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A B S T R A C T   

A key requirement for the use of smart process and quality control systems in sheet metal forming is the ability to 
determine representative observables as well as their measurement locations. The observable used most often in 
deep drawing is the movement of the sheet border, which is referred to as draw-in. Due to the usually large 
distance between the sheet border and the areas of the largest plastic deformation, literature provides indications 
that more representative locations for the characterization of the material flow exist. In this work, a novel 
algorithmic method is proposed that allows to determine the optimal locations at which the material flow should 
be measured. The method is applied on surface markers on a cup, whose displacement is measured ex situ using a 
stripe projection scanner. The indications in the literature are confirmed, with the most sensitive markers found 
in, or directly above the die radius in the side wall of the cup, where an increase in the sensitivity of the marker 
displacement by 51% compared to the draw-in is observed. A comparison of markers positioned at different radii 
on the initial sheet reveals a clear correlation between the sensitivity of the markers and the predictive accuracy 
if their displacement is used as observable to predict the sheet thickness and process parameters in an inverse 
manner. This highlights the importance of new methods for the selection of measurement positions. This work 
therefore aims at contributing to novel inline quality observation concepts in sheet metal forming.   

1. Introduction 

Deep drawing is one of the most often used manufacturing processes 
for processing sheet metals. This is particularly true for the automotive 
industry, where almost all car body parts are produced by deep drawing. 
In the process, the sheet metal blank is clamped in a blank holder and a 
die and drawn over a punch. Geometrical properties of punch and die as 
well as the blank holder are then mapped into the sheet. Well-structured 
and more detailed information about the process and its mechanics is 
provided for example by Tschaetsch (2006). 

To increase the robustness of the process, many efforts have been 
made to integrate smart data-driven process control systems into the real 
industrial process. Lim et al. (2008) provide a comprehensive review 
about developments towards control in deep drawing made until 2008. 
In their work, the authors review the different actuator and sensor 
concepts provided by literature and state in their conclusion that besides 
the determination of reference trajectories and accurate models for the 

controller, the key technical challenge consists of the development of 
cost-effective and reliable sensor concepts to measure representative 
process variables. The work provided by Polyblank et al. (2014), which 
builds on the review of Lim et al. (2008) and others, deals not only with 
closed-loop control in deep drawing, but with material forming in gen-
eral. Their work aims at identifying research gaps for future de-
velopments in closed-loop control in metal forming, like dynamic 
trajectories which are determined using simulation models (Table 8 in 
(Polyblank et al., 2014)) as a specific example related to deep drawing. 
Furthermore, the authors conclude that one key feature for future con-
trol systems is the usage of faster predictive models to detect scrap parts 
before they occur, which again highlights the importance of the deter-
mination of representative observables. The most inclusive review was 
written by Allwood et al. (2016) in CIRP Annals – Manufacturing 
Technology in 2016, where the authors analyse future potentials for 
closed-loop control in material forming, as similarly done by Polyblank 
et al. (2014). Considering again the conclusion with respect to deep 
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drawing, the authors identify great potential for new sensor concepts for 
the spatial characterization of the final workpiece to improve 
closed-loop control concepts. Despite all the efforts put into smart pro-
cess control, no particular control system has been established. A brief 
history over the most important approaches proposed in the literature 
shall be given in the following. 

Observation and control of part quality requires the definition and 
measurement of observables. These can either be measured before or 
during and after the forming process. Mainly focussing on the first 
category is the work provided by Heingärtner (2012). By using the eddy 
current principle to estimate material properties directly in the pro-
duction line before the part is manufactured, Heingärtner (2012) 
managed to infer yield strength, tensile strength, and uniform elonga-
tion and Lankford parameters. The method proposed provides a possi-
bility to determine material properties in a non-destructive way directly 
in the production line and feed that information back for the use in 
process control. Mork (2012) used these type of material properties to 
predict quality criteria like local wrinkling or local thinning by using 
neural networks. The author concludes that these predictions are suit-
able for process control in combination with spacing blocks between 
blank holder and die as actuators. As a drawback, the process adjust-
ments are only made as a function of the material properties and 
therefore other disturbances, like temperature changes, are not taken 
into account. In contrast to this pre-process measurements of material 
properties, most other approaches found in the literature focus on the 
measurement of distance-based observables during the forming process. 

The distance-based observable most often used in deep drawing is 
the draw-in of the sheet border. Wang et al. (2005) investigated the use 
of the global draw-in as observable to assess the quality of deep drawing 
tools after tool try-out. The authors describe the draw-in as the single 
most important stamping index which is directly correlated to all other 
forming characteristics. The draw-in has therefore been used extensively 
as observable for process control. Building on this knowledge, Neu-
gebauer et al. (2006) investigated a new concept for process control in 
deep drawing in close collaboration with the automotive industry. In 
their work, the authors used the draw-in as observable and piezo actu-
ators to increase or decrease the blank holder pressure locally. Endelt 
et al. (2013) are going one step further and propose a closed-loop control 
system controlling the material flow during the press stroke using the 
draw-in as observable. The authors specifically note in the conclusion 
that it is possible to control the material flow using only the draw-in as 
observable in their case and provide more detail about the experimental 
setup in the publication by Tommerup and Endelt (2012). Note that 
since there are so many references about the use of flange draw-in 
measurements, this is a non-exhaustive list. A novel concept has 
recently been proposed by Baral et al. (2022). In their work, the authors 
equipped a Marciniak-type punch with three acoustic emission sensors. 
By using triangulation of the sensor signals and evaluating the time 
difference of the arriving signals to each sensor, the authors were able to 
predict not only the onset of necking, but also the location of necking 
and fracture accurately. The above mentioned review by Allwood et al. 
(2016) provides a comprehensive and well-structured overview over 
many different approaches provided by literature. 

In contrast to measuring the material flow only at the sheet border, 
Griesbach (2000) investigated different methods for the global charac-
terization of the material flow in deep drawing. The author arrives at the 
conclusion that the material flow should be characterized in the areas of 
the part where the largest plastic deformation occurs during forming and 
not only at the sheet border (see (Griesbach, 2000) on page 29, 32 and 
33). Considering a simple cup-drawing process and since the forming 
area is in this case mainly located in the part flange in the form of radial 
tension and tangential compression, the author proposes to measure the 
material flow at the sheet border and additionally at the beginning and 
end of the die radius. The author uses two different measurement 
methods, one being an optical sensor measuring the passing of a marking 
on the sheet and the other being a roller ball sensor similar to computer 

mouses in the old days as described by Doege et al. (2002). Following the 
same reasoning, Maier et al. (2017) proposed to measure the length of 
the skid-lines as observable which are caused by the first contact be-
tween the sheet and tool radii in combination with the relative move-
ment of the sheet. Although the authors of both references argue that the 
material flow measurement in the immediate vicinity of the main 
forming zone contains a larger sensitivity towards perturbations in the 
process parameters, this hypothesis is not proven in either of the two 
references in a quantitative way. To the best knowledge of the authors, 
these two references are the only ones who provide a specific location 
for the measurement of the material flow. 

For all of the previously mentioned observables, the determination of 
measurement locations is required. In order to determine suitable lo-
cations for draw-in measurements, Harsch et al. (2017) used stochastic 
finite element simulations to determine the correlation coefficients be-
tween many different measurement locations around the part and all 
quality criteria like sheet thinning and risk of wrinkles. The authors then 
selected manually multiple locations with a high correlation coefficient. 
Since correlations between the selected sensor positions are not taken 
into account, this approach may lead to an excessive number of sensors. 
Neuhauser et al. (2019) therefore identified optimal sensor positions by 
selecting the most independent columns in the sensitivity matrix con-
taining the sensitivity of each sensor position (columns) on each quality 
criteria (rows). The method proposed by Neuhauser et al. (2019) is a 
promising approach since it allows the algorithmic determination of 
sensor positions in contrast to all other previously existing approaches in 
which the measurement positions are selected manually. Since the 
sensitivities were determined by the slope of a regression model with 
linear features, this approach is limited to only linear surrogate models. 
Finally, Kott et al. (2021) identified sensor positions by using backward 
selection, in which first all sensor positions are selected and in an iter-
ative procedure, the one which leads to the least drop in accuracy if 
neglected is eliminated. Note that depending on the amount of sensor 
positions considered, this procedure leads to a tremendous computing 
time due to its exponential dependence on the number of features 
considered at the beginning. 

In previous work by the authors Ryser et al. (2021), the approach 
proposed by Neuhauser et al. (2019) was extended by using nonlinear 
sensitivity metrics to model process parameters dependent on draw-ins 
and local blank holder forces. The study was done on a side panel frame, 
and 20 out of 21 process and material parameters were inversely 
determined with a coefficient of determination equal to 0.9 or higher on 
the test set. Nonlinear sensitivity metrics allow the use of nonlinear 
surrogate models for the sensitivity analysis like higher order regression 
or neural networks, which first might lead to a higher modelling accu-
racy for surrogate modelling and second allow the consideration of 
geometrically highly nonlinear sensor signals like the displacement of 
material points in 3D space. 

Although being a very fundamental problem, the current state of the 
art provides no quantitative and systematic analysis about how the most 
sensitive areas of the material flow can be identified. On the one hand, 
literature provides only qualitative investigations about areas of higher 
and lower sensitivity which are based on theoretical elasto-plastic con-
siderations as outlined above. On the other hand, first approaches have 
been proposed to systematically determine measurement locations for 
the draw-in as opposed to the global material flow, which is considered 
to be a less difficult problem since the draw-in is usually described as a 
one-dimensional quantity. First, the authors hypothesize that by 
generalizing the models and methods proposed by Ryser et al. (2021) 
such that they can be applied on material points at any location instead 
of just the edge of the sheet metal, it is possible to determine qualita-
tively and quantitatively which areas on the sheet are most sensitive. It is 
then assumed that evaluating these sensitivities allows to investigate 
whether the hypothesis of improved predictive performance by gener-
alizing the concept of the draw-in made by Griesbach (2000) and Maier 
et al. (2017) is supported or not. Second, the authors hypothesize that if 
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a discrete set of sensitive material flow measurement locations can be 
identified, it is possible to establish models that allow the inverse 
identification of the process input and quantitative estimation of quality 
criteria based on the measured material flow at predefined locations on 
the sheet. These models are then validated using first, simulations and 
second, experimental data. 

Note that the term inverse approach is in the literature mostly used in 
a fundamentally different context compared to this work. Guo et al. 
(2000) describe in their review the inverse approach as a simplified 
simulation approach, in which the final shape of the desired part is 
known and the local deformations are estimated by comparison with the 
initial blank. Using simplified descriptions of the constitutive equations 
and tool actions, manufacturability of the part can thus be evaluated. In 
this paper, the authors refer to inverse models as models that directly 
map from measured output quantities like the material flow measure-
ments to the initial process parameters as well as quality criteria like 
local thinning by using a functional relationship. 

This manuscript is organized as follows. Section 2 contains all rele-
vant material parameters and experimental methods. Section 3 explains 
the computational workflow, whose simulative and experimental results 
are then documented in Section 4. The results are interpreted in Section 
5, and final conclusions are drawn in Section 6. 

2. Material and experimental methods 

2.1. Material used: Aluminium AA6014-T4 

The sheet material used in this work is the aluminium alloy AA6014- 
T4 which is a standard material used for structural and outer skin parts 
in the automotive industry according to Ostermann (2014) (page 524). 
Its chemical composition is given in Table 1. For the use in the 
FEM-simulation, hardening curve, yield locus and forming limit curve 
(FLC) were characterized. Since the design of experiments (DoE) in this 
work contains only experiments without failure, the determined FLC is 
technically irrelevant for this work. For the sake of completeness, it is 
still included here as a reference for the research audience as well as for 
future work. 

For the characterization of the flow behaviour in uniaxial stress state, 
tensile tests were performed in 45◦ intervals from rolling direction (RD) 
to transversal direction (TD) using three repetitions per configuration 
and evaluated according to DIN EN ISO 6892–1 (2020) and DIN EN ISO 
10113 (2021). The Young’s modulus was determined as E = 75048MPa 
in the technical strain interval [0, 0.0015]. Since the force maximum 
occurs at an equivalent plastic strain of εeq ≈ 0.175 but the maximum 
equivalent strains reached during cup-drawing were εeq ≈ 0.5, the 
plastic stress-strain curve from the tensile test in RD was elongated using 
the one obtained in the bulge test. The bulge test was performed and 
evaluated according to DIN EN ISO 16808 (2021). Best fitting results of 
the flow stress were obtained by using the Hockett-Sherby approxima-
tion proposed by Hockett and Sherby (1975) given by Eq. (1), which is in 
accordance with literature provided by Hippke et al. (2020) and Herr-
mann (2020). Premature failure in the simulation due to insufficient 
hardening for strains beyond uniform elongation was observed which is 
most probably caused by the convergence of the flow stress towards the 
parameter A in the Hockett-Sherby-approach. Similarly, Pham and Kim 
(2022) investigated the flow behaviour of six different aluminium alloys 
and steels and concluded that a saturation law or power law alone might 
lead to poor performance for the prediction of the flow stress for large 
strain ranges. Taking into account this result, a flow curve was 

superimposed using the formulation according to Swift (1952) given by 
Eq. (2) using a mixed formulation given by Eq. (3), similarly done by 
Chen et al. (2019) and Harsch et al. (2017) for the same aluminium 
alloy. The experimentally obtained plastic stress-strain relationship as 
well as the fitted flow curve are visualized in Fig. 1 and the corre-
sponding flow curve parameters are given in Table 2. As can be seen in 
Fig. 1, the slope of the hardening curve of the approximation is in good 
accordance with the experiments, including its slope for higher strains 
with the additional part according to Swift. 

σHS = A − (A − B)⋅exp( − mεeq
p) (1)  

σSwift = C
(
D + εeq

)n (2)  

σcomb = α⋅σSwift +(1 − α)⋅σHS (3) 

As yield locus, YLD2000 was used in the 2D formulation, considering 
only in-plane stresses and isotropic hardening according to Barlat et al. 
(2003). This formulation is also used by Hippke et al. (2020), Herrmann 
(2020) and Harsch et al. (2017) for the same material. To fit the yield 
locus, R-values and Rp0.2 in all three directions as well as the biaxial 
R-value Rb and biaxial yield stress σb were used. To comply with recent 
developments in the literature which propose the inverse calibration of 
the flow exponent M with an additional experiment in the plane strain 
state, notched tensile tests were performed and the exponent M was 
fitted with the procedure proposed by Hippke et al. (2020), leading to a 
value of M = 5.813 (average of three repetitions). This result is consis-
tent with the one obtained by Hippke et al. (2020) where M = 5.89 was 
determined for the same material. The experimental results used for the 
fit of the yield locus are given in Table 3 and the finally obtained yield 
locus is visualized in Fig. 2. 

To determine the forming limit curve (FLC), seven different spec-
imen geometries with widths of 20,50,80,90,100,120 and 200mm as 
well as a length of 200mm were drawn over a hemispherical punch with 

Table 1 
Chemical composition (wt%) of the aluminium AA6014-T4 used, based on the material data sheet of the material supplier.  

Cr Si Fe Cu Mn Mg Zn Ti V Others, each Others, total  

0.20 0.30–0.60  0.35  0.25 0.05–0.20 0.40–0.80  0.10  0.10 0.05–0.20  0.05  0.15  

Fig. 1. Hardening curve (green: approximation, black: experimental) and its 
slope (red: approximation, black: experimental) for the aluminium alloy 
AA6014-T4. 
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a diameter of 100mm. The displacement of the part flange was fully 
suppressed by using lock beads. Each configuration was performed three 
times and evaluated using the cross-section method according to DIN EN 
ISO 12004–2 (2021), leading to a slightly more conservative FLC 
compared to the time-dependent method according to Volk and Hora 
(2011). Thus, the former one was used. The obtained forming limit curve 
is visualized in Fig. 3. 

2.2. Experimental design of the cup-drawing used in this study 

As a case study, the well-known cup-drawing process was used which 
has the positive side effect that the results are intuitively interpretable 
due to the low geometrical complexity and that large virtual as well as 
experimental data set can be created with minimum efforts due to the 
simple process setup. The final cup geometry is visualized in Fig. 4. The 
parts were drawn on a double action press from Walter+Bai RK-A60SF 
with adjustable blank holder force of up to 300kN which is visualized 
in Fig. 5(a). The lubricant used was Molykote EM-30 L. The initial blanks 
are circular shaped with a diameter of 190mm and a thickness of 
1.15mm. Based on the initial diameter of the sheet and the punch, a 
drawing ratio of β = 1.92 results. This value is close to the maximum 
achievable drawing ratio, which was determined for example by Herr-
mann and Merklein (2018) (see Fig. 4 in the reference) as βmax = 2.05 for 
the same material. It has to be noted that βmax cannot be used in this case, 
since any variation in the process parameters would lead to immediate 
failure. The drawing ratio was chosen large in order to maximize the 
signal to noise ratio in the measurement values. 

The blank holder force and the initial sheet position in X and Y di-
rection were used as independent parameters of the process to alternate 
the restraining conditions acting on the blank. Whereas the blank holder 
force can be adjusted on the machine continuously, the initial sheet 
position is set by templates whose inner hole diameter matches the outer 
diameter of the initial blank. The templates have a thickness of 1mm 
which is lower than the one of the sheet. The template can therefore 
remain inserted in the machine when the blank holder is closed, 
providing a geometrically defined position of the sheet during closing of 
the blank holder. The inserted template is highlighted in Fig. 5(a) and 
the nine templates used are visualized qualitatively in Fig. 5(b). 

The upper limits for each parameter in the DoE were chosen as large 
as possible, but such that no failure occurs. The minimum blank holder 
force was set to 80kN since wrinkling occurs for lower values, and the 
initial position of the blank was only alternated in positive X and Y di-
rection due to symmetry. The parameter space for the initial position 
was divided into three equally spaced levels to cover the whole range. In 
the experiment, a very small sensitivity of the blank holder force on the 
material flow was observed, hence the third level besides minimum and 
maximum value was neglected, since no further insight was expected. To 
span the parameter space, a full factorial DoE was used, which is visu-
alized in Fig. 6. The levels selected in the DoE are equal to the axis labels 
in Fig. 6, leading to 18 combinations in total. 

2.3. Measurement of material flow and sheet thickness 

The 3D stripe projection scanner GOM ATOS core 135 was used to 
digitize the deep drawn cups. In contrast to in situ measurements which 
are mostly carried out in the literature, this ex situ measurement device 
was used for the characterization of the material flow which allows the 
tool design to be completely independent of the measurement device in 
real use. As a drawback, this measurement method does not allow to 
determine the material flow over time. However, a significant gain of 
insight by in situ measurements of the material flow is not expected in 
this case, as the process parameters are chosen statically. 

After the digitization of the cup, a 3D frame of reference (FoR) was 
defined dependent on geometrical features of the cup. First, a virtual 
plane was fitted on the upper side of the flange to block the rotational 

Table 2 
Flow curve parameters determined for the combined Swift – Hockett-Sherby 
approach for the aluminium alloy AA6014-T4.  

A[MPa] B[MPa] p[-] m[-] C[MPa] D[-] n[-] α[-] 

356.30  114.46  0.812  6.12  397  0.005  0.194  0.40  

Table 3 
Parameters used for the yield locus YLD2000 for the aluminium alloy AA6014-T4.  

σo[MPa] σ45[MPa] σ90[MPa] σb[MPa] R0[-] R45[-] R90[-] Rb[-] M[-] 

134.15  130.63  127.68  136.52  0.846  0.516  0.746  0.979  5.813  

Fig. 2. Yield locus using YLD2000 formulation obtained for the aluminium 
alloy AA6014-T4. 

Fig. 3. FLC obtained using the cross section-method based on DIN 12004–2 for 
the aluminium alloy AA6014-T4. 
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degrees of freedom (DoF) around the X and Y axes and the translational 
DoF in Z direction. Second, a cylinder was fitted on the outside of the 
side wall whose central axis was intersected with the plane from step 1. 
This yields the origin of the coordinate system and thereby blocks the 
translational DoF in X and Y direction. To block the remaining rotational 
DoF around the central axis, the positive X direction was defined by a 
mark on the sheet in rolling direction. To determine the drawing depth 
of each cup, a second virtual plane was fitted on the upper side of the top 

surface and intersected with the central axis of the cylinder. The distance 
between this point and the origin therefore corresponds to the drawing 
depth. For the fitting of the planes and the cylinder mentioned, the 
corresponding digitized surfaces were first selected using the geometry- 
based selection function in GOM Professional, and the elements fitted 
using the Gaussian best-fit method considering all surface points located 
within ±3σ around the mean surface, which effectively results in a least 
squares fit of the geometrical elements to the measured surface. Fig. 7(a) 
shows a digitized cup and Fig. 7(b) visualizes the previously mentioned 
geometrical features for the determination of the frame of reference. 
After alignment of the part according to the coordinate system, the 
markings drawn on the initial sheet were visible on the scanned part due 
to the contrast between dark (marking) and light (sheet), and were then 
manually read out in the GOM software by defining surface points in the 
middle of the mark. The material flow at these points was then deter-
mined by the difference between final and initial position of marked 
points on the sheet as illustrated in Fig. 7(c) as green lines. For the 
thickness measurements, the drawn cups where cut into four quarters by 
wire erosion and the wall thickness was measured with the microscope 
Keyence VHX-7000 as exemplified in Fig. 7(d). The locations of the 
thickness measurements are visualized below in Fig. 9 as green boxes, in 
which the thickness was evaluated in the centre point for each box. 

2.4. Simulation setup of cup-drawing 

All simulations were performed with the AutoForm R8-solver using 
the material model given in Section 2.1. The tools were modelled as rigid 
bodies with the tool geometry derived from the part illustrated in Fig. 4 
and a drawing gap of 1.45mm, as on the real tool, between punch and 

Fig. 4. Geometrical features of the cup geometry (left) and experimentally obtained cup (right) used in this work.  

Fig. 5. Press machine used for cup-drawing consisting of the three main tools punch, blank holder and die. On the right, the nine templates used for blank positioning 
are visualized. The templates contain a lower material thickness compared to the sheet and thus can remain inserted throughout processing due to the increase of the 
material thickness of the sheet in the flange area. Note that the movement of the initial position in (b) is exaggerated for illustrative purposes. 

Fig. 6. Experimental DoE used for model validation in this work (BHF = blank 
holder force, X = initial X position of the sheet, Y = initial Y position of the 
sheet). Grid lines match the parameter sets used in the DoE. 
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die. A too high sensitivity of the blank holder force on the draw-in was 
observed with a constant friction coefficient caused by a too high 
restraining force for high values of the blank holder pressure. To over-
come this issue, the pressure dependent friction law available in Auto-
Form and given by Eq. (4) was used, with p being local pressure. The 
importance of considering the pressure-dependence of the friction co-
efficient was also observed by Zöller et al. (2015). In their work, Zöller 
et al. (2015) compared the friction model with a constant coefficient 
according to Coulomb with a modified version considering pressure 
dependence given by Eq. (4). The authors observed a significantly better 
agreement between experiment and simulation w. r. t. sheet thickness 
and punch force if pressure dependence was included, especially for the 
case of alternating blank holder forces as is the case in the work provided 
here. 

μ = μ0

(
p
p0

)ε− 1

(4) 

In Eq. (4), μ0, p0 and ε are model parameters. The drawing experi-
ments were performed at a low punch velocity of 1mm/s and thus the 
velocity dependence can effectively be neglected. Note that due to its 
mathematical form, Eq. (4) contains only two degrees of freedom since 

μ = μ0

(
p
p0

)ε− 1

=
μ0

(p0)
ε− 1pε− 1 = const⋅pε− 1 (5) 

The dependent model parameter p0 was chosen as p0 = 1MPa. The 
remaining two independent parameters μ0 and ε were identified by 
minimizing the sum of the squared error of the draw-in in 0◦, 90◦, 180◦

and 270◦ to RD for a blank holder force of 80kN and 300kN between 
experiment and simulation. The resulting model parameters are given in  
Table 4. The values obtained are in a similar range compared to the ones 
obtained by Zöller et al. (2015). 

For spatial discretization, triangular elastoplastic shell elements 
were used with 11 integration points in thickness direction with an 

element size of 1.25mm. The mesh size was determined based on a 
convergence analysis with mesh sizes in the interval [0.25mm,5.0mm] in 
steps of 0.25mm. The mesh size of 1.25mm was identified as the largest 
one with a relative difference < 1% w. r. t. the maximum occurring 
principal stress compared to the smallest mesh size. Furthermore, a 
relative difference of 0.3% (in absolute terms < 0.1mm) was observed w. 
r. t. the average draw-in in 0◦, 45◦ and 90◦ direction. A mesh size of 
1.25mm was therefore found to be suitable for the simulation. Note that 
no mesh refinement was used, meaning that every node before forming 
can be assigned to a node at the end of the process. The movement of any 
arbitrary point throughout the process can therefore be determined by 
interpolating between the nodes, as will be shown later on. The inter-
polation based on barycentric coordinates used for this task is outlined 
in Section 3.2. The simulation includes a springback calculation at the 
end to simulate the elastic deformation after removal of the part. 

3. Computational framework used in this work 

3.1. Generation of synthetic data 

The first objective of this work was to create a data set which allows 
for the identification of the most relevant areas in the part in terms of its 
material flow. Since sensitivity analysis and surrogate modelling require 
the evaluation of ≈ 100 experiments in this specific case, the data set for 
surrogate modelling was generated by a stochastic finite element 

Fig. 7. (a) Digitized cup with GOM ATOS, (b) fitting elements used for the definition of the frame of reference, (c) visualization of surface point marker displacement 
for 16 SPMs visualized in green, (d) visualization of thickness measurement. 

Table 4 
Parameters used for the pressure dependent part of the friction model 
given by Eq. (5). Since the dependence of the velocity was neglected, the 
corresponding parameters are not determined.  

μ0[-] p0[MPa] ε[-] 

0.46  1  0.36  
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simulation. The number of required data points was based on 3 inde-
pendent parameters of the stochastic FEM simulation, a factor of 2 since 
the inverse models use the radial and axial coordinates as independent 
model inputs, the usage of 6 folds during cross validation, test set size of 
30% of the data points and a determination factor of 2, leading to an 
estimation of at least n = 28⋅

( 6
5
)
⋅
( 1

0.7
)
⋅2 = 96 required data points. The 

cup-drawing process was parametrized with the same three independent 
parameters as the experiment shown in Fig. 6. These three parameters 
are summarised in Table 5 with their range used in the simulation. The 
DoE for the set of simulations was then determined using latin hyper-
cube sampling as proposed by McKay et al. (1979) with n = 100 simu-
lations, using equally spaced latin hypercubes, resulting in the sampled 
data points visualized in Fig. 8. A matrix P was built which contains each 
of the m input parameters for each of the n simulations, resulting in a 
dimension of n× m. 

After performing the simulations, two types of data were extracted. 
First, local thinning was used as quality criterion according to Eq. (6), 
where tinit and tend represent the local material thickness before and after 
the drawing operation, respectively. This quality criterion was selected 
since it can be determined accurately in the simulation and in reality, 
and it provides an approximation of how far the cup is from failure. No 
wrinkling criterion was used, since the data-driven approach used in this 
work requires an exact quantitative evaluation in the simulation, which 
is not feasible for wrinkling, but is subject of ongoing work. Local 
thinning was evaluated at the top and in the sidewall of the cup in 90◦

intervals to rolling direction, resulting in 5 locations in total as can be 
seen in Fig. 9. Thinning was evaluated in the simulation in the green 
boxes visualized in Fig. 9 and averaged for each box to smooth local 
numerical errors. This data was then stored in a matrix Q of dimension 
n × t with n and t being the number of simulations and quality criteria, 
respectively. 

thin =
tend − tinit

tinit
(6) 

Second, the position of the 21357 nodes in all three cartesian co-
ordinates were extracted for each simulation for the initial sheet and the 
finally drawn cup, resulting in the matrices Xinit and Xfinal of dimension 
n × 3s with n denoting the number of simulations and s the number of 
nodes. To interpolate between the nodes of the mesh, barycentric co-
ordinates were used, which are briefly explained in the following 
section. 

3.2. Interpolation between nodes using barycentric coordinates: 
Introducing the notion of SPM 

To describe the deformation during forming, the notion of surface 
point markers (SPM) is introduced in the following. The authors refer to 
SPMs as points that do not move relative to the sheet during forming and 
whose displacement can be measured to obtain the material flow at any 
arbitrary location on the sheet. Fig. 10 visualizes schematically the 
concept of SPMs and their displacement u = [ur, uz] from the beginning 
to the end of the drawing operation in 2D. The right side in Fig. 10 vi-
sualizes the displacements u(1) and u(2) for two different configurations 
(1) and (2), corresponding to two sets of input parameters p(1) and p(2)

which differ by δp. Modelling the drawing process as a function G 
mapping from the input parameters p to the resulting displacements u, 
Fig. 10 visualizes that the change in the input parameters δp propagates 

into a change of the displacements of each SPM given by δu and a change 
in sheet thickness at given locations δt. The general idea is to invert the 
mapping G, so that the displacement u(i) can be used to observe the 
process parameters p(i) in an inverse manner and then to observe quality 
criteria like the sheet thickness t(i) too. 

Although the position of the SPMs does not change relative to the 
sheet during forming, their initial position can be defined in two 
different ways, which are in a frame of reference defined by the tools and 
one defined by the sheet. Differences between the two occur if the initial 
position of the sheet is alternated. The former one is more suitable for 
sensitivity analysis, since it eliminates the movement of SPMs simply 
caused by alternating the initial position of the sheet, whereas the latter 
one is actually present in the practical use-case if multiple sheets are 
marked with the exact same pattern. Accordingly, the former one was 
used during sensitivity analysis and the latter one afterwards for the 
model-based prediction of parameters and quality criteria in the 
experimental case. 

In order to determine the material flow at any given location, SPMs 
were defined on the initial sheet as a function of the nodes in 3D space 
for each simulation using barycentric coordinates. For each SPM i, the 
barycentric coordinates correspond to the weights mi,A, mi,B and mi,C 

such that the conditions given by Eqs. (7) and (8) are fulfilled. Ai, Bi and 
Ci correspond to the nodes of the triangular element in which the SPM i 
is located and f init,i describes the vector of the initial position of SPM i. 
One or multiple barycentric coordinates are negative if and only if the 
SPM lies outside of the triangle defined by the three nodes Ai, Bi and Ci. 
This property was used to identify the element of the mesh in which each 
SPM is located in the first place. Instead of using the node positions 
directly, the interpolation based on barycentric coordinates was used 
since it allows the determination of the material flow at any given 
location on the sheet, including between the nodes. 

f init,i = mi,A

⎡

⎣
Ai,x
Ai,y
Ai,z

⎤

⎦

T

+ mi,B

⎡

⎣
Bi,x
Bi,y
Bi,z

⎤

⎦

T

+ mi,C

⎡

⎣
Ci,x
Ci,y
Ci,z

⎤

⎦

T

(7)  

mi,A +mi,B +mi,C = 1 (8) 

The barycentric coordinates mi,A, mi,B and mi,C were determined on 
the initial sheet and then used by applying Eq. (7) for each SPM to 
interpolate its current position on the deformed part f final,i. In a subse-
quent step, f init,i and f final,i for each SPM i and each simulation were then 
stored in the two matrices Finit and Ffinal, containing the position of each 

Table 5 
Independent parameters and their range used for the stochastic finite element 
simulation.  

Parameter Min Max 

Blank holder force 80kN 300kN 
Initial sheet position in X direction − 4mm 4mm 
Initial sheet position in Y direction − 4mm 4mm  

Fig. 8. Design of experiments based on latin hypercube sampling. Each data 
point corresponds to one simulation in the data set used for sensitivity analysis. 
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Fig. 9. Locations where wall thinning was evaluated (average in green area) in the simulation. In the experiment, the measurement is done in the middle of each 
square with the microscope. Thinning is evaluated in positive and negative direction to RD and TD, thus five times in total for each part. As illustration, the 
experimental result is used in the background, and contour lines as well as beginning and end of radii are marked with black lines. 

Fig. 10. 2D-visualization of the notion of surface point markers (SPMs). The red dot remains fixed relative to the sheet and its movement can be described by a vector 
by subtracting the initial positions from its final position, resulting in the components ur and uz. In contrast to the well-known draw-in measurement, the concept of 
SPMs allows the characterization of the material flow at every location on the sheet. 

Fig. 11. Visualization of the 1041 SPMs used on the initial (a) and deep drawn part (b).  
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SPM in the initial and final configuration for each simulation. The 
displacement vectors for all SPMs and all simulations were then calcu-
lated by the spatial difference from before and after forming and stored 
in a matrix U of dimension n × (3e) with e and n being the number of 
SPMs and simulations, respectively. To ensure comparability of the 
simulations, the initial position of the SPM-grid was positioned identical 
relative to the tools for each simulation, meaning that their position 
relative to the sheet changes if the initial position of the sheet is alter-
nated. This corresponds to the case in which the frame of reference is 
defined by the tools. The SPMs were defined in a mesh with an edge 
length of 5mm within a radius of 90mm, resulting in 1041 points in total. 
It must be noted that since the SPMs are located within a radius of 90mm 
and the radius of the sheet is 95mm, it is ensured that even if the initial 
position of the sheet is shifted by 4mm, all SPMs always lie within the 
sheet. The location of the points is visualized in Fig. 11 on the left for the 
initial and on the right for the final configuration. 

Since the cup-drawing is approximately a radially symmetrical pro-
cess despite the effect of the material anisotropy and eccentric posi-
tioning of the blank, the coordinates of the SPMs were transformed into 
cylindrical coordinates. Fig. 12 shows the occurrence of the angular 
movement for all simulations and all SPMs in the data set. 95.0% of the 
SPMs in total contain an angular movement of < 3◦, therefore the 
angular component of the node movement was neglected since it would 
not be in the measurable range in reality using the measurement 
methods used anyway. 

3.3. Sensitivity analysis: Identification of optimal measurement positions 
of material flow 

To identify suitable measurement locations of the material flow, 
sensitivity analysis was performed. In the general case, sensitivity 
analysis assesses how variations in the model output can be attributed to 
variations in the model input as outlined in more detail by Saltelli et al. 
(2008) (page 1). In this case, input and output correspond to the process 
parameters P and displacement vectors of the SPMs in U, respectively. 
Sensitivity analysis then enables to determine which proportion of the 
variation of the displacement vectors in U is caused by each of the 
process parameters in P. The goal is then to select at least one SPM 
containing maximum sensitivity towards each of the process 

parameters. In the following paragraphs, the procedure used for the 
decomposition of the variance of the displacement of each SPM is 
explained, since the combination of these methods (i. e. Eq. (19)) have 
not been reported in the literature. 

Consider again the cup-drawing process as a surrogate model of the 
form 

Û = G(P) = G(p1,…, pm) (9) 

in which P describes the set of input parameters in normalized form 
and Û the modelled displacements of each SPM in 3D space. In our work, 
the python library Scikit-learn v0.21.1 provided by Pedregosa et al. 
(2011) was used for all surrogate modelling related tasks. If G(P) is 
integrable over the whole parameter space [0,1]m and the parameters p1,

…, pm are mutually orthogonal, then the variance of the displacement of 
each SPM j in Û (this is done for each direction separately) can be 
uniquely decomposed into its components according to 

var[ûj] =
∑

k
vark +

∑

k

∑

i>k
varki +…+ var12…m (10) 

with 

vark = varpk [Ep∼k (ûj|pk)] (11) 

and 

varki = varpk,i

[
Ep∼ki

(
ûj
⃒
⃒pk, pi

) ]
− vark − vari (12) 

as proven by Sobol (1993). In Eq. (10), var[ûj] describes the total 
unconditional variance of the displacement of SPM j, vark the variance 
contribution of pk representing the variance of ûj solely caused by pk, 
varki the variance contribution solely caused by the interaction between 
pk and pi, and so on. Dividing Eq. (10) by the total variance var[ûj] for 
each SPM leads to 

1 =
∑

i
S(j)

i +
∑

i

∑

k>i
S(j)

ik +…+ S(j)
12…m (13)  

where S(j)
i , S(j)

ik , … represent the proportional contribution of each input 
pi and each interaction term of the inputs on the total variance of the 
displacement of SPM j. The first order sensitivity indices S(j)

i describing 
the direct influence of each input on the displacement of SPM j are thus 
given by 

S(j)
i =

vari

var[ûj]
=

varpi [Ep∼i (ûj|pi)]

var[ûj]
(14) 

Note that the Sobol indices S(j)
i fulfil the conditions given by Eqs. (15) 

and (16) and that Eq. (16) is fulfilled with equality if and only if all 
interaction terms in Eq. (13) are equal to zero. In our work, the Python 
library SALib v1.4.5 provided by Herman and Usher (2017) was used to 
calculate the Sobol indices. 

0 ≤ S(j)
i ≤ 1 (15)  

∑m

i=1
S(j)

i ≤ 1 (16) 

Eq. (14) shows that S(j)
i provides only a qualitative comparison of the 

contribution of each input pi to the total variance var[ûj] due to the di-
vision by the numerator. To determine the quantitative influence of each 
input, the sensitivity indices given by Eq. (14) were scaled up by the 
total variance of the displacement of each SPM var[uj] in the data set 
given by Eq. (17). 

var
[
uj
]
=

1
n − 1

∑n

k=1

(
uj

(k) − uj
)2 (17) 

Since the sensitivity indices given by Eq. (14) are determined on a 
surrogate model which might be subject to errors, the accuracy of the 

Fig. 12. Visualization of the angular variation of the displacement of each of 
the 1041 SPMs for each of the 100 simulations. Due to the radial symmetry of 
the part, 95% of the SPMs show an absolute angular displacement of < 3◦. The 
angular component of the displacement was therefore neglected, since it would 
not lie in the measurable range anyway. 
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model has to be taken into account as well. Therefore, the coefficient of 
determination was used in its most general form given by 

R2 = 1 −

∑n

k=1

(
uj

(k) − ûj
(k))2

∑n

k=1

(
uj

(k) − uj
)2

(18) 

where uj
(k) represents the displacements in the data set, ûj

(k) the 
predicted displacements and uj the mean value of the displacements in 
the data set. Assuming that the variance in the data set is equal to the 
corresponding variance of the predictions and that the R2 scores are 
sufficiently high such that they can be neglected due to the multiplica-
tion by 1 (only for illustration purpose here), Eqs. (14), (17) and (18) can 
be used to evaluate its product as 

C(j)
i = S(j)

i ⋅var
[
uj
]
⋅R2 =

varpi

[
Ep∼i

(
ûj
⃒
⃒pi

) ]

var
[
ûj
] ⋅var

[
uj
]
⋅R2 ≈ varpi

[
Ep∼i

(
ûj
⃒
⃒pi

) ]

(19) 

which will be referred to as sensitivity product to estimate the 
variance caused by each process parameter i on the displacement of each 
SPM j for each direction independently. C(j)

i can intuitively be under-
stood as a decomposition of the total variance of the displacements in U 
into the components caused by each of the independent input parame-
ters. Note the qualitative behaviour of C(j)

i dependent on its components. 
All components of C(j)

i are for the general case positive and their product 
is zero if and only if one or multiple components are zero. C(j)

i decreases 
with decreasing S(j)

i , decreasing modelling accuracy R2 and decreasing 
variance of var

[
uj
]
. 

3.4. Algorithmic determination of measurement positions and fitting of 
inverse models 

The sensitivities were evaluated for the radial and axial direction 
independently, since the position of each surface point marker is only 
measured before and after the drawing operation, meaning that the in-
dividual trajectory over time is unknown. The directional sensitivities 
were merged into one scalar by summing them up for each SPM. The 
finally obtained sensitivity product of each parameter i on the move-
ment of each SPM j is therefore given by 

C(j)
i,sum = C(j)

i,r + C(j)
i,z (20) 

After merging the sensitivity products for each SPM with Eq. (20), a 
matrix C of dimension m × e was created which contains the values 
given by Eq. (20) for each parameter (rows) and each SPM (columns). 
The task of finding the most independent locations to measure the 

material flow can then be translated into the mathematical problem of 
finding the h most linearly independent columns in C, where h repre-
sents the number of SPMs to be selected. Gu and Eisenstat (1996) (al-
gorithm 4 on page 6) proposed a deterministic algorithm which is 
proven to find these h columns. This algorithm was therefore used in this 
work. The algorithm checks all combinations of the first h column vec-
tors and every other column vector for an increase in the linear inde-
pendence if one column is switched with the latter one. In the algorithm, 
linear independence of the selected column vectors is quantified by the 
size of the smallest singular value, with a larger smallest singular value 
being equivalent to more independent column vectors. The most linearly 
independent vectors are therefore sequentially moved to the left side of 
the matrix. Fig. 13 visualizes this principle for h = 3. 

After the identification of the most sensitive SPMs, the movement of 
the determined points in r and z direction was used to fit models map-
ping to the parameters in P and quality criteria in Q. Since these models 
map from the original process output to its input and the quality criteria, 
they are also referred to as inverse predictive models. For all modelling- 
related tasks, elastic-net-regularization with 2nd order feature trans-
formation of the input was used. All hyper parameters were identified by 
cross validation. The whole computational workflow including the data 
matrices mentioned is summarised in Fig. 14. 

4. Results 

4.1. Sensitivity analysis of surface point markers 

In the first part of this section, the intermediate and final results of 
the variance decomposition described in Section 3.3 are presented.  
Fig. 15 (a) visualizes the modelling score based on Eq. (18) for each SPM. 
For Fig. 15 and all following figures containing a colour bar, the 
maximum value in the colour bar in green represents the maximum 
value present in the figure for better readability. The average R2 score 
achieved is > 0.99 with a standard deviation of ≈ 0.004 and a minimum 
value of ≈ 0.91. Since the R2 score for each point equals the average 
between the surrogate models for the r- and z-direction, this result im-
plies almost perfect approximation of the displacement vectors in (r,
z)-space for most of the SPMs by the surrogate model. Worth noting is 
the fact that the displacement vectors are accurately predicted even at 
the radii of the die as well as the punch, where the movement is strongly 
nonlinear due to the curved shape of the tool. 

The variance of the r and z entries of the displacement vectors ac-
cording to Eq. (17) is visualized in Fig. 15 (b) and (c). These values 
represent the mean squared deviation of the displacement from its mean 
value for each of the components in (r, z) and therefore visualizes which 
areas in the part react sensitively towards a change of the three input 
parameters in total. Important to observe is the fact that the maximum 

Fig. 13. Working principle of the subset selection algorithm to identify the most linearly independent column vectors. Each column contains the sensitivity products 
of all input parameters on the particular SPM. The task of finding the most independent SPMs then translates into the task of finding the most independent columns in 
the matrix highlighted in green on the right side. 
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Fig. 14. Summary of the computational workflow used to first determine the most sensitive SPMs in the part and then train surrogate models to predict the input 
parameters and quality criteria as a function of the movement of the determined SPMs. 

Fig. 15. Visualization of the R2 score achieved during modelling (a), variance in radial (b) and axial (c) direction in [mm2] for each of the 1041 SPMs according to 
Eqs. (18) and (17), respectively. 
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occurring variance in the flange in radial direction is ≈ 3.21mm2 

whereas the corresponding value in the sidewall in z-direction is ≈
3.84mm2 and therefore ≈ 20% larger. The maximum variance is ob-
tained in the sidewall above the die radius (R5 in Fig. 4). Note that the 
changes in the initial position of the sheet do not directly influence the 
displacements of the SPMs since their initial position is defined in a 
coordinate system relative to the tools, meaning that their initial posi-
tion is the same independent of the initial position of the sheet and the 
displacement vectors are affected by the deformation of the part only. 

Fig. 16-Fig. 18 visualize the first order sensitivity indices S(j)
i ac-

cording to Eq. (14) and the finally obtained sensitivity products C(j)
i 

according to Eq. (19) for each of the three input parameters. As can be 
seen in Fig. 16 (c) and (d) for the blank holder force, C(j)

i is largest in the 
die radius with a maximum of ≈ 0.27mm2. The values decrease steadily 
towards the centre of the part as well as towards the sheet border. The 
distribution of C(j)

i over the part shows higher values for C(j)
i for the 

points on the Y axis despite the radial symmetry of the part. A reasonable 
explanation for this phenomenon lies in the material anisotropy. Since 
the points on the Y axis lie in transversal direction, the draw-in at this 
location and therefore the thickness is smallest in the flange. An increase 
of the blank holder force leads to the largest relative increase in this 
area. In fact, it can be observed in the simulation that the blank holder 
pressure increases in the middle of the flange in RD from ≈ 7MPa to 
≈ 30MPa, whereas it increases significantly more relatively speaking in 
TD from ≈ 2MPa to ≈ 18MPa, hence the larger sensitivity. Overall, 
Fig. 16 (c) and (d) show that the decomposed contribution to the vari-
ance caused by a change of the blank holder force in the displacement 
vectors remains small with values below 0.3mm2. 

Fig. 17 visualizes the results of the sensitivity analysis for the initial 
position of the sheet in X direction. The sensitivity indices S(j)

i as well as 
the sensitivity products C(j)

i reach their maxima on the X axis and 
decrease monotonically during a rotation and reach their minima on the 

Y axis, which results in the four quarter-like look if viewed from the top. 
Two important phenomena can be seen. First, the maximum value for 
C(j)

i of ≈ 2.96mm2 is observed in the side wall right above the die radius, 
which is ≈ 29% larger than the maximum value for C(j)

i obtained in the 
part flange. Second, although the SPMs located at the top of the cup on 
the X axis contain a sensitivity index of S(j)

i ≈ 1, the corresponding 
sensitivity product C(j)

i gets scaled down by the small values in radial 
direction as visualized in Fig. 15 (b) in that area. 

Fig. 18 visualizes the results for the initial position in Y direction. 
The result is, as to be expected, qualitatively and quantitatively very 
similar to the results in Fig. 17 rotated by 90 degrees. The largest values 
for C(j)

i are again observed near the die radius, with decreasing magni-
tudes towards the centre of the part. The maximum value of C(j)

i is ob-
tained on the Y axis in the lower part of the sidewall with C(j)

i ≈ 3.04mm2 

which is ≈ 40% larger than the largest value obtained in the part flange. 
After merging the sensitivity products C(j)

i in Fig. 16-Fig. 18 (c) and 
(d) for both dimensions in the (r, z)-space with Eq. (20), the values for 
C(j)

i,sum for each parameter and SPM visualized in Fig. 19 are obtained. 
Additionally to the values on the final part geometry as previously, 
Fig. 19 contains the corresponding values visualized in the right column 
on the initial sheet. Two important results can be seen in Fig. 19. First, 
the maximum values of C(j)

i,sum are located either in, or directly above the 

die radius either at the X or Y axis for all three input parameters. C(j)
i,sum is 

decreasing towards the sheet border and towards the centre of the part. 
Second, the values for C(j)

i,sum obtained for the blank holder force are 
significantly smaller compared to the ones for the initial position in X 
and Y direction by a factor in the order of ≈ 10. As a side note, it can be 
seen in Fig. 19 that the movement of the SPM in the centre of the part 
contains no specific sensitivity to any of the parameters, which makes 
intuitively sense due to part symmetry. 

Fig. 16. Visualization of S(j)
i [ − ] and C(j)

i [mm2] according to Eqs. (14) and (19), respectively, for each of the 1041 SPMs resulting for the blank holder force. Left 
column corresponds to the component of the movement in radial and right column in axial direction. 
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An overview over the maximum values for C(j)
i,sum obtained for each 

input parameter is given in Table 6. The data column on the left contains 
the maximum values as outlined above, which are all located in the 

lower part of the side wall. The subsequent two columns contain the 
maximum values considering the part flange and the sheet border only. 
The two columns on the right summarise the relative difference between 
the overall maximum value and the latter two. Table 6 shows that the 

Fig. 17. Visualization of S(j)
i [ − ] and C(j)

i [mm2] according to Eqs. (14) and (19), respectively, for each of the 1041 SPMs resulting for the initial position of the sheet 
in X direction. Left column corresponds to the component of the movement in radial and right column in axial direction. 

Fig. 18. Visualization S(j)
i [ − ] and C(j)

i [mm2] according to Eqs. (14) and (19), respectively, for each of the 1041 SPMs resulting for the initial position of the sheet in 
Y direction. Left column corresponds to the component of the movement in radial and right column in axial direction. 
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maximum sensitivity products obtained in the side wall are on average 
23% and 51% larger compared to the maximum values in the part flange 
and on the sheet border, respectively. 

4.2. Identification of independent measurement positions 

After applying the subset selection algorithm on the matrix con-
taining the merged sensitivity products C(j)

i,sum for each SPM as illustrated 

in Fig. 13, the most independent SPMs w. r. t. their C(j)
i,sum were deter-

mined. Since the number of points h to be selected by the algorithm is 
unknown at this stage, h = 6 was used as initial guess with 6 being equal 
to two times the dimension of the input space of the cup-drawing process 
in this case. The SPMs selected by the algorithm are visualized in Fig. 20 
with the order denoted in red. Since the algorithm sorts the columns 
with decreasing linear independence, the order of the selected columns 
remains constant for different h, i. e. if the two cases h1 = 4 and h2 = 5 
are considered, then the columns in the former case are identical and 

Fig. 19. Visualization of C(j)
i,sum [mm2] with respect to blank holder force (a, b), initial position in X (c, d) and in Y (e, f) direction. In the right column, the corre-

sponding values are visualized on the shape of the initial sheet. Values are calculated according to Eq. (20). 

Table 6 
Summary of the maximum values for C(j)

i,sum obtained according to Eq. (20) for different part regions.  

Parameter Max(C(j)
i,sum) in the side 

wall [mm2]

Max(C(j)
i,sum) in the part 

flange [mm2]

Max(C(j)
i,sum) on sheet 

border1 [mm2]

Rel. diff. overall max(C(j)
i,sum) to 

part flange [%]

Rel. diff. overall max(C(j)
i,sum) to 

sheet border [%]

Blank holder 
force  

0.27  0.27  0.23 + 0.00 + 16.0 

X position  2.96  2.30  1.94 + 28.7 + 52.4 
Y position  3.04  2.18  1.65 + 40.0 + 85.0 

1Since the initial position of the sheet with radius of 95mm was alternated by ±4mm, SPMs on sheet radius lead to hanging (out of part geometry) nodes. Therefore, the 
SPMs representing the sheet border were evaluated at a radial position of 90mm, meaning that hanging nodes never occurred.  
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Fig. 20. Visualization of the six selected SPMs by the subset selection algorithm visualized in Fig. 13. Whereas (a) visualizes the positions on the initial sheet, (b)-(d) 
show the positions on the final cup. Numbers correspond to the order in which the SPMs are selected. 

Fig. 21. Visualization of R2 score achieved on the inverse surrogate model dependent on the number of SPMs for h = {1, 2, 3, 4, 5, 6} selected by the subset selection 
algorithm. (a) and (b) visualize mean, min and max scores achieved for the three input parameters and five quality criteria, respectively. 
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selected in the same order as the first four columns in the latter case. 
Important to note is that due to stochasticity in the training set as well as 
numerical inaccuracies, the specific SPMs selected by the algorithm 
might alternate within the green areas visualized in the right column in 
Fig. 19. However, the characteristics of the points selected remain the 
same by being located in the green regions in Fig. 19. 

4.3. Inverse modelling on the simulative data set 

Using the displacement vectors of the determined SPMs in (r,z)-space 
as input, surrogate models were trained to predict the input parameters 
in an inverse manner and the thinning criteria shown in Fig. 9. The in-
verse models were then validated on the test set (30% of the simulations) 
as shown schematically in Fig. 14. The resulting minimum, mean and 
maximum values for each of the six cases of h ∈ {1,2, 3,4, 5,6} (i. e. h =
2 means using the first two SPMs visualized in Fig. 20) are summarized 
in Fig. 21. Fig. 21 shows that the result is very similar in both cases (a) 
and (b). The average R2 score is 0.99 for h = 3, and only slightly in-
creases to its maximum with h = 4 to almost R2 = 1.0 and remains 
constant thereafter. 

For the experimental study, the amount of SPMs was set to three (h =
3) based on Fig. 21. Since the precise location of the SPMs changes 
locally due to stochasticity and numerical inaccuracies, the SPMs were 
defined in the experiment on a radius of R = 70mm on the initial sheet, 
which corresponds to the average of the radius of the three SPMs 
determined by the algorithm. The constant radius on the initial sheet 
will be used later on to compare the predictive accuracy with SPMs 
located at a different radius on the sheet. The location of the three SPMs 
determined by the algorithm as well as the three used for the modelling 
in the following are visualized in Fig. 22. 

Using the three SPMs selected, Fig. 23 shows prediction and under-
lying truth for each data point in the simulative test set for all input 
parameters and thinning criteria. As expected based on Fig. 21 for h = 3, 
Fig. 23 shows an accurate prediction in all cases on the simulative test 
set. 

4.4. Application of simulative models on the experimental data set 

In a subsequent step, these models were applied on the experimental 
data set based on the DoE visualized in Fig. 6. The results are visualized 
in Fig. 24 analogously to Fig. 23. Note that due to the symmetry of the 

geometry, the initial positions were alternated only in positive direction 
to RD and TD in the experimentally obtained data set. Although a sig-
nificant drop in the prediction accuracy was observed on the experi-
mental data set, the model is still able to predict the overall tendency. On 
average, an R2 score of 0.81 and 0.56 is achieved for the input param-
eters and quality criteria, respectively. Table 7 summarises the experi-
mentally obtained results. 

As can be seen in Fig. 24, most predictions are biased since the mean 
value of the predictions does not equal the mean value of the underlying 
truths. To further differentiate between systematic and non-systematic 
errors, the difference between the mean value of the underlying truths 
and the predictions was added to each predicted value in order to 
equalize the mean values of the two and the R2 scores were calculated 
again. The third column in Table 7 contains the adjusted R2 scores and 
the corresponding differences in the mean values are given in the fourth 
column. As can be seen, the average R2 score improves to 0.86 and 0.73 
for the parameters and the quality criteria, respectively, if adjusted for 
identical mean values. An additional error metric is provided in the 
subsequent column for the sake of comparability with literature and 
future work. 

4.5. Comparison of different SPM positions 

After determining the optimal locations for the SPMs, the predictive 
models were compared to the case if the position of the SPMs is alter-
nated. For this, the displacement at additional locations was measured 
and the predictive accuracy of the inverse models compared. Fig. 25 
visualizes the previously determined SPMs as black crosses in accor-
dance to Fig. 22, and the additional locations as triangles on a radius of 
R = 30mm and R = 90mm on the initial sheet. Whereas the initial po-
sition R = 30mm corresponds to the beginning of the punch radius at the 
top of the final cup, R = 90mm corresponds to the most outer SPMs 
located near the sheet border, as can be seen in Fig. 25. 

The predictive accuracy achieved on the simulative and experi-
mental data set using the SPMs from Fig. 25 is visualized in Fig. 26. In 
the case of the simulative test set, almost perfect predictions are ob-
tained using SPMs at the initial position of R = 90mm and R = 70mm, 
with a small drop in the case of R = 30mm. On the experimental data set, 
a very low accuracy with an average R2 score below 0.2 for the input 
parameters and sheet thinning is observed in the case of R = 30mm. The 
result obtained with the SPMs located at a radius of R = 90mm lies in 

Fig. 22. Visualization of the three SPMs determined by the algorithm (+) and the ones selected for the modelling (x) in the following. Due to stochasticity, the 
precise location of the SPMs determined by the algorithm varies. For the experiment, the points were determined on the X and Y axis on a radius of 70mm on the 
initial sheet, which is the average of the SPMs determined by the algorithm (see (b)). 
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between the case of R = 30mm and R = 70mm. 

5. Discussion and interpretation of results 

The results in Fig. 15 (a) show that the displacement vectors for all 
SPMs are modelled with a R2 score close to 1. Its influence on the SPM 
selection given by Eq. (19) is therefore negligible due to its multiplica-
tion with the remaining expression. Nevertheless, the inclusion of the 
score is important for practical use, since it allows to punish surface 
point markers whose sensitivity analysis is based on a flawed surrogate 
model. 

For the interpretation of Fig. 15 (b) and (c), the concept and inter-
pretation of variance in this context has to be discussed first. The DoE 
given in Fig. 8 results in a change of the displacement vector uj for each 
SPM j denoted by δuj. The magnitude of uj is not of importance per se, 
but the magnitude δuj due to its sensitivity is, which is described here by 
the variance as metric. The variance can be interpreted by taking its 
square root which results in the standard deviation, having the same 
units as the underlying values, [mm] in this case. Considering the SPM 
with the highest variance in Fig. 15 (c) and assuming a Gaussian dis-
tribution of the final position, the maximum standard deviation is ≈

1.96mm directly above the die radius which results in ≈ 68% data points 
being located within an interval of length ≈ 3.92mm. This result gives an 
intuitive understanding about the total amount of variation that is 
present in the displacement vectors. The sensitivity product given by Eq. 
(19) can then be interpreted as a decomposition of the total variance into 
its parts caused by each of the three independent parameters. 

As summarised in Table 6, the results show that for all three pa-
rameters, the SPMs with the highest sensitivity product C(j)

i,sum are located 
in the side wall, in or directly above the die radius. Furthermore, the 
distribution of C(j)

i,sum over the part in Fig. 19 (a) - (f) shows that C(j)
i,sum 

decreases monotonically with increasing and decreasing radial position. 
This result means that the material flow of surface point markers located 
in, or directly above the die radius reacts most sensitively to a change of 
the independent parameters. The result is partially consistent with the 
measurement locations for the material flow proposed by Griesbach 
(2000) (page 32 and 33). The author argues that since the main forming 
zones are given by first, the flange which consists almost exclusively of 
tension-compression stresses and second, the adjacent area around the 
die radius in which bending is superimposed with the 
tension-compression stresses, the most important measurement 

Fig. 23. Results of the inverse prediction for each of the input parameters and quality criteria using the three SPMs identified. The test set consists of 30 simulations 
not used during model training. All quantities are estimated with a R2 score of 0.99 or higher. Location of sheet thinning in (d)-(h) see Fig. 9. 
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locations to characterize the material flow are the ones with the most 
different stress states and therefore given by three locations: The ma-
terial flow at the sheet border, at the beginning of the die radius with 

overlapping compressive stresses at the upper side of the sheet due to 
bending, and at the end of the die radius with overlapping tensile 
stresses. Note that the latter one corresponds to the area identified as 
previously mentioned. However, since the material flow at these three 
locations is almost fully correlated assuming constant azimuthal coor-
dinate, the measurement at one radial position is sufficient as 
observable. 

The second reference which provides a specific proposal for the 
measurement of the material flow is provided by Maier et al. (2017). The 
measurement of the skid-lines proposed by the authors, as described in 
Section 1 paragraph six, corresponds to the SPMs located at a height of 
35 − 40mm due to the die radius of 15mm. As can be seen in Fig. 19, these 
points contain a similar sensitivity product C(j)

i,sum as the ones on the sheet 
border, with the exception to the ones corresponding to the blank holder 
force visualized in Fig. 19 (a) where the values for C(j)

i,sum are approxi-
mately twice as large on the sheet border. The corresponding values for 
C(j)

i,sum are therefore significantly smaller than the maximum values in the 
side wall as can be seen in Table 6. Maier et al. (2017) argue in the 
introduction in a qualitative way, similar to Griesbach (2000), that the 

Fig. 24. Results of the inverse prediction for each of the input parameters and quality criteria using the three SPMs identified. The test set consists of the 18 
experimentally created data points according to the DoE visualized in Fig. 6. During model training, the same simulative data set as in Fig. 23 was used. Results 
expressed in error metrics are provided in Table 7. Location of sheet thinning in (d)-(h) see Fig. 9. 

Table 7 
Prediction scores achieved on the experimental test set in Fig. 24 (MAE = mean 
absolute error, STD = standard deviation).  

Predicted quantity R2 

[ − ]

R2 adj.1 

[ − ]

Offset adj.1 

[kN/mm/ − ]

MAE ± STD 
[kN/mm/ − ]

Blank holder force 0.45 0.58 − 39.92 70.28 ± 41.70 
Position X 1.00 1.00 − 0.015 0.065 ± 0.054 
Position Y 0.99 0.99 0.057 0.107 ± 0.076 
Thinning 0◦ positive 0.57 0.75 0.006 0.007 ± 0.007 
Thinning 0◦ negative 0.78 0.81 0.0022 0.005 ± 0.005 
Thinning 90◦ positive 0.57 0.71 0.0065 0.009 ± 0.009 
Thinning 90◦ negative 0.74 0.74 0.000 0.007 ± 0.007 
Thinning top 0.14 0.62 − 0.012 0.014 ± 0.008 

1The term adjusted refers to the R2 score where the mean of the predictions is 
corrected by the difference to the mean of the targets.  
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material flow should be measured in the main forming zones. Although 
our previously mentioned result is consistent with this claim, the pro-
posed measurement locations given by the location of the skid-lines do 
not seem to be beneficial compared to the draw-in. However, since the 
location of the skid-line is dependent on the tool geometry, its location 
might be closer to the areas of highest variation in the material flow for 
different part geometries than the one used for the investigation here. 
Maier et al. (2017) also argue that whereas the draw-in is not measur-
able at the end of the press line since the sheet border gets usually cut 
shortly after drawing in a subsequent operation, the skid-line remains 
usually in the part throughout the whole process chain and thus the 
measurement can also take place at a later stage, which has definitely to 
be classified as an advantage of the skid-line measurement. Interest-
ingly, since the surface point markers in our case lie in the actual part 
too, this advantage over the draw-in is valid for the concept of SPMs 
proposed in this work too. It must also be noted that our investigation 
was carried out on a simple cup geometry, while Maier et al. (2017) used 
for their investigations a side panel frame and an inner door panel. 
However, since the stress states in complex formed parts remain quali-
tatively similar to the simple cup drawing process, a loss of generality of 

the results presented is not expected. This reasoning is confirmed by 
Griesbach (2000) on page 33. 

Since the initial position in X- and Y-direction are the dominant in-
fluence factors as can be seen based on the large sensitivity indices in 
Fig. 16 - Fig. 18 (a) and (b), the first two SPMs selected by the algorithm 
in Fig. 20 correspond to the areas with highest sensitivity products to-
wards these input parameters (point 1 and 2 in Fig. 20). The third SPM is 
selected such that it reacts sensitively towards the blank holder force, as 
can be verified by considering Fig. 19 (a) and (b) and Fig. 20 (b). 
However, the reason for the following three SPMs selected is not intui-
tively apparent, considering the fact that the fourth SPM lies in the 
immediate vicinity of the first one as can be seen in Fig. 20 (a) and the 
fifth is selected around the central axis of the cup where the sensitivity 
product C(j)

i,sum is almost zero w. r. t. all parameters. This observation is 
explained by the working principle of the algorithm which is visualized 
in Fig. 27. Fig. 27 illustrates the sensitivity products in the input 
parameter space for the first three SPMs selected by the algorithm. The 
objective of the deterministic subset selection algorithm by Gu and 
Eisenstat (1996) is to find the h linearly most independent column 

Fig. 25. Visualization of the three SPMs used in the experimental study as optimal values (R = 70mm), and the ones used for comparison (R = 30mm and R =
90mm). The radius corresponds to the position on the initial sheet. 

Fig. 26. R2 scores achieved using the SPMs visualized in Fig. 25 on the simulative and experimental data set. Error bars visualize the range of the individual pa-
rameters and thinning criteria obtained. Numerical values on top represent the mean values visualized by the bars. Note that the results for R = 70mm correspond to 
the results visualized in Fig. 23 and Fig. 24. 
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vectors of the sensitivity matrix as shown in Fig. 13, which can be 
translated into maximizing the smallest singular value of the indepen-
dent columns on the left side while minimizing the largest singular value 
of the dependent columns on the right side as outlined by Gu and 
Eisenstat (1996) on page 5. Since the determinant of the matrix con-
taining the independent column vectors is calculated by the product of 
its singular values, what the algorithm is effectively doing is maximizing 
the determinant of the linearly independent column vectors, which can 
also be understood as maximizing the volume of the parallelepiped 
spanned as visualized in Fig. 27. Since the selected column vectors are 
per definition the most linearly independent ones and since the 3D space 
is spanned given three linearly independent column vectors, every col-
umn vector and therefore every SPM selected after the third one does not 
and cannot increase the determinant of the matrix containing the in-
dependent column vectors. Referring to Fig. 27, this implies that every 
subsequently selected column vector lies inside the volume of the 
parallelepiped. Since the determinant remains constant independent of 
which column vector is additionally selected, every SPM selected after 
the mth one with m being the dimension of the input space (three in this 
case) is arbitrary. 

A comparison of the result on the simulative test set in Fig. 23 with 
the experimental one in Fig. 24 shows a clear drop in the accuracy of the 
model predictions from 1 to 0.81 and 1 to 0.56 (0.67 without the outlier 
given by thinning at the top of the cup) for the input parameters and 
thinning criteria, respectively. This decrease in accuracy can on the one 
hand be attributed to a systematic error between the simulation used for 
modelling and the experimentally obtained test set, which is confirmed 
by a comparison of the R2 scores in Table 7 with the adjusted ones in the 
third column. On the other hand, measurement noise and inaccuracies in 
the experimental setup contribute to the decrease in prediction accuracy 
too. 

Bringing the above mentioned points together, more insight into the 
relationship of the sensitivity of the movement of the SPMs used and the 
predictive accuracy of the models is revealed by Fig. 26 by comparing 
the modelling results for the SPMs with a radius of 30mm, 70mm, and 
90mm on the initial sheet. As observed in Fig. 19, in combination with 
Fig. 26, it gets clear that the increase in the overall sensitivity of the SPM 
movement only barely translates into an increase of predictive perfor-
mance in the case of the simulative test set. At the same time, the cor-
responding results obtained with the experimental test set profit 
significantly from the optimized positioning of the SPMs given by a 

radius of 70mm in this work. Therefore, a clear positive correlation 
between the sensitivity metric given by Eq. (20) and the predictive 
performance of the inverse models is identified on the experimental test 
set. The reason for this result is that the larger sensitivity of the 
observable directly translates into a larger signal to noise ratio, 
assuming a constant measurement noise, which is less for the simulative 
test set where the amount of noise in the measurement signal is almost 
negligible. This result illustrates the importance of sensor selection in 
general, and why it is important to optimize for maximum sensitivity in 
the observable. Furthermore, it also highlights the importance of an 
experimental validation of the models since the representative power of 
the observables is usually not assessed by considering simulative data 
due to the lack of noise. 

Finally, the results illustrated in Fig. 23 and Fig. 24 and in Table 7 
must be put into context with literature. Literature provides, to the best 
knowledge of the authors, four references with comparable results. 
These are summarised in Table 8, including the new results from this 
study in the last two rows. Note that no reference was found containing 
quantitative predictions based on experimental data. Similar to the re-
sults Huang et al. (2016) obtained in their work with a cup geometry as 
used in this study, almost perfect accuracy is achieved on the 
simulation-based test set as a comparison with Fig. 23 shows. 

The prediction results provided by Huang et al. (2016) are not based 
on classical observables like draw-ins, but rather on hardening curve 
parameters and the coefficient of friction. However, they are mentioned 
here since the hardening curve parameters can be determined for 
example by the eddy current principle as proposed by Heingärtner 
(2012) for exactly that use case, and the part geometry used is very 
similar to the one used in this work. The following three references listed 
in Table 8 use geometrically more sophisticated parts. Neuhauser et al. 
(2019) performed their investigation on a tailgate and achieved a pre-
diction accuracy of 0.78 on average on a simulative test set. This R2 is 
significantly lower compared to the one achieved in this work, as a 
comparison with the simulative test results shows. The reason for this 
result lies most probably in the geometrical properties of the part itself, 
since the flat shape of the tailgate leads to a large distance between the 
sheet border where the draw-in is measured, and the areas in the centre 
of the part where the quality criteria are determined. The authors hy-
pothesize that specifically in that case, the material flow measurement 
in the main forming area might be highly beneficial, since the mea-
surement of the material flow can be shifted much closer to the areas of 
the highest plastic deformation. This hypothesis has to be validated by 
applying the methodology on a more complex deep drawn part in future 
work. 

Kott et al. (2021) provide the prediction accuracies for five different 
parts using different types of input variables. To compare them with our 
results in Table 8, the data provided by Kott et al. (2021) (in Table 6 in 
the reference) row ANN1 is used, since the sole use of the draw-in as 
observable is most comparable to our work. The average R2 score ach-
ieved by the authors for all five parts is 0.90, using a simulative data set 
only. The result is most probably lower compared to our case (compared 
to the simulative results too) for the same reason as the results provided 
by Neuhauser et al. (2019). The higher R2 score compared to the latter 
reference might be caused by the fact that the predicted output of the 
model is given by only one variable which is the maximum occurring 
max. failure value, as opposed to 22 different quality criteria used by 
Neuhauser et al. (2019). 

Finally, Ryser et al. (2021) provide modelling results based on a side 
panel frame and thus the most complex part found in the literature. In 
this reference, the target variables are not quality criteria, but the input 
parameters of the process and are thus comparable to Fig. 23 and Fig. 24 
(a) – (c). The average R2 score for 21 input parameters is 0.93 with one 
outlier (≈0.98 without outlier). Neglecting the outlier, the result lies 
therefore in a similar range compared to the simulation results provided 
in Fig. 23. 

Fig. 27. Visualization of the sensitivity product vectors corresponding to the 
first (red), second (blue) and third (green) SPM in Fig. 20. The absolute value of 
the determinant which is maximized by the subset selection algorithm of the 
three vectors corresponds to the spanned volume of the parallelepiped. 
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As summarised in Table 8 and elaborated more in the paragraphs 
above, a direct comparison of our experimental results with literature is 
not possible, as no directly comparable ones were found. The results 
here provide a first benchmark for future research papers. Furthermore, 
whether the prediction accuracy achieved in this work is sufficient for 
practical usage depends on the intended use case. As can be seen by a 
comparison of the R2 scores with the adjusted ones in Table 8, potential 
can be identified in increasing the accuracy of the simulation, which will 
be of high relevance for the future and has recently been addressed for 
example by Chen et al. (2022). 

6. Conclusion 

In this work, the notion of surface point markers (SPMs) was intro-
duced, which represents points fixed relative to the sheet whose 
displacement from the initial to the final configuration is measured. A 
novel algorithmic method is then presented to identify the most sensi-
tive measurement locations for these points on a deep drawn part and 
applied on a cup drawing process. The method is validated based on a 
simulative and experimental data set, comparing differently positioned 
surface point marker locations. 

The conclusions are summarised as follows:  

1. Literature provides indications that the material flow in deep 
drawing should be characterized in the areas of the highest plastic 
deformation, as opposed to the sheet border given by the draw-in. 
This statement was investigated here for the first time in a quanti-
tative way. In this study, an increase in the variance of the movement 
of material points in the areas of the highest plastic deformation of on 
average 51% was observed, compared to the draw-in at the sheet 
border. This result is in accordance with the indications in the 
literature mentioned previously.  

2. The increase in sensitivity of the displacement of material points 
results directly in an increase of the modelling accuracy if quality 
criteria like local sheet thickness or the input parameters are 
modelled. More specifically, for material points located at three 
different radii 30mm / 70mm / 90mm on the sheet, the variance of 
1.1mm2 / 3.0mm2 / 2.0mm2 caused by the change of the input pa-
rameters results in an average R2 score of 0.03 / 0.56 / 0.31 for local 
sheet thinning and 0.19 / 0.81 / 0.47 for the inverse prediction of the 
input parameters, evaluated on the experimental data set. Therefore, 
a clear correlation between the sensitivity of the displacement of the 
SPMs and the predictive accuracy of the models is identified.  

3. The areas of the largest sensitivity were identified in, or directly 
above the die radius, in the lower part of the side wall of the cup. As 

pointed out in the literature by Griesbach (2000), this result can be 
generalized for complex shaped parts due to the qualitatively similar 
stress states during forming. 

4. Application of a column subset selection algorithm allows the sys-
tematic determination of independent sensor positions. The method 
is computationally expensive due to the large set of FEM simulations 
required (100 in this case). However, the mathematical methods 
thereafter are currently not critical in terms of computational cost, 
which might make the method feasible for industrial use if the 
simulation time can be reduced. 

The measurement of the material flow based on markings on the 
sheet is a promising approach to observe and control deep drawing 
processes, since their measurement requires no tool specific sensors, like 
laser sensors for draw-in measurements, or similar. Another advantage is 
the fact that this measurement method provides maximum flexibility 
due to its independence of the part geometry. This approach unfolds its 
full potential if it is coupled with simulation-based models as proposed 
here and enables the quantitative estimation of quality criteria. The 
results presented in this paper provide a feasibility study of the mathe-
matical, simulative, and experimental methods applied on a simple deep 
drawn part. Application on a more complex part is required to prove or 
disprove the superiority of the method proposed for real applications 
and will be part of a future project and paper. 

This paper shall be concluded with a brief discussion about the 
practical implementation. To this date, there is no specific measurement 
system or use case known, on an industrial level, in which the global 
material flow of sheet metal parts is measured inline. The first reference 
indicating industrial interest in this field was found in a news article by 
Markus Strehlitz (2015). The author describes the introduction of an 
inline quality control system in the press shop of a large automotive 
manufacturer. It consists of stripe projection scanners, which follow the 
same optical measurement principle as the scanner used in this work, 
mounted on robot arms. This setup allows the full digitization of stam-
ped parts and evaluation of the surface topology directly in the pro-
duction line to control quality. Equipping the measurement setup with a 
pattern recognition system would allow the localization of predefined 
patterns on the surface of the part. The authors expect future de-
velopments in this field. 
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