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ABSTRACT

Systems governed by a multivariate Langevin equation featuring an exact potential exhibit straightforward dynamics but are often difficult
to recognize because, after a general coordinate change, the gradient flow becomes obscured by the Jacobian matrix of the mapping. In this
work, a detailed analysis of the transformation rules for Langevin equations under general nonlinear mappings is presented. We show how
to identify systems with exact potentials by understanding their differential-geometric properties. To demonstrate the power of our method,
we use it to derive exact potentials for broadly studied models of nonlinear deterministic and stochastic oscillations. In selected examples, we
visualize the identified potentials. Our results imply a broad class of exactly solvable stochastic models, which can be self-consistently defined
from given deterministic gradient systems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0124031

Since the seminal works of Albert Einstein and Paul Langevin on
Brownian motion, the study of stochastic dynamics has developed
into a fruitful science, which today finds application in many
fields. For an important subclass of noise-driven systems, those
governed by a Langevin equation with an exact stationary poten-
tial, the steady-state dynamics may be solved analytically. Despite
the great benefits of these solutions, the subtleties of identify-
ing exact potentials in systems that are described in transformed
variables have apparently been ignored so far. To fill this gap in
the literature, we derive the differential-geometric transforma-
tion properties of multivariate Langevin equations under general
coordinate changes and we demonstrate how they can lead to
new analytical descriptions of a system’s nonlinear dynamics. The
method is then applied to different examples of deterministic and
noise-driven oscillations. Finally, we comment on a broad class
of exactly solvable models implied by our results, which enable
self-consistent and analytical modeling of additive white noise in
given deterministic gradient flows.

I. INTRODUCTION

In systems featuring exact potentials, the evolution of a
n-dimensional set of variables x = (x1, . . . , xn)

T: R → R
n over time

t ∈ R is governed by the Langevin equation with potential (LP),1,2

ẋ = −∇V(x, t)+4, (1)

where ˙( ) = d( )/dt is the total derivative with respect to time,
∇ = (∂/∂x1, . . . , ∂/∂xn)

T is the gradient operator, V: R
n×R

→ R is the potential, Fi = −∂V(x, t)/∂xi is the ith compo-
nent of the restoring force F, and the vector 4 = (ξ1, . . . , ξn)

T:
R → R

n contains white Gaussian noise sources ξi, i = 1, . . . , n
of equal intensity (variance) 0 and zero mean.3 The individ-
ual entries ξi of 4 are assumed to be delta-correlated: 〈ξiξi,τ 〉
= 0δ(τ), where 〈·〉 is the expected value operator, (·),τ denotes a
positive time shift by τ , and δ is the Dirac delta function.4

The modern study of Langevin equations dates back over
a century5 and continues to be an active topic of research
today.6–10 Well-known, low-dimensional examples of LPs are the
Stuart–Landau oscillator11–13 subject to additive white noise, whose
deterministic part represents the normal form of a supercritical
Hopf bifurcation (see p. 270 in Ref. 14) and the deterministically
and stochastically averaged noise-driven Van der Pol oscillator.4,15–18

As will be discussed in the present work, multivariate systems gov-
erned by potentials are also found in the classic Kuramoto model,19,20

swarming oscillators,21 networks of coupled limit cycles,18,22,23 and
in models of noise-driven, self-sustained thermoacoustic modes of
annular cavities.24–27 We mention that exact potentials also occur in
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models of turbulent wakes,28 swirling flows,29 and buoyancy-driven
bodies.30

This work deals with noise-driven systems in the form of
ordinary stochastic differential equations. The reader interested in
applications of exact potentials in partial differential equations is
referred to the relevant literature.31–35

In general, multivariate dynamical systems do not possess an
exact potential. While the problem of finding meaningful quasi-
potentials in systems that are not governed by an exact potential has
been tackled in the past,36,37 there are also many relevant multivariate
systems subject to random noise with exact potentials. If one exists,
and it is stationary, then knowing the exact potential is a great ben-
efit because it fully determines the stochastic dynamics in the steady
state.38 The problem practitioners face is that it is often difficult to
perceive the existence of a potential when the system is described in
transformed variables. This issue is addressed in this work.

In particular, we are concerned with identifying the presence of
an underlying exact potential in general noise-driven systems taking
the form

ẋ = F(x, t)+ B(x)4, (2)

where F is a vector- and B a n-by-n tensor field.1 With the knowl-
edge of F, assuming a LP (1), one can easily deduce if an exact
potential V exists for x by checking the following necessary and
sufficient conditions (see pp. 133–134 in Ref. 2):

∇iFj = ∇jFi (3)

for all i and j 6= i. However, if these conditions are not fulfilled, this
does not preclude the existence of an exact potential governing the
original variables that were transformed into x via a certain nonlin-
ear mapping. Therefore, we argue that, instead of applying Eq. (3),
Eq. (2) should be compared to a LP after a coordinate change defined
by an arbitrary smooth nonlinear mapping,

x = f(y) (4)

(see Fig. 1). Assuming purely additive white noise in the equa-
tions governing the underlying potential system, which transforms
objectively under local rotations and reflections, the resulting trans-
formed Langevin equation with potential (TLP) reads, after redefin-
ing y → x,

ẋ = −g−1(x)∇Ṽ(x, t)+ h−1(x)4, (5)

where the Jacobian of f,

J(x) = ∇f(x), (6)

FIG. 1. Cartesian coordinates x ∈ D and their transformed counterparts
y ∈ f−1(D), both represented in the x-frame. If potential systems driven by addi-
tive white noise are described in transformed variables, the corresponding exact
potentials can be identified through the systems’ differential-geometric properties,
which are studied in this work.

was assumed to be nonsingular (invertible) with polar decomposi-
tion (see p. 449 in Ref. 39), J = Qh, Q = Q−T is orthogonal, h is a
positive definite matrix, g = hTh is the symmetric, positive definite
metric tensor, (·)T is the transpose, and

Ṽ(x, t) = V
(
f(x), t

)
(7)

is the transformed potential.40

In this work, we derive necessary and sufficient conditions for
the existence of an exact potential in a noise-driven system given
by Eq. (2).41 After briefly recalling some of the special properties
of potential systems driven by purely additive white noise (PAN),
we study their transformation rules under the mapping f from a
continuum-mechanical perspective before applying our results to
broadly studied examples of nonlinear oscillatory systems.

II. NOISE-DRIVEN POTENTIAL FLOWS

A. Special properties

In this section, we list a few of the simplifications, compared
to general dynamical systems, which offer themselves for PAN. We
first analyze the stochastic case with 0 6= 0 using the Fokker–Planck
equation (FPE), which describes the evolution of the joint proba-
bility density function (PDF) P : R

n×R → R of a random dynamic
variable x over time.1,2 The FPE associated with the LP (1) reads

∂P(x, t)

∂t
= ∇ ·

[
P(x, t)∇V(x, t)+

0

2
∇P(x, t)

]
. (8)

Assuming a steady potential ∂V/∂t = 0, we make the substitution

P(x, t) = G(x, t) exp

(
−2V(x)

0

)
, (9)

which leads to an advection–diffusion equation for G,

∂G(x, t)

∂t
+ v(x) · ∇G(x, t) =

0

2
∇2G(x, t), (10)

where v(x) = ∇V(x) and ∇2 is the Laplace operator. Equation (10)
is analytically solvable in special cases.42–44 Of special interest is the
exact solution of Eq. (10) given by G = const., which corresponds to
the steady-state PDF P(x, t → ∞) = P∞(x),

P∞(x) = N exp

(
−2V(x)

0

)
, (11)

where N ∈ R
+ is a normalization constant. As shown below, the

transformed steady-state PDF P̃∞(x) = P∞
(
f(x)

)
of the TLP (5) can

be derived from Eq. (11), leading to

P̃∞(x) = N exp

(
−2Ṽ(x)

0

)
. (12)

In the deterministic limit 0 = 0 and for a general, time-varying
potential, the TLP (5) is reduced to the transformed gradient sys-
tem (TGS),

ẋ = −g−1(x)∇Ṽ(x, t). (13)

Equation (13) states that trajectories x(t) are attracted to lower val-
ues of the potential Ṽ, the attraction being equal to the negative
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potential gradient scaled with the inverse metric tensor g−1, a pos-
itive definite matrix. By definition and by the positive definiteness
of g, any stationary potential Ṽ, ∂Ṽ/∂t = 0, is a Lyapunov function
of the variables x evolving under Eq. (13) and, thus, determines the
local and global stability of its trajectories.45

B. Self-consistent modeling

Given a system of the form

ẋ = −M(x)∇Ṽ(x, t), (14)

where M is an arbitrary positive definite matrix, one can directly
identify a TGS by defining g−1 = M. Furthermore, we recall that
the Cholesky decomposition of a real positive definite matrix is, for
each x, uniquely defined as

M(x) = L(x)LT(x), (15)

where L is a lower triangular matrix with positive diagonal entries
(see p. 441 in Ref. 39). Since the diagonal of a triangular matrix con-
tains its eigenvalues, L is also positive definite. Comparing Eq. (15)
to the definition

g−1(x) = h−1(x)h−T(x) (16)

and setting h−1 = L, one can define the following corresponding
PAN:

ẋ = −M(x)∇Ṽ(x, t)+ L(x)4, (17)

where4 is a vector containing white noise sources of equal intensity.
For a stationary potential ∂V/∂t = 0, under the above assumptions,
the exact (transformed) steady-state PDF of this system is given by
Eq. (12).

III. TRANSFORMATION RULES

A. Gradient flow

We now derive the transformation rules for PAN given by
Eq. (1), beginning with the gradient term. We follow the Einstein
summation convention, by which repeated indices in a product
imply summation over these indices. In index form, the LP (1) with
4 = 0 reads

ẋk = −
dV(x, t)

dxk

(18)

for k = 1, . . . , n, where the partial x-derivatives in ∇ have been
rewritten as total derivatives because V depends only on the (spa-
tially) independent variables x and t. Under the transformation
x = f(y), suppressing for brevity the dependence of f on y in the
argument of V, Eq. (18) becomes

dfk(y)

dyi

dyi

dt
= −

dyj

dxk

dV(f, t)

dyj

= −
dyj

dfk(y)

dV(f, t)

dyj

, (19)

which can be rewritten as

dyi

dt
= −

dyi

dfk(y)

dyj

dfk(y)

dV(f, t)

dyj

. (20)

The formula for the squared length of an infinitesimal line element
ds2 in general curvilinear coordinates y is

ds2 = gijdyidyj, (21)

and the value of this quantity is independent of the coordinate
system (see pp. 213–214 in Ref. 46). To relate ds2 to the original
coordinates x, we consider the case where the mapping f is simply
the identity: x = y. This gives gij = Iij, where I is the identity matrix,
so that

ds2 = dxkdxk. (22)

Multiplying both sides of Eq. (20) with gij, using Eqs. (21) and (22)
and noting that dfk = dxk, we obtain

gij

dyi

dt
= −

dV(f, t)

dyj

, (23)

which can, by the symmetry of the metric tensor g, be written in
vector form as follows:

ẏ = −g−1(y)∇yṼ(y, t), (24)

where (∇y)i = ∂/∂yi and the transformed potential was defined

as Ṽ(y, t) = V
(
f(y), t

)
. As before, we interchanged partial and total

derivatives in going from Eq. (23) to Eq. (24) because Ṽ depends
on y solely through f, and, therefore, the chain rule is the same for
∂Ṽ/∂yj as for dṼ/dyj, i.e., the two terms coincide:

dṼ(f, t)

dyj

=
dṼ(f, t)

df

df(y)

dyj

(25)

=
∂Ṽ(f, t)

∂f

∂f(y)

∂yj

. (26)

We then infer from Eq. (24) that under the mapping x = f(y), the
potential gradient transforms like

− ∇V(x, t) → −g−1(y)∇yṼ(y, t). (27)

Redefining y → x and ∇y → ∇ in Eq. (24) yields Eq. (13).

B. Noise term

Having studied the transformation properties of the determin-
istic gradient flow, we now turn to the noise term 4 in Eq. (1).
Knowing from Eq. (19) that under the mapping x = f(y), ẋk = Jkjẏj,
where Jkj = ∂fk/∂yj, we can infer that4 transforms like

4 → J−1(y)4
(
4̃
)
. (28)

The problem one now faces is that it is not clear a priori how 4

is related to the transformed noise vector 4̃, i.e., the noise vector
in y-coordinates. To resolve this issue, we assume that 4̃ preserves
the noise intensity and the local orientation of the additive white
noise 4 in the original coordinates. In other words, under x = f(y),
4 behaves like an objective vector field transformed by an orthogo-
nal tensor field Q = Q−T representing the local rotation or reflection
associated with f (see p. 42 in Ref. 47),

4 = Q(y)4̃. (29)

Note that Q can be directly obtained from the polar decomposition
of the Jacobian of f,

J(y) = Q(y)h(y), (30)

where h is a positive definite matrix (since J is, by assumption,
invertible) of the same size as J and Q. Using Eqs. (29) and (30),
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the transformation formula (28) can be simplified as follows:

4 → h−1(y)4̃. (31)

Combining (27) and (31) yields the TLP for systems with purely
additive white noise satisfying Eq. (29),

ẏ = −g−1(y)∇yṼ(y, t)+ h−1(y)4̃. (32)

Redefining y → x, ∇y → ∇ , and 4̃ → 4 reduces Eq. (32) to Eq. (5).
Note that, throughout this work, although 4 appears in the TLP
(5) as a multiplicative noise, we nevertheless refer to it as additive
because it is clear from the above discussion that it derives from
a purely additive noise term in the LP (1) formulated in the origi-
nal coordinates and that its multiplicative character is solely due the
system’s representation in transformed variables.

We stress that the assumptions made on the noise term in order
to obtain Eq. (29) are not trivial and that there may be situations
where noise terms appear that do not transform according to the
same formula. As an example for such a term, consider the case
where4 is given by an Ornstein–Uhlenbeck process48 satisfying

4̇ = −
4

ϑ
+ ζ , (33)

where ϑ is the correlation time and ζ is an additive white noise as
defined in Sec. I. If ζ transforms according to Eq. (29), because of
the time-differentiation in Eq. (33), the same will, in general, not
be true for 4.49 Nevertheless, the special case described by Eq. (5)
correctly identifies the exact potentials in the examples presented
below, which exclusively feature white noise.

C. Fokker–Planck equation

The probability P of the state x being inside the domain D at
time t is defined as

P =
∫

D
P(x, t)dV, (34)

where dV = dx1, . . . , dxn is the volume element. In y-coordinates,
using det(J) = det(h), where det is the determinant, Eq. (34) can be
rewritten as

P =
∫

D̃
P
(
f(y), t

)∣∣det
(
h(y)

)∣∣dṼ, (35)

where dṼ = dy1, . . . , dyn is the transformed volume element and
D̃ = f−1(D) is the transformed domain. We learn from Eq. (35) that
the PDF P transforms like

P(x, t) →
∣∣det

(
h(y)

)∣∣P
(
f(y), t

)
(36)

under the mapping x = f(y). Given a TLP (5), one can directly
obtain det(h) by computing the determinant of the matrix h−1 and
using det(h−1) = det(h)−1. Typically, however, there is no interest
in this geometric prefactor and the quantity of importance is the
transformed PDF,

P̃(y, t) = P
(
f(y), t

)
. (37)

Comparing Eq. (11) to (36), we observe that the steady-state solution
P∞ of the FPE (8) associated with the LP (1) with stationary potential

transforms under f like

P∞(x) →
∣∣det

(
h(y)

)∣∣P̃∞(y). (38)

Knowledge of Ṽ is sufficient to deduce the transformed steady-state
PDF,

P̃∞(y) = N exp

(
−2Ṽ(y)

0

)
, (39)

which, after redefining y → x, coincides with Eq. (12).

IV. POTENTIAL IDENTIFICATION

In the stochastic case, if4 is an additive white noise vector with
nonzero entries satisfying the assumptions made in Sec. III B and B
is nonsingular, identifying the exact potential Ṽ in a general noise-
driven system (2) is straightforward. By comparison with the TLP
(5), h and g = hTh are directly obtained from Eq. (2):

h(x) = B−1(x), (40)

g(x) = B−T(x)B−1(x). (41)

We recall that three-dimensional potential systems are uniquely
defined by the vector identity

curl grad(·) = 0, (42)

i.e., the curl of a vector field is zero if and only if the vector field
can be written as the gradient of a scalar function. Generalized to
arbitrary dimensions, the equivalent identity reads

skew
[
H(·)

]
= 0, (43)

where skew(·) is the skew-symmetric part and H(·) is the Hes-
sian matrix. By comparing Eqs. (2) and (5) and using g = hTh, the
following criteria are readily deduced:

(I) A general noise-driven system described by Eq. (2) has an exact
potential if and only if there exists a positive definite symmetric
tensor field M such that

skew
(
∇
[
M−1(x)F(x, t)

]T)

is equal to a n-by-n zero matrix.
(II) For nonzero additive noise 4 6= 0 satisfying the assumptions

made in Sec. III B and nonsingular B, a noise-driven system
given by Eq. (2) has an exact potential if and only if

skew
(
∇
[
B−T(x)B−1(x)F(x, t)

]T)

is equal to a n-by-n zero matrix.

If either (I) or (II) is satisfied, the term in the square bracket is pro-
portional to the (negative) potential gradient. If (I) is satisfied, M is
proportional to the inverse metric tensor g−1. Note that in the purely
deterministic case with 4 = 0, (II) does not apply because in this
case, B is ill-defined.

The general criterion (I) involves the solution of an underdeter-
mined system of partial differential equations for a matrix M whose
entries are constrained by its symmetry and positive definiteness and
is impractical for manual analysis. In the future, this criterion may
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be simplified or solved with computer algebra. Currently, in prac-
tice, finite-dimensional gradient systems with 4 = 0 are identified
by inspection of Eq. (2) under consideration of the general form of a
TGS (13). Specific examples are discussed below.

V. EXAMPLES

We now demonstrate our method on some of the examples
mentioned in Sec. I. In certain cases, we visualize the identified
potentials for different parameter values. A more in-depth analysis
of these systems’ nonlinear dynamics, which is out of the scope of
this work, is left for future research. All equations are presented in
the same form in which they appear in the references, up to minor
changes in notation.

A. Averaged Van der Pol oscillator

The weakly nonlinear dynamics of a harmonically forced,
noise-driven Van der Pol oscillator synchronized with the forcing
frequency ω can be derived using deterministic and stochastic aver-
aging. The resulting equations are [see Eqs. (7.58) and (7.59) of
Ref. 18]50

Ȧ =
A

2

(
λ−

A2

4

)
−

F

2ω
sinϕ +

0

4ω2A
+ η1, (44)

ϕ̇ = 1−
F

2ωA
cosϕ +

η2

A
, (45)

where 1 = (ω2
0 − ω2)/2ω ≈ ω0 − ω is the detuning between the

eigen- (ω0) and the forcing (ω) frequency, 2
√
λ is the unforced limit

cycle amplitude, F is the forcing amplitude, 4 = (η1, η2)
T, and η1,2

are white noise sources of equal intensity 0/2ω2.
To identify the transformed potential Ṽ, we define the new

variables x = (A,8)T, where 8 = ϕ −1t, and rewrite Eqs. (44)
and (45) as

ẋ =
(

A
2
(λ− A2

4
)− F

2ω
sin (8+1t)+ 0

4ω2A

− F
2ωA

cos (8+1t)

)

︸ ︷︷ ︸
F(x,t)

+
(

1 0
0 A−1

)

︸ ︷︷ ︸
B(x)

4.

(46)
To test criterion (II), we verify that

skew

([ ∂

∂A
∂

∂8

]

︸ ︷︷ ︸
∇

[(
1 0
0 A2

)
F(x, t)

]T

︸ ︷︷ ︸
[B−T

(x)B−1
(x)F(x,t)]

T

)
=
(

0 0
0 0

)
. (47)

Therefore, Eq. (46) has the form of a TLP with
g(x) = diag(1, A2), h(x) = diag(1, A), and

Ṽ(x, t) = −
A2λ

4
+

A4

32
+

AF

2ω
sin (8+1t)−

0

4ω2
ln A. (48)

The potential given by Eq. (48), which was obtained by integrat-
ing −∇Ṽ = B−TB−1F, is visualized in Fig. 2 for t ∈ [0, 2/λ],
ω = 5.03 × 103, λ equal to 2% of ω, and 0 = λ2ω2/10 (arbitrary
units). We observe a double-layered structure of the potential, which
is more pronounced at small values of F/ωλ3/2, consistent with the

FIG. 2. Illustration of the results derived in Sec. V A. Shown are isosurfaces of the
time-dependent potential Ṽ defined by Eq. (48) corresponding to 60% (green, one
half shown) and 90% (gray) of its (negative) minimum value, as a function of the
nondimensionalized forcing amplitude F/ωλ3/2 and detuning 1/λ, respectively
(semi-log scale). Parameter values are given in the main text. The length of the
dashed vertical line is 2/λ and the dashed circle’s radius is equal to the unforced

limit cycle amplitude 2
√
λ.

notion that the (perturbed) self-sustained oscillation coexists with
the forced response at small forcing amplitudes (see pp. 180–190 in
Ref. 18). We also note that, for nonzero detuning, the potential varies
periodically in time, leading to beating oscillations, i.e., oscillations
of the slow variables A and ϕ (see pp. 174–177 in Ref. 18).

B. Generalized Kuramoto model

A set of swarming oscillators (“swarmalators”) has been
described by a generalized Kuramoto model,21

ẏi = νi +
J

N

N∑

j

sin (yj − yi) cos (θj − θi), (49)

θ̇i = ωi +
K

N

N∑

j

cos (yj − yi) sin (θj − θi), (50)

where i = 1, . . . , N, n = 2N is the system dimension, the param-
eters J, K ∈ R are coupling constants, and νi, ωi ∈ R are
the eigenfrequencies of the dynamic variables yi and θi. To
observe the exact potential, we define the new variables x = (Y1,
. . . , YN,21, . . . ,2N)

T, where Yi = yi/J and 2i = θi/K. For J,
K > 0, the resulting system is a TGS with g = diag(J, . . . , J,
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K, . . . , K) ∈ R
n and

Ṽ(x) = −
N∑

k


 1

2N

N∑

j

cos J(Yj − Yk) cos K(2j −2k)

+ νkYk + ωk2k


 . (51)

For N = 2, νi = ν, and ωi = ω for i = 1, 2, Eqs. (49) and (50) are
equivalent to the following system describing the dynamics of the
differences 1y = y2 − y1 and 1θ = θ2 − θ1 [see Eqs. (76) and (77)
of Ref. 21]: 51

1ẏ = −J sin1y cos1θ , (52)

1θ̇ = −K sin1θ cos1y. (53)

Analogous to the general case above, we define the new variables
1x = (1Y,12)T, 1Y = Y2 − Y1, and 12 = 22 −21 satisfying
1ẋ = −g−1∇Ṽ with

Ṽ(1x) = − cos (J1Y) cos (K12) (54)

and the metric tensor g = diag(J, K).52

It is worth noting that the system defined by Eqs. (52) and (53)
is known to possess an exact limit cycle (see pp. 7–8 in Ref. 21). This
solution is not in contradiction to the well-known theorem on the
nonexistence of periodic orbits in autonomous gradient systems (see
pp. 201–202 in Ref. 53), as it exists only for negative values of K, for
which the metric tensor defined above loses its positive definiteness
and the assumptions of our method break down.

The potential (54) is visualized for different values of the cou-
pling constants J and K in Fig. 3. We see that the synchronized
state 1Y = 12 = 0 is always a potential minimum and, therefore,
linearly stable for J, K > 0, which is consistent with an earlier sta-
bility analysis on the full system (49) and (50) (see pp. 4 and 5 in
Ref. 21).

C. Coupled limit cycles

The weakly nonlinear amplitude-phase dynamics of two lin-
early coupled Van der Pol oscillators, derived using deterministic
averaging, are given by [see Eq. (4.11) of Ref. 18]

Ȧ1 =
λ1

2
A1 −

1

8
A3

1 +
C

2
(A2 cosφ − A1), (55)

Ȧ2 =
λ2

2
A2 −

1

8
A3

2 +
C

2
(A1 cosφ − A2), (56)

φ̇ = 1−
C

2
sinφ

(
A2

A1

+
A1

A2

)
, (57)

where C is the coupling, φ = ϕ2 − ϕ1 is the phase difference,
1 = (ω2

2 − ω2
1)/2ω ≈ ω2 − ω1 is the detuning between the eigen-

frequencies ω1,2, and ω is the frequency of the synchronized coupled
oscillators satisfying ω ≈ ω1,2. If we define x = (A1, A2,8)

T and

FIG. 3. Illustration of the results derived in Sec. V B. Shown is the potential Ṽ
given by Eq. (54) over the periodic domain1Y ,12 ∈ [−π ,π ] for different val-
ues of the coupling constantsJ andK (logarithmic scale). The potential level is

indicated in gray scale, ranging from black (attractive, Ṽ = −1) to white (repelling,
Ṽ = 1).

8 = φ −1t, then the resulting system is equivalent to a TGS with
g−1(x) = diag(1, 1, A−2

1 + A−2
2 ) and

Ṽ(x, t) = −
λ1A

2
1 + λ2A

2
2

4
+

A4
1 + A4

2

32

+
C

4
[A2

1 + A2
2 − 2A1A2 cos (8+1t)]. (58)

It is an open question whether the above results can simplify the
stability analysis of Eqs. (55)–(57) (see pp. 80–84 and pp. 409–415,
respectively, of Refs. 18 and 22).

D. Nonlinear coupling

The following set of nonlinearly coupled amplitude and phase
equations is obtained by averaging the equation describing the pro-
jection of turbulence-driven thermoacoustic dynamics onto two
orthogonal modes in an annular cavity24 (see Fig. 4, left inset, for
a sketch of such a cavity):

Ȧ = νA −
3κ

32

(
3A2 + [2 + cos (2φ)]B2

)
A +

0

4ω2
0A

+ ζa, (59)

Ḃ = νB −
3κ

32

(
3B2 + [2 + cos (2φ)]A2

)
B +

0

4ω2
0B

+ ζb, (60)

φ̇ =
3κ(A2 + B2)

32
sin (2φ)+

( 1

A
+

1

B

)
ζφ , (61)
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where A and B are the amplitudes, φ = ϕa − ϕb is the phase dif-
ference, ω0 is the eigenfrequency, ν is the growth rate, κ is the
nonlinearity constant, and 4 = (ζa, ζb, ζφ)

T contains white noise
sources of equal intensity 0/2ω2

0 . Equation (61) can be rewritten as
two separate equations for the phases ϕa and ϕb,

ϕ̇a =
3κB2

32
sin 2(ϕa − ϕb)+

ξa

A
, (62)

ϕ̇b = −
3κA2

32
sin 2(ϕa − ϕb)+

ξb

B
, (63)

where ξa,b are white noise sources of equal intensity 0/2ω2
0 . Start-

ing from Eqs. (62) and (63), Eq. (61) can be derived by tak-
ing the difference between the former two equations and setting
ξa = −ξb = ζφ . According to criterion (II), Eqs. (59), (60),

(62), and (63) correspond to a TLP with x = (A, B,ϕa,ϕb)
T,

4 = (ζa, ζb, ξa, ξb)
T, g(x) = diag(1, 1, A2, B2), h(x) = diag(1, 1, A, B)

and

Ṽ(x) = −
ν(A2 + B2)

2
+

3κ

128

(
3(A4 + B4)

+ 2A2B2[2 + cos 2(ϕa − ϕb)]
)
−

0

4ω2
0

ln (AB). (64)

E. Quaternion flow

In the study of self-oscillating thermoacoustic modes in annu-
lar cavities, an alternative projection to the one used in the previ-
ous example and based on the quaternion Fourier transform for
bivariate signals54 offers a convenient description of the nature of
the modal dynamics, where one of the state variables indicates
whether spinning or standing waves govern the dynamics at a
given time instant.25–27,55 Indeed, by projecting the acoustic field
ψ(2, t) depending on the azimuthal angle 2 onto the four state
variables x = (A,χ , θ ,ϕ)T using the basic quaternions (i, j, k), the
instantaneous state can be mapped to different points on the Bloch
sphere.55 In this representation, counterclockwise (CCW) and clock-
wise (CW) spinning waves correspond to the north (2χ = π/2)

FIG. 4. Illustration of the examples presented in Secs. V D and V E. In this rep-
resentation, a self-oscillating mode ψ in an annular cavity is projected onto four

variables x = (A,χ , θ ,ϕ)T using the basic quaternions (i, j, k) (left inset).25–27,55

Different states such as pure spinning and standing waves are mapped to differ-
ent points on the Bloch sphere (right inset). The same coordinate system is used
to represent the PDF isosurfaces in Fig. 5.

and south (2χ = −π/2) poles, while the equatorial plane (χ = 0)
describes pure standing waves (Fig. 4). In general, the system state
is a mixture between a standing and a spinning wave. The variable
θ describes the orientation of the nodal line of the standing wave
component of ψ . By deterministic and stochastic averaging of the
projected acoustic wave equation, the following dynamics for x can
be derived (see pp. 20–23 of Ref. 25):

ẋ = F(x)+ B(x)4. (65)

The entries of the deterministic term F in Eq. (65) are

F1 =
(
ν +

c

4
cos(2θ) cos(2χ)

)
A −

3κ

64
[5 + cos(4χ)]A3 +

30

4ω2
0A

,

(66)

F2 =
3κ

64
A2 sin(4χ)−

c

4
cos(2θ) sin(2χ)−

0 tan(2χ)

2ω2
0A

2
, (67)

F3 = −
c

4

sin(2θ)

cos(2χ)
, (68)

F4 =
c

4
sin(2θ) tan(2χ), (69)

where ν is the growth rate, κ is the nonlinearity constant, ω0 is the
eigenfrequency, and c is the asymmetry. The entries of the noise
vector 4 = (ζA, ζχ , ζθ , ζϕ)

T all have equal intensity 0/2ω2
0 and the

matrix B describing the stochastic coupling is given as56

B =




1 0 0 0

0 A−1 0 0

0 0
1

A cos 2χ
0

0 0 −
tan 2χ

A
A−1




. (70)

By criterion (II), Eqs. (65)–(70) describe a TLP with

g−1(x) =




1 0 0 0

0 A−2 0 0

0 0
1

A2 cos (2χ)2
−

tan 2χ

A2 cos 2χ

0 0 −
tan 2χ

A2 cos 2χ
A−2 +

tan (2χ)2

A2




,

h−1(x) = B(x),

and the transformed potential

Ṽ(x) = −
(
ν +

c

4
cos(2θ) cos(2χ)

)
A2

2
+

3κ

256
[5 + cos(4χ)]A4

−
30

4ω2
0

ln(A)−
0

4ω2
0

ln
(

cos (2χ)
)
. (71)

In Fig. 5, we plot the transformed steady-state PDF P̃∞(x) given by
Eqs. (12) and (71) in the spherical coordinate system (A, 2χ , θ) on a
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FIG. 5. Illustration of the results derived in Sec. V E. Shown are isosurfaces of
the transformed steady-state PDF P̃∞ given by Eqs. (12) and (71) corresponding
to 25% (cyan, one half shown) and 75% (red) of its maximum value, as a function
of the nondimensionalized noise intensity 5 and asymmetry γ (semi-log scale,
definitions in the main text). The spherical coordinate system used to represent
the PDF is defined in Fig. 4. The length of the dashed vertical line and the dashed

circle’s diameter are both equal to 16
√
ν/15κ . The spatial structure of the ana-

lytical Fokker–Planck solution shown in this figure is in excellent agreement with
corresponding numerical simulations (see Fig. 11 of Ref. 27).

semi-log scale for different values of the nondimensionalized noise
intensity5 and asymmetry γ,

5 =
27κ0

256ν2ω2
0

, (72)

γ =
c

2ν
. (73)

As γ is increased from zero, a preferred direction in θ emerges in
the steady state, demonstrating the explicitly broken symmetry of
the system for γ 6= 0. The spatial structure of the analytical PDF P̃∞
shown in Fig. 5 is in excellent agreement with numerical simulations
of the Fokker–Planck equation for the same parameter values (see
Fig. 11 of Ref. 27).

VI. CONCLUSIONS

In this study, we derived necessary and sufficient criteria for
the existence of an exact potential in a general noise-driven system.
We demonstrated on several broadly studied models of determin-
istic and stochastic oscillations that from the differential-geometric
properties of transformed potential systems driven by additive white
noise, one can derive new analytical descriptions of their nonlinear
dynamics. The potentials and PDFs obtained in this work may be
used in the future to investigate the corresponding models from a

different perspective, for example, by visualizing families of trajec-
tories with different initial conditions and relating their nonlinear
dynamics to the potential landscape.

Systems to which the method presented in this work applies
appear to be ubiquitous in the literature and are often found in the
context of time-averaged flows. The question of why this is the case
is left for future research to answer. To conclude, we also mention
that our theoretical approach implies a self-consistent way of model-
ing noise in given deterministic gradient flows and that the resulting
models are exactly solvable if the potential is stationary.
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