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Abstract

We prove a conjecture by Aboulker, Charbit, and

Naserasr by showing that every oriented graph in

which the out‐neighborhood of every vertex induces

a transitive tournament can be partitioned into

two acyclic induced subdigraphs. We prove multiple

extensions of this result to larger classes of digraphs

defined by a finite list of forbidden induced subdi-

graphs. We thereby resolve several special cases of an

extension of the famous Gyárfás–Sumner conjecture to

directed graphs stated by Aboulker et al.

KEYWORD S

directed graphs, graph coloring, Gyárfás–Sumner conjecture,
induced subgraphs

1 | INTRODUCTION

All graphs and digraphs considered in this paper are simple. We say that a digraph is an oriented
graph if it does not contain directed cycles of length two (digons) and we call it bioriented if each of
its arcs belongs to a digon. Given a digraph D, an acyclic k‐coloring of D, also referred to as a
k‐dicoloring, is an assignment →c V D S: ( ) of colors from a color set S of size k to the vertices
such that every color class ∈c i i S( ),−1 induces an acyclic subdigraph of D. The dichromatic

number →χ D( ) as introduced by Erdős [6] and Neumann‐Lara [8] is the smallest integer k for
which an acyclic k‐coloring of D exists. Given a set of (di)graphs F , we denote by FForb ( )ind the
set of (di)graphs which do not contain an induced sub(di)graph isomorphic to a member of F .
Given a class of (di)graphs  , we denote by →χ ( ) (or χ ( ), respectively) the maximum (di)
chromatic number of (di)graphs in the class (∞ if the latter is unbounded). We say that a finite set
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F of (di)graphs is heroic, if FForb ( )ind has bounded (di)chromatic number. For ∈k , we denote

by
→
Kk the transitive tournament of order k.
A classical research topic in the theory of graph coloring is to study the chromatic number of

graphs with forbidden induced subgraphs, we refer to [9] for a recent survey article summarizing
important results on this topic. Extending this area of research to digraphs, Aboulker, Charbit, and
Naserasr [2] recently initiated the systematic study of the relation between excluded induced
subdigraphs and the dichromatic number and asked the following intriguing question.

Problem 1.1. Characterize the inclusionwise minimal heroic sets of digraphs.

In the following, let us mention a few related questions and results from the literature.

• Maybe the most important open problem for coloring undirected graphs with forbidden
induced subgraphs, namely, the Gyárfás–Sumner Conjecture [7, 10], can be restated in
digraph terminology as follows:

Conjecture 1.2. If a minimal heroic set F of digraphs includes
→
K2 (the oriented edge),

then F consists of at most three members, namely,
→
K2, a biorientation of a forest, and a

biorientation of a clique.

Note that in the above setting, FForb ( )ind contains only bioriented graphs, whose chromatic
number coincides with their dichromatic number. Hence, the above is the same as saying that
the minimal heroic sets of graphs consist of a forest and a clique, which is the classical phrasing
of the Gyárfás–Sumner Conjecture.

• In [4] Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé studied
the dichromatic number of tournaments which exclude a single fixed tournament H as an
(induced) subdigraph. They defined a hero as a tournament H such that the tournaments
excluding isomorphic copies of H have bounded dichromatic number. In other words, a

digraph H is a hero if the set
↔
K K H{ , , }2 2 is heroic, where K2 is the anticlique of order 2. The

main result of Berger et al. in [4] is a recursive characterization of all heroes, it implies in
particular that all tournaments on at most four vertices are heroes.

Motivated by Problem 1.1, Aboulker et al. [2] made the following conjecture for oriented
graphs which exclude the oriented out‐ (or in‐) star S2+ (or S2

−) with two leaves, as well as the

directed triangle
→
C3.

Conjecture 1.3 (cf. Aboulker et al. [2, Conjecture 15]).

→ ↔ → → ↔ →( ) ( )( ) ( )χ K S C χ K S CForb , , = Forb , , = 2.ind 2 2
+

3 ind 2 2
−

3

Note that by the symmetry of reversing all arcs, it suffices to prove Conjecture 1.3 for the

out‐star S2+. The digraphs in
↔ →( )K S CForb , ,ind 2 2

+
3 are exactly the oriented graphs with no
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directed triangle such that the out‐neighborhood of every vertex induces a tournament. As the
first main result of this paper, we prove Conjecture 1.3.

In fact, it will be convenient to prove the following stronger result involving the heroW3
+,

consisting of a vertex connected by three arcs to the vertices of a directed triangle. It directly

implies Conjecture 1.3 via
↔ →

⊆
↔( ) ( )K S C K S WForb , , Forb , ,ind 2 2

+
3 ind 2 2

+
3
+ .

Theorem 1. → ↔( )( )χ K S WForb , , = 2ind 2 2
+

3
+ .

Note that the members of
↔( )K S WForb , ,ind 2 2

+
3
+ are exactly the oriented graphs in which the

out‐neighborhood of every vertex induces a transitive tournament. To prove Theorem 1, in
Section 2, we will exhibit and exploit some structural properties of digraphs in this class.

A more general conjecture of Aboulker et al. (cf. Conjecture 11 in [2]) would imply that for

every hero H the triple
↔{ }K S H, ,2 2

+ is heroic. Motivated by this open problem, we extend

Theorem 1 to more triples
↔{ }K S H, ,2 2

+ for certain heroes H . In [4] it was shown that every hero

can be generated using three types of recursive construction steps. In our second main result
we show that one of these three steps, namely, adding a dominating sink to a hero, preserves

the heroicness of the triple
↔{ }K S H, ,2 2

+ .

Theorem 2. Let H be a hero and let H− be the hero obtained from H by adding a

dominating sink. If
↔{ }K S H, ,2 2

+ is heroic, then so is
↔{ }K S H, ,2 2

+ − .

The above in particular implies that the triple
↔{ }K S W, ,2 2

+
3
− is heroic, whereW3

− denotes the

4‐vertex tournament consisting of a directed triangle and a dominating sink. Members of
↔( )K S WForb , ,ind 2 2

+
3
− correspond to the oriented graphs in which the out‐neighborhood of each

vertex induces a tournament, while the in‐neighborhood of every vertex does not contain
directed triangles.

Our last new result in this paper concerns another conjecture of Aboulker et al., which can

be stated as follows (
→
Kk denotes the transitive tournament on k vertices).

Conjecture 1.4 (cf. Aboulker et al. [2, Conjecture 11]). For every orientation of a forest F

and every ∈k the triple
↔ →
K F K{ , , }k2 is heroic.

As noted in [2], Conjecture 1.4 holds true for forests on at most three vertices. The first open
cases therefore appear when F is an orientation of P4. Aboulker et al. considered the directed

path
→
P4 and showed in one of their main results that the set

↔ → →
K P K{ , , }2 4 3 is heroic. There are three
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other oriented paths on four vertices. Two of them, which are called P (2, 1)+ and P (2, 1)− in [2],
consist of two oppositely oriented dipaths of length two and one, respectively.

As noted by Aboulker et al., Chudnovsky, Scott, and Seymour proved in [5] that for every

∈k , digraphs in the set
↔ →
K P KForb ( , , )kind 2 have underlying graphs with bounded chromatic

number (and thus bounded dichromatic number) for ∈P P P{ (2, 1), (2, 1)}+ − . Hence,
Conjecture 1.4 holds for these two orientations of P4. This leaves open the remaining
orientation of P4, denoted P (1, 1, 1)+ in [2]. Here we complement the result of Aboulker et al.

[2] concerning
→
P4 , showing that also the set

↔ →
K P K{ , (1, 1, 1), }2

+
3 is heroic.

Theorem 3. → ↔ →
χ K P K(Forb ( , (1, 1, 1), )) = 2ind 2

+
3 .

1.1 | Structure of the paper

In Section 2 we investigate the structure of digraphs in the class
↔( )K S WForb , ,ind 2 2

+
3
+ and use

these insights to prove Theorem 1. In Section 3 we prove Theorem 2. Finally, in Section 4 we
prove Theorem 3 and we conclude with final comments in Section 5.

1.2 | Note

After the submission of this manuscript, independently discovered proofs both for Theorem 1
and Remark 5.2 (which appears in the conclusion) have appeared in the arXiv‐preprint [1] by
Aboulker, Aubian, and Charbit. Their proof of Theorem 1 is quite different, as they obtain and

use a full structural characterization of the class
↔( )K S WForb , ,ind 2 2

+
3
+ of digraphs. In our work,

however, the approach was not to obtain such a structural result, but instead to generate
2‐colorings of these oriented graphs directly using local reductions.

1.3 | Notation

Given a digraph D, we denote by V D( ) its vertex‐set and by ⊆A D V D V D( ) ( ) × ( ) its set of
arcs. We put ≔ ≔   v D V D a D A D( ) ( ) , ( ) ( ) . Arcs are denoted as u v( , ), where u is the tail
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of the arc and v is its head. For ∈v V D( ) we denote by N u N u( ), ( )D D
+ − the sets of out‐ and

in‐neighbors of v in D, respectively. We generalize this notation to vertex subsets by putting
≔ ⧹∈N X N x X( ) ( )D x X D

+ + and ≔ ⧹∈N X N x X( ) ( )D x X D
− − for all ⊆X V D( ). We further denote by

D X[ ] the subdigraph with vertex‐set X and arc‐set ∩X X A D( × ) ( ). Any digraph of the form
D X[ ] with ∅ ≠ ⊆X V D( ) is called an induced subdigraph of D. Given a set X of vertices or
arcs, we denote by D X− the digraph obtained from D by deleting X .

2 | { }S W,2
+

3
+ ‐FREE ORIENTED GRAPHS

In this section, we will prove Theorem 1 and thereby show that
↔{ }K S W, ,2 2

+
3
+ is a heroic set. An

important subclass of
↔( )K S WForb , ,ind 2 2

+
3
+ is the so‐called round digraphs, cf. [2, 3]. A strongly

connected digraph is called round if it admits a cyclical vertex‐ordering v v( , …, )n1 such that for
every arc ∈v v A D( , ) ( )i j and each i k j< < , both v v( , )i k and v v( , )k j are also arcs (indices
ordered cyclically). For these more special digraphs, 2‐colorability has been noted already
in [2], we refer to Figure 1 for examples from this class.

Given ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ , we define F D( ) to be the spanning subdigraph of D

consisting of the arcs ∈x y A D( , ) ( ) such that y is the source in the transitive tournament
induced by the out‐neighborhood of x in D. From the definition of F D( ) we immediately
obtain:

Observation 2.1. Let ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ and ∈x y A F D( , ) ( ( )). Then we have

⊆ ∪N x N y y( ) ( ) { }.D D
+ +

A useful notion for our proof is out‐modules in digraphs, as defined next.

FIGURE 1 Two examples of oriented graphs with transitive out‐neighborhoods. The digraph on the left
is a round digraph, while the right one is not. In both cases, F D( ) consists of the arcs of the outer directed
cycle.
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Definition 2.2. Let D be a digraph, and ∅ ≠ ⊆M V D( ). We say that M is an
out‐module in D if it holds that ∈ ⇒ ∈x z A D y z A D( , ) ( ) ( , ) ( ) for every ∈x y M, and
∈ ⧹z V D M( ) . Equivalently, ⧹ ⧹N x M N y M( ) = ( )D D

+ + for all ∈x y M, .

We remark the following simple fact for later use.

Observation 2.3. Let D be a digraph and ⊆M V D( ) such that D M[ ] is strongly
connected. If ∈ ∈ ⇒ ∈x y A D x z A D y z A D( , ) ( ) ( , ) ( ) ( , ) ( ) for every ∈x y M, and
∈ ⧹z V D M( ) , then M is an out‐module in D.

Proof. To verify that ∈ ⇒ ∈x z A D y z A D( , ) ( ) ( , ) ( ) for every ∈x y M, and
∈ ⧹z V D M( ) , it suffices to consider a directed x–y path x x x y= , …, =1 ℓ in D M[ ] and

the logical chain ∈ ⇒ ∈ ⇒ ⋯⇒ ∈x z A D x z A D x z A D( , ) ( ) ( , ) ( ) ( , ) ( )1 2 ℓ . □

For a nonempty vertex‐set U in a digraph D, we denote by ∕D U the digraph obtained by
identifyingU , that is, the digraph with vertex‐set ⧹ ∪V D U x( ( ) ) { }U , where ∉x V D( )U is some
newly added vertex representing U , and the following arcs: the arcs of D inside ⧹V D U( ) , the
arc x v( , )U for each ∈v N U( )D

+ , and the arc v x( , )U for each ∈v N U( )D
− .

In the following we prepare the proof of Theorem 1 with a set of useful lemmas,
starting with two operations for digraphs which preserve the containment in the class

↔( )K S WForb , ,ind 2 2
+

3
+ .

Lemma 2.4. For every ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ and for every out‐module ⊆U V D( ) it

holds that ∕ ∈
↔( )D U K S WForb , ,ind 2 2

+
3
+ .

Proof. Suppose towards a contradiction that ∕D U contains a
↔
K2 spanned by vertices

x y, . Clearly we need to have ∈x x y{ , }U , say x x= U . By definition of ∕D U there are
∈u u U,1 2 such that ∈u y y u A D( , ), ( , ) ( )1 2 . Since U is an out‐module, the vertices u y,2

span a
↔
K2 in D, which is impossible. Next, suppose there are vertices x y z, , spanning an

S2
+ in ∕D U , where x is the central vertex. Clearly we need to have ∈x x y z{ , , }U . If y x= U

or z x= U , we find an S2
+ in D by replacing xU with an out‐neighbor of x inU . If x x= U ,

then by definition of ∕D U and sinceU is an out‐module every vertex ∈u U together with
y z, spans an S2

+ in D, in each case a contradiction. Finally, suppose that there is a copy of
W3

+ in ∕D U , which clearly must contain xU . If xU is the source vertex of the W3
+,

then since U is an out‐module any vertex ∈u U together with the remaining
three vertices induces a W3

+ in D. If xU is not the source vertex of the W3
+, then let

x y z, , denote the other three vertices of the W3
+, such that x is the source vertex, and

∈ ∕x y y z z x A D U( , ), ( , ), ( , ) ( )U U . Let ∈u U be a vertex such that ∈x u A D( , ) ( ). SinceU
is an out‐module, we must have ∈u y A D( , ) ( ). Then u y z, , are three out‐neighbors of x
in D and ∈u y y z A D( , ), ( , ) ( ). Hence, by transitivity (recall that







D N x( )D

+ is a transitive

tournament) ∈u z A D( , ) ( ). However, this means that z x, U form a
↔
K2 in ∕D U , which is

impossible as shown above. □
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Lemma 2.5. Let ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ , and let ∈x y A F D( , ) ( ( )). Let ∈z N y( )D

+

such that ∉x z z x A D( , ), ( , ) ( ). Then the digraph D x z( , )+ obtained from D by adding the

arc x z( , ) is contained in
↔( )K S WForb , ,ind 2 2

+
3
+ .

Proof. As z is not connected to x , adding x z( , ) does not create a
↔
K2. Suppose it creates

an S2
+ and let t be the vertex in the copy of S2

+ different from x z, . Then ∈x t A D( , ) ( ). But
then ∈y t A D( , ) ( ) (since ∈x y A F D( , ) ( ( ))) and thus y z t{ , , } induces an S2

+ in D. Now
suppose aW3

+ is created. First consider the case that x is the source vertex of this copy of
W3

+ and let z a b, , be the other three vertices such that ∈z a a b b z A D( , ), ( , ), ( , ) ( ). If
∉y a b{ , }, then since ∈x y A F D( , ) ( ( )) the vertices y z a b{ , , , } induce aW3

+ in D. If y a= ,

then a z{ , } induces a
↔
K2 in D. Similarly, if y b= , then a b{ , } induces a

↔
K2 in D. If x is not

the source vertex of the copy ofW4
+, then the source vertex together with x and z induces

an S2
+. Obtaining a contradiction in each case, we conclude the proof. □

The next lemma shows the existence of out‐modules with special properties.

Lemma 2.6. Let ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ , and let ∈v V D( ). If ≠ ∅N v( )D

− , then there

exists an out‐module M in D such that D M[ ] is strongly connected, ⊆M N v( )D
− and

⊆ ∪N M N v v( ) ( ) { }D D
+ + .

Proof. Let M be the set of vertices of a strong component of






D N v( )D

− such that no arc

leaves it in






D N v( )D

− .1 Then M satisfies the required properties: Consider any

∈ ⧹u N M v( ) { }D
+ and let ∈t M be such that ∈t u A D( , ) ( ). Then u v, are distinct out‐

neighbors of t and thus have to be adjacent in D. But we cannot have ∈u N v( )D
− , since no

arc in






D N v( )D

− leaves M , thus we have ∈u N v( )D
+ . This verifies ⊆ ∪N M N v v( ) ( ) { }D D

+ + .

To see why M is an out‐module, we use Observation 2.3. So let ∈x y M, and
∈ ⧹z V D M( ) such that ∈x y x z A D( , ), ( , ) ( ). If z v= , then trivially ∈y z A D( , ) ( ), so

assume ∈z N v( )D
+ . Then y v z, , are three distinct vertices in the transitive tournament

induced by N x( )D
+ , and since ∈y v v z A D( , ), ( , ) ( ) it follows that ∈y z A D( , ) ( ) by

transitivity, as desired. □

Lemma 2.7. Let ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ , let ⊆M V D( ) be an out‐module in D and

let ∈ ⧹v V D M( ) . Let T be the set of vertices defined by

≔ ∈ ∃ ∈ ⧹ ∈T t M u V D M v u u t A D{ ( ) : ( , ), ( , ) ( )}.

Then D T[ ] is a (possibly empty) transitive tournament.

1One may obtain such a component by contracting all strong components and selecting a component corresponding to a sink in the
resulting acyclic digraph.
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Proof. We prove the assertion by showing that D T[ ] is a tournament and contains no
directed triangle. First, suppose towards a contradiction there are nonadjacent members
≠t t1 2 of T . For i = 1, 2 let ∈ ⧹u V D M( )i be a vertex such that ∈v u u t M( , ), ( , )i i i . If

u u=1 2, then u t t, ,1 1 2 span an S2
+ in D, so ≠u u1 2. Then u u,1 2 as out‐neighbors of v must

be adjacent, w.l.o.g. ∈u u A D( , ) ( )1 2 . This implies further that t u,1 2, as out‐neighbors of u1,
are adjacent. However, we cannot have ∈t u A D( , ) ( )1 2 , for then also ∈t u A D( , ) ( )2 2 and
t u,2 2 would form a digon in D. Hence, ∈u t A D( , ) ( )2 1 and therefore u t t, ,2 1 2 induce an S2

+

in D, a contradiction.
Next, suppose towards a contradiction that some vertices ∈t t t T, ,1 2 3 form a directed

triangle. Let ∈ ⧹u V D M i( ) , = 1, 2, 3i be vertices such that ∈v u u t A D( , ), ( , ) ( )i i i . First
note that ∉t u A D( , ) ( )i j for every ∈i j, {1, 2, 3}, for otherwise M being an out‐module

would imply that tj and uj span a
↔
K2 in D. Next notice that not all of u u u, ,1 2 3 can be equal,

for otherwise u t t t, , ,1 1 2 3 would induce a W3
+ in D. If exactly two of them are equal,

say ≠u u u=1 2 3, then u1 and u u=2 3 are adjacent. If ∈u u A D( , ) ( )1 2 , then t1 and u2
are adjacent and hence by our initial remark we have ∈u t A D( , ) ( )2 1 . However,
now u u t t t= , , ,2 3 1 2 3 span a W3

+ in D, a contradiction. If on the other hand
∈u u u u A D( , ) = ( , ) ( )2 1 3 1 , then u1 must be adjacent to both t2 and t3, hence u1 sees all

of t t t, ,1 2 3, so u t t t, , ,1 1 2 3 span aW3
+, again a contradiction.

Finally consider the case that u u u, ,1 2 3 are pairwise distinct. Since they are
contained in the transitive tournament induced by N v( )D

+ , we may assume w.l.o.g. that
∈u u u u u u A D( , ), ( , ), ( , ) ( )1 2 1 3 2 3 . Then u3 must be adjacent to both t1 and t2, and by our

initial remark this means that ∈u t u t A D( , ), ( , ) ( )3 1 3 2 . Hence, u t t t, , ,3 1 2 3 form aW3
+ in this

case, a final contradiction which concludes the proof. □

We are now sufficiently prepared to give the proof of Theorem 1. In fact, to make our
inductive proof work we state a stronger version of the claim, which allows one to enforce a
monochromatic coloring on the closed out‐neighborhood of a vertex.

Theorem 4. Let ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ , and ∈v V D( ). Then there exists an acyclic

coloring →c V D: ( ) {1, 2} of D such that c u c v( ) = ( ) for every ∈u N v( )D
+ .

Proof. Suppose towards a contradiction that the claim is wrong, and let D v( , ) be a
counterexample to the claim minimizing v D( ). □

Claim 1. D is strongly connected.

Proof. Suppose not, then there is a partition of V D( ) into nonempty parts X Y, such
that no arc in D starts in X and ends in Y . This property together with the fact that
N v( )D
+ induces a transitive tournament implies that there exist vertices ∈ ∈x X y Y, such

that ∪ ⊆ ∪ ∪ ∪( ) ( )v N v x N x y N y{ } ( ) ( ) ( )D D X D Y
+

[ ]
+

[ ]
+ . By minimality of D v( , ), there exist

acyclic 2‐colorings cX and cY of D X[ ] and D Y[ ] so that the closed out‐neighborhoods
of x and y in D X[ ] and D Y[ ], respectively, are monochromatic. Possibly after permuting
colors in cY and putting these colorings together yields an acyclic 2‐coloring of D in
which the closed out‐neigborhood of v is monochromatic, a contradiction (note that we
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do not create a monochromatic directed cycle in the process, as such a cycle would have
to traverse an arc from X to Y ). □

Note that Claim 1 implies that ≠ ∅N v( )D
− . Hence we may apply Lemma 2.6 to the vertex v

of D and find an out‐module ⊆M N v( )D
− in D such that D M[ ] is strongly connected and

⊆ ∪N M N v v( ) ( ) { }D D
+ + . Let ⊆T M be the set of vertices ∈t M for which there exists ∈u N v( )D

+

such that ∈u t A D( , ) ( ). Since ∩ ∅N v M( ) =D
+ , the definition of T here coincides with the one

in Lemma 2.7. Now, Lemma 2.7 implies that D T[ ] is a (possibly empty) transitive tournament.

Claim 2. The digraph D M[ ] admits an acyclic 2‐coloring →c M: {1, 2}M satisfying
c t( ) = 2M for all ∈t T .

Proof. Since v D M v D( [ ]) < ( ), the minimality of D v( , ) implies that D M[ ] satisfies the
assertion of the theorem. If ∅T = , Claim 2 is satisfied by an arbitrary choice of an acyclic
2‐coloring of D M[ ]. If ≠ ∅T , let ∈t T0 be the source of the transitive tournament D T[ ].
Applying the assertion of the theorem to D M[ ] and the vertex t0, we find an acyclic
2‐coloring of D M[ ] in which t0 has the same color as all its out‐neighbors. Without loss of
generality we may choose this color to be 2, and since ∪ ⊇t N t T{ } ( )D M0 [ ]

+
0 , the claim

follows. □

Claim 3. D M[ ] contains a directed cycle.

Proof. Since D M[ ] is strongly connected, it suffices to rule out  M = 1. Towards a
contradiction suppose that M m= { } is a single vertex. Then ⊆N m N M( ) = ( )D D

+ +

∪v N v{ } ( )D
+ . Let ≔D D m′ − . By minimality of D v( , ), we know that D′ admits an

acyclic 2‐coloring ⧹ →c V D M′ : ( ) {1, 2} in which c v c u′( ) = ′( ) = 1 for every ∈u N v( )D
+ .

Let c be the extension of c′ to V D( ) obtained by assigning color 2 to m. Then c is an
acyclic coloring of D: Any newly created directed cycle must use an out‐arc of m,
however, we have c m( ) = 2 and c x c x( ) = ′( ) = 1 for every ∈ ⊆ ∪x N m v N v( ) { } ( )D D

+ + ,
so such a cycle has both colors. This is a contradiction, since we assumed that D
does not admit an acyclic 2‐coloring in which the closed out‐neighborhood of v is
monochromatic. □

Claim 3 in particular implies that ≥ M 3 and ⧹ ≠ ∅M T .
Let us further note that since M forms an out‐module in D, ⧹ ≠ ∅M T is an out‐module

in the digraph ∈
↔( )D T K S W− Forb , ,ind 2 2

+
3
+ , and hence by Lemma 2.4 we also have

≔ ∕ ⧹ ∈
↔( )D D T M T K S W( − ) ( ) Forb , ,0 ind 2 2

+
3
+ . Also note that since ⊆ ⊆T M N v( )D

− , we have

N v N v( ) = ( )D D
+ +
0

.

Claim 4. ∈⧹x v A F D( , ) ( ( ))M T 0 , and ∉⧹u x A D( , ) ( )M T 0 for every ∈u N v( )D
+
0

.

Proof. We have ⧹ ⊆M T N v( )D
− and ⊆ ∪N M v N v( ) { } ( )D D

+ + . This directly implies that
∈⧹x v A D( , ) ( )M T 0 and that ⊆ ⊆ ∪ ∪⧹N x N M N v v N v v( ) ( ) ( ) { } = ( ) { }D M T D D

+ + + +
0 0

. Hence,
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∈ ⧹v N x( )D M T
+
0

has an out‐arc to every other out‐neighbor of ⧹xM T in D0, and this shows

(by definition) that ∈⧹x v A F D( , ) ( ( ))M T 0 .
For the second claim, suppose towards a contradiction that there exists ∈u N v( )D

+
0

such that ∈⧹u x A D( , ) ( )M T 0 . By definition of D0, this means that ∈u N v( )D
+ and that

there exists a vertex ∈ ⧹m M T such that ∈u m A D( , ) ( ). By definition of T , this however
shows that ∈m T , a contradiction. □

In the following, let D be the digraph defined by

≔ ≔ ∪ ∈⧹ { }V D V D A D A D x u u N v( ) ( ), ( ) ( ) ( , ) ( )M T D0 0
+
0

(see Figure 2 for an illustration).

FIGURE 2 Schematic illustration of the construction of the digraph D from D (top row), and how the coloring c
of D is combined with cM to obtain an acyclic coloring c of D. The correspondence of the segment P of the
monochromatic cycle C in D and the monochromatic cycle C* in D is also indicated. Dashed edges indicate that the
endpoints are not connected, while colors red and blue correspond to colors 1 and 2 in the proof.
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Claim 5. ∈
↔( )D K S WForb , ,ind 2 2

+
3
+ .

Proof. Let ⧹e x u i k= ( , ), = 1, …,i M T i be a list of the arcs contained in ⧹A D A D( ) ( )0 for

some ≥k 0. For ≤ ≤i k0 let Di denote the digraph defined by ≔V D V D( ) ( )i 0 and
≔ ∪A D A D e e( ) ( ) { , …, }i i0 1 . Note that D D=k .

Let us show inductively that ∈
↔( )D K S WForb , ,i ind 2 2

+
3
+ and ∈⧹x v A F D( , ) ( ( ))M T i for

every ∈i k{0, 1, …, }. The claim then follows via D D= k.
For i = 0 the claim holds true by the previous discussions and Claim 4. Now let
≤ ≤i k1 and suppose we know that the claim holds for Di−1.
Note that ⧹D D x u= ( , )i i M T i−1

+ , where ∈u N v N v( ) = ( )i D D
+ +

i0 −1
, ∈⧹x v A F D( , ) ( ( ))M T i−1 .

Note that ∉e A D( )i i−1 , as well as ∉⧹u x A D( , ) ( )i M T i−1 by Claim 4. Therefore Lemma 2.5

applied to Di−1 with ⧹x x y v z u= , = , =M T i implies that ∈
↔( )D K S WForb , ,i ind 2 2

+
3
+ . To

verify ∈⧹x v A F D( , ) ( ( ))M T i , note that the only new out‐neighbor of ⧹xM T in Di compared
to Di−1 is the vertex ∈u N v( )i D

+ , which is seen by the vertex v and hence v still forms the
source of the transitive tournament induced by the out‐neighbors of ⧹xM T in Di. This

concludes the proof by induction. □

The number of vertices of D satisfies

⧹ ≤ ≤     v D v D v D T M T v D M v D v D( ) = ( ) = ( ) − − ( − 1) ( ) − ( − 1) ( ) − 2 < ( )0

since ≥ M 3 by Claim 3. Hence, the minimality of D implies that the assertion of the theorem
holds for D . Applying this assertion to the vertex ⧹xM T in D , we find that there exists an acyclic
2‐coloring →c V D: ( ) {1, 2} of D such that ⧹c x c u( ) = 1 = ( )M T for every ∈ ⧹u N x( )D M T

+ . Using
the facts ⊆ ∪⧹N x N v v( ) ( ) { }D M T D

+ +
0

, N v N v( ) = ( )D D
+ +
0

and ∈⧹x v A D( , ) ( )M T 0 , the definition of D
yields that ∪⧹N x N v v( ) = ( ) { }D M T D

+ + . Hence, we have ⧹c x c v c u( ) = ( ) = ( ) = 1M T for every
∈u N v( )D

+ .
Let →c V D: ( ) {1, 2} be the coloring of D defined by ≔c x c x( ) ( )M for every ∈x M , and
≔c x c x( ) ( ) for every ∈ ⧹x V D M( ) . We note that c v c u( ) = ( ) for all ∈u N v( )D

+ . Hence, by the
initial assumption on D, the coloring c cannot be acyclic, that is, there is a directed cycleC in D
which is monochromatic in the coloring c. Since cM is an acyclic coloring, we must have

⧹ ≠ ∅V C M( ) . Analogously, we have ∩ ≠ ∅V C M( ) since otherwise C would be a directed
cycle in ⊆ ∕ ⧹ ⊆D M D T M T D D− ( − ) ( ) = 0 , contradicting that c is an acyclic coloring.
Hence there must be an arc ∈x y A C( , ) ( ) such that ∈x M and ∉y M . However, this means
that ∈ ⊆ ∪y N M v N v( ) { } ( )D D

+ + , and hence c y( ) = 1. Thus C is a cycle in color 1, and since
c t c t( ) = ( ) = 2M for every ∈t T , it cannot intersect T . Let z be the first vertex of M we meet
when traversing C in the forward direction, starting at y. Then ∈ ⧹z M T . Let P be the subpath
of C from x to z. Now ⧹ ∪ ⧹V P x z x( ( ) { , }) { }M T forms the vertex‐set of a directed cycle C* in

∕ ⧹ ⊆D T M T D D( − ) ( ) = 0 , and it is monochromatic w.r.t. c : Every vertex ∈ ⧹ ⧹x V C x( *) { }M T

is contained in P and thus has color c x c x( ) = ( ) = 1, and also ⧹c x( ) = 1M T by definition. This
is a contradiction to the fact that c is an acyclic coloring of D . This shows that a (smallest)
counterexample D to the claim of the theorem cannot exist, and concludes the proof of the
theorem.
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3 | ADDING A DOMINATING SINK TO A HERO

In this section our goal is to prove Theorem 2. Let us first prove the following lemma.

Lemma 3.1. Let ∈
↔( )D K SForb ,ind 2 2

+ and let ∈C be such that → ≤






( )χ D N x C( )D

−

for every ∈x V D( ). Let ∈u v V D, ( ) and let P be a shortest u–v‐dipath in D. Let

≔ ∪X V P N V P( ) ( ( ))D
− . Then → ≤χ D X C( [ ]) 3 + 2.

Proof. Let u x x x x v= , , …, , =0 1 ℓ−1 ℓ be the vertex‐trace of P and consider the partition
A( )i i=1

ℓ of N V P( ( ))D
− , where ≔ ⧹ ∪ ≤A N x V P A i( ) ( ( ) ), = 0, …, ℓi D i j i j

−
1 < . □

Claim. Let ≤ ≤i j0 < ℓ with ≥j i− 3. Then there exists no arc in D starting in Ai and
ending in Aj.

Proof. Suppose towards a contradiction that there are vertices ∈x Ai, ∈y Aj with
∈x y A D( , ) ( ). Then xi and y as out‐neighbors of x must be adjacent in D. By definition of

Aj we have ∩ ∅A N x( ) =j D i
− and hence ∈x y A D( , ) ( )i . However, now the directed path

described by the vertices u x x x y x x v= , , …, , , , …, =i j0 1 ℓ is a u–v‐dipath in D shorter than
P, a contradiction. This proves the claim. □

For every ≤ ≤i0 ℓ we have → ≤→ ≤






( )χ D A χ D N x C( [ ]) ( )i D i

− . Let us define the set

≔ ≡ B A i r{ (mod 3)}r i for every ∈r {0, 1, 2}. From the above claim it follows that no
directed cycle in D B[ ]r intersects two different sets A A,i j. Hence, we have

→ ≤ → ≡ ≤χ D B χ D A i r C( [ ]) max{ ( [ ]) (mod 3)}r i

for r = 0, 1, 2. Further note that the two sets

≔ ∈ ≔ ∈ V x i V x i{ {0, …, ℓ} even}, { {0, …, ℓ} odd}i i0 1

both induce acyclic subdigraphs of D, for otherwise D would not be a shortest u–v‐dipath in D.
Since X is the disjoint union of B B B V V, , , ,0 1 2 0 1, we conclude

→ ≤→ → → → → ≤χ D X χ D B χ D B χ D B χ D V χ D V C( [ ]) ( [ ]) + ( [ ]) + ( [ ]) + ( [ ]) + ( [ ]) 3 + 2,0 1 2 0 1

as required.

Proof of Theorem 2. Let
↔{ }K S H, ,2 2

+ be heroic and ≔→
↔( )( )C χ K S HForb , ,ind 2 2

+ .

We claim that every digraph ∈
↔( )D K S HForb , ,ind 2 2

+ − admits an acyclic coloring with

≔C v H C C( )( + 1) + 3 + 2− colors.
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Suppose towards a contradiction that there exists some ∈
↔( )D K S HForb , ,ind 2 2

+ −

with →χ D C( ′) > ′, and choose such a D minimizing v D( ). Then we have
→ ≥χ D C C( ) > ′ and hence there is ⊆Y V D( ) such that D Y[ ] is isomorphic to H .
The minimality of v D( ) implies that D is strongly connected, for the dichromatic
number of D equals the maximum of the dichromatic numbers of its strong
components.

Let ⊇S Y denote a set of vertices in D defined as follows:
If D Y[ ] (resp., H) is strongly connected, put ≔S Y . Otherwise, let Y Y, …, t1 be a

partition of Y into the ≥t 2 strong components of D Y[ ] such that all arcs between Yi and
Yj start in Yi and end in Yj, for any ≤ ≤i j t1 < (note that since D Y[ ] is a tournament all
elements of Y Y×i j are arcs of D Y[ ] for ≤ ≤i j t1 < ). Now pick ∈u Y ,t ∈v Y1 arbitrarily,
let P be a shortest u–v‐dipath in D and put ≔ ∪S V P Y( ) . Let us note that in any case,
D S[ ] is strongly connected.

Let ≔ ∪Z S N S( )D
− . Then we have ∪ ∪Z X Y N Y= ( )D

− , where X is defined as
≔ ∅X if S Y= , and as ≔ ∪X V P N V P( ) ( ( ))D

− otherwise. For every ∈x V D( ) we know

that since D is H−‐free, the digraph






D N x( )D

− is contained in
↔( )K S HForb , ,ind 2 2

+ , and

hence→ ≤






( )χ D N x C( )D

− . Using Lemma 3.1 we obtain that→ ≤χ D X C( [ ]) 3 + 2. Putting

it all together, we find that

  

→ ≤ → ∪ → ≤
∈

≤

 





( )χ D Z χ D y N y χ D X v H C C C( [ ]) { } ( ) + ( [ ]) ( )( + 1) + 3 + 2 = ′.

y Y D

C

−

+1

□

Claim. No arc in D leaves Z .

Proof. We first note that it suffices to argue that there is no arc in D from S to ⧹V D Z( ) :
For every vertex ∈ ⧹x Z S there is some ∈s S such that ∈ ⊆x N s Z( )D

− . Since D is
S2
+‐free this implies that ⧹ ⊆ ⧹N x Z N s Z( ) ( )D D

+ + . Hence if ∈s S does not see a vertex in
⧹V D Z( ) , the same holds for x .

So suppose there exists an arc ∈ ⧹s w S V D Z( , ) × ( ( ) ). We claim that then
also ∈s w A D( ′, ) ( ) for every ∈s S′ . Consider ∈s S′ arbitrarily. Since D S[ ] is strongly
connected, there exist vertices s s s s s= , , …, = ′k0 1 in S such that ∈s s A D( , ) ( )i i−1 ,
i k= 1, …, . But now we can deduce that ∈s w A D( ′, ) ( ) from the logical chain

∈ ⇒ ∈ ⇒ ⋯ ⇒ ∈s w A D s w A D s w s w A D( , ) ( ) ( , ) ( ) ( , ) = ( , ) ( )k0 1 , where in each step
we have ⇒s w s w( , ) ( , )i i−1 since si and w are adjacent as distinct out‐neighbors of
si−1 and since ∉ ⊇w Z N s( )D i

− . This shows that indeed ∈s w A D( ′, ) ( ) for all ∈s S′ .
Hence ∪D Y w[ { }] is an induced subdigraph of D isomorphic to H−, a contradiction to

∈
↔( )D K S HForb , ,ind 2 2

+ − . This concludes the proof. □

Since D is strongly connected, it follows that Z V D= ( ), and hence that →χ D( ) =
→ ≤χ D Z C( [ ]) ′, a contradiction which concludes the proof of the theorem.
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4 | ORIENTED 4 ‐VERTEX ‐PATHS

In this section we establish that
↔ →
K K P{ , , (1, 1, 1)}2 3

+ is heroic, proving Theorem 3.

Proof of Theorem 3. We prove inductively that every ∈
↔ →

D K K PForb ( , , (1, 1, 1))ind 2 3
+ is

2‐colorable. The claim trivially holds for v D( ) = 1, so suppose that ≥v D( ) 2 and every

digraph in
↔ →
K K PForb ( , , (1, 1, 1))ind 2 3

+ having less than v D( ) vertices is 2‐colorable. Pick
some ∈x V D( ) and define a sequence X X X, , , …0 1 2 of subsets of V D( ) as follows:

∪
∪

≔ ⧹

⧹ ≥








X

x i

N X X i

N X X i

{ } if = 0,

( ) if odd ,

( ) if 2 even .

i i j
i

j

i j
i

j

+
−1 =0

−1

−
−1 =0

−1

The sets ≥X( )i i 0 are by definition pairwise disjoint, and so there exists ≥k 1 such that
≠ ∅X X, …, k1 and ∅X =i for all i k> . For an illustration see Figure 3. □

Claim. Xi is an independent set of D for every ≥i 0.

Proof. We prove the claim by induction on i. The claim trivially holds for i = 0 since

X x= { }0 , and since D does not contain a
→
K3, also X N x= ( )1

+ must be an independent
set in D. Now let ≥i 2 and suppose that we already established that X X, …, i0 −1 are
independent. Now suppose that there is an arc ∈x y A D X( , ) ( [ ])i . Let ∈x y X, i1 1 −1

and ∈x y X, i2 2 −2 be such that ∈x x x x y y y y A D( , ), ( , ), ( , ), ( , ) ( )1 2 1 1 2 1 if i is odd,
respectively, x x( , ),2 1 x x( , ),1 y y( , ),2 1 ∈y y A D( , ) ( )1 if i is even. We have ≠x y1 1, as

FIGURE 3 Illustration of the definition of the Xi, equipped with an alternating coloring of the sets with
two colors. The additional arcs indicate possible directions of connections between different Xi‐sets of the same color, as
well as possible connections from these sets to the rest of the digraph.
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otherwise x y x y= , ,1 1 form a
→
K3 in D. Next consider the oriented path P consisting of

x x y y y y y y y y, ( , ), , ( , ), , ( , ),1 1 1 2 2 if i is odd, and of x x x x x x x x y y, ( , ), , ( , ), , ( , ),2 2 1 1 1 if i is
even. In order for this path not to be an induced P (1, 1, 1)+ two nonconsecutive

vertices of the path must be adjacent. However, since D does not contain
→
K3, this is

only possible if x and y2 (i odd), respectively, x2 and y (i even) are adjacents. Since
∉x Xi−1, we have ∉x N X( )i

−
−2 if i is odd and ∉y N X( )i

+
−2 if i is even. Since

∈x y X, i2 2 −2 we conclude that ∈y x A D( , ) ( )2 if i is odd and ∈y x A D( , ) ( )2 if i is even.
In both cases we conclude that ≠x y2 2, since otherwise the vertices x y x x= , ,2 2 1 ,

respectively, x y y y= , ,2 2 1 would induce a
→
K3 in D. Now consider the oriented

path Q in D defined as Q y y x x x x x x x x= , ( , ), , ( , ), , ( , ),2 2 1 1 1 2 2 if i is odd and as Q =

y y y y y y y y x x, ( , ), , ( , ), , ( , ),2 2 1 1 1 2 2 if i is even. In order for Q not to be an induced
P (1, 1, 1)+ the endpoints x2 and y2 of Q must be adjacent. This contradicts the
induction hypothesis that Xi−2 is an independent set. Hence, our assumption was
wrong, Xi is indeed independent. This concludes the proof of the claim. □

Let ≔ ∪ ⋯ ∪X X Xk0 and ≔D D X′ − . By the induction hypothesis D′ admits an acyclic
coloring →c V D′ : ( ′) {1, 2}. Let us now define →c V D: ( ) {1, 2} by ≔c x c x( ) ′( ) for
∈ ⧹x V D X( ) , ≔c x( ) 1 for ∈x Xi such that i is even, and ≔c x( ) 2 for ∈x Xi such that i is

odd. We claim that D defines an acyclic coloring of D: Suppose there is a monochromatic directed
cycle C in D. Since c′ is an acyclic coloring, we must have ∩ ≠ ∅V C X( ) . By definition of the
sets ≥X( )i i 0 we have ⊆ N X N X X( ), ( )i i i i

+
even

−
odd . Hence, there are no arcs from ∩c X({1})−1

to ⧹V D X( ) or from ⧹V D X( ) to ∩c X({2})−1 . Since ⊆V C c t( ) ( )−1 for some ∈t {1, 2}, the strong
connectivity of C shows that in fact ⊆ ∩V C c t X( ) ( )−1 for some ∈t {1, 2}. Let ≥i 00 be the
smallest such that ∩ ≠ ∅X V C( )i0 . Let ∈ ∩ ≠ ∅u X V C( )i0 , and let ∈u u V C, ( )− + be such
that ∈u u u u A C( , ), ( , ) ( )− + . We have ∈ u u X, j i j

− +
> 0

since Xi0 is an independent set. Thus
∈ ⧹u N X X X( ) =i j

i
j i

+ +
=0
−1

+10
0

0
if i0 is even and ∈ ⧹u N X X X( ) =i j

i
j i

− −
=0
−1

+10
0

0
if i0 is odd, in both

cases yielding that C cannot be monochromatic. This contradiction shows that c is an acyclic
coloring and→ ≤χ D( ) 2, concluding the proof.

5 | CONCLUSION

In the first two sections of this paper we have proved that set
↔{ }K S H, ,2 2

+ is heroic for several

small heroes H , and in particular we resolved Conjecture 1.3. It would be interesting to prove

that in fact, for any hero H ,
↔{ }K S H, ,2 2

+ is heroic, as this would be a broad generalization of the

main result of Berger et al. [4] from tournaments to locally out‐complete oriented graphs, that is,
oriented graphs in which the out‐neighborhood of every vertex induces a tournament. This
class of digraphs has been thoroughly studied in the past, see, for instance, [3] for a survey of
results on locally complete digraphs.

The smallest open case of this problem would be to show that
↔ →{ }K S K, ,

s

2 2
+

4 is heroic, where

→
K

s

4 denotes the unique strong tournament on four vertices. It seems that already for this case a
new method is required. We do however believe that the following is true.
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Conjecture 5.1. → ↔ →

 


( )χ K S KForb , , = 3

s

ind 2 2
+

4 .

Here, a tight lower bound would be provided by the following construction: Take a
threefold blow‐up of a directed four‐cycle (every arc being replaced by an oriented K3,3) and
connect each of the three blow‐up triples by a directed triangle. This oriented graph is

contained in
↔ →( )K S KForb , ,

s

ind 2 2
+

4 and has dichromatic number 3.

Let us further remark at this point that there exists a very simple proof that if we exclude
both S2

+ and S2
−, that is, we consider locally complete oriented graphs (where the out‐ and

in‐neigborhood of every vertex induces a tournament), then we can show that the exclusion of
any hero indeed bounds the dichromatic number as follows.

Remark 5.2. For any hero H , we have

→ ↔
≤ → ↔

∞( )( )χ K S S H χ K K HForb , , , 2 (Forb ( , , )) < .ind 2 2
+

2
−

ind 2 2

Proof. By the result of Berger et al. [4] we have ≔→
↔

∞C χ K K H(Forb ( , , )) <0 ind 2 2 .

Towards a contradiction suppose that →χ D C( ) > 2 0 for some ∈
↔( )D K S S HForb , , ,ind 2 2

+
2
− ,

and choose D such that v D( ) is minimum. Pick some ∈v V D( ) and consider ≔D D′ −
∪v N v({ } ( ))D . Since v D v D( ′) < ( ), there exists an acyclic C2 0‐coloring →c V D′ : ( ′)

C{1, …, 2 }0 of D′. Since D is S S,2
+

2
−‐free, we further know that ≔ ∪







D D v N v{ } ( )D

+ + and

≔






D D N v( )D

− − are tournaments excluding H . Hence there exist acyclic C0‐colorings
→c V D C: ( ) {1, …, }+ +

0 of D+ and →c V D C C: ( ) { + 1, …, 2 }− −
0 0 of D−. Let c be the

C2 0‐coloring of D obtained by piecing together c c c′, ,+ −. We claim that this is an acyclic
coloring, which will contradict our assumption→χ D C( ) > 2 0 and thus conclude the proof. To
verify this, note that D contains no S2

+ centered at an in‐neighbor of v and no S2
− centered at

an out‐neighbor of v, and hence there is no arc leaving ∪v N v{ } ( )D that starts in N v( )D
− and

nor arc entering ∪v N v{ } ( )D that ends in N v( )D
+ . Thus every directed cycle in D is either

disjoint from ∪v N v{ } ( )D , contained in ∪D v N v[{ } ( )]D or it intersects both N v( )D
− and

N v( )D
+ . In all cases it cannot be monochromatic, since c′ is an acyclic coloring and since c+

and c− are acyclic colorings with disjoint color sets. □

In the last section of this paper we investigated oriented graphs excluding the antidirected
4‐vertex‐path P (1, 1, 1)+ . It would certainly be very interesting and insightful to generalize both

Theorem 3 as well as the result of Aboulker et al. concerning
→
P4 by proving that

↔ → →
K P K{ , , }k2 4 and

↔ →
K P K{ , (1, 1, 1), }k2

+ are heroic for all ≥k 4.
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