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1. Introduction
Climate change is disrupting cryospheric systems across the globe (IPCC, 2022), highlighting the importance 
of monitoring and understanding the conditions of glaciers and ice sheets. Even with powerful tools for moni-
toring, it remains difficult to observe the interiors and ice-bed interfaces of glaciers and ice sheets. Fortunately, 
decades of research in cryoseismology have resulted in powerful tools for monitoring surficial, englacial and 
subglacial processes. Cryoseismic sources are diverse, including impulsive “icequakes” caused by ice flow and 
deformation (see reviews by Aster and Winberry [2017] and Podolskiy and Walter [2016]) and high-frequency 
(0.5–20 Hz) tremor caused by turbulent water flow and bedload transport in sub- and englacial water channels 
(e.g., Bartholomaus et al., 2015; Eibl et al., 2020; Gimbert et al., 2016; Lindner et al., 2020; Röösli et al., 2014; 
Vore et al., 2019). “Noise”—that is, continuous seismic signals that are mostly devoid of impulsive events—can 
include information about time-varying seismic sources and acoustic properties of the medium (Lindner, 2020), 
and have been linked to sliding at the ice-bed interface (Podolskiy et al., 2021; Umlauft et al., 2021) and varying 
environmental conditions including wind, temperature and precipitation (Chaput et al., 2018).

Abstract It is critical to understand the dynamic conditions of Earth's cryosphere, yet the subglacial and 
englacial environments that control many aspects of ice behavior are inherently difficult to observe. The study 
of seismicity in glaciers and ice sheets has provided valuable insights about the cryosphere for decades, more 
recently aided by tools from machine learning. Here, we present an unsupervised machine-learning approach 
to discovering and interpreting cryoseismic patterns using 5 weeks of seismic data recorded at Gornergletscher, 
Switzerland. Our algorithm utilizes non-negative matrix factorization and hidden Markov modeling to reduce 
spectrograms into characteristic, low-dimensional “fingerprints,” which we reduce further using principal 
component analysis, then cluster using k-means clustering. We investigate the timing, locations, and statistical 
properties of the clusters in relation to temperature, GPS and lake-level measurements, and find that signals 
associated with lake flooding tend to occupy one cluster, whereas signals associated with afternoon and 
evening melt-water flow reside in others. We suggest that the one cluster contains signals that include the true 
initiation of the flood's englacial and subglacial drainage components. This work demonstrates an unsupervised 
machine-learning approach to exploring both continuous and event-based glacial seismic data.

Plain Language Summary Earth's climate change poses extreme risks for the stability of glaciers 
and ice sheets. One such glacier, Gornergletscher in the Swiss Alps, has been monitored for decades, along 
with a lake on the glacier which from the 1950s until recently filled and drainedevery summer, releasing huge 
amounts of water under, through, and on top of the glacier. To study this glacier, which is hundreds of meters 
thick, and its lake, scientists employ “cryoseismology,” the study of seismic excitations in the ice. In our study, 
we use unsupervised machine-learning, a type of artificial intelligence that identifies patterns in large data 
sets, to organize 5 weeks of cryoseismic records into clusters composed of similar types of signals. Although 
the machine-learning algorithm has no knowledge of glacial hydrology nor its evolution over time, the 
output places the signals associated with the beginning of lake flooding in one cluster, and signals associated 
with afternoon and evening melt-water flow in others. We also find that “icequakes” are clustered based on 
extremely subtle, similar, vibrations. From these findings, we provide an improved chronology for the glacial 
lake flood, and a better understanding of the cryoseismic signals caused by water flowing underneath and 
through glaciers.
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The large volume and variety of cryoseismic data (not to mention its noisy environment) can make the char-
acterization, especially the detection, location, and classification of events, a challenging process when using 
typical seismic analytic techniques (e.g., template matching, cross-correlation, auto-correlation). Given a certain 
data distribution, however, larger data sets, tend to be better-suited for machine-learning models, which, as with 
all statistical models, are typically improved with larger representative samples. Machine learning has recently 
gained enormous interest within the seismological community (e.g., reviews by Kong et al. [2019] and Bergen 
et al. [2019]), with most studies aimed at improving analyst-led tasks such as waveform phase detection, asso-
ciation, and event classification (e.g., Mousavi et al., 2020; Park et al., 2020; Ross et al., 2018, 2019; Zhu & 
Beroza,  2019). The machine-learning methods in such studies are typically supervised, meaning the models 
are optimized to match manually labeled data (e.g., Murphy, 2022). Supervised machine learning has shown 
remarkable success at classifying seismic signals at volcanoes (e.g., Ren et al., 2020, and reviews by Malfante 
et al. [2018] and Carniel & Guzmán [2020]), where the combination of tectonic-like and fluid-mediated behav-
iors are at times analogous to temperate glacial settings.

Typically, data from field studies will likely emerge unlabeled, underscoring the need for the development of 
unsupervised machine-learning (UML). UML infers patterns in data sets without first learning on labeled data, 
either by clustering data into groups based on similarity or by reducing data to lower-dimensional, statistically 
relevant “features” (Murphy, 2022). Since no labels are predicted, UML results can be difficult to interpret phys-
ically, and since there is no defined target, not all clusters or features may be of scientific interest. Despite these 
challenges, numerous seismic studies have produced insight through unsupervised feature-extraction, clustering, 
or a combination of the two (e.g., Chamarczuk et al., 2019; Sick et al., 2015; Steinmann et al., 2021; Trugman 
& Shearer, 2017; Yoon et al., 2015), including in numerous glaciated, volcanic and/or geothermal settings (e.g., 
Holtzman et al., 2018; Jenkins et al., 2021; Lamb et al., 2020; Ren et al., 2020; Seydoux et al., 2020). Seydoux 
et al. (2020), for example, uses a Gaussian mixture model to cluster features that were automatically extracted 
using a deep scattering network (a type of convolutional neural network) from continuous seismic data at Green-
land, and are able to identify precursory seismic activity leading to a massive landslide. Another example of UML 
applied to cryoseismic settings is in Jenkins et al.  (2021), where the authors compare two types of clustering 
(Gaussian mixture model and deep-embedded clustering) on 2 years of continuous seismic data from the Ross 
Ice Shelf (Antarctica), and find that numerous clusters correspond to oceanographic and atmospheric forcing.

Here, we employ an UML algorithm that extracts subtle, characteristic, time-varying features from spectrograms 
and transforms them into low-dimensional representations called fingerprints, an approach introduced by Holtzman 
et al. [2018]. We apply an algorithm, now called Spectral Unsupervised Feature Extraction, or “SpecUFEx,” to 
5 weeks of glacial icequakes and continuous glacial seismic noise from Gornergletscher, Switzerland. Our aim is 
not to distinguish obviously different types of signals, for example, between noise and icequakes or between basal 
icequakes and surface icequakes, but rather to discover subtle differences in a well-constrained data sets that may 
have eluded visual or other detection. We find strong evidence that different clusters of fingerprints correspond 
to different modes of glacial hydrologic behavior, including the englacial and subglacial components of a glacial 
lake outburst flood and diurnal meltwater flow through systems of subglacial conduits. Groups of highly similar 
icequakes are clustered together as well. Semi-automated, unsupervised machine-learning approaches such as 
ours will provide a practical path for understanding the behavior of glaciers and ice sheets, particularly as data 
streams—and concerns over the state of glaciers and ice sheets—grow rapidly.

2. Background
Gornergletscher is the second largest glacier in the Swiss Alps, spanning approximately 57 km 2 at an average 
elevation of 2,500 m (Figure 1). Gornergletscher converges with Grenzgletscher, flowing generally westward at 
a speed of ∼4–10 cm/day (Garcia et al., 2019). Until 2007, an ice-marginal lake, Gornersee, formed every spring 
at the confluence of the two glaciers, and by midsummer drained rapidly in a glacial outburst flood, releasing up 
to 6 million m 3 s −1 of water in a combination of subglacial, englacial, and supraglacial flow (Huss et al., 2007; 
Werder et al., 2009, 2010).

Seismicity at Gornergletscher is primarily controlled by meltwater runoff. Figure 2 shows seismicity rates peak-
ing in the afternoon as meltwater percolates through crevasses to the ice-bed interface, elevating the glacier to 
near flotation levels and allowing for reduced basal drag and increased ice flow (Roux et al., 2010; Walter, 2009; 
Walter et al., 2008). Walter (2009) detected hundreds to thousands of icequakes daily in June and July 2007, with 
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the vast majority (estimated 99%) caused by tensile openings of crevasses 
in the top 20 m of the ice. A few tens of basal icequakes were also detected 
daily, typically in the early morning hours when subglacial water pressure 
was at its lowest. At Gornergletscher, icequakes frequently occur alongside 
continuous background signals generated by sources such as ice-proximal 
water flow (Lindner, 2020), wind- or rain-induced vibrations in the ice, or 
superimposed stick-slip events near the glacier bed (Umlauft et  al., 2021), 
highlighting some of the complexities that can arise when analyzing glacial 
cryoseismic data.

A timeline of reported events for the 2007 lake glacial outburst flood is as 
follows. First, lake drainage began on 4 July, as Gornersee breached its shore 
and flowed over the ice to a lake-proximal moulin (Werder et  al.,  2009). 
From 7 to 9 July, water began to drain subglacially, and from 9 to 15 July 
the majority of the lake drained through a crevasse exposed at mid-basin 
height, with the drainage rate varying as new hydro-fractures were initi-
ated (Werder et  al.,  2009). The drainage concluded when the lake was 
mostly empty and the lake-pressure transducer subaerially exposed (Werder 
et al., 2010). Although sediment-transport data were not collected during the 
2007 study period, a borehole study at the northern slope of Gornergletscher 
(about one km downstream of our study region) determined that subglacial 
conduits there contained likely little sediment (Iken et al., 1996). The annual 
outburst floods typically accelerate the flow of Gornergletscher (Sugiyama 
et al., 2007, 2008, 2010), triggering icequake activity in the top 20 m of the 
ice (Garcia et al., 2019; Riesen et al., 2010; Roux et al., 2010). Accordingly, 
a burst of shallow icequakes marked the onset of the 2007 lake drainage 
(although no such increase in basal seismicity was observed (Walter, 2009).

3. Data
Our seismic data are from an eight-instrument array of three-component 
Geospace GS-11D geophones operating in shallow boreholes at Gornerglet-
scher between 14 June and 22 July 2007. For this proof-of-concept study, we 
focus on data from station J8, which demonstrates good data quality and lies 
nearest the center of the array (1). Future studies could analyze spectrograms 

from multiple stations by either performing this analysis on each station separately and comparing results, or 
combining the spectrogram data sets from multiple stations prior to applying SpecUFEx, and clustering multiple 
stations at once. We use only the vertical-component data, which are less affected by tilt noise. The instrument 
has an 8 Hz natural frequency, and since data are flat to velocity in the frequency ranges of interest, no instru-
ment corrections are done. Station J8 sampled continuously at 1,000 sps and was occasionally redrilled (every 
1–2 weeks) to account for the effect of differential melting of the ice surface beneath the instrument. It is unlikely 
that the redrilling systematically changed the coupling, given that the geophones never fully re-froze to the bore-
hole, which was typically filled with water.

We perform twin UML analyses on two separate data sets: one containing 2-s-long icequake waveforms from the 
catalog created by Walter (2009), and one containing sixty-second-long records of background noise compiled 
for this study. The two experiments help explore how features extracted from icequakes arise from systematic 
effects of background noise. Additionally, exploring the isolated noise allows for a more nuanced view of seismic 
tremor behavior and gives insights into sub- and englacial dynamic and hydrologic behavior.

3.1. Icequake Selection and Locations

For the icequake analysis, we use the catalog of Walter (2009), which includes over 100,000 icequakes in June 
and July 2007. The icequakes are high frequency (∼50 Hz), low moment magnitude (M < 1), short-duration 
(∼1 s), and events have prominent Rayleigh wave arrivals. The icequake waveforms, compiled by Walter (2009), 

Figure 1. Map of study region and icequakes. (a) From Garcia et al. (2019). 
Two glaciers, Gornergletscher (north) and Grenzgletscher (south), converge 
at Gornersee (blue polygon) and flow roughly north-westward, as indicated 
by GPS displacement (green lines and arrows). Precipitation and temperature 
data come from an autonomous weather station (black diamond). The red 
box shows the approximate limits of the seismic array footprint, and the inset 
map shows Gornergletscher on the national scale. (b) Seismic array (black 
triangles) and icequake locations (black dots) from Walter (2009). Station 
J8 (green triangle) is used in this study. Blue polygon shows the lake at its 
maximum extent. Black arrow shows the flow direction of the glacier. Red X 
marks the approximate location of the moulin.
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occur within two-second-long windows that are defined to include 0.5 s of waveform before the Rayleigh wave 
arrival and 1.5 s after it. A subset (N = ∼24,000) of the detected events were located by Roux et al. (2010) using 
a grid-search inversion algorithm (W. H. K. Lee & Stewart, 1981). Mean location errors for events located within 
the network are assumed to be no more than 10 m (Roux et al., 2010). We limit our study to icequakes located 
within the seismic-array footprint and in the top 50 m of ice where locations are most accurate (N = 2,806). 
In previous experiments, we have analyzed icequakes outside of that boundary, in which cases we found that 
systematic location errors caused by poor azimuthal coverage obfuscated interpretation of results. About 6% of 
the events (n = 157) are unable to be loaded due to a digitizer error.

We verified that there was only one icequake per window by using a short term average/long term average (STA/
LTA) filter. STA/LTA filters are calculated by taking the ratio of two moving averages of the waveform signal; 
one short window and one long window. An impulsive signal will cause the ratio to exceed a prescribed threshold 
and trigger the STA/LTA filter. For the icequakes, we use a short-term window of 0.05 s, a long-term window of 
0.4 s, and a threshold of 7.5. We only retain records where the STA/LTA threshold is triggered exactly once in a 
0.25 s period, resulting in a data set of 1,457 icequakes (Figure 1). We tuned the STA/LTA parameters on a subset 
of icequakes (n ∼ 100), and, through visual inspection, found them to be effective for filtering out seismic records 
with multiple, or no, icequake arrivals.

Figure 2. Timing of icequake and noise samples with ancillary geophysical data. (a) GPS displacement (green lines), lake 
level (thick dashed blue line), precipitation (thin solid blue line), and ambient temperature (red line) from Garcia et al. (2019). 
Fuchsia dashed lines show the timing of lake-drainage events: 1. is the onset of supraglacial lake drainage, 2. is the onset of 
the sub- and englacial drainage, and 3. is when drainage stops. Icequakes (b) and noise samples (c.) binned by hour through 
the study season. Counts of icequakes (d) and noise samples (e) by hour of the day (UTC). The red dashed line shows the 
mean hourly deviation from daily mean temperature throughout the season, with scale shown in panel (a).
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3.2. Noise Selection

The second experiment is performed on 1,472 min-long segments of seis-
mic noise. We define noise as continuous seismic records free of impulsive 
icequakes. We detect icequakes by using an STA/LTA filter with a 0.03  s 
short-term window, a 0.5 s long-term window, and a ratio threshold of 10. 
Similar to the icequakes, we tuned the STA/LTA parameters using a subset 
of noise segments (n  ∼  100) to adequately filter out seismic records with 
icequake arrivals. We extract 1-min-long waveforms every 10 min during the 
same 5-week time period as the icequakes and check for prominent icequakes 
in the record using the STA/LTA filter. We choose to sample every 10 min to 
ease the computational load, since calculating spectrograms for every minute 

of the 2-month period would be excessively time-consuming. If the filter exceeds the STA/LTA threshold, we 
advance 5 s and extract another minute-long window on which to apply the filter. Once an icequake-free window 
is found, we advance 10 minutes and repeat the process. Figure  2e shows the distribution of selected noise 
windows binned by hour. Because icequakes occur frequently during the afternoon hours (at times >5 icequakes 
per minute) many noise windows are discarded during those hours, leading to under-sampling of noise in the 
afternoon.

3.3. Ancillary Data

We compare seismic data to GPS, lake level, temperature and precipitation measurements made nearby to under-
stand how environmental factors may influence seismicity, as shown in Figure 2a. Four GPS stations were located 
on the ice between 100 m and 3 km down-glacier from the lake, providing position estimates every 2 min with 
horizontal and vertical accuracy of ±1.4 and ±3 mm, respectively (Sugiyama et al., 2007). We use GPS displace-
ment estimates from Garcia et al. (2019), referenced to the GPS station location at the beginning of our study. 
We detrend the displacement estimates using the pre-drainage glacier velocities reported by Garcia et al. (2019) 
for each GPS station (3.8, 4.7, 6.8 and 6.8 cm/day for stations 24, 34, 36, and 37, respectively). We then take an 
hourly running average for each station. This approach allows us to visualize changes in glacier displacement 
(green lines, Figure  2) associated with diurnal variations, varying temperature, precipitation, and the glacial 
outburst flood. Lake levels were measured by a pressure transducer sampling once per minute (thick blue dashed 
line, Figure 2a; adapted from Werder et al. [2009]). Relative ambient temperature (red solid line) and precipita-
tion levels (thin solid blue line) are from an automated weather station located on the northern margin of Gorner-
gletscher (black diamond, Figure 1), 2.5 km north of, and 600 m above, the seismic array (Garcia et al., 2019).

4. Methods
We define a workflow in which we use short time Fourier transforms (STFT) to transform waveforms into spectro-
grams, employ SpecUFEx to reduce the spectrograms into fingerprints using non-negative factorization (NMF) 
and hidden Markov models (HMM), apply principal component analysis (PCA) to the fingerprints, cluster the 
PCA-fingerprints using k-means clustering evaluated with silhouette scores, and then highlight a representative 
subset of events from each cluster for more in-depth exploration. We then investigate the timing, locations, and 
statistical properties of events in the clusters in relation to the ancillary geophysical measurements (i.e., temper-
ature, GPS, and lake-level) described above.

4.1. Spectrogram Generation

We calculate spectrograms from digital counts that are proportional to ground-velocity measurements using a 
short-time Fourier transform (STFT) and the parameters listed in Table 1. Frequency bounds were chosen to 
capture the majority of the spectral energy (Figures 3a and 3b). The minimum frequency, fmin, is near the theo-
retical limit defined by the reciprocal of an STFT window length chosen to allow for at least 30 time samples 
per seismic record, a value we have found empirically to be the minimum number of time samples needed for 
the HMM. The HMM learns on time-varying patterns between concurrent STFT windows, such that too few 
windows will yield too little temporal information. We choose fmax in order to explore possible signals of inter-
est in higher frequencies while avoiding instrument noise that occurs at and above 90 Hz. Following Holtzman 

Icequakes Noise

STFT window length (s) 0.08 1.1

STFT window overlap 25% 25%

Number of STFT windows 33 72

Minimum frequency (Hz) 15 1

Maximum frequency (Hz) 80 80

Table 1 
Parameters Used to Generate Icequake and Noise Spectrograms
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et al. (2018), we normalize each STFT window by its median, convert it to decibels with a reference value of 
1, and set any negative values to zero in order to comply with the non-negativity constraint of NMF (described 
below). Empirically in this and a previous study (Holtzman et al., 2018), we find that these normalization steps 
improve SpecUFEx and clustering performance in terms of identifying more discrete clusters of fingerprints.

4.2. SpecUFEx: Spectral Unsupervised Feature Extraction

SpecUFEx (Holtzman et al., 2018) applies two layers of unsupervised feature extraction to the spectrograms: 
nonnegative matrix factorization (NMF) and hidden Markov modeling (HMM). The workflow is illustrated in 
Figure 4. NMF reduces the spectrograms into a basis dictionary of spectral patterns that are characteristic of the 
entire data set, and, for each spectrogram, an activation coefficient matrix (ACM) that expresses how the diction-
ary patterns vary over time (e.g., D. D. Lee & Seung, 1999). Examples of spectral patterns are the columns in 
the NMF dictionary (Figure 4a). The NMF dictionary is shared for all spectrograms, but the ACMs are unique 
for each spectrogram. The dominant spectral patterns of the spectrogram are retained in the ACM even as the 
frequency resolution is drastically reduced (Figures 4a and 4b).

The ACMs are then used as input for a HMM (Baum & Petrie, 1966). The HMM assumes that the temporal 
evolution of the ACMs' spectral patterns depends on hidden states defined by frequency patterns that tend to 
co-occur in time. Like (Holtzman et al., 2018), we choose 15 hidden states for the HMM. The hidden states are 
given in the HMM emissions matrix (EM), which, similar to the NMF dictionary, is shared for all spectrograms. 
The state transition matrices (STMs, Figure 4c) show how hidden states vary in time for each ACM. The final 
product, a fingerprint (Figure 4c, right), counts how many times each state transitions to another (or itself) from 
one time step to the next. The fingerprints only retain the number of transitions, not their order, making them 

Figure 3. Spectrogram parameter choices and randomly selected waveforms for icequakes (left column) and noise (right 
column). Top panels show the mean and standard deviations of spectra for icequakes (a) and noise (b) calculated by summing 
the STFT windows across all frequencies over time after normalization and converting to decibels (described in Section 4.1, 
“Spectrogram Generation”). Blue dashed lines show the frequency bounds, and the red line shows the minimum frequency 
resolved by the STFT window length. Lower panels show 20 randomly selected waveforms for (c) icequakes and (d) noise. 
Each waveform is normalized by its maximum amplitude after the bandpass filter, listed below the traces, is applied.
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time-invariant with respect to the spectrogram. As a result, full temporal sequences cannot be reconstructed from 
the fingerprints.

4.3. Principal Component Analysis

The fingerprints are 255-dimensional (15 × 15 features) and generally sparse, so we reduce their dimensionality 
further prior to clustering using PCA on the raw fingerprint values (e.g., Karl Pearson, 1901; Lever et al., 2017); 
Figure 4d). This additional dimensionality reduction allows for clearer visualization of the clustering results and 
other trends in the data. We choose the number of principal components so that at least 86% of the variance of the 
original fingerprint data set is preserved.

4.4. Clustering and Validation

We cluster the PCA-reduced fingerprints (Figure  4d) with the k-means clustering algorithm of Pedregosa 
et al. (2011), which separates data points, xi, into J clusters based on their proximity to centroids μj by optimizing 
the function:

𝑛𝑛∑

𝑖𝑖=0

min
𝜇𝜇𝑗𝑗∈𝐶𝐶

(
‖𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗‖2

)
. (1)

Figure 4. SpecUFEx workflow. SpecUFEx (Holtzman et al., 2018) applies two layers of unsupervised feature extraction 
to the spectrograms: (a) non-negative matrix factorization and (b) hidden Markov modeling. (c) Fingerprints are made by 
counting state-transitions from the HMM state transition matrix (STM). (d) Following principal component analysis (PCA), 
k-means clustering is applied to the fingerprints.
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We choose J, the number of clusters, based on the clusters' mean silhouette scores (SiS; Rousseeuw, 1987). SiS 
quantify how well-clustered a given fingerprint is by assigning it a score from −1 to 1 with positive values indi-
cating the point is on average closer to other points in its cluster than other points in the next closest neighboring 
cluster. The silhouette score, SiS(x) is defined as:

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) =
𝑏𝑏 − 𝑎𝑎

max(𝑎𝑎𝑎 𝑏𝑏)
𝑎 (2)

where a is the mean Euclidean distance of a fingerprint, x, to every other fingerprint in its cluster, while b is the 
mean Euclidean distance of x to every fingerprint in the closest neighboring cluster. Negative silhouette scores 
imply that a fingerprint is erroneously clustered, meaning that it is on average closer to points in a different cluster 
than its own cluster. We also evaluate the clustering results using the sum of squared errors (SSE) between the 
data points and their assigned cluster centroids. By plotting SSE for an increasing number of clusters, we can find 
at which point adding more clusters leads to smaller improvements in the SSE, leading to a break in the slope 
(see Figure 5e).

Figure 5. PCA projections of fingerprints from the (c) icequakes and (d) noise samples colored by k-means cluster 
assignments. Black x's are 30 “representative” fingerprints for each cluster, defined as those with the highest silhouette 
(“Silh”) scores in their cluster. Note that representative fingerprints can overlap in PCA-space. Line plots show cluster 
validation metrics for two to 10 clusters of icequakes (a and b) and (e and f) noise. The sum of squared errors (SSE, panels [a 
and e]) is the distance of each point to its cluster centroid. Panels (b and f) show the mean silhouette score of all clusters.
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4.5. Statistical Measures

We employ two statistical measures to understand the basic properties of the waveforms prior to their transforma-
tion into spectrograms. These properties are used solely for exploring results post-SpecUFEx, and are not used 
as features for UML. The first is the sum of the absolute amplitude of a waveform, a variation of the “real-time 
seismic amplitude measurement” (RSAM) introduced by Endo and Murray  (1991) and frequently utilized in 
volcano observatories as a proxy for volcanic activity. RSAM is defined as:

RSAM(𝑥𝑥) =

𝑇𝑇∑

𝑡𝑡=0

|𝑥𝑥(𝑡𝑡)|, (3)

where x(t) are digital counts (proportional to seismic ground velocity) at time-step t after being filtered through a 
four-pole Butterworth bandpass filter using the minimum and maximum frequencies given in Table 1.

We also calculate the spectral centroid, SC(x), of each waveform's spectrum. The spectral centroid is an audio 
information retrieval metric meant to quantify the pitch of a waveform (Klapuri & Davy, 2007). We apply a 
fast Fourier transform to the waveform and treat the resultant spectrum as a distribution of N evenly separated 
frequency bins from which the centroid, the weighted mean, is calculated

𝑆𝑆𝑆𝑆(𝑥𝑥) =

∑𝑁𝑁

𝑛𝑛=1
𝑓𝑓 (𝑛𝑛)𝑠𝑠(𝑛𝑛)

∑𝑁𝑁

𝑛𝑛=1
𝑠𝑠(𝑛𝑛)

, (4)

where f(n) is the center frequency of bin n, and s(n) is the mean value of all frequencies in the bin.

5. Results
5.1. PCA and Clustering

Figure 5 shows the first three principal components of the fingerprints after applying PCA to both the icequake 
and noise data, along with the results of our clustering evaluation procedure. Based on silhouette scores, we 
choose three clusters for the icequake fingerprints and four clusters for the noise fingerprints. When a data point 
has a negative silhouette scores, it indicates that it, the data point, would have had a higher silhouette score in a 
different cluster, and therefor is erroneously clustered. Only 100 of 1,457 icequake fingerprints (<7%) and 1 of 
the 1,472 noise fingerprints (<0.1%) have negative silhouette scores, meaning that very few of the fingerprints 
are erroneously clustered. Figures 5c and 5d shows the fingerprints colored by their cluster assignment, projected 
onto their first three principal subspaces. The colors are assigned randomly, and have no connection across 
icequake and noise experiments. In this figure, ∼28% and ∼86% of the variance of the original fingerprint data 
set is preserved for icequakes and noise, respectively. Rather than clustering in distinct, isolated groups, the PCA 
plots demonstrate that our data form a continuous manifold with 3 or 4 branches (one for each cluster) extending 
outwards.

We select a subset of fingerprints from each cluster to highlight for analysis, chosen as the 30 events with the 
highest SiS in each cluster. We refer to these as the “representative” events from each cluster, marked with black 
crosses in Figures 5c and 5d. The 30 representative events in each cluster are located near the ends of the branches 
of the PCA manifold, therefore emphasizing variations between clusters more clearly than events near the center 
of the manifold, which can be close to events assigned to other clusters. By highlighting the representative events 
in our analysis, we can visualize minute variations between clusters that can be overlooked when examining the 
cluster population as a whole.

5.2. Icequake Locations

Figure 6a shows the icequake locations colored by cluster assignment with the 30 representative icequakes from 
each cluster outlined in black. Representative icequakes in the red (2nd) cluster tend to occur along a linear 
pattern of icequakes that trace out a large (>40m), north-south striking, lake-marginal crevasse. Icequakes in the 
representative orange cluster generally appear along crevasses as well, and both the orange and blue represent-
ative icequakes are dispersed about the study region, covering a wide range of azimuths and distances. Unlike 
the red and orange clusters, the icequakes in the blue cluster are not generally located along crevasses. Figure 6b 
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shows box-and-whisker plots for the epicentral icequake-station distances for all events in each cluster. Boxes 
enclose the 25th to 75th percentiles of the location measurements, and the horizontal line in the box shows the 
50th percentile. The whiskers extend to 1.5 times the range between the 25th and 50th percentiles, and individual 
points beyond the whiskers are outliers. The red (2nd) cluster's representative events tend to be farther from the 
station than the blue and orange clusters', events in the blue cluster are overall closer. Figure 6c describes the 
station-event azimuths for all events in each cluster. The blue (1st) and orange (3rd) clusters are more dispersed 
about the study region, whereas the red (2nd) cluster has a narrower distribution, with the majority of events 
occurring between 100 and 190° from north.

5.3. Seasonal Cluster Behavior

Figure 7 shows bar-plots of the icequake and noise clusters throughout the June-July season, where each row 
belongs to a different cluster. The fuchsia lines indicate notable lake-drainage events: (1) the onset of supraglacial 
lake drainage, (2) the onset of sub- and englacial drainage, and (3) the end of drainage, as reported by Werder 
et al. (2009). For the icequakes, the blue (1st) cluster events occur primarily on or after the morning of 5 July, 
with the majority of events occurring between 8 and 11 July. The red (2nd) and orange (3rd) clusters appear 

Figure 6. (a) Icequake locations colored by cluster assignments. The 30 representative icequakes from each cluster are 
outlined in black, and the moulin is represented by a black X. Symbols are otherwise identical to Figure 1. Box-and-whisker 
plots for station-event (b) epicentral distances and (c) azimuths. Boxes enclose the 25th to 75th percentiles of the location 
measurements, and the horizontal line in the box shows the 50th percentile. The whiskers extend to 1.5 times the range 
between the 25th and 50th percentiles, and individual points beyond the whiskers are outliers.
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continuously throughout the season, although they decrease following the onset of the sub- and englacial lake 
drainage (7 July, 2nd fuchsia line).

For the noise data, the blue (1st) clusters mostly take place on or after 9 July, 
2 days after lake drainage initiates. The red (2nd) cluster noise records occur 
primarily between 5 July (2 days before drainage begins) and 17 July (2 days 
after drainage ends). The orange (3rd), and purple (4th) clusters include noise 
records occurring up until 5 July. The purple cluster pauses on July 4 and 
resumes on 17 July. Similarly, the orange cluster almost completely pauses 
on 5 July before resuming activity on the 17th.

5.4. Diurnal Variability of Clusters

Because the hourly sampling distributions of the icequakes and noise are 
strongly biased (see Figures 2d and 2e), we examine in Figure 8 the propor-
tion of samples from each cluster for each hour of the day throughout the 
season. The mean difference from the daily mean temperature (black dashed 
line) is provided to indicate when peak meltwater production approximately 
occurs. For the icequakes, the hourly distributions are largely uniform 
throughout the day (Figure  8a). The noise cluster hourly distributions, 

Figure 7. Comparison of cluster timing to geophysical data for icequakes (top) and noise samples (bottom), both binned in 
3-hr windows. Each row corresponds to a cluster, with colors as in Figure 5. Green traces and thick, blue dashed lines show 
GPS displacement and lake height, respectively. Thin blue line is precipitation. Fuchsia dashed lines mark important glacial 
flood events: (1) supraglacial lake drainage, (2) sub- and englacial drainage, and (3) end of drainage.

Figure 8. Proportion of (a) icequakes and (b) noise observations that occur 
during each hour of the day. Local time is UTC + 2. Black dashed line shows 
the seasonal mean hourly deviation from daily mean temperature.
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however, differ greatly from the overall sampling distribution, evident by the colored bands of variable thickness 
in Figure 8b. The purple (4th) cluster occurs more frequently than the other clusters in the afternoon and early 
evening hours (12:00 to 21:00 UTC), with the majority of events occurring around 16:00 UTC. The majority of 
the orange (3rd) cluster's records occur in the late evening and early morning hours (23:00 to 10:00 UTC). Most 
of the red  (2nd) cluster's records occur in the early morning hours, between approximately 2:00 and 10:00 UTC. 
The blue noise  cluster's distributions become increasingly depleted in the afternoon hours (15:00 to 18:00), but 
are  otherwise constant through time.

5.5. Icequake Cluster Waveform and Spectral Characteristics

Figure 9a shows waveforms for the 30 representative icequakes in each cluster. For visualization of waveform 
similarity (Figure 9b), we normalize the waveforms by their maximum amplitude, shift them by the time lag that 
maximizes their cross-correlation coefficient, then plot them on top of each other within a 0.8-s window. This 
approach allows us to see the subtle features that characterize the waveforms in each cluster. For example, the 
third cycle in each stack (indicated by the thick black arrows in Figure 9b) has a distinct shape for each cluster. 

Figure 9. Waveform characteristics of icequake clustering results. (a) Top 30 representative waveforms filtered from 
15 to 80 Hz and normalized by maximum amplitude, zoomed in to the main impulse in the two-second waveform. (b) 
Same as (a), but aligned to maximize cross-correlation coefficients and stacked. (c) Cross-correlation matrix on entire 
two-second waveforms for the 20 representative icequakes in each cluster. (d) Box-and-whisker plots showing log(RSAM) 
and spectral centroids for all icequakes by cluster. RSAM (real-time seismic amplitude measurement) is the time-summed, 
non-normalized, filtered waveform amplitude, and the spectral centroid is the weighted mean of frequencies in the waveform 
spectrum.
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This arrival, which we refer to as the primary coda, is relatively high-amplitude in the blue (1st) cluster compared 
to the other two clusters. Another feature is the high degree of similarity in the extended codas for the orange 
cluster (gray bracketed region with thin gray arrow, Figure 9b), a feature that is lacking in the other two clusters. 
Additionally, the relative amplitudes of the first two peaks (the first peak being the Rayleigh wave arrival) vary 
between clusters. For the blue and orange clusters, the second peak tends to be higher than the first, whereas for 
the red cluster, the first peak appears generally higher than the second peak. Another notable feature is that the 
first icequake cluster (blue) has a visibly lower signal-to-noise ratio than the other two clusters due to the presence 
of a constant background noise.

Figure  9c shows the full-waveform cross-correlation (CC) matrix for the 90 icequakes (30 representative 
icequakes each for three clusters) sorted by cluster. Although the cross-correlation coefficients (CC) are gener-
ally high amongst all icequakes (CC ∼0.8), the third cluster has particularly high CC. The CC for the first cluster 
are relatively low, despite icequakes being clustered together based on fingerprint similarity. Figure 9d shows 
box-and-whisker plots characterizing the RSAM and spectral centroid values for all icequakes events by cluster. 
The boxes enclose the 25th to 75th percentiles of the statistics, and the horizontal line in the box shows the 50th 
percentile. The whiskers extend to 1.5 times the range between the 25th and 50th percentiles, and individual 
points beyond the whiskers are outliers. The red (2nd) cluster has the highest median RSAM, followed by the blue 
(1st) cluster, then orange (3rd). Icequakes in the orange cluster have a substantially lower spectral centroids than 
the other two icequake clusters. The blue and red icequake clusters have median spectral centroids at ∼42 Hz, 
whereas the orange cluster median is at ∼36 Hz.

5.6. Noise Cluster Waveform and Spectral Characteristics

Identical to our procedure with the icequakes, we attempted to align the representative noise waveforms in the 
time domain to highlight coherent details. Cross-correlation, however, resulted in coefficients generally close to 
0, indicating that the noise waveforms are not similar in the time domain at the minute-long time scale. Patterns 
do emerge, however, in the spectral domain. We calculate the clusters' spectra by summing the STFT windows 
(i.e., the columns of the spectrograms) over time, thus preserving the filtering and median-normalization steps 
applied prior to SpecUFEx (see Section 4.1, “Spectrogram Generation”). Figure 10a shows the 30 representative 
spectra for each cluster, emphasizing differences in amplitude and overall shapes of the spectra between clusters. 
Spectra in the red (2nd) cluster, for example, retain more energy above 20 Hz compared to those in the other three 
clusters. The orange (3rd) and purple (4th) clusters have similar shapes, but between 10 and 30 Hz, the purple 
cluster has more energy than the orange cluster. Above 30 Hz, the blue (1st) cluster has higher energy than the 
purple and orange clusters, but not the red cluster.

Figures 10b and 10c show the RSAM and spectral centroid values, respectively, colored by cluster for each noise 
sample throughout the study period. Yellow vertical lines mark the approximate hottest time of day, and the 
numbered vertical dashed lines are the same as above: (a) is the beginning of supraglacial drainage, (b) is when 
sub- and englacial drainage begins, and (c) is the end of drainage. Prior to drainage, these two statistics oscillate 
daily, with higher RSAM values and lower spectral centroids later in the day, and lower RSAM values and higher 
spectral centroids in the early morning hours. The orange (3rd) and purple (4th) clusters capture this diurnal 
pattern, with orange clusters containing the early morning noise and purple clusters containing the afternoon 
noise. This diurnal oscillating pattern is interrupted on 5 July, when the red (2nd) cluster appears amid a sudden 
increase in RSAM values and decrease in spectral centroid values. Another, weaker oscillating pattern is set up 
between the blue (1st) and red clusters, before returning on 15 July to a mode similar to the original oscillating 
pattern between the orange and purple clusters, except the blue cluster is now partly taking the place of the orange 
cluster.

Figure 11 plots spectral centroid against RSAM colored by (a) cluster, (b) day of year and (c) time of day. In the 
early season, the daily anti-correlated nature of the spectral centroid and RSAM values is particularly apparent, 
with higher spectral-centroid values generally occurring in the earlier times of day (00:00-12:00 UTC). Black 
arrows in Figure 11a describe a theoretical progression of events: (1) a stable, diurnal pattern of noise alternating 
between orange and purple clusters prior to drainage, (2) the transition to the red cluster, and to sub- and englacial 
component of drainage (3) the return to a post-drainage modified diurnal pattern of purple and orange clusters. 
The dashed line is a proposed boundary in log(RSAM)-spectral-centroid space between a steady state of glacier 
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hydraulics driven by meltwater input oscillating on a daily timescale, and a dynamic state controlled by the cata-
strophic flooding event.

5.7. Representative Spectrograms and Fingerprints

Figure 12 shows the five most representative spectrograms from each cluster for (a) icequakes and (b) noise 
along with their corresponding fingerprints. For visualization, each spectrogram and fingerprint is normal-
ized to the highest value in each matrix, respectively. In Figure 12a, we see a continuous background noise in 
the blue icequake cluster (Cl1) that is not apparent in the red and orange clusters (Cl2 and Cl3, respectively). 
Close inspection of Cl2 and Cl3 reveal differences, for example, the extended decay of Cl3 waveforms, and the 
higher-frequency energy in the impulses of Cl2. The impulses in Cl1 look relatively weaker and of shorter dura-
tion than in the other two clusters.

The spectrograms of the noise clusters in Figure 12b are generally of constant amplitude and frequency content, 
but at times punctuated by thin bright vertical lines, presumably very small icequakes. These small icequakes 
appear randomly through time and do not appear to drive clustering results. Clusters 1 (blue cluster) and 2 
(red cluster) have a more broadband signal than the other two clusters, and Cluster 2 may even exhibit some 
harmonics, although the timing of these events does not coincide with previous reports of gliding tremor and 

Figure 10. Spectral and waveform characteristics of noise clustering results. (a) Power spectral density (PSD) of the 
30 representative noise samples, calculated by summing spectrogram amplitudes across all frequencies over time and 
normalizing by the median. Lower panels show the (b) log10(RSAM) and (c) spectral centroids (described in text) of all noise 
samples colored by cluster, with yellow vertical bars indicating afternoon hours (∼16:00 local time). Numbered, vertical 
dashed lines are the same as in Figures 2 and 7.
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other harmonic signals at Gornergletscher (Heeszel et  al.,  2014; Umlauft 
et al., 2021). The noise spectrograms in our data set hardly vary in terms of 
amplitude and frequency on the minute-long time scale, and therefore are 
represented in the HMM state transition matrix by one state repeating in time. 
In the fingerprints, this is represented by one bright element highlighted on 
the main diagonal, since the diagonal elements in the fingerprints represent 
one state transitioning to itself. In the noise fingerprints shown in Figure 12b, 
clusters 1, 2, 3, and 4 have elements 4, 3, 2, 1 highlighted on the main diag-
onal, respectively.

6. Discussion
6.1. Cluster-Based Determination of the Onset of Subglacial Drainage

Werder et al. (2009) identified the onset of subglacial drainage as the time 
when the lake level begins to decrease from its highest level, indicated by the 
second vertical dashed line in Figures 2, 10b, and 10c. Sub- and englacial 
drainage, however, likely initiated earlier, since lake level reflects a balance 
between water input to the lake and water export by drainage, and variable 
meltwater input might delay by minutes to hours the visible drop in lake level 
from increased subglacial drainage. Given that about 99% of noise windows 
in the red (2nd) noise cluster begin on or after 5 July—2  days before the 
reported subglacial flooding– we suggest that the red noise cluster contains 
records that include the true initiation of the flood's englacial and subglacial 
drainage components. The red noise cluster coincides with the onset, though 
not the end, of the glacial surge inferred from GPS data (Figure 7), so we 
cannot definitively rule out that the source of the spectral features controlling 
the clustering could alternatively be due to till deformation, slip at the ice-bed 
interface, or minute fractures occurring in the ice caused by increased ice 
flow and deformation. Yet, since the red noise cluster continues beyond the 
end of the glacier acceleration, we suggest that its noise is more likely the 
result of hydraulic excitations driven by turbulent water flow.

Figure 10a shows how the normalized amplitude of noise in the red (2nd) 
noise cluster is elevated in the higher frequencies (>25 Hz) compared to the 
other clusters, and Figure 10b shows how its RSAM values, that is, the energy 
in its waveforms, are higher as well. This combination of high-amplitude, 
broadband signal is consistent with studies relating velocity of turbulent 
flow to spectral power (Gimbert et  al.,  2014; Nanni et  al.,  2021; Tsai & 
Rice, 2010). Additionally, Lindner (2020) uses plane-wave beam-forming to 
reveal how the source of the seismic noise shifts suddenly to the lake front 
on 8 July as lake drainage increases. Given the timing and the broad-spectra, 
high-energy noise samples in the red cluster, we infer that seismicity in that 
cluster is generated by turbulent water flow as the englacial and subglacial 
components of the flooding initiates.

6.2. Diurnal Cluster Trends and the Reorganization of Subglacial 
Water Conduits

Hourly cluster trends are of interest because of the known diurnally vary-
ing conditions at Gornergletscher, including ambient temperature, meltwater 

production, and glacial velocity; all of which directly or indirectly influence glacial seismicity. The noise clusters 
discovered here exhibit strong diurnal variations that are different than the distribution of noise samples as a 
whole (Figure 8b). Noise samples in the purple (4th) cluster, for example, peak at 16:00 UTC, lagging about 3 hr 
after the hottest time of day, whereas noise records in the orange cluster preferentially occur during the cooler 

Figure 11. Hysteresis plots showing evolution of noise waveform and spectral 
characteristics colored by (a) cluster, (b) day of year, and (c) hour of day. 
Horizontal axes show log10(RSAM), a measure of digital counts per second, 
and vertical axes show spectral centroid, defined as the amplitude-normalized 
mean of the waveform spectrum (described in text). In panel (a), black arrows 
describe (1) diurnal pattern of noise between orange and purple clusters 
prior to drainage, (2) the transition to the red cluster, and to the sub-glacial 
component of drainage (3) the return to a modified diurnal pattern and the 
purple and orange clusters. The dashed line is a proposed boundary between a 
steady state of glacier hydraulics driven by diurnal melt flow, and a dynamic 
state controlled by the flooding event.
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times of the day. The temporal trends of the orange and purple clusters appear to coincide with diurnal variations 
of sources of meltwater input, and so we suggest that these two noise clusters contain seismic signals of two types 
of meltwater flow.

Beyond simply a temporal correlation, Figure 10b shows that waveforms from the purple (4th) noise cluster 
have significantly higher amplitudes than those from the orange (3rd) cluster, consistent with numerous stud-
ies reporting observations of higher energy seismic signals arising from increased volumes of subglacial water 
flow (e.g., Bartholomaus et al., 2015; Eibl et al., 2020; Vore et al., 2019). Additionally, noise samples in the 
orange (3rd) cluster have higher spectral centroids than those in the purple cluster (Figure 10c), consistent with 
a physical model describing seismic resonance of fluids flowing through narrower or impeded conduits (e.g., 
Röösli et al., 2014), or with a tremor source located more closely to the station (since the attenuation of higher 
frequencies increases with greater station-event distance). Thus, the purple cluster may contain noise windows 
with the seismic signature of unimpeded, high-volume afternoon water-flow through sub- and englacial chan-
nels. Conversely, the orange cluster could have noise windows with impeded water-flow through a distributed, 
poorly connected subglacial network, perhaps constricted by basal ice creeping during the nighttime hours. This 

Figure 12. The five spectrograms with the highest silhouette scores from each cluster for (a) icequakes and (b) noise. Color 
bars show power spectral density normalized by its median and converted to decibels.
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negative correlation between spectral centroids and RSAM measurements in the pre- and post-drainage periods 
is indicated by the black arrow labeled “1” in Figure 11a.

The subglacial conduit networks would likely be deformed or destroyed during the glacial lake outburst flood as 
distributed drainage modes switch to channelized flow under large influxes of water, as indicated by modeling 
of this particular drainage event by Werder et al. (2013) and illustrated with the arrow labeled “2” in Figure 11a. 
Post-drainage, however, the channels could reform, eventually returning to a similar style of subglacial hydrology 
signified by the return of orange and purple clusters, indicated in Figure 11a by the arrow labeled “3”. The blue 
(1st) noise cluster also has a stable, diurnal mode post-drainage, yet this cluster does not appear much prior to 
drainage.

The diurnally oscillating pattern could conversely be related to glacial sliding, which is also modulated by daily 
meltwater flow. In Figure 10a, however, we see how the majority of the spectral energy in the purple and orange 
clusters occurs in the 5–40 Hz band; a signal which has in previous studies been linked to sub- and englacial 
hydrology due to a combination of turbulent water flow and sediment saltation during transport (Bartholomaus 
et al., 2015; Eibl et al., 2020; Gimbert et al., 2016; Tsai & Rice, 2010; Vore et al., 2019). Additionally, a beam-
forming analysis discovered diurnally alternating sources of meltwater input within continuous seismic data in 
the weeks leading up to the lake drainage, indicating that the dominant seismic noise originates from the west 
during the daytime and the northeast in the late evening/morning hours (Lindner, 2020). Future studies, particu-
larly those focused on physical modeling, might aim to better understand which aspects of the sources and paths 
are contributing to the subtle differences between the spectra in Figure 10a and how they relate to the hydrology 
and dynamics at Gornergletscher.

6.3. Icequake Clusters and Hydrology

To understand the clusters' connection to glacial behavior, we compare the timing of the observations in each 
cluster to ancillary geophysical data, including ambient temperature, on-ice GPS displacement, precipitation 
measurements, and lake-level data from an immersible pressure transducer. The acceleration of ice flow shown 
by the GPS data and the reported onset of the outburst flood (4 July; earliest dashed fuchsia lines in Figure 7) 
both approximately coincide with the blue icequake cluster, which also continues after the ice-flow acceleration 
has ceased. Given the blue cluster's timing with the glacial lake outburst flood and background noise present in 
its records, we assume that this cluster is related to the lake drainage. In addition to the background noise, the 
primary coda (black arrow, 9b) of the blue (1st) cluster has a slightly different shape than the other two clusters, 
indicating that a systematic variation in source and/or path may exist during the time of increased lake drainage. 
There is no apparent season-wide or otherwise hydraulically induced trend within the red (2nd) and orange 
(3rd) icequake clusters. Instead, given their locations (Figure 6a), these clusters appear related to the opening of 
crevasses.

6.4. Identifying Similar Icequake Waveforms

The 30 representative icequake waveforms in the red (2nd) and orange (3rd) clusters are similar in terms of 
waveform cross-correlation (CC) (see Figure 9c), indicating that in this case, similar fingerprints correspond to 
similar waveforms. Most traditional methods of finding similar earthquakes rely on pair-wise similarity metrics, 
most commonly CC coefficients. CC coefficients, however, are sensitive to parameters such as station-event 
azimuth, wave-propagation direction, and low signal-to-noise ratio, and can therefore systematically reject what 
are in reality, similar events (e.g., Gao et al., 2021). Based on the range of azimuths of the orange representative 
icequakes in Figure 6c, it seems that SpecUFEx is insensitive to variable azimuths in this case. CC analysis 
can also fail when excessive random noise is superimposed on one or both waveforms in the pair. Such noise, 
however, does not appear to hinder clustering of the blue (1st) cluster, although it does lower its CC coefficients 
as expected (Figure 9c).

In addition to a lower signal-to-noise ratio, the blue cluster's icequakes also have larger primary codas (thick 
black arrow, Figure 9b) relative to the first two phase arrivals, compared to the orange and red clusters. The 
varying shapes of the primary codas could be reflections from, for example, the ice surface, ice-bed interface, or 
crevasses, indicating changing material properties of one or more of these interfaces. Further analysis must be 
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undertaken to explore what physical aspects of the icequakes' rupture characteristics, paths, or a combination of 
the two are leading to the waveforms observed in the icequake clustering results.

SpecUFEx could be a useful tool for detecting repeating sequences of tectonic earthquakes. Repeating earth-
quake sequences, or “REQS”, are quasi-periodically occurring earthquakes located on a single rupture patch 
that generate near-identical waveforms, and are frequently used to infer tectonic loading rates and gain insight 
on variable source and path characteristics (see review by Uchida and Bürgmann [2019]). Methods for detecting 
REQS typically employ CC coefficients, and therefore suffer from the shortcomings described above. Comparing 
similar SpecUFEx fingerprints, as opposed to waveforms, could help complement existing REQS catalogs and 
to discover new repeating earthquake sequences as well. Although not a tectonic example, icequakes in the red 
cluster have highly correlated waveforms that occur over a period of weeks in a tight, geographic cluster around a 
lake marginal crevasse, and so could be a possible candidate for a “repeating icequake sequence”.

6.5. Comparing Representative Events of Icequakes and Noise

Figure 12 shows the five spectrograms and fingerprints with the highest silhouette scores for each cluster for 
(a) icequakes and (b) noise samples. Visualizing the fingerprints for the five representative events allows us 
to qualitatively compare the differences between events and noise. We see that icequake fingerprints are more 
complicated than the noise fingerprints, which is to be expected since the icequakes, with their multiple phase 
arrivals, vary more through time than the noise samples, which, within a 60-s window, are essentially invariant. 
Fingerprints show the state transitions from the HMM's state-sequence matrix (Figure 4c), and since the noise 
state-sequence matrices do not vary much through time, they are represented in a fingerprint by one (or two) 
states on the main diagonal.

An important result of the icequake clustering is how the blue (1st) cluster is permeated with a noise from 
∼25–60 Hz associated with the onset of lake drainage (see Figure 12a). This indicates that in this case, clustering 
is based in part on the background noise as well as the signal itself. Icequakes in other temperate glacial settings 
may also occur in the presence of hydraulic noise, so careful attention must be paid when interpreting results as to 
whether they are due to the signal of interest, or some other systematic “noise.” By analyzing the noise alongside 
the signal, our approach allows us to ascertain the impacts of noise on icequake clustering results, which, in this 
case, are substantial.

6.6. Clustering Choices

We choose to employ k-means clustering on the principal components of the fingerprints as an initial step toward 
unsupervised classification of glacial seismic data, although there are many other, more sophisticated clustering 
and dimensionality reduction methods we could have employed. One simplification of k-means is that it defines 
hard boundaries between clusters, meaning that one point can only be assigned to one cluster even if it is on the 
boundary between two or more clusters. A number of points in our PCA manifolds lie at the boundaries of clus-
ters (Figure 5), however, in many cases we ignore these points by focusing on the “representative” events that are 
closer to the ends of the clusters. A clustering algorithm such as Gaussian mixture model (e.g., Murphy, 2022) or 
fuzzy clustering (Dunn, 1973) could possibly better characterize gradual changes between clusters by allowing 
the events at the boundaries of the clusters to be mixtures of multiple clusters. The disadvantage of this technique 
is that certain subsequent interpretive steps that we take, such as comparing cluster evolution through time, 
becomes more difficult when data are not assigned to a single cluster.

In this study, we perform PCA prior to k-means clustering to aid in visualization and interpretation of results. We 
did, however, also try clustering the raw fingerprints, and found similar results as clustering on their principal 
components. This was to be expected, given that we analyze enough principal components to so that at least 
86% of the variance of the raw fingerprint data set is preserved. Other than PCA, we experimented with one 
additional dimensionality reduction technique, t-distributed stochastic neighbor embedding, or t-SNE (Hinton 
& Roweis, 2002), prior to k-means clustering. When comparing clustering results between PCA and t-SNE, we 
found that 81% of icequake records were clustered similarly between the two methods, and 98% of noise records 
were clustered similarly. These three test cases illustrate that our clustering choices appear largely independent of 
choice of dimensionality reduction.
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6.7. Applicability to Other Glacial (or Non-Glacial) Settings

Although in this work we focus on a particularly well-studied glacier, Gornergletscher, here we discuss the appli-
cability of transferring this method to other glaciers, ice sheets, or other seismically active settings. UML is an 
empirical process, and interpretation of results is highly dependent on the availability (and reliability) of ancillary 
data. Our analysis benefits from a wealth of geophysical data from Gornergletscher (e.g., temperature, lake level, 
locations), but we acknowledge that applicability to other settings may be limited by the data available there. In 
addition to ancillary data, all studies using SpecUFEx benefit greatly from a priori knowledge of the timescales 
of interest at the system, in part because the input spectrograms must be of the same lengths. At Gornergletscher, 
for example, we know that surface icequakes have a duration of about 1 s (e.g., Roux et al., 2010; Walter, 2009), 
so 2-s long record windows are appropriate for analyzing that signal. A longer signal (5 s) may be dominated not 
by the icequake, but rather by background noise, which, as we demonstrate in this study, could affect clustering 
results. Other glacial (and non-glacial) settings may have more complicated behavior, for example, icequakes of 
varying duration, or short-duration tremor episodes. Trial and error may be necessary if prior knowledge of the 
timescales of interest is not available.

The data processing steps taken prior to SpecUFEx are crucial, and depend on the quality of data, the geologic 
setting, and the research goals. For example, one of the aims of this study is to compare subtle differences between 
noise samples, therefore, for the noise experiment we tune our STA/LTA filters to remove seismic records with 
icequakes. At other settings, however, one could choose to not separate the icequakes from the noise beforehand, 
and instead use SpecUFEx to help characterize the differences between those two classes. Other, rarer events 
such as basal and intermediate-depth events have also been reported at this glacier (e.g., Walter, 2009; Walter 
et al., 2010) but were purposely excluded from this work. Waveforms from these events can appear markedly 
different from their surficial counterparts, both in terms of frequency content and duration, and they typically 
represent only a small fraction (<1%) of all events. Since we are interested in more subtle differences between 
icequakes, we opt to omit these rare events. Future studies, however, could approach using UML to distinguish 
these rare events from the icequake population as a whole.

7. Conclusion
Here, we demonstrate the utility of unsupervised machine learning for exploring and characterizing large cryo-
seismic data sets that contain a diverse variety of seismic signals. In the case of the Gornergletscher Summer 2007 
season, these signals include icequakes from surficial crevasses, seismic noise from diurnal meltwater flow, and 
a glacial outburst flood. By reducing the spectrograms of these various signals into low-dimensionality finger-
prints, we are able to cluster icequakes with similar waveforms, and noise with similar spectral and waveform 
characteristics. We discover similarities in icequake waveforms and noise spectra that are at times highly subtle 
and would elude simpler seismic analysis techniques. The icequakes that are “representative” of their cluster, 
that is, ones with the highest silhouette scores, exhibit strong intra-cluster similarities and systematic differ-
ences between clusters, for example, each cluster has a characteristic shape of a late-phase arrival that could be 
interpreted as being caused by different sources (e.g., crevasse opening or not). For the noise analysis, one noise 
cluster with particularly high-energy spectra appears 2 days before surficial signals of lake drainage occur, and 
thus could be considered a seismic precursor to the onset of lake drainage, or could mark the true start of lake 
drainage itself. Other noise clusters exhibit a diurnal pattern (i.e., one cluster occurs primarily in the morning 
hours, and another in the evening). These diurnal clusters are interrupted (or perhaps overwhelmed) by the lake 
drainage, but return after its conclusion, and thus could indicate when a stable mode of diurnal meltwater flow 
has returned as the most prominent state. Given that glaciers exhibit a wide range of complex seismic signals and 
that the volume of cryoseismic data is increasing exponentially, glacial seismic data exploration may be improved 
through methods that incorporate unsupervised machine learning. This work demonstrates the value of spectral 
unsupervised feature extraction and the SpecUFEx workflow as a seismic monitoring and discovery tool, particu-
larly in systems where a diverse range of fluid-driven processes can occur.
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Data Availability Statement
The glacial seismic data set is available from the Swiss Seismological Service (https://doi.org/10.12686/sed/
networks/4d) and can be accessed at http://eida.ethz.ch/. SpecUFEx is implemented in MATLAB, and can be 
downloaded from github.com/tsawi/SawiEtAl_2022.
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