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Abstract 
Graph Neural Networks (GNNs) have become a popular 
toolkit for generative floor plan design. Although design 
variation has improved greatly, few studies consider non-
geometrical characteristics, such as building performance, 
in the generative design process. This paper presents a 
GNN-based approach to predict the energy performance 
for floor plan customization (energy-aware design). The 
approach lays the foundation for a performance-aware 
generative design using GNN. The results show that the 
GNN can achieve high accuracy in energy performance 
prediction. 
Keywords: GNN, spatial layout, building energy 
performance  

1. Introduction 
The European 2030 climate and energy framework sets 
targets for cutting greenhouse gas emissions and 
increasing the share of renewable energy and energy 
efficiency (European Commission, 2020). Building 
accounts for 30%-40% of total energy use globally 
(Programme United Nations Environment, 2007), and 
hence, building sectors have a large potential to reduce 
energy consumption. It is crucial to conduct energy 
analysis at the design stage to ensure future buildings are 
more energy-efficient. Decisions made at the early design 
stage can save up to 30% energy usage with no added cost 
(Elbeltagi et al., 2017). 

Graph-based generative design techniques can 
achieve high customization and efficiency in the 
schematic design of buildings (Hu et al., 2020; Para et al., 
2020). However, existing generative design approaches 
on floorplan design seldom consider building 
performance, such as energy efficiency. Only after clients 
select one or a few designs the building performance is 
evaluated using a traditional simulation tool. For example, 
the energy performance can be simulated using 
EnergyPlus (Department of Energy, 2021). This process 
is too slow for real-time feedback. Furthermore, the tools 
require the user to specify large sets of parameters which 
are usually uncertain at the early design stage. Overall, 
relying on simulation for performance estimating is time-
intensive (Pham et al., 2020). Therefore, a new approach 
is needed to integrate building performance estimates into 
generative design techniques. 

Data-driven approaches for building performance 
prediction use machine learning algorithms. Those 
algorithms include Decision Tree (DT) (Yu et al., 2010), 
Neural Network (NN) (Biswas, Robinson and Fumo, 
2016), Random Forest (RF) (Wang et al., 2018), Support 
Vector Machine (SVM) (Li et al., 2009) and multiple 
regression model (Catalina, Iordache and Caracaleanu, 
2013). Compared with the simulation models, those data-
driven approaches evaluate design with less information 
and generate results in a shorter time (Qiao, Yunusa-
Kaltungo, and Edwards, 2021).  

In pursuit of energy-aware generative design, we 
develop a GNN-based approach to building performance 
prediction. Although many studies have reviewed data-
driven predictive models for building energy performance 
(Foucquier et al., 2013; Zhang et al., 2021), no study has 
investigated GNN-based energy prediction. Furthermore, 
previous approaches do not take spatial layouts as a 
design variable (Li et al., 2009; Yu et al., 2010; Wang et 
al., 2018; Olu-Ajayi et al., 2022), since they assume that 
the design is fixed when conducting energy analysis. 
However, the spatial layout is an important design 
variable for building energy performance (Du et al., 
2021), and architects adjust it iteratively during the early 
design phase.  

To address this question, this paper is structured as 
follows. In Section 2, an overview of data-driven energy 
prediction and GNN-based floorplan design are given. In 
Section 3, a three-step approach for building performance 
prediction with GNN is presented. Three criteria are 
formulated to choose among existing GNN architectures 
based on the nature of spatial layout graphs. In Section 4, 
a test case with the proposed approach is implemented. In 
Section 5, a sensitivity analysis to check the dependence 
between floor layouts and building energy performance is 
conducted. Finally, the approach's limitations and 
directions for future work are discussed.  

2. Literature review 
In this section, we explore the potential to predict energy 
performance for floorplan design using GNN. We review 
two related topics: data-driven energy prediction models 
and GNN-based floor plan design. In the review of the 
first topic, we focus on the input features and data 
structures. For the GNN review, we pay attention to the 
graph representation of the design.  



2.1. Data-driven energy prediction model 
The energy performance of buildings can be influenced 
by many factors, which can be categorized into four 
categories: (i) weather data, (ii) building data, (iii) the 
operation data, and (iv) occupancy data (Zhao and 
Magoulès, 2012). The second category is the most 
relevant for us as layout graphs represent building data.  

For example, Wang et al. predicted building-level 
electricity usage using Random Forest (Wang et al., 
2018). The model takes ambient weather conditions, 
occupancy data, and operation time as inputs, but building 
structure and characteristics are neglected. Yu et al. 
developed a decision tree model that considers all four 
categories above in predicting annual energy use intensity 
(Yu et al., 2010). The building characteristics include 
house type, construction type, floor area, heat loss 
coefficient, and leakage area. However, heat loss 
coefficient and leakage area are not accessible at the early 
design stage. Olu-Ajayi et al. compared nine machine 
learning algorithms to predict a building’s annual energy 
rating (Olu-Ajayi et al., 2022). The input features, 
including weather and building data, are collected at the 
early design phase. The building data consists of floor 
area, glazed area, house type, building element 
description (walls, windows, and roofs). The review by 
Zhang et al., 2021) presents further building-related data 
used for energy prediction models. 

However, none of the studies using the second 
category, building data, use the spatial layout to predict 
performance. One possible reason can be that previous 
work represents input features as n-dimensional vectors, 
which cannot fully represent spatial layouts. Unrelated to 
data representations, one more possible reason is that 
spatial layout might not be a strong predictor of building 
performance. 

In our work, we use GNNs that take graphs as input 
and can open up the possibility of exploring if spatial 
layout data can be used in performance prediction. 

2.2. GNN-based floorplan design 
In the field of architecture, the spatial relations between 
each room or structural elements in the layout are 
traditionally represented by 2D floor plan drawings. 
Similarly, many generative design techniques have 
represented layouts as pixel images (Huang and Zheng, 
2018) or voxelized wireframes (Miguel et al., 2020). 
However, these data types lose adjacency values between 
each layout element. Benefiting from the recent 
development in artificial intelligence, especially the 
graph-based deep learning algorithms, several previous 
works use graph neural networks (GNNs) for floor plan 
generation. Nauata et al., 2020 generate house layouts 
using constrained graphs. Para et al. took a further step 
than using constraint graphs by considering additional 
features, such as the number of bedrooms, for output 
manipulation (Para et al., 2020). Based on the given 
adjacency graph, Shekhawat et al. realized the floorplan 
generation with the room dimension defined by the user 
(Shekhawat et al., 2021). Zhang, 2020 used GNN to 
generate architectural layouts from a user’s text 

description, parsing it into graphs with a linguistic parser. 
Hu et al., 2020 make the adjusted-graph input for their 
GNN floor plan generation open to the user for instant 
editing. 

However, all of these related works are confined to 
simple architectural layout design. No objective functions 
have been considered, such as structural performance, 
construction cost, energy behavior, etc. The prediction of 
energy performance based on plan layout has been 
implemented through several different types of data 
structures. For instance, Wortmann and Natanian realized 
the multi-objective (including energy demands for 
heating and cooling) optimization for zero-energy urban 
design with data of building block shapes (Wortmann and 
Natanian, 2020). And also, a deep reinforcement learning 
model was proposed to optimize the solar energy 
performance of the building’s layout in a defined district 
(Han, Yan, and Liu, 2020). Nevertheless, this previous 
research simply laid on the general plan shapes and did 
not involve the inner rooms layout or the spatial relations 
of plan elements in the analysis. As a result, there is an 
opportunity to use GNN to develop a performance-aware 
generative design for the architectural floorplan. 

3. Proposed approach 
In this section, we propose a GNN-based approach for the 
building’s energy performance prediction. The approach 
is composed of the following steps:  
1. Dataset generation  
2. Graph representation of an architectural design 
3. Building performance prediction by GNN 

4.       

3.1. Dataset generation  
We use a generative design tool and an energy simulation 
engine to generate the input and output of the training data 
for building performance prediction by GNN. The 
generative design tool enables designers to specify design 
parameters and generate all possible solution 
permutations. The parameters are set within a feasible 
range, and the correlation of parameters can be defined as 
constraints. For example, a floorplan generator can create 
diverse floor layouts by initializing parameters, such as 
space type and locations automatically. Once the design 
alternatives are completed, the selected energy simulation 
engine calculates the performance values. Given a site 
condition, the weather data is defined in an EPW 
(EnergyPlus Weather Format) and set as a constant for all 
alternatives. The simulation results include heating load, 
cooling load, total energy consumption, etc., which can be 
encoded into a performance matrix.  

3.2. Graph representation of an architectural design 
The input of the GNN model is a graph representation of 
an architectural design. At the early design stage, the 
design can be a layout composed of various functional 
spaces or main building elements. Take a space as an 
example; the space relates to another space in different 
patterns which define their interaction. Typical space 
relationships include adjacent spaces, interlocking spaces, 
space within a space, spaces linked by a common space 
(Francis D. K. Ching, 2007; Hillier, 2007). Each space is 



defined by a set of features, such as room type, area, 
location, etc. A feature matrix and an adjacency matrix 
represent such a design as a graph. The feature matrix is a 
m x n matrix, where n equals the number of spaces and m 
equals the number of features used to describe a space. 
The feature matric represents the features for each space. 
The adjacency matrix represents relationships between 
spaces as a n x n matrix. In the data structure of the 
adjacency matrix, value 1 indicates the rooms to be 
connected, while value 0 refers to no connection. Figure 
1 shows an example of floorplan design and 
corresponding feature and adjacency matrices. Figure 2 
shows the energy performance of the given floorplan.  

 
Figure 1: A floorplan design (left) and 1 × 6 feature matrix 

(right up) and 6 × 6 adjacency matrix (right down) 
 

  
Figure 2: Energy performance for the given floorplan 

 

3.3. Building performance prediction by GNN 
Graph neural networks are standardly designed to 
process and analyze data represented as graphs. For this 
research, the energy performance prediction is regarded 
as a graph regression problem (Dwivedi et al., 2020). In 
other words, the task is to regress the output variable, 
namely energy consumption, against the given graph 
structure. To guide our choice among the existing GNN 
models for graph regression (Dwivedi et al., 2020), 
including GCN (Kipf and Welling, 2017), GraphSage 
(Ahmed et al., 2017), MoNet (Monti et al., 2017), GAT 
(Veličković et al., 2018), and GatedGCN (Bresson and 
Laurent, 2017), we consider the following three criteria: 
1. Is the type of the space relationship (edge feature) 

included or not? 
For instance, the types of spatial relationships, such as 
interlocking spaces, can be modeled as edge features of 
the input graph. GCN and GraphSage, for example, do 
not consider incorporating edge features in their update 
equation. Therefore, they cannot distinguish between 
designs with the same number and size rooms but 
different spatial relationships between them. 
 

2. Is the degree of spatial connectivity high or low 
(sparse or dense graph)? 

In mathematics, a dense graph has an edge count close to 
the maximal number of edges. In architectural design, it 
refers to a design in which each space is connected to 
many adjacent spaces. GNN architectures consisting of a 
long short-term memory (LSTM) based neighborhood 
aggregation mechanism, such as GatedGCN, perform 
poorly in dense graphs. Therefore, it is not efficient for a 
design with a high degree of spatial connectivity. 
 
3. Is the scale of design, e.g., the graph size, large or 

small? 
The information propagation and aggregation in the 
graph require a long computation time when the graphs 
are large. GNN models with a sampling module, like 
GraphSage, can mitigate the problem. Another solution 
is to include an LSTM layer in the model, such as 
GatedGCN. However, this criterion becomes less 
important with the increase in computing power.      
 
Table 2: Suitability of GNNs based on the nature of floor plan 

layout graphs 

 consider types 
of spatial 

relationships 

high degree of 
spatial 

connectivity 

large number 
of spaces 

GCN Not support Suitable Not suitable 

GraphSage Not support Suitable Suitable 

MoNet Support Suitable Not suitable 

GAT Support Suitable Not suitable 

GatedGCN Support Not suitable Suitable 

      
Based on the comparison above, given the fact that our 
graph-based representation of design is a layout graph 
with no edge features, all GNNs are suitable for testing 
the approach.  

4. Implementation 
The general workflow is illustrated in Figure 3. Building 
energy analysis is mainly processed through s1.3.0, which 
are based on the Grasshopper environment in Rhino 7. 
Construction sets are defined with cool climate zone, 
building vintage of IECC 2015, and steel-framed 
construction type. The generated designs consist of six 
rooms with fixed sizes (10,15,20,25,30,35 in square 
meters) and height (3 meters). At the same time, their 
corresponding positions and shapes on the floor plan are 
randomized via the Grasshopper add-on Marmot. This 
addon transfers the graph-based information into a 
schematic floor plan. In our study, each room could have 
six possible types: office, writeup, lab support, laboratory, 
conference, and classroom. Their energy performance 
parameter is pre-defined using the Honeybee energy 
library. The ratio between the area of the apertures and the 
area of the parent face is set to 35%, the height of the 



window is 2.8 meters, the effectiveness of sensible heat 
recovery is 0.81, and latent heat recovery is 0.75 (Tang, 
Ahmad and Yusup, 2018). 

 Our energy simulation will take for a whole annual 
period (with the sampling every 4 hours) at the region of 
logan in Boston (in energy plus weather format). Based 
on our computing configuration (AMD Ryzen 3900X), 
we generated and simulated a total of 3300 cases (taking 
21 days) with our energy analysis process and recorded 
the results into three separate matrices for the graph neural 
network training. The feature matrix stores the room type 
information, the adjacency matrix represents the spatial 
relations of the floorplan layout, and the performance 
matrix offers the final result of energy analysis. To narrow 
the output dimension for easier training in the neural 
network, we merge the energy consumption of 12 months 
into one mean value. 

The graph neural network infrastructure is built on 
PyTorch (Paszke et al., 2019) with the Adam optimizer 
(Kingma and Ba, 2015) and MAE (mean absolute error) 

as loss function. The data set is shuffled and split into 
training, testing, and validating set with the ratio of 8:1:1. 
The function of the scheduled learning rate is 
implemented so that the rate keeps lowering once there is 
no improvement of the validation loss in 5 epochs. A 
maximum of 1000 epochs with the initial learning rate of 
0.001 is configured, and the training will break out once 
the current learning rate is lower than the baseline we 
defined, which is 0.000001.  

In this study, several graph-based machine learning 
algorithms are implemented to test our data structure, 
such as GCN, MoNet, GAT, GraphSage, and GatedGCN. 
In all of these implementations, the residual connections 
(He et al., 2016) are embedded in the forward function, 
and each of the message-passing GCN layers will add 
batch normalization. In the final layers of these networks, 
a three layers downstream MLP (Multilayer perceptron) 
is built to process the final output. We set the kernel size 
of the MoNet model to 3, and the number of heads in the 
GAT model to 8.

 

Model Hidden layer Model layer Parameters Epochs Time Test MAE Train MAE 
GatedGCN 32 4 22785 136 4.1 0.1618 0.1682 
GatedGCN 32 16 87681 128 13.2 0.1618 0.1687 
GatedGCN 128 4 344577 123 5.5 0.1618 0.1692 
GatedGCN 128 16 1341441 147 22.9 0.1618 0.1671 

GCN  32 4 5377 355 4.0  0.1621 0.1675 
GCN  32 16 18817 308 9.2 0.1619 0.1677 
GCN  128 4 78337 298 4.4 0.1619 0.166 
GCN  128 16 279553 313 13 0.1621 0.1671 

MoNet 32 4 13641 389 7.2 0.1626 0.1675 
MoNet 32 16 51873 445 24.9 0.1626 0.1667 
MoNet 128 4 209481 244 7.7 0.1623 0.1662 
MoNet 128 16 804129 339 35.5 0.1624 0.167 
GAT 32 4 309249 368 17.0  0.1621 0.1673 
GAT 32 16 1107969 348 58.4 0.1618 0.1669 
GAT 128 4 4874241 314 51.9 0.162 0.1678 

Figure 3: The workflow of the proposed approach 



Model Hidden layer Model layer Parameters Epochs Time Test MAE Train MAE 
GatedGCN 32 4 22785 136 4.1 0.1618 0.1682 

GAT 128 16 17506305 380 235.5 0.1618 0.1679 
GraphSage 32 4 9473 295 4.9 0.1621 0.1682 
GraphSage 32 16 35201 310 5.1 0.1619 0.1671 
GraphSage 128 4 143873 345 6.3 0.1618 0.1674 
GraphSage 128 16 541697 394 19.5 0.1618 0.1666 

 
All of these networks use library DGL (Wang et al., 

2019) to process the graph data, with the environment of 
CPU on Windows PyTorch, and be trained via AMD 
Ryzen 3900X. As table 1 shows, variant configurations of 
hidden layer numbers and batch size scale has been tested. 
We’ve evaluated the performance of these networks with 
MAE (mean absolute error) in both the training set and 
testing set. As the MAE calculates the distance between 
the ground truth and predicted value, the goal is to lower 
the MAE to near 0. As a result, the table indicates that all 
of the tested graph-based models have a stable and decent 
performance of our defined energy prediction task. 

5. Discussions 
The prediction model is built upon the presumption that 
the floor layout design affects the building energy 
performance. Although previous scholars have proven the 
statement (Du et al., 2021), this study also conducts a 
sensitivity analysis to validate the presumption based on 
our simulation platform (Ladybug + Radiance). In order 
to eliminate the effect of other variants (room size, room 
shape, and room type), each room is fixed as a 3m*3m 
dimension with the same thickness of the walls.  The 
study was also conducted with the same number of room 
types, whose simulation attributes are pre-defined in 
Radiance, and color tagged as: red for office, light yellow 
for writeup, dark yellow for conference, light orange for 
laboratory, dark orange for lab support, light blue for 
classroom, medium blue for corridor, and dark blue for 
storage. A total of 100 test cases were simulated, while 
the only differences between them is the spatial layout 
that is randomly generated. 
 

 
Figure 4: Energy simulation model 
 

 
Figure 5: Layout swap and corresponding building energy 
performance output 
 
 
 

 
Figure 6: Energy distribution of 100 test layouts 
 

 
Figure 7: Energy distribution of 3300 simulation layouts 
 

Figure 4 illustrates the simulation model with the 
default setting in Grasshopper (including window height, 
sizes, etc.). With the definition of orientation (North, 
South, etc.), the solar condition and louver settings 
(rotation degree, depth, etc.) on each side of the facade 
will have corresponding different parameters. It will help 
to explain the different energy outputs in Figure 5. Figure 
5 shows the results when swapping the location of 2 
rooms. The energy analysis results will change with the 
modified room layout (same as the editing of adjacency 
graph), while the general room types and numbers are 



fixed. Figure 6 is the distribution of energy behavior with 
100 test experiments. The room types and numbers are 
fixed (meaning the 'Feature matrix' is set to constant), as 
a result, it concentratedly indicates the adjacency 
influence on the simulation results. Figure 7 shows the 
diversity of the 3300 simulation data in this paper. With 
more freedom on the 'Feature matrix', the distribution of 
the results gets higher diversity. 

6. Limitations 
However, the prediction model has two main limitations. 
First, the variables influencing energy performance are 
not fully taken into the prediction model. This work 
focuses on the design variables, such as spatial layouts 
and space types, defined by architects and clients at the 
early phase. Many other variables, such as weather data, 
are not included in the model. Another reason that 
influences the accuracy of the prediction performance is 
the GNN model itself. The message-passing-based GNNs 
are used, while Weisfeiler-Lehman based GNNs 
(WLGNN) that are not scalable for large datasets 
(Dwivedi et al., 2020) are not included in this work. New 
GNN models might be applied to take more design 
variables into account.  
Second, there is a lack of an interface that can integrate 
generative floorplan design and energy performance 
modeling. The study takes the generated floorplans as 
input and proceeds it via a GNN prediction model to get 
the performance output. Considering that the floorplans 
can be modeled in different approaches, such as 3D 
models or 2D sketches, manual data processing is done in 
this work to convert the design into the graph format. This 
can be solved by applying an object detection algorithm 
to automatically identify the design elements.  

7. Conclusions 
This paper makes three main contributions to data-driven 
energy prediction. Firstly, the proposed approach 
considers spatial layout a novel variable in the energy 
prediction model. Based on the test case presented in the 
implementation section, we conclude the approach shows 
good performance and potential to be scalable to more 
architectural variables, such as room locations. Second, a 
GNN model is utilized for the first time to predict a 
building’s energy performance. Using graphs as 
prediction inputs lays the foundation to make the newly 
emerging GNN generative design techniques 
performance-aware. And third, the proposed approach 
defines three criteria in model selection according to 
design characteristics. By doing so, we not only guide 
domain experts in AI-based applications but also explore 
a new research direction in matching machine learning 
algorithms with design characteristics.  

Future research will pursue three goals. First, more 
architectural features, such as room area, room locations, 
space relationship types, to the existing GNN model can 
be added. The structure of the GNN model needs to be 
adapted to multi-dimensional features accordingly. 
Second, the performance of the GNN models can be 
analyzed according to graphs with different 

characteristics: size, density, etc.  Last but not least, we 
aim to investigate whether GNNs can be used to find the 
design elements that influence the given building 
performance, e.g., energy efficiency, the most. 
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