the communication between the DyMand apps in the
smartphone and the paired smartwatch, we used the Wearable Data Layer API [9]. The following messages were
sent between the smartphone and smartwatch applications.

(1) The weekday and weekend hours during which the couple is available for data collection [9] (chosen by
the couple in the smartphone app) are sent from the smartphone app to the smartwatch app during the
setup phase (section 4.8).

(2) Text indicating that the smartwatch has finished collecting sensor data for 5 minutes is sent from the
smartwatch app to the smartphone app throughout the study.

(3) Text indicating that the self-report on the smartphone has been completed is sent from the smartphone
app to the smartwatch app throughout the study.

(4) Other messages for acknowledging received messages and logging are sent between the apps on the
smartwatch and smartphone.
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Fig. 7. Smartwatch App System Overview

4.7 Smartwatch App
Similar to the smartphone app, we implemented a Foreground service [4] in the smartwatch app (Figure 7)
that collected sensor data. The smartwatch app collected five minutes of the following sensor data once per
hour within the morning and evening hours set by the couples: audio, heart rate, accelerometer, gyroscope, and
ambient light. We collected a maximum of 5 minutes of data per hour for privacy reasons. Hence, to optimize
the quality of data collected within that hour and to ensure that we recorded the most relevant 5 minutes of
data (when partners are interacting), rather than triggering data collection at random or scheduled times, the
app collected data when 1) the partners were physically close and 2) when there was speech. Our algorithm
uses a two-step process. First, the app determines physical closeness using the BLE signal strength between the
smartwatches (section 4.7.1) and checks if the signal strength is within a certain threshold, which corresponds
to a distance estimate (section 4.7.2). Second, the app determines if the partners are speaking by using a voice
activity detection (VAD) machine-learning algorithm, which is implemented on the smartwatch (section 4.7.3). In
the case in which this condition of physical closeness and speaking is not met in the hour, the app triggers a
backup recording in the last 15 minutes of the hour.
After the 5-minute recording ends, the watch vibrates and sends a trigger to the smartphone app via the

Wearable Data Layer API [9] to bring up the self-report for that partner to complete. If the smartwatch does not
receive a message from the smartphone app within 2 mins indicating that the self-report has been started, it
gives another vibration alert. If once more, within the next 2 minutes, there is still no response about the start or
completion of the self-report, it implies the self-report was not completed. Consequently, the app deletes the
audio and attempts to trigger another sensor data collection and self-report for the rest of the hour. Doing this
ensured that we collected data with matching sensor and self-report samples. The app also ensured that there
were at least 20 minutes between subsequent data collection to reduce the burden of the partners completing the
self-reports.

4.7.1 Physical Closeness Estimation. We used the BLE signal strength between the two smartwatches — one
acting as the central (does BLE scanning) and the other acting as the peripheral (does BLE advertising) — to
estimate the physical closeness of the partners. We conducted an experiment to measure the signal strength
based on the distance between the two watches. In a lab setting, we placed two smartwatches at the same level
and without any barrier between them. With one BLE peripheral watch fixed at a position, we placed the BLE
central watch at a given distance from the former and we measured the signal strength. We varied the distances
between the watches and repeated the experiment 10 times. We averaged the values and plotted them as shown in
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Fig. 8. Plot of RSSI between two smartwatches versus distance for real-world experiment and theoretical expectation (that
the signal strength increases exponentially when the devices gets closer and closer [33])

Figure 8 along with the theoretical expectation that the signal strength increases exponentially when the devices
get closer and closer [33]. Our measurement showed that the signal strength is proportional to the closeness of
the smartwatches but not perfect as in any BLE measurement. We chose a threshold of -80dB in the app which
covers a range typically less than 5 meters which we assumed should adequately capture the distance between
partners when they are interacting. We acknowledge that in the field, the presence of objects such as walls and
furniture will affect the signal strength which we did not factor into the experiment. Nonetheless, our goal was
not to have a very precise distance versus signal strength mapping but an approximate value to use for closeness
between partners.

4.7.2 Physical Closeness Detection. For the DyMand smartwatch app, we implemented a BLE service in the
smartwatch app for real-time physical closeness detection. At the start of each of the hours assigned for data
collection, the peripheral smartwatch continuously advertises its universally unique identifier (UUID). The UUID
is created based on the couple ID which is set uniquely for a couple during the onboarding of the study (e.g., P001
for the supporting partner and Z001 for the patient) (section 4.8). The central smartwatch scans with the UUID
and when it finds the corresponding peripheral smartwatch, it checks the signal strength. If the signal strength is
greater than -80 dB, then it tries to connect to the peripheral smartwatch. After a successful connection, both BLE
services acknowledge it by sharing a message through the Bluetooth channel. After this, the central smartwatch
does voice activity detection (section 4.7.3). If the signal strength is less than -80 dB, the BLE scanning waits until
the strength breaches the threshold. If there are any problems when the devices connect, the BLE scanning is
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Fig. 9. System Architecture of VADLite

reset and started from the beginning. Both the central and peripheral BLE services are attached to the Foreground
service so that they can run in the background continuously.

4.7.3 Voice Activity Detection. We developed VADLite, a lightweight, open-source voice activity detection (VAD)
system that runs in real-time on the smartwatch (see [21] for details of the system) (Figure 9). An offline and
online evaluation of VADLite using real-world data showed better performance than WebRTC’s VAD, a popular
open-source VAD system. VADLite is a 2-stage system consisting of a no-silence detector and a voice activity
detector.

The no-silence detector computes the root mean square (RMS) of segments of the audio signal and marks them
as non-silence if they are above a certain threshold. The voice activity detector consists of a feature extractor,
and a machine-learning algorithm, which we trained to classify speech versus non-speech [21]. In particular, it
extracts mel-frequency cepstral coefficients and classifies speech versus non-speech audio samples using a linear
Support Vector Machine (SVM). An SVM is a classifier that constructs a high-dimensional hyperplane to separate
data of different classes [30]. SVM selects a hyperplane that maximizes the distance to the nearest data points on
either side of the hyperplane in the case of binary classification. We used a linear SVM because it is memory
and computationally efficient when doing predictions. Prior work has used an implementation of linear SVM for
real-time prediction on smartwatches for stress detection [19] and activity detection [17, 18].

To train VADLite, we ran a study that was approved by the ethics commission of ETH Zurich. We collected lab
and field audio data (16-PCM mono, 8KHz, 3.5 hours total) using the Polar M600 smartwatch from several people
(at least 10 distinct individuals) at varying distances from the smartwatch. We annotated the audio samples as
speech or non-speech. We preprocessed the data to remove silence segments by computing the RMS of each
one-second time window and checking if the RMS value is below a certain threshold determined empirically.
We then extracted frequency-based features — 13 MFCC features which have been widely used for VAD [27]
and used 12 of them (excluding the 1st coefficient, which is the DC component) — over a time window of 25
ms non-overlapping time window. We normalized the features and used them to train a linear SVM to classify
speech or non-speech. We then implemented the system to run in real-time on the smartwatch (Figure 10). The
real-time implementation continuously collects audio and processes them in 1-second segments for no-silence
detection and then voice activity detection.
We performed offline and online evaluations using the following metrics for evaluation: accuracy, speech

hit rate (SHR), and false alarm rate (FAR). The SHR is the ratio of correctly detected speech frames to the total
number of speech frames. By contrast, FAR is one minus the noise hit rate, where noise hit rate is the ratio of
correctly detected noise frames to the total number of noise frames. For offline evaluation, we split the data
into train and test using about 70%-30% stratified split and performed 10-fold stratified cross-validation with
hyperparameter tuning on the train data and evaluated on the test set. The model achieved 82.6% accuracy, 80.2%
SHR, and 14.9% FAR. For online evaluation, we played 15-minute audio collected from a naturalistic context
through a loudspeaker as the VADLite app performed real-time classification of the audio just like was done
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Fig. 10. Real-time testing of VADLite showing detection states of silence (left), speech (middle) and noise (right)

by Feng et al [25]. VADLite had SHR and FAR of 91.6% and 5.5% respectively. These results were better than
WebRTC’s VAD: offline accuracy, SHR and FAR of 71.4%, 79.5%, and 37.5% respectively, and online SHR and FAR
of 73% and 18% respectively. Furthermore, VADLite had an average processing time of 2 ms for each 25 ms frame
and 76 ms for the total one-second duration. As a result, throughput was met since the frame processing time
was less than the 25 ms segment duration. Likewise, the processing time for the whole duration was less than
one second.
For the DyMand smartwatch app, the VAD component is triggered after the physical closeness detection.

It records and samples audio at 8KHz and processes them in 5-second chunks by first performing no-silence
detection and then speech detection. If it classifies the segment as speech, the VAD audio recording is stopped,
and then sensor data collection is started on the central device (since it runs the VAD component) and a signal is
sent to the peripheral device to immediately start sensor data collection.

4.7.4 Smartwatch Data Collection. The data collection component of the smartwatch app collected audio, heart
rate, accelerometer, and gyroscope for 5 minutes. For the audio data, we used the MediaRecorder API [6] available
in Android. We collected 16-PCM mono at 44.1 kHz. We set the output format of the audio file as ".wav” which is
a lossless file format. All the other sensor data were collected using the SensorManager API [10]. We registered
these sensors with the parameter “SENSOR_DELAY_FASTEST” to get the sensor data as fast as possible. The
data collected was stored locally on the smartwatches and retrieved after the devices were returned.

4.7.5 Exception Handling. We added try-catch statements in various parts of the code where they could be
exceptions (e.g., writing text or data to a file, BLE scanning, etc.). Additionally, similar to [36], we included the
“DefaultUncaughtExceptionHandler” to catch all uncaught exceptions. Our implementation of the Exception
class spawns a thread that counts the number of exceptions in that hour and saves it (for later logging), saves the
exception message (for logging), schedules a restart of the app with an AlarmManager for the next second, stops
the current Foreground service, and shuts down the app.

4.7.6 Logging. To ensure that we understood how well the system was performing, we included various logs in
the smartwatch app that were saved in files on the smartwatch. In particular, we had 1) configuration logs at
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the time of setup, 2) hourly logs between the setup time of the devices and the start of the study, 3) hourly logs
during the 7-day study period, 4) continuous log of the BLE signal strength between the two smartwatches, 5)
hourly app function logs and 6) error logs as and when they happened.

(1) The configuration log contained the dates and hours of data collection set by the couples which we used
for post-study analysis.

(2) The before-study logs contained the log’s timestamp, battery level, the number of days, hours, minutes,
and seconds until the start of the study, and the number of exceptions that happened in the previous hour.
We could use this data to infer various things such as whether the battery died before the study started
and the partners forgot to charge it, or whether an error shut down the app.

(3) The during-study hourly logs contained several important fields. These included the following from the
previous hour: timestamp of the log, battery level, date and number of times the BLE started advertising
(peripheral device) or scanning (for the central device), date and number of times the device met the
closeness condition, date and number of times of no-silence detection, date, and number of times of voice
activity detection, date and number of times the two watches connected, date and number of times sensor
data was collected, date and number of times self-report was triggered (1st and 2nd alert), started, and
completed, whether the recording was a backup recording, if the audio was discarded (because self-report
was not completed), number and dates of errors, number of times and dates the app restarted, whether
internet was available on the smartphone, and amount of space remaining on the smartwatch. These data
allowed us to assess the performance of the system (see Section 6).

(4) The hourly app’s function logs contained various “print” statements we had in various functions in our
code as well as the Wear OS system logs which our app logged and saved in a file. We did this to debug
and better understand which code block may have caused any errors.

(5) The BLE log saved the signal strength between the devices throughout the continuous scanning during
the hours of data collection. This data can be used to infer how much time partners spent together.

(6) The error logs were the exceptions (described in the previous section) that we logged. We used those to
debug the app.

4.7.7 DyMand App Checker. In early deployments, we realized that the smartwatch app could sometimes be shut
down by the Wear OS system after an error, and our implementation for the app to restart itself was not always
reliable. Consequently, we developed a smartwatch app — DyMand App Checker — to continuously check each
hour if the DyMand smartwatch app is running and then start it if it is not running.

4.8 Setup Components of Smartwatch and Smartphone Apps
We implemented setup components of the smartphone and smartwatch apps for the partners to set up their
devices, to ensure all aspects of the apps were working correctly before they take the devices away, and also for
them to experience the process of sensor and self-report data collection. The smartphone app collects personal
data and also the hours that the partners indicate for data collection. This information is transferred to the
smartwatch app during the setup of the smartwatch after the “send” button is pressed on the smartphone. If the
watch receives it, it shows a screen saying that the configuration process is successful. Otherwise, it needs to be
sent from the smartphone again through the same button. The communication between a paired smartwatch and
smartphone is explained in detail in Section 4.6.3. The smartwatch app collects information such as the couple
ID (e.g., 001, 002) for logging purposes and creates a unique UUID (section 4.7.2) that can be used by the BLE
services for advertising and scanning, the color of their smartwatch for the app to know if the watch belongs
to the patient or supporting partner (by default, our smartwatch app chooses white to be the BLE peripheral
and the black to be a BLE central device), receives the data collection hours from the smartphone, and collects a
voice sample for 1 minute from the partner by asking them to read some text on a paper. Next, the BLE central
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Fig. 11. Overview of DyMand study [42]

smartwatch starts scanning and the BLE peripheral smartwatch starts advertising. After successful connection, a
message is shared via this Bluetooth connection between the smartwatches, and the recording of the sensor data
starts in the watches, completes after 5-minutes, triggers self-report on the smartphone, and then triggers the
end-of-day dairy.

5 DEPLOYMENT: FIELD STUDY
After various internal pilot tests of the DyMand system, we deployed it in a field study with couples. We ran the
DyMand study between 2019 and 2021 with heterosexual romantic couples from the German-speaking part of
Switzerland in which one partner had T2DM (Figure 11) [42]. In total, we collected data from 13 couples aged 47
to 81 years, with a mean age of 68 (SD = 9) resulting in a total of 1,019 5-minute samples of sensor data (85 hours)
and 598 corresponding completed self-report data.

The study was advertised in various places including hospitals, magazines, local newspapers, and the diabetes
association in Switzerland. Interested couples completed a web-based questionnaire to screen them for the
inclusion and exclusion criteria, and collect socio-demographic information. Those who met the eligibility criteria
were able to pick a date for a baseline assessment at the Applied Social and Health Psychology laboratory of the
University of Zurich. During this session, both partners received comprehensive information about the study,
signed the informed consent form, and completed a web-based questionnaire that captured constructs of interest
at baseline that were not assessed daily.

They also received instructions on the study and then trained research assistants helped them to set up their
devices and pair the corresponding smartphone and smartwatch (see Section 4.8 for details of the setup process).
Each partner was given a smartwatch and smartphone running the DyMand apps and they were instructed to
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have all devices with them every day for 7 days from getting up until going to bed. To prevent mistakes from one
partner accidentally using the other partner’s watch and phone, one set of phones and watches had black covers
and the other set had white covers. The patient was given the white set and the supporting partner was given the
black set. The partners picked the hours during which we could collect data from them. They could choose any
period from 4 am to 11 am for the morning hours and from 4 pm to 11 pm for the evening hours. During the
weekend, only the early morning hours and late evening hours were set (e.g., from 6 am to 10 pm). With this
procedure, privacy aspects were addressed by primarily focusing on situations, in which the couples spent time
together and thus reducing the number of audio recordings during the day of weekdays when chances are higher
that subjects are working or moving around in public places.
We collected data from their daily life for 7 consecutive days starting the next Monday after their visit until

the following Sunday night. The DyMand system collected sensor and self-report data as described in previous
sections. During the study, we had a process for monitoring the study to ensure that the system was working
correctly and to enable us to intervene if needed. We had a spreadsheet with cells corresponding to the hours
during which we should have received data. Research assistants checked the DyMand MobileCoach server daily
to see if the self-reports were triggered and completed, with each cell receiving one of the following values: 0 —
no self-report trigger received, 1 — self-report trigger received, but no survey completed 2 — trigger received and
survey completed. Additionally, we had a sheet that we used to track the details of issues and complaints that
the couples communicated to the research team either via email or calls. We collected the following relevant
information to understand and solve any problems that came up: subject id, device id, does the issue involve the
watch, does the issue involve the phone, detailed description of the issues and pictures if available, date and time
of issue, where they were when the issue happened, was the watch switched on, was the phone switched on,
were the two watches physically close together, were the phone and watch physically close together, was there a
connection to the digital coach indicated by the top-right icon on the smartphone app being green, were the
phone and watch connected, does the phone have internet, and are both apps on the watch running.

There are significant ethical and privacy concerns of such a system and study since we collect audio which is
sensitive data, and more so in the context of couples’ interactions with the likelihood of speech about private
topics. We took several measures as follows. First, our study received ethical clearance from the cantonal ethics
committee of the Canton of Zurich, Switzerland (Req-2017_00430). Second, we ensured that we collected a
maximum of 5 minutes of audio per hour in order not to record a significant percentage of the couples’ everyday
life. Consequently, even if the system triggers multiple recordings in the hour, the app always deletes all but
the last one before the end of the hour. Third, to protect the privacy of subjects not taking part in the study, we
asked subjects to wear a tag that we give them to indicate to others around that recording may be happening and
that they may be recorded. Finally, after subjects returned their devices, we gave them the option to listen to
and request the deletion of any audio samples without any explanation before the study team could listen to the
audio files. Similar measures have been used in previous studies [44, 50] and have proven adequate to safeguard
the privacy of study subjects and others not taking part in the study.

6 EVALUATION
We evaluated the DyMand system regarding its technical performance and usability. For technical performance,
the DyMand apps on the smartwatch and smartphone performed hourly logs (section 4.7.6) of relevant system
performance metrics such as whether data collection started and completed, and whether self-report data was
triggered, started, and completed. Furthermore, we annotated the audio data with relevant information such as
whether it contained speech, and whether there was a conversation between partners for the algorithm triggered
recordings and the backup recordings.
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Table 1. Expected and actual number of sensor and self-report data that were collected

Data # of Samples
Total expected # of sensor and self-report 1392
Expected # of samples with the app running 1028
# of sensor data collected 1019
# of self-reports triggered 1019
# of self-reports started 618
# of self-reports completed 598

Table 2. Percentages of the expected number of sensor and self-report data that were collected

Data Percentage (%)
% of total expected sensor data that was collected 73.2
% of expected sensor data with the app running that was collected 99.1
% of total expected self-report triggers that happened 73.2
% of total expected self-report triggers with the app running that happened 99.1
% of triggered self-report that were started 60.6
% of triggered self-report that were completed 58.7

6.1 Self-report and Sensor Data Collection
We investigated the percentage of the total expected number of sensor data and corresponding self-report data
that was collected. Given that couples indicated the hours during which we could collect data, we estimated
the total expected number for each couple and then summed them for all couples. Furthermore, given that the
DyMand smartwatch app may not always be running due to circumstances such as the device being off because
the couples did not charge them or the app crashing because of various errors such as in the BLE stack, a better
metric would be the percentage of the expected number of sensor data and self-report data that was collected for
hours when the app was running. For example, our logs showed that one couple did not turn on the smartwatch
for the duration of the study. Hence, the app did not run and could not collect any data. Using the app’s hourly
logs, we estimated the number of hours that the app was running. We then used the following log status data:
Was the sensor data collected? Was the self-report triggered? Was the self-report started? and Was the self-report
completed. We computed sums of these log events for each partner, and then for all couples (Table 1). Additionally,
we computed relevant percentages as shown in Table 2.

Our DyMand system collected 73.2% of the total expected sensor data and triggered 73.2% of the total expected
self-reports. Considering only the case where the app was running, these percentages become 99.1% which
shows that the system adequately triggered data collection as expected. Additionally, partners started 60.6% and
completed 58.7% of the triggered self-reports. This percentage is not very high yet understandable for the context
of this study. Partners had a maximum of 4 minutes to start the self-report after the trigger. The self-report was
dismissed if it was started after this time. There are several reasons partners may not have started the self-report
such as they did see or hear the alert because they were not wearing the watch, or they did not have the phone
close by them. For those who saw the alert and attempted to start the self-report, some partners complained that
there was a delay in the self-report loading on the smartphone due to internet connection issues (see Section 6.5)
and may have affected the start of the self-report in time.
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Table 3. Number of audio samples with speech and conversation between partners broken down by triggered and backup
recordings

Data Field # of Samples
Total audios 1014
Audios with speech 791
# of triggered recordings 277
Triggered recordings with speech 256
# of backup recordings 737
Backup recordings with speech 535
Conversation between partners for all audios 538
Conversation between partners for triggered recording 215
Conversation between partners for backup recording 323

Table 4. Percentage of audio samples with speech and conversation between partners broken down by triggered and backup
recordings

Data Percentage (%)
% of total audios with speech 78
% of triggered recordings with speech 92.4
% of backup recording with speech 72.6
% of total audios with conversation between partners 53.1
% of triggered recordings with conversation between partners 77.6
% of triggered recordings where one partner spoke 88.1
% of backup recordings with conversation between partners 43.8

6.2 Capturing Partners’ Conversation Moments
Given the key novelty of our system is its touted capability of capturing partners’ conversation moments using
physical closeness and voice activity detection, we investigated how well the DyMand system captured speech
and conversation between partners. We define a conversation as the presence of speech from both male and female
partners in that audio. We had 3 trained research assistants annotate all valid audios (i.e., were not corrupted
and hence playable, N=1014) by providing ‘yes’ or ‘no’ to relevant information such as: does it contain speech,
did the male partner speak, did the female partner speak, and was there a conversation between partners. We
automatically extracted the information about whether each audio was a triggered or a backup recording by
looking at the timestamp. Audios collected anytime between the 44th minute and the end of the hour (e.g., between
6:44 am and 7 am) are backup recordings. All audios collected before then were triggered by our algorithm. We
show the sum of audio status information for all partners in Table 3 and calculate relevant percentages in Table 4.

For triggered audios, 92.4% contained speech, which shows VADLite has good performance in capturing speech
in the real world considering prior work has shown that open-source VAD tools perform poorly on real-world
speech data collected with smartwatches [21, 39]. Furthermore, 77.6% of triggered recordings had a conversation
between partners in comparison to 43.8% of backup recordings which had a conversation between partners. This
result shows that our novel approach of physical closeness plus speech detection was better at capturing couples
conversation/interaction moments (77.6%) in comparison to using random or scheduled times per hour in our
study (43.8%). It is difficult to have a direct comparison to other works. Nonetheless, in the following work [56],
random triggering (10 times a day for one week) of self-report data collection among couples resulted in data
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for which partners were together (a proxy for interaction) in 39% of the triggers. Also, another work that used
the EAR triggered data collection among couples at a scheduled time sequence (every 9 minutes during waking
hours) resulting in data for which patients and spouses talked (a proxy for partners’ speech), on average, 47.9%
and 45.0% of their waking hours [50]. These percentages are lower than the 77.6% from the DyMand system.
There are some likely reasons for the absence of conversation between partners in triggered recordings —

the outstanding 22.4%. Firstly, our definition and evaluation metric of conversation between partners is strict —
both male and female partners spoke in that 5-minute audio. In actuality, the partners may have been having a
conversation but one partner may not have spoken in the specific 5-minute period in which we collected data,
resulting in a “no” for conversation between partners. When we relax that definition to be either partner spoke,
the percentage increases to 88.1%. Secondly, our physical closeness detection approach assumes that the partners
are always wearing the smartwatch which was not always the case. For example, if the two smartwatches are left
together on a table with the radio or TV in the background, a recording was triggered but it did not contain a
conversation between partners. One way to address this issue is to include a pre-step to estimate if the device
is being worn using accelerometer or heart rate data as an example. Thirdly, another edge case that happened
was partners sitting together and watching TV but not having a conversation. In this case, the recording was
triggered because of the physical closeness and speech from the TV but the audio did not contain speech from
the partners. One way to address this issue is to use an extra step for speaker identification to check if the speech
is from either partner. Doing this will entail collecting a voice sample from both partners at setup, and then
automatically creating and storing an acoustic fingerprint of each partner on the watch, and checking if there is a
match after the voice activity detection.

6.3 Usability Results
At the end of the 7-day field study, partners completed a self-report on their experience with the DyMand apps.
They responded to the statement “The study app was easy to use” on a 7-point Likert scale ranging from strongly
disagree (1) to strongly agree (7). As shown in Figure 12, most ratings were high with a mean of 5.8 (std=0.98,
N=24), which shows the DyMand system was easy to use. Also, partners wrote open-ended responses about
potential areas of improvement for the DyMand system. One key recurring theme was that there was a delay
in the self-report showing up as mentioned before. Another common suggestion was to reduce the number of
questions.

6.4 Errors
On our server, when there were too many user intent messages (messages that indicate a recording is done in the
watch), DeepStream could not maintain the connection between the server and the client — a socket hang-up
error. Though we could not find a technical solution to the problem, we managed to fix this by restarting the
Docker container of DeepStream. As this happened only a couple of times during the study and as we found out
the problem both times quickly during our periodic monitoring of the system, this error had a negligible effect
on the data obtained.

There were BLE connection issues, too. In the smartwatch, we found that after a few successful BLE connections,
the smartwatches could not connect anymore with each other. We fixed this by periodically destroying and
recreating the whole Bluetooth stack and not just the BLE services (scanning and advertising).

6.5 Challenges
Unavailability of Internet access sometimes resulted in self-reports not being shown on the smartphone in time
as described before. This issue is a major limitation of the MobileCoach platform as the mobile app has to send
a request to the server to then send a request back to the phone to then show the self-report on the screen
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Fig. 12. Usability result showing partners’ responses to the statement “The study app was easy to use” on a 7-point Likert
scale ranging from strongly disagree (1) to strongly agree (7)

introducing several points of failure. When this happens, the corresponding audio recording gets deleted as it is
not valid for us to analyze without a corresponding self-report. The app then tries to record another sample and
trigger another self-report, increasing the burden of self-report completion. A solution during the study would
have been an offline trigger that syncs when the internet connection is restored. We did not anticipate this as
we gave our participants phones with SIM cards for Internet access. Due to resource constraints, we could not
change this later during the study. A future extension of the MobileCoach platform with an in-app offline trigger
to show the self-report will circumvent these multiple pathways and will prevent this issue.
MobileCoach is designed such that the DeepStream server (section 4.4) syncs the messages designed in the

intervention designer to the app only when the app is open and used by the user. After many “recording done”
user-intent messages to the server, the server triggers many self-reports and when the app is opened after an
inactive period, it takes some time for the messages to sync with the DeepStream server. This issue caused some
delay for the most recent message to appear when the app was opened. As the solution would have required
major customizations in the MobileCoach framework, we did not address this issue.

Making the smartwatch app run continuously (section 4.6.1) was quite challenging. In addition to the Foreground
service and changing the battery optimization settings, one of the system apps in the Nokia 6.1 kept shutting
down our app after a few hours. We spent a lot of time trying to figure out the root cause and fix it by disabling
the respective system app (com.evenwell.powersaving.g3). This issue is important to note for future studies that
plan to implement long-running background services on the Android platform.

7 LIMITATIONS AND FUTURE WORK
When issues happened during the study, we sometimes did not have enough information to infer the cause until
the devices were returned. Even though we had various key logs that would have helped, we did not implement
a way to transfer the logs from the watch to the phone, and then to our server for monitoring. The DyMand
system was already quite complex and we had time constraints, and hence, we decided not to invest the time
and effort into implementing this feature. One key implementation challenge was the fact that the watch did
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not have a direct internet connection and hence, any such data transfer would have had to happen through the
phone and then to the server, further introducing potential points of failure. To enhance better error analysis in
the field, in the future, the DyMand system should be extended to transfer the logs from the watch to the phone
and then to an external server.
Our algorithm for capturing couples’ interaction moments though performed well, it did not address some

edge cases as described in the evaluation section (section 6.2). Future work will update the algorithm to check if
the partners are wearing the smartwatch as part of the closeness and speech detection check by leveraging other
sensor data such as acceleration. Furthermore, we will implement a speaker identification method to check if the
speech is from either of the partners and avoid being triggered by other people or speech from the radio or TV.
This implementation will entail training a speaker identification model to extract a speech embedding from each
partner during the setup and use it for comparison in real-time on the smartwatch.
Our DyMand system currently only collects relevant sensor and self-report data but it does not perform

real-time recognition of constructs that are relevant for understanding couples’ chronic disease management
such as emotional well-being, social support, and CDC. Future work will augment the DyMand system with such
capabilities.
The DyMand system is generic in that it is suitable not only for couples’ diabetes management but also for

studies in the context of related diseases such as hypertension, or mental health disorders in which sensor and
self-reports about emotional well-being and health behavior are relevant for disease management and health
intervention designs. Given it is open source, it can be extended or adapted, and our novel method for capturing
partners’ conversations/interactions can be used by other researchers to develop similar apps to collect data to
understand various constructs among other dyadic constellations such as friendships, and sibling and parent-child
dyads. Also, another potential research use case is to better understand communication patterns in-situ and
performance measures of teams in organizations.

8 CONCLUSION
In this work, we developed, deployed, and evaluated the DyMand smartwatch and smartphone system that
captures couples’ dyadic interactions in daily life in the context of chronic disease management. It consists
of a smartwatch app, a smartphone app, built on top of the MobileCoach platform that collects sensor and
self-report data that are relevant for chronic disease management on couples’ interaction/conversation moments.
We deployed DyMand in a 7-day field study and collected 85 hours of data from 13 heterosexual romantic
couples from the German-speaking part of Switzerland. Key challenges affected the system’s performance and
usability such as software errors, poor Internet connectivity, and long self-report questionnaires. Nonetheless, our
evaluations showed that the system had good performance in triggering the collection of the expected number of
sensor and self-report data, and capturing couples’ conversation moments, and it was easy to use. The DyMand
system would enable social, health, and clinical psychologists to understand the social dynamics of couples in
everyday life and for developing and delivering behavioral interventions for couples who are managing chronic
diseases. Our system could be customized and extended to be used in other contexts besides chronic disease
management such as couples’ daily dynamics more broadly, workplace interactions, and other dyad constellations
such as parent-child and sibling-sibling or roommate dyads.
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Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and
their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into
their emotional well-being in chronic disease management. Currently, the process of assessing each partner’s emotions is
manual, time-intensive, and costly. Despite the existence of works on emotion recognition among couples, none of these
works have used data collected from couples’ interactions in daily life. In this work, we collected 85 hours (1,021 5-minute
samples) of real-world multimodal smartwatch sensor data (speech, heart rate, accelerometer, and gyroscope) and self-reported
emotion data (n=612) from 26 partners (13 couples) managing diabetes mellitus type 2 in daily life. We extracted physiological,
movement, acoustic, and linguistic features, and trained machine learning models (support vector machine and random
forest) to recognize each partner’s self-reported emotions (valence and arousal). Our results from the best models — balanced
accuracies of 63.8% and 78.1% for arousal and valence respectively — are better than chance and our prior work that also
used data from German-speaking, Swiss-based couples, albeit, in the lab. This work contributes toward building automated
emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the
delivery of interventions to improve their emotional well-being.
CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Applied computing → Con-
sumer health; Psychology.

Additional Key Words and Phrases: Affective Computing; Emotion Recognition; Multimodal Sensor Data; Couples; Smart-
watches; Wearable Computing; Speech Processing; Natural Language Processing; Machine Learning; Deep Learning; Transfer
Learning; BERT; Chronic Disease Management

1 INTRODUCTION
For couples in which one partner has a chronic disease such as cancer and diabetes, their relationship plays a
key role in the disease management if partners share the responsibility of its management [44, 51]. Such joint
disease management, also called dyadic coping [5, 16, 43] takes an emotional toll on both patients and spouses
[52]. Consequently, understanding each partner’s emotion within the context of their interactions and disease
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management in daily life could enable the triggering of various dyadic interventions (where partners are both
involved e.g. [33]) to improve their emotional well-being and chronic disease management.

However, assessing emotions among couples is challenging. Two approaches are used for emotion assessment
in the lab and in daily life: self-report and observer reports. For self-reports, couples can be asked to have an
emotionally charged conversation that is videotaped (e.g., in the lab), and then afterward, each partner provides
emotion ratings, for example, while watching the videos [46] or by using a validated affect instrument such as
the PANAS [55]. In the case of daily life, couples are periodically asked to complete self-reports [49] such as the
PANAS which can be obtrusive and impractical for continuous emotion assessment. These ratings could be biased
(for example, if the partner desires to project a certain emotion rating rather than how they really feel) and may
not reflect the partner’s actual emotion. For observers’ reports, people are trained to watch the video recordings
(e.g., in the case of lab data) and use a coding scheme to rate the emotional behavior of each partner (e.g., SPAFF
[24]). Such coding is also done for example, for audio data collected from couples’ daily life interactions [45]. This
manual coding process is costly and time-consuming as multiple coders need to be trained for this task [32] and
suffers from inter-rater reliability issues [29, 37]. Automated emotion recognition of each partner’s emotion could
potentially address these limitations. Current approaches for automatic emotion recognition among couples have
all used data collected from the lab [11]. There exists no system that automatically recognizes the emotions of
romantic partners using real-world data from couples’ interactions in daily life. One potential reason for this gap
is that collecting and processing such data is non-trivial, time-intensive, and costly [11].

Smartwatches have been used for mood recognition of individuals [18] and they could be leveraged for recog-
nizing each partner’s emotions based on the couple’s interactions in daily life. Several features of smartwatches
make them well suited for this task. They are mostly with the wearer as opposed to a smartphone which could be
in various places like the pocket, or bag, and just not in proximity with the user. Also, consumer smartwatches
could be used to collect a wide variety of sensor data that have been used for emotion recognition in the past:
audio [50], heart rate, accelerometer, and gyroscope (for gestures e.g., [48]), and ambient light (to detect the
context of couples). Multimodal fusion of these sensor data could produce better recognition results [25, 39].
Furthermore, smartwatches could be leveraged in novel ways (using Bluetooth signal strength and voice activity
detection) to specifically capture partners’ interaction or conversation moments in daily life [13] for use in
emotion recognition.
In this work, we collected 85 hours (1,021 5-minute samples) of real-world multimodal smartwatch sensor

data (speech, heart rate, accelerometer, and gyroscope) and trained machine learning models to recognize each
partner’s emotions. Specifically, we trained models to recognize each partner’s emotional valence (negative
vs positive) and emotional arousal (high vs low) during the conversation using sensor and self-report data
from German-speaking, Swiss-based couples managing type 2 diabetes in daily life. We addressed the following
research questions:

RQ1: How well can romantic partners’ emotions be recognized using multimodal real-world sensor data from
daily life?

RQ2: Which modality and multimodal combinations produce the best emotion recognition results?
This work is the first to recognize the emotions of romantic partners using data collected from everyday life.

Our contributions are as follows (1) collection and use of a unique dataset — real-world, multimodal smartwatch
sensor data from German-speaking, Swiss-based couples (N=13 couples, n=26 participants), which is the first such
dataset used in the literature for automatic recognition of partners’ emotions (2) approaches for validating and
quantifying data quality on manually coded, annotated and transcribed real-world speech data (3) development
and evaluation of a machine learning system to recognize the emotions of each partner using a wide variety of
sensor data — acoustic, linguistic, heart rate, accelerometer, and gyroscope (4) an investigation of the sensor
modality combinations which result in the best emotion recognition performance of romantic partners. This
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Fig. 1. Russell’s circumplex model of emotions[57]

work is an extension of the work [10] and implements the research plan that was proposed in that work, along
with machine learning experiments and reported results.

In the rest of this paper, we discuss background and related work in Section 2, methodology in Section 3,
experiments and evaluation in Section 4 and results and discussion in Section 5, limitations and future work in
Section 6, and we conclude in Section 7.

2 BACKGROUND AND RELATED WORK
In this section, we describe various emotion models, multimodal emotion recognition, and works that have been
done to recognize emotions among couples.

2.1 Emotion Models
There aremainly twomodels of emotions used in the literature in emotion recognition: categorical and dimensional.
Categorical emotions are based on the six basic emotions proposed by Ekman: happiness, sadness, fear, anger,
disgust, and surprise [26]. Dimensional approaches mainly use two dimensions: valence (pleasure) and arousal
which are based on Russell’s circumplex model of emotions [47]. Valence refers to how negative to positive
a person feels and arousal refers to how sleepy to active a person feels. Using these two dimensions, several
categorical emotions can be placed and grouped into the four quadrants: high arousal and negative valence (e.g.,
angry), low arousal and negative valence (e.g., depressed), low arousal and positive valence (e.g., relaxed), and
high arousal and positive valence (e.g., excited) [47].

2.2 Multimodal Emotion Recognition
Multimodal fusion entails combining data collected from various modalities and leverages the idea that data
contained in different modalities could provide a better understanding of a certain context. Various works have
employed multimodal fusion approaches for emotion recognition and they have been shown to give better
results than unimodal approaches [25, 39]. There are two main fusion approaches — fusion at the feature level
(early fusion) and at the decision level (late fusion). Early fusion entails combining features from different data
modalities, for example, through concatenation and feeding them into the same machine learning algorithm.
For late fusion, a separate algorithm is used for each data modality and then the predictions of the individual
algorithms are combined using, for example, majority voting. Additional approaches include some hybrid of



4 • Boateng et al.

early and late fusion [56] and model-level fusion which leverages interactions between different modalities at the
model level e.g [30].

2.3 Emotion Recognition among Couples
Emotion recognition among couples is the task of recognizing the emotion of each romantic partner based on the
context of their interaction /conversation [11]. Specifically, it entails recognizing each partner’s emotions for every
utterance/speaker turn, every few seconds, or for the whole conversation. It differs from other kinds of emotion
recognition tasks mainly by the kind of stimuli that induces emotions. Some stimuli are driving [58], listening to
music or watching a movie [2], and conversation between people [40]. Couples’ emotion recognition is similar
to emotion recognition tasks whose stimuli are conversations since it uses a conversational context. However,
its uniqueness lies in the fact that the two interacting individuals are in a romantic relationship. Consequently,
various insights from psychology about couples’ interaction dynamics could be leveraged to recognize each
partner’s emotions. For example, romantic partners influence each other when interacting, and that insight has
been used for couples’ emotion recognition (e.g., [12, 21]).
There are several works that have developed machine learning systems to recognize the emotions among

couples (see [11] for a detailed overview of the research field). Most of these works have been done by the Signal
Analysis and Interpretation Laboratory (SAIL) team at the University of Southern California [11]. The works
have mainly used emotion labels from external raters, support vector machines as the algorithm, the following
three modalities — acoustic, lexical, and visual — with acoustic being the most used modality, and feature-level
fusion of acoustic and lexical modalities [11]. There are other related work focused on recognizing behaviors
among couples other than emotions such as level of blame [8, 9], conflict [53], and suicidal risk [23].
Most of these works have used observer ratings (perceived emotions) rather than self-reports (one’s actual

emotions) as labels. Consequently, the emotion recognition task essentially becomes recognizing external individ-
uals’ perception of each partner’s emotion rather than each partner’s emotion per their own assessment. Though
similar, the latter is more challenging. For observer ratings, coders are generally trained over several weeks, and
various approaches are used to resolve ratings that are not in agreement and ensure the validity of the labels.
Also, the self-reported emotion may not be reflected in that partner’s behavior in comparison to observer ratings
which are purely based on behavioral observation.

Also, several of these works have used data from English-speaking couples in the U.S. with a few using data
from German-Speaking couples in Switzerland [7, 12] and Dutch-speaking couples in Belgium [15]. Additionally,
several modalities such as physiological data, hand gestures, and body movement have not been explored. More
importantly, none of these works have used data collected from couples’ interactions in daily life. Our work fills
the current research gap by performing emotion recognition using multimodal real-world smartwatch data —
speech, accelerometer, gyroscope, heart rate — and self-reported emotion data collected from German-speaking,
Swiss-based couples.

2.4 Emotion Recognition using Smartwatch Data
There are a number of works that have performed emotion recognition using smartwatch data. AlHanai et al. [3]
trained neural network models to recognize emotions using smartwatch and smartphone data collected from
10 subjects who told 31 personal stories (15 happy) in a lab. They used an iPhone to collect audio which they
transcribed. They also collected physiological and movement data with the smartwatch. They extracted 386
acoustic (functionals over low-level descriptors), linguistic (average positive and negative sentiment of words),
physiological, and movement features (mean, median, variance of electrocardiogram, photoplethysmogram,
accelerometer, gyroscope, bioimpedance, electric tissue impedance, galvanic skin response, and skin temperature)
and selected 10 features for use using sequential forward features selection. They classified the whole narration
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as happy or sad (indicated by the subject) and 5-sec segments as positive, negative, or neutral (annotated by a
research assistant with balanced distribution). Though they used naturalistic data (personal narratives), this work
did not use data collected from an uncontrolled, real-world context such as in daily life.

Budner et al. [18] trained Random Forest models to recognize moods using smartwatch data collected from 60
subjects in daily life. They classified 9 mood states (angry, sad, tired, excited, happy, quiet, elated, very happy,
relaxed) and 3 levels of pleasure and activation. They extracted the following features related to body sensor data:
vector magnitude counts (a measure of the total amount of movement), heart rate, and external influences: light
level and GPS coordinates (variance), weather, (humidity, temperature, cloudiness, windiness, air pressure), the
hour of the day, whether it was the weekend and day of the week. Arano et al. [4] built upon the work by Budner
et al. [18] and proposed the use of the smartwatch-based system to measure emotions in a real-world scenario:
classroom. They were able to collect data from 30 subjects related to body sensor data: accelerometer, light,
audio, heart rate (from a smartwatch), GPS data (from a smartphone), and environmental variables (e.g., weather,
longitude, latitude, altitude, room temperature, humidity, pressure, wind level, clouds level, noise level). Subjects
indicated their level of Activation, Tiredness, Pleasance, Quality (of lecturer’s presentation), and Understanding
(of lecturer’s presentation) on a scale from 0-2. They extracted statistical features and used 9 models: K-Nearest
Neighbor, Decision Trees, Support Vector Machines, Multilayer perceptron, logistic regression, Gradient Boost,
XGBoost, and LSTM.

Kanjo et al [31] developed models to recognize emotions using body sensor and environmental data collected
from the wild. They collected data from 40 females walking around Nottingham city center, UK for 45 mins:
body movement, activity, heart rate, Electrodermal activities and body temperature and, environmental data
including noise level (Env-noise), air pressure and ambient light levels, and GPS data. User emotions labels are
collected using self-report input, based on a scale for valence (1-5). They used the Microsoft Band and Android
phones (to collect noise, GPS, and self-report). They extracted 87 features: mean, median, max, min, range, and
standard deviation and quartiles and selected 21 after feature selection. They trained ensemble models (stacking)
to perform classification of the 5 levels of valence. They had a base model for each modality and a stacking model
which fused the results of both models. They used the following models: Support Vector Machine, Random Forest,
and K Nearest Neighbour as the base models, and Naive Bayes as the stacking model Learner which fused the
base models’ predictions.

Quiroz et al. [41] developed a smartwatch-based method to recognize emotions based on movement data. They
collected data from 50 subjects: (43 females; mean age 23.18 [SD 4.87] years), North-West, UK. They collected
emotion data with the PANAS before and after emotion elicitation; happy, sad, and neutral. They used audiovisual
movie clips and audio music clips to elicit emotions. They asked the subject to walk for 250 meters while wearing a
smartwatch and heart rate monitor strap on the chest. 18 were assigned to the audiovisual condition and watched
the movie before walking. Out of the 32 assigned to audio, half of them listened while walking. It took 20 mins
for each subject. They extracted 107 features over 1-second sliding windows with 50% overlap over filtered signal
(accelerometer and gyroscope, and heart rate). They trained personalized models from 44 subjects to classify
happy vs sad and happy vs sad vs neutral. The data was balanced. They used 10-fold stratified cross-validation
with logistic regression and random forest.

Schmidt et al, 2019 [48] trained a convolutional neural network (CNN) model to predict emotions (arousal,
valence), anxiety, and stress from real-world smartwatch-based physiological and motion data. They used an
Empatica E4 to collect 1,400 hours of data; accelerometer, photoplethysmogram (PPG), EDA, and skin-temperature
data from 12 subjects (7 male). Subjects received EMA prompts every 2-2.5 hours or triggered manually: 1) self-
assessment mannequins assessing valence and arousal 2) State-Trait Anxiety Inventory (STAI) on 6 levels and
3) Stress level scored on a four-point Likert scale. The data was skewed for all the labels. They preprocessed
the data resulting in 1083 valid windows/questionnaires. The data was split between 3 levels for all the labels
except stress which was binarized. They extracted 62 features (e.g., mean, standard deviation, heart rate, heart
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rate variability). They used leave-one-subject-out cross-validation(LOSO) and leave-target-questionnaires-out
(LTQO). As baseline models, they used different tree-based classifiers (decision-tree (DT), randomized decision
trees (ET), and random forest (RF)). They used a single-task and multi-task CNN which takes the raw sensor data
as the main model with late fusion.

Park et al., 2020 [38] developed WellBeat, a smartwatch-based system for assessing the emotional well-being
of individuals. They used a Samsung smartwatch to collect PPG and heart rate data from 12 subjects (3 female)
continuously throughout the day: 1121 hours of data from a 3-week study (about 445 hrs eliminated) and 1032
self-report labels related to happiness, awakeness, and relaxedness levels (1-5). Subjects were asked to complete
the self-report 3 times a day at random times during waking hours. They performed data preprocessing by
removing samples where the watch was not worn, partitioned data into consecutive 5-min slices, filtered out
signals without heart rate signals, extracted heart rate and RR intervals, and HRV parameters such as RMSSD,
and estimated their validity. The label was matched to the day -10 mins to +10 mins around the label timestamp
similar to Schmidt et al (2019). They performed classification with logistic regression and 10-fold cross-validation.

Our work builds upon some of these works by using similar preprocessing approaches and features (for heart
rate, accelerometer data, speech data, gyroscope), algorithms and evaluation approach. One modality that is
missing in most of these works is the linguistic modality. We leveraged recent advances in deep learning and
natural language processing to extract linguistic features from speech. Also, we systematically evaluated the
performance of individual modalities and various modality combinations. The key way our work differs from
these works though is our use of the context of couples’ interactions in daily life to recognize each partner’s
emotion.

3 METHODOLOGY
In this section, we describe how we collected and preprocessed the data and the features that we extracted.

3.1 Data Collection
We developed DyMand, an open-source smartwatch and smartphone system which we used to collect data from
couples in daily life in a user study (see [13] for a detailed description). The DyMand system (Figure 2) consists
of a smartwatch app, and a smartphone app built on top of the MobileCoach platform [28, 34] that consists of a
web-based intervention designer and backend.

We ran the DyMand study between 2019 and 2021 with heterosexual romantic couples from the German-
speaking part of Switzerland in which one partner had type 2 diabetes [35]. In total, we collected 85 hours of
sensor and self-report data from 13 couples aged 47 to 81 years, with a mean age of 68 (SD = 9).

The study was advertised in various places including hospitals, magazines, local newspapers, and the diabetes
association in Switzerland. Interested couples completed a web-based questionnaire to screen them for the
inclusion and exclusion criteria, and collect socio-demographic information. Those who met the eligibility criteria
were able to pick a date for a baseline assessment. During this session, both partners received comprehensive
information about the study, signed the informed consent form, and completed a web-based questionnaire that
captured constructs of interest at baseline that were not assessed daily.
Each partner was given a smartwatch (Polar M600 running Wear OS) and a smartphone (Nokia 6.1 running

Android 9.0), both paired and running the DyMand apps. They also received instructions on the study and then
trained research assistants helped them to set up their devices and pair the corresponding smartphone and
smartwatch. They were instructed to have all devices with them every day for 7 days from getting up until going
to bed. To prevent mistakes from one partner accidentally using the other partner’s watch and phone, one set of
phones and watches had black covers and the other set had white covers. The patient was given the white set
and the supporting partner was given the black set. The partners picked the hours during which we could collect
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Fig. 2. Overview of the DyMand system

data from them. During the week, they could choose a period for the morning hours (any time between 4 am to
11 am, at least 2 hrs) and a period for the evening hours (any time between 4 pm to 11 pm, at least 2 hrs). During
the weekend, data was collected all day and couples chose a start time in the early morning hours and an end
time in the late evening hours (e.g., from 6 am to 10 pm). With this procedure, privacy aspects were addressed
by primarily focusing on situations, in which the couples spent time together and thus reducing the number
of audio recordings during the day of weekdays when chances are higher that subjects are working or moving
around in public places.

We collected data from their daily life for 7 consecutive days starting the next Monday after their visit until the
following Sunday night. The DyMand system triggered the collection of sensor and self-report data for 5 minutes
each hour during the hours that partners pick. We collected the following sensor data from the smartwatch:
audio, heart rate, accelerometer, gyroscope, Bluetooth low energy (BLE) signal strength between watches, and
ambient light.
We collected a maximum of 5 minutes of data per hour for privacy reasons. Hence, to optimize the quality

of data collected within that hour and to ensure that we recorded the most relevant 5 minutes of data (when
partners are interacting), rather than triggering data collection at random or scheduled times which is the norm
([36, 45]), the app on each of the two smartwatches collected data when 1) the partners were physically close and
2) when there was speech (see [13] for the full details).
Our algorithm used a two-step process. First, the app determines physical closeness using the BLE signal

strength between the two smartwatches with one acting as the central and the other acting as the peripheral. The
central smartwatch scans for the peripheral device, and checks if the signal strength between them is within a
certain threshold, which corresponds to a distance estimate. If this condition is met, the app on the central device
determines if the partners are speaking by using a voice activity detection (VAD) machine-learning algorithm,
which is implemented on the smartwatch [14]. If these two conditions are met, the central device connects with
the peripheral smartwatch, starts recording, and also sends a signal to the peripheral watch to also start recording.
Consequently, each smartwatch records the same interaction, albeit, sometimes with a start delay of a few seconds
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Fig. 3. Emotion rating with Affective Slider

on the peripheral smartwatch. It is important to note that depending on the proximity of the partners, and the
presence of other individuals, parts of ongoing conversations were captured to different degrees separately on
each of the smartwatches even for the same recording time period. Hence it cannot be assumed that the two
recordings at the same hour and minute are exact duplicates. For example, there was a case where both partners
were together with two friends with all four being in proximity, having conversations. Yet, the male partner was
talking directly with the male friend, and the female partner was talking directly with the female friend, and
though the two smartwatches were recorded at the same time, they captured different conversations.

In the case in which the condition of physical closeness and speaking is not met in the hour, the app triggers a
backup recording in the last 15 minutes of the hour. Our evaluation showed this approach for triggering data
collection to capture conversation moments between partners performed better than the backup recording [13].
The app also ensured that there were at least 20 minutes between subsequent data collection to reduce the burden
of the partners completing the self-reports.

After the 5-minute sensor data collection, the smartwatch vibrates and triggers a self-report on the smartphone
for that partner to complete. The self-report asks about emotions over the last 5 minutes using the Affective
Slider, a digital affect measuring tool that assesses the valence and arousal dimensions of their emotions [6]. In
particular, they responded to “how unhappy vs. happy did you feel in the last 5 minutes?" and "how tired vs.
awake did you feel in the last 5 minutes" by moving a slider from 0 to 100 on a visual scale — the Affective Slider
(Figure 3). If the smartwatch does not receive a message from the smartphone app within 2 mins indicating that
the self-report has been started, it gives another vibration alert. If once more, within the next 2 minutes, there is
still no response about the start or completion of the self-report, it implies the self-report was not completed. The
self-report is then dismissed. Doing this ensured that we collected data with matching sensor and self-report
samples. For privacy reasons, the app deletes that audio sample if the self-report is not completed and attempts to
trigger another sensor data collection and self-report later in the hour, optimizing for the case detection partner’s
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Fig. 4. Screenshot of the annotation process of the audio

interactions. Other sensor samples are still kept which could result in several sensor samples per hour without
audio. If a backup recording is done, which implies that it was the last recording in that hour, the audio is not
deleted even if the self-report is not completed. Doing this ensures we have at least one audio recording per
hour. This approach resulted in a significant number of sensor recordings without labels. At the end of the day,
the system triggered the Affective Slider, and also a short form of the PANAS self-report [55] for the couples to
report their emotions over the whole day.

There are significant ethical and privacy concerns of such a system and study since we collect audio which is
sensitive data, and more so in the context of couples’ interactions with the likelihood of speech about private
topics. We took several measures as follows. First, our study received ethical clearance from the cantonal ethics
committee of the Canton of Zurich, Switzerland (Req-2017_00430). Second, we ensured that we collected a
maximum of 5 minutes of audio per hour in order not to record a significant percentage of the couples’ everyday
life. Consequently, even if the system triggered multiple recordings in the hour, the app always deleted all but
the last one before the end of the hour. Third, to protect the privacy of subjects not taking part in the study, we
asked subjects to wear a tag that we give them to indicate to others around that recording may be happening and
that they may be recorded. Finally, after subjects returned their devices, we gave them the option to listen to
and request the deletion of any audio samples without any explanation before the study team could listen to the
audio files. Similar measures have been used in previous studies [36, 45] and have proven adequate to safeguard
the privacy of study subjects and others not taking part in the study.

3.2 Data Annotation, Transcription and Coding
Four trained research assistants (RA) annotated, transcribed, and coded the audios. Using the software Audacity,
each 5-minute audio was annotated with the start and end times of the speaker turns of each partner (m, f),
unknown speakers (u), cross-talk between partners (c), vocalizations such as laughs, sighs (v) and the context
(e.g., TV, radio), silence with no one speaking (p), noise such as music, movements of the watch, vehicles, etc. (n)
and speech from radio or tv (u-tv/radio) (Figure 4).
The speech of both partners within each audio was transcribed in separate documents. In particular, each

Microsoft Word document was used for each partner and RAs wrote the transcript in 15 secs chunks with “//” to
separate the chunks. RAs wrote the German equivalent of any Swiss German words that were used since Swiss
German is not a written language and there are different dialects of Swiss German spoken in Switzerland. Words
that were not intelligible were written as “XY” in the document.
RAs coded the context of each audio in a spreadsheet as they listened to the audio using a protocol based on

Mehl et al. [36]. They indicated if the audio contained speech, each partner spoke, and there was a conversation
and a conversation between both partners. They also provided information about the conversational context
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Fig. 5. Screenshot of the coding context options

(what was going on in the audio), location, interaction partners, conversation type, activity, and emotional
expression (Figure 5)
The real-world nature of the data posed challenges for our RAs. There were cases where the partners were

having conversations with friends which made it difficult to distinguish the voices. For other cases, one partner
was far away from the smartwatch while speaking, making it difficult to hear their voice. Given the challenging
nature of the annotation, transcription, and coding tasks using real-world data (85 hours of audio) and the
susceptibility to error, we implemented several manual and automatic approaches to perform sanity checks. We
reviewed the codes to make sure the entries for different fields were consistent. For example, we cross-checked that
if it is indicated that both partners spoke, then the field “interaction partner” should be “romantic partner”. Also,
for each audio file, we automatically checked if there existed a non-empty transcription file and an annotation
file with ‘m’ or ‘f’ if there was a “yes” for “male spoke” or “female spoke”. We also verified the accuracy of the
annotations by automatically checking that for each 15-second chunk in the transcript file that contained text for
the male or female partner, there existed an ‘m’ or ‘f’ in the corresponding 15-sec time period in the annotation
file. We computed a percentage overlap for ‘m’ or ‘f’ with the corresponding transcript as a proxy for the quality
of the annotation of that audio. Furthermore, we computed the percentage of “XY”s — inaudible words — for
each audio that had speech which was a proxy for the quality of the audio and difficulty of the transcription task
for that audio. RAs were given a list of files that failed these checks to then fix.

3.3 Data Preprocessing
We had a total of 612 self-report samples consisting of arousal and valence ratings (0 - 100) of each partner collected
using the Affective Slider after the sensor data collection. We had a total of 1021 5-minute samples of sensor
data (85 hours) consisting of audio, heart rate, accelerometer, gyroscope, and ambient light collected from each
partner’s smartwatch. Some of the 5-minute samples were without audio data since the data collection protocol
resulted in the deletion of audio samples without completed self-reports due to privacy reasons. Furthermore,
because of software errors, a few of the sensor data were collected outside the data collection window and some
audios were corrupted and hence could not be played or processed. We inferred these audios by eliminating
audios whose size was smaller than the expected file size for 5-minute audio. Consequently, we automatically
selected 5-minute samples that met the following conditions: 1) had both audio (non-corrupted) and other sensor
data, and 2) were within the data collection hours specified by the partners. In total, that resulted in 1014 5-minute
samples. Given our task is a supervised learning task, we also filtered and selected sensor samples that had a
corresponding completed self-report.
We binarized the arousal and valence data into high (above 50) and low (less than or equal to 50) for arousal

and negative (less than or equal to 50) and positive (above 50) for valence similar to the approach by previous
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Fig. 6. Distributions (bar chart) of data for arousal (left) and valence (right) per couple per gender

Table 1. Number of negative valence and positive valence, and high arousal and low arousal samples per gender after applying
selection criteria to 5-minute samples 1) had both audio (non-corrupted) and other sensor data, and 2) were within the data
collection hours specified by the partners.

Valence Arousal
Negative Positive Low High

Male 8 191 43 156
Female 12 169 54 127
Total 20 360 97 283

works [7, 12, 15]. With binarization, the binarized arousal and valence labels can be mapped to one of the four
quadrants of Russell’s circumplex model of emotions, enabling its usefulness in the real world since we can tell
which group of emotions are being felt by each partner. We split at 50 because with the design of the Affective
Slider, 50 was understood to be the midpoint for the labels while partners responded to it. Furthermore, taking a
per subject median rating as the midpoint would be problematic if there is not a good distribution of ratings for
that partner (e.g., if there are just 3 ratings which are all 80, 90, and 100, it will not be correct to assume that 80
implies negative emotions for them). Next, we filtered for samples for which we had ‘yes’ for ‘male spoke’ and
‘female spoke’ as a proxy for the context of a conversation between both partners. This filtering resulted in 380
sensor-self-report samples: 20 negative valence and 360 positive valence, 97 low arousal, and 283 high arousal.
The data is highly imbalanced which is typical of real-world emotion data. Table 1 shows the sensor-self-report
samples per gender. Figures 6, and 7 show the distributions of low and high arousal and negative and positive
valence per couple per gender. We observe the skewness of the labels per couple with some couples’ data not
containing any negative valence samples (1, 2, 5, 11, 13) and any low arousal samples (2, 11).
We filtered the audio using a low-pass filter with a cut-off frequency of 4 kHz given it was collected as raw

audio at a sampling rate of 44.1KHz and human speech is less than 4 kHz. For each 5-minute data for all the
modalities, we removed outliers (data points that were more than 2 standard deviations from the mean). We
resampled the data points at 50 Hz for accelerometer and gyroscope and 1 Hz for heart rate given that the Wear
OS platform did not sample the signal at our specified frequency in the app. We additionally preprocessed the
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Fig. 7. Total distribution (histogram/bar chart) of data for all couples per gender for arousal (left) and valence (right)

heart rate data to remove outlier samples such as heart rate values outside the normal range (30 to 200 beats
per minute). We automatically inferred samples for which the watch was not worn. For each physiological and
movement sample, we logged a value (between 0 and 3) that provides a confidence estimate of the wear state of
the watch. If 50% of the data points within the 5-minute sample had a value of 0 for the wear state, we marked
the same as non-worn.

3.4 Features Extraction
We describe the extraction of physiological, movement, context, linguistic and acoustic features.

3.4.1 Physiological. Similar to prior work [31], we extracted the following statistical features from the heart rate
data: mean, median, max, min, 25th percentile, 75th percentile, standard deviation, range, skewness, and kurtosis.
The extraction resulted in a 10-dimensional feature vector.

3.4.2 Movement. Similar to prior work [41, 48], we extracted the following statistical features from the ac-
celerometer and gyroscope: mean, median, max, min, 25th percentile, 75th percentile, standard deviation, range,
skewness, and kurtosis. For the accelerometer and gyroscope data, we computed the magnitude of the x, y, and z
axes before using them to compute the features. We did this so that the orientation of the device does not affect
the results. The extraction resulted in a 10-dimensional feature vector.

3.4.3 Acoustic Features. For speech, we used openSMILE to extract the 88 eGeMAPS features using the anno-
tations corresponding to the sections of the audio where each partner spoke similar to prior work on couples’
emotion recognition [7, 12, 22]. These features have been shown to be a minimalist set of features adequate for
emotion recognition [27]. Researchers use the extraction of acoustic parameters from the speech signal as a
method to understand the patterning of the vocal expression of different emotions and other affective dispositions
and processes. They used a number of acoustic parameters, including parameters: time-domain (e.g., speech rate),
frequency domain (e.g., fundamental frequency or formant frequencies), amplitude domain (e.g., intensity or
energy), distribution domain (e.g., relative energy in different frequency bands).

The use of machine learning led to the increase in the variety and quantity of acoustic features employed: basic
(low-level ones) and derived (functionals). Therefore, finding relevant acoustic parameters is crucial in order to
understand the mechanism of production and perception of emotions. Minimalistic standard parameters set for
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acoustic analysis of speech and other vocal sounds might lead to better generalization in real-world scenarios.
There are three criteria that guided the choice of parameters: the potential of an acoustic parameter to index
physiological changes in voice production during affective processes; the frequency and success with which the
parameter has been used in the past literature; its theoretical significance
The minimalistic acoustic parameter set contains 18 Low-level descriptors (LLD), which are grouped into

frequency-related parameters, energy/amplitude-related parameters, and spectral (balance) parameters. They are
smoothed over time with symmetric moving average filters 3 frames long (for pitch, jitter, and shimmering, only
performed within voiced regions). The following functionals are applied:

• arithmetic mean and coefficient of variation (standard deviation normalized by arithmetic mean) to all 18
LDD

• 20th, 50th, and 80th percentiles, range of 20th to 80th percentile, and mean and std of the slope of ris-
ing/falling signal parts are added to loudness and pitch

• arithmetic mean of Alpha Ratio, Hammarberg Index, spectral slopes from 0-500Hz and 500-1500Hz over all
unvoiced segments

• rate of loudness peaks, mean length & standard deviation of continuously voiced regions, mean length and
std of unvoiced regions, number of continuous voiced regions per second

The above functionals yield 62 parameters in the Geneva Minimalistic Standard Parameter Set. For extended
Geneva Minimalistic Standard Parameter Set (eGeMAPS) the following are added so the final set contains 88
parameters: arithmetic means and coefficients of variation are applied to 7 additional LLD to all segments;
arithmetic mean of the spectral flux in unvoiced regions, arithmetic mean and coefficient of variation of the
spectral flux and MFCC 1-4 in voices regions + equivalent sound level. In evaluations, eGeMAPS was shown to be
superior or equal to the GeMAPS [27]. Hence, we extracted the eGeMAPS features resulting in an 88-dimensional
feature vector.

3.4.4 Linguistic Features. We extracted linguistic features from the transcripts of the whole 5-minute interaction
using a pre-trained model — Sentence-BERT (SBERT) [42] Similar to prior work [7, 12]. Sentence-BERT is a
modification of the BERT architecture with siamese and triplet networks to compute sentence embeddings such
that semantically similar sentences are close in vector space. Sentence-BERT has been shown to outperform the
mean and CLS token outputs of regular BERT models for semantic similarity and sentiment classification tasks.
Given that the transcripts are in German, we used the German BERT model [1] as SBERT’s Transformer model
and the mean pooling setting. The German BERT model was pre-trained using the German Wikipedia dump, the
OpenLegalData dump, and German news articles. The extraction resulted in a 768-dimensional feature vector.

3.5 Unimodal and Multimodal Fusion
We used the features of each modality separately as input for our machine learning experiments: physiological
(heart rate), movement (accelerometer and gyroscope), acoustic and linguistic. We also used a multimodal
approach with feature-level fusion [12, 22, 54]. We compared performance for individual modalities and various
modality combinations as follows to answer our two research questions: physiological and movement, acoustic
and linguistic, and physiological, movement, acoustic and linguistic.

4 EXPERIMENTS AND EVALUATION
We trained models for each gender to perform binary classification for arousal and valence. We trained separate
models for each gender since gender differences affect how people express their emotions [17]. Hence, building
gender-specific models [12, 15] may benefit the emotion recognition task. Similar to prior work [11], we performed
couple disjoint cross-validation in which data from the same couples are never in both the train and test sets.
This evaluation approach is a specific form of the subject independent evaluation but more robust as it accounts



14 • Boateng et al.

Table 2. Evaluation results (balanced accuracy) for unimodal and multimodal models for arousal and valence for each gender

Modalities Arousal (%) Valence (%)
Unimodal Male Female Male Female
Physiological 51.7 54.2 62.9 49
Movement 59.6 62.9 58.2 50
Linguistic 58.2 63.2 59.9 64.8
Acoustic 54.8 56.8 78.1 61.5

Multimodal
Physiological and Movement 54 62.3 62.3 48
Linguistic and Acoustic 63.8 55.9 62.6 64.9
Physiological, Movement, Linguistic and Acoustic 59.7 59.1 59.6 64.9

for the situation in which data from one partner (e.g., speech) may be contained in the data of the other partner
[11]. We did not perform leave-one-couple-out cross-validation which is the most used evaluation approach
in couples’ emotion recognition tasks [11]. Given that most couples did not have negative samples, using this
evaluation approach could lead to inflated results since the model could just predict all positive results without
any learning. Rather, we performed 3-fold couple disjoint stratified cross-validation. In this setup, we trained
on two folds, perform prediction on the third fold as a test set, and repeated this process with each fold serving
as the test fold. The stratification aspect ensures that the same ratio for classes is maintained in the train and
test splits, guaranteeing that each test fold will have some negative samples. The predicted labels of each test
fold are combined and the evaluation metric is computed. We used the metric balanced accuracy / unweighted
average recall (UAR) due to data imbalance and confusion matrices to perform an evaluation of the predictions.
We also performed hyperparameter tuning within the train split using 2-fold stratified cross-validation. We used
the following machine learning models: random forest (RF), support vector machines — linear, and radial basis
function (RBF) with the ‘weight’ hyperparameter set to ‘balanced’ to account for the class imbalance. We used a
random baseline of 50% for comparison.

5 RESULTS AND DISCUSSION
The results of the best models are shown in Table 2 to answer the research questions. Among the unimodal
models, for arousal, movement, and linguistic modalities performed the best for male partners (59.6%) and female
partners (63.2%) respectively, and for valence, acoustic and linguistic performed the best for male partners (78.1%)
and female partners (64.8%) respectively. Among the multimodal models, for arousal, “Linguistic and Acoustic”
and “Physiological and Movement” performed the best for male partners (63.8%) and female partners (62.3%)
respectively, and for valence, “Linguistic and Acoustic” performed the best for valence for both male partners
(62.6%) and female partners (64.9%), with “Physiological, Movement, Linguistic and Acoustic” also performing
the same for female partners. Figure 8 shows the confusion matrices for valence’s and arousal’s best models. The
linguistic and acoustic modalities produced most of the best results alone or in combination, particularly for
valence, which indicates that what partners say and how they speak during their conversations are the most
informative for recognizing how negative or positive they feel. This result is in line with the use of these two
modalities in several couples’ emotion recognition works [11]. Furthermore, the movement modality alone or
in combination with physiological modality performed the best for arousal. This result is consistent with the
intuition that the greater body and hand movement are expected the more active a person feels — the arousal
dimension of emotion.
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Fig. 8. Confusion matrix for the best model models for arousal (left) and valence (right). Linear SVC = Linear Support Vector
Machine

We compare our results to the best results of our prior work that similarly performed global emotion recognition
of positive vs negative valence from German-speaking, Swiss-based couples, albeit, with lab data. The best results
(UAR) were 64.8% (female) and 56.1% (male) using fusion of acoustic and linguistic modality [12]. Our best valence
results of 64.9% (female) and 78.1% (male) outperform that work, albeit, only slightly for female partners. Also, as
a reference, the partner-perceived emotion results reported in Boateng et al. [15] that indicate how well partner
A could tell the emotions of their partner B were 73.2% (for male partners) and 74.3% (for female partners). We
did not collect such perception data from partners in this work. Hence, a direct comparison is not possible.
Nonetheless, it is worth noting that our results for male partners slightly outperform female partners’ perceptions
of their male partners’ emotions from that work.

There are significant privacy concerns with a system that recognizes the emotion of romantic couples especially
considering such interactions have a high tendency to entail sensitive information. We argue that a smartwatch-
based emotion recognition system such as ours has a better potential to be privacy-preserving. Compared to a
facial-based emotion recognition system which can infer people’s emotions without their consent (e.g., via CCTV
camera), the smartwatch system can be designed to work only with the consent of the partner. For example, the
device would need to be worn to be able to collect the relevant physiological and movement data needed for
emotion recognition. The speech processing component would need to work only for the speech of the partner
and hence would require a speech sample from that partner to work. Furthermore, the system using partner
A’s smartwatch could be designed to require a confirmation from partner B to allow their watch to share data
(e.g., BLE signal or physiological data) which is needed to be able to recognize partner B’s emotion from partner
A’s smartwatch. Hence, partner A could be prevented from recognizing the emotion of partner B without their
consent. Furthermore, all processing of signals could be implemented to run on the device further restricting
potentially sensitive data such as audio from ever leaving the smartwatch.

6 LIMITATION AND FUTURE WORK
The biggest limitation of this work is how highly skewed the data is especially for valence. The count for negative
valence is 20 vs positive valence which is 360 with 5 out of the 13 couples having no negative valence labels.
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There is a self-selection bias for this study which may have resulted in having couples that are less likely to
have negatively rated interactions. Future studies could target couples in therapy who may have more negative
conversation moments. Furthermore, collecting data for longer than 7 days may potentially capture conversation
moments with negative emotion ratings.
Additionally, data was collected from only 13 couples (26 partners). Though small, for reference, two of the

most popular public emotion datasets used in emotion recognition works — IEMOCAP [19] and MSP Improv [20]
— contain data from 10 individuals (12 hours) and 12 individuals (9 hours) respectively, all collected from actors
in the lab. Hence, our dataset has a greater variety with reference to subjects.
Future work would explore other fusion approaches such as decision-level fusion or some hybrid approach,

multitask learning since the prediction entails two target variables — valence and arousal —, and pretraining on a
related dataset and then fine-tuning on this dataset. Also, further work is needed to understand the conditions
under which the model performs poorly e.g., indoors vs outdoors, when the partners are together alone or with
other individuals. Such analysis could provide insight into potential changes that could improve the results (e.g.,
additional preprocessing of the dataset). It is also critical to better understand the conditions that could degrade
performance before deploying for use in the real world.
Given that we had several audio samples without labels, we had three research assistants code all the audios

with emotion labels so we could have more labeled data. Unfortunately, the inter-rater agreements were poor
with an intraclass correlation coefficient of 0.21 — average for all the emotions coded. The poor agreement
further demonstrates the difficulty even for humans in recognizing the emotions of romantic partners. Hence,
we did not use those labels for our emotion recognition experiments. This agreement could potentially become
better by improving the quality of the annotation instructions and having several rounds of annotation to ensure
consistency in the annotation.
Our emotion recognition system used manual speaker annotations and transcription data. Hence, there are

several steps needed in the future for this system to be usable in the real world such as implementing an automatic
speaker diarization (detecting when each person spoke) and a speech recognition system. In particular, current
speech recognition systems do not work for this unique dataset given that the couples spoke Swiss German,
which is (1) a spoken dialect and not written, and (2) varies across different parts of the German-speaking regions
of Switzerland. Hence, further work is needed to develop automatic speech recognition systems for Swiss German.
Also, the machine learning system needs to be implemented on the smartwatch and evaluated in real-time in the
real world. The pipeline of preprocessing, feature extraction, and machine learning classification would have to
be implemented using libraries and frameworks that run on smartwatch platforms such as Google’s Wear OS and
or Apple’s Watch OS. Then, the system would need to be validated in a field study to evaluate the algorithm in a
new, unseen context.

7 CONCLUSION
In this work, we trained machine learning models to predict the emotions of romantic partners using multimodal
smartwatch data collected from daily life. We used the following sensor data: heart rate, accelerometer, gyroscope,
and ambient light. We performed binary classification of valence and arousal using linear SVM, RBF SVM, and
random forest. We used individual modalities and explored various combinations of modalities using feature-level
fusion. Our results from the best models — balanced accuracies of 63.8% and 78.1% for arousal and valence
respectively — are better than chance and our prior work that also used data from German-speaking, Swiss-based
couples, albeit, in the lab. This work contributes toward building automated emotion recognition systems that
would eventually enable couples to monitor their emotions in daily life and enable the delivery of interventions
to improve their emotional well-being. This approach could also be useful in couple therapy.
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