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Abstract— A plug-and-play model predictive control (PnP
MPC) scheme is proposed for varying-topology networks to
track piecewise constant references. The proposed scheme al-
lows subsystems to occasionally join and leave the network while
preserving asymptotic stability and recursive feasibility and
comprises two main phases. In the redesign phase, passivity-
based control is used to ensure that asymptotic stability of the
network is preserved. In the transition phase, reconfigurable
terminal ingredients are used to ensure that the distributed
MPC problem is initially feasible after the PnP operation. The
efficacy of the proposed scheme is evaluated by applying it to
a network of mass-spring-damper systems and comparing it to
a benchmark scheme. It is found that the novel redesign phase
results in faster PnP operations, whereas the novel transition
phase increases flexibility by accepting more requests.

I. INTRODUCTION

Plug-and-play (PnP) control schemes have received con-
siderable attention for the control of varying-topology net-
works, where agents occasionally join and leave the network
[1]. The need to integrate constraints has motivated research
into combining Model Predictive Control (MPC) and PnP
algorithms for ensuring stability and constraint satisfaction of
such networks. In [2], decentralized PnP MPC schemes were
developed applicable mainly to weakly coupled networks, as
they consider all the dynamic coupling terms as disturbances.
For the regulation of strongly coupled networks, distributed
PnP MPC schemes were developed in [3], [4] based on a
two-phase PnP algorithm. In the redesign phase, once a PnP
request is received, the MPC ingredients are computed for
a specific set of subsystems to ensure stability of the new
network. Then, the transition phase computes a steady state
from which the MPC problem is initially feasible for the new
network. The PnP request is approved if the optimization
problems of both phases are feasible.

We propose a novel PnP algorithm for a class of networked
dynamical systems with Laplacian interconnections. Our
scheme is inspired by [3], but addresses piecewise constant
reference tracking problems, instead of regulation problems.
Unlike [3], the proposed PnP algorithm updates the local
terminal sets online based on the work in [5]–[7]. This
yields larger feasible regions in the transition phase where
more PnP requests can be accommodated and also avoids the
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computation of a global terminal set which might require a
central coordinator. Furthermore, the redesign phase makes
use of passivity theory to update the local terminal costs and
controllers following the work in [8]. Hence, each subsystem
whose terminal ingredients are updated solves only two
optimization problems. This accelerates the PnP operation
compared to [3], where an iterative procedure is used in the
redesign phase. Unlike [8], we consider a more general class
of multiple-input-multiple-output systems whose coupling
can be described with more than one Laplacian.

In Section II, we introduce the considered class of systems
and recall the distributed MPC scheme developed in [7]. In
Section III, we develop the novel PnP algorithm which runs
once a PnP request is received. In Section IV, we evaluate the
efficacy of the proposed scheme using a network of mass-
spring-damper (MSD) systems followed by some concluding
remarks in Section V.

II. PROBLEM FORMULATION
We consider networked dynamical systems with a dis-

tributed structure which can be decomposed into a set M
of M subsystems. Two subsystems are assumed to be neigh-
bours if they are dynamically coupled. The set of neighbours
of the ith subsystem is denoted by Ni and is always assumed
to include the ith subsystem. The notation Ni\i excludes the
ith subsystem from its set of neighbours. The ith subsystem
is described using the linear time-invariant dynamics

xi(t +1) = Aixi(t)+Biui(t)+∑
pi
k=1 Fi,kvi,k(t),

vi,k(t) = ∑
j∈Ni\i

li j,k(y j,k(t)− yi,k(t)), yi,k(t) =Ci,kxi(t), (1)

where t ∈Z+ is the time index, xi ∈Rni , ui ∈Rmi and yi ∈Rpi

are the state, input and output vectors of the ith subsystem and
yi,k refers to the kth output of the ith subsystem. The matrices
Ai, Bi, vectors Fi,k, Ci,k and scalars li j,k are known and have
appropriate dimensions. We assume that all subsystems have
the same output dimension p (i.e. p = pi for all i ∈M).
We also assume that the interconnection due to the kth pair
(vi,k,yi,k) is described using the graph Gk with the Laplacian
Lk ∈ RM×M whose entries are given by

Li j,k =

∑ j∈Ni\i li j,k, i = j,
−li j,k, i 6= j, j ∈Ni,

0, i 6= j, j /∈Ni,
(2)

Note that if j ∈Ni, but the kth output of the jth subsystem
does not affect the dynamics of the ith subsystem, then li j,k
is set to zero. The dynamics (1) can be also given by

xi(t +1) = ANixNi(t)+Biui(t), yi(t) =Cixi(t), (3)



where xNi ∈ RnNi is a state vector comprising the states of
the subsystems in the set Ni and ANi can be constructed
using Ai, Ci,k, Fi,k and li j,k. The states and inputs of the ith

subsystem are constrained to polytopic sets,

xi(t) ∈ Xi = {xi ∈ Rni : Gixi ≤ gi},
ui(t) ∈ Ui = {ui ∈ Rmi : Hiui ≤ hi},

(4)

where the matrices Gi ∈ Rqi×ni , Hi ∈ Rri×mi and the vectors
gi ∈ Rqi , hi ∈ Rri are known. Note that there are no con-
straints coupling states or inputs of different subsystems.

Assuming that the ith subsystem is required to track
the target point xri ∈ Xi whose corresponding in-
put is uri ∈ Ui, we choose the cost function Ji =

∑
T−1
t=0 {||xi(t)− xei ||Qi + ||ui(t)−uei ||Ri} + ||xi(T ) − xei ||Pi +
||xei−xri ||Si , where T is the prediction horizon and (xei ,uei)
is an artificial equilibrium of the ith subsystem. The cost
function matrices Qi, Ri, Pi and Si are known positive
definite matrices of appropriate dimensions and the artificial
equilibrium of the ith subsystem is required to satisfy

xei = ANixeNi
+Biuei ∈ λiXi, uei = Kixei +di ∈ λiUi, (5)

where Ki ∈Rmi×ni and di ∈Rmi define the terminal controller
κi(xi) =Kixi+di and λi ∈ (0,1). Note that Pi and Ki are com-
puted offline such that V (x) = ‖x‖2

P with x = [x>1 , . . . ,x
>
M]>

and P = diag(P1, . . . ,PM) is a Lyapunov function for the
overall system. Unlike the constraints (4), the costs of the
subsystems are coupled indirectly through the dynamic cou-
pling of the equilibrium encoded in (5). The local variables
xi, ui and xNi can be extracted from the global variables x =
[x>1 , . . . ,x

>
M]> ∈ Rn×n and u = [u>1 , . . . ,u

>
M]> ∈ Rn×n through

the projections

xi =Uix, xNi =Wix, ui =Viu, (6)

where Ui ∈ {0,1}ni×n, Wi ∈ {0,1}nNi×n and Vi ∈ {0,1}mi×m

are appropriately constructed.
To ensure asymptotic stability and recursive feasibility, the

state xi(T ) is constrained to lie in the ellipsoidal positively-
invariant terminal set as follows xi ∈ X fi = {xi ∈ Rni : (xi−
ci)
>Pi(xi− ci) ≤ α2

i } where αi and ci refer to the size and
center of the local terminal set of the ith subsystem. This
constraint can be approximated using the Schur Complement
and diagonal dominance as

2αi[Pi] j ≥ b̄i j +αi{Pi} j ∀ j ∈ {1, ...,ni},
αi ≥∑

ni
j=1 b̄i j , −b̄i j ≤ (xi j − ci j)≤ b̄i j ,

(7)

where b̄i ∈Rni is a decision variable, [·] j and {·} j refer to the
diagonal element and the summation of absolute values of
the elements in the jth row of a matrix, respectively. While
the terminal set shape represented by Pi is computed offline,
the size αi and center ci are considered as decision variables
computed online. To ensure the positive invariance of the
local terminal sets, we use the constraint in (8) which is
given overleaf in single column) and

Gk
i ci +‖Gk

i P−1/2
i ‖2αi ≤ gk

i , (9)

H l
i Kici +H l

i di +‖H l
i KiP

−1/2
i ‖2αi ≤ hl

i , (10)

for all i ∈M, k ∈ {1, ...,qi} and l ∈ {1, ...,ri} where Pi j =
WiU>j PjU jW>i , Gk

i and H l
i are the kth and lth rows of the

matrices Gi and Hi respectively, gk
i and hl

i are the kth and
lth entries of the vectors gi and hi. For the derivation of
the constraints (8)-(10), refer to [7]. In summary, the online
optimization problem is given by

min ∑
i∈M

Ji s.t. xi(0) = xmi , (3)− (5), (7)− (10)

∀i ∈ {1, ...,M} & t ∈ {0, ...,T}.
(11)

where xmi is the measured state of the ith subsystem and
the decision variables are xi(t), ui(t), xei , uei , αi, ci, di,
bi, b̄i and ρi j for all t ∈ {0, ...,T}, i ∈M, j ∈ Ni, k ∈
{1, ...,qi} and l ∈ {1, ...,ri}. Although the distributed MPC
problem (11) requires global information, it is still amenable
to distributed optimization techniques such as consensus
alternating direction method of multipliers (ADMM) and
hence, can be solved in a distributed fashion [9].

If subsystems leave or join, the network topology changes
and hence the cost and constraints in (11) also change.
Thus, the asymptotic stability of the closed-loop system and
the recursive feasibility of the MPC problem are no longer
guaranteed. To address this difficulty, we develop below a
PnP algorithm which allows changes in the network topology
while ensuring asymptotic stability and recursive feasibility.

III. PLUG-AND-PLAY DISTRIBUTED MPC

We discuss the PnP alogrithm to be run whenever a set
J of new subsystems and/or a set L of existing subsystems
send PnP requests to the network. After the kth PnP request,
the subsystems of the kth network can be partitioned into
three non-overlapping sets. These sets are the plugged-in
set J comprising the new subsystems joining the network,
the neighbour set Z including the subsystems belonging to
neither J nor L and whose set of neighbours contains at
least one subsystem in J or L and the non-neighbour set O
comprising the subsystems belonging to neither J nor Z .
Similar to [3], the proposed PnP algorithm comprises two
phases: the redesign phase ensuring asymptotic stability of
the kth network and the transition phase ensuring recursive
feasibility of the corresponding MPC scheme. In the sequel,
these two phases are discussed in detail.

A. Redesign Phase

In the redesign phase, the local terminal controllers of
the plugged-in set J are designed. The controllers of the
neighbour set Z are also modified to take into account the
plugged-in set J and the plugged-out set L. The newly-
designed and modified terminal controllers are designed to
ensure the asymptotic stability of the kth network in the
absence of constraints. The weights of the local stage costs
of a specific set of subsystems are then updated to ensure
the asymptotic stability of the kth network in the presence of
constraints. All parameters and variables mentioned in this
section are those of the kth network unless otherwise stated.

First, we start with updating the terminal controllers of the
subsystems in J and Z to asymptotically stabilize the kth



2αi
[
P−1

i
]

k ≥ αi
{

P−1
i
}

k +∑
nNi
l=1

(
|ANi +BiKiUiW>i |αNi

)
kl
+bik ∀k ∈ {1, ...,ni}, −bi ≤ (Ai +BiKi)cNi +Bidi− ci ≤ bi (8a)

2∑ j∈Ni
λi j [Pi j]k ≥∑ j∈Ni

λi j
{

Pi j
}

k +∑
ni
l=1

(
|ANi +BiKiUiW>i |αNi

)>
kl
∀k ∈ {1, ...,nNi}, αi−∑ j∈Ni

λi j ≥∑
ni
l=1 bil , (8b)

network in the absence of constraints. The terminal dynamics
of the subsystems in J and Z under the control law ui =
Kixi +di is given by x+i = (Ai +BiKi)xi +∑

pi
k=1 Fi,kvi,k +Bidi.

By appropriately shifting the equilibrium point, the dynamics
can be expressed as

∆x+i = (Ai +BiKi)∆xi +∑
pi
k=1 Fi,k∆vi,k (12)

where ∆vi,k = ∑ j∈Ni\i li j,k(∆y j,k−∆yi,k) and ∆yi,k =Ci,k∆xi,k.
In addition to the subsystem outputs ∆yi,k, to exploit passivity
we define virtual outputs for each subsystem in J and Z as

∆zi,k =Ci,k∆xi +Di,k∆vi,k for all k ∈ {1, ..., pi}. (13)

where Di = diag(Di,1, ...,Di,pi) is computed below. We also
define ∆zi = [∆z>i,1, ...,∆z>i,pi

]>, ∆vi = [∆v>i,1, ...,∆v>i,pi
]>, Fi =

[Fi,1, ...,Fi,pi ] and Ci = [C>i,1, ...,C
>
i,pi

].

Definition III.1 ([10]) The dynamics in (12) is strictly pas-
sive with respect to the pair (∆vi,∆zi) if and only if there
exist a storage function Vi(∆xi)≥ 0 and a dissipation function
γi(∆xi)≥ 0 such that

Vi(∆x+i )−Vi(∆xi)≤∑
pi
k=1 ∆vi,k∆zi,k− γi(∆xi) (14)

Note that we use virtual outputs because the dynamics in (1)
can not be passiviated using the actual outputs [8].

Moreover, we define L=∑
p
k=1 Lk⊗eke>k where ⊗ refers to

the Kronecker product and ek ∈Rp is a unit vector whose kth

element equals one. One can show that the matrix L≥ 0 since
Lk ≥ 0 and eke>k ≥ 0. Considering C = diag(C1, ...,CM), we
define LC = LC and CL =C>L> which can be decomposed as
follows, LC = [L>C1

, ...,L>CM
]> and CL = [C>L1

, ...,C>LM
]> where

LCi ∈ Rpi×ni and CLi ∈ Rni×pi . Recall that we denote the
diagonal element in the jth row of a matrix by [·] j and
the summation of absolute values of the elements in the
jth row by {·} j. Finally, we define the scalars ni j for all
i, j ∈ {1, ...,M} such that ni j > 0 if i ∈N j, ni j = 0 otherwise
and ∑

M
j=1 ni j ≤ 1 for all i ∈ {1, ...,M}. We now make the

following assumption on the parameters and variables of
the zeroth network (before any PnP operation) which are
different from those of the kth network used in the rest of this
section; here Sn

++ and Dn
++ are the sets of n×n symmetric

and diagonal positive definite matrices, respectively.

Assumption III.1 Before receiving any PnP request, the
dynamics of the ith subsystem in the zeroth network un-
der the control law ui = Kixi + di is strictly passive with
respect to the pair (∆vi,∆zi) with quadratic storage func-
tion Vi(∆xi) = ∆x>i Pi∆xi and dissipation function γi(∆xi) =
∆x>i Γi∆xi. The matrices Pi ∈ Sni

++ Γi ∈ Dni
++ and Di ∈ Dni

++

satisfy [Γ−1
i ] j ≤ 1

{LCi} j+εi
for all j ∈ {1, ...,ni} and [Di] j ≤

1
{CLi} j

for all j ∈ {1, ..., pi} such that {CLi} j > 0 where εi

are arbitrarily small positive scalars. Finally, the stage cost

weights Qi ∈ Sni
++ and Ri ∈ Smi

++ of the ith subsystem sat-
isfy ∑ j∈Ni ni jWiU>j PjU jW>i −WiU>i (Qi + K>i RiKi)UiW>i −
(ANi +BiKiUiW>i )>Pi(ANi +BiKiUiW>i )≥ 0.

Assumption III.1 can be ensured during the offline synthesis
of the MPC scheme (11) for the zeroth network. This
assumption ensures that the zeroth network is asymptotically
stable in the presence of constraints under the MPC scheme
(11) and in the absence of constraints under the controller
ui = Kixi +di for all i ∈M (see [7], [8] for more details).

Theorem III.1 After the kth PnP request, consider the kth

network under the controller ui = Kixi + di for all i ∈
{1, ...,M}. Under Assumption III.1, this network is asymp-
totically stable in the absence of constraints if for each
subsystem in J and Z of this network , there exist Ei ∈ Sni

++,
Xi ∈ Dni

++, Yi ∈ Rni×mi and Di ∈ Dni
++ such that

Ei
1
2 EiC>i (AiEi +BiYi)

> Ei
1
2CiEi Di F>i 0

(AiEi +BiYi) Fi Ei 0
Ei 0 0 Xi

≥ 0, (15a)

[Xi] j ≤
1

{LCi} j + εi
∀ j ∈ {1, ...,ni}, (15b)

[Di] j ≤
1

{CLi} j
∀ j ∈ {1, ..., pi} such that {CLi} j > 0, (15c)

where εi are arbitrarily small positive scalars.

Proof: see Appendix.
Note that if the considered network is asymptotically sta-

ble under the controller ui =Kixi+di where di =−Kixri +uri ,
then the network converges to the target point xri . We now
move to the second step of the redesign phase in which
we update the costs of a specific set of subsystems to
asymptotically stabilize the kth network in the presence of
constraints. For this purpose, we define the matrices P =
diag(P1, ...,PM), K = diag(K1, ...,KM), Q = diag(Q1, ...,QM)
and R = diag(R1, ...,RM). To ensure the asymptotic stability
of the kth network in the presence of constraints under the
MPC controller [6], the Lyapunov condition V (x+)−V (x)≤
−l(x) should be satisfied where V (x) = x>Px and l(x) =
x>(Q+K>RK)x. This, in turn, is satisfied if the inequality
P− (A+BK)>P(A+BK)−Q−K>RK ≥ 0. This condition
can be ensured by appropriately tuning Q and R. Although
this inequality requires global information, it can be used to
derive local conditions for each subsystem.

Theorem III.2 After the kth PnP request, consider the kth

network under the MPC controller (11). Under Assumption
III.1, this network is asymptotically stable in the presence
of constraints if for each subsystem in J , Z and their
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neighbours, there exist Qi ∈ Sni
++ and Ri ∈ Smi

++ such that

∑ j∈Ni
ni jWiU>j PjU jW>i −WiU>i (Qi +K>i RiKi)UiW>i

− (ANi +BiKiUiW>i )>Pi(ANi +BiKiUiW>i )≥ 0. (16)

Proof: see Appendix.
Notice that following [6], asymptotic stability is ensured

in Theorem III.2 with respect to the target point xri . Note also
that each subsystem in J , Z , L and their neighbours can
satisfy (16) by solving a constrained optimization problem
whose cost function is selected so that the kth network
can meet the required performance specifications. The PnP
request is rejected if any of these optimization problems is
infeasible. Note that the scalars ni j can be also considered as
decision variables in such optimization problems and hence
the PnP request is rejected if ∑

M
j=1 ni j > 1 for any i ∈M.

B. Transition Phase

In the transition phase, we compute for the old network
and the new subsystems steady states xsi at which the
PnP operations can take place. These steady states lead to
safe PnP operations during which xi(t + 1) = xi(t) for all
subsystems. To compute these steady states, an optimization
problem is solved in a distributed manner. In this problem,
we ensure that the old network and the new subsystems can
reach their steady states starting from their current states
before the PnP operation. We also ensure that the terminal
sets of the new network and the plugged-out subsystems are
reachable from the steady states after the PnP operation.
Unlike [3], the terminal sets are considered as decision
variable in this optimization problem. In the sequel, the
superscript (·)o refers to the parameters of the old network
before the PnP operations, whereas the superscript (·)n refers
to those of the new network after the PnP operations.

The prediction horizon in the transition phase is divided
into two periods at Tpp ∈ [0,T ]. In the first period, we drive
the current state of the old network and the new subsystems
to the steady state while satisfying the constraints before the
PnP operation. For this purpose, we consider the dynamics
and constraints of the old network and the new subsystems
before joining the network as follows,

∀i ∈Mo∪J
∀t ∈ {1, ...,Tpp−1}


xi(0) = xmi , xi(Tpp) = xsi

xi(t +1) = Ao
Ni

xNi(t)+Bo
i ui(t),

xi(t) ∈ X o
i , ui(t) ∈ U o

i

(17)

In the second period, we drive the states of the new net-
work and the plugged-out subsystems to their terminal sets
while satisfying their dynamics and constraints after the
PnP operation. For this purpose, we consider the dynamics
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Fig. 2: State trajectories of all masses
and constraints of the new network and the plugged-out
subsystems after leaving the network as follows,

∀i ∈Mn∪L
∀t ∈ {Tpp +1, ...,T}


xi(0) = xsi , (7)
xi(t +1) = An

Ni
xNi(t)+Bn

i ui(t),

xi(t) ∈ X n
i , ui(t) ∈ U n

i

(18)

where (7) considers the new network to ensure xi(T ) ∈ X n
fi .

To guarantee that the steady states xsi is a feasible equi-
librium point for the old network and the new subsystems
before joining the network, we consider the constraints,

xsi = Ao
i xsNi +Bo

i usi, xsi ∈ X o
i , ui(Tpp) = usi ∈ U o

i (19)

where usi is the input corresponding to the steady state
xsi and xsNi

is a concatenated vector which includes the
steady states of the subsytems in the set No

i . Finally, we
also consider the artificial equilibrium constraints (5) and
the terminal set constraints (8)-(10) for the new network. In
summary, the transition phase is performed by solving the
optimization problem

min∑i∈Mo∪J ||xmi−xsi || s.t. (17)-(19), (5), (8)-(10), (20)

where the dynamics and constraints of the new network are
used in (5) and (7)-(10). If this optimization problem is
feasible, the PnP request is accepted and the control sequence
[ui(0), ...,ui(Tpp)] is applied to all subsystems before the PnP
operation to drive the whole network to steady state. Once
the steady state is reached, the distributed MPC problem (11)
is solved recursively for the new network. Similar to the
distributed MPC problem (11), the transition phase can be
solved in a distributed manner using ADMM [9].

Theorem III.3 The MPC problem (11) is recursively feasi-
ble with the new network starting from the steady state xsi

if the optimization problem (20) is feasible.

Proof: see Appendix.

IV. SIMULATION RESULTS

The efficacy of the proposed PnP algorithm is illustrated
using a network of MSD systems. The dynamics of each
mass is given in continuous time by ẋi = Aiixi + Biui +
Fi,1li j,1(C j,1x j −Ci,1xi) + Fi,2li j,2(C j,2x j −Ci,2xi) where, for
all i ∈M, xi comprises the position and velocity, ui is
the applied force, Bi = Fi,1 = Fi,2 = [0 1]>, Ci,1 = [1 0],

Ci,2 = [0 1], li j,1 = ki j, li j,2 = ci j and Aii =

[
0 1

ki/mi ci/mi

]
.



The parameters mi, ki and ci represent the mass, stiffness
and damping of mass i and the parameters ki j and ci j
represent the stiffness and damping connecting masses i and
j where mi = ki = 1, ci = 2, ki j = 0.4 and ci j = 0.8 for all
i ∈M and j ∈ Ni\i. All states and inputs are constrained
between -1 and 1. The system is discretized using the method
in [8], [11] to preserve the structure. The sampling time
and prediction horizon are 0.1 seconds and 8 timesteps,
respectively. All optimization problems are solved using
MATLAB with Yalmip [12] and Mosek [13] on a computer
equipped with a 1.9-GHz Intel core i7-8550U processor.

The simulation considers a network of eight MSD systems
with the topology in Fig. 1. The simulation starts without the
eighth mass. The seventh mass sends a plug-out request at
t = 0.6 followed by a plug-in request by the eighth mass
at t = 1.6. Fig. 2 shows the state trajectories of all masses
starting from the initial condition [0.125 0]> towards the
target [0 0]>. Note that the network is converging to the
target despite the PnP operations. From t = 0.6 till t = 1 and
from t = 1.6 till t = 2, all subsystems run the transition phase
and move to their steady states at which their velocities are
zero so that subsystem 7 is plugged out and subsystem 8 is
plugged in, respectively. Apart from these two periods, all
subsystems run the MPC scheme to converge to the target
point. The redesign phase is run in parallel to the MPC
scheme before the transition phase.

We compare our algorithm to the one in [3]. First, we
compare the redesign phase by running 100 simulations with
different coupling strength k18 = 2.5r and c18 = 5r for all
r ∈ {0.01, ...,1}. We report the number of times nR the
redesign phase is feasible and the mean µR and standard
deviation σR of the time taken in seconds by the redesign
phase in Table I. Unlike the algorithm of [3], our algorithm
fails for strong couplings, but is much faster. This is because
the optimization problem of our algorithm is conservative,
but completely decentralized, unlike that of [3] that is
distributed and solved using ADMM, requiring hundreds of
iterations and hence, is computationally demanding. We also
compare the transition phase by running 100 simulations
with different initial position p8 = 0.5r for mass 8 for all
r ∈ {0.01, ...,1}. Both algorithms use ADMM to solve the
optimization problem of the transition phase. We report the
number of times nT the transition phase is feasible and the
mean µT and standard deviation σT of the time required in
seconds per ADMM step. As shown in Table I, our algorithm
requires slightly more time as it has more constraints. But,
it is feasible for all initial conditions due to the additional
flexibility of computing the terminal sets online.

V. CONCLUSIONS

A PnP algorithm is developed for varying-topology net-
works tracking piecewise constant references. The algorithm
comprises a redesign phase based on passivity-based control
and a transition phase that makes use of reconfigurable
terminal ingredients. The redesign phase results in faster
PnP operations and the transition phase adds more flexibility
by accepting more PnP requests compared to a benchmark

TABLE I: The novel algorithm vs benchmark algorithm [3]

Redesign Existing New
nR 100 82

µR (s) 29.73 0.008
σR (s) 3.07 0.0006

Transition Existing New
nT 15 100

µT (s) 0.0024 0.003
σT (s) 0.0004 0.0004

scheme. Future work includes using clustering to steer a
specific set of subsystems to steady state instead of steering
the whole network during PnP operations.

APPENDIX

Proof of Theorem III.1: We use induction to prove the
asymptotic stability of the kth network under the controller
ui = Kixi + di for all i ∈M in the absence of constraints.
First, we start with the base case. Based on Assumption III.1,
the zeroth network before any PnP request is asymptotically
stable. Next, we move to the inductive step. We assume that
the (k− 1)th network is asymptotically stable (i.e. satisfies
the conditions in Assumption III.1). We derive conditions
which ensure that the kth network is asymptotically stable.

First, we derive conditions which ensure that all subsys-
tems of the kth network are strictly passive, or equivalently
that (14) holds for all i ∈M. Note that this condition is
satisfied for O since the dynamics of such subsystems in the
kth network remain the same as in the (k−1)th network which
satisfies Assumption III.1. Hence, it suffices to ensure that
(14) holds for J and Z . Following [8], we take Vi(∆xi) =
∆x>i Pi∆xi and γi(∆xi) = ∆x>i Γi∆xi, substitute (12) and (13) in
(14), use the Schur Complement twice to reach (15a) where
Ei =P−1

i , Yi =KiP−1
i , Xi =Γ

−1
i . The conditions Ei ∈ Sni

++

and Xi ∈ Dni
++ ensure that Vi(xi)≥ 0 and γi(xi)≥ 0.

Second, we derive conditions which ensure that strict
passivity of all subsystems in the kth network imply asymp-
totic stability of this network. For this, we define ∆z =
[∆z>1 , ...,∆z>M]>, ∆v = [∆v>1 , ...,∆v>M]>, C = diag(C1, ...,CM)
and D = diag(D1, ...,DM). We also define the Lyapunov
function V (∆x) = ∑

M
i=1 Vi(∆xi) and the auxiliary function

γ(∆x) = ∑
M
i=1 γi(∆xi) = ∆x>Γ∆x with Γ = diag(Γ1, ...,ΓM).

Recall that (14) holds for all subsystems in O with quadratic
storage and dissipation functions. Moreover, (15a) implies
that (14) holds for all subsystems in J and Z with quadratic
storage and dissipation functions. By summing up (14) for
all i∈M, we reach V (∆x+)−V (∆x)≤∆v>∆z−γ(∆x) where
∆z =C∆x+D∆v, ∆v =−LC∆x and γ(∆x) = ∆x>Γ∆x.

To prove asymptotic stability of the kth network under the
controller ui =Kixi+di for all i∈ {1, ...,M} in the absence of
constraints, it suffices to ensure that ∆v>∆z− γ(∆x) < 0 or
equivalently, Γ+C>LC−C>L>DLC ≥ diag(ε1In1 , ...εMInM )
where εi are arbitrarily small positive scalars and Ini is
an ni × ni identity matrix. Following [8], we exploit the
Schur Complement, diagonal dominance and the fact that
L ≥ 0, Xi ∈ Dni

++ and Di ∈ Dni
++ to reach (15b)-(15c) for

all subsystems in J , Z and O. Note that (15b)-(15c) are
satisfied for all subsystems in O since the neighbours of
these subsystems remain the same and hence, the matrices
CLi and LCi do not change. Hence, it suffices to ensure that
(15b)-(15c) are satisfied for all subsystems in J and Z .



If (15) is not satisfied for one or more subsystems, the
PnP request is rejected. The network remains the same and,
hence asymptotic stability is preserved and the conditions in
Assumption III.1 hold until the next PnP request. If (15) is
satisfied for all subsystems, the PnP request can be accepted
depending on the next steps in the PnP algorithm. If it is, the
controllers are redesigned based on (15) and the conditions in
Assumption III.1 hold after the PnP operation is completed,
hence until the next PnP request.

Proof of Theorem III.2: Using induction, we prove
the asymptotic stability of the kth network under the MPC
controller (11) in the presence of constraints. First, we start
with the base case. Based on Assumption III.1, the zeroth
network before any PnP request is asymptotically stable.
Next, we move to the inductive step. We assume that the
(k− 1)th network is asymptotically stable (i.e. satisfies the
conditions in Assumption III.1). We derive conditions which
ensure that the kth network is asymptotically stable.

According to [6], the kth network under (11) is asymp-
totically stable if the global inequality P− (A+BK)>P(A+
BK)−Q−K>RK ≥ 0 holds. This inequality holds if and
only if x>(P− (A + BK)>P(A + BK)− Q− K>RK)x ≥ 0
for all x ∈ Rn. Due to the imposed structure on the ma-
trices Pi, Ki, Qi and Ri, this inequality can be written
as ∑

M
i=1 x>i Pixi−∑

M
i=1(ANixNi +BiKixi)

>Pi(ANixNi +BiKixi)−
∑

M
i=1 x>i (Qi +K>i RiKi)xi ≥ 0 or equivalently,

∑
M
i=1

(
1−∑

M
j=1 ni j

)
x>i Pixi +∑

M
i=1

(
∑

M
j=1 ni j

)
x>i Pixi

−∑
M
i=1(ANixNi +BiKixi)

>Pi(ANixNi +BiKixi)

−∑
M
i=1 x>i (Qi +K>i RiKi)xi ≥ 0.

Since ∑
M
j=1 ni j ≤ 1 by design, it suffices to ensure that

∑
M
i=1

(
∑

M
j=1 ni j

)
x>i Pixi − ∑

M
i=1(ANixNi + BiKixi)

>Pi(ANixNi +

BiKixi)−∑
M
i=1 x>i (Qi +K>i RiKi)xi ≥ 0. Using (6), the result-

ing inequality can be reformulated as

∑
M
i=1

(
∑

M
j=1 ni j

)
x>Ni

WiU>i PiUiW>i xNi

−∑
M
i=1 x>Ni

(ANi +BiKiUiW>i )>Pi(ANi +BiKiUiW>i )xNi

−∑
M
i=1 x>Ni

WiU>i (Qi +K>i RiKi)UiW>i xNi ≥ 0.

One can show that this global inequality
can be decomposed into the local inequal-
ities ∑

M
j=1 ni jx>Ni

WiU>j PjU jW>i xNi − x>Ni
(ANi +

BiKiUiW>i )>Pi(ANi + BiKiUiW>i )xNi − x>Ni
WiU>i (Qi +

K>i RiKi)UiW>i xNi ≥ 0 for all i ∈M. Since ni j = 0 if i and
j are not neighbours, this holds if and only if the local
LMIs (16) are satisfied for all i ∈M. Note that these LMIs
are satisfied for all subsystems excluding J , Z and their
neighbours since the (k−1)th network satisfies Assumption
III.1. Hence, it suffices to ensure them for these subsystems.

If (16) is not satisfied for one or more subsystems, the
PnP request is rejected. The network remains the same and,
hence asymptotic stability is preserved and the conditions
in Assumption III.1 hold until the (k+ 1)th PnP request. If
(16) is satisfied for all subsystems, the PnP request can be

accepted depending on the next steps in the PnP algorithm. If
it is, the stage cost weights are redesigned according to (16)
and the conditions in Assumption III.1 hold after the PnP
operation is completed, hence until the next PnP request.

Proof of Theorem III.3: Let (xi(0), ...,xi(T )) and
(ui(0), ...,ui(T −1)) be feasible trajectories of the optimiza-
tion problem (20) for the ith subsystem. Therefore, each
subsystem can be steered to its steady state xsi in finite
time since xi(Tpp) = xsi and ui(Tpp) = usi . Moreover, let
αi and ci refer to feasible size and center of the terminal
set computed by (20). Define xi,tail = (xi,T+1, ...,xi,T+Tpp)

where xi, j = (An
Ni
+ Bn

i Kn
i Un

i W n>
i ) j−T xNi(T ) + ∑

j−T
k=1 (A

n
Ni
+

Bn
i Kn

i Un
i W n>

i )k−1Bn
i di and ui,tail = (Kixi(T ) + di,Kixi,T+1 +

di, ...,Kixi,T+Tpp−1 + di). Note that xi,tail is the evolution of
the terminal dynamics and hence lies inside the terminal
set described by αi and ci. Thus, (xi(Tpp), ...,xi(T ),xi,tail),
(ui(Tpp), ...,ui(T − 1),ui,tail), αi and ci represent a feasible
solution for the MPC problem (11) applied to the new
network. In other words, the MPC scheme for the new
network is initially feasible. Recursive feasibility can thus
be ensured using standard MPC arguments [14].
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