On coloring digraphs with forbidden induced subgraphs

Journal Article

Author(s):

Steiner, Raphael

Publication date:

2023-06

Permanent link:

https://doi.org/10.3929/ethz-b-000589552

Rights / license:

Creative Commons Attribution 4.0 International

Originally published in:

Journal of Graph Theory 103(2), https://doi.org/10.1002/jgt. 22920

On coloring digraphs with forbidden induced subgraphs

Raphael Steiner ${ }^{1,2}$ (C)

${ }^{1}$ Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
${ }^{2}$ Department of Computer Science, ETH Zürich, Zürich, Switzerland

Correspondence

Raphael Steiner, ETH Zürich, Department of Computer Science, Institute of Theoretical Computer Science, Universitätsstrasse 6, 8092 Zürich, Switzerland.
Email: raphaelmario.steiner@inf.ethz.ch

Funding information

Eidgenössische Technische Hochschule Zürich; Deutsche
Forschungsgemeinschaft

Abstract

We prove a conjecture by Aboulker, Charbit, and Naserasr by showing that every oriented graph in which the out-neighborhood of every vertex induces a transitive tournament can be partitioned into two acyclic induced subdigraphs. We prove multiple extensions of this result to larger classes of digraphs defined by a finite list of forbidden induced subdigraphs. We thereby resolve several special cases of an extension of the famous Gyárfás-Sumner conjecture to directed graphs stated by Aboulker et al.

KEYWORDS

directed graphs, graph coloring, Gyárfás-Sumner conjecture, induced subgraphs

1 | INTRODUCTION

All graphs and digraphs considered in this paper are simple. We say that a digraph is an oriented graph if it does not contain directed cycles of length two (digons) and we call it bioriented if each of its arcs belongs to a digon. Given a digraph D, an acyclic k-coloring of D, also referred to as a k-dicoloring, is an assignment $c: V(D) \rightarrow S$ of colors from a color set S of size k to the vertices such that every color class $c^{-1}(i), i \in S$ induces an acyclic subdigraph of D. The dichromatic number $\vec{\chi}(D)$ as introduced by Erdős [6] and Neumann-Lara [8] is the smallest integer k for which an acyclic k-coloring of D exists. Given a set of (di)graphs F, we denote by $\mathrm{Forb}_{\text {ind }}(F)$ the set of (di)graphs which do not contain an induced sub(di)graph isomorphic to a member of F. Given a class of (di)graphs \mathcal{C}, we denote by $\vec{\chi}(\mathcal{C})$ (or $\chi(\mathcal{C})$, respectively) the maximum (di) chromatic number of (di)graphs in the class (∞ if the latter is unbounded). We say that a finite set

[^0]F of (di)graphs is heroic, if $\operatorname{Forb}_{\text {ind }}(F)$ has bounded (di)chromatic number. For $k \in \mathbb{N}$, we denote by \vec{K}_{k} the transitive tournament of order k.

A classical research topic in the theory of graph coloring is to study the chromatic number of graphs with forbidden induced subgraphs, we refer to [9] for a recent survey article summarizing important results on this topic. Extending this area of research to digraphs, Aboulker, Charbit, and Naserasr [2] recently initiated the systematic study of the relation between excluded induced subdigraphs and the dichromatic number and asked the following intriguing question.

Problem 1.1. Characterize the inclusionwise minimal heroic sets of digraphs.
In the following, let us mention a few related questions and results from the literature.

- Maybe the most important open problem for coloring undirected graphs with forbidden induced subgraphs, namely, the Gyárfás-Sumner Conjecture [7, 10], can be restated in digraph terminology as follows:

Conjecture 1.2. If a minimal heroic set F of digraphs includes \vec{K}_{2} (the oriented edge), then F consists of at most three members, namely, \vec{K}_{2}, a biorientation of a forest, and a biorientation of a clique.

Note that in the above setting, Forb $_{\text {ind }}(F)$ contains only bioriented graphs, whose chromatic number coincides with their dichromatic number. Hence, the above is the same as saying that the minimal heroic sets of graphs consist of a forest and a clique, which is the classical phrasing of the Gyárfás-Sumner Conjecture.

- In [4] Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé studied the dichromatic number of tournaments which exclude a single fixed tournament H as an (induced) subdigraph. They defined a hero as a tournament H such that the tournaments excluding isomorphic copies of H have bounded dichromatic number. In other words, a digraph H is a hero if the set $\left\{\overleftrightarrow{K_{2}}, \overline{K_{2}}, H\right\}$ is heroic, where $\overline{K_{2}}$ is the anticlique of order 2 . The main result of Berger et al. in [4] is a recursive characterization of all heroes, it implies in particular that all tournaments on at most four vertices are heroes.

Motivated by Problem 1.1, Aboulker et al. [2] made the following conjecture for oriented graphs which exclude the oriented out- (or in-) star S_{2}^{+}(or S_{2}^{-}) with two leaves, as well as the directed triangle \vec{C}_{3}.

Conjecture 1.3 (cf. Aboulker et al. [2, Conjecture 15]).

$$
\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{C}_{3}\right)\right)=\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{-}, \vec{C}_{3}\right)\right)=2
$$

Note that by the symmetry of reversing all arcs, it suffices to prove Conjecture 1.3 for the out-star S_{2}^{+}. The digraphs in $\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{C}_{3}\right)$ are exactly the oriented graphs with no
directed triangle such that the out-neighborhood of every vertex induces a tournament. As the first main result of this paper, we prove Conjecture 1.3.

In fact, it will be convenient to prove the following stronger result involving the hero W_{3}^{+}, consisting of a vertex connected by three arcs to the vertices of a directed triangle. It directly implies Conjecture 1.3 via $\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{C}_{3}\right) \subseteq \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$.

Theorem 1. $\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K_{2}}, S_{2}^{+}, W_{3}^{+}\right)\right)=2$.
Note that the members of $\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$are exactly the oriented graphs in which the out-neighborhood of every vertex induces a transitive tournament. To prove Theorem 1, in Section 2, we will exhibit and exploit some structural properties of digraphs in this class.

A more general conjecture of Aboulker et al. (cf. Conjecture 11 in [2]) would imply that for every hero H the triple $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ is heroic. Motivated by this open problem, we extend Theorem 1 to more triples $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ for certain heroes H. In [4] it was shown that every hero can be generated using three types of recursive construction steps. In our second main result we show that one of these three steps, namely, adding a dominating sink to a hero, preserves the heroicness of the triple $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$.

Theorem 2. Let H be a hero and let H^{-}be the hero obtained from H by adding a dominating sink. If $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ is heroic, then so is $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H^{-}\right\}$.

The above in particular implies that the triple $\left\{\overleftrightarrow{K_{2}}, S_{2}^{+}, W_{3}^{-}\right\}$is heroic, where W_{3}^{-}denotes the 4 -vertex tournament consisting of a directed triangle and a dominating sink. Members of Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{-}\right)$correspond to the oriented graphs in which the out-neighborhood of each vertex induces a tournament, while the in-neighborhood of every vertex does not contain directed triangles.

Our last new result in this paper concerns another conjecture of Aboulker et al., which can be stated as follows (\vec{K}_{k} denotes the transitive tournament on k vertices).

Conjecture 1.4 (cf. Aboulker et al. [2, Conjecture 11]). For every orientation of a forest F and every $k \in \mathbb{N}$ the triple $\left\{\overleftrightarrow{K}_{2}, F, \vec{K}_{k}\right\}$ is heroic.

As noted in [2], Conjecture 1.4 holds true for forests on at most three vertices. The first open cases therefore appear when F is an orientation of P_{4}. Aboulker et al. considered the directed path \vec{P}_{4} and showed in one of their main results that the set $\left\{\overleftrightarrow{K_{2}}, \overrightarrow{P_{4}}, \vec{K}_{3}\right\}$ is heroic. There are three
other oriented paths on four vertices. Two of them, which are called $P^{+}(2,1)$ and $P^{-}(2,1)$ in [2], consist of two oppositely oriented dipaths of length two and one, respectively.

As noted by Aboulker et al., Chudnovsky, Scott, and Seymour proved in [5] that for every $k \in \mathbb{N}$, digraphs in the set Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, P, \vec{K}_{k}\right)$ have underlying graphs with bounded chromatic number (and thus bounded dichromatic number) for $P \in\left\{P^{+}(2,1), P^{-}(2,1)\right\}$. Hence, Conjecture 1.4 holds for these two orientations of P_{4}. This leaves open the remaining orientation of P_{4}, denoted $P^{+}(1,1,1)$ in [2]. Here we complement the result of Aboulker et al. [2] concerning \vec{P}_{4}, showing that also the set $\left\{\overleftrightarrow{K_{2}}, P^{+}(1,1,1), \vec{K}_{3}\right\}$ is heroic.

Theorem 3. $\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, P^{+}(1,1,1), \vec{K}_{3}\right)\right)=2$.

1.1 | Structure of the paper

In Section 2 we investigate the structure of digraphs in the class Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$and use these insights to prove Theorem 1. In Section 3 we prove Theorem 2. Finally, in Section 4 we prove Theorem 3 and we conclude with final comments in Section 5.

1.2 | Note

After the submission of this manuscript, independently discovered proofs both for Theorem 1 and Remark 5.2 (which appears in the conclusion) have appeared in the arXiv-preprint [1] by Aboulker, Aubian, and Charbit. Their proof of Theorem 1 is quite different, as they obtain and use a full structural characterization of the class Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$of digraphs. In our work, however, the approach was not to obtain such a structural result, but instead to generate 2 -colorings of these oriented graphs directly using local reductions.

1.3 | Notation

Given a digraph D, we denote by $V(D)$ its vertex-set and by $A(D) \subseteq V(D) \times V(D)$ its set of arcs. We put $v(D):=|V(D)|, a(D):=|A(D)|$. Arcs are denoted as (u, v), where u is the tail
of the arc and v is its head. For $v \in V(D)$ we denote by $N_{D}^{+}(u), N_{D}^{-}(u)$ the sets of out- and in-neighbors of v in D, respectively. We generalize this notation to vertex subsets by putting $N_{D}^{+}(X):=\bigcup_{x \in X} N_{D}^{+}(x) \backslash X$ and $N_{D}^{-}(X):=\bigcup_{x \in X} N_{D}^{-}(x) \backslash X$ for all $X \subseteq V(D)$. We further denote by $D[X]$ the subdigraph with vertex-set X and arc-set $(X \times X) \cap A(D)$. Any digraph of the form $D[X]$ with $\varnothing \neq X \subseteq V(D)$ is called an induced subdigraph of D. Given a set X of vertices or arcs, we denote by $D-X$ the digraph obtained from D by deleting X.

2 । $\left\{S_{2}^{+}, W_{3}^{+}\right\}$-FREE ORIENTED GRAPHS

In this section, we will prove Theorem 1 and thereby show that $\left\{\overleftrightarrow{K_{2}}, S_{2}^{+}, W_{3}^{+}\right\}$is a heroic set. An important subclass of Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$is the so-called round digraphs, cf. [2, 3]. A strongly connected digraph is called round if it admits a cyclical vertex-ordering (v_{1}, \ldots, v_{n}) such that for every $\operatorname{arc}\left(v_{i}, v_{j}\right) \in A(D)$ and each $i<k<j$, both (v_{i}, v_{k}) and (v_{k}, v_{j}) are also arcs (indices ordered cyclically). For these more special digraphs, 2 -colorability has been noted already in [2], we refer to Figure 1 for examples from this class.

Given $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, we define $F(D)$ to be the spanning subdigraph of D consisting of the $\operatorname{arcs}(x, y) \in A(D)$ such that y is the source in the transitive tournament induced by the out-neighborhood of x in D. From the definition of $F(D)$ we immediately obtain:

Observation 2.1. Let $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$and $(x, y) \in A(F(D))$. Then we have

$$
N_{D}^{+}(x) \subseteq N_{D}^{+}(y) \cup\{y\} .
$$

A useful notion for our proof is out-modules in digraphs, as defined next.

FIGURE 1 Two examples of oriented graphs with transitive out-neighborhoods. The digraph on the left is a round digraph, while the right one is not. In both cases, $F(D)$ consists of the arcs of the outer directed cycle.

Definition 2.2. Let D be a digraph, and $\varnothing \neq M \subseteq V(D)$. We say that M is an out-module in D if it holds that $(x, z) \in A(D) \Rightarrow(y, z) \in A(D)$ for every $x, y \in M$ and $z \in V(D) \backslash M$. Equivalently, $N_{D}^{+}(x) \backslash M=N_{D}^{+}(y) \backslash M$ for all $x, y \in M$.

We remark the following simple fact for later use.

Observation 2.3. Let D be a digraph and $M \subseteq V(D)$ such that $D[M]$ is strongly connected. If $(x, y) \in A(D) \wedge(x, z) \in A(D) \Rightarrow(y, z) \in A(D)$ for every $x, y \in M$ and $z \in V(D) \backslash M$, then M is an out-module in D.

Proof. To verify that $(x, z) \in A(D) \Rightarrow(y, z) \in A(D)$ for every $x, y \in M$ and $z \in V(D) \backslash M$, it suffices to consider a directed $x-y$ path $x=x_{1}, \ldots, x_{\ell}=y$ in $D[M]$ and the logical chain $\left(x_{1}, z\right) \in A(D) \Rightarrow\left(x_{2}, z\right) \in A(D) \Rightarrow \cdots \Rightarrow\left(x_{\ell}, z\right) \in A(D)$.

For a nonempty vertex-set U in a digraph D, we denote by D / U the digraph obtained by identifying U, that is, the digraph with vertex-set $(V(D) \backslash U) \cup\left\{x_{U}\right\}$, where $x_{U} \notin V(D)$ is some newly added vertex representing U, and the following arcs: the arcs of D inside $V(D) \backslash U$, the $\operatorname{arc}\left(x_{U}, v\right)$ for each $v \in N_{D}^{+}(U)$, and the arc $\left(v, x_{U}\right)$ for each $v \in N_{D}^{-}(U)$.

In the following we prepare the proof of Theorem 1 with a set of useful lemmas, starting with two operations for digraphs which preserve the containment in the class Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$.

Lemma 2.4. For every $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$and for every out-module $U \subseteq V(D)$ it holds that $D / U \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$.

Proof. Suppose towards a contradiction that D / U contains a $\overleftrightarrow{K}_{2}$ spanned by vertices x, y. Clearly we need to have $x_{U} \in\{x, y\}$, say $x=x_{U}$. By definition of D / U there are $u_{1}, u_{2} \in U$ such that $\left(u_{1}, y\right),\left(y, u_{2}\right) \in A(D)$. Since U is an out-module, the vertices u_{2}, y span a $\overleftrightarrow{K}_{2}$ in D, which is impossible. Next, suppose there are vertices x, y, z spanning an S_{2}^{+}in D / U, where x is the central vertex. Clearly we need to have $x_{U} \in\{x, y, z\}$. If $y=x_{U}$ or $z=x_{U}$, we find an S_{2}^{+}in D by replacing x_{U} with an out-neighbor of x in U. If $x=x_{U}$, then by definition of D / U and since U is an out-module every vertex $u \in U$ together with y, z spans an S_{2}^{+}in D, in each case a contradiction. Finally, suppose that there is a copy of W_{3}^{+}in D / U, which clearly must contain x_{U}. If x_{U} is the source vertex of the W_{3}^{+}, then since U is an out-module any vertex $u \in U$ together with the remaining three vertices induces a W_{3}^{+}in D. If x_{U} is not the source vertex of the W_{3}^{+}, then let x, y, z denote the other three vertices of the W_{3}^{+}, such that x is the source vertex, and $\left(x_{U}, y\right),(y, z),\left(z, x_{U}\right) \in A(D / U)$. Let $u \in U$ be a vertex such that $(x, u) \in A(D)$. Since U is an out-module, we must have $(u, y) \in A(D)$. Then u, y, z are three out-neighbors of x in D and $(u, y),(y, z) \in A(D)$. Hence, by transitivity (recall that $D\left[N_{D}^{+}(x)\right]$ is a transitive tournament) $(u, z) \in A(D)$. However, this means that z, x_{U} form a $\overleftrightarrow{K}_{2}$ in D / U, which is impossible as shown above.

Lemma 2.5. Let $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, and let $(x, y) \in A(F(D))$. Let $z \in N_{D}^{+}(y)$ such that $(x, z),(z, x) \notin A(D)$. Then the digraph $D^{+}(x, z)$ obtained from D by adding the $\operatorname{arc}(x, z)$ is contained in $\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$.

Proof. As z is not connected to x, adding (x, z) does not create a $\overleftrightarrow{K}_{2}$. Suppose it creates an S_{2}^{+}and let t be the vertex in the copy of S_{2}^{+}different from x, z. Then $(x, t) \in A(D)$. But then $(y, t) \in A(D)$ (since $(x, y) \in A(F(D))$) and thus $\{y, z, t\}$ induces an S_{2}^{+}in D. Now suppose a W_{3}^{+}is created. First consider the case that x is the source vertex of this copy of W_{3}^{+}and let z, a, b be the other three vertices such that $(z, a),(a, b),(b, z) \in A(D)$. If $y \notin\{a, b\}$, then since $(x, y) \in A(F(D))$ the vertices $\{y, z, a, b\}$ induce a W_{3}^{+}in D. If $y=a$, then $\{a, z\}$ induces a $\overleftrightarrow{K}_{2}$ in D. Similarly, if $y=b$, then $\{a, b\}$ induces a $\overleftrightarrow{K}_{2}$ in D. If x is not the source vertex of the copy of W_{4}^{+}, then the source vertex together with x and z induces an S_{2}^{+}. Obtaining a contradiction in each case, we conclude the proof.

The next lemma shows the existence of out-modules with special properties.
Lemma 2.6. Let $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, and let $v \in V(D)$. If $N_{D}^{-}(v) \neq \varnothing$, then there exists an out-module M in D such that $D[M]$ is strongly connected, $M \subseteq N_{D}^{-}(v)$ and $N_{D}^{+}(M) \subseteq N_{D}^{+}(v) \cup\{v\}$.

Proof. Let M be the set of vertices of a strong component of $D\left[N_{D}^{-}(v)\right]$ such that no arc leaves it in $D\left[N_{D}^{-}(v)\right] .^{1}$ Then M satisfies the required properties: Consider any $u \in N_{D}^{+}(M) \backslash\{v\}$ and let $t \in M$ be such that $(t, u) \in A(D)$. Then u, v are distinct outneighbors of t and thus have to be adjacent in D. But we cannot have $u \in N_{D}^{-}(v)$, since no arc in $D\left[N_{D}^{-}(v)\right]$ leaves M, thus we have $u \in N_{D}^{+}(v)$. This verifies $N_{D}^{+}(M) \subseteq N_{D}^{+}(v) \cup\{v\}$. To see why M is an out-module, we use Observation 2.3. So let $x, y \in M$ and $z \in V(D) \backslash M$ such that $(x, y),(x, z) \in A(D)$. If $z=v$, then trivially $(y, z) \in A(D)$, so assume $z \in N_{D}^{+}(v)$. Then y, v, z are three distinct vertices in the transitive tournament induced by $N_{D}^{+}(x)$, and since $(y, v),(v, z) \in A(D)$ it follows that $(y, z) \in A(D)$ by transitivity, as desired.

Lemma 2.7. Let $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, let $M \subseteq V(D)$ be an out-module in D and let $v \in V(D) \backslash M$. Let T be the set of vertices defined by

$$
T:=\{t \in M \mid \exists u \in V(D) \backslash M:(v, u),(u, t) \in A(D)\} .
$$

Then $D[T]$ is a (possibly empty) transitive tournament.

[^1]Proof. We prove the assertion by showing that $D[T]$ is a tournament and contains no directed triangle. First, suppose towards a contradiction there are nonadjacent members $t_{1} \neq t_{2}$ of T. For $i=1,2$ let $u_{i} \in V(D) \backslash M$ be a vertex such that $\left(v, u_{i}\right),\left(u_{i}, t_{i}\right) \in M$. If $u_{1}=u_{2}$, then u_{1}, t_{1}, t_{2} span an S_{2}^{+}in D, so $u_{1} \neq u_{2}$. Then u_{1}, u_{2} as out-neighbors of v must be adjacent, w.l.o.g. $\left(u_{1}, u_{2}\right) \in A(D)$. This implies further that t_{1}, u_{2}, as out-neighbors of u_{1}, are adjacent. However, we cannot have $\left(t_{1}, u_{2}\right) \in A(D)$, for then also $\left(t_{2}, u_{2}\right) \in A(D)$ and t_{2}, u_{2} would form a digon in D. Hence, $\left(u_{2}, t_{1}\right) \in A(D)$ and therefore u_{2}, t_{1}, t_{2} induce an S_{2}^{+} in D, a contradiction.

Next, suppose towards a contradiction that some vertices $t_{1}, t_{2}, t_{3} \in T$ form a directed triangle. Let $u_{i} \in V(D) \backslash M, i=1,2,3$ be vertices such that $\left(v, u_{i}\right),\left(u_{i}, t_{i}\right) \in A(D)$. First note that $\left(t_{i}, u_{j}\right) \notin A(D)$ for every $i, j \in\{1,2,3\}$, for otherwise M being an out-module would imply that t_{j} and u_{j} span a $\overleftrightarrow{K}_{2}$ in D. Next notice that not all of u_{1}, u_{2}, u_{3} can be equal, for otherwise $u_{1}, t_{1}, t_{2}, t_{3}$ would induce a W_{3}^{+}in D. If exactly two of them are equal, say $u_{1} \neq u_{2}=u_{3}$, then u_{1} and $u_{2}=u_{3}$ are adjacent. If $\left(u_{1}, u_{2}\right) \in A(D)$, then t_{1} and u_{2} are adjacent and hence by our initial remark we have $\left(u_{2}, t_{1}\right) \in A(D)$. However, now $u_{2}=u_{3}, t_{1}, t_{2}, t_{3}$ span a W_{3}^{+}in D, a contradiction. If on the other hand $\left(u_{2}, u_{1}\right)=\left(u_{3}, u_{1}\right) \in A(D)$, then u_{1} must be adjacent to both t_{2} and t_{3}, hence u_{1} sees all of t_{1}, t_{2}, t_{3}, so $u_{1}, t_{1}, t_{2}, t_{3}$ span a W_{3}^{+}, again a contradiction.

Finally consider the case that u_{1}, u_{2}, u_{3} are pairwise distinct. Since they are contained in the transitive tournament induced by $N_{D}^{+}(v)$, we may assume w.l.o.g. that $\left(u_{1}, u_{2}\right),\left(u_{1}, u_{3}\right),\left(u_{2}, u_{3}\right) \in A(D)$. Then u_{3} must be adjacent to both t_{1} and t_{2}, and by our initial remark this means that $\left(u_{3}, t_{1}\right),\left(u_{3}, t_{2}\right) \in A(D)$. Hence, $u_{3}, t_{1}, t_{2}, t_{3}$ form a W_{3}^{+}in this case, a final contradiction which concludes the proof.

We are now sufficiently prepared to give the proof of Theorem 1. In fact, to make our inductive proof work we state a stronger version of the claim, which allows one to enforce a monochromatic coloring on the closed out-neighborhood of a vertex.

Theorem 4. Let $D \in \operatorname{Forb}_{\mathrm{ind}}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, and $v \in V(D)$. Then there exists an acyclic coloring $c: V(D) \rightarrow\{1,2\}$ of D such that $c(u)=c(v)$ for every $u \in N_{D}^{+}(v)$.

Proof. Suppose towards a contradiction that the claim is wrong, and let (D, v) be a counterexample to the claim minimizing $v(D)$.

Claim 1. D is strongly connected.
Proof. Suppose not, then there is a partition of $V(D)$ into nonempty parts X, Y such that no arc in D starts in X and ends in Y. This property together with the fact that $N_{D}^{+}(v)$ induces a transitive tournament implies that there exist vertices $x \in X, y \in Y$ such that $\{v\} \cup N_{D}^{+}(v) \subseteq\left(x \cup N_{D[X]}^{+}(x)\right) \cup\left(y \cup N_{D[Y]}^{+}(y)\right)$. By minimality of (D, v), there exist acyclic 2-colorings c_{X} and c_{Y} of $D[X]$ and $D[Y]$ so that the closed out-neighborhoods of x and y in $D[X]$ and $D[Y]$, respectively, are monochromatic. Possibly after permuting colors in c_{Y} and putting these colorings together yields an acyclic 2 -coloring of D in which the closed out-neigborhood of v is monochromatic, a contradiction (note that we
do not create a monochromatic directed cycle in the process, as such a cycle would have to traverse an arc from X to Y).

Note that Claim 1 implies that $N_{D}^{-}(v) \neq \varnothing$. Hence we may apply Lemma 2.6 to the vertex v of D and find an out-module $M \subseteq N_{D}^{-}(v)$ in D such that $D[M]$ is strongly connected and $N_{D}^{+}(M) \subseteq N_{D}^{+}(v) \cup\{v\}$. Let $T \subseteq M$ be the set of vertices $t \in M$ for which there exists $u \in N_{D}^{+}(v)$ such that $(u, t) \in A(D)$. Since $N_{D}^{+}(v) \cap M=\varnothing$, the definition of T here coincides with the one in Lemma 2.7. Now, Lemma 2.7 implies that $D[T]$ is a (possibly empty) transitive tournament.

Claim 2. The digraph $D[M]$ admits an acyclic 2-coloring $c_{M}: M \rightarrow\{1,2\}$ satisfying $c_{M}(t)=2$ for all $t \in T$.

Proof. Since $v(D[M])<v(D)$, the minimality of (D, v) implies that $D[M]$ satisfies the assertion of the theorem. If $T=\varnothing$, Claim 2 is satisfied by an arbitrary choice of an acyclic 2 -coloring of $D[M]$. If $T \neq \varnothing$, let $t_{0} \in T$ be the source of the transitive tournament $D[T]$. Applying the assertion of the theorem to $D[M]$ and the vertex t_{0}, we find an acyclic 2-coloring of $D[M]$ in which t_{0} has the same color as all its out-neighbors. Without loss of generality we may choose this color to be 2, and since $\left\{t_{0}\right\} \cup N_{D[M]}^{+}\left(t_{0}\right) \supseteq T$, the claim follows.

Claim 3. $D[M]$ contains a directed cycle.
Proof. Since $D[M]$ is strongly connected, it suffices to rule out $|M|=1$. Towards a contradiction suppose that $M=\{m\}$ is a single vertex. Then $N_{D}^{+}(m)=N_{D}^{+}(M) \subseteq$ $\{v\} \cup N_{D}^{+}(v)$. Let $D^{\prime}:=D-m$. By minimality of (D, v), we know that D^{\prime} admits an acyclic 2-coloring $c^{\prime}: V(D) \backslash M \rightarrow\{1,2\}$ in which $c^{\prime}(v)=c^{\prime}(u)=1$ for every $u \in N_{D}^{+}(v)$. Let c be the extension of c^{\prime} to $V(D)$ obtained by assigning color 2 to m. Then c is an acyclic coloring of D : Any newly created directed cycle must use an out-arc of m, however, we have $c(m)=2$ and $c(x)=c^{\prime}(x)=1$ for every $x \in N_{D}^{+}(m) \subseteq\{v\} \cup N_{D}^{+}(v)$, so such a cycle has both colors. This is a contradiction, since we assumed that D does not admit an acyclic 2-coloring in which the closed out-neighborhood of v is monochromatic.

Claim 3 in particular implies that $|M| \geq 3$ and $M \backslash T \neq \varnothing$.
Let us further note that since M forms an out-module in $D, M \backslash T \neq \varnothing$ is an out-module in the digraph $D-T \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$, and hence by Lemma 2.4 we also have $D_{0}:=(D-T) /(M \backslash T) \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$. Also note that since $T \subseteq M \subseteq N_{D}^{-}(v)$, we have $N_{D_{0}}^{+}(v)=N_{D}^{+}(v)$.

Claim 4. $\quad\left(x_{M \backslash T}, v\right) \in A\left(F\left(D_{0}\right)\right)$, and $\left(u, x_{M \backslash T}\right) \notin A\left(D_{0}\right)$ for every $u \in N_{D_{0}}^{+}(v)$.
Proof. We have $M \backslash T \subseteq N_{D}^{-}(v)$ and $N_{D}^{+}(M) \subseteq\{v\} \cup N_{D}^{+}(v)$. This directly implies that $\left(x_{M \backslash T}, v\right) \in A\left(D_{0}\right)$ and that $N_{D_{0}}^{+}\left(x_{M \backslash T}\right) \subseteq N_{D}^{+}(M) \subseteq N^{+}(v) \cup\{v\}=N_{D_{0}}^{+}(v) \cup\{v\}$. Hence,
$v \in N_{D_{0}}^{+}\left(x_{M \backslash T}\right)$ has an out-arc to every other out-neighbor of $x_{M \backslash T}$ in D_{0}, and this shows (by definition) that $\left(x_{M \backslash T}, v\right) \in A\left(F\left(D_{0}\right)\right)$.

For the second claim, suppose towards a contradiction that there exists $u \in N_{D_{0}}^{+}(v)$ such that $\left(u, x_{M \backslash T}\right) \in A\left(D_{0}\right)$. By definition of D_{0}, this means that $u \in N_{D}^{+}(v)$ and that there exists a vertex $m \in M \backslash T$ such that $(u, m) \in A(D)$. By definition of T, this however shows that $m \in T$, a contradiction.

In the following, let \bar{D} be the digraph defined by

$$
V(\bar{D}):=V\left(D_{0}\right), A(\bar{D}):=A\left(D_{0}\right) \cup\left\{\left(x_{M \backslash T}, u\right) \mid u \in N_{D_{0}}^{+}(v)\right\}
$$

(see Figure 2 for an illustration).

$$
D
$$

$$
D_{0}=(D-T) /(M \backslash T)
$$

FIG URE 2 Schematic illustration of the construction of the digraph \bar{D} from D (top row), and how the coloring \bar{c} of \bar{D} is combined with c_{M} to obtain an acyclic coloring c of D. The correspondence of the segment P of the monochromatic cycle C in D and the monochromatic cycle C^{*} in \bar{D} is also indicated. Dashed edges indicate that the endpoints are not connected, while colors red and blue correspond to colors 1 and 2 in the proof.

Claim 5. $\bar{D} \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$.

Proof. Let $e_{i}=\left(x_{M \backslash T}, u_{i}\right), i=1, \ldots, k$ be a list of the arcs contained in $A(\bar{D}) \backslash A\left(D_{0}\right)$ for some $k \geq 0$. For $0 \leq i \leq k$ let D_{i} denote the digraph defined by $V\left(D_{i}\right):=V\left(D_{0}\right)$ and $A\left(D_{i}\right):=A\left(D_{0}\right) \cup\left\{e_{1}, \ldots, e_{i}\right\}$. Note that $D_{k}=\bar{D}$.

Let us show inductively that $D_{i} \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$and $\left(x_{M \backslash T}, v\right) \in A\left(F\left(D_{i}\right)\right)$ for every $i \in\{0,1, \ldots, k\}$. The claim then follows via $\bar{D}=D_{k}$.

For $i=0$ the claim holds true by the previous discussions and Claim 4. Now let $1 \leq i \leq k$ and suppose we know that the claim holds for D_{i-1}.

Note that $D_{i}=D_{i-1}^{+}\left(x_{M \backslash T}, u_{i}\right)$, where $u_{i} \in N_{D_{0}}^{+}(v)=N_{D_{i-1}}^{+}(v),\left(x_{M \backslash T}, v\right) \in A\left(F\left(D_{i-1}\right)\right)$. Note that $e_{i} \notin A\left(D_{i-1}\right)$, as well as $\left(u_{i}, x_{M \backslash T}\right) \notin A\left(D_{i-1}\right)$ by Claim 4. Therefore Lemma 2.5 applied to D_{i-1} with $x=x_{M \backslash T}, y=v, z=u_{i}$ implies that $D_{i} \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, W_{3}^{+}\right)$. To verify $\left(x_{M \backslash T}, v\right) \in A\left(F\left(D_{i}\right)\right)$, note that the only new out-neighbor of $x_{M \backslash T}$ in D_{i} compared to D_{i-1} is the vertex $u_{i} \in N_{D}^{+}(v)$, which is seen by the vertex v and hence v still forms the source of the transitive tournament induced by the out-neighbors of $x_{M \backslash T}$ in D_{i}. This concludes the proof by induction.

The number of vertices of \bar{D} satisfies

$$
v(\bar{D})=v\left(D_{0}\right)=v(D)-|T|-(|M \backslash T|-1) \leq v(D)-(|M|-1) \leq v(D)-2<v(D)
$$

since $|M| \geq 3$ by Claim 3 . Hence, the minimality of D implies that the assertion of the theorem holds for \bar{D}. Applying this assertion to the vertex $x_{M \backslash T}$ in \bar{D}, we find that there exists an acyclic 2-coloring $\bar{c}: V(\bar{D}) \rightarrow\{1,2\}$ of \bar{D} such that $\bar{c}\left(x_{M \backslash T}\right)=1=\bar{c}(u)$ for every $u \in N_{\bar{D}}^{ \pm}\left(x_{M \backslash T}\right)$. Using the facts $N_{D_{0}}^{+}\left(x_{M \backslash T}\right) \subseteq N_{D}^{+}(v) \cup\{v\}, N_{D_{0}}^{+}(v)=N_{D}^{+}(v)$ and $\left(x_{M \backslash T}, v\right) \in A\left(D_{0}\right)$, the definition of \bar{D} yields that $N_{D}^{+}\left(x_{M \backslash T}\right)=N_{D}^{+}(v) \cup\{v\}$. Hence, we have $\bar{c}\left(x_{M \backslash T}\right)=\bar{c}(v)=\bar{c}(u)=1$ for every $u \in N_{D}^{+}(v)$.

Let $c: V(D) \rightarrow\{1,2\}$ be the coloring of D defined by $c(x):=c_{M}(x)$ for every $x \in M$, and $c(x):=\bar{c}(x)$ for every $x \in V(D) \backslash M$. We note that $c(v)=c(u)$ for all $u \in N_{D}^{+}(v)$. Hence, by the initial assumption on D, the coloring c cannot be acyclic, that is, there is a directed cycle C in D which is monochromatic in the coloring c. Since c_{M} is an acyclic coloring, we must have $V(C) \backslash M \neq \varnothing$. Analogously, we have $V(C) \cap M \neq \varnothing$ since otherwise C would be a directed cycle in $D-M \subseteq(D-T) /(M \backslash T)=D_{0} \subseteq \bar{D}$, contradicting that \bar{c} is an acyclic coloring. Hence there must be an $\operatorname{arc}(x, y) \in A(C)$ such that $x \in M$ and $y \notin M$. However, this means that $y \in N_{D}^{+}(M) \subseteq\{v\} \cup N_{D}^{+}(v)$, and hence $c(y)=1$. Thus C is a cycle in color 1 , and since $c(t)=c_{M}(t)=2$ for every $t \in T$, it cannot intersect T. Let z be the first vertex of M we meet when traversing C in the forward direction, starting at y. Then $z \in M \backslash T$. Let P be the subpath of C from x to z. Now $(V(P) \backslash\{x, z\}) \cup\left\{x_{M \backslash T}\right\}$ forms the vertex-set of a directed cycle C^{*} in $(D-T) /(M \backslash T)=D_{0} \subseteq \bar{D}$, and it is monochromatic w.r.t. \bar{c} : Every vertex $x \in V\left(C^{*}\right) \backslash\left\{x_{M \backslash T}\right\}$ is contained in P and thus has color $\bar{c}(x)=c(x)=1$, and also $\bar{c}\left(x_{M \backslash T}\right)=1$ by definition. This is a contradiction to the fact that \bar{c} is an acyclic coloring of \bar{D}. This shows that a (smallest) counterexample D to the claim of the theorem cannot exist, and concludes the proof of the theorem.

3 | ADDING A DOMINATING SINK TO A HERO

In this section our goal is to prove Theorem 2. Let us first prove the following lemma.

Lemma 3.1. Let $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}\right)$and let $C \in \mathbb{N}$ be such that $\vec{\chi}\left(D\left[N_{D}^{-}(x)\right]\right) \leq C$ for every $x \in V(D)$. Let $u, v \in V(D)$ and let P be a shortest u-v-dipath in D. Let $X:=V(P) \cup N_{D}^{-}(V(P))$. Then $\vec{\chi}(D[X]) \leq 3 C+2$.

Proof. Let $u=x_{0}, x_{1}, \ldots, x_{\ell-1}, x_{\ell}=v$ be the vertex-trace of P and consider the partition $\left(A_{i}\right)_{i=1}^{\ell}$ of $N_{D}^{-}(V(P))$, where $A_{i}:=N_{D}^{-}\left(x_{i}\right) \backslash\left(V(P) \cup \bigcup_{1 \leq j<i} A_{j}\right), i=0, \ldots, \ell$.

Claim. Let $0 \leq i<j \leq \ell$ with $j-i \geq 3$. Then there exists no arc in D starting in A_{i} and ending in A_{j}.

Proof. Suppose towards a contradiction that there are vertices $x \in A_{i}, y \in A_{j}$ with $(x, y) \in A(D)$. Then x_{i} and y as out-neighbors of x must be adjacent in D. By definition of A_{j} we have $A_{j} \cap N_{D}^{-}\left(x_{i}\right)=\varnothing$ and hence $\left(x_{i}, y\right) \in A(D)$. However, now the directed path described by the vertices $u=x_{0}, x_{1}, \ldots, x_{i}, y, x_{j}, \ldots, x_{\ell}=v$ is a $u-v$-dipath in D shorter than P, a contradiction. This proves the claim.

For every $0 \leq i \leq \ell$ we have $\vec{\chi}\left(D\left[A_{i}\right]\right) \leq \vec{\chi}\left(D\left[N_{D}^{-}\left(x_{i}\right)\right]\right) \leq C$. Let us define the set $B_{r}:=\bigcup\left\{A_{i} l i \equiv r(\bmod 3)\right\}$ for every $r \in\{0,1,2\}$. From the above claim it follows that no directed cycle in $D\left[B_{r}\right]$ intersects two different sets A_{i}, A_{j}. Hence, we have

$$
\vec{\chi}\left(D\left[B_{r}\right]\right) \leq \max \left\{\vec{\chi}\left(D\left[A_{i}\right]\right) \mid i \equiv r(\bmod 3)\right\} \leq C
$$

for $r=0,1,2$. Further note that the two sets

$$
V_{0}:=\left\{x_{i} \mid i \in\{0, \ldots, \ell\} \text { even }\right\}, V_{1}:=\left\{x_{i} \mid i \in\{0, \ldots, \ell\} \text { odd }\right\}
$$

both induce acyclic subdigraphs of D, for otherwise D would not be a shortest $u-v$-dipath in D. Since X is the disjoint union of $B_{0}, B_{1}, B_{2}, V_{0}, V_{1}$, we conclude

$$
\vec{\chi}(D[X]) \leq \vec{\chi}\left(D\left[B_{0}\right]\right)+\vec{\chi}\left(D\left[B_{1}\right]\right)+\vec{\chi}\left(D\left[B_{2}\right]\right)+\vec{\chi}\left(D\left[V_{0}\right]\right)+\vec{\chi}\left(D\left[V_{1}\right]\right) \leq 3 C+2,
$$

as required.
Proof of Theorem 2. Let $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ be heroic and $C:=\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right)\right)$.
We claim that every digraph $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, H^{-}\right)$admits an acyclic coloring with $C^{-}:=v(H)(C+1)+3 C+2$ colors.

Suppose towards a contradiction that there exists some $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, H^{-}\right)$ with $\vec{\chi}\left(D^{\prime}\right)>C^{\prime}$, and choose such a D minimizing $v(D)$. Then we have $\vec{\chi}(D)>C^{\prime} \geq C$ and hence there is $Y \subseteq V(D)$ such that $D[Y]$ is isomorphic to H. The minimality of $v(D)$ implies that D is strongly connected, for the dichromatic number of D equals the maximum of the dichromatic numbers of its strong components.

Let $S \supseteq Y$ denote a set of vertices in D defined as follows:
If $D[Y]$ (resp., H) is strongly connected, put $S:=Y$. Otherwise, let Y_{1}, \ldots, Y_{t} be a partition of Y into the $t \geq 2$ strong components of $D[Y]$ such that all arcs between Y_{i} and Y_{j} start in Y_{i} and end in Y_{j}, for any $1 \leq i<j \leq t$ (note that since $D[Y]$ is a tournament all elements of $Y_{i} \times Y_{j}$ are arcs of $D[Y]$ for $1 \leq i<j \leq t$). Now pick $u \in Y_{t}, v \in Y_{1}$ arbitrarily, let P be a shortest $u-v$-dipath in D and put $S:=V(P) \cup Y$. Let us note that in any case, $D[S]$ is strongly connected.

Let $Z:=S \cup N_{D}^{-}(S)$. Then we have $Z=X \cup Y \cup N_{D}^{-}(Y)$, where X is defined as $X:=\varnothing$ if $S=Y$, and as $X:=V(P) \cup N_{D}^{-}(V(P))$ otherwise. For every $x \in V(D)$ we know that since D is H^{-}-free, the digraph $D\left[N_{D}^{-}(x)\right]$ is contained in Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right)$, and hence $\vec{\chi}\left(D\left[N_{D}^{-}(x)\right]\right) \leq C$. Using Lemma 3.1 we obtain that $\vec{\chi}(D[X]) \leq 3 C+2$. Putting it all together, we find that

$$
\vec{\chi}(D[Z]) \leq \sum_{y \in Y} \underbrace{}_{\leq C+1} \vec{\chi}\left(D\left[\{y\} \cup N_{D}^{-}(y)\right]\right)+\vec{\chi}(D[X]) \leq v(H)(C+1)+3 C+2=C^{\prime} .
$$

Claim. No arc in D leaves Z.
Proof. We first note that it suffices to argue that there is no arc in D from S to $V(D) \backslash Z$: For every vertex $x \in Z \backslash S$ there is some $s \in S$ such that $x \in N_{D}^{-}(s) \subseteq Z$. Since D is S_{2}^{+}-free this implies that $N_{D}^{+}(x) \backslash Z \subseteq N_{D}^{+}(s) \backslash Z$. Hence if $s \in S$ does not see a vertex in $V(D) \backslash Z$, the same holds for x.

So suppose there exists an $\operatorname{arc}(s, w) \in S \times(V(D) \backslash Z)$. We claim that then also $\left(s^{\prime}, w\right) \in A(D)$ for every $s^{\prime} \in S$. Consider $s^{\prime} \in S$ arbitrarily. Since $D[S]$ is strongly connected, there exist vertices $s=s_{0}, s_{1}, \ldots, s_{k}=s^{\prime}$ in S such that $\left(s_{i-1}, s_{i}\right) \in A(D)$, $i=1, \ldots, k$. But now we can deduce that $\left(s^{\prime}, w\right) \in A(D)$ from the logical chain $\left(s_{0}, w\right) \in A(D) \Rightarrow\left(s_{1}, w\right) \in A(D) \Rightarrow \cdots \Rightarrow\left(s_{k}, w\right)=(s, w) \in A(D)$, where in each step we have $\left(s_{i-1}, w\right) \Rightarrow\left(s_{i}, w\right)$ since s_{i} and w are adjacent as distinct out-neighbors of s_{i-1} and since $w \notin Z \supseteq N_{D}^{-}\left(s_{i}\right)$. This shows that indeed $\left(s^{\prime}, w\right) \in A(D)$ for all $s^{\prime} \in S$. Hence $D[Y \cup\{w\}]$ is an induced subdigraph of D isomorphic to H^{-}, a contradiction to $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, H^{-}\right)$. This concludes the proof.

Since D is strongly connected, it follows that $Z=V(D)$, and hence that $\vec{\chi}(D)=$ $\vec{\chi}(D[Z]) \leq C^{\prime}$, a contradiction which concludes the proof of the theorem.

4 | ORIENTED 4-VERTEX-PATHS

In this section we establish that $\left\{\overleftrightarrow{K}_{2}, \vec{K}_{3}, P^{+}(1,1,1)\right\}$ is heroic, proving Theorem 3.
Proof of Theorem 3. We prove inductively that every $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, \vec{K}_{3}, P^{+}(1,1,1)\right)$ is 2-colorable. The claim trivially holds for $v(D)=1$, so suppose that $v(D) \geq 2$ and every digraph in $\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, \vec{K}_{3}, P^{+}(1,1,1)\right)$ having less than $v(D)$ vertices is 2-colorable. Pick some $x \in V(D)$ and define a sequence $X_{0}, X_{1}, X_{2}, \ldots$ of subsets of $V(D)$ as follows:

$$
X_{i}:= \begin{cases}\{x\} & \text { if } i=0 \\ N^{+}\left(X_{i-1}\right) \backslash \bigcup_{j=0}^{i-1} \quad X_{j} & \text { if } i \text { odd } \\ N^{-}\left(X_{i-1}\right) \backslash \bigcup_{j=0}^{i-1} \quad X_{j} & \text { if } i \geq 2 \text { even } .\end{cases}
$$

The sets $\left(X_{i}\right)_{i \geq 0}$ are by definition pairwise disjoint, and so there exists $k \geq 1$ such that $X_{1}, \ldots, X_{k} \neq \varnothing$ and $X_{i}=\varnothing$ for all $i>k$. For an illustration see Figure 3.

Claim. $\quad X_{i}$ is an independent set of D for every $i \geq 0$.

Proof. We prove the claim by induction on i. The claim trivially holds for $i=0$ since $X_{0}=\{x\}$, and since D does not contain a \vec{K}_{3}, also $X_{1}=N^{+}(x)$ must be an independent set in D. Now let $i \geq 2$ and suppose that we already established that X_{0}, \ldots, X_{i-1} are independent. Now suppose that there is an $\operatorname{arc}(x, y) \in A\left(D\left[X_{i}\right]\right)$. Let $x_{1}, y_{1} \in X_{i-1}$ and $x_{2}, y_{2} \in X_{i-2}$ be such that $\left(x_{1}, x_{2}\right),\left(x_{1}, x\right),\left(y_{1}, y_{2}\right),\left(y_{1}, y\right) \in A(D)$ if i is odd, respectively, $\left(x_{2}, x_{1}\right),\left(x, x_{1}\right),\left(y_{2}, y_{1}\right),\left(y, y_{1}\right) \in A(D)$ if i is even. We have $x_{1} \neq y_{1}$, as

FIGURE 3 Illustration of the definition of the X_{i}, equipped with an alternating coloring of the sets with two colors. The additional arcs indicate possible directions of connections between different X_{i}-sets of the same color, as well as possible connections from these sets to the rest of the digraph.
otherwise $x_{1}=y_{1}, x, y$ form a \vec{K}_{3} in D. Next consider the oriented path P consisting of $x,(x, y), y,\left(y_{1}, y\right), y_{1},\left(y_{1}, y_{2}\right), y_{2}$ if i is odd, and of $x_{2},\left(x_{2}, x_{1}\right), x_{1},\left(x, x_{1}\right), x,(x, y), y$ if i is even. In order for this path not to be an induced $P^{+}(1,1,1)$ two nonconsecutive vertices of the path must be adjacent. However, since D does not contain \vec{K}_{3}, this is only possible if x and y_{2} (i odd), respectively, x_{2} and y (i even) are adjacents. Since $x \notin X_{i-1}$, we have $x \notin N^{-}\left(X_{i-2}\right)$ if i is odd and $y \notin N^{+}\left(X_{i-2}\right)$ if i is even. Since $x_{2}, y_{2} \in X_{i-2}$ we conclude that $\left(y_{2}, x\right) \in A(D)$ if i is odd and $\left(y, x_{2}\right) \in A(D)$ if i is even. In both cases we conclude that $x_{2} \neq y_{2}$, since otherwise the vertices $x_{2}=y_{2}, x_{1}, x$, respectively, $x_{2}=y_{2}, y_{1}, y$ would induce a \vec{K}_{3} in D. Now consider the oriented path Q in D defined as $Q=y_{2},\left(y_{2}, x\right), x,\left(x_{1}, x\right), x_{1},\left(x_{1}, x_{2}\right), x_{2}$ if i is odd and as $Q=$ $y_{2},\left(y_{2}, y_{1}\right), y_{1},\left(y, y_{1}\right), y,\left(y, x_{2}\right), x_{2}$ if i is even. In order for Q not to be an induced $P^{+}(1,1,1)$ the endpoints x_{2} and y_{2} of Q must be adjacent. This contradicts the induction hypothesis that X_{i-2} is an independent set. Hence, our assumption was wrong, X_{i} is indeed independent. This concludes the proof of the claim.

Let $X:=X_{0} \cup \cdots \cup X_{k}$ and $D^{\prime}:=D-X$. By the induction hypothesis D^{\prime} admits an acyclic coloring $c^{\prime}: V\left(D^{\prime}\right) \rightarrow\{1,2\}$. Let us now define $c: V(D) \rightarrow\{1,2\}$ by $c(x):=c^{\prime}(x)$ for $x \in V(D) \backslash X, c(x):=1$ for $x \in X_{i}$ such that i is even, and $c(x):=2$ for $x \in X_{i}$ such that i is odd. We claim that D defines an acyclic coloring of D : Suppose there is a monochromatic directed cycle C in D. Since c^{\prime} is an acyclic coloring, we must have $V(C) \cap X \neq \varnothing$. By definition of the sets $\left(X_{i}\right)_{i \geq 0}$ we have $N^{+}\left(\bigcup_{i \text { ieven }} X_{i}\right), N^{-}\left(\bigcup_{i \text { odd }} X_{i}\right) \subseteq X$. Hence, there are no arcs from $c^{-1}(\{1\}) \cap X$ to $V(D) \backslash X$ or from $V(D) \backslash X$ to $c^{-1}(\{2\}) \cap X$. Since $V(C) \subseteq c^{-1}(t)$ for some $t \in\{1,2\}$, the strong connectivity of C shows that in fact $V(C) \subseteq c^{-1}(t) \cap X$ for some $t \in\{1,2\}$. Let $i_{0} \geq 0$ be the smallest such that $X_{i_{0}} \cap V(C) \neq \varnothing$. Let $u \in X_{i_{0}} \cap V(C) \neq \varnothing$, and let $u^{-}, u^{+} \in V(C)$ be such that $\left(u^{-}, u\right),\left(u, u^{+}\right) \in A(C)$. We have $u^{-}, u^{+} \in \bigcup_{j>i_{0}} X_{j}$ since $X_{i_{0}}$ is an independent set. Thus $u^{+} \in N^{+}\left(X_{i_{0}}\right) \backslash \cup_{j=0}^{i_{0}-1} X_{j}=X_{i_{0}+1}$ if i_{0} is even and $u^{-} \in N^{-}\left(X_{i_{0}}\right) \backslash \bigcup_{j=0}^{i_{0}-1} X_{j}=X_{i_{0}+1}$ if i_{0} is odd, in both cases yielding that C cannot be monochromatic. This contradiction shows that c is an acyclic coloring and $\vec{\chi}(D) \leq 2$, concluding the proof.

5 | CONCLUSION

In the first two sections of this paper we have proved that set $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ is heroic for several small heroes H, and in particular we resolved Conjecture 1.3. It would be interesting to prove that in fact, for any hero $H,\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, H\right\}$ is heroic, as this would be a broad generalization of the main result of Berger et al. [4] from tournaments to locally out-complete oriented graphs, that is, oriented graphs in which the out-neighborhood of every vertex induces a tournament. This class of digraphs has been thoroughly studied in the past, see, for instance, [3] for a survey of results on locally complete digraphs.

The smallest open case of this problem would be to show that $\left\{\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{K}_{4}^{s}\right\}$ is heroic, where \vec{K}_{4}^{s} denotes the unique strong tournament on four vertices. It seems that already for this case a new method is required. We do however believe that the following is true.

Conjecture 5.1. $\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{K}_{4}^{s}\right)\right)=3$.

Here, a tight lower bound would be provided by the following construction: Take a threefold blow-up of a directed four-cycle (every arc being replaced by an oriented $K_{3,3}$) and connect each of the three blow-up triples by a directed triangle. This oriented graph is contained in Forb $_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, \vec{K}_{4}^{s}\right)$ and has dichromatic number 3.

Let us further remark at this point that there exists a very simple proof that if we exclude both S_{2}^{+}and S_{2}^{-}, that is, we consider locally complete oriented graphs (where the out- and in-neigborhood of every vertex induces a tournament), then we can show that the exclusion of any hero indeed bounds the dichromatic number as follows.

Remark 5.2. For any hero H, we have

$$
\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, S_{2}^{-}, H\right)\right) \leq 2 \vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K_{2}}, \bar{K}_{2}, H\right)\right)<\infty
$$

Proof. By the result of Berger et al. [4] we have $C_{0}:=\vec{\chi}\left(\operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K_{2}}, \bar{K}_{2}, H\right)\right)<\infty$. Towards a contradiction suppose that $\vec{\chi}(D)>2 C_{0}$ for some $D \in \operatorname{Forb}_{\text {ind }}\left(\overleftrightarrow{K}_{2}, S_{2}^{+}, S_{2}^{-}, H\right)$, and choose D such that $v(D)$ is minimum. Pick some $v \in V(D)$ and consider $D^{\prime}:=D-$ $\left(\{v\} \cup N_{D}(v)\right)$. Since $v\left(D^{\prime}\right)<v(D)$, there exists an acyclic $2 C_{0}$-coloring $c^{\prime}: V\left(D^{\prime}\right) \rightarrow$ $\left\{1, \ldots, 2 C_{0}\right\}$ of D^{\prime}. Since D is S_{2}^{+}, S_{2}^{-}-free, we further know that $D^{+}:=D\left[\{v\} \cup N_{D}^{+}(v)\right]$ and $D^{-}:=D\left[N_{D}^{-}(v)\right]$ are tournaments excluding H. Hence there exist acyclic C_{0}-colorings $c^{+}: V\left(D^{+}\right) \rightarrow\left\{1, \ldots, C_{0}\right\}$ of D^{+}and $c^{-}: V\left(D^{-}\right) \rightarrow\left\{C_{0}+1, \ldots, 2 C_{0}\right\}$ of D^{-}. Let c be the $2 C_{0}$-coloring of D obtained by piecing together c^{\prime}, c^{+}, c^{-}. We claim that this is an acyclic coloring, which will contradict our assumption $\vec{\chi}(D)>2 C_{0}$ and thus conclude the proof. To verify this, note that D contains no S_{2}^{+}centered at an in-neighbor of v and no S_{2}^{-}centered at an out-neighbor of v, and hence there is no arc leaving $\{v\} \cup N_{D}(v)$ that starts in $N_{D}^{-}(v)$ and nor arc entering $\{v\} \cup N_{D}(v)$ that ends in $N_{D}^{+}(v)$. Thus every directed cycle in D is either disjoint from $\{v\} \cup N_{D}(v)$, contained in $D\left[\{v\} \cup N_{D}(v)\right]$ or it intersects both $N_{D}^{-}(v)$ and $N_{D}^{+}(v)$. In all cases it cannot be monochromatic, since c^{\prime} is an acyclic coloring and since c^{+} and c^{-}are acyclic colorings with disjoint color sets.

In the last section of this paper we investigated oriented graphs excluding the antidirected 4 -vertex-path $P^{+}(1,1,1)$. It would certainly be very interesting and insightful to generalize both Theorem 3 as well as the result of Aboulker et al. concerning \vec{P}_{4} by proving that $\left\{\overleftrightarrow{K}_{2}, \vec{P}_{4}, \vec{K}_{k}\right\}$ and $\left\{\overleftrightarrow{K}_{2}, P^{+}(1,1,1), \vec{K}_{k}\right\}$ are heroic for all $k \geq 4$.

ACKNOWLEDGMENTS

My sincerest thanks go to the anonymous reviewers for the careful reading of the manuscript and several helpful suggestions which greatly improved the presentation of the paper. In particular I am indebted to one of the reviewers for finding a simplified proof of Lemma 2.6. I would like to thank Lior Gishboliner and Tibor Szabó for stimulating and fruitful discussions
on the topic which contributed to the results presented in this paper. Funded by DFG-GRK 2434 Facets of Complexity and by an ETH Zürich Postdoctoral Fellowship. Open Access funding enabled and organized by Projekt DEAL.

ORCID

Raphael Steiner (1) https://orcid.org/0000-0002-4234-6136

REFERENCES

1. P. Aboulker, G. Aubian, and P. Charbit, Decomposing and colouring some locally semicomplete digraphs, European J. Combin. 106 (2022).
2. P. Aboulker, P. Charbit, and R. Naserasr, Extension of the Gyárfás-Sumner conjecture to digraphs, Electron. J. Combin. 28 (2021), no. 2, P2.27.
3. J. Bang-Jensen, Locally semicomplete digraphs and generalizations, Classes of Directed Graphs, Chapter 6, Springer Monographs in Mathematics (J. Bang-Jensen and G. Gutin, eds.), Springer International Publishing, Basel, Switzerland, ISBN: 978-3-319-71839-2, 2018.
4. E. Berger, K. Choromanski, M. Chudnovsky, J. Fox, M. Loebl, A. Scott, P. Seymour, and S. Thomassé, Tournaments and colouring, J. Combin. Theory Ser. B. 103 (2013), no. 1, 1-20.
5. M. Chudnovsky, A. Scott, and P. Seymour, Induced subgraphs of graphs with large chromatic number. XI. Orientations, European J. Combin. 76 (2019), 53-61.
6. P. Erdős, Problems and results in number theory and graph theory, Congress. Numer. XXVII (Proc. 9th Manitoba Conf. Num. Math. Comput. 1979) Utilitas Math., Winnipeg, 1980, pp. 3-21.
7. A. Gyárfás, On Ramsey covering-numbers, Infinite and Finite Sets (Colloq., Keszthely, 1973, dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 801-816.
8. V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory Ser. B. 33 (1982), no. 3, 265-270.
9. A. Scott and P. Seymour, A survey of χ-boundedness, J. Graph Theory. 95 (2020), no. 3, 473-504.
10. D. P. Sumner, Subtrees of a graph and the chromatic number, The Theory and Applications of Graphs (Kalamazoo, MI, 1980), Wiley, New York, 1981, pp. 557-576.

How to cite this article: R. Steiner, On coloring digraphs with forbidden induced subgraphs, J. Graph Theory. 2023;103:323-339. https://doi.org/10.1002/jgt. 22920

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2022 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.

[^1]: ${ }^{1}$ One may obtain such a component by contracting all strong components and selecting a component corresponding to a sink in the resulting acyclic digraph.

