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A B S T R A C T

Railway Scheduling is one of the most important tasks in railways. The
successful operation of a railway system directly depends on the timetable.
The timetable defines all processes in the operation of railway and defines
both efficiency and quality of service for the railway. Operators of a railway
are interested in designing timetables as optimal as possible, in order to
use existing resources of the railways system as efficiently as possible. An
optimal timetable minimizes costs, provides maximum transport capac-
ity, and enables railway operators to offer high-quality services to their
customers. The design of a timetable is a highly complex task, which at
present time can only be solved by a subdivision. Many of the existing
railway networks are so large, that their operators are forced to divide the
planning of a network-wide timetable into several sub-steps. Often, the
planning of a network-wide timetable is divided by the geography of the
network, into local scheduling problems. In consequence of the division,
computed timetables do often not correspond to the optimal network-wide
timetable. Capacity losses are the result. This thesis focuses on methods and
algorithms for the automation of railway scheduling. The focus lies on the
efficiency and scalability of new methods and algorithms, to compute an
optimal timetable for large-scale planning problems. The thesis is divided
into three major parts, each of which addresses different aspects of railway
scheduling through different methods.

The first part of this thesis is dedicated to the development of a decom-
position approach to compute a timetable. In contrast to today’s methods of
dividing the problem, an optimal timetable is to be calculated by the novel
method. Decomposition approaches many times show an improved scalabil-
ity compared to centralized approaches, which motivates the development
of such a methodology for scheduling. A comprehensive analysis highlights
existing decomposition approaches in the area of railway scheduling and
discusses strengths and weaknesses of the different decompositions and
solution methodologies. Based on the analysis, a novel geographic decompo-
sition is developed. Necessary theory for the novel decomposition is devel-
oped and translated into a practical implementation. Experiments show an
increased scalability of the new method, compared to existing approaches.

The second part of the thesis focuses on the enhancement of the decom-
position method developed in the first part. Statistical knowledge about
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recurrent situations in railway operations is exploited to reduce the com-
putational complexity of the existing decomposition method. It shows, that
recurrent situation can be partially learned, and the decomposition method
can be accelerated. The accelerated decomposition method is particularly
suitable for time-critical applications, such as the real-time adjustment of
schedules due to unforeseen disturbances.

The third part of the thesis investigates an alternative decomposition
approach, compared to the first part of the thesis. The focus lies on the ef-
ficiency of a methodology. By a particular decomposition of the scheduling
problem, the problem can be separated into two characteristic problems.
In particular, the search for the optimal timetable is separated from the
question of feasibility. It shows that an optimal timetable can be found by
means of a problem widely known in the literature, which can be solved
extremely efficiently. In practical experiments, the novel decomposition
method proves highly efficient for problems of railway scheduling.

This thesis introduces several new approaches and enhancements for the
automation of railway scheduling. Newly developed methods and algo-
rithms show improved runtime and scaling behavior compared to existing
approaches. The results of this thesis provide a foundation for the future
development of fully automated systems for railway scheduling, and a tool
for computing network-wide optimal timetables.
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Z U S A M M E N FA S S U N G

Die Fahrplanplanung ist eine der wichtigsten Aufgaben der Bahn. Der
erfolgreiche Betrieb einer Bahn steht in direktem Zusammenhang zum
Fahrplan. Der Fahrplan definiert alle Abläufe im Betrieb einer Bahn und
definiert damit die Effizienz als auch die Servicequalität des Bahnbetrie-
bes. Die Betreiber einer Bahn sind daran interessiert Fahrpläne optimal zu
entwerfen, um bestehende Resources der Bahnanlage möglichst effizient
einzusetzen. Ein optimaler Fahrplan minimiert Kosten, bietet maximale
Transportkapazität und ermöglich es den Bahnbetreibern dem Kunden ein
qualitativ hochwertiges Angebot zu bieten. Der Entwurf eines Fahrplans
ist eine hoch komplexe Aufgabe, welche zu heutigen Zeit nur durch eine
Aufteilung überhaupt lösbar ist. Viele der bestehenden Bahnnetze sind so
gross, dass deren Betreiber gezwungen sind, die Planung eines netzweiten
Fahrplans in mehreren Teilschritten durchzuführen. Dabei wird oftmals
die Planung des gesamten Netzes, in geographische Gebiete aufgeilt. Eine
Zerteilung der Planung hat zur Konsequenz, dass resultierende Fahrpläne
für das gesammte Netz oftmals nicht dem optimal möglichen Fahrplan ent-
sprechen. Kapazitätseinbussen sind damit unvermeidlich. Die vorliegende
Arbeit konzentriert sich auf Methoden und Algorithmen zur Automatisie-
rung der Planung von Fahrplänen im Bereich der Eisenbahn. Im Fokus liegt
die Effizienz und Skalierbarkeit neuer Methoden und Algorithmen, um
auch für grosse Planungsprobleme eine optimale Lösung zu errechnen. Die
Arbeit ist unterteilt drei Teile, welche jeweils durch verschiedene Methoden
unterschiedliche Aspekte der Fahrplanplanung adressieren.

Der erste Teil dieser Arbeit widmet sich der Entwicklung eines Dekom-
positionsansatzes zur Errechnung eines Fahrplanes. Bei dem neuen Ansatz
wird, im Gegensatz zu heutigen Methoden, ein optimaler Fahrplan er-
rechnet. Dekompositionsansätze zeigen oft eine verbesserte Skalierbarkeit
gegenüber zentralisierten Ansätzen, was die Entwicklung einer solchen
Methodik motiviert. In einer umfangreichen Analyse werden bestehende
Dekompositionsansätze im Bereich der Fahrplanplanung aufgezeigt und
die Stärken und Schwächen der verschiedenen Dekompositionen und Lö-
sungsmethodiken diskutiert. Auf Basis der Analyse wird eine neuartige
geographische Dekomposition entwickelt. Die dazu notwendige Theorie
wird hergeleitet und in einer praktischen Implementierung umgesetzt. Expe-
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rimente zeigen eine erhöhte Skalierbarkeit der neuen Methodik gegenüber
bestehenden Methoden.

Der zweite Teil der Arbeit fokussiert die Weiterentwicklung der Dekom-
positionsmethode aus dem ersten Teil. Dabei wird statistisches Wissen über
wiederkehrende Situationen in Bahnbetrieb ausgenutzt, um den Rechenauf-
wand der bestehenden Dekompositionsmethode zu reduzieren. Es zeig sich,
dass wiederkehrende Situation teilweise erlernt werden können, und damit
die Dekompositionsmethode beschleunigt werden kann. Die optimierte
Dekompositionsmethode ist besonders geeignet für die zeitkritische Appli-
kation der Echtzeitanpassung von Fahrplänen aufgrund unvorhergesehener
Störungen.

Der dritte Teil der Arbeit untersucht einen alternativen Dekompositions-
ansatz, im Vergleich zum ersten Teil der Arbeit. Dabei steht die Effizienz
der Methodik im Vordergrund. Durch eine gezielte Dekomposition der
Planungsproblems eines Fahrplans, lässt sich das Problem in zwei Teilpro-
bleme aufspalten. Die Suche nach dem qualitativ optimalen Fahrplan wird
von der Frage der Machbarkeit separiert. Es zeigt sich, dass ein qualitativ op-
timaler Fahrplan mittels eines in der Literatur weitaus bekannten Problems
gefunden werden kann, welches äusserst effizient lösbar ist. Durch die
Separierung der zwei Teilprobleme kann ein hoch effizienter Algorithmus
zur Fahrplanplanung geschaffen werden.

Die vorliegende Arbeit zeigt mehrere neue und aufeinander aufbauende
Ansätze zur automatisierten Fahrplanplanung. Neu entwickelte Methoden
und Algorithmen weisen eine verbesserte Laufzeit und Skalierung im Ver-
gleich zu bestehenden Ansätzen in der Fahrplanplanung. Die Resultate der
Arbeit bieten ein Fundament zur Entwicklung von vollautomatisierten Sys-
temen zur Fahrplanplanung, und somit einem Werkzeug zur Berechnung
netzweit optimaler Fahrpläne.
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1
I N T R O D U C T I O N

1.1 motivation

Importance of Railways and Railway Traffic Management

Railways have always played an important role in the society and econ-
omy of modern countries. In public transport, railways provide fast, safe
and efficient service for medium and long distance travels. In economy,
railways provide a safe and cost effective way for national and interna-
tional freight transport. In many European countries railways are a sub-
stantial mode of transport to the population, e.g., Germany or Switzer-
land the modal split in 2019 shows that 6.2% [31] and 13% [28] of all
passenger kilometers where made made by railways with total of 2 931

Mio. [31] and 641 Mio. [29] passengers in the year 2019. A significant
part of the populations need for travel is satisfied by railways. From
an industrial point of view, in the year of 2019, German Railways and
the Swiss Federal Railways served respectively 123 066 Mio. ton kilome-
ters [30] and 9 908 Mio. ton kilometers [27] of freight transport. With
these numbers railways make up to 10.6% [30] and 37% [27] of the to-
tal freight transported in these countries. Indisputably, the above num-
bers underline the importance of railways to public transport and econ-
omy.

Challenges of Railway Traffic Management

In railways, enormous efforts in planning are necessary to operate railway
systems smoothly and at the same time, assure a satisfactory level of service
to all customers. The summary of planning in railway systems is known
as railway traffic management (see Section 1.2). Modern countries with
well developed railway systems face major challenges in railway traffic
management, organizing and successfully operating their system [6]. The
sheer amount of infrastructure and resources to be acquired, maintained,
operated and controlled within such large systems forces the operators of
railway systems to split railway traffic management into several phases
and multiple planning steps in each single phase. The phases are know as
the strategic, tactical and operational phase or in other words the design,
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2 introduction

planning and control phase [8]. In the strategic (design) phase, future avail-
able resources of the railway system are planned together with a concept of
usage. In the tactical (planning) phase, a plan for the operation of available
resources is designed. For the profitability of a railway it is crucial that all
resources are operated as economically as possible. In the operational (con-
trol) phase, the railway system is operated according to results of the tactical
phase. Real-time control of the system deals with unforeseen disturbances.

Often even a single planning step inside a single phase of railway traffic
management (e.g. the design of a timetable) is too complex, when con-
sidered on the railway network of an entire company or country, such
that these problems cannot be tackled as a whole [6]. In consequence,
many of the current practices in railway traffic management are to split
up any problem of planning (often geographically), and address the sep-
arated parts individually, to then manually or computer-aided, merge
local results back together to a consistent network-wide solution of the
problem [49, 60]. While this process is able to provide solutions for the
extremely complex problems of railway traffic management, the process
is in general suboptimal. Most often local results are merged using rules
of practice, i.e., by heuristics or practical experience of human planners
(e.g., high-speed trains have precedence over suburban trains, first come
first serve strategies etc. [34, 41]). These practices, while providing sat-
isfactory results, clearly neglect a large set of possible solutions, some
of which are likely to perform better than results of current practice. It
is a major challenge in the organization of railways to improve current
practices beyond rules of practice and find best possible solutions to all
the problems of railway traffic management. Only then the benefits of
railways for society and economy can be ensured and increased in the
future.

Automation in Railway Scheduling

Railways experience in recent years a continuously rising demand for pas-
sengers and freight transport, which must be matched with a increasing
capacity of railways, to maintain and improve the existing levels of service.
In many cases, the capacity of a railway can be increased through the
acquisition of new network resources, e.g., infrastructure or trains. The
acquisition of new resources is in general a rather cost expensive way to
increase the capacity of a railway and increases the amount of infrastruc-
ture to be maintained. In contrast to the acquisition new resources, many
railway companies, including the Swiss Federal Railways [58], see a more
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cost effective lever on capacity in the current practices of railway traffic
management, in particular practices for railway scheduling, which consider
the design and adjustment of railway timetables. Optimizing the operation
of existing resources, increases, in a very cost effective way, the capacity
of railway systems and allows to meet the future demand. Improvements
on current practices require new methodologies to tackle the problems of
scheduling in railway traffic management and getting one step closer to the
optimal utilization of railway resources [6].

Considering the computational aspects of problems in railway scheduling,
most of them are proven to be NP-Hard and require an exponentially
growing solving-effort with the growth in size of a problem [6]. The size
itself of a problem may increase due to an increased level of detail or simply
due to an increased number of resources considered. Current algorithms of
academia are in general unable to handle problems of railway scheduling
for large-scale networks, e.g., those of entire countries, without significant
simplifications of the problem. A clear need for algorithms handling larges
and more detailed instances of railway scheduling exists [39]. In either way,
the scalability of scheduling problems in railway traffic management is in
direct conflict to the needs of railway operators.

With a more integrated manner of solving scheduling problems in railway
traffic management, railway operators aim for an improved performance
and more capacity from their system, to meet future demands.

This thesis proposes novel methodologies and algorithmic approaches,
for problems of railway scheduling, i.e., timetabling and rescheduling, in
railway traffic management. With methodologies of decomposition, the
exploration of recurrent situations and the insights gained by infeasibilities,
novel algorithms for the problems of railway scheduling are developed to
handle larger problems more efficiently than approaches of the existing
literature. Overall, this thesis is a contribution towards the automation of
railway scheduling and a step towards a cost effective way for railway
operators to match the future raising demand.

1.2 background

Railway traffic management is the summary of all organization, planning
and control processes necessary to operate a railway system. So far, the
only practically successful way to handle the challenges of railway traffic
management is to separate the process into a hierarchy of sub process, each
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itself individually manageable by available technologies and organizational
processes of today. In this section, a background on problems of railway
traffic management is given with a particular focus on the problems ad-
dressed in this thesis, that are the problems of railway timetabling and
railway rescheduling. The process of railway traffic management can be
divided into three sequential phases [44]:

Strategical Phase

The first phase of railway traffic management is referred as the strategical
planning phase. Processes within the strategical phase are characterized by
a long term time horizon and in general a lager number of involved stake-
holders, i.e., railway infrastructure and operator companies and numerous
governmental institutions. [8] describes the strategical phase as the phase
of resource acquisition. Strategical planning itself can be divided in two
subphases.

The first subphase of strategical planning considers the network planning,
i.e., the study of available resources, e.g., railway infrastructure or rolling
stock, and planning of future changes or acquisitions in resources; hence the
term resource acquisition. Network planning is a very strategic, politically
influenced kind of planning, performed on a abstract level, such that in
general it is not addressed by academia.

The second subphase of the strategical planning is the planning of rail-
way lines, i.e., the line planning. A railway line describes a railway service
in terms of served stations, frequency and capacity of the service. Each
railway line has an origin, a destination and intermediates stations to be
served. The basis for the line planning involves the elements of railway
infrastructure, demand and political requirements. Political requirements
are often minimal required capacities (e.g., in terms of available seats) for
particular lines, in consequence of the governments duty to provide public
transport to all citizens. In the literature of railway traffic management,
researchers proposed different mathematical models for the problem of
line planning. Most models can either be categorized as an integer [15, 33,
54] or (non-linear) mixed integer [9, 10] mathematical program. On these
models, different objectives for the mathematical optimization have been
proposed. Approaches like [15] or [33] optimize from an operators point of
view, the operational cost of the line plan in terms of numbers of lines and
number of coaches used to satisfy the demand; other approaches present
an objective from a passengers point of view (e.g., [9], [54]).
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At the end of the strategical planning phase a line plan exists. The line
plan specifies a set of railway lines to be operated in the future and on
future railway infrastructure. In the next planning phase of railway traffic
management, outgoing from the line plan, a schedule (timetable) for the
operation of train services is computed.

Tactical Phase

The second phase of railway traffic management is referred as the tactical
phase. [8] describes this phase as the resource allocation phase. In this phase
railway resources, i.e., infrastructure elements, rolling stock and railway
staff, are allocated to the train services specified in the line plan. The tactical
phase can be further divided into three subphases.

In the first subphase of tactical planning, railway infrastructure resources
are allocated to the train services. This process is often referred as timetable
planning or simply timetabling. The result of timetabling is a plan of oper-
ation for all train services together with a plan for the allocation of railway
infrastructure to individual train services over time. For more details on
timetabling see Section 1.2.1.

Subsequent, in the second phase of tactical planning, rolling stock is
allocated to the train services in the timetable. The major contribution of
rolling stock planning is an optimized plan for the circulation of rolling
stock, to generate transportation capacity (e.g., in terms of seats available)
as demanded by the line plan, while minimizing the amount of shunt-
ing operations. Input to rolling stock planning is an a-priory computed
line plan and a corresponding timetable, together with information on
the available rolling stock and its initial distribution over the railway net-
work. Rolling stock circulations are often designed to end with a rolling
stock distribution on the network, that is identical to the initial situation;
such circulation can in general be reapplied with only minor additional
shunting efforts. Approaches in the literature on rolling stock planning
can be categorized by the units to be assigned to individual lines of the
line plan and whether underway combining of those units is considered
or not. Approaches as [1], [50] or [11] assign complete locomotive-hauled
units to train services considered in the timetable. Approaches such as [17]
or [25] consider the individual assignments of locomotives and coaches
into train units. In approaches such as [50], assigned train units can only
be combined or separated at the start or end of a line in the line plan, i.e.,
no underway combining is considered. Differently, approaches such as [17]
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consider the underway combination of single elements into train units, also
with regards to the time necessary to reorder trains units. Objectives for the
optimization in rolling stock planning are often chosen either to minimize
the operational cost or to minimize passenger discomfort. Operational costs
are represented through fixed and variable costs [4], shunting actions [50],
the number of units used [55] or seat shortage with respect to the expected
demand [1, 25]. The result of rolling stock planning is a sequence of trips
for all rolling stock units, i.e., a rolling stock circulation.

In the last subphase of tactical planning, the crew scheduling is per-
formed, where the railway staff is assigned to the train services considered
in the timetable. The crew schedule is planned based on the rolling stock
circulation and the timetable. Each train has to be assigned a driver as well
as a minimal amount of crew members necessary to operate the train. Crew
scheduling usually includes, besides the constraint of all shift being covered,
constraints of working regulations to assure a legal working environment for
the staff. Possible such constraints are (meal) breaks, minimal and maximal
duration of shifts (e.g., [2, 59]), variation in the schedule [37] or schedules
according to the location of staff and depots [36]. Crew scheduling is in gen-
erally modeled as an integer problem, in particular a problem of set covering.
The problem of set covering is in general extended by additional constraints
due to the above discussed legal and operational aspects. Most commonly,
the objective minimized in crew scheduling is the total cost of staff deployed.

Other elements of the tactical phase are possibly the planning of main-
tenance (e.g., [43]) and the planning of shunting operations (e.g., [26]).

The result of the tactical phase are schedules for train services, rolling
stock and crew. In the next phase of railway traffic managements, these
plans are executed on the railway network.

Operational Phase

The last phase of railway traffic management is referred as the operational
phase. [8] describes this phase as the resource consumption phase. For the
successful operation of a railway network, it is crucial to handle delays and
disruptions efficiently. To deal with delays, operators of a railway network
perform real-time rescheduling of railway operations, where the existing
timetable, computed during the tactical phase is replanned under consid-
eration of real-time information, e.g., delays of trains or disruptions of the
network. Such replanning is in general referred to as real-time reschedul-
ing or dispatching. Real-time rescheduling reduces delays in the sense of
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reestablishing the original timetable and preventing existing delays from
spreading over the railway network. Insights on rescheduling are given in
section 1.2.2.

Figure 1.1 gives an overview on all the individual phases and planning
steps of railway traffic management.

Strategical Phase

Network Planning

Line Planning

Tactical Phase

Timetabling

Rolling Stock Planning

Crew Scheduling

Operational Phase

Real-Time Rescheduling

Figure 1.1: Overview of Planning Steps in Railway Traffic Management.

1.2.1 Timetabling

In the first subphase of tactical planning, a line plan is converted into a de-
tailed schedule of operations for all train services operating on the railway
infrastructure. This process is generally referred to as timetable planning or
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simply timetabling. Aside from constraints of the infrastructure, timetabling
also includes constraint from a safety system, the dynamics of the rolling
stock and of course the line plan.

Timetabling is in general performed on either of two abstraction levels
of the railway network. Macroscopic timetabling is a simplifying approach
where the railway network is reduced to stations and lines, which yields
a significant decrease in computational complexity [12, 40]. In macroscopic
timetabling, railway traffic is scheduled on an abstract level in terms of
arrivals and departures at important nodes of the railway network. A more
detailed modeling is the microscopic representation of a railway network.
The infrastructure in microscopic models is considered at the level of block
sections, i.e., sections of few hundred meters of railway track. The level of
detail in microscopic timetabling corresponds to a level of detail used in
safety systems for collision avoidance [5, 14]. In microscopic timetabling,
entry and exit times for all trains over all traversed block section are sched-
uled. While a macroscopic approach simplifies the timetabling problem,
only a microscopic approach can guarantee the operability (in terms of
safety) of the resulting timetable.

Orthogonal to micro-macro, timetabling can be categorized into peri-
odic and non-periodic. Periodic timetabling [48] intends to simplify the
timetabling process by rolling out a short schedule, e.g., for few hours of
operation, over a longer time horizon, e.g., a day or several days. Conse-
quentially the time horizon for the actual computation can be shortened
in periodic timetabling, reducing the overall size of the problem. While the
size of a problem is generally reduced in periodic timetabling, periodicity
constraints introduce an additional complexity to the periodic formula-
tion of the timetabling problem. In non-periodic timetabling, the entire
time horizon is scheduled at once. As such non-periodic timetabling is in
general a more complex computational problem, but in advantage over
periodic timetabling, non-periodic operations such as irregular freight trains
can directly be included in the planning process. Differently, in periodic
timetabling, non-periodic operations are usually manually inserted into the
periodic timetable after the computations.

In the literature on railway timetabling a variety of modeling techniques
are proposed. The most common approach is the formulation of a mixed-
integer mathematical program, often under the usage of big-M constraints
[21, 56]. Other popular approaches are graphical formulations, where the
constraints of a timetabling problem are graphically represented, e.g., in the
alternative graph of [45] for job-shop scheduling. Discrete event models [23,
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57] formulate operations to be planned as discrete events, which, in com-
bination with forward simulation or max-plus algebra, are used to derive
a timetable. Constraint programming models [53] propose an alternative
formulation, where the problem of timetabling is specifically formulated
in the language of a specific class of solving techniques, i.e., constraint
programming algorithms.

All of the above models are solved with respect to a variety of objectives.
Probably the most popular objective is the minimization of the total time
of operation [21]. In this case, from an operators point of view, the time
span from the first operation till the last operation over all train services
is minimized. In case the line plan also inherits temporal bounds on the
operation of train services, the objective can be reformulated as minimizing
deviations, i.e., delays, with respect to the temporal bounds of line plan [23].
Other examples of objectives in the literature are energy related objectives
[14] or in case delaying a train is not an option, the absolute number of
trains services included in the final timetable [13].

An important aspect in the problem of timetabling is the routing of trains
over the network. Many of the models discussed above consider for each
train service a fixed route, given as an input to the problem of timetabling.
Railway networks are often structured as such, that only within the closer
perimeter of a station, routing alternatives are available, and longer con-
nections between hubs consists of single or double tracks; this makes the
assumption of fixed routes often very reasonable, especially in the case
macroscopic models. As the counter part, designated approaches of the
literature address in specific the problem of routing train services in areas of
stations or other areas with routing alternatives [62]. Extended approaches
[12, 46] include the question of routing directly into the problem of schedul-
ing, where the direct inclusion in general proposes a significant overhead
with respect to computational complexity.

The result of timetabling is a detailed plan of operations for all train ser-
vices to be operated, i.e., a timetable. The plan of operations determines ex-
act departure and arrival times of train services at stations and other strate-
gically important nodes of the railway network. Implicitly, the timetable
also defines routes and orders of train services on the railway infrastructure.

1.2.2 Real-Time Rescheduling

All planning steps before the operational phase of railway traffic manage-
ment are in general done long term in advance before the actual operation,
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e.g., days or months in advance. Once a detailed schedule of operation
is established, it must be continuously updated during the operation, to
adapt the schedule to unforeseen events, i.e., smaller disruptions or delays.
Updating an existing schedule under consideration of real-time information
is referred as (real-time) rescheduling; numerous examples are given in [24].
Rescheduling considers often the same microscopic representation of the
railway network as microscopic timetabling, making these two problems
almost identical in their constraints. Rescheduling is usually performed
under very strict time limitations to enable real-time control of the railway
system. To achieve a solution within limited time, rescheduling typically
focuses on very small geographic areas in the railway network to keep the
size of rescheduling problems at a moderate size.

Models for rescheduling coincide with those of timetabling. (Mixed) Inte-
ger programming [51], alternative graph [19] and discrete event models [20]
are present in the literature of rescheduling. Depending on the approach,
the model includes rerouting possibilities [22, 35] or not [19]. The models
are optimized with respect to recovering an optimal system state. With an
operators point of view, the goal is to minimizing the total or maximal delay
in the system [52], the number of kept connections or the on-time arrival
of trains [20]. Further similar objectives exist in the literature (see e.g. [24]).
With a passengers point of view, objectives as [22] or [3] optimize earliest
passenger arrival or the total number of served passengers. For broader
overview see [18] or [24].

The results of real-time rescheduling is an adapted version of the timetable,
in general with adapted travel times of train services and possibly different
routings and orderings for train services. The adapted schedule is used by
the railway dispatcher to control the railway system towards a desirable
state.

1.3 research questions

This thesis is dedicated to the problem of railway scheduling. The overarch-
ing research question of this thesis is:

How can the scalability and efficiency of algorithms in railway scheduling be im-
proved?
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The main research question of this thesis is detailed in four different
subordinate research questions, which are to be answered within the scope
of this thesis. The four research question of this thesis are:

Q1: How can problems of railway scheduling be decomposed?

For many different problems faced in applications of science and engineer-
ing approaches of decomposition have proven of great value for large-scale
problems as they exploit particular structures in the underlying mathe-
matical optimization problem [16]. Also in the field of railway scheduling,
decomposition approaches have proven their value (e.g. [40, 42]). With a
detailed study of the literature on decomposition in problems of railway
scheduling, it is to understand different ways to decompose a problem of
railway scheduling. Decompositions of the literature should be analyzed
to understand the structure of problems in railway scheduling and how
these can be exposed for a decomposition of the problem. Methods of the
literature should be characterized by individual strengths and weaknesses
to understand their suitability to different problems of scheduling.

Q2: Can decomposition improve the scalability of algorithms for railway timetabling?

Scalability is a major issue in railway timetabling. With more scalable
algorithms larger problems of timetabling can be addressed and global
solutions can be assembled from fewer, larger solutions, improving the
overall quality of timetables. Algorithms for railway scheduling with good
scalability are required. In contrast, problems of railway timetabling are NP-
Hard, making scalability a major challenge. With this research question it is
to understand, whether a decomposition approach can lead to an algorithm
for railway timetabling with improved scalability and by which larger
instances of railway timetabling can be addressed, compared to algorithms
of today. Findings from research question Q1 should be used as a basis.

Q3: Can statistical learning of recurrent situations improve existing approaches
of OR for the time-critical problem of real-time railway rescheduling?

The application of real-time rescheduling for railway is a crucial part
in the operation of a railway system. Within short time, adaptations of
timetables with high quality are required to keep the stability and the level
of service of a railway at a high level, at all times. In the application of
rescheduling, very often recurrent situations occur. Often timetables are re-
peated hourly or daily and similar situations occur during every repetition
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of the timetable. This research question is to address the question, whether
statistical knowledge about recurrent situations in railway operations can
be exploited to improve existing algorithms of OR for railway rescheduling;
possibly the findings of research question O2. An improvement in compu-
tational performance will increase the practical applicability of algorithms
to the problem of real-time rescheduling.

Q4: How can proofs of infeasibility be used to design efficient algorithms for
railway timetabling?

Proofs of infeasibility have been used, and proven valuable in many
applications of mathematical optimization (e.g., Decomposition [32] or Opti-
mization [47]). As a proof of infeasibility exposes insights to the underlying
mathematical optimization problem, it can be used to strengthen an existing
mathematical formulation or provide insights (e.g., lower bounds on the
objective) during the process of solving a problem of mathematical opti-
mization. With this research question it is to understand, whether proofs of
infeasibility can be used in the design of algorithms for railway timetabling,
leading to more efficient algorithms that those of today. It should be ana-
lyzed how knowledge on a problem of timetabling, gained through a proof
of infeasibility, can be exploited for efficiency. The goal is to create an novel
algorithms based on proofs of infeasibility, that provides optimal or near
optimal solutions in short time.

1.4 research contribution

Relevance to Society

This thesis contributes with novel methodologies and algorithms for the
problems of railway scheduling. Novel methods and algorithms can be used
in software tools for automated railway scheduling, either to design new
timetables or adapt timetables in real-time. Automated railway scheduling
brings several benefits for railway operators and railway passengers in
comparison to practices of today.

Automation in the design of railway timetables (i.e., timetabling) has
already proven to bring great benefit to railway operators (e.g., [38]). Timeta-
bles computed by computer algorithms often prove superior to a human
designed timetable, resulting in more available capacity on the same infras-
tructure [40]. On a local scale, algorithms for railway timetabling are able
to evaluate the full spectre of possible timetables compared to practices
of today, and provide best possible solutions. On a global, network-wide
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scale, efficient and scalable algorithms can over come the limitations of
today’s practices, where in the process of merging local timetables, global
optimal timetables are lost and with it, potential network capacity. Algo-
rithms with better scalability, such as those developed in this thesis, can
help to overcome losses in merging local solutions, by reducing the number
of geographical splits in the planning problem, resulting in an increased
network capacity. An increase in capacity not only benefits railway op-
erators, but also railway passengers. With an increased capacity through
improved timetabling, railway operators can achieve the necessary capacity
with less cost intensive and time consuming infrastructure acquisitions.
Reduced infrastructure and operational costs for railway operators reflects
in lower ticket pricing for railway customers. Furthermore, an increased
capacity through better timetabling can help to raise the level of service for
passengers in a cost effective manner. In summary, an automation in railway
timetabling brings mutual benefits to railway operators and passengers,
underlining the relevance of this thesis.

Automation for real-time adjustments existing timetables (i.e., reschedul-
ing) improves the real-time control of railway systems. Highly efficient
algorithms as those of this thesis, provide quickly and reliably optimal or
near optimal adaptations of the existing timetable to the current situation
of the network. Algorithms can relieve human dispatches in time-critical
situation, providing solutions reliably, within short time. Furthermore, scal-
able algorithms can address larger areas of the railway network quickly to
better estimate the impact of rescheduling actions on the entire network.
Consequentially, with more efficient, more scalable algorithms the stability
and reliability in the operation of a railways will improve, lowering costs
for railway operators and raising the level of service for passengers. With
novel methodologies, this thesis supports the development of automated
rescheduling, relevant for practice.

Relevance to Science

The present thesis is first and foremost relevant to the field of research
in railway scheduling. The thesis introduces novel methodologies for the
decomposition of problems in railway scheduling and provides a strong
basis for further research. Proposed methodologies generalize beyond the
applications shown in this thesis and may be used by other researchers
to create a variety of decompositions in the field of railway scheduling.
Decomposition in railway scheduling is today an active field of research
as possible key concept to tackle scalability issues of railway scheduling
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problems and thus to tackle a major obstacle when putting results of
academia into practice [7].

Beyond the scope of railway applications the relevance of this thesis
extends to a much broader spectrum of scheduling problems. Schedul-
ing problems arise in a variety of applications in the industry and are of
great interest to researchers in the field of operations research (OR) and
mathematics [61]. The present thesis proposes novel methodologies for the
decomposition of scheduling problems that are not limited to applications
of railways. Rather, the novel methodologies of this thesis are provided
on general description of the scheduling problem, which motivates the
extension of findings to other fields of research.

1.5 methodology

Data

The research of this thesis was conducted in close collaboration with the
Swiss Federal Railways (SBB). Real-life data (instances) on the problem
of railway timetabling were provided by SBB for the experiments in this
thesis. Provided data are specifications and boundary conditions originally
used for the design of the current railway timetable of Switzerland, in
operation at the time this research has been conducted. All instances of
railway timetabling provided by SBB are reduced versions of the original
planning problem and are temporal and geographic excerpts from the
original timetable of Switzerland; the original timetable covers a full day
of operation in the entire country. As real-life data has been used for the
experiments in this thesis, all computational results provided, reflect the
actual traffic on the railway of Switzerland.

Data provided by SBB is devoted to timetabling on a microscopic rep-
resentation of the railway network, i.e., timetabling on the level of block
sections, used by the safety system of the railway. Therefore, all prob-
lems of railway scheduling, i.e., timetabling or rescheduling, addressed
throughout this thesis are conducted for a microscopic representation
of the railway network. The provided data further contains detailed in-
formation about the dynamic interactions of rolling stock and infras-
tructure. For every combination of a train, i.e., a particular combina-
tion of rolling stock material, and block section in the infrastructure, a
specific minimal running time at the resolution of seconds is provided.
Also, the data of SBB includes additional safety requirements, that are
different from most of the literature. For each pair of train and block
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section, a safety corridor is specified as chain of subsequent block sec-
tions, which must be free of other traffic, to allow for a safe emergency
stop. Finally, data provided by SBB includes service aspects. For each
train, operational requirements are given, which specify the stopping time
and minimal transfer times to other trains at every station served by the
train.

Validation

For the experiments of this thesis, a software tool was provided by SBB, to
validate solutions (timetables) for their operational correctness. The software
tool evaluates a timetable for physical correctness, safety and satisfaction of
operational requirements. For all trains included in a timetable, scheduled
events are validated for physical feasibility with regard to train dynamics
on the particular traveled infrastructure. Furthermore, a timetable is vali-
dated for safety as emergency safety corridors are validated to exist for all
trains on all traveled block sections. Finally, the timetable is validated for
operational requirements. The timetable must satisfy minimal and maximal
stopping times as well as minimal and maximal transfer times to meet the
required level of service.

All computational results of this thesis have been evaluated and proven
to be operationally correct through the software tool provided by SBB.

1.6 organization

The present thesis is organized in three main parts, plus an additional
appendix. The main parts of this thesis are discussed over four chapters,
that go along with four publications and the four research questions of
Section 1.3. Figure 1.2 provides an overview of the organization, showing
respective chapters and the corresponding research question of Section 1.3
answered in each chapter. Part II and Part III of the thesis are independent.
Part II continues research results of Part I.
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Chapter 1: Introduction

Part I: Decomposition

Chapter 2: Literature Review [Q1]

Chapter 3: Logic Benders Decomposition [Q2]

Part II: Recurrent Situations

Chapter 4: Rescheduling [Q3]

Part III: Infeasibilities

Chapter 5: Set Covering [Q4]

Chapter 7: Conclusion

Appendix: Python-Smarties

Figure 1.2: Overview of the structure of this thesis.

Part I: Decomposition

The largest part of research conducted in this thesis is devoted to a decom-
position approach for the problem of railway timetabling. Results from Part
I of this thesis are further extended in other parts of this thesis. The research
in Part I is separated into two chapters, answering research question Q1

and Q2 from Section 1.3 respectively:

Chapter 2 answers research question Q1. In Chapter 2 an exhaustive
review is conducted on the existing literature of decomposition approaches
for railway scheduling (i.e., timetabling and rescheduling). In Chapter
2, we identify domains of decompositions in the literature and discuss
corresponding advantages and disadvantages of different domains. We
categorize and analyze different techniques of decomposition, and study
properties of the resulting decomposed problem of railway scheduling.
Finally, different methods are reviewed, which are used to address the
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decomposed formulations of railway scheduling. In the review, we identify
strengths and weaknesses of different decomposition approaches and point
out potential research gaps, some of which motivated further research
conducted in Chapter 3.

Chapter 3 answers research question Q2. In Chapter 3 a novel logic-
based Benders decomposition is developed for the problem of railway
timetabling. The problem of timetabling is geographically decomposed
in a way, different from the existing literature, based on the ideas of a
logic Benders decomposition. Theory for a novel logic Benders cut is de-
veloped to account for the special structure of the proposed decomposi-
tion. An exhaustive series of experiments empirically shows the benefits
of the proposed decomposition, compared to existing approaches. With
a second series of experiments, limitations of the proposed decomposi-
tion approach are exposed; computational benefits of the decomposition
are shown to rely on particular structural properties of the underlying
scheduling problem. Conventional approaches prevail over the novel de-
composition if particular structural properties are absent in a problem of
timetabling.

Part II: Recurrent Situations

Chapter 4 answers research question Q3. In Chapter 4 recurrent situations
in the problem of railway rescheduling are exposed through methods of sta-
tistical learning. In this chapter, results from Chapter 3 are extended to the
problem of real-time railway rescheduling. Methods of statistical learning
expose patters in recurrent situations of railway rescheduling, which can be
used to computationally accelerate the decomposition approach proposed
in Chapter 3. With an enhanced decomposition approach it is possible to
handle problems of rescheduling under strict time limitations, as it is the
case for real-time railway traffic management (i.e. real-time rescheduling).
With an exhaustive series of experiments, improvements and practical limi-
tations of statistical learning in combination with a decomposition approach
are shown.

Part III: Infeasibilities

Chapter 5 answers research question Q4. In Chapter 5 a computation-
ally efficient approach for the problem of railway timetabling is proposed,
based on infeasibilities of the problem. A series of incremental heuristics
is introduced to address the problem of railway timetabling in a highly
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efficient manner. A decomposition, different from the decomposition of
Chapter 3, incrementally exposes infeasibilities in the problem of railway
timetabling, to translate the optimization in timetabling into a problem of
set covering. The detection of infeasibilities is based on implementations
developed during the research of Chapter 3, i.e., Python-Smarties. Incre-
mental heuristics are proposed to address the problem of set covering and
provide a highly efficient method to compute near optimal solutions for
the problem of railway timetabling. We prove the efficiency of incremental
heuristics in a series of experiments and provide empirical evidence for
the performance regarding computational time and solution quality of our
novel approaches.

The thesis concludes in a discussion in Chapter 6, where achieved results
of the thesis are critically assessed and put into perspective with prac-
tice.

Appendix

In the course of this thesis a Boolean Satisfiability Solver (Python-Smarties)
has been developed alongside the theoretical contributions of the thesis. The
solver provides the algorithmic backbone for all experiments conducted in
the scope of this thesis. In the appendix of this thesis (Appendix A) we pro-
vide background information on concepts and methods from the literature,
which have been combined into the implementation of Python-Smarties.
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abstract

Providing punctual, reliable and performant services to customers is one
main goals of railway network operators. The railway scheduling problem is
to determine, ahead of time (timetabling), a plan describing the timing of the
operations in a railway network, or updating such plan during operations
(rescheduling). By optimization and automation, it is possible to operate
more trains on the network, closer to the infrastructure capacity. Especially
when the scale and complexity of the scheduling problem is increasing,
for large-scale networks and multiple interconnected problems, this is of
great value for network operators. When planning or adjusting railway
operations becomes increasingly complex, modern scheduling algorithms
can bring significant performance and economic benefits. In this survey
we review approaches in the state of the art for the problems of railway
scheduling. We show how the many different approaches of decomposition
proposed in the literature of railway scheduling can be categorized into two
general principles. We study different solution methods and identify a list
of open topics for dealing with large-scale problems for future research.

2.1 introduction

Railway operations are normally following a predetermined plan (timetable),
which specifies times for arrival, departure and passing at stations. Such
plan can be designed well ahead of time (timetabling) or adjusted during op-
erations, when delays occur (rescheduling). When following the timetable,
trains should not encounter congestion or result in unsafe situations with re-
gards to infrastructure or other traffic on the network. The timetable is also
the key to an efficient usage of railway resources and infrastructure. Careful
planning of resource usage, especially for large-scale railway networks and
dense traffic, enables a railway system to achieve high performance [30].

The timetable can be designed (offline) a few days up to months before
actual operation, normally based on a given planned demand for railway
services. The objectives are often to maximize the amount of services run-
ning, to fulfill the demand, to ensure a limited deviation from an ideal offer
which could be politically determined. During operations, the timetable is
adjusted, when delays occur, and real-time deviations need to be taken into
account. The adjustment to unforeseen delays and disturbances is often
targeting the minimization of deviations between the offline timetable and
what is actually produced; or a quick recovery of the offline plan. This
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problem is known as railway rescheduling. Both problems deal with the
time allocation of railway services, considering scarce resources such as in-
frastructure capacity or vehicles. They identify choices in timing of services;
their explicit relative order or sequence; and the route that trains follow
in the network or at stations. The present paper considers both problems,
under the unifying term of railway scheduling.

In railway scheduling, operations of trains are generally described by
means of events. One event can represent the start or end of an operation.
Typical operations are traversals of trains over the railway network, or dwell
processes at stations. The problem can be considered at different levels of
detail, resulting in two typical models, macroscopic and microscopic. In
macroscopic railway scheduling, railway stations are abstracted into nodes,
such that the network is represented in a set of nodes and lines. A single
operation of a train in macroscopic modelling is the traversal of a train
from one station to another. In microscopic railway scheduling, the rail-
way network is considered in segments of few hundred meters of railway
track, i.e., block sections, which provide enough precision in control, also
for safety systems. A single operation of a train in microscopic modelling
is the traversal of a single block section. The time of an event in railway
scheduling is generally represented either in continuous or time-indexed
form. In case of indexed time, often a time-space graph is used which
connects points, i.e., events, in the indexed space according to operations.
Points outside of the graph are neglected for scheduling. Extensive surveys
on models of railway scheduling can be found, e.g., in [22], [11].

From a computational point of view, railway scheduling has been proven
NP-Hard in many different versions of the problem (e.g., [47], [44], [14]).
Scalability issues for large-scale problems are thus unavoidable and it is
crucial to keep these issues under control through the design of novel meth-
ods. Current practice in the industry is to split up (often geographically)
a large-scale scheduling problem and schedule separated parts individually.
Manually or computer-aided, the local timetables are computed and after-
wards merged together to a consistent (i.e., globally feasible) network-wide
timetable. The merging process is in general suboptimal. Often such process
is a kind of heuristic, rule-based process (e.g., high-speed trains have prior-
ity over suburban trains, first come first serve strategies etc.), where resource
utilization potential is lost. Due to the heuristic merging, it is unavoidable
that not all possible scheduling solutions are considered and evaluated.

Complementary to those suboptimal processes stands a continuously
increasing demand in public transport and freight transport on railway
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systems, which requires an increasingly higher level of performance from
railways. While the acquisition of new network resources, e.g., infrastruc-
ture or vehicles, is a possible way to increase performance, it is in general
very expensive, slow and with little flexibility. Many railway companies,
e.g., the Swiss Federal Railways, instead focus on improving the utilization
of existing resources. Railway operators show an increasing interest in novel
methods, which solve the railway scheduling problem at an optimal level [2].
If large-scale practical instances could be solved to optimality, the existing
resources could be used more efficiently, going beyond the shortcomings of
today’s practices and matching the potential already identified in academia,
e.g. in [34].

A promising direction towards handling scalability issues of large-scale
railway scheduling problems is the idea of decomposition. Similar to current
practices, the problem is separated into smaller subproblems. Different from
current practice, appropriate mathematical methods can reliably deliver
good solutions, or even guarantee to find an optimal one. Decomposition
has already been proven promising in numerous planning problems for
railways (see e.g., [3], [34]). Still a gap between academia and industry
exists. The approaches of academia have been evaluated on scenarios of
increasing complexity up to 80 trains over 600 block sections [19], 150 train
over 968 block sections [40] or 130 trains over 53 block sections [34]. Real
life large-scale networks, like the one of Switzerland, operate more than
10000 trains per day over more than 5000 block sections. The need for novel
methodologies to further scale up the complexity in automated railway
scheduling becomes evident, and motivates our review on principles and
solution methods of decomposition for railway scheduling.

In this review, we analyze the literature of decomposed railway schedul-
ing and provide insights on the individual decomposition principles and
solution methods, highlighting similarities and differences between dif-
ferent existing approaches in the literature. This review is thought to be
interesting and useful for both researchers and practitioners. For researchers,
we comprehensively analyze the railway scheduling problems in the lit-
erature, identifying which specific aspects and mathematical structures
have been shown to be particularly suitable for decomposition. We also
identify and motivate alternative mathematical descriptions of the problem.
Moreover, we can identify combinations of mathematical models, decom-
posed according to some principles, and solution methods. This identifies
some combinations which seem promising, even though have not been
studied yet. For practitioners, we discuss how decompositions based on
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physical characteristics of the problem have been more popular, possibly
because they can be more directly understood. Nevertheless, there are other
approaches possible, which can be identified. We believe our review of
solution methods enables the discovery of new practical applications as we
review advantages of different methods.

We believe, with a coherent discussion of mathematical models, decompo-
sition principles, and solution methods, we can inspire further development
from an academic point of view and motivate possible industrial appli-
cation of those concepts. This review focuses on the problems of railway
timetabling and rescheduling, i.e., respectively the design and adjustment
of a timetable for the operation of a railway system. Many other prob-
lems are also relevant, in a supply of railway services: determining which
infrastructure is needed, how to structure lines of the required services,
which vehicles should be available, and for which services they should be
used, how much personnel is required and on which services it should be
driving. In the same spirit of the decomposition that this paper discusses,
those problems are most often treated independently, due to different time
scales, and different stakeholders and objectives. In this review, we assume
that the input to a scheduling problem is given, from a solution to some
problems upstream, and we can assume that the scheduling problem will
influence other problems downstream. We will neglect upstream and down-
stream problems (such as line planning, timetable rolling stock and crew
scheduling), and focus only on timetabling and rescheduling.

The remainder of this review is structured as follows. In Section 2.2 we
review different domains of decomposition in the literature and analyze
decompositions in the literature from a railway point of view. In Section 2.3
we discuss principles of decomposition to understand the decompositions
of Section 2.2 from a mathematical point of view. In Section 2.4 we review
solution methods of mathematical optimization from the literature to un-
derstand how a decomposed problem is addressed to determine a globally
feasible (and optimal) solution. A discussion on strengths and weaknesses
of different decompositions, but also on future research needs, is given in
the final Section 2.5.

2.2 decomposition in railway scheduling

Decomposition is a technique to solve mathematical problems, especially
beneficial when dealing with large-scale instances, which generally show
issues of scalability. A decomposition will operate on an original large-scale
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problem, reformulating it into a set of different, smaller and possibly multi-
ple problems. We call decomposition principle, the way an original problem is
reformulated into multiple problems. Any of those problems can be solved
with specific solution methods, which need to solve the problems themselves,
but also harmonize their solution into something which satisfies the con-
straints of the original problem. The decomposition is the combination of a
decomposition principle and a solution method.

We label a decomposition as hierarchical, if one problem has responsibility
of the coordination, and results in one-to-many (vertical) communication to
many other problems. This identifies a master problem with the responsibil-
ity of coordination (hierarchically higher) and (possibly) many subproblems
(hierarchically lower). The subproblems do not need to be of the same math-
ematical type and structure, and most often, they are not. Moreover, the
subproblems communicating with a single master can also have same, or
different, mathematical type and structure. With a small abuse of notation,
we might call subproblems the entire set of problems in a decomposition,
or just those problems, that, compared to a master problem, are at the same
lower level.

We label a decomposition as decentralized, if it results in many-to-many
(horizontal) communication between problems, that are of the same math-
ematical type and structure. We call those problems to be at the same
level.

The two types of decompositions are not exclusive and can appear both
in some complex approaches. Moreover, boundary cases exists which can
be hard to classify. Depending on specific characteristics, we can call the
multiple problems of one level as subproblems (which highlights that
they are constrained by some other problem), and some other as masters
(which highlights that the problem is coordinating some other problems). If
there are multiple levels, it can be that the subproblem for one master is
actually itself a master for another subproblem. Finally, we call centralized
the original, non-decomposed problem.

Decomposition is often motivated by special structural properties of the
original problem, which lead the subproblem(s) to be a problem signifi-
cantly easier to be solved than the original problem. For instance, it may
generate, from one large problem, numerous smaller subproblems that are
computationally much easier to solve (e.g., due to a superlinear relation
between instance size and complexity). Decomposition is advantageous in
case the computational benefits from solving the decomposed problems
prevails over the additional efforts of coordinating them. We here identify
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as typical the structure of a single master and multiple subproblems, but
some approaches might be considered having a single subproblem; and/or
no master problem.

A coordination scheme and a corresponding solution method is the way to
solve the resulting problems of a decomposed reformulation. A coordination
scheme is an unavoidable necessity in decomposition to achieve globally fea-
sible (and optimal) solutions. Most solution methods are iterative schemes,
where alternately master and subproblems are solved. Through the coor-
dination scheme, solutions of the subproblems have an influence on the
master problem to find feasible and optimal solutions. The combinations
of principles to decompose and solution methods to coordinate result in
the variety of decompositions we can find in the literature.

In this section we review decomposition approaches, looking at domains
and aspects by which academic approaches have decomposed the problem
of railway scheduling. Domains classify structures in the mathematical
model of the scheduling problem, which are exposed for a decomposed
reformulation of the problem. We use the concept of domains, to link struc-
tures of the mathematical model to physical or mathematical characteristics
of the scheduling problem and identify possible advantages and disad-
vantages for different domains. In our review, we identified four domains
of decomposition in the literature: the geographic, temporal, entity and
generic domain. Within each domain, few aspects can be identified, based
on which an original problem is separated into master problem and sub-
problems. While the geographic, temporal and entity domain have strong
ties to the physical application of railways, we categorize a decomposition
as generic if the related structure exploited has ties to general mathematical
optimization. Still for most of the decompositions in the generic domain, a
railway related interpretation can be made. In general, the geographic, tem-
poral and entity domain can be seen as special cases of the generic domain.
Table 2.1 summarizes the domains and aspects in the decompositions of the
literature. We will show later in Section 2.3 how particular decompositions
are achieved at a mathematical level.

2.2.1 Geographic Domain

In decomposition approaches of the geographic domain (GEO), the original
(centralized) scheduling problem is separated such that different subprob-
lems correspond to different geographic areas, based on the underlying
structure of the railway network. Events in the same subproblem correspond
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to operations which take place in the same area. The majority of geographic
decompositions in the literature propose areas containing several stations,
which generally happen to be of uniform size. The master problem in such
decompositions considers the traffic in-between areas. A smaller number
of geographic decompositions propose a decomposition by lines and sta-
tions. In this case, each individual station is defined as an individual area,
corresponding to an individual subproblem; one large area contains what
might remain of the entire railway network, defining the master problem.

2.2.2 Temporal Domain

In decomposition approaches of the temporal domain (TMP), the original
scheduling problem is separated into subproblems, each of which covers
a reduced time period, such that all together cover the temporal span of the
original problem. The master problem in such decompositions considers
the railway traffic at temporal boundaries. For a temporal decomposition it
is necessary to know, for each event, a time window when it can take place,
such that events can be assigned to a particular time period (i.e., a sub-
problem). In rescheduling, such assignment can be done using the original
timetable. Reduced time periods may be overlapping in time, such as [56] or
be disjoint such as [40]. The consequences of such choice will be analyzed
in Section 2.3. Decompositions in the temporal domain are structurally very
similar to decompositions in the geographic domain (see also Section 2.3).
We can consider the concept of neighboring subproblems as those sharing
some events or having events that are somehow constrained to events of
each other. In this case, geographic decompositions have a variable number
of neighbors, depending on the topology. Temporal decomposition instead
have at most two neighboring subproblems (one earlier, one later).

2.2.3 Entity Domain

In decomposition approaches of the entity domain (ENT), the original
scheduling problem is separated into subproblems, each of which considers
the scheduling a single entity. Entities can be any arbitrary set of railway
resources (e.g., a train, or an infrastructure element). The master problem
in such decomposition contains the interactions amongst entities. Possible
entities identified in the literature are individual trains as individual en-
tities or a group of trains as a single entity; there exists also the case of a
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Domain Aspect Publications

Geographic (GEO) Geographic Areas [19], [17], [18], [28]

[48], [52], [40], [42]

[54]

Lines and Stations [32], [34], [33]

Junctions [37]

Temporal (TMP) Overlapping Periods [56]

Disjoint Periods [40]

Entity (ENT) Single Train [51], [8], [50], [7]

[41], [9], [10], [40]

[6], [12], [13], [5]

[49], [4], [21], [48]

[46], [45], [29], [14]

[23], [15]

Group of Trains [26], [38]

Infrastructure [4], [5]

Generic (GEN) Ordering Binaries [31], [27], [38], [28]

Routing Binaries [27], [38], [57], [20]

Macroscopic Scheduling [1]

Duration of Operations [53]

Table 2.1: Decompositions in Railway Scheduling.

decomposition where one entity is the set of all trains and a second entity
is the set of all block sections in the network.

For the majority of decompositions in the domain of entities, individual
trains are considered as individual entities. In this case, each train is sched-
uled in a single subproblem. Other decompositions in the domain of entities
define a group of trains as a single entity. In this case, a single subproblem
concerns the scheduling of all trains in the respective group. Grouping of
trains can be conducted based on, e.g., priority [26] or train-type [38]. A
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special case in the domain of entities are [4, 5] where exactly two entities
are defined. One entity represents all trains of the scheduling problem
and a second entity represents all block sections of the scheduling prob-
lem. In this decomposition, trains and infrastructure usage are optimized
independently and the master problem is to assure the match between
them. In such decomposition, trains are scheduled in one subproblem and
their interaction (on block sections) is considered in another subproblem.
Therefore, trains can be scheduled individually each for one subproblem;
the consistency at the level of block section, including possible conflicts or
penalties is performed by the other type of subproblem.

2.2.4 Generic Domain

In decomposition approaches of the generic domain (GEN), the original
scheduling problem is separated into subproblems, based on the structure of
the underlying mathematical optimization problem, not directly motivated
by the physical railway system. In the generic domain, the literature shows
exclusively decompositions, which exploit structures related to particular
types or classes of variables. Generic decompositions exploiting structures
in the constraints of a scheduling problem could not be found. In case
of structures related to variables, subproblems are defined by means of
variables to be optimized in the subproblem. Variables not in the subprob-
lems are optimized in the master problem. Differently from the previous
domains, where subproblems are scheduling problems and often numerous,
in the generic domain it is possible that subproblems are not scheduling
problems and only a single subproblem is considered.

As an interesting fact, all decompositions in the generic domain reviewed
for this work, with the exception of [53], are based on time-continuous
formulations. Furthermore, compared to other domains the generic domain
is the most diverse domain, where subproblems related to different aspects
substantially differ in problem-type and complexity. We discuss this aspect
in more detail in Section 2.3.1.

2.3 principles of decomposition

From a perspective of mathematical optimization, a problem suitable for
decomposition should have a special structure, which causes the decom-
posed problems to be significantly simpler than the original problem. If
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such structure is absent, a decomposition is usually not beneficial with
respect to computational speed.

Assuming a problem can be written as a (linear) mathematical optimiza-
tion problem in standard form, i.e., min cTx s.t. Ax ≥ b, the structure of
the constraint matrix A may highlight a possible decomposition. If such
matrix has a block-diagonal structure, the individual blocks can be solved
independently, leading naturally to a decomposition into multiple problems
of smaller size. Often, problems that are suitable for a decomposition show
an almost block-diagonal structure. That is, apart from a few entries in
the constraint matrix, all others are within a block-diagonal structure. In
this case, the problem can be reformulated, considering entries outside of
the block-diagonal structure in the master problem and each block as an
individual subproblem. The resulting subproblems, which are smaller in
size can effectively be parallelized and are often much easier to solve (e.g.,
due to a superlinear relation between instance size and complexity).

In alternative to block-diagonality, a problem is suitable for decompo-
sition if it can be separated into master and subproblem, such that the
subproblem (even without a block-diagonality) becomes of a different prob-
lem type, that by itself is significantly simpler to solve (e.g., the subproblem
belongs to P instead of NP as the original problem).

In both cases, a coordination scheme (used by a solution method) makes
sure the individual solution(s) of master and subproblem(s) are modified
accordingly, to result in a solution for the original (centralized) problem.

Based on those two special properties (natural decomposition into smaller
problems; and easier class of problems), which can be exploited for a de-
composition, we review in the following and more extensively the way
the approaches in the state of the art use those properties, to result in
effective decompositions. Two big classes of approaches exist: the principle
of decomposing by complicating variables and the principle of decomposing
by complicating constraints [16]. We review both in the subsections below
with respect to the literature.

2.3.1 Complicating Variables

In the principle of complicating variables, the term “complicating variables”
refers to a subset of variables in an optimization problem, which is known to
cause a significant part of its computational complexity. If the complicating
variables are set to constant value, the residual optimization problem over
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Publication Domain Description Interpretation (Master / Sub.)

[32], [34]
[33], [36]

GEO
Variables of traffic
between stations.

Scheduling between stations/
Scheduling a station.

[19], [18]
[17], [52]
[50], [28]

GEO
Variables of traffic between
areas.

Scheduling between areas/
Scheduling an area.

[48] GEO
Variables of traffic between
areas only of a single train.

Scheduling a single train/
Scheduling an area.

[37] GEO
Variables of traffic between
areas of different junctions.

- /Scheduling a junction area.

[56] TMP
Variables of traffic between
time periods.

- /Scheduling a time period.

[26], [38] ENT
Variables related to groups
of trains.

- /Scheduling a group of trains.

[51], [7]
[8], [49]

ENT
Variables related to
individual trains.

- /Scheduling a single Train.

[1] GEN
Variables related to macro-
scopic scheduling model.

Macroscopic scheduling/
Microscopic scheduling.

[31], [38]
[27], [28]

GEN
Variables related to
precedence of trains.

Ordering of trains/
Scheduling of trains.

[27], [38]
[57], [20]

GEN
Variables related to routing
decisions of trains.

Routing of trains/
Scheduling of trains.

[53] GEN
Variables related to
durations of operations.

Setting durations/
Scheduling with given durations.

Table 2.2: Complicating Variables in Decomposed Railway Scheduling.

the remaining variables is computationally significantly simpler, either due
to a natural decomposition or an easier problem class, e.g. P instead of NP.

In a decomposition of complicating variables the optimization over the
complicating variables is separated from the optimization of the remaining,
i.e., non-complicating, variables. The non-complicating variables are opti-
mized in a subproblem, while considering the complicating variables as
fixed. The optimization over the complicating variables is done in the master
problem. We summarize different identifications of complicating variables
from the literature (together with a railway specific interpretation of master
and subproblem) in Table 2.2 and report on the resulting decomposition in
Table 2.3. In most publications, complicating variables have not been identi-
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fied explicitly as such by the authors themselves. We instead systematically
apply this concept of complicating variables, as we believe that it helps in
bringing different decompositions to a common denominator. In Table 2.3,
we report on the type of master and subproblem, where the type “Schedul-
ing" refers to a scheduling problem (explicitly including ordering decisions),
as such a mixed-integer linear problem. In case ordering is excluded, we
denote it by “(LP)" to indicate the non-integrality of such problem. The
types “Ordering" and “Routing" refer to integer linear problems; integral-
ity is required to describe the ordering and routing decisions of railway
scheduling respectively. Other types used in Table 2.3 are self-explanatory.
The last column reports respectively the type of master and subproblem.

In the geographic domain, we see by Table 2.2 that such decompositions
are achieved by fixing (i.e., determining as complicating) variables related
to traffic passing the borders between different areas, stations or junctions.
Complicating variables describe the sequence and timing of traffic over
borders, therefore the constraint matrix shows a block-diagonal structure
for non-complicating variables and multiple subproblems can be identified.
We see such phenomena in Table 2.3 as all decompositions in the geographic
domain show as many subproblems as areas, stations or junctions, which
are in general independent. We further see in Table 2.3 multiple approaches
with no master problem. In such cases complicating variables are assigned to
subproblems; and subproblems then are dependent on each other. In Section
2.4, we will see that particular solution methods can be used, which result in
independent solution processes for the subproblems, such that they can be
solved in parallel. A special case is the approach of [50], where complicating
variables are further divided into smaller groups, in particular one group for
each train. The result are multiple master problems, as many as trains. Those
problems are independent, because interactions among trains is handled
in the subproblems, which consider the traffic inside different areas.

In the temporal domain, we see similar considerations as in the geograph-
ical domain. Instead of geographic areas, time periods are used to identify
complicating variables (see Table 2.2); complicating variables are events
between subsequent time periods. In our review of the literature we discov-
ered only one related publication, where complicating variables describe
traffic operating beyond the temporal boundary of two subsequent time
periods. The single decomposition found keeps the complicating variables
in the subproblem, such that subproblems remain dependent (see Table 2.3).

In the entity domain, we see decompositions where complicating vari-
ables are a subset of variables related to an entity. In particular, complicating
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Master Problem Subproblem

Publication Domain N Indp Type N Indp. Type

[32], [34]
[33]

GEO 1 - Scheduling # Stations Yes
List

Coloring

[36] GEO 1 - Scheduling # Stations Yes Scheduling

[50], [28] GEO - - - # Areas No Scheduling

[19], [18]
[17], [52]

GEO 1 - Scheduling # Areas Yes Scheduling

[48] GEO # Trains Yes
Shortest

Path
# Areas Yes Scheduling

[37] GEO - - - # Junctions No Scheduling

[56] TMP - - - # Time Periods No Scheduling

[26], [38] ENT - - - # Train Groups No Scheduling

[51], [49] ENT - - - # Trains No Scheduling

[7], [8] ENT - - -
# Trains +
# Stations

No Scheduling

[1] GEN 1 - Scheduling 1 - Scheduling (LP)

[31] GEN 1 - Ordering 1 - Scheduling (LP)

[27] GEN 2 No
Routing

Ordering
1 - Scheduling (LP)

[28] GEN - - - # Train Groups No Scheduling

[38], GEN 2 No
Ordering
Routing

1 - Scheduling

[57] GEN 1 -
Scheduling

with Routing
1 -

Scheduling with
Maintenance

[20] GEN 1 - Routing 1 - Scheduling

[53] GEN 1 -
Scheduling

Durations (LP)
1 -

Scheduling with
fixed Durations

Indp.: Independent Problems.

Table 2.3: Decompositions of Complicating Variables in Railway Scheduling.

variables are those variables related to an entity, which appear in a constraint
together with variables of another entity. Entities used for the identification
of complicating variables are single trains or groups of trains (see Table 2.2).
Depending on the entities used, different decompositions are reported in
Table 2.3. In the literature, no decomposition on complicating variables in
the entity domain has been found, where a master problem is used and sub-
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problems are independent due to an entity related block-diagonal structure
in the subproblem. In the literature, complicating variables for the entity
domain are in general kept inside the subproblems, such that these remain
dependent. We will see that few publications apply solution methods, which
are able to treat such subproblems independently by appropriate heuristics
(see Section 2.4). A possible reason for no exploitation of block-diagonality
may be that complicating variables in the entity domain are in general nu-
merous, leading to a large master problem and are usually hard to identify.

In the generic domain, we find four classes of complicating variables in
the literature (see Table 2.2). In the literature, complicating variables are
identified either related to macroscopic scheduling, ordering or routing of
trains, or the duration of operations (see Table 2.2). Variables for the order of
trains exclusively appear in continuous-time models, such that any decom-
position exploiting such variables can only be applied to a continuous-time
model of railway scheduling. Furthermore, depending on the particular
railway scheduling problem addressed, e.g., including of routing, different
decompositions are reported in Table 2.3. In case of complicating variables
related to ordering and routing, the master problem is a pure integer linear
program, to optimize only over the binary variables related to ordering or
routing decision. In case of [1] the master is a macroscopic scheduling prob-
lem and in case of [53] the master is a scheduling problem with no binary
decisions, i.e., a linear program (LP). We can see in Table 2.3 that all pro-
posed decompositions in the generic domain exploit not a block-diagonal
structure in the subproblem, but a simplification of the problem class, such
that there is always a single subproblem. Exceptions are [53], where the
subproblem cannot be simplified and [28] where complicating variables
are kept in the subproblem and optimized in different groups (see Section
2.4). In two publications (i.e., [27], [38]), complicating variables have further
been grouped into different sets. In both cases binary variables related to
routing decisions and ordering decisions are addressed separately.

2.3.2 Complicating Constraints

In the principle of complicating constraints the term “complicating con-
straints" refers to subset of constraints in an optimization problem, which
are the main cause for its computational complexity. If the complicating con-
straints are removed from the problem, the optimization over the remaining,
non-complicating constraints is computationally, significantly simpler, either
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Publication Domain Description Interpretation (Master / Sub.)

[54], [40]
[42]

GEO
Constraints in-between
different areas.

Coordination of Areas/
Scheduling of an Area

[40] TMP
Constraints in-between
different time periods.

Coordination of Time Periods/
Scheduling of a Time Period

[6], [9]
[14], [15]

ENT
Constraints of capacity
between individual trains
(AB-TSG).

Coordination of Trains/
Scheduling a single Train

[12], [13]
[10]

ENT
Constraints of capacity
between individual trains
(PB-TSG).

Coordination of Trains/
Scheduling a single Train

[45], [41] ENT
Constraints of capacity
between individual trains
(TI).

Coordination of Trains/
Scheduling a single Train

[21], [40] ENT
Constraints of capacity
between individual trains
(TC).

Coordination of Trains/
Scheduling a single Train

[29], [46]
[50]

ENT
Constraints of capacity
between individual trains.

Coordination of Trains/
Scheduling a single Train

[4], [5] ENT
Constraints of capacity
between trains and block
sections (PB-TSG).

Coordination of Blocks and Trains/
Scheduling of Blocks and Trains

(AB/PB)-TSG: Arc/Path-Based Time-Space Graph Model.
T(I/C): Time-Indexed/Continuous Model.

Table 2.4: Complicating Constraints in Decomposed Railway Scheduling.

due to a block-diagonal structure in the constraints and/or as the problem
belongs to a different complexity class of problems, e.g., P instead of NP.

In the decomposition of complicating constraints, the optimization over
the complicating constraints (in the master) is separated from the optimiza-
tion over the non-complicating constraints (in the subproblem). We summa-
rize complicating constraints identified in decompositions approaches of
the literature in Table 2.4 and report on the corresponding decompositions
in Table 2.5. Similar to the case of complicating variables, in most publica-
tions, complicating constraints have not been identified explicitly as such
by the authors themselves. We instead systematically apply this concept of
complicating constraints, as we believe that it helps in bringing different
decompositions to a common denominator. In Table 2.5, we report on the
type of master and subproblems in the decomposition, where we refer by
“Penalty Update" to a linear optimization problem over penalty parameters
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used to coordinate subproblems. We refer by “Set Packing" to an integer
program with the basic structure of a set packing problem and possibly
additional constraints, and by “Scheduling" to a mixed-integer problem,
likewise as for Table 2.3. “Conflict Detection" and “Utility Evaluation" refer
to an evaluation of solutions rather than to an optimization problem; the
remaining types of problems in Table 2.5 are self-explanatory.

In the geographic domain, we can identify complicating constraints as
the constraints between the different geographic areas (see Table 2.4). Areas
might be defined differently in different publications, but all with the same
goal of exploiting a block-diagonal structure leading to multiple subprob-
lems. We can see the result of the block-diagonal structure in Table 2.5 as
all subproblems in such decompositions are independent.

In the temporal domain, decompositions are very similar to decompo-
sitions of the geographic domain. The only difference to the geographic
domain is that complicating constraints are not identified between differ-
ent areas, but different time periods (see Table 2.4). As in the geographic
domain, a block-diagonal structure is exposed, leading to independent
subproblems (see Table 2.5).

In the entity domain, for all publications in the literature, we can ex-
clusively identify constraints of network capacity as the complicating con-
straints. In this case, a train related block-diagonal structure is exposed; this
leads to multiple smaller, independent subproblems, one for each individ-
ual train. In Table 2.4, we identify different complicating constraints related
to network capacity, in relation to different underlying models of railway
scheduling. In arc- and path-based models using a time-space graph, and
also general time-indexed models, network capacity constraints result in
clique constraints. Each clique is the set of arcs, paths, or time-indices,
which would lead to a conflict on a single particular block section if used
simultaneously in the timetable. In time-continuous models, network ca-
pacity constraints are often modeled as disjunctive precedence constraints
between pairs of trains on each resource. The number of possible pairs for n
trains is at most n2, such that the amount of network capacity constraints in
time-continuous models is in the worst case n2 ∗m, where m is the number
of resources. For time-indexed models, capacity constraints usually grow
linearly with the number of resources, i.e., a single capacity constraint for
each resource, in general resulting in smaller amount of capacity constraints.
Special cases are the decompositions of [29, 46, 50]. In these approaches,
network capacity constraints are not explicitly considered, but network
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Master Problem Subproblem

Publication Domain N Indp. Type N Indp. Type

[54], [40]
[42]

GEO 1 - Penalty Update # Areas Yes Scheduling

[40] TMP 1 - Penalty Update # Time Periods Yes Scheduling

[6], [9]
[14], [15]

ENT 1 - Penalty Update # Trains Yes
Shortest

Path

[12], [13] ENT 1 - Set Packing # Trains Yes
Trajectory
Planning

[10] ENT 1 - Set Packing # Trains Yes
Shortest

Path

[45] ENT 1 - Penalty Update # Trains Yes
Shortest

Path∗

[41] ENT 1 - Penalty Update # Trains Yes
Least-Cost

Path∗

[40] ENT 1 - Penalty Update # Trains Yes Scheduling

[21] ENT 1 - Scheduling # Trains Yes
Utility

Evaluation

[29], [46] ENT 1 - Conflict Detection # Trains Yes Scheduling

[50] ENT #Areas Yes Conflict Detection # Trains Yes Scheduling

[4], [5] ENT 1 - Penalty Update
#Trains +

#Block Sections
Yes

Shortest
Path

Indp.: Independent Problems.
∗: Time dependent.

Table 2.5: Decompositions of Complicating Constraints in Railway Scheduling.

capacity is validated after the scheduling process of individual trains. We
argue this is the same rationale as complicating constraints.

The entity domain is the most commonly used domain for decomposi-
tions based on complicating constraints. A possible reason to this might
be the fact that in decompositions based on train entities on time-indexed
formulations, subproblems are not only independent, but also reduce to
shortest, least-cost or similar path-based problem (see Table 2.5), which
in general can be solved extremely efficiently. In absence of a time-space
graph, i.e., in general time-indexed models, a time-dependent shortest path
problem results. Hybrid situations occur when the time-space graph is
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updated iteratively according to possible train trajectories computed by a
train dynamics model [12, 13]. A special case are the decompositions in [4]
and [5], which are based on a reformulation of a time-space graph model.
Additional variables are introduced to model the occupation of a block
section by train, such that complicating constraints can be identified as
those constraints between the variables of scheduling (events) and variables
of occupation. The result are two subproblems, where one is to schedule
all trains and another to schedule all occupations of block sections. In both
these subproblems a block-diagonal structure is exposed and both problems
naturally decompose into a shortest path problem for scheduling each train
and each occupation of a block section individually.

The literature in decomposed railway scheduling does not show any
decomposition based on complicating constraints in the generic domain.

2.4 solution methods in decomposed railway scheduling

Complementary to the principles of decomposition, different solution meth-
ods are used to solve and coordinate master and subproblems back to a
solution, valid for the original (centralized) problem. In the following, we
review solution methods considered in the literature of decomposed railway
scheduling. In general we will differentiate between exact methods and
heuristic methods.

In the literature, we can identify purely hierarchical solution methods;
purely decentralized solution methods; and a small group which has both
characteristics at once.

For decompositions showing a hierarchical aspect, problems of the de-
composition (master and subproblems) are arranged in hierarchical levels.
In general problems of the same type are (considered to be) on the same
level. In hierarchical solution methods, problems on the same level are not
coordinated directly with each other. A (master) problem on a hierarchically
higher level can be identified, responsible for coordination (i.e., one-to-many
(vertical) communication). For decompositions showing a decentralized
aspect, in general the problems (often of the same type) are on a single level
and are coordinated directly with each other (i.e., many-to-many (horizon-
tal) communication). No specific problem within the decentralized structure
can be identified as responsible for coordination of others.

The way of coordination directly determines which problems can be
solved in a specific order, or can be solved at the same time, i.e. parallelized.
In decentralized solution methods, the problems can be solved in arbitrary
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order. Instead, in hierarchical solution methods problems of the same level
can be solved independently (and parallelized), but different levels must
be addressed in some specific (partial) order, e.g., a master problem has to
be solved before/after all subproblems. In this sense, hierarchical solution
methods are partially parallelizable, as the master must be solved only after
all subproblems are solved, which means the total execution time depends
on the computation time of both the master, and the slowest subproblem.
Decentralized solution methods can achieve full parallelization.

We review purely hierarchical solution methods in Section 2.4.1, purely
decentralized solution methods in Section 2.4.2, and we discuss in Section
2.8 solution methods which have a combination of both aspects. Further-
more, we review in Section 2.4.4 a small group of methods that are non-
iterative and apply only unidirectional coordination over the problems of
a decomposition.

2.4.1 Purely Hierarchical Solution Methods

In purely hierarchical solution methods, problems of a decomposition are
solved in a hierarchy over multiple levels, where in general the master
problem(s) of a decomposition are considered hierarchically higher than
the subproblem(s).

In hierarchical solution methods, coordination is achieved exclusively
via different levels of hierarchy to establish consistency over all problems
of a decomposition. The coordination between hierarchical levels (vertical
communication) is in general bidirectional; from higher to lower hierarchies
and vice versa.

In hierarchical decomposition, the coordination from higher to lower lev-
els imposes some aspect of the solutions of hierarchically higher problems
onto problems of lower level. We find two different schemes for this in
the literature, either enforcing by constraints, or guiding through adjusted
penalties. For simplicity we refer respectively to those concepts as strict
imposition or soft imposition. With the exception of [21], the strict imposition
are a result of the principle of complicating variables and soft impositions
are the result of the principle of complicating constraints. In solution meth-
ods applying strict impositions, solutions of higher levels affect directly
the solution space of problems of lower levels. In other terms, solutions
of higher hierarchy result in determining some values for variables, to be
imposed: complicating variables are fixed in the subproblems. In solution
methods applying a soft imposition, solutions of higher levels are consid-
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Publications Imposition Coordination Scheme Solution Method Optimal

[32], [34]
[33], [36]

Strict Constraint Generation Logic Benders Yes

[31] Strict Constraint Generation Classical Benders Yes

[27] Strict Constraint Generation Three-Layer Benders Yes

[18] Strict Constraint Generation Benders-Like Yes

[1] Strict Constraint Generation Constraint Adaptation No

[5], [4], [10] Soft Column Generation Dantzig-Wolfe Yes

[12], [13] Soft Column Generation Dantzig-Wolfe No

[6], [41]
[45], [54]

[9]
Soft Penalty Function Lagrangian Relaxation No

[14], [15] Soft Penalty Function Relax-and-Cut No

[42], [40] Soft Penalty Function ADMM No

[19], [17]
[52], [57]
[20], [28]

[53]

Strict Solution Passing Multi-Shot No

[21], [46] Strict Negotiation Auction No

Table 2.6: Hierarchical Solution Methods in decomposed in Railway Scheduling.

ered as parameters of a penalty term in the objective of problems of lower
levels, guiding in this way their solutions process. Soft impositions are used
in decompositions of complicating constraints to substitute complicating
constraints through coordinating penalties.

Strict imposition has the advantage that solutions of the master problem
and subproblem(s) are always consistent, building together a feasible so-
lution for the original (centralized) problem. Therefore, once solutions for
master and subproblems have been found, a solution for the original prob-
lem is given. As a drawback, strict imposition must consider the possibility
that the constraints imposed on the subproblems by the master make them
infeasible. Therefore, the solution process needs to handle infeasibility of
subproblems (e.g., [18], [34], [36]). Moreover, it is often the case that no
intermediate solution is available until a master solution has been found,
for which also a feasible solution to all subproblems exists.
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Soft imposition does not constrain subproblems. Therefore, subproblems
are in general always feasible but not necessarily consistent with each other
and thus not feasible with regard to the original (centralized) problem.
As a consequence of soft impositions, especially for problems with integer
variables (e.g., railway scheduling), it is often difficult to achieve consistency
between subproblem solutions. In many publications, heuristics are used
to recover a feasible solution for the original problem, from the inconsistent
solutions of subproblems (e.g., [6], [14], [42]). As an advantage, these heuris-
tics can also be used to determine a solution at any intermediate point of
the solution process.

The coordination from lower levels to higher levels in hierarchical solution
methods provides feedback from subproblem(s) to the master problem(s).
For such coordination we can identify in the literature five types of coor-
dination schemes: constraint generation, column generation, penalty functions,
solution passing and negotiation.

In Table 2.6 we summarize hierarchical solution methods of the literature
and report the type of imposition, coordination scheme, particular solution
method and possible optimality of the method. We discuss the coordination
schemes of the literature in more detail below.

2.4.1.1 Coordination by Additional Constraints: Constraint Generation

In the coordination scheme of constraint generation, subproblems report
feedback to the master problem in form of additional constraints, which are
not part of the original problem. In general, these constraints are incremen-
tally generated and considered throughout iterations of sequentially solving
master and subproblems. The generated constraints are meant to repre-
sent the feasible space and optimal solutions of subproblems, using only
variables of the master problem. Constraint generation is exclusively used
for decompositions based on complicating variables and thus all related
methods use strict impositions.

Logic Benders [39] and classical Benders decomposition [25] are well-
known schemes from the field of mathematical optimization. Benders
decomposition is a constraint generation scheme with proven optimality.
Generated constraints, i.e., Benders cuts, are based on proofs of infeasibility
and suboptimality of subproblems, which can be used inside the master
problem. While in classical Benders decomposition a clear procedure is
given to generate new constraints, in logic Benders decomposition the actual
procedure for constraint generation has to be designed individually for each
specific application. The authors, which proposed such logic Benders de-
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composition in [39] simply propose guidelines for the constraint generation,
rather that an exact procedure. For the logic Benders decomposition in [32–
34] the authors propose a novel constraint for their particular subproblem,
which is to schedule traffic at a station. In [36], a logic Benders decomposi-
tion is used, where subproblems share the same mathematical structure with
the master and the centralized problem. For the Benders decomposition, a
novel type of constraint is introduced, based on the infeasibility of a gen-
eral railway scheduling problem. Differently, [31] applies classical Benders
decomposition to railway scheduling. In [27] a three-layer Benders decompo-
sition has been introduced, where the master problem of a classical Benders
decomposition is split into two layers. One master problem determines
optimal routing in railway scheduling, and a subordinate master problem is
to determine optimal precedences in railway scheduling. In [18] the authors
designed constraints for a subproblem that is the scheduling of a geographic
area, which has the same spirit of Benders decomposition as they address
infeasibility and suboptimality in subproblems similarly. In [1] the master
problem is a macroscopic scheduling problem, which includes macroscopic
precedence constraints. These constraints are iteratively adapted based on
the analysis of the subproblem, that is a microscopic scheduling problem.

Benders decomposition is particularly suitable for a decomposition,
where the subproblems have large solutions spaces, that are rather in-
dependent from the solution space of the master problem. In this case only
few additional constraints are necessary to represent the solution space
of the subproblem, in the master; quick convergence can be expected. A
railway related example is the decomposition of [34] where a subproblem
relates to a station with many alternative routes for passing trains, all taking
the same amount of time to pass. In such case, scheduling the trains outside
the stations (which would be the master problem) is basically independent
of routes used by trains in the station. A single constraint for the master
problem would be sufficient to represent travel times of all routes in the
station to the master.

2.4.1.2 Coordination by Additional Solutions: Column Generation

In the coordination scheme of column generation, subproblems report so-
lutions to the master problem, which result in additional variables, i.e.,
columns in the constraint matrix of the master problem. Column generation
can only be applied to decompositions in complicating constraints; and
all related methods use soft impositions only. Dual values from a solution
of the master problem are used for penalties in the subproblems (soft im-
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position) to generate appropriate new subproblem solutions, i.e., columns
in the master. Approaches of column generation typically work iteratively
adding columns to the master problems based on the incumbent solutions
of the subproblems. Those latter are guided through iterative updates of
the penalty in their objective, based on the incumbent master solution. The
only solution method used for column generation in all reviewed works
is the Dantzig-Wolfe reformulation.

Dantzig-Wolfe reformulation [55] is an approach to reformulate the so-
lution space of a mathematical optimization problem through its vertices,
i.e., solutions at the boundary of the solution space. The optimization
problem after a Dantzig-Wolfe reformulation is to find an optimal convex
combination of vertices. The vertices are the columns of such optimiza-
tion problem. The reformulation is in general addressed by a column
generation, where new vertices are iteratively generated. In case of decom-
position, the Dantzig-Wolfe reformulation is used to reformulate only the
non-complicating constraints. In this case, generating new vertices (i.e.,
subproblem solutions) is then, per definition of complicating constraints, a
significantly simpler problem. Further, if the non-complicating constraints
inherit a block-diagonal structure, a single new vertex can be computed in
parallel, over multiple independent subproblems.

In [4, 5, 10] a Dantzig-Wolfe reformulation is applied, where the column
generation is carried out within a branch-and-bound scheme; these schemes
are known as branch-and-price schemes, where pricing refers to the gen-
eration of new columns by appropriate penalties. Complicating constraints
are capacity constraints, such that each column generated, that is a partial
vertex and a solution of a subproblem, is the schedule of an individual train.
Only with a branch-and-price scheme, the Dantzig-Wolfe reformulation
and column generation is able to propose optimal solutions in case of
mixed-integer programming, e.g., the railway scheduling problem.

In [12, 13], Dantzig-Wolfe reformulation is applied similarly, but column
generation is performed in a heuristic manner. Therefore, it is possible that
the columns, which are part of the optimal solution, are never generated;
if this is the case, the optimal solution cannot be found when solving the
master problem. The approaches in [12, 13] distinguish themselves from
the literature, as they include train dynamics. Each column generated from
a subproblem in such decomposition corresponds to a dynamically feasible
train trajectory. [13] considers in comparison to [12] strengthened capacity
constraints.
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Column generation is effective if new columns, i.e., subproblem solutions,
can be computed efficiently. In general, many different solutions from each
subproblem (corresponding to columns in the master) are necessary, to
make sure the master can find a combination of them that is an optimal solu-
tion to the original (centralized) problem. Therefore, it is crucial in column
generation to compute subproblem solutions quickly. The most effective
examples in railway scheduling are decompositions in the entity domain,
where subproblem solutions are schedules of single trains and reduce to
problems of shortest-path, which can be solved extremely efficient.

2.4.1.3 Coordination by Objective Function: Penalty Functions

In the coordination scheme of penalty functions, solutions of subproblems
are considered as parameters of a penalty function in the objective of the
master problem. In particular the inconsistency between solutions of sub-
problems (a mismatch in solutions of the subproblems, determining a global
infeasibility) manifests as a penalty in the master problem. The master prob-
lem on the other hand is an optimization problem over variables used to
parameterize penalty functions in the subproblems. This scheme is known
as Lagrangian relaxation [24]. The penalty function in subproblems, param-
eterized by the master, directs the optimization of subproblems inside the
respective feasible area, away from solutions potentially inconsistent with
other subproblem solutions. Coordination by penalty functions can only
be applied to decompositions in complicating constraints and is exclusively
found in the literature, in the form of Lagrangian relaxation [24]; all meth-
ods of the coordination scheme of penalty functions use soft impositions
only. Three different types are given: those applying the general scheme of
Lagrangian relaxation, those using a relax-and-cut scheme, and those using
ADMM (Alternating Direction Method of Multipliers).

In [6, 9, 41, 45] a classical Lagrangian relaxation is applied to the con-
straints of network capacity. For [6, 9, 45] the subproblem reduces to a
(time-dependent) shortest path problem. In [41] maintenance constraints
lead to a least-cost path problem. In all schemes above, the master problem
computes a subgradient step for an update on variables used to parameter-
ize penalty functions inside subproblems, based on the latest subproblem
solutions. Often, e.g., in [6], subproblem solutions are first adapted to be
consistent with each other (i.e., build a centralized solution), and then used
for the subgradient step. These two steps of first ensuring feasibility, and
then updating the penalty, increases the convergence amongst subproblem
solutions. Still, the scheme of Lagrangian relaxation is known to converge
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slowly; in fact, all related publications use some heuristic to compute a
feasible upper bound solution at any intermediate point of the scheme.
Most common is a heuristic where the penalty of a solution of the master
problem is used to determine priorities to trains (subproblems); those are
then, train by train, sequentially scheduled based on their priority. In [54] a
Lagrangian relaxation has been proposed for a geographic decomposition.
Complicating constraints at the border of geographic regions are relaxed.
The solution scheme follows the standard Lagrangian relaxation scheme
with a subgradient step to update penalty parameters (i.e., master variables).
In case convergence cannot be achieved after a given number of iterations,
a heuristic solution scheme is applied to coordinate the transitions of trains
between different geographic areas.

In [14, 15], Lagrangian relaxation has been paired with a lazy constraints
scheme into a relax-and-cut scheme. In this case, during the iterative adap-
tation of the penalty parameters (i.e. master variables), only complicating
constraints that are violated by the latest subproblem solutions are consid-
ered. This allows to reduce the computation of the subgradient step in the
master problem. Also here, heuristics are proposed to compute intermediate
feasible solutions.

In [40, 42] the authors used the model of their previous publication,
i.e., [41], to propose a decomposition in the geographic domain. To solve
the decomposed problem, an alternating direction method of multipliers
(ADMM) is applied. ADMM uses a Lagrangian relaxation of the complicat-
ing constraint to generate a penalty function for subproblems, but applies
a different scheme to update the penalty parameters in the master. In par-
ticular, subproblems are solved sequentially; before the solution of each
subproblem, the penalty parameters in the master are adapted based on the
latest subproblem solutions. Like standard Lagrangian relaxation, ADMM
has no guarantee to converge for problems of railway scheduling, and in
fact a similar priority scheduling heuristics as in [14] has been used to
compute intermediate feasible solutions. [40] extends the decomposition
principle of [42] to different decompositions, and compares it to other
heuristic coordination methods.

A coordination by penalty functions (Lagrangian relaxation) is most ef-
fective if subproblems can be solved efficiently. Often many updates of
penalty parameters in the master problem are necessary to find consistent
solutions for all subproblems and subproblems must be solved many times.
The most effective examples in railway scheduling are, as for column gen-
eration, decompositions in the entity domain, where subproblem solutions
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are schedules of single trains, extremely efficient to compute, by solving,
e.g., a shortest-path problem.

2.4.1.4 Coordination by Sharing Solutions: Solution Passing

We denote as solution passing a coordination scheme in which subproblems
report feedback by communicating (passing) their entire solutions to the
master, where in the master, depending on the actual implementation of
solution passing, some part of the reported solution(s) is fixed in its own
optimization to coordinate with subproblems. Solution passing is exclu-
sively applied to decompositions based on complicating variables; and all
methods of solution passing use strict impositions. By our interpretation
a single solution method has been identified in the literature. We name
such method as multi-shot; multiple tries (shots) are undertaken to find a
global solution. Each try is the sequence of first solving the master problem
and subsequently all subproblems. The important part is, that each try is
carried out with different initial conditions, i.e., a slightly different master
problem. The initial conditions to be included in the master are the results
of solutions of subproblems passed to the master problem from the previ-
ous try (shot), hence multi-shot in solution passing. Most often, one master
problem and several subproblems are considered [17, 19, 20, 52, 57].

A special case on solution passing and multi-shot is the approach of [28].
Different from the approaches above, the decomposition of [28] has no clear
master problem but only multiple dependent subproblems; subproblems
are sequentially solved. The multi-shot characteristic in such approach is
brought in, as after solving all subproblems in sequence, the sequence is
resolved again from the beginning, but this time considering the solutions
of the previous iteration.

A different special case is the approach of [53], where the decision at the
master level is to determine the duration of all operations in the timetable;
and a single subproblem evaluates if a feasible timetable exists for the
durations determined by the master. At the master level, a multi-agent
approach is used: each agent defines the duration of a single operation.
We classify the scheme as solution passing, as agents adapt their solutions
based on solutions of the subproblem.

All approaches of solution passing and multi-shot heuristically optimize
different subsets of variables from the original scheduling problem in
different problems of the decomposition. In [17, 19, 52] furthermore a block-
diagonal structure is exploited. In general we understand the heuristics of
this section to work best in cases where subproblems have large solution
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spaces with little ties to (i.e., few variables fixed by) the master problem (or
other subproblems). A large solution space increases the likelihood for a
feasible solution in the subproblem while few variables fixed by the master
solution decrease potential coordination effort.

2.4.1.5 Coordination by Sharing Intentions: Negotiation

In coordination schemes of negotiation, subproblems report feedback to the
master problem in form of an intention. The intention represent the desire of
a subproblem to take a certain solution, i.e., schedule. In an iterative process,
the master problem allows or denies specific solutions based on previously
shared intentions from subproblems. Based on the master’s decision, sub-
problem update their intentions. In the literature we identified a single
solution method in negotiation with purely hierarchical structure: auctions.

In auctions, subproblems report their intentions in form of bids. A bid
represents the worth of a particular subproblem solution in perspective of
the subproblem objective. The master problem acts as an auctioneer. The
master receives all bids and then decides which subproblem wins the auc-
tion, and may take the solution the auction is held for. Auctions are carried
out multiple times, till a solution for each subproblem has been found.
Auctions may also consider only parts of the solution of a subproblem, e.g.,
particular departure or arrival times of trains. In general, all auction-based
decomposition methods we discovered in the literature of railway schedul-
ing are also agent-based. That is, each subproblem is represented by an
agent which computes the bids, as well as the auctioneer is represented by
an additional agent. Auction based methods belong to methods using strict
impositions; the result of an auction is strictly enforced to the subproblems,
such that only the winning subproblem is allowed for a particular schedule.

In [21] agents represent subproblems, each modelling a train; they bid
on possible schedules provided by the master problem, i.e., the auctioneer.
In [46] agents are trains bidding for particular departure or arrival times
at stations.

Auction-based methods are a category of multi-agent methods where
convergence to a feasible solution is guaranteed, through the structured
interaction of auctioneers and bidding agents. In general, there is no guar-
antee that other methods based on multi-agents will converge, i.e., agree
on a common consistent solution.
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Publications Imposition Coordination Scheme Solution Method Optimal

[49], [37], [7]
[8]

Strict Negotiation Multi-Agent No

Table 2.7: Decentralized Solution Methods in decomposed Railway Scheduling.

2.4.2 Purely Decentralized Solution Methods

In purely decentralized solution methods, the master and/or subproblems
can be solved in an arbitrary order. All problems which are at the same level
in the decomposition can be coordinated in a direct exchange of information
with each other (vertical communication). A recent, more extensive review
on the topic of decentralized railway scheduling can be found in [43]. Such
review includes also applications beyond railways, where decentralized
solution methods have shown potential.

Different from hierarchical solution methods, in decentralized solution
methods only methods using strict impositions are possible, where imposi-
tions are made on a single level of hierarchy. If otherwise soft impositions
would be used, feasibility of a solution could not be guaranteed and central-
ized coordination would be necessary in some form, to recover a feasible
solution for the original (centralized) problem (e.g., see [29]). As strict impo-
sitions are required, decentralized methods of the literature are exclusively
applied to decompositions based on complicating variables. Decentral-
ized solution methods are applied in particular to those decomposition
in Table 2.3 where no master problem or multiple master problems are
considered; hence vertical communication is required. In these cases, the
solution methods enforce a certain degree of parallelism among the various
subproblems.

Regarding the coordination schemes in decentralized decomposition,
the literature shows only a single scheme, i.e., the scheme of negotiation,
where in particular agents negotiate between each other. We summarize all
decentralized approaches of the literature in Table 2.7.

2.4.2.1 Coordination by Sharing Intentions: Negotiation

The coordination scheme of negotiation is a coordination scheme that ap-
pears in both, hierarchical and decentralized decompositions. In hierarchical
negotiation a master problem may only guide, reject, or restrict subproblem
solutions in the process of negotiation. Instead, approaches in decentralized
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negotiation have no master problem and subproblems negotiate directly,
mutually restricting each other’s solution by strict impositions. In the litera-
ture reviewed, all solution methods using negotiation on a decentralized
decomposition are agent-based approaches. Agents negotiate by exchanging
(details of) their (current best) solution.

In [7, 8, 37, 49] decentralized agent-based approaches are proposed. A
full decentralization is possible due to strict impositions, i.e., in these ap-
proaches agents are not allowed to propose solutions with would conflict
with solutions they received from other agents. In [7, 8, 49] agents represent
trains. Each agent respects the solutions it has received from other agents,
such that in case of a possible conflict, it determines for itself a different
conflict-free solution accordingly. In [37] agents represent different geo-
graphic areas. Agents exchange entry and exit times of trains; each agent
adapts its schedule according to exit and entry times of trains it receives
from other agents. In general, the decision processes of agents above are
designed to converge to a consensus in an iterative exchange and adaptation
of solutions.

Decentralized agent-based approaches can be parallelized to a high extent,
as each agent is almost independent from anything else in its execution.
The parallelism can be implemented locally on a single machine or spread
over multiple physical machines.

2.4.3 Hierarchically Decentralized Solution Methods

Hierarchically decentralized solutions methods have at the same time both
aspect of hierarchical and decentralized decomposition. In these approaches,
the problems of the decomposition show a hierarchical structure; within
the hierarchical structure, some problems on the same hierarchical level are
coordinated directly, in a decentralized manner.

In the literature, hierarchically decentralized solution methods have been
found with both strict and soft impositions. For solution methods using
strict impositions it is not necessary to have a single problem at the hier-
archical top for coordination. Multiple problems can exist on the highest
hierarchical level; these problems can be addressed in parallel. For solution
methods using soft impositions it is necessary to have a single problem at
the hierarchical top for coordination. We summarize hierarchically decen-
tralized solution methods in Table 2.8.
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2.4.3.1 Coordination by Sharing Intentions: Negotiation

In all the literature, hierarchically decentralized solution methods are either
auction or multi-agent methods where agents negotiate towards a consistent
solution.

Different from auction-based methods of Section 2.4.1.5, auction-based
solution methods of this section have multiple auctioneers. In [48] agents
represent trains, bidding at different auctions for entry and exit times into
different areas of the network. Auctions are held for different geographic
areas of the railway network. We consider the decomposition of [48] as a
special case where neither auction agents, nor train agents communicate
among agents of the same type. Rather global coordination is achieved as
train agents participate at multiple auctions, i.e., the train agent assures
consistency of a single train ride, and multiple train agents participate at
a single auction, i.e., the auction guarantees no conflicts inside an area.
In Table 2.3 we classified train scheduling as the master problems, and
auctions as subproblems. In reality, there is no clear superiority of one the
two of types of problems over the other, as train agents coordinate the result
of different auctions but also auctions impose restrictions on train agents.

Different from the multi-agent methods of Section 2.4.2.1, in the multi-
agent methods discussed in this section, agents are partially arranged in
a hierarchy. The influence of decentralization is given as, on some level,
problems are coordinated directly and vertical communication takes place.
Either as on the highest hierarchical level multiple problems, i.e., agents,
exist, which are coordinated directly. Or as on a lower hierarchical level,
subproblems, i.e., agents, are coordinated directly with each other, partially
without the input from hierarchically higher levels.

In [50] a multi-agent approach is proposed where agents represent ge-
ographic areas on a hierarchically higher level, and train agents on a
hierarchically subordinate level. Train agents exclusively communicate with
agents of areas, about available block sections for their operations. Agents
of areas coordinate with each other to assure consistency for inter-area
traffic.

In [29] a multi-agent approach is proposed where agents only represent
trains plus a single coordination entity. Agents communicate directly to each
other exchanging the incumbent best solutions, i.e., timetables. Train agents
do not necessarily respect solutions received from other agents, but rather
the received solutions are input to a penalty function, which is considered
in the decision process of the receiving agent (soft impositions). Therefore, if
the incentive for the agent is big enough, the agent may decide for a solution,
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Publications Impositions Coordination Scheme Solution Method Optimal

[48] Strict Negotiation Auction No

[50] Strict Negotiation Multi-Agent No

[29] Soft Negotiation Multi-Agent No

Table 2.8: Hierarchically Decentralized Solution Methods in decomposed Railway
Scheduling.

which could lead to a conflict with another agents. As a consequence, a final
centralized recovery step is required, to adjust solutions of train agents,
i.e., subproblems, for feasibility. The recovery step is a hierarchical element
in the otherwise decentralized solution method. Building a schedule by a
centralized (recovery) agent assures that no train agent may plan operations,
which would lead to conflicts or deadlocks in the system.

Hierarchically decentralized solution methods combine the benefits of
both hierarchical and decentralized methods. Ideally, such solution methods
result in multiple problems equal in type (suitable for decentralization),
where each subproblem is rather difficult to solve. Then, it makes sense to
solve these individual problems by a second decomposition, i.e., a using a
hierarchical solution method.

2.4.4 No Coordination

In our review of the literature, we also identify several decompositions
with solution methods where no explicit coordination scheme is applied.
We classify as single-shot approaches with no coordination. That is, after
a sequence of all problems of a decomposition is solved, either a feasible
solution is found, or it is required that the fundamentals of the scheduling
problem are changed, either rule-based or by human interaction. No retry
is undertaken using different initial conditions and we may consider these
solution methods as non-iterative.

In the literature all solution methods of no coordination apply strict im-
positions, such that if a solution is found after a single shot, such solution
is guaranteed to be feasible regarding the original (centralized) problem.
As such all these methods are decompositions of complicating variables
(see Table 2.3). Furthermore no solution method in this class proposes an
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Publications Imposition Coordination Scheme Solution Method Optimal

[51], [26], [38]
[56]

Strict None Single-Shot No

Table 2.9: Non-coordinating Solution Methods in decomposed Railway
Scheduling.

explicit master problem to exploit block-diagonality. Rather all subproblems
are dependent on each other and solved sequentially.

In approaches of [26, 38, 51] different subproblems describe different
trains or groups of trains. In [56] different subproblems relate to different
time periods. An overview is given in Table 2.9.

Solution methods with no coordination exploit exclusively the super-
linear decrease of complexity for decreasing problem size. Being each
subproblem significantly smaller than the original problem, the sequence of
subproblems is in general solved faster than the original problem. Despite
the computational speedup, methods of no coordination are not guaranteed
to provide any solution.

2.5 discussion

In this paper, we reviewed the academic literature discussing decomposed
railway scheduling. We included early approaches, following mostly meth-
ods of mathematical optimization, but also more novel approaches based
on data-driven solutions or agents.

We identified mathematical principles for decomposition, which depend
on the structure of the mathematical models. A complementary analysis
focused on solution methods; two properties have been identified, the pres-
ence of a hierarchy in the solution process, and the presence of decentralized
communication within subproblems at the same level. For each type of
structure, we identified different ways by which the decomposed problems
are coordinated towards globally feasible and (possibly) optimal solutions.
Here, we take a step back and reflect on the strength and potential for
specific approaches.
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Domain Principle # Complicating Elements Reduction of Complexity

Geographic CV O(Traffic between Areas) Block-Diagonal

Geographic CC O(Traffic between Areas) Block-Diagonal

Temporal CV O(Traffic between Time Periods) Block-Diagonal

Temporal CC O(Traffic between Time Periods) Block-Diagonal

Entity CV O(Single Entity) Block-Diagonal

Entity CC O(Capacity Constraints)
Block-Diagonal
(& Problem Class)

Generic CV O(Decisions) Problem Class

Table 2.10: Characteristics of Decompositions in different Domains

2.5.1 Decomposition in Different Domains

Different decomposition domains often result in different sizes of master
and subproblem, different complexities of these problems and also deter-
mine whether the subproblem(s) shows a block-diagonal structure. In the
ideal decomposition, the complexity of the master and subproblem(s) is
as low as possible. For the master problem, the complexity often directly
relates to the amount of complicating variables or complicating constraints
in a decomposition, i.e., the amount of variables or constraints in the master.
For subproblem complexity, there is no similar easy pattern. We discussed
ways of decomposition by which we may expose a block-diagonal structure
in the subproblem or fundamentally change the class of complexity of
the subproblem. The size alone does not determine the complexity of a
subproblem, but rather the complexity strongly depends on the domain
and principle of decomposition. It is therefore important to choose the
right domain and principle for a specific problem at hand, to result in a
performant decomposition approach. The ideal decomposition should have
a small amount of complicating elements (variables or constraints), and the
subproblems should display a block-diagonal structure, where blocks pro-
pose an optimization problem of an easier class than the original problem.
We report in Table 2.10 on the characteristics of decompositions in different
domains, as seen in the literature. We report for domain and principle
an order of magnitude of the computational complexity as depending on
complicating elements and for related subproblems; and how complexity
is reduced, e.g. through a block-diagonal structure or a computational
complexity problem class (e.g., P instead of NP).
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Geographic and temporal decompositions are promising, under the as-
pects of small sized master problem and block-diagonality in subproblems,
but subproblems remain in the same complexity class as the original prob-
lem. The number of complicating elements relates to the amount of railway
traffic between different geographic areas or time periods, and is usually
much lower for those two domains, than for the entity or generic domain
(e.g., see [40]); moreover the subproblems show in general a block-diagonal
structure. For temporal decompositions, one has to be careful when sep-
arating the original time horizon into smaller periods. As [40] shows, if
arbitrary periods are chosen (regular in time against a very variable traffic,
or irregular in time against a rather constant traffic), a temporal decomposi-
tion can result in large numbers of complicating elements, e.g., more than
for a decomposition in the entity domain. A possible solution for temporal
decompositions can be to adjust the length of time periods according to
traffic density on the network over time. Choosing time periods for the
decomposition dynamically, according to traffic density over time, we can
minimize the amount of traffic operating in more than one time period
and thus minimize ties (complicating elements) between different time
periods. An interesting open challenge is to exploit recurrent patterns in
both decompositions, for instance based on periodic timetables, to simplify
the solutions. For instance, Benders cuts can be computed for a recurrent
service pattern and then propagated to all relevant subproblems.

The entity domain is by far the most explored domain in decomposed
railway scheduling. The decomposition with train entities shows in gen-
eral very beneficial properties with many very small subproblem due to
block-diagonality and moreover subproblems of a complexity class usu-
ally extremely simple (e.g., shortest path problems). Decompositions in
the entity domain have also drawbacks, which include a very large num-
ber of complicating elements. In decompositions based on complicating
constraints, capacity constraints are in general identified as complicating;
those are especially numerous in dense traffic situation, resulting in in-
creased coordination burden. Furthermore, the entity domain shows only
few decompositions by means of complicating variables. We see here a
big potential for novel approaches. If entities are trains or block sections
(e.g., [4]), a specific analysis may identify the potential conflicts amongst
entities and identify those entities with many conflicts, such that variables
related to those entities can be isolated as complicating variables. A possible
result can be a partition of the problem in a complexity core; and a set of
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non-complicating entities, which have only little or almost no interference
with each other, and can be therefore scheduled independently.

The generic domain results in very different approaches concerning the
amount of complicating elements (variables) and the type of subproblem, in
comparison to other domains. Often all or a subset of discrete decisions are
identified as complicating. An example such as [31] shows, that if a decom-
position is appropriately chosen, the structures in the railway scheduling
problem can be exposed, which lead to impressive speed-ups. An open
challenge in the generic domain is how to determine an appropriate choice
of complicating variables to expose structures; several cases have already
been reported, where exposed structure lead to a significantly reduced
complexity of the subproblem. To this end, data driven methods based on
clustering or other unsupervised learning, as well as domain transforma-
tion, can help solve the problem faster. Further, we did not come across any
generic decomposition based on complicating constraints. It is important
thus to analyze a railway scheduling problem for complicating constraints,
whose removal can lead to a decomposition with favorable properties, i.e.,
few complicating constraints, block-diagonal or simple subproblems. In
this sense, graph representations of the problem might be used to analyze
connected components, and/or by flow or cut approaches.

In conclusion, no domain used for decomposition seems to outperform
the other in terms of general potential. The specific characteristics of the rail-
way scheduling problem to be solved can strongly suggest some or other ap-
proaches, depending on which variables and constraints it imposes at global
and local level. We expect decompositions with a well balanced complexity
between master and subproblems as favorable for large-scale applications.

2.5.2 Important Aspects of Decompositions

In the following we discuss a few important requirements and potentials
for decompositions.

Parallelization. Computer architectures today are designed for efficient
parallel computing, especially modern GPU’s contain a very high number of
cores, designed for highly parallelized computing. Still, whether such poten-
tial can be explored depends on the problem to be solved by the computer.
With regards to parallel computing, decentralized solution methods (Section
2.4.2) have a clear advantage over hierarchical solution methods (Section
2.4.1). Hierarchical structures can also be parallelized, but the master (or
single entity to which all subproblems communicate) must be run at once,
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and after all subproblems have been executed. Instead, every decentralized
structure features many subproblems that can be run in parallel, lacking
the possible bottleneck of a single master problem. An important issue in
the parallelization is of course the communication, which should be fast,
with high bandwidth (in case of geographically dispersed subproblems)
and pertinent, i.e., exchanging what is needed to achieve consistency, but
not much more. Instead, for hierarchical solution methods, we can revisit
Table 2.3 and 2.5 to identify cases of multiple independent subproblems.
Those are in general very effective for parallel computing. In hierarchical
solution methods the bottleneck remains the slowest subproblem in each
iteration, as for each solution iteration, normally all subproblems must be
solved. This would suggest to balance the complexity of all subproblems
(rather than the amount of sections, length of time interval, or trains).

Dedicated Hardware. In case the task for a computer is always the same
in terms of operations to be done, the usage of dedicated hardware such as
GPU’s or FPGA’s can lead to substantial speedup in computation. Revisiting
Table 2.3 and 2.5 to see which problems are faced during the different de-
compositions, we see two possible applications for dedicated hardware: In
most publications reviewed on train-entity based decompositions, the sub-
problems reduce to problems of shortest path. Such problems are strongly
structured and solved by efficient algorithms, which repeat only few opera-
tions many times. As such, these decompositions are very suitable for being
solved via dedicated hardware. The second use case for dedicated hardware
relates to agent-based approaches. Agents in such approaches are in general
rule based, or taking actions based on machine learning algorithms. Both
implementations require for the computation of an agents decision, several
matrix multiplications, for which GPU’s have proven extremely effective.

Explainability of Solutions. An important aspect in industrial applications
is that the experts accept the computed solutions. Here, in general decom-
position approaches could bring a benefit. Since solutions for the original
problem are the assembly of different subproblem solutions, experts have
the possibility to study also the subproblem solutions, and get more insight
in the determination of a particular solution. Moreover, decomposition
domains rooted in the real life problem (for instance based on geography, or
time) are commonly used in real life, thus easier to understand by most op-
erators. This could help for the acceptance of novel decomposition methods.

Fast Availability. An important aspect with respect to industrial applica-
tions is the fast availability of a first good solution, or even better, being
extremely fast in determining the optimal solutions. There, a clear dif-
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ference exists between decompositions of complicating constraints, and
complicating variables. In decompositions of complicating variables, es-
pecially in the exact approaches, a subproblem determines a feasible and
optimal solution given the latest master solution. It is likely that many
iterations are necessary before a first feasible solution for a subproblem
is encountered, making it hard to have a intermediate feasible solutions
available quickly. The extreme case is that the first time a feasible solution
for all subproblems has been found, is also the end of the algorithm, as it
is the optimal solution (see e.g., [34]). In decompositions of complicating
constraints, subproblems often report some possible solutions. Either one
can find an intermediate feasible solution for the original problem based on
given subproblem solutions, or one of the many heuristics in the literature
can determine intermediate feasible, yet not optimal, solutions. This could
be an advantage in real-time truncated solution processes.

Railway specific vs. Generic. Looking at Table 2.3 and 2.5 we see that many
decompositions are inspired by traditional elements of railway, e.g., areas,
junctions or trains. We see great potential in getting away from railway
specific concepts and looking at the problem of railway scheduling in a
more generic way. In other terms, studying and understanding the problem
not by its physical aspects, but by exploiting its mathematical structure.
An example of this idea is [31], where the variables in the mathematical
problem are decomposed only by the type of variables, and not by do-
main understanding. The paper proposes to separate all integer from all
non-integer variables, under a standard Benders decomposition approach,
and reports a significant speedup. Generic decomposition approaches are a
great opportunity to use the variety of generic tools which are increasingly
made available in mathematical optimization.

Indexing, or continuous Relaxation. Many of the decompositions reviewed
in this work rely for their decomposition on a time-indexed formulation
of the railway scheduling problem. These formulations generally suffer
under a more detailed time granularity, as the size of the solution space
depends on the amount of time indices. In other terms, if operators desire
timetables with high accuracy, i.e., a fine discretization of time, this be-
comes a big disadvantage for such models and decompositions. This mainly
concerns decompositions where capacity constraints are identified as com-
plicating constraints, as these decompose in time-indexed form. Continuous
formulations suffer from a more detailed granularity only for numerical
approximations, e.g., concerns of floating-point arithmetic, which can be
needed in case of non linear constraints or objective functions. In contrast,
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continuous formulations in general include big-M constraints to model
the discrete decisions of a railway scheduling problem. These constraints
often show a poor linear relaxation. Instead, in general good (tight) linear
relaxations are crucial for the efficiency of many algorithms that are used
to solve mixed-integer problems (railway scheduling).

Separability of objective function terms, extension to multi objective optimization.
One important factor we found in most of the decompositions we reviewed,
is that the objective should be separable in terms of variables, i.e., does not
contain any bi-linear or similar terms. If this is not the case, a separation
into master and subproblem is often not possible, or possible only partially.
In fact, it must be ensured that the variables, which appear together in a
nonlinear term in the objective, have to be in the same problem. This can be
either any of master or subproblem.

No decomposition approach reviewed deals with multi-objective opti-
mization. Nevertheless, we believe that many decomposition approaches
are easily extendable and some even as particularly beneficial, compared
to the non-decomposed problems. In multi-objective optimization, where
different objectives are optimized sequentially, e.g., when using methods of
column or constraint generation, the columns/constraints generated during
the optimization over one objective could partially or maybe even fully be
reused in the optimization of other objectives.

2.5.3 Current Research Gaps, and Directions for Future Research

The literature of decomposed railway scheduling shows many different
promising decompositions. Nonetheless as shown in the introduction of
this paper, a gap is still existing between the size of instances addressed in
academia, and the size of instances, which the operators need to handle
in real life, especially in microscopic scheduling. Most decompositions we
reviewed, sacrifice to some extent optimality for the sake of speed. On the
contrary, it is the main goal of railway operations to increase the capacity
of their railway network through highly effective timetables. As such there
needs to be a dialog between academia and industry how much optimality
may be sacrificed.

Future research must address the issues of today’s existing methods,
which include the following: A clear issue amongst all works reviewed is
the lack of studies on benchmark large-scale instances of railway scheduling.
Many papers conclude stating that larger instances have been tackled by
decomposition, compared to existing centralized approaches, but no exhaus-
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tive experiments have been conducted on openly available actual large-scale
instances. Several papers state the issue, that in case of a non-optimal ap-
proach, it is extremely difficult to estimate the quality, or optimality gap,
of an intermediate solution. It thus can hardly be estimated if it is worth
to continue the computation or stop with the incumbent best solution. A
number of publications, especially in column generation approaches, denote
the issue of RAM as a limiting factor towards large-scale instances. RAM
could be expanded, but this comes still at a high resource cost. Agent-based
approaches have been mostly tested and especially been trained only on
medium sized instances (i.e., 15 trains over 4 areas [48], 20 trains over 20

station [49], 48 trains over 2 junctions [37]). To prove a practical applicability
of agent-based approaches on larger instances (e.g., 150 trains and 1000

block sections as in [40]) further studies are necessary with an increased
amount of agents, and associated complexity. The amount of data (either
from recorded operations, or from simulation, or both) necessary to train
the agents in case of large-scale instances becomes an additional, significant
factor of complexity.

Furthermore, many agent-based approaches reviewed in this work rely
on more or less complex rules to guide the underlying decision process. The
possibility to automatically learn such rules based on the instance and the
realization is very attractive: [29] and subsequently [8] use techniques from
machine learning, in particular q-learning, to provide a decision process for
agents. It is an interesting and yet open question whether other methods in
machine learning, ranging from simple regression to sophisticated neural
networks, can lead to an improved solution quality in railway schedul-
ing. Here, the availability of benchmarks (such as the ongoing research at
Swiss Federal Railways - SBB [35]) allows collaborative investigation and
benchmarks of specific approaches, which are typically only solved for
specialized types of problems.

In a different direction, we see the integration of Benders decomposition
very promising. First, all publications using such an approach are published
within the last 6 years, which identifies it as a promising new idea. Also
as we discussed earlier, especially for logic Benders decomposition, the
design of appropriate constraints can be particularly elaborated to out-
perform what can be achieved by following a simple procedure. In this
direction, the seminal paper [39] proposes only a framework and the neces-
sary requirements for the validity of appropriate constraints, but leaves the
problem open, on how to design the constraints for different applications
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such as railway scheduling. We believe there is large potential for further
improvement beyond the ideas of [32] and [36].

Finally, we see great potential in more generic decompositions. Most
of the decomposition approaches we reviewed in this work propose de-
compositions based on ideas backed with a physical interpretation. It is
relatively easy to interpret geographic areas, time periods and the entity of
a train. Instead, generic decompositions can be less easy to be interpreted,
but might have computational advantages. In this case, specific subset of
complicating variables or complicating constraints can be determined, that
fit very simple structures, or balance the load of the subproblems. In this
sense, generic decompositions might exploit approximate descriptions of
complexity, and use the variables and constraints of each subproblem (i.e.,
its complexity) as a hyper-parameter to be determined. We believe it is
possible to achieve in such way decompositions closer to the ideal of a small
master problem and simple independent, numerous subproblems.
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abstract

Railway timetable planning is one of the key factors in the successful op-
eration of a railway network. The timetable must satisfy all operational
restrictions at a microscopic representation of the railway network, while
maximizing transportation capacity for passengers and freight. The micro-
scopic planning of a railway timetable is an NP-Hard problem, difficult to
solve for large-scale railway networks, such as those of entire countries. In
this work, we propose a logic Benders decomposition approach to solve
the problem of microscopic railway timetable planning. Our decomposition
exploits the typical structure of a railway with dense networks around
major hubs and sparse connections in-between hubs. A logic Benders cut
is designed, which we are able to compute effectively for all decomposed
problems within our considered structure, using a SAT based algorithm we
developed. Moreover, an aggregation scheme for Benders cuts is proposed
to speed up the iterative process. Experiments on real-world cases of the
Swiss Federal Railways show a clear improvement in scalability compared
to a variety of benchmarks including centralized approaches.

3.1 introduction

The detailed schedule of operations is a fundamental aspect for the suc-
cessful operation of a railway network. The schedule has a direct influence
on the performance of the railway system, e.g., amount of train services,
number of transfer connections, costs; and due to unavoidable delays, their
impact on the system punctuality. Providing punctual, reliable, and suffi-
cient services to the customers is one of the main goals of railway operators.
The operators are keen to schedule the operations of trains on the network,
such that a planned schedule is robust to smaller disturbances, minimal
in operational cost; and provides short travel times and sufficient capacity
to passengers. Railway operators continuously increase their expectations
towards the schedule of operations in order to absorb the rising demand.
The operators are keen to maximize utilization of existing network infras-
tructure such that sufficient capacity can be provided with only minimal
extensions to the existing railway network.

An approach pursued by railway operators to increase capacity is the
use of large-scale optimization. Network-wide scheduling enables the co-
ordination of operations on a network-wide scale and is a step towards
maximizing the global utilization of the network.
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The problem of scheduling railway operations, usually referred as railway
timetable planning or railway timetabling, seeks to determine a schedule for
train services operating in a railway by determining their movements on the
network in time (arrival, departure, passing time, orders) and space (route
followed). A feasible schedule specifies the start and end of every move-
ment on the railway for a limited period in time, i.e., the planning horizon.
The timetable must satisfy numerous external requirements from planning
steps in railways that precede scheduling, but also due to technological
constraints of the railway safety system. Those latter are approximated in
macroscopic approaches, while microscopic approaches aim to keep all
the relevant details. Detailed descriptions on different models and solution
approaches to railway timetable planning can be found in [8], [5].

Railway scheduling is known as a NP-hard problem (e.g., [31]). As such
we must expect scalability issues for problems of railway scheduling, es-
pecially in approaches which model the railway network at a high level
of detail. In contrast, railway operators desire to solve, with high quality
and short time, large network-wide scheduling problems to improve the
transportation capacity of the railway. As a contribution to close the gap
between technologically solvable problems and the desires of railway op-
erators, we introduce in this paper a logic-based Benders decomposition.
Decomposition approaches have been developed to solve large scale op-
timization problems. In decomposition, the original problem is split into
smaller subproblems significantly easier to solve, at the expense of an ad-
ditional coordination scheme by a master process to synthesize a global
optimal solution. With our logic-based Benders decomposition, we tackle
the microscopic railway timetable planning problem with a decomposition
that can be tailored to specific instances and industrial needs. We introduce
a new type of logic-based Benders cut to address the resulting complex
subproblems. We propose an efficient implementation of our decomposition
and emphasize the value of our contribution with promising results on a
real-world test case of the Swiss Federal Railways (SBB).

This paper is structured as following. In Section 3.2 we review existing
literature and identify the contribution. We introduce in Section 3.3 the
microscopic railway timetable planning problem and formulate it as a dis-
junctive program in Section 3.4. The logic-based Benders decomposition is
described in Section 3.5. Details on the algorithmic design and implemen-
tation are given in Section 3.6 and 3.7, with experiments on a real-world
example in Section 3.8. We conclude in Section 3.9.
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3.2 related work

In the following we review specifically approaches of decomposition for rail-
way scheduling. The literature on railway scheduling clearly goes beyond
approaches of decomposition and we refer to the reviews [8], [5] and [13]
for an in-depth review of general timetable planning and rescheduling in
railways.

3.2.1 Decomposition in Railway Scheduling

The literature of decomposed railway scheduling can be categorized into
the different classes of decentralized and hierarchical decompositions.

In decentralized decomposition approaches, an original problem is di-
vided into multiple smaller subproblems on a single hierarchical layer. The
decomposition is in general achieved through the relaxation of specific
constraints in the original problem such that the remaining constraints
have block diagonal structure. In such cases, the problem decomposes into
subproblems optimizing over different subsets of the original variables. An
iterative scheme coordinates the individual subproblems towards a global
optimal solution. Throughout the iterations, individual subproblems are
guided towards satisfying the constraints of the original problem, which
initially have been relaxed. This can be done either by the generation of
new constraints or by a penalty function. Some examples of decentralized
decomposition are [6], [28], [10]. A recent review can be found in [29].

Hierarchical decompositions consider two or more hierarchical layers,
where problems on a single layer are potentially independent. The hier-
archical decomposition is generally achieved by partial optimization over
subsets of the original variables. On each hierarchical layer, a different set
of variables is optimized. Hierarchical decomposition is a scheme where
subproblems are solved iteratively, top-down over the hierarchical layers of
the decomposition. Solutions from higher layers are considered as fixed for
the optimization in hierarchical subordinate layers. Coordination amongst
solutions through the hierarchical layers is twofold. The higher layers coor-
dinate the solution of the lower layers by giving them consistent boundary
constraints, based on their optimal solutions. The lower layers report infor-
mation to the higher layers, usually in form of additional constraints.

The number of hierarchical layers may vary by the approach. [23], [24]
use a hierarchical decomposition with two layers. [20], [26] or [18] use three
or more layers.
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3.2.2 Benders Decomposition

The concept of Benders decomposition [4] belongs to the class of hierarchical
decompositions and is a general scheme for decomposition in mathematical
programming. Benders decomposition aims to tackle a mathematical opti-
mization problem Z over two sets of variables y and x, where the optimiza-
tion over the variables y is known to be particularly difficult. In other terms,
optimizing only over x in Z , with y being constant as ȳ, i.e., Z|y=ȳ, is sig-
nificantly simpler in terms of computational effort. Benders decomposition
builds an adequate representation of Z by an optimization problem consid-
ering only the complicating variables y, instead of optimizing over variables
y and x jointly. The optimization over y without x represents the master
problem in Benders decomposition; the optimization over x with fixed y = ȳ
represents the subproblem(s). Benders Cuts are constraints used to trans-
form the master problem into an adequate representation of Z . Cuts are gen-
erated in an iterative scheme. In every iteration, a current optimal solution of
the master problem is evaluated as ȳ on the subproblem(s) to generate new
cuts. The optimality Benders cuts are constraints, generated to represent the
objective of Z as a function of y only, based on Z|y=ȳ. The feasibility Ben-
ders cuts are constraints, generated to represent the feasible space of Z as a
function of y only, based on Z|y=ȳ. In case the subproblem is a convex opti-
mization problem with no integrality constraints, Lagrangian duality can be
used to generate optimality and feasibility cuts. We refer to Benders decom-
position using Lagrangian duality [14] as classical Benders decomposition.

[9] show that for 01-linear programming including big-M constraints,
where the problem is decomposed into complicating variables y as integer
(binary) and x as continuous, non-complicating variables [34], feasibility
cuts in a Benders decomposition can be strengthened. In this particular de-
composition, a master solution on y defines which of the big-M constraints
must hold in the subproblem over x. If a subproblem is infeasible, the con-
straints causing infeasibility in the subproblem are identified. If any of those
constraints can be associated with a master variable y, the combinatorial
Benders cut is a feasibility Benders cut on those binary variables. The combi-
natorial Benders cut excludes the solution, which leads to infeasibility in the
subproblem, from the space of feasible solutions of the master. While in the-
ory any set of constraints, known to cause infeasibility in the subproblem, is
sufficient to generate a combinatorial cut, [9] propose an optimization to find
a set with particularly small support in the y variables, to get a stronger cut.
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Benders decomposition has been further generalized using logic formal-
ism in [27]. An appropriate logic formalism is used to formulate proofs
of optimality and feasibility for a subproblem. The logic Benders cut is
the result of determining under which conditions in the master such a
proof remains valid for a subproblem [27]. We refer to logic-based Benders
decomposition as the Benders decomposition using a logic formalism for
generating Benders cuts. The ideas of [27] have been developed further
in [19] for the problem of planning and scheduling. Specific logic-based
infeasibility proofs are designed for the three objectives of minimizing cost,
make-span and total tardiness in planning and scheduling. Similar ideas are
proposed in [17] and [16] for scheduling and combinatorial optimization.
Those latter works propose a constraint programming approach to detect
the infeasibility of a subproblem and generate combinatorial cuts.

A three-layer Benders decomposition has been proposed for railway
rescheduling in [20]. In their Benders decomposition, binary variables
modelling the routing decisions in railway scheduling are identified as
complicating variables y. A single subproblem Z|y=ȳ is a mixed-integer
linear program, with binary variables x01 corresponding to ordering deci-
sion of railway scheduling. The variables x01 are further fixed to the values
argmin x01

Z|y=ȳ to result in a modified subproblem, which is linear in the
variables x \ x01, and for which the theory of classical Benders cuts can be
used.

A classical Benders decomposition with strengthened and lifted Benders
cuts is proposed in [22] for the problem of microscopic railway rescheduling.
They propose a big-M formulation for rescheduling and apply a classical
Benders decomposition, following the approach of [34]. Feasibility cuts are
strengthened in the same way as in [9]. In [22], the Lagrangian dual of the
subproblem is a max-cost flow problem, where a cycle on the associated
flow-graph proves infeasibility of the subproblem. The cycle is used to form
a combinatorial Benders cut. A simple cycle is a set of constraints minimal
in the support on y variables, identified by [9] as favorable. Optimality cuts
are strengthened and lifted in a similar manner as feasibility cuts.

[23] and [24] propose a logic-based Benders reformulation for railway
rescheduling. In both publications, a geographic logic-based Benders decom-
position is proposed, where the master and subproblems are associated with
the scheduling of lines and stations respectively. The scheduling of lines is
performed on a simplified railway network where stations are represented
as nodes (macroscopic). The scheduling of stations is considered on the real
network at the level of blocks and signals (microscopic). For the scheduling
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of stations, both works assume further that there is a separate inbound and
outbound path for each platform, and those paths result in the same run-
ning time. Under those assumptions, for the microscopic consideration of
the network, the subproblem is shown to be reducible to a list-coloring prob-
lem. In both publications, combinatorial Benders cuts are generated by logic
proofs of infeasibility, in general based on an interval-intersection graph.

3.2.3 Contribution

In this paper we consider a specific type of railway scheduling problem,
which we term microscopic railway timetable planning (MRTP). We formu-
late it as a job-shop scheduling problem in form of a disjunctive program
[2] similar to [31]. We apply the concept of a logic-based Benders decom-
position [27] for our disjunctive program. The contributions of this work
are:

1) We propose a logic-based Benders decomposition for a disjunctive
program, where the subproblem is a disjunctive program of feasibility. With
a disjunctive program we include discrete decisions (variables) into the
subproblem, which differentiates our approach from most of the literature
(e.g., [9], [20], [22]). We do not exploit any form of reduction in treating
the subproblem, which results in considering master and subproblem to be
identical to the original problem in their structure of constraints, different
from existing approaches (e.g., [24]).

2) We introduce a new type of logic Benders cut for the subproblem
considered. The logic Benders cut is derived from a proof of infeasibility,
where the proof itself is described on a graphical representation of our
subproblem. Compared to similar literature on logic-based Benders de-
composition for railway scheduling, e.g., [24], we consider a more general
type of proof of infeasibility. The cut itself is a logic disjunction over terms,
where each term is a precedence relation between two events of the railway
operations considered; this is similar to the cuts of [23, 24].

3) We propose an efficient procedure for the detection of infeasibility in
our subproblem, where the infeasibility is used to generate a logic Benders
cut. The detection of infeasibility combines Boolean Satisfiability solving
with a graph algorithm that is inspired by [11]. Our techniques are similar
to the classical Benders decomposition of railway scheduling of [22]. An ag-
gregation of logic Benders cuts is further proposed to speed-up the iterative
solution process.
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3.3 non-periodic microscopic railway timetable planning

We address in this work the problem of non-periodic microscopic railway
timetable planning (MRTP), where real time information is not consid-
ered. The goal of MRTP is to compute a detailed plan of operations, i.e., a
timetable, which associates start and end time to every operation. A solution
must satisfy constraints due to a safety system (requiring a collision free
ordering of trains), route settings, passengers, and kinematics. In general,
computations must be finished within few hours.

In MRTP, we optimize over times, routes and orders. Times are modelled
as continuous variables. Both ordering and routing decisions are modelled
as discrete decision. A discrete decision is to select one choice, out of a finite
set of possible choices, specific to the decision. Each choice results in a
specific (set of) constraints to be satisfied by the solution.

The railway network is modeled in a microscopic manner. The network
is considered divided into blocks, i.e., track sections of several hundred
meters of track. We consider the passing of a train over such a block as a
single operation. We associate a start and end event with each operation,
which are the physical entry and exit of the train on the block.

An instance of MRTP is defined by a list of train services that are to be
included in the timetable, based on an estimated demand for transportation.
Each train service is specified by means of temporal and infrastructure
limitations for its operations.

Temporal limitations specify the time period of operation for a train ser-
vice. Relevant events (arrival/departure from stations, entry/exit from the
network) of a train service are restricted through individual time windows
to limit the operation of a train in time. By temporal limitations we establish
frequencies of services, minimum transfer times for passengers and rolling
stock circulations.

Infrastructure limitations specify the infrastructure to be used by a train
service by means of available blocks. The interplay of train dynamics and
infrastructure is abstracted to minimal durations for related operations.
The route of a train service is the consecutive, interconnected sequence
of blocks from the origin to the destination. In routing areas, the network
infrastructure allows different alternative subpaths, i.e., route alternatives,
along which a train can move between two points (blocks) in the network.
Each route alternative is a different sequence of blocks. A routing decision
is a discrete decision, which is to select one route alternative in the routing
area for a train service passing such routing area. A single route alternative
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is one possible (routing) choice in the routing decision. Different routing
choices lead to different operations for a train service. A solution for MRTP
requires to select a routing choice for each routing decision.

A resource conflict is the potential simultaneous occupation of the same
block by two trains. Such a condition is considered illegal by the safety
system of the railway. Whenever a resource conflict between a pair of train
services exists, a discrete decision must be made, that is an ordering de-
cision for the usage of the conflicting block. In an ordering decision, two
possible (ordering) choices are available, i.e., either one train before the
other or vice versa. A solution for MRTP specifies an ordering choice for
each ordering decision, i.e., for each pair of trains in conflict on a block.

The solution of MRTP is a timetable, i.e., event times for all operations
according to the chosen routes. Assuming that all services can be scheduled
within their time windows, the performance metric of a timetable depends
on the timing of relevant events. We define the runtime delay of a relevant
event as the difference in time between the scheduled time in the solution,
and the earliest possible point of scheduling (lower bound of the time
window). Based on our industrial setup, we optimize for a timetable with
the minimal sum of runtime delays, over all relevant events. This metric
favors a timetable that is robust against smaller delays. An early scheduling
(a smaller runtime delay) increases the chances that the event and any
successive events will still fit in their time window in case of any delay or
disturbance. We formally define MRTP as the problem to schedule all train
services according to their specifications, determining suitable orders, routes
and times, minimizing the sum of runtime delays over all relevant events.

3.4 a disjunctive formulation of mrtp

In the following, we propose a disjunctive formulation [2] for the problem
of MRTP introduced in Section 3.3, similar to the formulation of job-shop
scheduling in [31]. In MRTP, a train d (a job) is represented by a sequence of
operations (d, b) with b indicating the related block (machine). Compared
to [31] where a job is a fixed sequence of operations, the sequence of op-
erations in a job of MRTP is variable. Different routing choices for a train
service result in different operations in a job. For this reason, MRTP gener-
alizes the job-shop scheduling with blocking and no-wait constraints of [31]
to the job-shop scheduling with multi-purpose machines of [7] and further.

In MRTP, operations cannot be interrupted and jobs cannot be paused,
such that the end of an operation coincides with the start of a successive
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operation. We define a time variable tdb ∈ R+ for the start of operation
(d, b). A precedence relation ((d, b), (q, p)) is a linear constraint to make sure
tqp happens at least fdb,qp ∈ R time units after tdb. We denote with A the
set of all precedence relations in an instance of MRTP. Precedence relations
are either fixed (A f ) or selectable (As).

Fixed precedence relations in A f represent the constraints of MRTP that
must hold in any case, such as minimal travel times outside of routing
areas or the temporal constraints of time windows. Time windows require
a variable t0 = 0 as the origin of time. Selectable precedence relations As
are precedence relations that can be selected or not, and respectively do or
do not need to hold, depending on choices made for the discrete decisions
in MRTP. A discrete decision l logically is associated with a disjunctive
constraint. A choice c in the decision logically corresponds to a term in
the disjunction of such constraint. A single term in the disjunction is a
set of selectable precedence relations; we denote such set as choice set Wc.
We denote as decision set Dl the set of all choice sets related to decision l.
Using the concepts of choice sets Wc and decision set Dl , we can write the
disjunctive constraint of a decision l as,∨

Wc∈Dl

∧
((d,b),(q,p))∈Wc

(
tqp − tdb ≥ fdb,qp

)
. (3.1)

Constraint (3.1) is satisfied, if for at least one choice set in the decision set,
all its selectable precedence relations are satisfied. In case a decision set
contains two choice sets, where each choice set contains exactly one prece-
dence relation, the constraint (3.1) simplifies to the alternative precedence
relation of [31].

We model an ordering decision for a pair of trains d, q using the same
block b by a decision set with exactly two choice sets. Each choice set
contains a single selectable precedence relation to constrain the timing of
operations (d, b) and (q, b) such that either (d, b) is finished before (q, b)
starts or vice versa.

We model a routing decision by a decision set, whose elements are choice
sets; each choice set is individually associated with a single routing alter-
native. A choice set is the set of selectable precedence relations related to
minimal travel times of blocks along the corresponding routing alternative.
In routing areas, we must take into account that train services may share
infrastructure only on certain route alternatives. Resource conflicts may thus
depend on routing decisions. We model such dependency by introducing
auxiliary variables for each operation on a routing alternative. Auxiliary
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variables, instead of the original variables, are then used in the precedence
relations of ordering decisions occurring on routing alternatives. Auxiliary
variables have the same value as their associated original variables, in case
the related routing alternative is chosen. To enforce such equality, we use
appropriate selectable precedence relations, which only hold in case the re-
lated routing alternative is chosen. We thus add these selectable precedence
relations between the original and auxiliary variables to the choice sets of
routing alternatives, to make them dependent on routing choices. Figure 3.1
illustrates auxiliary variables in an example of two trains d and q conflicting
on block b; for train d, the block b belongs to one of two routing alternatives
between its operations (d, u) and (d, v). In the graph of Figure 3.1, time
variables are reported as nodes and precedence relations are arcs. We will
later formally introduce such graph as the generalized disjunctive graph. In the
example of Figure 3.1, the two choice sets related to the routing alternatives
of train d consist of the dashed (W11, upper) and dotted (W12, lower) colored
arcs respectively. The precedence relations between the auxiliary variables
(d, b)in, (d, c)out and their originals (d, b), (d, c) are added to the choice set
of the related routing alternative, i.e., to W12. Auxiliary variables are then
used in the precedence relations of the ordering decision D2 over block b.

train d
(d, u) (d, a) (d, v)

(d, b) (d, c)

(d, b)in (d, c)out

(q, b)
train q

(q, r)

{W11:
{W12:

{W21:
{W22:

}
}

}
}

}
D1

}
D2

Figure 3.1: Explanation of routing for 2 trains and one routing area.

For the remainder of the paper, we simplify the notation of an operation
(d, b) to i, if not stated otherwise. We define L as the set of all decisions in an
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instance of MRTP. We can formulate the MRTP as the following disjunctive
program:

min ∑
i∈H

ti

s.t. tj − ti ≥ fij (i, j) ∈ A f∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ L.

ti ∈ R+ ∀ ti

(3.2)

where H is the set of all relevant events associated with the objective of the
problem of MRTP. Problem (3.2) is NP-hard. Indeed, in case L contains only
alternative precedence relations, i.e., |Dl | = 2 ∀l ∈ L and |Wc| = 1 ∀Wc ∈
Dl , Problem (3.2) can be reduced to Problem 3.1 (job-shop scheduling with
blocking and no-wait) of [31], which was proven NP-hard in the same paper.

In the style of [31], we associate a node with each event time ti in Problem
(3.2). In this way, we can describe Problem (3.2) in a generalized disjunctive
graph, that is the triple G = (V, A f , As), generalizing the ideas of [3].
V is the set of nodes, modelling the start of operations, origin of time,
and auxiliary variables. We use the notion of precedence relations and
arcs interchangeably, such that A f , As and their union A are sets of fixed,
selectable and all arcs in the context of the generalized disjunctive graph.
Arc (i, j) ∈ A has length fij. We assume no self-loops in A. Selectable
arcs, similarly to selectable precedence relations, can be selected or not.
Selectable arcs are grouped into the choice sets; choice sets are grouped
into the decision sets of Problem (3.2). We define a subset of selectable arcs
θ ⊆ As as a selection on the generalized disjunctive graph. Given a selection
θ, G(θ) = (V, A f ∪ θ) is a classical directed graph. We denote a selection
as complete if it contains, for each decision l in L, all the arcs of at least
one choice set, i.e., ∀l ∈ L, ∃Wc ∈ Dl s.t. Wc ⊆ θ. Otherwise, we denote
a selection as partial. We define a selection as consistent, if G(θ) is free of
positive length directed cycles.

Proposition 1. Problem (3.2) has a feasible solution if and only if there exists a
consistent, complete selection θ on the generalized disjunctive graph G of Problem
(3.2).

Proof. First we show that given a complete consistent selection θ on G, we
can construct a feasible solution to (3.2). Let V0 ⊆ V be a set of “root" nodes
that are pairwise unreachable in G(θ), i.e., such that no directed path exists
in G(θ) connecting any two nodes u, v ∈ V0. This means that the remaining
nodes V\V0 are reachable from at least one node of V0. We assign to each
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“root" node in V0 the value 0. For all nodes v ∈ V\V0, we assign a value
that is either 0 or, if greater than zero, equal to the length of the longest
path from any node in V0 to v. All assigned values are finite because θ is
consistent by assumption, i.e., the length of any longest path on G(θ) is
finite. Moreover because θ is complete, the constructed solution satisfies all
disjunctive constraints and is a feasible solution to (3.2).

Next we show the inverse implication. Given a feasible solution {t̄i, i ∈ V}
to (3.2), we prove that the selection defined by θ̄ :=

{
(i, j) ∈ As|t̄j − t̄i ≥ fij

}
is complete and consistent. Since {t̄i, i ∈ V} is feasible, it satisfies all disjunc-
tive constraints of (3.2) and hence ∀l ∈ L, ∃Wc s.t. Wc ⊆ θ̄, which implies
that θ̄ is complete. Moreover, we know by construction that all precedence
relations in G(θ̄) are satisfied by {t̄i, i ∈ V}, which implies that G(θ̄) cannot
contain any positive length directed cycle and θ̄ is also consistent. In fact, if
G(θ̄) would contain a positive length cycle, the set of precedence relations
in such cycle would be an infeasibility contradicting our assumption that
{t̄i, i ∈ V} is a feasible solution.

In the rest of the paper, if clear from the context we refer to the generalized
disjunctive graph simply as the disjunctive graph. An illustrative example of
the disjunctive graph, choices and decisions is described in Appendix 3.10.

3.5 a benders decomposition for mrtp

In this section, we propose a Benders decomposition for Problem (3.2),
where master and subproblem are disjunctive programs equal in the struc-
ture of constraints to the original Problem (3.2). For this decomposition, we
introduce a logic feasibility Benders cut, inspired by [27].

With the logic Benders cut introduced, new ways of decomposing the
MRTP become possible. We propose a geographic decomposition in Section
3.6. We motivate our Benders decomposition by the ability to represent sub-
structures of MRTP with large solution spaces (subproblem) on a smaller
set of variables (master) to reduce the computational complexity of the
overall problem. We show that we can identify substructures (subproblems)
that are independent and can be evaluated in parallel.

3.5.1 A Decomposed Formulation of MRTP

For clarity we refer to Problem (3.2) as the centralized problem (C); we
decompose it into a master problem (M) and a subproblem (S). In this
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paper, we limit ourselves to a decomposition where the objective of C only
depends on variables ofM, therefore S is only a problem of feasibility. In
the following, we first show how to decompose Problem (3.2) into master
and subproblem; and we later propose a condition to consider not a single
but K independent subproblems.

To decompose Problem (3.2) we partition the constraints of C, i.e., A,
into AM forM and AS for S . We partition A by partitioning A f and As
separately. Fixed precedence relations A f can be partitioned arbitrarily into
AM, f and AS , f forM and S respectively. Selectable precedence relations
As are partitioned based on an arbitrary partition of L into LM and LS ;
this can be made independently from the partition on A f . The selectable
precedence relations ofM and S then are

AM,s =
⋃

l∈LM

⋃
Wc∈Dl

Wc; AS ,s =
⋃

l∈LS

⋃
Wc∈Dl

Wc (3.3)

respectively. Based on the partition of constraints, we introduce three sets
of variables M, MS and S. M are variables ofM and S are variables of S .
Formally, we define the three sets as follows,

M := {i, j | (i, j) ∈ AM} ; S := {i, j | (i, j) ∈ AS} ; MS = M ∩ S. (3.4)

MS are variables optimized in M and fixed in S according to Benders
decomposition. In case not all relevant events H are in M, we simply extend
M by the relevant events H, i.e., M := {i, j | (i, j) ∈ AM} ∪ H. This ensures
that the objective can fully be represented inM.

The Benders scheme works in iterations, and numerous Benders cuts β
are identified, on the subproblem, over the iterations Ωα = {1, · · · , α− 1}.
We define Mα as the optimization problem M extended by all Benders
cuts identified in all iterations Ωα. We writeMα in disjunctive form as,

min ∑
i∈H

ti

s.t. tj − ti ≥ fij (i, j) ∈ AM, f∨
Wc ∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ LM.

βr ∀r ∈ Ωα

ti ∈ R+ ∀ti ∈ M

(3.5)

with βr as the Benders cut identified at iteration r.
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At each iteration α of the decomposition scheme, the solution Oα
M ={

t̄α
i , i ∈ M

}
of Mα has to be evaluated on S . We denote by Sα the sub-

problem S dependent on Oα
M at iteration α of the Benders scheme:

min 0

s.t. ti = t̄α
i ∀i ∈ MS

tj − ti ≥ fij (i, j) ∈ AS , f∨
Wc ∈Dl

∧
(i,j)∈Wc

(tj − ti ≥ fij) l ∈ LS

ti ∈ R+, ∀ti ∈ S.

(3.6)

In Sα, we rewrite the constraints ti = t̄α
i ∀i ∈ MS as the following pair of

inequality constraints, using the time origin t0 = 0,

ti − t0 ≥ t̄α
i ∀i ∈ MS

t0 − ti ≥ −t̄α
i ∀i ∈ MS .

(3.7)

We denote such constraints as coordination constraints (and similarly, we
refer to coordination arcs). We denote the union of constraints AS , f and
the coordination constraints (3.7) as Aα

S , f . With the coordination con-
straints we are able to define the disjunctive graph for the subproblem
as Gα := (S, Aα

S , f , AS ,s). We will later use the disjunctive graph of the
subproblem to introduce our logic Benders cut.

Regarding the subproblem, we are able to further partition AS , in partic-
ular AS , f and LS , into K different sets Ak, f and Lk. This allows to define, as
above for a single subproblem, K different and independent subproblems
Sk. To achieve independence among the K subproblems, it must hold that:

∀q, p ∈ K, q ̸= p : Sq ∩ Sp ⊆ MS . (3.8)

That is, any variable shared among different subproblems must be con-
trolled, i.e., optimized, by the master. Otherwise, we cannot consider the
subproblems independently. Despite the theory works on an arbitrary par-
tition of constraints, a reasonable partition is crucial for the performance
of a Benders decomposition. We later propose a decomposition for the
railway scheduling problem in Section 3.6. In the following we design a
feasibility Benders cut that is valid for disjunctive problems in the form of
Problem (3.6). Optimality cuts are redundant as subproblems are problems
of feasibility only.
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3.5.2 Determining Infeasibility

From the theory on logic Benders cuts of [27], we know that any feasibility
Benders cut βα forM is valid, if and only if it is satisfied by any feasible
solution of C. We build a logic feasibility Benders cut from an infeasible
substructure, i.e., an infeasibility proof for Sα; we will prove in Section 3.5.3
the validity of such cut. We motivate the use of an infeasibility proof as
follows. If we know that there exists no solution for Sα, the set of values
Oα
M is an infeasible partial solution for C, and cannot be extended to any

feasible solution OC . Consequentially, a logic Benders cut is necessary to
exclude Oα

M from the solution space ofM.
At each iteration of the Benders scheme we differentiate between two

cases for Sα:
Case I: Sα has a feasible solution Oα

S :=
{

t̄α
i , ti ∈ S

}
.

Case II: Sα has no feasible solution and there exists an infeasibility proof
Iα for Sα.
If Case I applies, we can terminate the procedure and assemble a solution
for C from the partial solutions Oα

M and Oα
S . If Case II applies, we use an

infeasibility proof for Sα to generate a Benders cut and continue with the
Benders procedure.

We use Proposition 1 to prove infeasibility of Sα by showing that there
exists no complete consistent selection on the related disjunctive graph Gα.

Definition 1. (Infeasibility Proof for Sα)
An infeasibility proof Iα for Sα is a set of simple directed positive length cycles,
where each cycle is a subset of arcs of the related disjunctive graph Gα. It holds
for Iα, that for all possible complete selections θ on Gα, at least one cycle of Iα is
completely in Gα(θ).

Since a positive length cycle in Gα(θ) can already be caused by a partial
selection θ, the cardinality of Iα is generally much lower than the number of
possible selections on Gα. An inconsistent partial selection, whose inconsis-
tency is proven by a single cycle, proves the inconsistency of any complete
selection that extends such partial selection. In Section 3.6 we will show that
we are able to generate an infeasibility proof by finding a positive length cy-
cle for each complete selection θ on Gα, evaluating mainly partial selections.

In case a cycle γ ∈ Iα involves at least one coordination arc, the length
of the cycle depends on Oα

M. We use such characteristic to derive a logic
Benders cut in the next section. Goal of the Benders cut βα is to constrainMδ

of subsequent iterations δ > α such that a feasible solution to Sδ may exist.
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3.5.3 A Logic Benders Cut

We here introduce a logic Benders cut based on the infeasibility proof of
Section 3.5.2. In case at least one cycle in the infeasibility proof Iα depends
on the master solution, we are able to generate a valid logic Benders cut to
constrainMδ, δ > α. Our logic Benders cut is a constraint that, if satisfied
by the master, avoids that the infeasibility proof Iα applies to the related
subproblem. An infeasibility proof Iα is avoided on Gδ, δ > α and thus in
the subproblem, if there exists at least one cycle in Iα that is either not fully
contained in the arcs of Gδ, or has non-positive length when considering
the arcs of Gδ. In case of our decomposition, where each cycle on Gα is also
a cycle on Gδ, we can only change a cycle by its length over the iterations. In
particular, we change the right-hand side of some coordination constraints
(and thus the length of related coordination arcs) by an amount sufficient to
make cycles non-positive in their length, and avoid infeasibilities in further
iterations. An infeasibility independent from the master proves infeasibility
of the centralized problem.

Our logic Benders cut is designed as a logic disjunction over terms, where
each term is associated with a precedence relation between variables of
MS . A single precedence relation in the disjunction is designed based on
a single cycle γ ∈ Iα. Of interest for generating such precedence relations
are only those cycles in Iα, which contain at least one coordination arc. All
other cycles are independent from Oα

M and hence can be neglected.
The single precedence relation generated from a single cycle γ restricts

variables MS and in consequence Oδ
M. Assume that the precedence relation

from γ is satisfied by Oδ
M. We design the precedence relation such that, in

this case, when we consider the set of cycles Iα on Gδ, at least the cycle
γ, used to generate the precedence relation, has non-positive length. Due
to the changes in the graph, it might also be that other cycles in Iα have
non-positive length. We derive such a precedence relation by summing left-
and right-hand side of all constraints that are arcs in the cycle γ and that are
not coordination constraints. We denote those constraints by γ̄ := γ ∩ AS .
The purpose is to express the inconsistency described by a single positive
length cycle only on the variables MS such that it can be used inM. When
summing left- and right-hand side of the precedence relations that are arcs
in γ̄ we get the expression:

∑
(i,j) ∈ γ̄

tj − ti ≥ ∑
(i,j) ∈ γ̄

fij. (3.9)
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We may simplify the expression (3.9). Coordination arcs are by definition
arcs in or outgoing to the time origin, and γ is a simple cycle. Therefore,
there can be at most two coordination arcs in γ; in case there are exactly
two, those must be consecutive. At least one coordination arc is contained
in γ since it is a cycle of interest. Therefore, in any case, the set of all
coordination arcs γ \ γ̄ is a directed path; and the partition of γ into γ̄ and
γ \ γ̄ is a partition of a cycle into two directed paths. We identify the start
node of γ̄ as s(γ̄), its end node as e(γ̄) and its length as lγ̄. Because γ̄ is
a directed path, the intermediate variables of the path cancel out in the
left-hand side of (3.9) and the expression simplifies to

te(γ̄) − ts(γ̄) ≥ lγ̄. (3.10)

In the inequality (3.10), the left-hand side are variables in MS only, and the
right-hand side lγ̄ is an instance-specific constant.

Since AS may also contain arcs towards or from the time origin, γ may
not necessarily contain two, but possibly only one coordination arc. In such
case, either te(γ̄) or ts(γ̄) is the time origin t0, and (3.10) turns into an upper
or lower bound on a variable in MS .

We define the logic Benders cut based on Iα as the disjunction over all
constraints of type (3.10) from all cycles of interest (γ ̸= γ̄) in Iα as

βα =
∨

{
γ∈ Iα

∣∣ γ̄ ̸=γ
}
(

te(γ̄) − ts(γ̄) ≥ lγ̄
)

. (3.11)

The logic Benders cut (3.11) is satisfied if at least one precedence relation
in the disjunction is satisfied. We prove the validity of the logic Benders cut
(3.11) in Proposition 2. Then, we show that the logic Benders cut βα (3.11)
at least excludes Oα

M from the solution space ofM◦ to establish progress
(Proposition 3). At last, we show that in case no infeasibility proof for Sα

exists, a feasible solution of C exists (Proposition 4).

Proposition 2. The Benders cut βα defined in (3.11) is satisfied by all feasible
solutions of C.

Proof. Let OC = {t̄i, i ∈ V} be any feasible solution of C. We consider the
selection θ̄C :=

{
(i, j) ∈ As|t̄j − t̄i ≥ fij, t̄i ∈ OC

}
defined on the disjunctive

graph of C. We know from the proof of Proposition 1 that θ̄C is complete
and consistent. By the definition of our decomposition, we know that the
selectable precedence relations and associated decisions of the subproblem
Sα are also selectable precedence relations and associated decisions of the
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centralized problem C, i.e., AS ,s ⊆ As and LS ⊆ L. Thus, the selection θ̄C
restricted to the subproblem Sα, formally θ̄S = θ̄C ∩ AS ,s, inherits from θ̄C
the property of completeness with respect to LS .

Given that θ̄S is complete, there exists a positive length cycle γ ∈ Iα

where γ is fully contained in Gα(θ̄S ), or equivalently γ ⊆ Aα
S , f ∪ θ̄S (see

Definition 1 of the infeasibility proof). Moreover, γ contains at least one
coordination arc and is therefore used to form a precedence relation defined
by (3.10) in the Benders cut (3.11). In fact, if γ contains no coordination arc
it would hold that γ ⊆ AS , f ∪ θ̄S . Consequentially, by the definition of our
decomposition and the construction of θ̄S , we have that γ ⊆ A f ∪ θ̄C . This
identifies that a positive length cycle exists in G(θ̄C), which contradicts our
assumption that θ̄C is consistent, i.e., that OC is a feasible solution.

If we now consider γ̄ by excluding the coordination arcs from γ, we know
that γ̄ is a path for which it holds γ̄ ⊆ AS , f ∪ θ̄S , hence γ̄ ⊆ AC, f ∪ θ̄C .
Thus, all precedence relations along γ̄ are satisfied by OC . This implies
that for the γ̄ considered, the precedence relation (3.10) is satisfied by OC .
Consequentially at least one term in the disjunction (3.11) is satisfied by
OC , hence βα is satisfied by OC . Since OC is an arbitrary solution of C, we
conclude that βα is a valid cut, satisfied by all feasible solutions of C.

Proposition 3. The Benders cut βα (3.11) is violated by the master solution Oα
M.

Proof. Our proof relies on showing thatOα
M violates all precedence relations

(3.10) that are part of the disjunction (3.11), i.e., βα. To do so, consider any
positive length cycle γ ∈ Iα, where γ ̸= γ̄. The positive length condition
for such cycle can be written as:

lγ̄ + lγ\γ̄(Oα
M) > 0. (3.12)

where the notation lγ\γ̄(Oα
M) is to emphasize the fact that the length of

the path γ\γ̄ depends on the master solution Oα
M whereas the length of

γ̄ does not.
In the precedence relation (3.10), we can reformulate the left-hand side

based on the fact that γ̄ and γ\γ̄ together form a cycle, such that start and
end points of both paths are the same, but swapped:

ts(γ\γ̄) − te(γ\γ̄) ≥ lγ̄. (3.13)

We know that for the directed path γ \ γ̄, it must hold that te(γ\γ̄)− ts(γ\γ̄) ≥
lγ\γ̄(OM); therefore −lγ\γ̄(OM) ≥ ts(γ\γ̄) − te(γ\γ̄). We can thus reformu-
late (3.13) into the following equivalent condition:

−lγ\γ̄(OM) ≥ ts(γ\γ̄) − te(γ\γ̄) ≥ lγ̄ (3.14)
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which is valid for any arbitrary master solution OM.
Considering Oα

M in (3.14) and rearranging terms, it results that lγ̄ +
lγ\γ̄(Oα

M) ≤ 0, which contradicts (3.12), stating that γ is a positive length
cycle for Oα

M. Therefore, (3.14) cannot be satisfied by Oα
M, hence (3.10)

cannot be satisfied by Oα
M. Since this holds for any precedence relation

included in the disjunction βα, then βα itself is violated by Oα
M.

Proposition 4. If no infeasibility proof exists for subproblem Sα in the decom-
position scheme, the optimal master solution Oα

M can be extended to an optimal
solution for C.

Proof. We denote the optimal solution of the master problem by Oα
M. If no

infeasibility proof for subproblem Sα exists, then a feasible solution Oα
S to

the subproblem Sα (conditioned on Oα
M) must exist. Merging these two

solutions Oα := Oα
M ∪Oα

S provides a solution to the entire C.
By definition of our decomposition, it holds that A = AM ∪ AS and

L = LM ∪ LS . This implies that Oα satisfies all constraints of C and is
hence feasible. Moreover, since no variable appearing in S alone affects
the objective function of C, the optimality of Oα follows directly from the
optimality of Oα

M.

By construction, all theory shown in Section 3.5.2 and 3.5.3 also holds in
case of K independent subproblems instead of a single subproblem.

3.6 implementation

Given the theory from Section 3.5, we are now able to discuss the imple-
mentation of a Benders decomposition for MRTP. In the following, we will
first introduce the specific decomposition of an instance of MRTP. Second,
we will discuss an algorithm to generate either a feasible solution or an in-
feasibility proof in form of a set of cycles for a subproblem. We conclude the
section with an overall discussion of the Benders decomposition procedure.

3.6.1 A Decomposition of MRTP

To decompose an instance of MRTP, we partition the constraints of the MRTP
instance according to Section 3.5.1. We define M and Sk based on such
partition of constraints. We must ensure thatM and Sk satisfy condition
(3.8) for our partition to achieve independence across subproblems.
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When decomposing the MRTP problem we aim to find a decomposition
where subproblems are substructures of the MRTP with a large solution
space. In this way, the master problem has a considerably smaller solution
space compared to the original problem (i.e., can be solved fast to optimal-
ity); and a subproblem is likely to impose few Benders cuts (i.e., a large
solution space is likely to contain a feasible solution for a variety of master
solutions to which no cut is necessary).

Our Benders decomposition considers a subproblem to be an instance
of MRTP, therefore identical in type and structure of constraints to the
master. We have thus considerable freedom in deciding the decomposition.
We can allow any type of geographic decomposition, regardless of the
amount of stations in the subproblems, different from existing approaches,
e.g., [24]. In particular, we choose areas with dense infrastructure to create
subproblems with a large solution space. For instance, the area around a
station contains in general a dense railway infrastructure, which allows
for a variety of possible routes for inbound and outbound trains and as
such many different solutions. Due to our industrial setup, and for practical
reasons, most of our subproblems are therefore including stations. In the
test case we will use for the evaluation, we will show that subproblems can
include no station, part of a station, one, or even multiple stations.

3.6.2 Evaluating Feasibility of a Subproblem

As discussed in Section 3.5.2, an algorithm to evaluate the feasibility of
Oα
M on a subproblem Sα

k must either return a feasible solution according to
Oα
M, or a set of cycles. This latter must be an infeasibility proof according

to Definition 1 such that we can translate it into a Benders cut.
To evaluate the feasibility of a subproblem we use Satisfiability Modulo

Theories (SMT), which is the combination of Satisfiability (SAT) solving
[12] and a first-order logic [33]. The core algorithm to solve SAT, the DPLL
[12] procedure is known to be particularly suitable to generate infeasibility
proofs efficiently [1]. In MaxSat, that is the optimization over SAT, many
algorithms [32] are based on this fact. We support our choice of SMT by a
benchmark based on a commercial tool in Section 3.8.

Algorithm 1 illustrates our SMT procedure for the case of MRTP, follow-
ing the terminology of the disjunctive graph. The algorithm is inspired by
the ideas of [11]. The goal is to determine whether there exists a consis-
tent complete selection θk on Gα

k and therefore whether Sα
k has a feasible

solution or not. We formulate the SAT problem, which we identify by its
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Algorithm 1: SMT, A DPLL with Precedence Constraints.
input :Sα

k
output :Oα

k , Iα
k , βα

k
init : Φ ← Sα

k , Gα
k ← S

α
k , θk = ∅

1 while true do
2 confl← UnitPropagation(Φ, θk)

3 if !confl then
4 confl← Evaluate(Gα

k (θk))
5 if !confl then
6 if θk = complete then
7 Oα

k ← Gα
k (θk)

8 return (Oα
k , ∅, ∅)

9 θk ← θk
⋃

Decide()

10 else
11 if confl = Unsatisfiable then
12 Iα

k ← AnalyzeIP(confl)
13 βα

k ← BendersCut(Iα
k )

14 return (∅, Iα
k , βα

k )
15 else
16 Analyze(confl)
17 Backtrack(confl)

constraints Φ, to ensure that θk is complete. When DPLL searches for a
complete selection, every partial selection encountered in the search pro-
cedure is evaluated for consistency. Consistency is determined by a cycle
detection on Gα

k (θk) in form of a longest path propagation. If an inconsistent
(partial) selection is encountered, a constraint is added to Φ, to exclude
such selection from the search of DPLL.

Algorithm 1 starts with an empty selection θk and continuously extends it
by adding new choice sets Wc to it (line 9), till the selection is complete (line
6). Decide in line 9 uses SAT heuristics to pick the next choice set Wc to be
added to θk. If a consistent and complete selection θk has been found,Oα

k can
be computed (see proof of Proposition 1) (line 7). In line 2, unit propagation
[30] is performed, i.e., θk is propagated over the constraints Φ, to detect addi-
tional choice sets Wc to be added or excluded from θk. In case a constraint of
Φ is violated by the resulting θk, the constraint is reported as a SAT conflict
(confl). In line 4, in case no SAT conflict has been found by unit propagation,
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θk is evaluated for consistency on Gα
k (θk). In case Gα

k (θk) contains a positive
length cycle, confl is a new SAT constraint that prohibits θk to contain those
Wc, which cause together the cycle on Gα

k (θk). This SAT constraint is obvi-
ously violated by θk, as Gα

k (θk) contains the cycle. In case the subproblem
is determined to be infeasible because confl is an unsatisfiable constraint
(line 11), Algorithm 1 terminates by analyzing the computations done so far,
following the AnalyzeIP procedure of [1] (line 12). The analysis uses confl

to determine the cycles on Gα
k (θk), which are responsible for the infeasibility.

We collect those cycles in Iα
k . Based on Iα

k , a Benders cut is generated (line
13). In case confl is possibly satisfiable, it is analyzed by standard SAT
techniques (CDCL, [35]) to create a new constraint for Φ by strengthening
confl (line 16). A backtracking (line 17) resets the DPLL search to a state
where θk does not yet contain all Wc that together violate confl.

3.6.3 Iterative Benders Decomposition

The iterative scheme of Benders decomposition alternates between solving
the master problemM and evaluating all subproblems Sk for feasibility. To
solve M we may use any kind of mixed-integer solver. To evaluate each
individual subproblem we can use any kind of algorithm that is able to
compute an infeasibility proof for it. In particular, in Section 3.8 we compare
the SMT algorithm of Section 3.6.2 with the commercial tool GUROBI-IIS to
this purpose. In case the chosen algorithm identifies an infeasibility proof
for the subproblem, we can translate it into a Benders cut for the master.
Otherwise the algorithm must be able to determine a feasible solution.

In the Benders decomposition, before the evaluation of every subproblem,
we may check if the subproblem has changed with respect to the previous
iteration. If both, previous and current subproblem are identical, the eval-
uation of the current subproblem is redundant and it can be skipped. The
iterative procedure terminates if for each subproblem Sk we find a feasible
solution.

3.7 benders cut aggregation

Until this point, at each iteration α of the Benders decomposition, first
the master problem Mα is solved and subsequently all subproblems Sα

k
are evaluated. The SMT algorithm of Section 3.6.2 for a subproblem either
returns a feasible solution or a single Benders cut βα

k . With the intention to
decrease the number of iterations till a global solution is found, we intro-
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Algorithm 2: SMTAgg, Benders cut aggregation scheme for a sub-
problem.
input :Sα

k

output :
{

βα
k,1, βα

k,2, · · ·
}

init : i = 1, S ′αk = Sα
k

1 while Oα
k = ∅ do

2 Oα
k , Iα

k,i, βα
k,i ← SMT(S ′αk);

3 if Iα
k,i ̸= ∅ then

4 S ′αk ← Modify(S ′αk , Iα
k,i);

5 i← i + 1;

6 return
{

βα
k,1, βα

k,2, · · ·
}

duce a heuristic to compute further Benders cuts from a single subproblem
Sα

k within the same iteration α.
While the infeasibility proof Iα

k for Sα
k depends on Oα

M, a Benders cut
generated from Sα

k does not. We exploit this property to perform an ag-
gregation of Benders cuts in a single iteration of the Benders scheme. At
each iteration, after generating a first cut with SMT, we modify Sα

k and call
SMT again on a modified subproblem S ′αk to possibly get another cut. We
modify Sα

k such that for the modified problem S ′αk the infeasibility proof we
detected in the first place is no longer valid. Under this condition, when we
call SMT on the modified subproblem, a new infeasibility proof is returned
in case the subproblem is still infeasible.

We perform the above procedure iteratively as illustrated in Algorithm 2.
For each new infeasibility proof we find (line 2), we modify Sα

k (line 4) by
a specific function Modify, and call SMT to see whether further cuts can be
found. The modifications to Sα

k must be such that after we modified, the set
of cycles Iα

k contains at least one non-positive cycle on the modified graph
G′αk and is no longer an infeasibility proof by Definition 1. Another call of
SMT must then either return a different proof, from which we can derive
another Benders cut, or a feasible solution (line 3).

Concerning the modification operated, we could theoretically explore
the subproblem to the fullest if for every Iα

k we find, we would explore
modifications to Sα

k based on every cycle γ ∈ Iα
k for which it holds γ ̸= γ̄.

Practically this would lead to exponentially many calls of SMT, and instead
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we opt for a heuristic procedure implementing a single modification per
infeasibility proof found.

Modifications of Sα
k are carried out on the corresponding graph Gα

k . In
particular, we pick a cycle γ ∈ Iα

k , γ ̸= γ̄ and we modify the length of
one of its arcs, such that the length of the cycle becomes non-positive. This
mimics the effect of our logic Benders cut toM.

The cycle to be modified must contain at least one coordination arc, i.e.,
γ ̸= γ̄. Otherwise, γ contains only constraints of the original problem;
modifying them would mean to change the original problem. To make a
cycle non-positive in length we relax a coordination constraint, i.e., change
the length of a coordination arc in the cycle, which we assume equal to an
increase in runtime delay. Thus, with our heuristic we choose to modify the
cycle with the smallest length.

For the chosen cycle, we modify its length as we change the length of
a coordination arc, such that the cycle becomes exactly zero length. The
cycle can contain one or two coordination arcs. In case two are present, we
prioritize changing the one outgoing from the time origin t0, against the one
ingoing to the time origin t0. We motivate this choice as follows. Outgoing
arcs from the time origin represent earliest bounds on nodes they point
to. Decreasing the length of such an arc (to decrease the length of a cycle)
means to allow scheduling an event earlier, i.e., let a train enter or exit the
subnetwork associated with the subproblem earlier. Ingoing arcs to the time
origin are latest bounds on nodes they originate from. Decreasing the length
of such an arc, which is already negative (to decrease the length of a cycle),
means to accept the delay of an event, i.e., a train may enter or exit the
subnetwork associated with a subproblem later in time. In our aggregation,
we would like to anticipate the effect of our Benders cut on solutions of the
master problem. Scheduling a train earlier aligns more with the objective
of the master, compared to delaying a train. We therefore assume that the
master might favor this former case. When aggregation of cuts is considered,
SMTAgg (Algorithm 2) replaces the simple SMT algorithm of Section 3.6.2
to analyze all subproblems.

3.8 computational experiments

For a computational study of our logic-based Benders decomposition, a test
case of SBB is used. The railway infrastructure of the test case represents the
exact microscopic topology of the Swiss railway network in the related area.
We analyze the performance of the decomposition with and without the
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Centralized Master Per Subproblem Per Train

Property Total Total Avg. Min. Max. Avg. Min. Max.

Trains 361 361 63.2 6 183 - - -

Areas 45 - - - - 8.8 1 19

Time Windows [min] 46.7 47 46.6 45 128 46.5 46 153

Stops 3280 0 61.9 0 635 9.1 2 16

Transfer Connections 865 0 18.5 0 241 3 0 8

Blocks 955 313 15 1 110 124.3 21 270

Route Alternatives 5441 0 120.9 0 1124 15 0 45

Resource Conflicts 47588 10478 1265.2 0 12360 262.9 7 696

Max. Conflict Cmp. 361 248 49 0 183 89.1 8 234

Events (Nodes) 78758 38645 1551.6 27 13043 217 42 465

Relations (Edges) 411940 136588 7996.8 27 75993 - - -

Table 3.1: Overview on instance characteristics.

aggregation of Benders cuts and compare it to several benchmarks. All ex-
periments are performed on a machine equipped with an Intel i7@2.60GHz
and 32.0GB of RAM.

3.8.1 Scenario

The test case describes a selection of train services and related infrastructure
from the original timetable of SBB over a planning horizon of roughly 9

hours. The test case spans the geographic triangle between the cities Zurich,
Lucerne and Chur in Switzerland, which are around 150 km away from
each other; and includes the bigger stations Zurich, Lucerne, Chur, Arth-
Goldau and Zug. The test case is given as an instance of MRTP as described
in Section 3.3. A solution of MRTP is a detailed schedule for all operations,
that satisfies all operational and safety requirements.

Table 3.1 reports characteristics on the original test case, for the cen-
tralized problem; and decomposed, for the master, per subproblem (in
minimum, maximum and average values), as well as per train (again, min-
imum, maximum and average values). Time windows reported in Table
3.1 are those restricting relevant events. The window size is determined by
industrial input, to be roughly 45 minutes. In Table 3.1, we further report
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Property 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Route
Alternatives

488 947 1418 1898 2469 3100 3648 4193 4795 5441

Resource
Conflicts

515 1874 3985 6753 10142 16010 21919 29296 37784 47588

Table 3.2: Overview on the centralized instance characteristics over different
number of trains.

the size of the maximal conflict component (Max. Conflict Cmp.). We report
it as a measure of complexity for the original test case, describing how much
traffic is interacting. The value is computed by means of an undirected
graph where each train service is represented by a node; two nodes are
connected if the associated train services have at least one resource conflict.
The maximal component is the largest connected component in such graph.
From Table 3.1 we see that over 9 hours of planning horizon, the operations
of all train services are in dependency to each other. The decomposition
breaks some of these dependencies, as for the master but also for the avg.
subproblem not all train services are conflicting with each other. We can
identify situations of having zero stops (no stations) or more stops than
trains (multiple stations) in a subproblem. Concluding, we have indeed
subproblems that contain none, exactly one, or multiple stations.

To explore the behavior and performance of our decomposition on in-
stances of different complexity, we derive multiple instances from the orig-
inal test case by decreasing the number of trains to different percentages.
100% is the original test case. Trains are removed randomly but successively:
e.g., the 20% instance contains all trains of the 10% instance. In Table 3.2
we report the number of route alternatives and resource conflicts for those
instances which grow roughly quadratically. These mimic to some extent
the complexity of those instances.

All instances are decomposed according to Section 3.6.1. In Figure 3.2
we illustrate the decomposition of the original test case. Each node in the
graph represents one subproblem. The shape and shade of a node denotes
the amount of blocks considered in a subproblem. Solid arcs indicate sub-
problems whose blocks are adjacent in the network. Dashed arcs indicate
subproblems connected only by infrastructure of the master problem. The
arc labels report the number of trains running between two connected
subproblems within the period of planning.
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Figure 3.2: Connectivity and Usage of the Infrastructure.

3.8.2 Performance Experiments

In order to assess the performance of our Benders decomposition, all in-
stances are solved by six different solution approaches. The centralized
Problem (3.2) is solved with a constraint programming solver (IBM CPO
(CPO), [21]) and a mixed-integer solver (GUROBI (GRB), [15]) to provide
benchmarks. For CPO the disjunctive program (3.2) is implemented using
the logic functionalities of the solver. For GRB a big-M formulation of (3.2)
is used. For the decomposition, we evaluate versions without and with
aggregation of Benders cuts; we refer to them as simple and aggregated
decompositions respectively. In all decomposition approaches, the master
problem is solved as a big-M formulation by GRB. For solving subproblems
we use our proposed SMT approach and also the commercial tool GUROBI-
IIS (GRB-IIS) that is part of GUROBI [15] as a benchmark on the subproblem
evaluation. The tool computes an irreducible infeasible subset of constraints
in a problem. We can translate such subset into a logic Benders cut. All
experiments are computed with a time limit of 12 hours. For decomposed
approaches we aborted runs where within 2 hours no Benders cut for a
single subproblem could be found.

We report computation results in Table 3.3 for all approaches (columns)
over all instances (rows). We indicate the fastest approach(es) per instance
in bold. All solutions are optimal, otherwise we report the optimality gap if
a feasible solution was found within 12 hours. Table 3.3 shows the original
test case (100%) is not solvable to optimality by any of the approaches
within 12 hours. In current practice of the industry, near optimal timetables
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Centralized Aggregated Simple

CPO GRB SMT GRB-IIS SMT GRB-IIS

Trains Total [s] Total [s] Total [s] Iter. Total [s] Iter. Total [s] Iter. Total [s] Iter.

10 % 286.7 3.7 0.3 2 4.5 2 0.3 3 1.4 2

20 % 5530.8 32.3 0.9 2 138.8 4 1.1 4 16.9 5

30 % ∗8.7% 135.5 5.1 5 996.2 4 7.0 12 122.5 9

40 % - 2155.9 23.9 8 . . 40.2 37 3214.0 45

50 % - ∗1.99% 31.5 5 . . 97.5 58 3766.9 61

60 % - ∗2.52% 78.6 7 . . 387.7 92 . .

70 % - ∗5.97% 220.7 11 . . 1512.4 155 . .

80 % - ∗15.64% 582.4 11 . . 4840.6 220 . .

90 % - ∗101.82% ->41 . . ->260 . .

100 % - - ->20 . . ->228 . .

[∗] No optimality within 12h [Opt. Gap]. [-] No solution within 12h.
[.] No Infeasibility Proof within 2h.

Table 3.3: Computation for Centralized, Aggregated, and Simple Decomposition.

are designed by manually merging optimal timetables of smaller regions
into one consistent network-wide timetable.

Concerning the centralized approaches, GUROBI (GRB) manages to solve
instances to optimality up to 40% of trains and further provides feasible solu-
tions till 90% of trains within 12 hours. IBM CPO (CPO) provides optimal so-
lutions up to 20% and a feasible solutions for 30% of trains. Beyond this, no
solutions can be found by CPO. In Section 3.8.4 we provide a deeper analysis
why state-of-the-art solvers struggle with a centralized approach on MRTP.

Comparing centralized with decomposed approaches, a clear advantage
of decomposed approaches is visible in Table 3.3. In the best case, the
decomposed approaches allow to find a solution on instances of size twice
as large, 40 times faster. The ratio between the computation time of the
best centralized approach and the best decomposed approach grows with
the increase of complexity (trains), showing the scalability potential of the
proposed approach. Compared to centralized approaches, decomposed
approaches are not able to return a feasible solution if not converged.



100 logic benders decomposition

Trains 10% 20% 30% 40% 50% 60% 70% 80%

Simple Iterations 3 4 12 37 58 92 155 220

Total Cuts 4 8 46 129 200 342 548 716

Avg Master [s] 0.04 0.13 0.39 0.83 1.34 3.69 8.98 20.72

Aggregated Iterations 2 2 5 8 5 7 11 11

Total Cuts 8 36 139 421 485 833 1255 1786

Avg Master [s] 0.05 0.18 0.51 1.43 2.80 6.88 12.85 39.45

Table 3.4: Aggregation of Benders Cuts.

Comparing SMT with GUROBI-IIS, we see the advantage of SMT. We
explain the difference in performances by the following two reasons. First,
GUROBI-IIS computes minimal infeasibility proofs by reducing an initially
large set of constraints. The reduction itself is computationally expensive
as it must be carried out till a minimal proof has been found. The approach
we use cannot be proven to find a minimal proof, and this results in a faster
process. Second, GUROBI-IIS is designed to work for different types of
problems and constraints, which requires generality of the method. Instead,
our approach is specifically designed for SAT problems.

3.8.3 Benders Cut Generation and Aggregation

In this section we discuss the aggregation of cuts in the decomposed
approaches of SMT. Approaches based on GUROBI-IIS are neglected due
to the shown performance.

In Table 3.4 we discuss the performance of the simple and aggregated
SMT. Columns identify the instances. Rows report (grouped by simple and
aggregated) the amount of iterations till convergence; amount of total cuts
generated by all subproblems over the entire search process; and the aver-
age of computation time of the master, over all iterations. The results clearly
show the effectiveness of aggregation. The forty times faster computation
times reported in Table 3.3 are due to much less iterations performed. On
the other hand, each iteration itself is slightly slower. The number of cuts
reported for the simple case represent a minimal amount of cuts necessary
to converge. The aggregated case results in 2 to 3 times more cuts compared
to that. This increases by a comparable factor the average time spent for
computing the master solution. A different choice of Modify heuristic might
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Trains 10% 20% 30% 40% 50% 60% 70% 80%

Simple Relative Cuts 3 6 33 87 120 216 314 418

Absolute Cuts 1 2 4 10 19 38 77 88

Mixed Cuts 0 0 9 32 61 88 157 210

Cut Size 1.50 1.63 1.50 1.99 2.07 2.07 2.25 2.31

Aggregated Relative Cuts 7 32 94 343 357 603 863 1118

Absolute Cuts 1 2 6 13 28 52 73 103

Mixed Cuts 0 2 39 65 100 178 319 565

Cut Size 1.38 1.61 2.02 2.53 2.52 2.52 2.80 3.54

Table 3.5: Classification of Benders Cuts.

result in less additional cuts and less iterations, for an even faster total
computation time.

We finally study the Benders cuts, categorizing them by the type of
precedence relations in the disjunction. As indicated in Section 3.5.3, the
nodes in the linear precedence relation (3.10) might involve t0, or not,
depending on the number of coordination arcs in a cycle γ. We call the case
of a precedence relation involving t0, i.e., where there is one coordination arc
in γ, an absolute relation. A relative relation is instead a precedence relation
on two events of MS , i.e., there are two coordination arcs in γ. A relative
relation is the consequence of interactions among train services inside a
subproblem, which is not yet represented in the constraints of the master.
An absolute relation results from a train service originating or terminating
in a subproblem. Accordingly, we define a relative Benders cut as a cut with
terms in disjunction only associated with relative relations. An absolute cut
is a cut with only associated absolute relations; a mixed cut is a cut, which
includes terms associated with both types of precedence relations.

We report in Table 3.5 some statistics on the types of cuts observed.
The rows describe the amount of relative, absolute, mixed cuts out of the
amount of total cuts. Moreover, the average size of cuts is reported, i.e.,
number of terms in disjunction. Heavier traffic (i.e., a larger percentage of
trains running) results on average in larger cuts as more train interactions
exist. The aggregation procedure in general results in larger cuts. Exploring
multiple conflicts beyond the smaller conflicts, which are in general those
first detected by SMT, larger conflicts are found.



102 logic benders decomposition

The amount of absolute cuts depends on the amount of train services
starting or terminating in a subproblem, which is in general less than train
services passing through a subproblem (which would result in relative
cuts). The master has only limited influence on those train services as
their starting or termination event is fixed inside the subproblem. As such
most conflicts amongst these trains occur in any case and must be resolved
by the master for convergence. This can be seen in a similar number of
absolute cuts in the simple and aggregated approach. The same does not
hold for relative and mixed cuts, where conflicts among train services in
the subproblem strongly depend on the master solution. The consequence
of the above is that the aggregation procedure proportionally and in total
generates more mixed and relative cuts than absolute cuts.

3.8.4 Impact of Routing Complexity

In order to better understand the complexity of MRTP, we conducted the
same experiments as in Table 3.3 but excluded routing decisions. To this pur-
pose, we considered for all routing areas a single route alternative that is the
default route alternative according to SBB. Table 3.6 reports computational
results in the non-routing cases. Obviously, the non-routing problem results
in larger runtime delays, growing for instance from 146 to 220 minutes and
from 532 to 1883 minutes (respectively for 40%; for 80% of trains).

For the centralized approaches we see a striking improvement in the
computation time to find the optimal solution. This shows how routing
decisions are a significant factor in the complexity of MRTP. For the CPO
solver, a detailed analysis revealed that in general good solutions are found
quickly, roughly after 100 seconds of computation, but an optimal solution
could not be determined within 12 hours for the more complex instances.
This underlines the fact that constraint programming solvers are in general
very efficient for problems of feasibility but not so much for optimization.

For decomposed approaches we see an opposite trend in Table 3.6. These
approaches require more computation time compared to the experiments
of Table 3.3, and compared to GRB on the same instances. In the original
MRTP, routing decisions are one factor for the superior performance of
decomposed approaches over centralized approaches. Our decomposition
represents the solution space of subproblems in the master, by additional
restrictions in form of Benders cuts. The larger solution space of a subprob-
lem, when including routing decisions, is likely to impose less restrictions
(i.e. less Benders cuts) onto the master. Fewer Benders cuts result in general
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Centralized Aggregated Simple

CPO GRB SMT GRB-IIS SMT GRB-IIS

Trains Total [s] Total [s] Total [s] Iter. Total [s] Iter. Total [s] Iter. Total [s] Iter.

10 % 1.2 0.1 0.3 2 1.3 2 0.3 2 1.2 2

20 % 210.2 0.3 0.9 2 42.9 3 1.0 3 14.9 5

30 % 1338 1.0 2.5 3 145.2 3 12.6 16 83.3 16

40 % 6292 2.2 16.5 6 1894 7 60.0 32 608.6 51

50 % ∗15.4% 3.3 39.4 8 5317 8 299.7 75 1255 76

60 % ∗20.3% 6.2 147.4 8 8024.3 7 1321.7 98 3737.5 128

70 % - 45.9 1131.7 17 . . 7432.8 196 25748.6 289

80 % - 135.6 25138.1 15 . . - - . .

90 % - 3411.3 - - . . - - . .

100 % - 6759.2 - - . . - - . .

[∗] No optimality within 12h [Opt. Gap]. [-] No solution within 12h.
[.] No Infeasibility Proof within 2h.

Table 3.6: Computations for Centralized, Aggregated, and Simple Decomposition
without Routing.

in a better performance of Benders decomposition. In the instances without
routing, the amount of iterations is comparable with the routing instances,
but the time spent per iteration is longer. Gurobi requires considerably
more time to solve the more constrained master problems; determining the
cuts takes slightly more time.

3.9 conclusion

In this paper we introduce a logic-based Benders decomposition for the
problem of microscopic railway timetable planning. Our decomposition
differs from the literature as we consider subproblems that are equal, in
structure of constraints, to the master (and the centralized problem). This
results in larger degree of freedom in the decomposition. We limited our
research in this paper to a decomposition where subproblems are feasibil-
ity problems only. For the decomposition we introduce a logic feasibility
Benders cut for a class of disjunctive subproblems. We propose an efficient
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algorithm to generate the logic Benders cut, based on techniques from
the field of satisfiability solving. Numerical experiments consolidate our
contribution in terms of performance compared to centralized approaches
and confirm the efficiency of the proposed cut generation scheme compared
to commercially available tools. We are able to solve realistic instances up
to twice the size, 40 times faster than a centralized approach using a com-
mercial solver. The decomposition works best when the subproblems have
relatively large solution spaces, such that the master is relatively simpler,
and the complexity of subproblems can be parallelized.

While we target the solution of microscopic railway timetable planning,
our generalization of Benders decomposition is not limited to this applica-
tion. In fact, the logic Benders cuts and the proposed algorithms to generate
them can be used for any disjunctive program of the form of Problem
(3.2). This is in fact a generalization of both job-shop scheduling as in [31]
and multi-purpose machine job-shop scheduling as in [7], thus we believe
applicability can reach out to the field of general scheduling.

Future research directions include the study of other aggregation heuris-
tics. We identified how our aggregation creates redundant cuts, which
increase the computational effort of the master. We also assume that a way
to determine more minimal cuts could improve further the computational
speed of our decomposition. In a different direction, studies on decom-
posing the railway timetable planning problem can provide more insights
on how the decomposition of an instance affects the performance of the
algorithm. Throughout this paper the instances used for our experiments
were always decomposed in the same way, based on industrial inputs. It
is left as an open question, whether a different geographical choice of sub-
problems could bring further benefits. Also, decompositions in time could
be a potential alternative to a spatial decomposition.
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appendix

3.10 an example of decomposition

In the following, we give an example of the decomposition scheme consid-
ering a single subproblem. In Figure 3.3 the infrastructure of the example is
depicted, identifying blocks by segments delimited by small vertical lines.
We also report the three trains of the example and indication of the respec-
tive routes. The infrastructure (i.e., the blocks) belonging to the subproblem
is indicated in green. Whenever two trains use the same infrastructure
element on their route, there is a resource conflict to be resolved. The route
of Train B goes through a routing area, as the train may use both platforms
of the station. The trains do not stop at the station. Trains A, B, C enter
the area under consideration (including the master) respectively at 0, 0,
and 1 time units. The time windows for relevant events are large enough
to be ignored in what follows. The example has three resource conflicts,
two between Train A and B, one between Train B and C. This last conflict
depends on the routing choice for Train B.

Figure 3.3: Railway Infrastructure of the example with 3 trains and indicated
routes.

Figure 3.4 shows the disjunctive graph of the example illustrated in Fig-
ure 3.3, from a centralised point of view. The nodes represent start event
times and the 0 node represents the time origin. Fixed precedence relations
are illustrated as solid arcs and colored according to the train as in Figure
3.3. Black dashed arcs illustrate selectable precedence relations of resource
conflicts. The route alternatives (choices) of Train B are illustrated as dashed
and dotted arcs in color. Since the example contains a resource conflict on
a route alternative, the auxiliary nodes {8in, 9out, 12in, 13out} are introduced
according to Section 3.4. For simplicity we assume black dashed arcs have
zero length. Short (possibly diagonal) colored arcs have unitary length (1
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min) and long colored arcs double the length (2 min). The colored arcs
connected to the auxiliary nodes {8in, 9out, 12in, 13out} have 0 length. The
solid black arcs from the time origin have length as depicted. Arcs towards
the time origin are neglected in the example, as we assume that all latest
bounds of any time window to be tolerant enough, not to become restrictive
for any intermediate or final optimal solution.

0

1 2 3 4 5

6 7

8

8in

9

9out

10 11

12

12in

13

13out

14 15 16 17 18

{l = 0}

{l = 0}

{l = 1}

Figure 3.4: Disjunctive graph of the centralized problem C of the example with 3

trains.

The decomposition is illustrated in Figure 3.4 through the shading of
nodes. All nodes shaded in gray are variables of S . MS= {2, 4, 7, 10, 15, 17}
are variables of S andM, and are shaded in light gray. All edges in-between
(light or dark) shaded nodes belong to S , all other edges are part ofM. For
M we assume an objective minimizing the sum of t5, t11 and t18.

In the iterative process of decomposition, when solving the decomposed
problem Sα, for any iteration α, the variables MS are fixed to the values of
the latest master solution by edges according to the coordination constraints
(3.7). Figure 3.5 illustrates the disjunctive graph of Sα at iteration α.
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Figure 3.5: Disjunctive graph Gα of subproblem Sα.

M does not contain any decision or selectable precedence relations. All
ordering and routing decisions belong to S and are the following:

D1 = {W1 = {(8in, 8), (8, 9), (9, 9out), (9, 10)} ;

W2 = {(8, 12), (12in, 12), (12, 13), (13, 13out), (13, 10)}}
D2 = {W3 = {(3, 7)} ; W4 = {(8, 2)}}
D3 = {W5 = {(4, 8in)} ; W6 = {(9out, 3)}}
D4 = {W7 = {(13out, 16)} ; W8 = {(17, 12in)}}.

In the following we show an exemplary sequence of iterations till conver-
gence. The iterations shown are one possibility to converge; the usage of
different infeasibility proofs would have let to different Benders cuts and
intermediate solutions in the scheme till the final solution. We will show the
disjunctive graph of the master problem at every iteration to illustrate how
the subproblem is adequately and increasingly represented in the master
problem.

Iteration 1 At firstM1 has to be solved. The disjunctive graph ofM1 is
illustrated in Figure 3.6.M1 only contains basic knowledge about S in form
of minimal traveling times through the subproblem, without consideration
of resource conflicts. We show these as arcs with depicted length in Figure
3.6.
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Figure 3.6: Disjunctive graph ofM1.

SolvingM1 yields the following optimal solution:

O1
M = {t1 = 0, t2 = 1, t4 = 4, t5 = 5, t6 = 0, t7 = 1, t10 = 5, t11 = 6, t14 = 1,

t15 = 3, t17 = 5, t18 = 6}.

With O1
M we can find the following two cycles on the disjunctive graph G1

of S1, which can be found in Figure 3.5,

γ1 = {(0, 2), (2, 3), (3, 7), (7, 0) | l = 1}
γ2 = {(0, 7), (7, 8), (8, 2), (2, 0) | l = 1} .

The set of cycles I1= {γ1, γ2} satisfies Definition 1 and is a valid infeasibil-
ity proof. The resulting Benders cut (a relative cut, as no term refers to t0),
which we will identify in color green as β1, is:

β1 = (t7 − t2 ≥ 1)
∨

(t2 − t7 ≥ 1)

Iteration 2 NextM2 with β1 has to be solved. We illustrate its (extended,
compared toM1) generalized disjunctive graph in Figure 3.7.
M2 has two optimal solutions, we randomly choose the one where

(t7 − t2 ≥ 1) in β1 is satisfied,

O2
M = {t1 = 0, t2 = 1, t4 = 4, t5 = 5, t6 = 0, t7 = 2, t10 = 6, t11 = 7, t14 = 1,

t15 = 3, t17 = 5, t18 = 6}.
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Figure 3.7: Disjunctive graph ofM2.

With O2
M we can find the following four cycles on the disjunctive graph

G2 of Figure 3.5:

γ3 = {(0, 2), (2, 3), (3, 4), (4, 8in), (8in, 8), (8, 9), (9, 10), (10, 0) | l = 1}
γ4 = {(0, 7), (7, 8), (8, 9), (9, 9out), (9out, 3), (3, 4), (4, 0) | l = 3}
γ5 = {(0, 7), (7, 8), (8, 12), (12, 13), (13, 13out), (13out, 16), (16, 17),

(17, 0) | l = 1}
γ6 = {(0, 15), (15, 16), (16, 17), (17, 12in), (12in, 12), (12, 13), (13, 10),

(10, 0) | l = 1}

The set of cycles I2= {γ3, γ4, γ5, γ6} satisfies Definition 1 and is a valid
infeasibility proof. Here we like to point out that an alternative infeasi-
bility proof could be I2

alt= {γ2, γx, γ3, γ5, γ6} where γx = {(7, 8), (8, 9),
(9, 9out), (9out, 3), (3, 7) | l = 3} is a cycle where γ = γ̄, i.e., the length of the
cycle does not depend on OM and would not contribute to the Benders cut,
but instead γ2 would appear again in the resulting Benders cut.

Considering I2, the resulting Benders cut (again, a relative cut) β2 is:

β2 = (t10 − t2 ≥ 6)
∨

(t4 − t7 ≥ 5)
∨

(t17 − t7 ≥ 4)
∨

(t10 − t15 ≥ 4)

Iteration 3 Next M3 with β1 and β2 has to be solved. The extended
disjunctive graph is illustrated in Figure 3.8. The optimal solution ofM3

satisfies (t2 − t7 ≥ 1) in β1 and (t17 − t7 ≥ 4) in β2:

O3
M = {t1 = 0, t2 = 2, t4 = 5, t5 = 6, t6 = 0, t7 = 1, t10 = 5, t11 = 6, t14 = 1,

t15 = 3, t17 = 5, t18 = 6}.
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Figure 3.8: Disjunctive graph ofM3.

With O3
M a feasible solution for S3 exists:

O3
S = {t2 = 2, t3 = 3, t4 = 5, t7 = 1, t8 = 2, t12 = 3, t13 = 4, t10 = 5, t15 = 3,

t16 = 4, t17 = 5},

and we have found an optimal solution for the original problem.
The solution satisfies constraints within the routing choice W2 of routing

decision D1, i.e., train B travels via the dotted routing alternative (the lower
one in Figure 3.4, via nodes 12 and 13). The constraints of W4 of ordering
decision D2 are satisfied, i.e., Train B is scheduled before Train A; the order-
ing decision D3 is irrelevant (due to the choice on D1); constraints of W7 of
ordering decision D4 are satisfied, i.e., Train B is scheduled before Train C.



114 logic benders decomposition

3.11 list of symbols

d Train service

b Railway infrastructure block

(d, b) Operation related to the traversal of train d over block b.

((d, b), (q, p)) Precedence relation

fdb,qp Amount of time separation in the precede relation ((d, b), (q, p)).

tdb Event time for the start of operation (d, b).

t0 Time origin. t0 = 0.

H Relevant Events.

A Set of all constraints (arcs) in an instance of MRTP.

A f Set of fixed constraints (arcs) in an instance of MRTP.

As Set of selectable constraints (arcs) in an instance of MRTP.

Wc Choice set. Set of selectable arcs.

Dl Decision set. Set of choice sets.

G Generalized disjunctive graph.

V Nodes of G

A Arcs of G

θ Selection on a generalized disjunctive graph.

C Centralized Problem.

M Master Problem.

OM Master solution.

S Subproblem.

OS Subproblem solution.

t̄i Value of time variable ti in a solution.

M Set of variables inM.

MS Set of variables optimized inM and fixed in S .

S Set of variables in S .

α, δ Iterations of the Benders scheme.

Ωα Set of iterations in a Benders scheme from 1 to α− 1.

{.}M Element related to master problem.

{.}S Element related to subproblem.

{.}α Element related to iteration α.

β Benders cut.

I Infeasibility proof.

γ Set of arcs as a directed cycle.

γ̄ Set of arcs as a directed cycle, excluding coordination arcs.
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similarities in delays. Computers and Operations Research, 150:106075.

This is a post-print version of [24], differing from the published paper only
in terms of layout and formatting.

Key findings:

• Statistical knowledge about delays in railway systems allows precom-
puting logic Benders cuts.

• A lazy-constraint scheme includes only useful cuts.

• With statistical measures most beneficial cuts for specific delay in-
stances can be identified apriori.

• The reuse of logic Benders cuts accelerates the Benders decomposition
scheme by 20% and can reach a potential speedup of 2.5 compared to
centralized approaches.

Author contributions: Model and Decomposition: FL; Theory for Reuse:
FL, GB; Implementation: FL, GB; Manuscript preparation and review: FL,
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abstract

The operation of a railway system is subject to unpredictable delays or
disruptions. Operators control the railway system to minimize losses in
performance. Real-time rescheduling is the adaptation of the schedule for
a railway to any unforeseen delay or disturbance and recover an optimal
system state. In this work we propose the extension of an existing Benders
decomposition scheme used so far for timetabling, to the case of railway
rescheduling. We show how to increase its computational speed by a factor
2, by considering libraries of Benders cuts computed for other instances, to
be reused in the solution. We show how including extra cuts has to balance
a speedup potential, with a general slowdown due to optimization prob-
lems of increased sizes. We show that, if input delays are in fact unknown,
but come from a known statistical distribution, we can use a similarity
measure to identify a-priori the most promising libraries of Benders cuts,
which lead to speedups up to 20%.

4.1 introduction

In the operation of a railway, unpredictable events and delays are unavoid-
able and continuously perturb the system. Railway systems are operated
based on a timetable, that is carefully designed by solving a timetabling
problem, and aims to maximize stability and performance of the railway
system during the operation. Railway operators continuously monitor the
railway system and identify deviations between plan and reality. In fact,
in case an unforeseen event or delay perturbs the railway system, the ini-
tially designed timetable is often no longer a suitable plan of operation;
degradation of performance, such as delay propagation, and, in worst cases,
cancellations and short turning are the result.

The adaptation of the offline planned timetable to an ever-changing sit-
uation is termed rescheduling. Despite much rescheduling is still done by
hand, automated tools have been developed. Such tools require the defini-
tion of a measure of system performance (related to delays), and suitable
mathematical modelling of the constraints of the railway system. Typical
actions to be considered in rescheduling include retiming, reordering and
rerouting of trains over the infrastructure. The most advanced optimiza-
tion algorithms can compute an optimal or near-optimal adaptation of the
original timetable, considering the current perturbed state of the railway
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system. While these approaches have proven their academic value in an
increasing literature, real-life applications of such sort are in general limited
[3]. The problems of timetabling and rescheduling (we refer to both of them
as railway scheduling) are similar, and are in fact both NP-hard problems
(e.g., [29]). At the same time the problem of rescheduling is faced during
the real-time operation of the railway system, where the available time for
computations is strongly limited. As a consequence, the size of possible
optimization problems for rescheduling is bounded to local areas with
rather limited size.

In this work, we propose a technique to find faster the solution to a
rescheduling problem, by exploiting similarities of delay in instances of
rescheduling, and precomputation.

We use a logic Benders decomposition for scheduling, that has been
introduced in [25] and propose a way to improve it for rescheduling. We
exploit the fact that in a daily repeating timetable, rescheduling problems for
the same area and the same time of the day are all variations derived from
the same timetable, and vary only by their input delays, i.e., the real-time
delay of trains. Moreover, input delays are in general similar, i.e., they can
be statistically characterized and described by a sufficiently large amount
of samples. From the academic literature, we see that knowledge of the
statistical distribution of delay, and similarity has not been extensively used.

We propose to precompute features on a set of delay instances, and use
insight generated in this way during real-time use, to an unknown delay.
We specifically use logic Benders cuts, generated in the solution process
of Benders decomposition, as output of the precomputation, which can be
included (reused) in the solution process of another instance. We assume
that some logic Benders cuts that have been generated while solving one
instance of rescheduling with a particular situation of input delay, are use-
ful for the computation of a solution to a different instance, where input
delays are different but similar to each other. The reused cuts decrease the
amount of iterations and the amount of constraints in the master problem
of a Benders decomposition; both reduce the total time spent solving the
master problem, which is a substantial part of the computational burden
in a Benders decomposition, resulting in an overall computational speedup.
Logic Benders cuts for the reuse can be precomputed ahead of time and
saved into libraries, such that we can reduce the amount of computation
necessary at the moment of operation, when time is crucial. Two measures
of similarity, applied to the situation of delay, are used to identify which
libraries and cuts are actually useful for the reuse. We show that using
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precomputed cuts from the most similar instance leads to a speedup up
to ∼20%. In general, the potential of reuse is even larger, up to a factor of
2.5, compared to a decomposition scheme with no reuse of cuts; and even
larger, when compared to a centralized solution by a commercial solver.

This paper is structured as following. We review related literature in
Section 4.2 to highlight the contributions of this work. In Section 4.3, we
introduce the railway rescheduling problem addressed. We extend a disjunc-
tive formulation for our rescheduling problem, similar to [25], and apply the
logic-based Benders decomposition of [25] in Section 4.4. We describe the
details of the proposed approach in Section 4.5. Numerous experiments are
provided on real-world examples in Section 4.7. We conclude in Section 4.8.

4.2 related work

4.2.1 Railway Rescheduling

The literature on railway rescheduling shows a variety of scientific publica-
tions. Comprehensive overviews can be found in reviews such as [7] or [12].

From a high-level perspective we can categorize the literature in three
aspects. One is granularity. In coarse granular models, i.e., macroscopic
models, the network is abstracted into nodes and lines representing stations
and connections between the stations respectively (e.g. [17, 35]). Instead,
fine granular models, i.e., microscopic models, consider the network at
the level of detail of a safety system (e.g., [9], [31], [33]). In those models,
conflict free movements of trains over the network as well as routing of
trains can be explicitly modelled. We further focus for our work on this
second stream of works.

In the aspect of deviation from the planned operations, and informa-
tion available in real-time about it, we can differentiate the literature in
publications working on disturbances and those considering disruptions.
Disturbances are usually considered as delays of trains in the magnitude
of few minutes (e.g., [10]). Disturbances are common, and their empirical
statistics can be collected and described by probability distributions. Dis-
ruptions are usually considered as events with more severe effects on the
network, e.g., delays above 30 minutes [10] or the unavailability of parts of
the network for several hours [5]. Disruptions are typically rare and large;
and often dealt with as single cases, as scenarios (where the probability of
occurrence cannot be estimated well).
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In the aspect of solution approaches, the literature shows a comprehensive
variety of methods. The variety ranges from Branch&Bound approaches
(e.g., [14]), over Integer (e.g., [8]) and Mixed-Integer Programming (e.g., [31])
solved by commercial solvers, to a large variety of heuristics (e.g., [9]) or
collaborative solutions (e.g, [13]), to name a few.

4.2.2 Decomposition in Rescheduling

As we use a decomposed approach, we quickly review a variety of decom-
position approaches that have been proposed for railway scheduling (either
timetabling or rescheduling). In general, we can classify these decomposi-
tions into hierarchical and decentralized structures.

In hierarchical decompositions (e.g., [23], [21], [20], [9], [25], [27], [6]), the
original scheduling problem is separated into multiple partial optimization
problems distributed over several hierarchical layers. In a hierarchical struc-
ture, solutions for the optimization on each layer are passed downwards on
the hierarchical structure by additional constraints, penalties or by fixing
some of the variables of the subordinate optimization problems. This co-
ordination over the different layers happens top-down. Coordination in the
opposite direction is usually achieved by means of additional constraints,
penalties or heuristics (determining how to proceed, in case of conflicting
partial solutions from the subordinate layers).

In decentralized decompositions (e.g., [32], [26], [4]), the original schedul-
ing problem is separated into multiple partial and hierarchically equal
optimization problems. The partial optimization problems are solved in-
dependently, and an iterative coordination steers them towards a global
feasible solution.

4.2.3 Precomputation and data-driven Approaches

A few approaches proposed the precomputation in rescheduling, i.e., con-
duct computations in advance, well before the day of operation, save rel-
evant result actions indexed in some feature space, and are very quick
to apply the action for a situation with the same features. In [8], speed
profiles for trains are precomputed, which are then, during the real-time
application, selected and assembled to a schedule considering the current
delays of the railway. In [34], a dynamic impact zone is created for delay
situations in which rescheduling actions are necessary. The dynamic impact
zone reduces the size of the rescheduling problem, increasing the compu-
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tational speed of rescheduling. The dynamic impact zone is computed in
real-time, based on precomputed scenarios of possible delay propagation
and emerging resource conflicts. In [18], precomputation is done within a
machine learning approach, where an algorithm of approximate dynamic
programming uses learned costs of different decision. The approach is
shown able to control traffic at a single junction.

4.2.4 Contributions

We consider railway rescheduling on a microscopic model, to handle small
disturbances on a large and heavily utilised railway network. We formu-
late the rescheduling problem as a disjunctive program [2], similar to [25],
encompassing the decisions of retiming, reordering and also rerouting. We
extend the hierarchical logic-Benders decomposition of [25] to this case. The
contributions of this work are:

1) We show that the reuse of logic Benders cuts is valid, when dealing with
rescheduling instances that differ only by their input delay. We propose
a modification for precomputed logic Benders cuts, which allows for a
broader reuse of precomputed logic Benders cuts. Benders cuts for the
reuse can be precomputed offline and stored in a library of cuts.

2) We propose a lazy-constraint approach for dynamically reusing logic
Benders cuts, including cuts in the master problem only in case they are
violated by the incumbent master solution. In this way, we can consider
larger libraries of precomputed cuts, without an unnecessary slow down
of the solution process (which would happen if too many cuts are directly
included in the master problem). We show how the perfect reuse leads to
solving an instance twice as fast as no-reuse.

3) We propose similarity measures to estimate a-priori, based on the input
delays, the worth of a logic Benders cut in terms of expected computational
speedup when reused. In this way we can reuse only the cuts that are
most promising, avoiding to extend a problem by too many cuts. Overall,
this achieves a significant speedup of the entire solution process; if a suf-
ficiently similar instance exists in the training set, a 20% faster computation
is achieved on average.

4.3 microscopic railway rescheduling

We consider the problem of railway rescheduling on a microscopic rep-
resentation of the railway infrastructure. This computes an adaptation of



4.3 microscopic railway rescheduling 121

an existing (offline) timetable, which considers the real-time system state
(i.e., actual delays of trains). The solution is a new schedule, which obeys
the safety regulations of the railway, kinematics of trains and the railway
infrastructure. A solution must be available within seconds or few minutes
to enable real-time control of the railway system.

This problem has been addressed by many others, and our description
of the problem is rather standard in this sense (e.g., [14, 31]). We optimize
over times, routes and orders, to minimize total delays of trains, when
some input delays arise in the network. We represent times by continuous
variables, and routing and ordering decisions as discrete decision. As in [25],
we generalize decisions to non-binary sets, and to larger sets, to properly
model rerouting actions. Formally, the discrete decision is to select one choice,
out of a finite set of possible choices, specific to the decision. Each choice
results in a specific (set of) constraints to be satisfied by the solution.

We model the railway network at the level of blocks, i.e., sections of
several hundred meters of tracks. A single operation is the passing of a
train over a block, which is associated to an entry (start) event, and an
exit (end) event. An instance is described by a list of trains, their planned
timetable, the infrastructure, and some input delays.

The planned timetable results in temporal specifications on events in
the problem that are identified as relevant by the operators of the railway
(like arrivals/departures at/from stations). Such specifications prescribe a
latest time for arrivals, an earliest time for departures, and possibly a mini-
mal/maximal duration between two relevant events for passenger transfers.
For an arrival of train after the latest time, there is an arrival delay.

The description of the infrastructure defines the dedicated infrastructure
for the operation of trains, individually for each train. Dynamics of trains are
abstracted into minimal traveling times for each individual block and train.
The route of a train is the consecutive sequence of blocks from the train
origin to its destination. In between origin and destination, the route may
contain routing areas, where different alternative sequences of blocks are
available to travel over the network. Each alternative sequence in a routing
area provides a connection between the same starting and ending block. For
each routing area of a train, a routing decision must be made to select one al-
ternative sequence, that is used by the train in the final schedule. Routing de-
cisions for all routing areas must be made to conclude with a final schedule.

Shared infrastructure gives rise to resource conflicts, i.e., the potential
concurrent use of the same block by two trains. For each resource conflict
amongst a pair of trains, caused by the respective temporal and infrastruc-
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tural limitations, an ordering decision has to be made. For a final schedule,
an order has to be decided for each resource conflict, i.e., each pair of trains
in conflict.

We consider the real-time delay of trains as input delay in our problem. In
the literature, delays are most commonly considered only on the entrance
of a train into the network (e.g., [31], [14]). In our approach, we do not
limit the occurrence of input delay to the first event of the train, i.e., the
entrance into the network, but consider the possibility of an input delay
at any relevant event of the train, which corresponds to a departure from
a station. The input delay on a relevant event is a variation to the earliest
departure time given by a temporal specification.

The solution of rescheduling is a schedule which, by suitable update of
times, orders and routes for all running trains, minimizes the sum of all
arrival delays over all relevant arrival events of the problem, given some
statistically characterised input delays. We ignore early arrivals in this work.

4.4 a decomposed disjunctive formulation of rescheduling

4.4.1 A Disjunctive Formulation of Rescheduling

We formulate the microscopic railway rescheduling problem (MRR) as a
disjunctive optimization problem [2], likewise to the disjunctive formulation
of railway timetabling in [25]. A train d represents a sequence of operations
(d, b), where b indicates the related block. We represent the start time of
operation (d, b) by the continuous variable tdb ∈ R+. Time variables for the
end of an operation are redundant as jobs cannot be paused or interrupted
in MRR.

We use precedence relations to model the constraints of MRR. A prece-
dence relation ((d, b), (q, p)) is a linear inequality, constraining tqp to occur
at least fdb,qp time units after tdb. Similar to [25] we can characterize prece-
dence relations as fixed or selectable. The former are standard conjunctive
constraints, which must be satisfied in any case by a solution of MRR; the
latter model choices of reordering or rerouting.

We model minimal travel times and minimal/maximal durations between
relevant events by precedence relations in a set A f , which are fixed.

With a time origin t0 = 0 we model absolute timing constraints as prece-
dence relations. A set Ah contains (fixed) precedence relations representing
earliest departure times τlb,i at relevant events, with respect to the origin of
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times t0, updated by (possibly null) input delay µi. In the set Ah we consider
exactly one precedence relation for each relevant event that is a departure.

A set Aδ contains (fixed) precedence relations, which model the latest
arrival time τub,i at relevant events. We use those constraints to determine
the arrival delay δdb of a relevant event (d, b).

For the discrete decisions of MRR we use the modelling technique of [25].
The set As contains (selectable) precedence relations that are constraints
on events, which must hold upon the choices for the discrete decisions.
Selectable precedence relations As are grouped into choice sets Wc, where
precedence relations of the same choice set can only be jointly selected.
Choice sets represent the choices of a discrete decision. The choice sets again
are grouped into a decision set Dl . The set Dl is the set of all choice sets
related to the same decision l. Given Dl we can model a discrete decision
l by the following disjunctive constraint,∨

Wc∈Dl

∧
((d,b),(q,p))∈Wc

(
tqp − tdb ≥ fdb,qp

)
. (4.1)

To model the fact that ordering decisions may depend on routing deci-
sions, we use the technique of auxiliary variables as in [25]. The auxiliary
variables replace the original variables in the precedence constraints of
an ordering decision, which prescribe either order. Auxiliary variables are
only constrained to be equal to the corresponding original variables, if the
associated routing is chosen.

For simplicity we reduce the notion of an operation (d, b) of train d on
block b, to i in the remainder of this paper. With L as the set of all deci-
sions in an instance of MRR, we can formulate the MRR as the following
disjunctive program,

min ∑
(i,0)∈Aδ

δi

s.t. tj − ti ≥ fij (i, j) ∈ A f

ti − t0 ≥ τlb,i + µi (0, i) ∈ Ah

t0 − ti ≥ −τub,i − δi (i, 0) ∈ Aδ∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ L

ti ∈ R+ ∀ ti, δi ∈ R+∀δi

(4.2)
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where the objective is to minimize the sum of arrival delays δi at all ar-
rival events in the problem. We can further simplify the constraints Aδ to
δi − ti ≥ −τub,i, using t0 = 0.

Constraints of Problem (4.2) can be represented in the generalized disjunc-
tive graph of [25]. We will later use the generalized disjunctive graph in Sec-
tion 4.5 to modify precomputed logic Benders cuts for the reuse. The general-
ized disjunctive graph for Problem (4.2) is defined by the tuple G = (V, A f ∪
Ah ∪ Aδ, As). V is the set of nodes, where each node represents a variable ti
or δi of Problem (4.2). A f , Ah and Aδ are fixed arcs in the graph with length
fij, τlb,i + µi and −τub,i respectively, representing the fixed precedence rela-
tions of Problem (4.2). As are selectable arcs with length fij representing the
selectable precedence relations. Selectable arcs are grouped into the choice
sets of Problem (4.2) and such choices sets are grouped into the decision sets
of Problem (4.2). A selection θ ⊆ As on G is a set of selectable arcs such that
G(θ) = (V, A f ∪ Ah ∪ Aδ ∪ θ) is a standard directed graph. The selection θ is
complete if it contains for each decision l ∈ L at least one choice set, i.e., ∀l ∈
L, ∃Wc ∈ Dl s.t. Wc ⊆ θ; else the selection is partial. For simplicity we further
denote the generalized disjunctive graph simply as the disjunctive graph.

In Figure 4.1, we give an illustrative example of the generalized disjunc-
tive graph (similar to example in [25]) for a scenario of two trains d and q,
with train d passing a routing area with two routing alternatives; one of
those alternatives leads to a resource conflict with train q. Nodes (d, b)in
and (d, c)out represent auxiliary variables. We consider in the example (q, b)
an arrival event with a latest arrival time τub,qb and (q, r) a departure event
with an earliest departure τlb,qr and an input delay of µqr

train d
(d, u) (d, a) (d, v)

(d, b) (d, c)

(d, b)in (d, c)out

(q, b)
train q

(q, r)

{W11:
{W12:

{W21:
{W22:

}
}

}
}

}
D1

}
D2

δqb t0−τub,qb τlb,qr + µqr

Figure 4.1: Example of the Generalized Disjunctive Graph.
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4.4.2 A Decomposition of Rescheduling

We apply to Problem (4.2) the Benders decomposition of [25] to decompose
the centralized problem C, i.e., Problem (4.2), into a master problem M
and a subproblem S . Benders decomposition works iteratively, where at
each iteration the master problem is first solved, and its solution is im-
posed to the subproblem. If the subproblem cannot find a feasible solution
given the master solution, a proof of infeasibility can be generated. In
this case, Benders feasibility cuts are generated from the proof of infea-
sibility and sent back to be included in the successive iterations of the
master. The procedure continues until a feasible solution for the subprob-
lem is found. The problem presented in this paper has some differences
to [25] in the way it models delays. To be coherent with the decomposition
of [25], the subproblem must be a problem of feasibility only. We partition
the precedence relations of Problem (4.2) such that all Aδ and therefore
all variables δi are considered as constraints and variables of the master
problem, and the subproblem is a problem of feasibility only. According
to [25], we decompose Problem (4.2) by partitioning A f , Ah, Aδ and L into
AM, f , AM,h, Aδ and LM for the master; and AS , f , AS ,h and LS for the
subproblem. In this separation, we restate that Aδ is only present in the
master. Consequentially, AM := AM, f ∪ AM,h,∪Aδ ∪

(⋃
LM

⋃
Wc(i, j)

)
and

M :=
{

ti, tj | (i, j) ∈ AM
}
∪ {δi | (i, 0) ∈ Aδ} are the precedence relations

and variables of the master; and AS := AS , f ∪ AS ,h ∪
(⋃

LS
⋃

Wc(i, j)
)

and
S :=

{
ti, tj | (i, j) ∈ AS

}
are the precedence relations and variables of the

subproblem. With a set of Benders cuts BR, which we additionally consider
(reuse) in the master problem, we define the complete master problem
of our Benders decomposition for Problem (4.2) at the iteration α of the
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Benders decomposition scheme, i.e.,Mα(BR), as the following disjunctive
problem

min ∑
(i,0)∈Aδ

δi

s.t. tj − ti ≥ fij (i, j) ∈ AM, f

ti − t0 ≥ τlb,i + µi (0, i) ∈ AM,h

δi − ti ≥ −τub,i (i, 0) ∈ Aδ∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ LM

βr r ∈ Bα ∪ BR

ti ∈ R+ ∀ ti ∈ M, δi ∈ R+ ∀ δi ∈ M,

(4.3)

where βr has the form of the logic Benders cut as introduced in [25], Bα is
the set of all Benders cuts iteratively generated from analyzing the subprob-
lem until iteration α. In general, we will select BR, by a suitable procedure,
from a larger set (a library) of Benders cuts B. Once a Benders cut is in-
cluded in the problem, i.e., either in Bα or BR, it remains considered in the
problem until the end.

We define the subproblem Sα at iteration α of the decomposition scheme,
given t̄α

i of master solution Oα :=
{

t̄α
i , i ∈ M

}
, to be,

min 0

s.t. ti = t̄α
i ∀i ∈ MS

tj − ti ≥ fij (i, j) ∈ AS , f

ti − t0 ≥ τlb,i + µi (0, i) ∈ AS ,h∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ LS

ti ∈ R+ ∀ ti ∈ S

(4.4)

where MS := M ∩ S are those variables appearing inMα and Sα and that
are fixed in the subproblem to the solution of the master problem Oα; in
accordance to Benders decomposition.

In Figure 4.2, we illustrate a possible decomposition of the example
given in Figure 4.1 by illustrating the disjunctive graphs of the master
and subproblem. We define for the example AM, f = A f \ {((q, b), (q, r))},
AM,h = Ah, LM = {} and AS , f = {((q, b), (q, r))} , AS ,h = {}, LS = {1, 2}.
Variables appearing in both, master and subproblem, i.e., variables MS , are
shaded in gray in Figure 4.2.
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train d
(d, u)

train q
(q, b)

δqb

Master Problem

−τub,qb

(d, u)(d, a) (d, v)

(d, b) (d, c)

(d, b)in (d, c)out

(q, b) (q, r)

Subproblem

(d, v)

(q, r)

t0

Master Problem

τlb,qr + µqr

Figure 4.2: Example of a Decomposition on the Generalized Disjunctive Graph.

4.5 reusing logic benders cuts

4.5.1 Preliminaries

We reuse logic Benders cuts to accelerate the solution process of a reschedul-
ing problem as we extend the master problemM of an instance R′ by some
logic Benders cuts BR from a larger library B of precomputed Benders cuts.
The library of cuts has been computed by solving another instance(s) R of
MRR, which describes the same infrastructure, timetable and traffic as R′,
but under different input delays.

In case instances of MRR differ only by the input delay µi we show in
Section 4.5.2 that optimality remains in case logic Benders cuts are reused
among these instances, and the reuse of logic Benders cuts is a valid process.

Formally we define an instanceR of MRR by the tupleR := (A f , Ah, Aδ, As, L).
We denote as ∂(R) the class of all instances which differ from an instance
R of MRR only by input delay, and use the same decomposition. Those in-
stances obviously contain the same number of events, precedence relations
and decisions.

As discussed in Section 4.1, most railways are operated on a daily re-
peating schedule. Every day during the same time of the day, the same
trains can be found on the railway network, and in fact the instances of
MRR solved throughout the days are always considering the same trains,
timetable and infrastructure. With our approach, we exploit this basic prop-
erty of rescheduling problems. We are moreover able to quantify a similarity
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of specific realizations of input delays (and therefore of instances), based
on the fact that we can statistically characterize the input delays.

In Section 4.6.2, we will introduce a measure to identify, within this class
of instances (and therefore class of cuts), instances which are more similar,
and others which are less similar. The measure is based on the feature space
of the respective sets Ah and A′h, which describe the input delays µi and
µ′i. We will show that with a measure to quantify the similarity between
instances, we can estimate the computational benefit of particular Benders
cuts for their reuse.

4.5.2 Modification of a logic Benders cut to preserve validity

We consider the reuse of a logic Benders cut as valid, in case optimality is
preserved. We can show that with an appropriate modification, the reuse
of a cut between instances of MRR, which only differ in input delay, is
guaranteed not to cut off any feasible solution, which implicitly preserves
the optimality.

In Section 4.4.2, we applied the logic Benders decomposition [25] to the
problem of rescheduling. In [25], a logic Benders cut has been introduced,
which can be used for our decomposition of Problem (4.2) in Section
4.4.2. In principle, the logic Benders cut summarizes the constraints of the
subproblem for the master problem, such that a solution of the master
problem is consistent with the constraints of the subproblem and allows for
a feasible solution in the subproblem.

Regarding the decomposition in Section 4.4.2, let us assume that p is
a path (of fixed arcs) on the disjunctive graph of the subproblem Sα and
between two variables of MS (one of them possibly t0). Then, a solution of
the master problem must satisfy the sum of all constrains (arcs) along such
path, to make sure that a solution to the subproblem exists. In general, a
path p on the disjunctive graph of the subproblem Sα contains selectable
arcs and the existence of the path depends upon the selection of particular
arcs. In [25] it was shown that we can derive a set of paths (here denoted by
P) between variables of MS , for which we are guaranteed that any solution
of the subproblem satisfies the constraints along at least one path p ∈ P ;
the set is derived by a proof of infeasibility on the subproblem. As all
paths in P are between variables of MS , a solution of the master problem
must satisfy the constraints along at least one path in P as well. Otherwise,
the subproblem has no feasible solution for the considered solution of the
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master problem. From the set of paths P , the following logic Benders cut
has been introduced in [25],

β =
∨

p∈P

(
te(p) − ts(p) ≥ lp

)
. (4.5)

In the cut (4.5), s(p) and e(p) are the start and end node of path p respec-
tively (both variables of MS ) and lp is the length of the path; the constraint
te(p) − ts(p) ≥ lp is the result of summing up all left and right hand-sides
of constraints along p and summarizes the constraints along p for variables
of MS .

Between two instances of MRR R and R′ ∈ ∂(R) only constraints of
Ah change; it holds that AS ,s = A′S ,s and LS = L′S , i.e., selectable arcs
and decisions remain identical. Therefore, for any set of paths P on the
disjunctive graph of Sα (of R), where any solution of Sα satisfies the
constraints along at least one path p ∈ P , the same holds for the set
P considered on the disjunctive graph of S ′α (of R′) and solutions of
S ′α. Constraints Ah and A′h of R and R′ may differ because they show a
different right hand-side µi (resp. µ′i), such that a path p may have different
length considered on the disjunctive graph of Sα or S ′α. To reuse a logic
Benders cut (in the form of Eq. 4.5) generated for R on R′, we adjust
all right hand-sides in the linear constraints of the logic Benders cut (4.5)
according to µ′i of S ′α to

β′ =
∨

p∈P

(
te(p) − ts(p) ≥ l′p

)
(4.6)

where l′p is the length of path p considered on the disjunctive graph of
S ′α. With the modification of β to β′ and the fact that selectable arcs and
decisions remain identical between R and R′, we are guaranteed that β′ is
a valid cut for R′ and optimality remains under the reuse of cuts.

4.6 proposed approach

4.6.1 A Lazy-Constraint Approach

In this section we propose an implementation for the reuse of logic Benders
cuts. We first propose a lazy-constraint approach for the iterative extension
of the master problem in our decomposition by precomputed Benders
cuts. The idea is to include only cuts, which are violated by the incumbent
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Algorithm 3: Lazy-Constraint Reuse of logic Benders Cuts
input : MasterM, Subproblem S , Library B
output :OC
init : α = 0, Bα = ∅, OC = ∅, BR = ∅,

1 while OC = ∅ do
2 do
3 Oα

M ← solve (Mα(BR))
4 BV ← getViolatedCuts(Oα

M, B)
5 BR ← BR ∪ BV
6 while BV ̸= ∅
7 Oα

S , Bα
S ← SMTAgg(Sα (Oα

M))

8 if Oα
S = ∅ then

9 Bα+1 ← Bα ∪ Bα
S

10 else
11 OC ← Oα

M ∪Oα
S

12 α← α + 1

solution of the master problem and ignore the rest. This allows to keep
the master problem smaller and with only cuts which potentially provide
progress.

Given a library B of precomputed and modified logic Benders, which can
be potentially reused, it is difficult to estimate in advance, which of these
cuts will bring a computational benefit if reused. In case the master problem
is extended by a precomputed cut, which does not affect any optimal so-
lution or is dominated by those already in the master problem, the cut will
add no computational benefit. Instead, the additional constraint will only
decrease the computational performance of solving the master problem,
as the master will increase in size. With the design of a lazy-constraint
approach we aim to prevent such phenomena and exclude cuts with no
computational benefit from the reuse.

We reuse logic Benders cuts in a lazy manner, to avoid including cuts
with no computational benefit. That is, given a library of cuts for reuse, we
evaluate in an iterative manner, which cuts are violated by the incumbent
master solution and only add those cuts to the master problem. After every
extension by violated cuts, we compute a new master solution and check
again for further violated cuts. The lazy-constraint procedure is integrated
in the entire process of the Benders decomposition as only after no fur-
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ther violated cuts are found in the library, the subproblem is queried for
feasibility, to possibly generate further, new logic Benders cuts.

The complete lazy-constraint approach is illustrated in Algorithm 3,
where SMTAgg (see Appendix 4.9) is the algorithm of [25] by which we
address the subproblem. The expression OC denotes a solution to the
centralized problem; as far as there is an infeasibility in the subproblem, a
centralized solution cannot be found and the algorithm iteratively proceeds.
In an iteration of Algorithm 3, Lines 3-5 adds violated constraints BV from
the library B in a lazy manner. The master problem is solved again in Line 3

with an iteratively growing set of cuts BR considered, for every non-empty
set of violated cuts BV in Line 4, until no further violated logic Benders cut
is found in the library B. In Line 7 the subproblem is analyzed using the
SMTAgg algorithm of [25], which either returns a set of new Benders cuts to
be added to the master problem, or a feasible solution for the subproblem.
Lines 8-11 either add any new Benders cut to the master problem or generate
a feasible solution for the centralized problem, if the subproblem is feasible.

With the lazy-constraint approach we define two types of logic Benders
cuts in reuse:

Definition 2. (Useless logic Benders Cut)
We denote a logic Benders cut β as useless, if β ∈ B but β ̸∈ BR after the termina-
tion of Algorithm 3. In other terms, in no iteration the cut was found to be violated
by the incumbent master solution.

Definition 3. (Useful logic Benders Cut)
We denote a logic Benders cut β as useful, if β ∈ B and β ∈ BR after the termi-
nation of Algorithm 3. In other terms, in at least one iteration the cut was violated
by the incumbent master solution.

Useless logic Benders cuts are cuts that provide no computational benefit
when reused; if such cuts are not excluded from the reuse, these cuts can sig-
nificantly decrease the computational speed of solving the master problem.

With the lazy-constraint approach we can further define a perfect set of
logic Benders cuts as:

Definition 4. (Perfect Set of logic Benders Cuts)
We denote a set of logic Benders cuts B as perfect if Bα = ∅ after the termination
of Algorithm 3.

The perfect set of logic Benders cuts leads to a termination of Algorithm
3 after the first full iteration between master problem and subproblem. In
case of a perfect set of cuts, no further cuts must be generated from the
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subproblem to determine an optimal solution for the centralized problem.
All necessary cuts are within the perfect set. From a computational point
of view, this is the ideal situation.

4.6.2 Identifying the Computational Benefit of reusable logic Benders Cuts

With the lazy-constraint approach (Algorithm 3) we are able to exclude cuts
with no computational benefit from inclusion in the master. Unfortunately,
we are not guaranteed that useful cuts will actually lead to a computational
speedup, in case they are reused. An excessive amount of cuts, despite
being useful, actually decreases the performance of decomposition in case
reused. In other terms, two processes are contrasting each other: the master
getting larger and slower as more cuts are included, and the master getting
faster (and the entire scheme having less iterations) in case the best cuts are
added. In this case, a method is necessary to not only identify the useful
cuts, but actually prioritize those few, which add a computational benefit
to the entire solution process.

We assume that precomputed Benders cuts add the most computational
benefit for reuse, in case the instance, which has been used to precompute
cuts, shows similar input delays of trains as the instance for which cuts
are being reused. As such we expect that for an instance R′ ∈ ∂(R), cuts
computed when solving R add the most computational benefit, if for each
(i, j) ∈ A′h of R′ there exists a (i, j) ∈ Ah of R where µi ≈ µ′i.

We propose in this section two different measures to quantify the sim-
ilarity in input delay µ. To this purpose, we summarize the situation of
updated starting times of relevant events, including the input delays, of an
instance R as we write all right hand-side τlb,i + µi, (0, i) ∈ Ah in a vector
vR. By definition of ∂(R), all vectors vR and vR′ we consider in reuse, have
the same dimension. For a pair of instances R and R′ ∈ ∂(R), we quantify
similarity in input delay by the euclidean distance and the Sørensen-Dice
coefficient [16] on the respective vectors vR and vR′ . The euclidean distance
is defined as

evR ,vR′ = ||vR − vR′ ||. (4.7)

In case evR ,vR′ = 0, vR and vR′ are identical. The Sørensen-Dice coefficient
is a measure to quantify the similarity of vectors and can be computed as,

svR ,vR′ =
2 |vR · vR′ |
|vR|2 + |vR′ |2

. (4.8)
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In case svR ,vR′ = 1, the vectors vR and vR′ are identical. Values of svR ,vR′
between 0 and 1 indicate a measure of similarity between vR and vR′ .

4.7 computational experiments

In this section we conduct comprehensive experiments to study the reuse of
logic Benders cuts. Compared to the theory above where only one subprob-
lem is considered, we conduct our experiments on a decomposition with 40

different subproblems. The extension of the theory to the case of multiple
subproblems is straightforward. The decomposition is chosen such that
each subproblem can be treated individually without dependencies to other
subproblems. The decomposition itself is a geographical decomposition,
identical to the decomposition in [25]. The commercial solver Gurobi [19]
is used to solve the master problem.

All experiments were run on the Euler cluster of ETH Zurich on a Intel(R)
Xeon(R) CPU E3-1585L v5 @ 3.00GHz processor with 4GB of RAM.

4.7.1 Instances and Delay Scenarios

We consider for our computational experiments the railway traffic within
the triangle of the cities Zurich, Luzern and Chur in Switzerland between
08:00 and 09:00 in the morning; Table 4.1 provides an overview in numbers.

For our experiments we consider a typical Monte Carlo scheme, where
instances R = (A f , Ah, Aδ,
As, L) differ only by the input delay µ considered in the constraints in Ah.
The input delay is generated with the goal of having sufficiently differ-
ent patterns of input delay to understand the potential and limit of the
approach. The procedure goes as follows.

First, we randomly determine the trains which are experiencing an input
delay. Instead of using a probability for the likelihood of a train being
delayed, we first decide, based on an uniform random distribution, how
many out of all trains experience a delay (ranging from none, to all). We
then randomly select such number of trains out of all trains. In this way,
we achieve an equal probability for the number of delayed trains over our
generated MRR instances. Given the trains experiencing a delay, we deter-
mine for each such train a single relevant event that is a departure, where
a delay should occur. The event is randomly selected out of all departure
events related to the train. At last, we define the value of input delay µi for
each selected relevant event i. We sample the value of the input delay from
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Time Horizon Subproblems Trains Blocks
Routing

Alternatives
Resource
Conflicts

08:00-09:00 40 80 626 790 3240

Table 4.1: Overview of Original Timetabling Instance.

a Weibull distribution according to [11] (see parameters in Table 4.2). We
do not consider negative input delays in this work, such that we resample
from the Weibull distribution as long as we receive a negative delay value.

For the experiments, we randomly generate two sets of instances, with the
same procedure and same statistical properties. A first set of 100 instances
is the test set and is used to evaluate the performance of our algorithm,
with/without reuse of cuts. A second set of 1000 instances is the training
set and is solved in advance by the normal Benders decomposition (i.e.
without considering any library of cuts for reuse) to generate a large library
B̄ of logic Benders cuts. From this latter large library, we identify the actual
library B available for reuse in Algorithm 3.

4.7.2 Computational Benefit of Benders Cuts

In a series of experiments we show the computational benefit of cuts by tak-
ing a perfect set of cuts and changing the proportion of perfect cuts against
non-perfect (random) cuts in such set. We designed two experiments, one
with a library of fixed size (i.e., when adding a non-perfect cut, we remove
one perfect cut), and one with a library of increasing size (i.e. the perfect
cuts are always considered, but increasingly many non-perfect cuts are
included).

We create for each of our test instances a perfect set (library) B∗ of
logic Benders cuts for the reuse. We create such sets by applying, for each
test instance, Algorithm 3 multiple times and iteratively collecting and
reapplying the generated cuts, until a perfect set has been found. We have

Scale Shape Shift

395 2.5 -315

Table 4.2: Weibull Parameters [11].
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to reapply generated cuts because Algorithm 3 is rather sensitive to B.
Therefore, for different cuts considered in input B, different cuts might be
generated as Bα from the subproblem analysis. To generate B∗, we start for
each instance with an empty set of generated cuts Bgen = ∅, which we use
as library B for Algorithm 3. After the first termination of Algorithm 3, we
can retrieve from the algorithm the set Bα, i.e., the set of all Benders cuts
generated by the subproblems during this first run of the algorithm. Such set
Bα is not necessarily perfect yet. In case Bα is reused, it can occur that other
cuts might be needed as the master problem results in different intermediate
optimal solutions, due to the reused cuts. To create a perfect set, we set
Bgen = Bgen ∪ Bα, i.e., we incrementally extend the set of generated cuts by
Bα and consider this extended set Bgen as input B for Algorithm 3. This will
consider all previously generated cuts when we run Algorithm 3 again.

We repeat this process until no further cuts are generated from any sub-
problem during Algorithm 3, i.e., Bα = ∅. Finally, when Bα = ∅, the set
of cuts Bgen is a perfect set of cuts, but it might contain useless cuts. We
avoid useless cuts in the perfect library B∗ by taking only the useful cuts
from Bgen. We can get the useful cuts which are in Bgen, by considering the
latest run of Algorithm 3 where Bα = ∅. In this run of Algorithm 3, after
termination, the set BR corresponds exactly to those cuts of Bgen that are
useful, i.e., that have been violated at some point during Algorithm 3.

A perfect sets of cuts generated by this procedure is not necessarily min-
imal, but as we use BR at the end of the procedure, B∗ is guaranteed not
contain any useless cuts.

We consider in this subsection a series of libraries for each instance of the
testing set, all of the size of the corresponding perfect library |B∗|, where
an increasing amount of cuts from the original perfect library B∗ are sub-
stituted with other (random) cuts from other delay cases, randomly chosen
from B̄. We assume those latter have on average low computational benefits.

In Figure 4.3 we illustrate the performance on average over all test in-
stances for an increasing proportion of random cuts in a library B of fixed
size. The three figures report respectively from top to bottom: the computa-
tional time, normalized by the case with no reuse, i.e., B = ∅; the amount
of iterations until the solution is found; and the amount of Benders cuts
|BR| actually included in the master from the library B. The top two plots
report the lazy-constraint approach (red), the direct reuse (orange) and the
case of no reuse (black). The bottom plot reports in solid lines the total
amount of cuts reused from the library, i.e., |BR|, and in dotted lines the



136 rescheduling

0

1

2

3

Ti
m

e
(N

or
m

al
iz

ed
)

Lazy
Direct
No Reuse

0

2.5

5

7.5

10

It
er

at
io

n

Lazy
Direct
No Reuse

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Proportion of random cuts in B. [%]

Be
nd

er
s

C
ut

s
|B

R
|

|BR| Lazy
|Bα| Lazy
|B| (Direct)
|Bα| (Direct)

Figure 4.3: Time, Iteration and Cuts for Direct Reuse, Lazy-Constraint vs. No
Reuse.

total amount of cuts newly generated in the iterative process. In red is the
lazy-constraint approach, in orange the direct reuse.

In the top plot of Figure 4.3, we can see that both, the lazy-constraint
approach as well as the direct reuse, show a speedup around 2 for the per-
fect cuts (the left end of the plot). With an increasing substitution of perfect
cuts by random cuts, the computational performance decreases. Above 65%
of random cuts, the reuse performs worse than the normal decomposition
where no reuse is considered. An explanation for the decrease in perfor-
mance is given in the middle and bottom plot of Figure 4.3. We can see that
with an increasing proportion of random cuts, the necessary iterations till
convergence increase, almost up to the number of the decomposition with
no reuse, i.e., when B = ∅. The increasing amount of iterations is caused
by the lack of useful cuts in the library B, due to the increasing number
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of random cuts. In other words, the random cuts are not resulting in less
iterations, and instead only increase the size of the master problem. The
lack of useful cuts is show in the bottom plot of Figure 4.3, where for the
lazy-constraint approach the number of cuts reused (BR) from the library
B continuously decreases for higher proportions of random cuts, while the
number of newly generated cuts Bα (dashed line) increases.

Furthermore, at 100% random cuts, lazy-constraint still finds that some of
the random cuts are useful, see bottom plot, and includes these in the master
problem. The computational performance in such case lies above 1, i.e., it
is slower than no reuse. We thus empirically find that even cuts determined
as useful can result in a slow down of the decomposition scheme.

A further interesting point in Figure 4.3 is the fact that our perfect sets of
Benders cuts are perfect when using the lazy-constraint approach, but not
perfect under the direct reuse. We see this empirically as in the middle plot
of Figure 4.3, the average number of iterations for direct reuse is around
2.5 instead of 1, as in the lazy-constraint approach. This is caused by the
fact that Gurobi, which is used to solve the master problem in both cases,
computes different optimal solutions depending on whether cuts are added
iteratively, i.e., in a lazy manner, or all together. Therefore it is possible that
in the direct reuse a minimal amount of further iterations and logic Benders
cuts are necessary to converge.

4.7.3 Issues from excessive amount of Benders Cuts reused

With a second series of experiments we aim to study the decreasing perfor-
mance in experiments of Section 4.7.2, for large proportions of random cuts.
We want to estimate whether this is caused by the lack of computationally
beneficial cuts or the presence of random but useful cuts. Random cuts
might distract the decomposition scheme from converging quickly. If the
latter case applies, we clearly must take care in generating the library B for
actual reuse.

In this second series of experiments we consider libraries, where on top
of the complete perfect set of Benders cuts B∗ for our test instances (which
are definitely useful), an increasing amount of additional random cuts is
added. Compared to the experiments of Section 4.7.2, the libraries consid-
ered increase in size from |B∗| to ∼ 40|B∗|; and are always a superset of
the perfect sets B∗ for the individual test instances.

Figure 4.4 reports the computational results for variable library sizes, in
an analogous manner to Figure 4.3. Starting from the top plot, we can see
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Figure 4.4: Time, Iteration and Cuts for Direct Reuse, Lazy-Constraint vs. No
Reuse.

again the performance increase of a factor 2 for the reuse of just the perfect
set of cuts (i.e., the left end of the plot is at 0.5). We can further see, that with
an increasing amount of additional random cuts in the library, the computa-
tional performance of both, direct and lazy-constraint reuse, decreases. The
bottom plot of Figure 4.4 (with logarithmic y-axis), explains such decrease,
due to a significant increase in the size of the master problem. The plots in
Figure 4.4 further illustrate well, the two main effects of excluding useless
cuts from reuse as in the lazy-constraint approach. On the one hand, the
absence of useless cuts leads to a smaller master as shown in the bottom
plot of Figure 4.4. On the other hand, as the middle plot shows, the absence
of useless cuts leads to a reduced number of iterations in the decomposition
scheme. Both lead to a significant computational speedup, as shown in
the top plot. Also, including useless cuts in the library does not have a
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systematic effect on the amount of iterations required until convergence of
the scheme (the lines in the middle plot are mostly horizontal).

Overall, we empirically conclude from Figure 4.4 that reusing an exces-
sive amount of Benders cuts, even if useful, negates the overall benefits of
reusing computationally beneficial logic Benders cuts, such as the perfect
cuts B∗. Furthermore, we can see in Figure 4.4 that also the lazy-constraint
approach, which considers only useful cuts, shows a slow down in com-
putational performance. This is due to random, but useful cuts, which
are included, and increase the size of the master without causing a de-
sired decrease in iterations of the scheme. As a result, they slow down the
computational performance of the solution process.

The above clearly confirms the importance of carefully selecting the cuts
in the library for the reuse, beyond their usefulness, but based on (some
measure of) their computational benefit to the entire solution process, which
is the topic of the next subsection.

4.7.4 Reuse of cuts from libraries of similar instances

In this section we analyze the reuse of logic Benders cuts under real-world
conditions. In this case, it is unlikely that a perfect set of precomputed cuts is
available. We thus create a series of experiments where we pair the libraries
computed each by a single training instance (out of the 1000 training in-
stances), with our 100 test instances. This results in 100’000 pairs, matching
a single training library (i.e., the cuts computed on a single training instance)
and a single test instance (to apply the library). Which such "Training Li-
brary - Test Instance" pairs, we want to understand under which conditions
logic Benders cuts result in a computational benefit. The experiments in
this section are exclusively computed using our lazy-constraint approach.

In Table 4.3 we report computational results for all pairs of training library
- test instance, as well as the ideal performance using the perfect library;
and two further benchmarks for a general comparison in performance. The
columns of the Table 4.3 are as follows.

The Perfect Library repeats the ideal performance from the previous
sections, in case the perfect set of Benders cuts is reused. The Best Library
considers, for each test instance, the computational performance using the
"best" library, i.e., the one, out of the 1000 libraries computed by the 1000

instances of the training set, which results in the smallest computational
time. The Average (Avg.) Library reports the computational performance
on average over all pairs of training library - test instance. This would
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Approach Perfect Lib. Best Lib. Avg. Lib. No Lib. Gurobi

Time [s] 32.30 33.19 94.31 81.86 201.24

Normalized Time 0.45 0.46 1.16 1 3.92

Iterations [-] 1 (5.85
∗) 4.04 (8.01

∗) 7.60 (12.96
∗) 9.07 -

Total Cuts [-] 345.21 307.64 359.01 382.40 -

Lib.: Library; Avg.: Average.
∗ Total Master Solves, including Lazy-Constraint.

Table 4.3: Potential when reusing Cuts from Libraries of logic Benders Cuts.

correspond of taking a random training instance and reusing its cuts on
a random test instance. As benchmarks, we report in Table 4.3 also the
computational results of solving the test instances with the normal logic
Benders decomposition of [25] as No Library, and the solution of the cen-
tralized Problem (4.2), directly computed by the commercial solver Gurobi
[19]. All approaches in Table 4.3 report an optimal solution within a toler-
ated optimality gap of 1% (on solutions of the master problem), which is
considered sufficient for practical applications.

Overall, Table 4.3 clearly shows the advantage of decomposition over the
centralized benchmark of Gurobi. Further, we can see that with the reuse, in
case of the best library, we can achieve a speedup of a factor similar to the
perfect library, empirically proving the potential of reusing logic Benders
cuts also under real-world conditions. Table 4.3 indicates that a speedup by
the reuse of precomputed logic Benders cuts is not guaranteed in case of
an arbitrary reuse of cuts, i.e., for the average library it is 16% slower. This
restates the importance of selecting carefully the cuts for reuse.

The performances in different cases of decomposition in Table 4.3 can
be explained by the number of iterations, in particular solves of the master
problem, and total amount of Benders cuts in the master problem. Due
to the lazy-constraint approach, the number of times the master problem
is solved is higher than number of iterations done by the decomposition
scheme in cases of reuse. In Table 4.3, the perfect library and the best library
show significantly less iterations (and slightly less master solves) than the
no library case, which explains the observed speedup in both cases. Also,
in case of the lazy-constraint, most of the master solves are generally per-
formed in the first iteration of the Benders scheme. In the first iteration, the
master is usually small in terms of additional Benders cuts and thus rather
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Figure 4.5: Histogram of Computational Times for Pairs of Training Library -
Test Instance.

efficient to be solved, compared to a master problem after several iterations.
In other terms, master solves in the No Library case are in general more
complex. The reason for the rather unsatisfying performance of the average
pairs in Table 4.3 has been already commented in Section 4.7.2. Random
cuts, which most of training cuts seem to be, are more harmful than useful,
and tend to slow down the solution procedure.

In Figure 4.5 we report a histogram of the computational performance (x-
axis, normalized by no reuse), for all pairs of training library - test instance.
This describes the empirical probability for the performance of pairs. The ex-
pected value of this histogram is the performance of the average library, i.e.,
1.16. In the histogram of Figure 4.5 the total probability for a pair to result in
a computational benefit is 48.2%, while the probability of a computational
degradation is 51.2%. Therefore, a random cut is slightly more likely to
result in a slow down, than a speedup. In the histogram of Figure 4.5, 26.2%
of the pairs show a computational time of 0.8 or less; we will consider a
normalized computation time of 0.8, which corresponds to 20% faster com-
putation, to be a significant enough speedup for practical considerations.

The variability in Figure 4.5 illustrates the existence of cuts with high and
low computational benefit in the reuse. Clearly, the pairs of best libraries
reported in Table 4.3 relate to pairs that are on the left in Figure 4.5, i.e.,
with a normalized computational time < 1. These are the pairs, i.e., the
libraries, we wish to identify efficiently in a real-life application to improve
computational speed of the decomposition process.
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4.7.5 A Measure to estimate Speedup resulting from a Library

In the previous two sections, we analyzed the computational benefits of
libraries of logic Benders cuts, and the impact of the excessive reuse of
cuts. We concluded that for a real-world application, an estimation of the
computational benefit of (a library of) logic Benders cuts is necessary, to
limit the reuse of logic Benders cuts to those with a high computational
benefit only. In Section 4.6.2, we proposed two measures to estimate such
computational benefit, at the level of libraries generated from a single
instance. Those measures describe the similarity of input delay between
the instance determining the library, and the target instance we want to
solve. The ultimate goal is to identify a-priori the libraries, which lead to
a performance as good as the best library, which is reported in Table 4.3;
and in general, the libraries which approximate a performance comparable
to using the perfect set of logic Benders cuts.

To estimate the accuracy of our similarity measures in indicating the
computational benefit of a library of logic Benders cuts, we analyze the
euclidean distance and the Sørensen-Dice coefficients on the pairs of train-
ing library - test instance from Section 4.7.4. In particular, we analyze the
relation between the speedup (i.e., how smaller the computational time is;
normalized by the computational time when no cut is reused) achieved by
a particular training library - test instance, and the similarity measures. We
evaluate our measures for each pair using the training instance, from which
the library has been generated; and the test instance, on which the library
has been reused. We consider libraries generated by only a single instance.

In Figure 4.6 we report a histogram of values on the Sørensen-Dice and
euclidean measures, over the 100’000 pairs of Section 4.7.4. In Figure 4.6,
we overlay in red the average normalized computational times, which are
computed as average over the pairs in the respective individual bin. The top
plot in Figure 4.6 reports on the Sørensen-Dice measure. The plot empirically
confirms the ability of the measure to discriminate between libraries which
have different computational benefit. Specifically, while the majority of pairs
in Figure 4.6 show no computational benefits, above a Sørensen-Dice value
of 0.9998 the libraries being reused clearly bring a computational benefit.
The red line decreases to the right, below 0.8, for a maximum speedup of
0.5 (twice as fast) for Sørensen-Dice values close to 1. Such an observed
speedup matches with the reported speedup in case of a set of perfect cuts
(0.46) in Section 4.6.1, i.e., cuts generated from an instance with a Sørensen-
Dice value of exactly 1. The bottom plot of Figure 4.6 reports the case of the
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Figure 4.6: Histogram of Similarity Measures over Pairs of Training Library - Test
Instance, overlaid with Computational Time (red).

euclidean distance, and in general confirms a similar ability to discriminate
libraries with high computational benefit from those of no benefit. In this
case, values of the euclidean distance below 700 are connected with a
decrease in normalized computational time below 0.8. In both plots of
Figure 4.6, fluctuations in the computational times are caused by sample
approximations, and low numbers of samples for the extreme cases.

The Sørensen-Dice measure shows a slightly better discriminating power
than euclidean. In case of Sørensen-Dice, 1.38% of all pairs are categorized
into bins with an average normalized computational time below 0.8. In com-
parison, for the euclidean distance, only 1.17% of all pairs were categorized
into bins with a computational time below 0.8. Note as a reference that up
to 26.2% of the pairs have a speedup of 0.8 or better (see Figure 4.5).

The histograms reported in Figure 4.6 give further an estimate on the
statistics of the similarity measures over instances. From our experiments,
reported in Figure 4.6, out of the 100 test instances, only 23 instances have a
matching library, inside the training set of 1000 instances, where the training
instances have a measure above 0.9998 in Sørensen-Dice and below 700 in
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euclidean. This calls for a more diversified set of training instances, either
achieved by an even larger training set, or by a different sampling of the
domain of input delays. For instance, one can target coverage of the delay do-
main, by Sobol sampling; and not match the density of the probability, like
the simple Monte Carlo scheme we used. For an actual real-life application,
thus, we would expect to increase the set of instances for the precomputation
of logic Benders cuts. This would increase the probability of finding good
cuts for a wide range of instances, ahead of time, as it is required in reality.

Finally, we analyze the benefits of the similarity measure for computa-
tional benefit of cuts under real-world conditions. For this analysis we first
focus on 23 testing instances, for which we have available highly similar
training instances (libraries), i.e., those with at least one library showing
a measure above 0.9998 in Sørensen-Dice or below 700 in the euclidean
distance. We report in Figure 4.7 a similar analysis as in Figure 4.4, with the
top plot showing the normalized computational time, the middle plot the
iterations, and the bottom plot the amount of cuts considered. Instead of
reporting the performance of the best library (in terms of speedup) over the
entire training set, which in reality would be a-priori unknown, we report
the average performance over the increasing set of the most similar libraries.

Specifically, we rank the instances by the similarity measure, and we run
the algorithms with each library from the best k ranked ones. We then take
the average performance over this set. We consider an increasing k, and
analyse how the performance changes. The x-axes of those three plots are
the same, and describe a logarithmically increasing set of training library
- test instance pairs k considered from 1 (i.e., only the best ranked), up to
1000 (i.e. all libraries available).

We rank the libraries separately for Sørensen-Dice (decreasing), reported
in all plots as orange solid line; and euclidean (increasing), reported in
all plots as red, dashed line. There are actually very little differences be-
tween the two measures. We also report a random selection of libraries, i.e.,
without a similarity measure (reported in black).

If our similarity measures are able to identify the most valuable libraries,
we expect for a small set of training library - test instance pairs considered,
the best performance. Increasing the amount of pairs, we expect the perfor-
mance benefits to decrease to a larger average normalized computational
time. This is due to the fact that the increasingly added instances have
a smaller similarity and therefore result in a decreasing performance on
average.
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Figure 4.7: Computational performance on an increasing selection of Training
Library- Test Instance Pairs considered. Reported on test instances
with pairs of high similarity measures only.

In Figure 4.7 we can indeed see such effect, of sharp decrease (i.e. the
most similar is actually good), and rebound (i.e. the less similar are actually
not good, going towards the right along the x-axis) for testing instances
with similar libraries. In the plots describing computational time and the
iterations, this phenomenon is particularly visible: the improvement in
performance considering the most similar library achieves a value well
below 0.8, on average. We conclude that our measures are able to indicate
libraries with high computational value.

We extend the analysis of computational benefits for the reuse under real-
world conditions to all testing instances in Table 4.4. We exclusively focus on
the Sørensen-Dice measure as the euclidean has in general shown identical
results. In Table 4.4 we report the average normalized computational time
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Number of Libraries

Sørensen 1 10 100 500 1000

1 ≥
≥ 0.9998

0.8091 (3%) 0.7484 (23%) 0.7505 (23%) 0.7379 (23%) 0.7391 (23%)

0.9998 >
≥ 0.9989

1.1265 (73%) 1.2364 (76%) 1.2102 (76%) 1.1942 (76%) 1.2310 (77%)

0.9989 >
≥ 0.998

1.0995 (24%) 0.6583 (1%) 1.3006 (1%) 0.9582 (1%) -

(∗): Percentage share of test instances, with the best library in that category.

Table 4.4: Computational Time (Normalized) over an increasing Number of
Libraries.

over testing instances. We consider a reduced set of libraries (with increasing
size of 1, 10, 100, 500 and 1000) from the training instances, which are
randomly selected from the full set of 1000 libraries available. The idea
is to understand the benefit of a larger set of libraries. We consider for
each testing instance and each reduced set of libraries the performance of
the most similar library in the reduced set of libraries, with respect to the
Sørensen-Dice measure. In other terms, we take the single most similar
out of 1, 10, 100, 500 and 1000, and we use that as library of reference. We
report computational time (normalized by no reuse), further differentiated
by the Sørensen-Dice measure of the most similar library (to distinguish
cases where the most similar library is indeed highly similar, or less). In
brackets, we report the percentage of test instances and corresponding most
similar library into the three similarity classes. For the case of library with
a unitary size, we repeat the test 10 times and take the average.

In Table 4.4 we can see that, if only one library is considered per test
instance, only few test instances show high similarity to that library (i.e., ≥
0.9998); 73% of the instances show medium similarity and 24% of instances
show a low similarity. The medium and low similarity of libraries reflects in
the average computational times, which are for medium similarity and low
similarity clearly > 1. When considering 10 or more libraries per testing
instance, we can find (as discussed earlier) 23% of the instances with a
highly similar library, and for almost all remaining test instances a library
with medium similarity. The test instances with highly similar libraries
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show a computational speedup of ∼ 25%, empirically showing the ability
of Sørensen-Dice to identify beneficial libraries.

Further, we can see in Table 4.4 that little computational improvements
are made by increasing the set of libraries considered from 10 to 1000.
We explain such behavior by the fact that Sørensen-Dice is an imperfect
estimator; and seems not able to differentiate the very best, when sufficiently
many libraries of similar quality are available. Moreover, the results in Table
4.4 can be explained by the delay in the different test instances. The 23%
of instances with a highly similar library are instances with very common
delays, which drastically increases the probability of a highly similar library.
The remaining instances are instances with uncommon, and large, input
delay, drastically reducing the probability of highly similar libraries. In
that case, even 1000 training instances are insufficient to produce a highly
similar library.

4.8 conclusion

In this paper, we introduce an approach to enable a faster solution process
for railway rescheduling, considering precomputation and statistical mea-
sures of similarity for the input instances. We start from adapting the logic
Benders decomposition for timetabling of [25] to the purpose of real-time
rescheduling, where computational time is strongly limited. We propose
the reuse of precomputed logic Benders cuts to accelerate the iterative
decomposition process, exploring the similarity between rescheduling prob-
lems dealing with the same railway network, traffic and timetable, and
varying input delay. With a modification on precomputed Benders cuts we
are able to reuse any precomputed cut, as far as the instance (i.e. trains,
infrastructure, planned timetable) is the same. For the reuse of cuts, we
propose a lazy-constraint approach, which only includes in the master those
Benders cuts, that provide progress in the iterative decomposition process.
We propose two measures that are able to identify the potential computa-
tional benefit from a library of precomputed Benders cuts, based on the
similarity of the input delay of the training (which generated the library)
and test instance. This allows to avoid an excessive amount of logic Benders
cuts considered for reuse, and prevents large amounts of constraints being
included in the master problem of the Benders decomposition.

With the lazy-constraint approach we are able to exclude useless precom-
puted cuts from the reuse and avoid to add those to the master problem.
This prevents an exponential growth of computational time (twice as slow,
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when 95% additional cuts are considered) due an increasing size of the
master problem, when direct reuse would be considered. The reuse of the
best logic Benders cuts under a lazy-constraint scheme can find a solution
twice as fast as the normal Benders decomposition without precomputation
and reuse of cuts. Compared to a benchmark with a commercial solver on
a centralized approach, we achieve an overall speedup up to a factor of 5.

With a further analysis, we are able to show that similarity in input
delay is a promising estimator for the computational benefit of reusing cuts
from a library. Both proposed similarity measures, for the considered delay
statistics, are able to identify the 1% of instances which result in a speedup.
The reuse of Benders cuts from libraries from instances with similar input
delay achieved a comparable acceleration as in the ideal case of reuse with
the perfect logic Benders cuts. This underlines the value of reusing logic
Benders cuts in a real-world application.

The computational results underline the practical benefits of findings
in this paper. In reality, rescheduling actions from railway dispatchers
are expected between within 3 [14] up to 10 [22] minutes. With the novel
methodology of this paper, we are able to solve instances previously only
solvable in over 3 minutes, in around 1 minute of computational time; this
emphasizes the practical benefits of the proposed methodology.

Future research should clearly include additional studies on identifying
the potential of precomputed cuts and larger libraries. In our case, if li-
braries with a sufficiently high similarity exist, the speedup is perceivable.
Thus, a detailed sampling of the actual delay domain (which depends on
the instance and operations, in general) has to cover the possible delays
with a sufficiently fine-grained detail. It is advisable for a real-world appli-
cation, where more sophisticated data structures and very large libraries
are acceptable, to increase the number of training instances, and to use
more sophisticated sampling schemes. While we were able to propose two
valuable measures for determining the similarity of instances, it remains
an open question for future research, whether other features can determine
the similarity of instances towards usability of Benders cuts, for a higher
computational speedup.
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appendix

4.9 smt A g g - generation and aggregation of logic benders

cuts

In this appendix we repeat details of Algorithm SMTAgg in [25]. We use
SMTAgg in this paper to evaluate the feasibility of the subproblem Sα

(Problem 4.4) in the decomposition of Section 4.4.2. In case of infeasibility,
Algorithm SMTAgg creates a logic Benders cut as in [25]. Algorithm SMTAgg
is based on Satisfiability Modulo Theories (SMT), which is a combination
of Satisfiability (SAT) solving [15] and a first-order logic [30]. Furthermore,
concepts of [1] are used in SMTAgg for the discovery of infeasibility proofs.

Algorithm SMTAgg is an aggregation of logic Benders cuts, such that if
SMTAgg is invoked on a subproblem, the algorithm computes not a sin-
gle, but multiple logic Benders cuts. By the aggregation, the total number
of iterations till convergence in the Benders scheme is reduced. Inside

Algorithm 4: SMT
input :Sα

output :Oα, Iα, βα

init : Φ ← Sα, Gα ← Sα, θ = ∅

1 while true do
2 confl← UnitPropagation(Φ, θ)

3 if !confl then
4 confl← Evaluate(Gα(θ))
5 if !confl then
6 if θ = complete then
7 Oα ← Gα(θ)
8 return (Oα, ∅, ∅)
9 θ ← θ

⋃
Decide()

10 else
11 if confl = Unsatisfiable then
12 Iα ← AnalyzeIP(confl)
13 βα ← BendersCut(Iα)

14 return (∅, Iα, βα)
15 else
16 Analyze(confl)
17 Backtrack(confl)
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SMTAgg, Algorithm SMT (Algorithm 4) of [25] is invoked multiple times,
with different initial conditions to discover multiple logic Benders cuts.

In Algorithm SMT (Algorithm 4), Φ are constraints of SAT used to model
the decision and choice sets of Sα. Iα is an infeasibility proof for Sα used
to derive the logic Benders cut βα. Algorithm 4 proceeds by extending
iteratively an initially empty selection θ through new choice sets Wc (line 9),
until the selection is complete (line 6) or an unsatisfiable constraint has been
found (line 11). Decide in line 9 selects, by some SAT heuristics, new choice
sets Wc to extend θ. If θ is a complete selection (line 6), the algorithm returns
a feasible solution of the subproblem, derived by the disjunctive graph of the
subproblem (line 7). After every extension of θ in line 9, unit propagation
[28] is performed (line 2) and θ is extended by additional choice sets, that are
implied through the constraints in Φ. If after such extension of θ, a violated
constraint (confl) is found in Φ, such constraint is either generally unsatisfi-
able (line 11) and an infeasibility proof, together with a logic Benders cut can
be derived (line 12 and 13); or the constraint can be satisfied by a different
θ and selection must be adjusted by first analyzing the violated constraints
(line 16) and then removing appropriate choice sets from θ (line 17).

SMTAgg (Algorithm 5) invokes Algorithm 4 multiple times with different
master solutions imposed to the subproblem Sα to generate multiple logic
Benders cut in a single iteration of the Benders scheme. Algorithm 5 start by
appliying Algorithm 4 on the subproblem Sα, which has imposed the latest
master solution Oα

M (line 3). In case Algorithm 4 discovers an infeasibility
proof and a logic Benders cut, Sα is modified; the master problem is ex-
tended by the cut. This means that the next iterations will result in a solution
Oα
M which will satisfy the latest discovered Benders cut βα

i (line 4). Algo-

Algorithm 5: SMTAgg, Benders cut aggregation scheme for a sub-
problem.
input :Sα

output :
{

βα
1 , βα

2 , · · ·
}

init : i = 1, S ′α = Sα

1 while Oα = ∅ do
2 Oα, Iα

i , βα
i ← SMT(S ′α)

3 if Iα
i ̸= ∅ then

4 S ′α ← Modify(S ′α, Iα
i )

5 i← i + 1
6 return

{
βα

1 , βα
2 , · · ·

}
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rithm 4 is reapplied to the modified version of the subproblem S ′α to dis-
cover further Benders cuts. Eventually, Algorithm 4 in line 4 will return a fea-
sible solution and Algorithm 5 terminates and returns all aggregated cuts.
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abstract

Railway timetabling is a major challenge in the operation of railway. The
timetable of a railway determines times, orders and routes of trains on the
network and thereby defines the performance of the entire railway system.
Railway operators are keen to maximize the economic performance of their
railway system, such that high expectations are given towards the design of
a timetable. With a Benders decomposition we propose an approach on the
problem of timetabling, where we consider optimality of a timetable sepa-
rately from the feasibility of a timetable. In the decomposition, optimality
is determined in a problem of set covering, while feasibility is evaluated on
the constraints of timetabling. With efficient heuristics on the problem or
set covering in our decomposition, high quality solution for the problem
of timetabling are provided in short time. The novel approach provides
heuristic solutions up to ∼ 20 times faster than standard approaches by
commercial solvers, with an average gap of ∼ 7.5% in the optimality of
solutions. Extensive experiments empirically confirm the benefits of the
new approach.

5.1 introduction

Railway timetabling is the problem of designing a timetable for the oper-
ation of a railway system. The timetable for a railway system defines depar-
ture, passing and arrival times for all trains on all points in the network and
thereby sets the performance of the entire system; the importance of a good
design for a timetable is crucial. With a well designed timetable, railway
operators are able to explore the economic potential of available resources
in the railway system and guarantee the profitability the railway company.

Railway operators are keen to automate the process of railway timetabling.
With the automation, a more global and comprehensive view on the prob-
lem of timetabling is possible, in comparison to the human planners of
nowadays, such that novel timetables further increase the performance of
railways. Recent advances in academia [3] show promising results, leading
to railway timetables of higher performance. (e.g. 6% more punctual trains
and 9% less trains with delays over 15min compared to current practices
in [25] for automated timetabling in real-time rescheduling).

Still, a need to solve bigger instances exists (e.g., [24]) The problem of
timetabling is known to be NP-Hard [30], which makes it difficult for al-
gorithms used in automation, to scale towards bigger instances and achieve
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optimal solutions for timetabling on a large scale, e.g., an entire railway
network. Often automated approaches are applied only locally and used
as supporting tools for a human planner.

In this paper we address the problem of railway timetabling. This is the
determination of times of arrivals, departure and passing of railway services
along a railway line. We consider a high level of detail (microscopic) by
considering constraints at the level of each infrastructure element, as well
as routing flexibility. We decompose the formulation of timetabling by a
Benders decomposition [19] using the combinatorial Benders cuts of [8].
In our Benders decomposition, the master problem is a problem of set
covering and the subproblem is a problem of timetabling, where feasibility
must be evaluated. We propose multiple near-optimal heuristic approaches
for the master problem, i.e., a problem of set covering, and particularly
exploit the fact that in the scheme of Benders decomposition the master
is growing incrementally in constraints, over the iterations of the Benders
scheme. With our novel approach, we propose an efficient alternative to
existing approaches with improved scalability, contributing towards the
gap between academia and large scale practical applications.

This paper is structured as following. In Section 5.2 we review related
literature and state the contribution of this work. In Section 5.3 we state the
problem of timetabling and provide a disjunctive formulation in Section 5.4.
We propose a Benders decomposition for the problem of timetabling in Sec-
tion 5.5. In Section 5.6 we introduce multiple approaches to the problem of
set covering including a novel set of heuristics, designed for a problem of set
covering incrementally growing in constraints. Exhaustive experiments in
Section 5.6 empirically confirm the strength of our novel heuristic approach
5.7 compared to several existing benchmarks. We conclude in Section 5.8.

5.2 related work

In this paper, we deal with a microscopic variant of the timetabling problem;
this has much similarity with railway timetabling problems of the literature,
but also with railway rescheduling, i.e., the real-time adjustment of railway
timetables to a delayed situation. We comprehensively name those two
problems as railway scheduling. In this section we provide a brief overview
of the literature on the topics of scheduling and decomposition in railways
to position our work in the existing literature. We conclude this section
with the contributions of this work.
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5.2.1 Railway Scheduling

In railway scheduling, we may classify models by four major aspects: gran-
ularity of infrastructure, representation of time, inclusion of routing and
periodicity.

In the literature, we find two main classes of infrastructure models. Macro-
scopic models, i.e., coarse granular models, abstract the railway network
into nodes and lines (e.g., [16, 37]). Microscopic models, i.e., fine granular
models, consider the infrastructure at the level of the safety systems, divided
into blocks of railway track, few hundred meters long (e.g., [9], [32], [36]).
Only microscopic models can represent conflict free movements and routing
of trains over the network. Those have been mostly applied for rescheduling.

The times of operations, which are to be scheduled, can either be modeled
in discrete form, i.e., by discrete variables (e.g., [5]), or in continuous form,
i.e., by continuous variables (e.g., [13]).

In microscopic models, routing of trains may be considered. The routing
has a strong influence on the complexity of scheduling problems, such that
problems including routing decisions for trains are in general much more
complex. Models of railway scheduling in general consider routing deci-
sions in additional variables of the problem (e.g., [32]); models excluding
routing decisions in general consider the routes of trains as a given input
to the model (e.g., [13]).

Scheduling can be performed including constraints of periodicity (e.g., [31]).
Including such constraints, the result is a periodic schedule, which can repet-
itively be applied to the railway systems. In this case the planning horizon
of the scheduling problem can be reduced to a single period and then rolled
out over multiple periods to create a timetable, e.g., for an entire day. While
decreasing the planning horizon, constraints of periodicity notably increase
the complexity of the scheduling problem.

The different models of railway scheduling are addressed by many dif-
ferent methods throughout the literature. Extensive overviews of methods
are provided in [4] or [17]. In general approaches can be differentiated by
whether an optimal solution is computed or a heuristic is used to find near-
optimal solutions. Heuristic approaches are in general a trade off between
closeness to optimality of a solution and computational time. A group of
heuristics in railway scheduling is based on rules, specific to the application
of railways, where it is iteratively decided on the variables of the scheduling
problem (e.g., First-Come-First-Served [17], Arc-Greedy Heuristics [34]).
Other heuristics in railway scheduling are applications of heuristics in gen-
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eral mathematical programming (e.g., Variable Neighbourhood Search [35],
Tabu-Search [10] or Genetic-Algorithms [17]). Further heuristics address
elements of the scheduling problem in different stages, e.g., trains in the
order of priority [21, 27], or ordering decisions before routing decisions [12].

5.2.2 Decomposition

In the literature of railway scheduling numerous decomposition approaches
can be found. Decomposition approaches often show better scalability than
centralized (undecomposed) approaches, which makes them an interesting
class of approaches to tackle large-scale problems of railway scheduling.
A group of approaches (e.g., [9], [25]) propose geographic decompositions,
where the scheduling problem is decomposed based on the geographic
position of railway infrastructure. Other groups of approaches propose tem-
poral (e.g., [28]), entity (resource) based (e.g., [6]) or generic decompositions
based on properties of the underlying optimization problem (e.g., [23], [22]).

Generic decompositions (e.g., [22, 23] or [12]) can be considered as ap-
plications of the general decomposition techniques from mixed-integer
programming as discussed, e.g., in [38]. In these decompositions, variables
in an optimization problem are optimized in different groups, where groups
are within a hierarchical structure. Depending on the grouping of variables,
particular groups of variables result in optimization problems of different
structure and class, e.g., linear programming [23], or mixed-integer pro-
gramming [12, 22]. We consider the decomposition of this work as a generic
decomposition.

5.2.3 Benders Decomposition

Benders decomposition [2] is a hierarchical decomposition procedure for
mathematical programming. The decomposition is designed for problems
of mathematical optimization for which it is possible to identify complicat-
ing and non-complicating variables. Complicating variables are the main
cause of the complexity in the problem; if complicating variables are fixed
to constant value, the remaining problem is significantly easier to solve.
Variables that are not complicating variables are denoted non-complicating
variables. The Benders decomposition scheme is an iterative optimization
of the complicating variables (denoted as the master problem) and an opti-
mization of the non-complicating variables (denoted as the subproblem). In
the subproblem, in which complicating variables are considered constant,
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constraints (Benders cuts) are determined, which are then added to the
master problem. By the Benders cuts, eventually an optimal master solution
will be found, for which a feasible subproblem solution exists, leading to
a global optimal solution.

In the standard application of Benders decomposition to mixed-integer
linear programming, integer variables are complicating and continuous
variables are non-complicating. In this case, the subproblem is a problem
of linear programming and standard Benders cuts [19] can be used.

In [8] the authors show that in the special case, where integer variables
only appear together with continuous variables in constraints of big-M,
and where the objective is independent of the continuous variables, the
standard Benders cut can be strengthened to the combinatorial Benders
cut. In this special case of mixed-integer programming, the solution of the
master problem is a solution over binaries of big-M constraints and implies
a set of (big-M) constraints to the subproblem. If the subproblem, including
such implied constraints, is feasible, a global optimal solution has been
found. In case the subproblem is infeasible, there exists an infeasible subset
of constrains within all the constraints of the subproblem, that is the reason
for the infeasibility. The combinatorial Benders cut is a constraint cutting
off solutions from the solution space of the master problem, which would
lead to the particular infeasible subset of constraints in the subproblem,
which has been used to derive the cut.

5.2.4 Contribution

We consider in this work the problem of railway timetabling through a
microscopic, non-periodic model including the routing of trains. Our model
of timetabling extends the model of [26]. The objective of the timetabling
problem is the delay of events, with regards to the latest preferred time
given. We discretize this objective and propose a generic decomposition of
the problem by a logic Benders decomposition. Despite it is built on the
same mathematical model, this decomposition is fundamentally different
from the decomposition of [26]. In the new decomposition, thanks to the
discretization of the objective, we can apply the combinatorial Benders
cuts of [8]. In our decomposition, the master problem is a problem of set
covering; to solve it, we introduce various heuristic solution approaches.
With the efficient heuristics we can solve much faster and/or with a better
objective, the microscopic timetabling problem addressed, compared to a
series of benchmarks. The particular contributions of this work are:
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1) We propose a Benders decomposition on a disjunctive formulation of
railway timetabling, where the master problem is problem of set covering
and the subproblem is a problem of timetabling, for which only feasibil-
ity must be evaluated. In the Benders decomposition we can apply the
combinatorial Benders cut of [8].

2) We introduce several heuristic approaches to solve the problem of set
covering in the proposed Benders decomposition. We propose heuristic
approaches exploring particularly the incremental growth in constraints of
the set covering problem, inside the scheme of Benders decomposition.

3) In an exhaustive series of experiments, we provide empirical evidence
to quantify the performance of our novel approach. We put our approach
into perspective with an existing general approach to timetabling [18] using
the two commercial solvers Gurobi [20] and Z3 [15]. In comparison to the
general approach, we can solve instances of timetabling up to ∼ 20 times
faster with only an average gap of ∼ 7.5% to an optimal solution.

5.3 problem description

The problem of railway timetabling is to design a schedule (the timetable)
for all operations performed by trains on the railway network. The following
description of railway timetabling extends the description of [26].

We consider microscopic timetabling; that is the railway infrastructure
is represented with a microscopic detail, where a single operation of a train
corresponds to the train passing a single block. Such operation is scheduled
by defining a continuous time for the start and end event of the operation,
i.e., the entry and exit of the train to the block. The solution of a timetabling
problem is a timetable, which determines, for all trains in the network, an
exit and an entry time for each block that is passed by the train.

With service requirements for timetabling, railway operators define de-
sired regularities, frequency of services and passenger transfers which
should be established in the resulting timetable. We consider service re-
quirements in form of temporal limitations, i.e., earliest and latest times for
arrivals and departures, as well as required minimal (maximal) duration
between an arrival and a departure of two trains to assure enough time for
passenger transfers.

Differently to [26], we consider in this work planning deviations for
timetabling. We do this to enlarge the feasible solution space, and con-
sider the possibility that an arrival or departure event is scheduled actually
shortly after its given latest time from the service requirements. In this case,
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we consider the planning deviation for such event to be the difference in
time between the latest time given for the event and the actual time the
event is scheduled in the timetable. We consider furthermore planning
deviation to be limited to a maximal allowed deviation, that is the same for
all events and given by the railway operators.

With discrete decisions in railway timetabling we determine the order or
route of trains. A discrete decision is to select a single choice, out of a finite
set of choices, where each choice has consequences (in form of constraints)
for the events of the timetabling problem.

Safety regulations require that no concurrent occupation of any block
in the network by two or more trains, i.e., no resource conflict, occurs in
the network. We consider an ordering decision for any pair of trains with a
possible resource conflict to avoid any such conflicts in the final timetable.
The ordering decision consists of two choices, that are the two possible
orderings for a pair of trains, where the constraints related to each choice
prevent the occurrence of the conflict.

We consider the infrastructure available to a train, restricted to a limited
set of routing alternatives, where each routing alternative is a sequence of
blocks in the network. The limited infrastructure is defined by railway
operators and includes only the few most plausible routing alternatives
according to the type of service of the train. We consider a routing decision
to select a routing alternative (choice) to be used by a train. Routing alter-
natives are geographically grouped into routing areas. In each routing area,
multiple routing alternatives are in parallel between two unique points in
the network, that are the entry and exit point to the routing area. To select
one routing alternative in a routing area corresponds to a routing decision.
A single train may cross multiple routing areas on its path from the origin of
the train to the destination and thus may require multiple routing decisions.
The route of a train is a unique sequence of blocks from origin to destination,
determined by the choices on all routing decisions of the train.

In summary, in the problem of microscopic railway timetabling, we
optimize over event times, routing and ordering decisions to compute a
conflict-free timetable, which minimizes the sum of all planning deviations
over all arrival and departure events.

5.4 a model for railway timetabling

We use a disjunctive formulation [1] to model the problem of railway
timetabling. In particular, we use the formulation of [26] and adapt it to
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the minimization of sum of total planning deviation. The following section
summarizes the disjunctive model from [26].

For a train d, the operation related to block b is indicated (d, b) and the
related time for the start event of such operation (d, b) by the continuous
variable tdb ∈ R+. Variables for the end event of an operation are redundant
as a sequence of operations cannot be paused in railway timetabling.

The precedence relation ((d, b), (q, p)) is to model a temporal dependency
between events. The precedence relation is a linear inequality constraint to
assure that tqp is at least fdb,qp time units scheduled after tdb. Precedence
relations in timetabling as of [26] are either fixed or selectable. Precedence
relations that are fixed must hold in any solution of railway timetabling.
Selectable precedence relations must hold upon selection. Precedence rela-
tions are selected by the discrete decisions of railway timetabling. Selectable
precedence relations are grouped into choice sets Wc, and choices sets into
decisions sets Dl , to model the discrete decisions. A choice s imposes (selects)
the precedence relations in Wc jointly, to be satisfied by the events of the
timetable. A discrete decision l is modeled as the disjunctive constraint∨

Wc∈Dl

∧
((d,b),(q,p))∈Wc

(
tqp − tdb ≥ fdb,qp

)
. (5.1)

With a set of fixed precedence relations A f , the minimal travel times of
trains over blocks outside of routing areas and further all earliest times as
well as minimal (and maximal) transfer times are modeled. A time origin
t0 = 0 is used to model earliest times as precedence relations.

With a set of selectable precedence relations As, minimal travel times on
blocks inside of routing areas, and constraints for either order on a pair
of trains are modeled. Selectable precedence relations of minimal travel
times are grouped into choice sets Wc as the related blocks are in routing
alternatives; all choice sets of all routing alternatives in the same routing
area build a decision set Dl for the routing decision. The constraint for
one order on a pair of trains is a single precedence relation, such that the
decision set of an ordering decision contains two choice sets, each with a
single precedence relation to impose either order of the pair of trains.

Auxiliary variables are used to model the dependency of ordering de-
cisions and routing decision. An ordering decision is necessary if infras-
tructure is shared among a pair of trains; whether infrastructure is shared
depends on the chosen routing alternatives. Auxiliary variables are ad-
ditional (artificial) events, used in the precedence relations of ordering
decision to model the dependency between ordering and routing decisions.
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Auxiliary variables duplicate events in routing alternatives and are con-
strained to equality with the original variables if and only if the appropriate
routing alternative is chosen.

5.4.1 Minimizing Planning Deviation

We model the planning deviation in timetabling by a second set of fixed
precedence relations Aδ. Precedence relations in Aδ model latest times of
events and identify the planning deviation δdb of the arrival or departure
event (d, b). The planning deviation δdb is defined as the difference in time
between the actual time of the event tdb and the latest time fdb of the event,
given as an input to the problem. We do not consider negative planning
deviations, such that δdb ≥ 0. We can identify the planning deviation δdb of
an event (d, b) by the following precedence relation

δdb − tdb ≥ − fdb. (5.2)

Different from A f , precedence relations in Aδ are defined on only one event,
e.g., event (d, b).

If we denote by L the set of all discrete decisions of timetabling and
further reduce the notion of an operation (d, b) to i, we can write the
problem of railway timetabling as the disjunctive program,

min ∑
(i)∈ Aδ

δi

s.t. δi − ti ≥ − fi (i) ∈ Aδ

tj − ti ≥ fij (i, j) ∈ A f∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ L

δi ∈ R+, δi ≤ δmax ∀ δi, ti ∈ R+ ∀ ti.

(5.3)

The constant δmax is the maximal allowed deviation, that is the same for all
events and given by the railway operators. The objective of Problem (5.3)
is to minimize the sum of all planning deviations over all events given a
latest time fi.

5.4.2 A discretization of Planning Deviation

In Problem (5.3) planning deviations are represented by the continuous
variables δi. To apply our approach and decompose Problem (5.3) into a
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problem of set covering and a problem of feasibility, we need to discretize
the planning deviation of arrival and departure events to a finite set of
possible values; such values are later the selectable elements (sets) in the
problem of set covering. We discretize the planning deviation of an arrival
or departure event δi, originally in the interval [0, δmax], to K + 1 discrete
values, i.e.,

{
δ̄i,0, · · · , δ̄i,K

}
, where δ̄i,k = k δmax

K .
We then replace each precedence relation in Aδ of Problem (5.3) by a

series of K + 1 big-M constraints for all possible discrete values of δi, i.e.,

δ̄i,k − ti ≥ − fi −Mxi,k, k ∈ {0, · · · , K} , (5.4)

where xi,k ∈ {0, 1}. In the series of constraints (5.4), it must hold that
xi,K = 0, to always enforce the constraint of maximal allowed deviation. We
keep the constraint k = K in the series (5.4) for the simplicity of notation;
in later experiments we will omit the big-M term of such constraint.

In the series of constraints (5.4), in case a binary xi,k = 1, the related
constraint of k is relaxed, i.e., trivially satisfied. Naturally, for the series
of constraints (5.4), it holds that if there exists any assignment on the
binaries xi,k satisfying the series of constraints (5.4) for a given set of
values ti, there exists a possibly different assignment on the binaries xi,k
satisfying the series of constraints (5.4) for the same values of ti, where it
holds xi,k+1 ≤ xi,k. In other words if constraint (5.4) for k is satisfied by
ti (i.e., xi,k = 0) any constraint (5.4) for p, where p > k is trivially also
satisfied. We can interpret this assignment on the binaries, where it holds
0 = xi,K = xi,p+1 < xi,p = xi,0 = 1, as an allowed deviation for the event
i of at most δ̄i,p+1; all constraints up to (and including) p in the series
(5.4) are relaxed as the corresponding xi,k = 1. In case the constraints in
the series (5.4) are relaxed up to constraint p, exactly p + 1 constraints,
i.e., k ∈ {0, · · · , p}, are relaxed and the planning deviation δi of event i is
limited to,

δmax

K ∑
k∈{0,··· ,p}

xi,k ≥ δi. (5.5)

In Equation 5.5 we can extend the sum to all binaries, i.e., {0, · · · , K}, as
binaries xi,k = 0 for k > p.

In the above, we chose big-M constraints in (5.4) with binary variables
xk,i instead of integer (discrete) variables for the discretization of planning
deviation δi. In this manner, we achieve an optimization problem identical
in constraints to the problem of [8] and can use their combinatorial Benders
cuts in our decomposition of the timetabling problem.
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With the discretization of constraints in Aδ by the series of constraints
(5.5), we can translate Problem (5.3) into a problem of microscopic timetabling
with discrete planning deviation,

min
δmax

K ∑
(i)∈ Aδ

 ∑
k∈ {0,··· ,K}

xi,k


s.t. δ̄i,k − ti ≥ fi −Mxi,k k ∈ {0, · · · , K} , (i) ∈ Aδ

tj − ti ≥ fij (i, j) ∈ A f∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ L

xi,K = 0

ti ∈ R+ ∀ ti, xi,k ∈ {0, 1} ∀ xi,k

(5.6)

where the objective is now to minimize the total sum discretized planning
deviations. If we consider continuous planning deviations in Problem
(5.3), it holds for every optimal solution, that for each δi either the related
constraint in Aδ is tight, i.e., δi = ti − fi, or δi = 0. That is, either there is no
planning deviation or exactly as much deviation considered in the objective
of Problem (5.3) as the event is actually scheduled after its latest time.

For Problem (5.6), instead, planning deviations are discrete. In this case,
it is possible that δ̄i,k > ti − fi > δ̄i,k−1 and there is more planning deviation
considered in the objective of Problem (5.6) than the event is actually
scheduled after its latest time. This is simply due to the discretization of
planning deviation.

5.5 set covering in railway timetabling

We propose in this work a novel approach for railway timetabling where
we decompose Problem (5.6) by a Benders decomposition into a problem
of set covering as the master problem, and a problem of timetabling, where
only feasibility is to be verified, as the subproblem. By the discretization of
planning deviations in Section 5.4.2 we are able to apply the combinatorial
Benders cut of [8] to our decomposition.

5.5.1 A combinatorial Benders Decomposition

We decompose our centralized problem C (Problem 5.6) into a master problem
M and a single subproblem S according to standard Benders decomposition
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[19]. We define the master problem to be the optimization over all binary
variables xi,k of the Problem (5.6). We optimize all remaining variables in
the subproblem. All constraints of Problem (5.6) in such decomposition
are constraints in S . The master problemM at the iteration α, i.e.,Mα in
decomposition scheme of Benders can be written as

min ∑
(i)∈Aδ

 ∑
k∈{0,··· ,K}

xi,k


s.t. ∑

(i,k)∈ Iα

xi,k ≥ 1 ∀Iα

xi,k ∈ {0, 1} ∀xi,k

(5.7)

where β is a Benders cut and Bα the set of all cuts aggregated till iteration
α in the Benders scheme. In Section 5.5.2 we will show that β has the shape
of the combinatorial Benders cut [8]. We further omit the factor δmax

K from
the objective of Problem (5.6) inMα as it does not change the optimality
of a solution.

The subproblem S in our decomposition is the optimization over all
variables of the centralized problem C except variables xi,k, together with
all constraints of C. In our decomposition S is only a problem of feasibility;
no variables of S appear in the objective of C. The subproblem Sα of our
decomposition at iteration α can be written as,

min 0

s.t. δ̄i,k − ti ≥ − fi (i, k) ∈ Āα
δ

tj − ti ≥ fij (i, j) ∈ A f∨
Wc∈Dl

∧
(i,j)∈Wc

(
tj − ti ≥ fij

)
l ∈ L

ti ∈ R+ ∀ti

(5.8)

where Āα
δ :=

{
(i, k) ∈ Aδ × {0, · · · , K} | x̄α

i,k = 0
}

is the set of all con-
straints in the series (5.4) that must hold in the subproblem, due to the
incumbent master solution Oα at iteration α in case x̄α

i,k = 0 in Oα.
We can interpret Subproblem (5.8) as a problem to determine whether

there exists a feasible timetable for a particular amount of discrete planning
deviation; the particular planning deviation is defined by the solution of
Mα.
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5.5.2 A Combinatorial Benders Cut for Railway Scheduling

In [8] the authors introduce the combinatorial Benders cuts for a Benders
decomposition that is structurally identical to our decomposition in Section
5.5.1. That is, the solution of the master problem Oα

M is a solution over
binaries, which imply (in our case by Āα

δ ) a set of constraints onto the sub-
problem. We thus make use of the combinatorial Benders cut as introduced
in [8] for our Benders decomposition of Section 5.5.1.

The combinatorial Benders cut is generated from an infeasible subset
of constraints in the subproblem; we denote such subset further by Iα.
Different from [8] our subproblem, i.e., Problem (5.8), is a problem of mixed-
integer linear programming. We therefore cannot use the techniques of [8] to
determine Iα as they rely on strong duality in linear programming. Instead,
we propose in Section 5.6.1 to use an existing algorithm, that we designed in
a previous work for an geographic logic-based Benders decomposition [26].

Given an infeasible subset of constraints Iα, in such subset only those
constraints are of importance to the combinatorial Benders cut, which are
imposed by the incumbent master solution; in our case the constraints in Āα

δ .
We denote these constrains by Iα

δ := Iα ∩ Āα
δ . For each constraint (i, k) ∈ Iα

δ ,
there exists an associated binary variable xi,k ∈ M and we can write the
combinatorial Benders cut β of [8] for our decomposition of Section 5.5.1 as

βα := ∑
(i,k)∈ Iα

δ

xi,k ≥ 1. (5.9)

The Benders cut (5.9) is clearly a constraint of set covering and thusMα

a problem of set covering.

5.6 implementation

Algorithm 6 shows the iterative scheme of Benders decomposition. In every
iteration of the scheme, the master problem is solved (Line 2) and if nec-
essary extended by an additional Benders cut (Line 5), which is generated
from the analysis of the subproblem (Line 3), see Section 5.6.1. With the
decomposition of our timetabling problem and the combinatorial Benders
cut from Section 5.5, we discuss in this Section first an algorithm from one
of our previous works [26], that can be used to analyze the subproblem;
and later propose several approaches in Section 5.6.2 and Section 5.6.3 to
address the master problem in our decomposition.
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Algorithm 6: Benders Decomposition Scheme
input :M, S
output :OC
init : α = 0, OC = ∅,Mα =M(Bα = ∅)

1 while OC = ∅ do
2 Oα

M ← Solve(Mα);
3 Oα

S , Iα ← Analyze(Sα);
4 if Iα

k ̸= ∅ then
5 Bα+1 ← Bα ∪ βα(Iα);
6 else
7 OC ← Oα

M ∪ Oα
S

8 α ← α + 1;
9 return OC

5.6.1 An Infeasible Subset of Constraints in the Subproblem

In this paper, we identify an infeasible subset of constraints Iα in the sub-
problem Sα of our decomposition, using the algorithm SMT (Algorithm 7)
of [26]. Algorithm 7 computes an infeasibility proof for a problem that is
identical by the type of constraints to our Subproblem (5.8). The infeasibility
proof returned by Algorithm 7 is a set of cycles on a graphical representation
Gα of Sα. The set arcs of all cycles in Iα is an infeasible subset of constraints
Iα from which we can extract Iα

δ and use this latter to build the combinato-
rial Benders cut (5.9). In case Algorithm 7 cannot find a proof of infeasibility,
Sα is feasible and a corresponding solution Oα

S is returned. In the following
we provide a brief summary of Algorithm SMT (Algorithm 7) of [26]:

Algorithm 7 is a combination of Boolean Satisfiability Solving (SAT) [14]
with the logic of difference constraints from [11]; difference constraints are
mathematically identical to the precedence relations of timetabling. The
algorithm searches iteratively for a set of selectable precedence relations
θ ⊆ As, which satisfies all disjunctions l ∈ L of Sα, i.e., ∀l ∈ L, ∃Wc ∈ Dl
s.t. Wc ⊆ θ, and for which there exists an assignment for the variables
ti of Sα satisfying the precedence relations A f ∪ Āα

δ ∪ θ. If such θ can be
found, feasibility of Sα is proven. In [26], an assignment for ti is proven to
exist for the constraints A f ∪ Āα

δ ∪ θ if a graph Gα(θ), where each of these
constraints is a directed arc, is free of any positive length cycle.
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Algorithm 7: SMT, A DPLL Algorithm with Precedence Constraints.
input :Sα

output :Oα
S , Iα

init : Φ ← Sα, Gα ← Sα, θ = ∅

1 while true do
2 confl← UnitPropagation(Φ, θ)
3 if !confl then
4 confl← Evaluate(Gα(θ))
5 if !confl then
6 if θ = Complete then
7 Oα ← Gα(θ)
8 return (Oα, ∅)
9 θ ← θ

⋃
Decide()

10 else
11 if confl = Unsatisfiable then
12 Iα ← AnalyzeIP(confl)
13 return (∅, Iα)
14 else
15 Analyze(confl)
16 Backtrack(confl)

In Algorithm 7 an initially empty set θ is iteratively extended by choice
sets Wc from the decisions of Sα until θ satisfies all disjunctions (decisions)
of Sα. The set of constraints Φ in Algorithm 7 models the disjunctions of
Sα in terms of Boolean satisfiability constraints to assure that Algorithm
7 indeed computes a set θ, which satisfies all disjunctions of Sα. In Line 9,
Decide selects choice sets Wc by heuristics of SAT, to extend θ. After every
extension of θ, UnitPropagation in Line 2 propagates implications given
by the constraints Φ and the newly selected choice set Wc. If no Boolean
satisfiability constraint is violated by any implication (i.e., !confl), Line
4 evaluates if a feasible assignment for variables ti exists with respect to
the constraints A f ∪ Āα

δ ∪ θ; for evaluation, the graphical representation
Gα(θ) is checked for positive length cycles. If no feasible assignment exists,
Line 4 returns a new, violated Boolean satisfiability constraint computed
from Gα(θ). If Line 2 or Line 4 returns a violated constraint, either such
constraint can be satisfied by a different θ or is generally unsatisfiable
(confl = Unsatisfiable). If satisfiable by a different θ, Line 15 and 16 are
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to determine the necessary changes in θ by analyzing first the violated
constraint and then removing choices sets Wc leading to the violation of the
constraint, from θ in a backtracking procedure. If the violated constraint
cannot be satisfied by any other θ, Line 12 computes an infeasibility proof
for Sα based on the violated constraint. Finally in case neither Line 2 or
4 returns a violated constraint and θ satisfies all disjunctions of Sα, Line
7 computes a feasible assignment for the variables ti, which satisfies the
constraints A f ∪ Āα

δ ∪ θ; such assignment is a feasible solution for Sα.

5.6.2 Classical Approaches for Set Covering in the Master Problem

In standard Benders decomposition [19], the master problem is solved to
optimality in every iteration. We propose in this paper, among others, a de-
composition approach, where the master is solved to optimality in every iter-
ation using the commercial solver Gurobi [20]. In this case, i.e., if the master
problem is solved to optimality, Algorithm 6 returns an optimal solution for
the centralized problem, once no further Benders cut is generated (Line 7).

Different from standard Benders decomposition, in more recent literature,
the master problem in a Benders decompositions is no longer solved to
optimality. The validity of the Benders decomposition scheme, in particular
the validity of Benders cut does not depend on the optimality or feasibility
of a master solution, such that heuristic master solutions [33] or solutions of
a relaxed master problem [29] are used in decompositions of the literature.
In the same manner, we can address the master problem (Problem 5.7) in
our decomposition by a heuristic approach. In the particular case of this
paper, the master problem is a problem of set covering and we propose a
decomposition approach, where we use the standard heuristic of Chvatal [7]
for problems of set covering, to solve our master problem. In this approach,
only a near optimal, but feasible solution of the master is computed in
Line 2 of Algorithm 6. The usage of a heuristic is intended to reduce the
computational time of a single iteration in the Benders scheme and reduce
the total time till convergence of Algorithm 6.

In experiments of Section 5.7 we provide experimental results on both,
the approach where the master problem is solved to optimality in each
iteration by the commercial solver Gurobi, and the approach where the
master problem is solved by the heuristic of Chvatal.
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5.6.3 Incremental Approaches for Set Covering in the Master Problem

In alternative to classical approaches, where the master problem is solved
from scratch in every iteration of the Benders scheme, without considering
any information from previous master solutions, we propose in this section
incremental heuristic approaches to solve the master problem. In this case,
the incumbent solution of the master problem is based on the solution from
the previous iteration. In particular, the solution of the previous iteration
in the Benders scheme is adapted to be conform with the latest Benders cut.
With such heuristics, we intend to minimize the computational effort inside
a single iteration of the Benders scheme and reduce significantly the total
time till convergence.

We adapt a master solution Oα−1 from the previous iteration α− 1 to
the latest Benders cut βα of the current iteration α by changing at least one
binary variable xi,k, (i, k) ∈ Iα from value 0 to 1, from the previous solution
Oα−1 to the incumbent solution Oα. The change of a binary variable xi,k
from value 0 to 1 corresponds to an increase of planning deviation at event
i, from δ̄i,k to δ̄i,k+1. Variables xi,k, (i, k) ∈ Iα have altogether value 0 in
Oα−1; otherwise related constraints would not appear in Iα as they would
not be imposed to Sα. We propose in the following four different heuristics
to determine which binary(ies) xi,k, (i, k) ∈ Iα must change in values from
Oα−1 to Oα:

Definition. (Min Appearance)
In the heuristic of minimal appearance, we select out of the binaries xi,k, (i, k) ∈ Iα,
the single binary variable, which appears the least number of times in the already
computed constraints of set covering (Benders cuts) in Bα. Such heuristic is in-
tended to minimize the number of redundant relaxed set covering constraints in Bα.

Definition. (Max Appearance)
In the heuristic of maximal appearance, we select out of the binaries xi,k, (i, 0, k) ∈
Iα, the single binary variable, which appears the most number of times in the
already computed constraints of set covering (Benders cuts) in Bα. Opposed to
Min Appearance, such heuristic is intended to maximize the number of constraints
in Bα relaxed by a single binary variable.

Definition. (Complete Satisfaction)
In the heuristic of complete satisfaction, all binaries xi,k, (i, 0, k) ∈ Iα are set equal
to 1. Such heuristic is to relax (remove) the most constraints from the subproblem in
a single iteration of the Benders scheme to reduce the amount of total iterations in
the Benders scheme until a feasible subproblem solution is found and convergence
achieved.
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Definition. (Random)
In the heuristic of random selection, a single binary is uniformly random selected
from the binaries xi,k, (i, 0, k) ∈ Iα and set equal to 1. Such heuristic shall provide
a benchmark for the numerical experiments in Section 5.7.

In Section 5.7 we provide exhaustive experiment on all incremental
heuristics of this section and put those in relation to classical approaches in
Benders decomposition (Section 5.6.2) and further existing approaches for
railway timetabling.

5.7 computational experiments

With a series of comprehensive experiments we analyze the performance
of heuristic and optimal approaches proposed in this paper and compare
results with standard benchmarks. All experiments reported in the follow-
ing sections are computed on the Euler Cluster of ETH Zurich, on a single
AMD EPYC 7763 processor with 120 GB of RAM and a time limit of 24

hours per experiment.

5.7.1 Instances

For our experiments we use 14 original scenarios of timetabling. These
scenarios are geographic and temporal excerpts from current timetable
of the Swiss Federal Railways in Switzerland and include all microscopic
details of the actual infrastructure. All excerpts have a time horizon of
planning between 2 and 6 hours. We name the scenarios of timetabling
according to the biggest cities within the corresponding geographic excerpt;
names of cities are decoded in Table 5.1.

We analyze the scalability of our approaches of set covering as we scale
the 14 scenarios of timetabling to different instances of timetabling with
a reduced number of trains. We consider the 14 scenarios of timetabling

ZUE Zurich HE Herisau CH Chur ZAS Zurich Altstetten

BN Bern YV Yverdon LZ Luzern RH Romanshorn

AA Aarau BEL Bellinzona BDF Burgdorf GD Arth-Goldau

BS Basel SO Solothurn SG St. Gallen OTH Othmarsingen

Table 5.1: Decoding of Scenario Names to the Cities of Switzerland.
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as instances with 100% of trains and derive from each scenario 9 further
instances with a reduced percentage of trains (i.e., 90%, 80%, ... of trains). We
reduce the number of trains as we randomly but continuously remove trains
such that, e.g., all trains of an 80% instance are within the 90% instance
from the same original scenario. In total we have generated 140 instances of
timetabling derived from the 14 different original scenarios of timetabling.

In Table 5.2 in the Appendix we provide detailed numbers on all instances
of timetabling used in this work. We report the number of trains, stops
performed by trains, transfers between trains, ordering and routing choices,
as well as the maximal allowed planning deviation. Figure 5.1 gives an
overview over the most important characteristics of the 14 original scenarios
of timetabling. In the upper plot of Figure 5.1, we report the number of
trains in each scenario; in the lower plot we report the number of choices in
all discrete decisions of the scenario, broken down into routing and ordering
choices. From Figure 5.1 we can see that especially the first three scenarios,
which are three scenarios of the railway traffic between Zurich (the busiest
railway station in Switzerland) and Chur, contain a large number of ordering
and routing choices for a rather lower amount of trains. This high number of
choices is the result of a complex railway infrastructure around the railway
station of Zurich. A high number of choices is often a good indicator for a
high computational complexity of an scenario. We can also see in Figure 5.1
that some scenarios contain a large amount of trains, but at the same time a
rather average number of choices. This occurs often in cases of timetabling,
for areas where the railway traffic in opposite direction is routed over
separate tracks, and only little interactions are taking place between trains.

5.7.2 Benchmark Approaches for Timetabling

We put the approaches of this work in comparison with a standard (central-
ized) approach of railway timetabling to show the benefits and drawbacks
of our heuristic approaches. Our benchmark is based on the methodologies
of [18]. In [18], the authors propose several improvements in the formula-
tion of railway scheduling to increase the computational performance of a
commercial solver applied to a problem of railway rescheduling. We adopt
from this work particularly the tightening of temporal bounds for events
of the scheduling problem, based on the maximal allowed planning devi-
ation. Based on these tightened bounds, according to [18], we can fix entire
decisions or exclude particular choices from decisions in the timetabling
problem. We omit for this work the heuristic fixation of a maximal planning
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Figure 5.1: Trains and Choices in Scenarios of Timetabling.

deviation as done in [18]. In our case we are given a fixed maximal allowed
planning deviation by the operators of the railway.

We apply our benchmark approach to the problem of railway timetabling
with a continuous objective (Problem 5.3) as well as with a discrete objective
(Problem 5.6). We use for the benchmarks the commercial mixed-integer
solver Gurobi [20] and the Boolean satisfiability solver Z3 [15]. Z3, likewise
to our Algorithm 7, is a SAT solver extended to various types of constraints
(including precedence relations).

5.7.3 Set Covering Heuristics

In a first series of experiments we study the performance of our classi-
cal (Section 5.6.2) and incremental (Section 5.6.3) set covering approaches.
We apply all approaches to all 140 instances of timetabling. All numbers
reported on experiments in this section are an average over five computa-
tionally identical runs.

As stated in the beginning of this section, all experiments are given a
time limit of 24 hours for computations. In consequence, the classical set
covering approaches, i.e., the Chvatal heuristic and the Optimal approach of
set covering did not provide solutions within the time limit for all instances.
We report in Figure 5.2 the percentage of trains up to which the individual
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Figure 5.2: Instances Solved by Set Covering Approaches.

approaches were able to provide a solutions within the limit of 24 hours. In
Figure 5.2 we see that the Chvatal heuristic and the Optimal approach fail
to provide solutions mainly on the same instances, indicating the computa-
tional complexity of solving these instances to (near) optimality by classical
Benders decomposition approaches. In comparison, the Chvatal heuristic
mostly provides fever solutions than the Optimal approach, reaching a lower
level of percentage of trains, to which a solution could be found. This lower
performance might be caused due to higher fluctuations in heuristics (non
optimal) incumbent master solutions, which themselves lead to more itera-
tions in the Benders scheme till convergence. We can see the higher number
of iterations for Chvatal in Figure 5.5 as we report the total number of con-
straints (equal to number of iterations) for different approaches. The incre-
mental set covering heuristics provide solutions for all 140 instances within
24 hours. We provide a plausible comparison between all (classical and
incremental) approaches of set covering as we further report results only on
those instances, which were solved by all approaches based on set covering.

In Figure 5.3 we report the computational time of different set covering
approaches. In the top plot of Figure 5.3 we report the absolute compu-
tational time, on average over all 14 scenarios of timetabling for different
instances with different percentages of trains; the bottom plot reports the
average computational time scaled by the computational time of the Ran-
dom heuristic of set covering. We use the Random heuristic as a benchmark
in set covering approaches. We report the computational time in both plots
on a logarithmic axis. In Figure 5.3 the Min Appearance and the Chvatal
heuristic show significantly higher computational times than the remaining
set covering approaches. We will see later, when looking at the statistics of
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Figure 5.3: Average Computation Time of Set Covering over 14 Scenarios.

set covering constraints in the Benders decomposition scheme (see Figure
5.5), that in particular these two approaches show the largest amount of con-
straints generated, and thus the most iterations performed till convergence.
Regarding scalability, we see a similar increase of computational time over
an increasing percentage of trains for almost all set covering approaches.
The exception is the Chvatal heuristic, which shows a linear increase on
the logarithmic scale of Figure 5.3 and thus a strong exponential increase of
computational time for higher percentages of trains. In Figure 5.3, the Opti-
mal set covering approach scales similar to the other set covering heuristics,
which is to some extent a falsified image of the reality. Figure 5.3 reports
only instances that are solved by all set covering heuristics; as shown in Fig-
ure 5.2 this excludes in total 11 of the 140 generated instances of timetabling,
that could not be solved by the Optimal set covering approach. Accounting
for these would clearly reveal a worse scalability of the Optimal approach
than actually reported in Figure 5.3 and worse than the incremental set
covering approaches.

In set covering approaches we would expect the best performance from
the Complete Satisfaction heuristic. Such heuristic relaxes the highest num-
ber of constraints in the subproblem in every iteration, such that we expect
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a quick convergence to a feasible solution. Different from our expectations,
Figure 5.3 does not report a particular superior performance of the Com-
plete Satisfaction heuristic in comparison to other heuristics; only in Figure
5.5 we can see a minor decrease in iterations (constraints) for the Complete
Satisfaction heuristic. We can conclude from such result that the majority
of the infeasible subsets of constraints detected by Algorithm 7 must be
non-overlapping or only marginally overlapping, in terms of containing the
same constraints. Only if infeasible subsets of constraints would overlap
significantly, removing all such constraints from the subproblem in a sin-
gle iteration, as done by the Complete Satisfaction heuristic, would bring
a computational benefit; in this case the Complete Satisfaction heuristic
would avoid all overlapping infeasible subsets in the subproblem in a sin-
gle iteration. Else the removal of a single constraint from the subproblem
for each infeasible subset is sufficient to avoid the infeasible subset in the
subproblem and is thus as effective as removing all of them.

In Figure 5.4 we report the objectives of timetables computed by different
approaches of set covering. The objectives reported in the figure are the
(continuous) planning deviation of a timetable, as in Problem 5.3; we thus
report the (continuous) planning deviation also for timetables computed
based on a discrete objective, to provide a plausible comparison. In the style
of Figure 5.3, we report in Figure 5.4 in the top plot the absolute objective
values (total minutes of planning deviation as reals); in the bottom plot
we report the gap of the objective (planning deviation) of approaches with
respect to (and normalized by) the objective of our benchmark heuristic,
the Random heuristic. The gap of the objective is reported on average over
all 14 scenarios of timetabling for different percentages of trains (instances)
to see the scaling behaviour.

Most striking in Figure 5.4 is the performance of the Min Appearance
heuristic. The objective of such heuristic is a factor higher (worse) than for
all other approaches. The other approaches perform all rather similar to
each other, with the Chvatal heuristic and the Optimal approach perform-
ing slightly better for high percentages of trains. Figure 5.4 indicates that
avoiding redundant relaxations as done by the Min Appearance heuristic is
likely to result in timetables of poor quality. The opposite thinking, i.e., if we
exploit the overlap of infeasible sets of constraints and focus on removing
constraints from the subproblem, which appear in multiple such sets, seems
to have rather little effect on the quality of timetables. The Max Appearance
heuristic, which exploits exactly such overlap shows a rather similar quality
of timetables as the Random and also the Complete heuristic. These results
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Figure 5.4: Average Objective of Set Covering over 14 Scenarios.

match with the earlier conclusion, that infeasible subsets of constraints
overlap only minor; in such case, the Max Appearance heuristic performs
algorithmically almost identical as the Random heuristic. In summary, apart
from the Min Appearance, the performance of incremental set covering
approaches shows rather independent from the particular heuristic used.
This indicates that the performance of incremental set covering approaches
is more dominated by the infeasible subsets of constraints discovered, than
by the particular incremental heuristic, used to adapt the master solution.

We further see in Figure 5.4 a rather expected increase of planning de-
viation for an increasing amount of trains. The decrease of total planning
deviation after 80% of trains for most of the approaches is caused by ne-
glecting more and more unsolved instances for 90% and 100% in the figure;
neglected instances show on average a high planning deviation. The bottom
plot of Figure 5.4 shows that the Chvatal heuristic performs very similar to
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Figure 5.5: Average Problem Size in Set Covering over 14 Scenarios.

the Optimal approach with respect to planning deviation, providing thus
timetables of almost optimal quality. The incremental heuristics all perform
rater similar to each other, with the Complete heuristic showing some more
fluctuations in quality. With respect to classical approaches, the incremental
heuristics perform with a gap of around ∼ 7%, minimum ∼ 5%. Overall
Figure 5.4 empirically underlines, that we are able to provide solutions of
good quality, i.e., gaps to an optimal solution of ∼ 7%, in short time, with
heuristic approaches of set covering.

Finally, we report in Figure 5.5 statistics on the set covering problem in
solves of set covering approaches. In the top plot of Figure 5.5, we report
the number of Benders cuts, i.e., set covering constraints, generated in the
Benders scheme till convergence; in the bottom plot we report the average
size of set covering constraints, i.e., number of binary variables in the
sum of constraint 5.9. The number of constraints generated is equal to the
number of iterations done by the Benders scheme as a single constraint is
generated in each iteration. Figure 5.5 provides an empirical explanation to
the computational performance of the set covering approaches as reported
in Figures 5.2, 5.3 and 5.4. In the top plot of Figure 5.5, we see a tendency of
the Chvatal heuristic to generate an over-proportional amount of constraints
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(iterations), which explains the failure of such heuristic to solve all 140

instances of timetabling. For the Optimal approach, we see an average
performance in terms of constraints and constraint size. We thus argue the
reason for unsolved instances in Figure 5.2 to be the computational burden
of solving the master to optimality in every iteration of the Benders scheme.
We saw in Figure 5.2 that the Min Appearance heuristic, different from the
Chvatal heuristic was able to solve all 140 instances. We explain such result
by Figure 5.5, as we see a less drastic increase of constraints (iterations) for
higher percentages of trains for the Min Appearance heuristic, than for the
Chvatal heuristic.

Regarding the constraint size, the Min Appearance produces for low per-
centages slightly bigger constraints, but then for high percentages of trains
(above 80%) significantly smaller constraints, in comparison to all other
approaches of set covering. In combination with the total number of con-
straints generated, the Min Appearance heuristic seems to produce a large
number of constraints with small size, in terms of binaries in the sum. In
theory, as discussed by [8], a combinatorial Benders cut of small size is math-
ematically stronger and thus likely to be more useful for the computation of
a solution. In the application of our heuristics, such effect seems to be rather
negligible. We can see in Figure 5.5 that for heuristic approaches, not the
strength of constraints seems to be the dominant factor for performance, but
rather the number of constraints (and iterations) necessary to convergence;
iterations seem to be less for constraints of bigger size. Furthermore, we also
conclude from Figure 5.4 and Figure 5.5 that a larger number of constraints
leads to more planning deviation in a timetable (see Min Appearance). We
explain such behavior, as in the case where more iterations are necessary
to converge, more constraints are removed from the subproblem and thus
more planning deviation is possible in a solution of the subproblem.

In Figure 5.5 we see approaches generating constraints of size 1. Such
constraints can occur in case a train cannot be scheduled without a planning
deviation exclusively due to constraints, which must hold in any case (fixed
precedence relations), i.e., minimal travel time and transfer constraints. In
this case, the infeasible subset of constraints is a set of only one constraint
(the constraint that must be relaxed to allow for a planning deviation of
the train) and consequentially set covering constraint has size 1. In case
a discrete decision (in particular an ordering decision) with its selectable
precedence relations, is part of an infeasible subset of constraints, the re-
lated set covering constraints has size 2 or bigger. In this case the infeasible
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Figure 5.6: Instances Solved to Optimality (Gurobi) or Feasibility (Z3) by Bench-
mark Approaches.

subset will contain constraints of planning deviation (5.4) related to more
than one train, in particular all trains involved in the decision.

5.7.4 Comparison of Benchmarks and Set Covering

In a second series of experiments we compare the results of our set covering
approaches with the benchmark approaches of Section 5.7.2.

Likewise to approaches in set covering, due to the limitation of compu-
tational time to 24 hours, benchmark approaches could not provide results
for all instances within the given time. In the style of Figure 5.2 for set
covering, we report in Figure 5.6 the highest percentages of trains up to
which individual benchmark approaches provide solutions within the time
limit. For benchmarks computed by Gurobi, we report the number of op-
timal solutions as in all cases at least a feasible solution was provided. We
report the number of optimal solutions by a dashed line. The Z3 solver was
in general unable to provide any solution for the problem of timetabling
with a continuous objective; we do not report such benchmark in Figure
5.6. Also for the timetabling with discrete objective Z3 provides only few
solutions, disclosing the struggle of Z3 with the problem of timetabling of
this work. The low performance of Z3 can be explained by the design and
tuning of Z3 mainly for problems of feasibility and not optimality as it is
the case for our problem of timetabling.

We can see in Figure 5.6 that the commercial solver Gurobi, which is
designed for optimization over continuous variables, is able to solve more
instances to optimality with the continuous objective than with the discrete
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objective. Problem (5.6) with a discrete objective contains a higher number
of big-M constraints. These often decrease the performance of mixed-integer
solvers such as Gurobi, as big-M constraints have a poor linear relaxation
and such relaxations are heavily used in mixed-integer optimization.

In the style of Figure 5.3, we report in Figure 5.7 the computational time
of benchmark approaches together with the Random heuristic (as the set
covering benchmark) and the Optimal approach of set covering (as the only
optimal approach based on set covering). The top plot in Figure 5.7 reports
the absolute computation time; the bottom plot reports the normalized com-
putational time with respect to the Random heuristic of set covering. With
dashed lines in Figure 5.7 we report numbers that are computed as averages
over less than the 14 scenarios of timetabling: some instances could not be
solved by the respective approach for the percentage of trains reported on
the x-axis. Solid lines report an average over all 14 scenarios of timetabling.
We can see in Figure 5.7 that Gurobi shows a better performance for the
continuous objective than for the discrete objective, as discussed earlier, due
to a higher numbers of big-M constraints in the discrete case. Z3 shows a
significant slower performance than Gurobi for the discrete approach, as
discussed, likely due to the design of Z3 for problems of feasibility, and
thus showing difficulties in optimization.

Comparing benchmarks to set covering approaches, we see a major
advantage of incremental set covering heuristics regarding computational
speed. At 100% of trains the Random heuristic shows a computational
speedup of roughly a factor ∼ 390 compared to the fastest benchmark,
i.e., Gurobi (Continuous). Such high computational speedup is mainly due
to the three instances ZUE-CH 1, ZUE-CH 2 and ZUE-CH 3, especially
ZUE-CH 3, where no optimal solution could be found by Gurobi. These
three instances propose a significant challenge for Gurobi due to their
high amount of routing alternatives, while the instances are solved rather
efficiently by the set covering heuristics. When considering the median of
the computational performance to account for outliers, the computational
speedup between Gurobi and the Random heuristic reduces to a factor ∼ 20.

We can further see in Figure 5.7 that the Optimal set covering approach,
while initially performing as good as the Random heuristic, approaches
for percentages of trains above 80%, a performance similar to Gurobi, such
that we can empirically see no major advantage in solving a problem of
timetabling to optimality by our decomposition (set covering) approach,
instead of directly applying a commercial solver. The bottom plot of Figure
5.7 indicates a benefit of incremental heuristics over benchmarks regarding
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Figure 5.7: Average Computation Time of Benchmarks over 14 Scenarios.

scalability. The normalized time of benchmarks (normalized by the Random
heuristic) notably increases for high percentages of trains (above 70%), em-
pirically underlining the advantage of incremental set covering heuristics
regarding the computational scalability.

While in speed, incremental set covering heuristics proved superior, it
remains to analyze the quality (planning deviation) of timetables provided
by benchmarks, to empirically estimate the sacrifice in quality made by set
covering heuristics in favor of computational speed. With Figure 5.8 we
report in the style of Figure 5.4 the performance of benchmarks in terms of
planning deviation in the computed timetables. We provide a comparison to
set covering approaches as we report the Random heuristic and the Optimal
set covering approach in the same plots. In the top plot of Figure 5.8, we
report the absolute planning deviation of the timetable solutions of different
approaches. In the bottom plot, we report the gap in the objective (planning
deviation) of benchmarks with respect to (and normalized by) the Random
set covering heuristic. The gap is reported on average over all 14 scenarios
of timetabling for different percentages of trains. As for Figure 5.7, dashed
lines indicate a reporting over an average over less than 14 scenarios.
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Figure 5.8: Average Objective of Benchmarks over 14 Scenarios.

In Figure 5.8, we see that on average, in case of a discrete objective, the
benchmark approaches Gurobi (blue) and Z3 (cyan) perform significantly
worse in terms of total planning deviation than set covering approaches. We
explain the superior performance of set covering heuristics by Algorithm
7. In Algorithm 7, in case the master solution allows for a feasible solution
in the subproblem, such solution is defined by a choice for each discrete de-
cision and a time for each event. Given the choices, the times for the events
are computed through a longest path propagation over a directed graph,
whose arcs represent fixed and selected (chosen) precedence relations in
the subproblem. Event times found in this manner minimize the total sum
of all event times. This is the key difference between approaches of set
covering and benchmark approaches with a discrete objective. In case of
benchmarks, event times are arbitrarily chosen within their feasible range
(according to the choices of timetabling) and not minimized in their total
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sum; only discrete planning deviation is minimized. Therefore, benchmarks
show more (continuous) planning deviation than set covering approaches.

In general, we see in Figure 5.8 that Gurobi with a continuous objective
in timetabling performing best; this approach provides an optimal solution
to the continuous formulation of railway timetabling given in this paper.
In the bottom plot of Figure 5.8, we see that Gurobi (Continuous) computes
on average timetable with ∼ 7.5% less planning deviation than the Random
heuristic of set covering. Also, we can see that due to the discretization,
the Optimal set covering approach is unable to achieve a performance as
good as Gurobi with a continuous objective. Finally, we see that for 100% of
trains Gurobi (Continuous) computes timetables with an average of ∼ 4%
more planning deviation than the Random heuristic. The on average higher
planning deviation is caused by few instances where Gurobi was unable
to provide an optimal solution within the time limit (see Figure 5.6). If such
instances are ignored, Gurobi (Continuous) shows an average performance
of ∼ 10% less planning deviation than the Random set covering heuristic.

5.8 conclusion

In this paper we introduce multiple approaches for solving the problem
of microscopic railway timetabling, based on a novel reformulation of the
problem for which the solution process becomes a set covering problem.
With a discretization of the objective in timetabling we can decompose the
timetabling problem using a Benders decomposition, into a problem of set
covering as the master problem and a problem of timetabling, where only
feasibility must be evaluated, as the subproblem. In the set covering prob-
lem, the sets to be selected correspond to planning deviations of trains, such
that the selection of a set corresponds to an additional amount of planning
deviation for a train. The Benders decompositions separates the question
of optimality (i.e., deviation) in the master from the question of feasibility
in the subproblem (i.e., routing, ordering and timing). The Benders decom-
position we propose is designed to exploit the combinatorial Benders cuts
introduced in [8]. In this paper, we propose multiple approaches to address
the set covering problem that is the master problem in the proposed decom-
position. Along with standard approaches of solving the master problem to
optimality in every iteration of the Benders scheme, we propose 4 different
incremental heuristics to address the master problem. We propose incremen-
tal heuristics, which exploit the incremental growth of the master problem
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in the Benders scheme and maintain a master solution throughout the
iterations of the scheme by incremental adaptations of an existing solution.

In two exhaustive series of experiments we analyze the performance of
all of our set covering approaches and compare such results with multiple
benchmarks. In benchmarks, we address the problem of timetabling by com-
mercial solvers, in particular Gurobi and Z3. Both solvers are applied to the
microscopic timetabling problem with both continuous and the discrete ob-
jective. Experiments show that with set covering heuristics we can solve in-
stances of timetabling up to a factor of ∼ 20 faster, while maintaining a qual-
ity of timetables with on average 7.5% more planning deviation compared to
an optimal solution computed by Gurobi; heuristics never exceeding more
than 10% of additional planning deviation compared to an optimal solution.

Further research in the approach of set covering for railway timetabling
should clearly include the design and analysis of further incremental heuris-
tics. Apart from the Min Appearance heuristic, all other heuristics show a
very similar performance, including the Random heuristics. This indicates
that heuristics proposed in this paper do not yet fully exploit the potential
of our set covering approach, as no heuristic shows a clear superiority
over the Random heuristic and further research is advisable. Also a mix of
heuristics and an optimal approach in set covering should be investigated.
In the current setup, incremental heuristics stop as soon as a feasible so-
lution is found. A different branch of research should investigate possible
improvements in quality (planning deviation) of timetables, when given
additional time for further computations beyond a first feasible solution.
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appendix

5.9 instance characteristics

Scenario Max
Deviation Instance: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ZUE-CH 1 30 min Trains 22 45 67 90 113 135 158 180 203 226

Stops 155 309 449 606 781 923 1074 1213 1349 1507

Transfers 2 10 22 30 40 57 82 116 140 170

Ordering 98 846 1927 3515 5389 7774 10395 13439 17142 21261

Routing 433 1183 1893 2539 3107 3739 4297 4925 5420 5962

ZUE-CH 2 30 min Trains 28 56 84 112 141 169 197 225 253 282

Stops 205 365 549 718 894 1093 1287 1469 1609 1777

Transfers 2 8 18 30 44 62 102 133 164 196

Ordering 267 947 2297 4012 5983 9036 12006 15161 18974 24447

Routing 965 1978 2987 3832 4622 5410 6499 7062 7909 8739

ZUE-CH 3 30 min Trains 26 52 79 105 132 158 184 211 237 264

Stops 146 308 524 693 907 1062 1238 1399 1562 1746

Transfers 0 2 11 21 32 58 78 109 140 188

Ordering 262 953 2296 4172 6132 8455 11592 14812 18962 23294

Routing 783 1510 2227 3187 4154 4733 5518 6400 7296 8085

BN 30 min Trains 33 67 100 134 168 201 235 268 302 336

Stops 329 668 980 1265 1598 1920 2283 2597 2875 3143

Transfers 2 7 12 27 45 70 97 133 173 212

Ordering 36 198 348 578 929 1267 2143 2703 3358 4258

Routing 49 97 137 189 241 286 430 482 526 580

LZ-AA 30 min Trains 21 42 64 85 107 128 149 171 192 214

Stops 232 431 610 780 951 1150 1319 1503 1606 1789

Transfers 0 10 19 22 32 46 68 84 113 134

Ordering 22 61 176 295 487 780 1101 1526 1977 2396

Routing 50 97 185 233 311 433 513 599 650 732

HE-LZ 30 min Trains 36 73 109 146 183 219 256 292 329 366

Stops 399 767 1091 1490 1885 2292 2770 3048 3406 3751

Transfers 3 17 33 53 75 101 135 179 223 278

Ordering 56 175 359 675 1124 1852 2381 2949 3729 4384

Routing 110 170 258 371 483 696 777 853 947 1006

ZAS-YV 30 min Trains 47 95 143 191 239 287 335 383 431 479

Stops 402 899 1426 1863 2376 2781 3240 3660 4159 4639

Transfers 2 10 18 26 50 79 110 142 184 225

Ordering 69 266 584 966 1493 2183 2779 3646 4843 6025

Routing 70 164 254 312 418 514 579 667 842 956

Table 5.2: Instance Characteristics, Part I.
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Scenario Max
Deviation Instance: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

RH-ZAS 30 min Trains 28 56 84 112 140 168 196 224 252 280

Stops 338 628 926 1343 1689 1931 2324 2662 2935 3260

Transfers 2 2 12 26 41 51 69 81 116 143

Ordering 20 90 234 456 718 1079 1647 2111 2869 3533

Routing 21 52 84 120 143 199 223 260 348 380

ZAS-BEL 1 h Trains 27 54 82 109 137 164 191 219 246 274

Stops 244 552 815 1085 1387 1612 1865 2207 2467 2787

Transfers 1 6 7 15 19 29 44 61 70 85

Ordering 32 181 507 966 1512 1911 2517 3403 4612 5767

Routing 32 78 132 180 230 256 298 354 568 611

ZUE-SG 30 min Trains 70 140 210 280 350 420 489 560 630 700

Stops 776 1651 2314 3001 3724 4433 5183 6067 6868 7752

Transfers 3 19 43 71 123 180 245 327 413 503

Ordering 112 354 977 1941 3068 4182 5480 7147 8718 10709

Routing 86 113 314 395 486 531 580 674 715 782

BN-ZAS 30 min Trains 23 47 71 95 119 143 167 191 215 239

Stops 247 496 741 1016 1294 1539 1845 2101 2325 2640

Transfers 1 1 3 8 14 21 30 39 51 64

Ordering 0 0 0 0 0 406 442 514 557 632

Routing 62 102 162 200 245 1033 1061 1101 1145 1209

ZUE-OTH 30 min Trains 16 33 50 67 84 100 117 134 151 168

Stops 220 393 596 745 880 1052 1170 1328 1496 1640

Transfers 0 2 4 5 11 14 19 26 37 44

Ordering 29 62 90 106 146 156 199 212 269 331

Routing 271 279 289 295 307 307 323 327 337 357

BDF-SO 1 h Trains 71 143 215 287 359 431 503 575 647 719

Stops 858 1709 2542 3418 4201 4950 5856 6674 7516 8273

Transfers 6 11 35 81 138 203 260 329 426 514

Ordering 0 0 0 0 236 653 907 1176 1993 2566

Routing 18 42 74 90 168 272 376 462 564 668

GD-BS 30 min Trains 36 73 109 146 183 219 256 292 329 366

Stops 317 700 936 1282 1542 1859 2129 2392 2718 3150

Transfers 0 5 16 28 43 64 86 107 141 180

Ordering 0 0 0 443 533 659 728 800 924 994

Routing 46 94 128 741 859 927 971 993 1064 1092

Table 5.3: Instance Characteristics, Part II.
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C O N C L U S I O N S

6.1 main findings

The present thesis is a contribution towards an automation of railway
scheduling with novel innovative algorithmic solutions. To discuss the find-
ings of this thesis we recall the research questions of Section 1.3:

How can the scalability and efficiency of algorithms in railway scheduling be im-
proved?

With the research conduction in the individual chapters of this thesis we
can answer the main research question of this thesis as follows:

The problem of railway scheduling can be decomposed in different
domains and by different principles of decomposition. Individual decompo-
sitions have different advantages and disadvantages for different types of
problems in railway scheduling. E.g., some decompositions are suitable for
problems concerning large infrastructure others are suitable for problems
containing extremely dense railway traffic. Individual advantages and disad-
vantages are the result of mainly three factors. With the domain of decompo-
sition it is defined which physical or mathematical aspect of the scheduling
problem is to be exposed for decomposition (e.g., geography or time). By
the principle of decomposition it is defined, how the particular a aspect (de-
fined by the domain) is exposed for decomposition and finally the solution
method defines how a decomposed formulation of the scheduling problem
is addressed, to retrieve a solution for the original problem of scheduling.

Base on these findings, we propose in this thesis a geographically inspired,
logic-based Benders decomposition for the problem of railway timetabling,
to create an approach with improved scalability behavior. With the develop-
ment of novel theory it is possible to expose a structure in the problem of
railway timetabling, different from the existing literature. Empirical results
on the proposed decomposition underline the benefits of our proposed
approach. With the novel decomposition an approach is developed, which
shows an improved scalability, compared to other existing approaches in
the literature.

195
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With a study on recurrent situation in the problem of railway reschedul-
ing, we were able to further enhance the decomposition approach from
previous studies of this thesis. It showed possible to learn patterns of recur-
rent situations using statistical knowledge on the problem of rescheduling.
Learnt patters can be reused in the decomposition approach of previous
studies to decrease the overall computational effort and improve the perfor-
mance of the algorithm, for the time-critical application of real-time railway
rescheduling. With a series of experiments the benefits of statistical learning
and the exposure of recurrent situations could clearly be shown.

In an alternative direction, applications of infeasibilities in the problem
railway timetabling were analyzed. Using proofs of infeasibility on the
problem of railway timetabling, it was possible to design a series of highly
efficient incremental algorithms for timetabling. Incremental approaches sac-
rifice the optimality of a solution in timetabling, in favor of computational
speed. Therefore, these approaches provide solution in very short time.

Overall, the thesis shows how approaches of decomposition can be used
to achieve better scalability in algorithms for railway timetabling and how
recurrent situations can be exposed to improve such performance even
further. Infeasibilities are shown to provide valuable information on the
problem of timetabling, leading to highly efficient methods of timetabling.
The thesis builds a basis for future development of scalable and efficient
algorithms on problems of railway rescheduling.

Q1: How can problems of railway scheduling be decomposed?

In Chapter 2, we report on current practices of decomposition in the
literature of railway scheduling. We identified in the literature different
domains, principles of decompositions as well as a variety of solution
methods. In particular the geographic, temporal, entity (resource) and
generic domain have been identified. Two principles of decomposition are
used to expose structures related to individual domains in a problem of
scheduling. The principle of complicating variables exposes structures in a
problem of scheduling as variables are separated into multiple groups, each
group optimized in an individual optimization problem. The principle of
complicating constraints exposes structures in a problem of scheduling as
constraints are separated into multiple groups, each group optimized in an
individual optimization problem. Solution methods are considered either
hierarchical or decentralized. In hierarchical methods, some problems of
a decomposition are responsible for the coordination of other problems.
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Hierarchical methods are not fully parallelizable and different groups of
problems must be addresses sequential. In advantage, hierarchical methods,
through their scheme of coordination provide often near optimal or optimal
solutions. In decentralized methods, all problems of a decomposition are
self-responsible for a coordination with other problems. While decentral-
ized methods are in general heuristics, those can be fully parallelized and
each problem can be addressed independently of the others. Research gaps
have been identified in the study of the literature, including the applica-
tion of Benders decomposition, which motivated our research in Chapter
3.

Q2: Can decomposition improve the scalability of algorithms for railway timetabling?

In Chapter 3 a logic-based Benders decomposition has been developed,
as a possible algorithm with improved scalability for the problem of railway
timetabling. In Chapter 3, we propose a model for railway timetabling
very similar to the literature, where we include the often excluded task of
routing trains on the railway network. We provide a novel way to model
dependencies of routing decisions and ordering decisions. The major con-
tribution of Chapter 3 is a novel logic-based Benders decomposition for a
generic formulation of a scheduling problem. In comparison to the exist-
ing literature, the propose logic-based decomposition shows strong gen-
erality in the way how problems of railway timetabling can be decom-
posed. In the existing literature, decomposition approaches often rely on
the fact that problems of the decomposition are of a particular type (e.g.,
shortest-path or linear and continuous). Differently, in the proposed de-
composition, all problems of the decomposition are considered as generic
problems of railway timetabling. This generality proposes a major free-
dom in the exposure of structures and decomposition of a problem in
railway scheduling, and is a major advantage of the proposed decomposi-
tion approach. An implementation of the novel methodology in Chapter
3 lead to Python-Smarties (Appendix A), that is a highly efficient tool
for the discovery of infeasibility proofs in problems of railway schedul-
ing. We propose in Chapter 3 an application of the novel methodology
for a geographic decomposition of the problem of railway timetabling.
A series of experiments, based on real-life examples of timetabling pro-
vided by SBB, empirically proves the value of our proposed methodol-
ogy. With the decomposition of the timetabling problem, it was possible
to solve instances of twice the size, up to 40 times faster than with a
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conventional approach applied to an undecomposed formulation of the
problem. Experiments also show a limited performance of the decompo-
sition, in case the structure to be exposed by the decomposition is only
marginally present or completely absent. In conclusion, we were able to
develop, based on the methodology of decomposition, a novel algorithm
for railway timetabling with an improved scalability compared to existing
approaches.

Q3: Can statistical learning of recurrent situations improve existing approaches
of OR for the time-critical problem of real-time railway rescheduling?

In Chapter 4 an approach of statistical learning has been proposed
on the problem of railway rescheduling to expose recurrent situation in
railway rescheduling. Statistical knowledge about recurrent situations in
railway rescheduling has been used to learn patterns in such problems,
which have been included in the decomposition approach of Chapter 3,
to improve the overall computational performance. We were able provide
theory, showing that patters in rescheduling can be learned from solv-
ing large numbers of rescheduling problems (generated from statistical
knowledge) and reused on new and different problems of rescheduling
on the same infrastructure. Experiments on real-life data indicate a strong
potential, of reusing learnt patterns to improve the Benders decompo-
sition of Chapter 3. The computational performance can potentially be
improved up to a factor of 2 in terms computational speed using meth-
ods of statistical learning and learnt patterns. Practically, limitations of
the statistical learning approach have been experienced as learnt patterns
do not always result in a computational speedup and filtering on pat-
terns is necessary. A first design of a filter was able to achieve a practi-
cal speedup of a factor 1.2 compared to the decomposition of Chapter
3. In summary, with the research of Chapter 4 we were able to show
a great potential in the exposure of patterns in recurrent situation of
rescheduling to enhance existing methods and provide approaches, efficient
enough for time-critical applications, such as real-time railway reschedul-
ing.

Q4: How can proofs of infeasibility be used to design efficient algorithms for
railway timetabling?

In Chapter 5 we develop an efficient algorithm for the problem of railway
timetabling, exploiting the computational insights gained by infeasibilities
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inside a problem railway timetabling. We propose in Chapter 5 an approach
for railway timetabling, which is an alternative application of Benders
decomposition compared to Chapter 3. The decomposition exploits infea-
sibilities in railway timetabling, which allows us to address the problem
of finding an optimal timetable by solving a set covering problem. The
solution to the set covering problem defines the amount of planning devi-
ation in a timetable, such that in a second problem of the decomposition,
we evaluate the existence of a timetable for the given amount of planning
deviation. In such decomposition, we address the problem of set covering
with highly efficient incremental heuristics, which allows us to provide in
short-time, solutions to the problem of timetabling with reasonable high
quality. The proposed approach makes use of Python-Smarties to efficiently
determine the feasibility or infeasibility of a timetabling problem for a fixed
amount of planning deviation. Experiments on real-life data show that with
incremental heuristics we can achieve significant computational speedups
in comparison to conventional approaches. With the research of Chapter
5 we showed that we can exploit infeasibilities in a problem of railway
timetabling to create incremental heuristics, which are extremely efficient
algorithms for the problems of railway scheduling.

6.2 implications

The findings of this thesis have an impact on practitioners in the railway
industry and researches in academia studying the problems of railway traf-
fic management and other problems of scheduling in operations research.
The thesis has the most impact on the following three fields of practice and
academia:

Railway Timetabling

Foremost, the main contribution of this thesis is a versatile decomposition
approach for the problem of railway timetabling in Chapter 3. With a ge-
ographic decomposition of the railway timetabling problem an algorithm
has been developed, which shows improved scalability against existing ap-
proaches. The result are significant computational speedups, which allows
to solve larger instances of railway timetabling to an optimal solution. The
novel algorithm with an improved scalability has several implications on
the industry and academia.

With the novel geographic decomposition approach, developed in this
thesis, we combine complex theoretical concepts with a geographic sep-
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aration of the timetabling problem. The theoretical contributions for the
geographic decomposition are based on concepts from mathematical op-
timization, which clearly require a certain prior knowledge in mathematics.
In contrast, the geographic decomposition of railway timetabling itself has a
rather natural interpretation. We can understand each subproblem in such
decomposition as a geographically local timetabling problem, and the mas-
ter problem as a timetabling problem, coordinating railway traffic amongst
geographic areas. This simple interpretation of our decomposition helps rail-
way practitioners to understand the results of our algorithm and provides
great practical value. In fact, for experiments on our geographic decompo-
sition, the railway system in our real-life instances has been geographically
separated into local areas by railway practitioners. This underlines how the
geographic decomposition, despite including complex theoretical concepts,
can easily be understood by a broad audience of practitioners in the railway
industry. With the geographic decomposition approach we provide a basis
for the design of highly scalable and reliable algorithms for scheduling
large-scale problems of railway timetabling. The decomposition allows for
partition of the railway scheduling problem, where a significant amount of
computational complexity is distributed onto several partial problems, each
with substantial computational complexity. Partial problems of the decom-
position can addressed by parallel computations, possibly distributed over
multiple physical machines. With the proposed decomposition approach,
we see a basis given for scheduling algorithms able to handle cases of
scheduling for railway networks in the size of entire countries.

In an alternative branch of research, we developed a different decomposition-
based approach for the problem of railway timetabling, where infeasibilities
in railway timetabling are exposed to design highly efficient heuristics. With
the development of an efficient algorithm for railway timetabling, we see
the basis given for a tool, that can be used by railway practitioners to find
quickly, local adaptations of timetables, e.g., when planning extra trains.
In practice, when adapting timetables locally for maintenance, extra trains,
or construction, practitioners usually aim to try out several alternative
solutions, such that solutions should be provided within few minutes to
avoid long waiting times. With the above discussed research, we provide
an algorithmic basis for planning tools used in the daily adaptations of
timetables due all sorts of special occasions.

Overall, the findings of this thesis are a step towards automated railway
timetabling in large-scale. With more capability in solving larger instances
of timetabling, less divisions of the network-wide timetabling problems
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must be made, and global solutions nearer to optimality can be achieved.
These timetables will clearly increase the utilization of existing resources.
Thereby, the total capacity of the railway system can be increased, without
or with only minor acquisitions of new infrastructure, which is clearly
favorable as acquisitions of infrastructure are usually cost-intensive, time
consuming and increase the overall maintenance in a railway system. The
result is a more economical railway system, which is desired by railway
operators and will also reflect beneficially to railway customers in lower
ticket prices.

Railway Traffic Management

In this thesis, we propose to expose recurrent situations in railway reschedul-
ing to improve the computational performance of our geographic decom-
position of Chapter 3. Statistical knowledge about the recurrent situations
allow to learn patters, which, if reused, accelerate the performance of the
geographic decomposition.

The increase in computational speed is of great value for the time-
critical application of real-time railway rescheduling, where an existing
timetable must be adapted in short time to the current state of the rail-
way system. More efficient algorithms allow railway operators to bet-
ter react on disturbances of the railway system during the operation.
With more computational performance, larger geographic areas and more
traffic can be considered in adjustment of the timetable. When consid-
ering larger geographic areas, adjusted timetables incorporate a more
global view, preventing better the spread of delay in the railway net-
work. Overall, with an increase of computational performance the system
recovery can be improved, leading to an increase in production, relia-
bility and consequentially customer service. An efficient algorithm for
rescheduling as proposed in Chapter 4 brings great value to railway oper-
ators.

Scheduling in Operations Research

With the present thesis several contributions on the problem of schedul-
ing have been made. While applications in this thesis are exclusively on
railways, we pointed out that theoretical findings in this thesis are not
limited to the railway sector. All theoretical contributions are made on a
rather generic disjunctive mathematical problem, such that the findings
of Chapter 3, Chapter 4 and Chapter 5 can be applied upon any problem
of the industry or academia, which can be written in the same form (e.g.,
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problems of job-shop scheduling [7]). Theoretical contribution of this thesis
can provide a basis to other researchers working on different scheduling
problems. Algorithms of this thesis can be used by practitioners in other
branches of the industry. In general, scheduling problems are present in
many academic and industrial problems (e.g., [2]), such that we see great
potential for further use of the results in this thesis.

6.3 outlook

Railway timetabling, railway rescheduling and more general railway traf-
fic management are still active fields of research, where gaps between
academia and practice still exists and problems of practice are in many
cases still overwhelmingly complex for modern approaches of academia.
The findings of this thesis are a contribution towards closing this gap,
but clearly a gap remains also after the presented research of this thesis,
leaving a variety of future research possibilities. Here below we discuss
overarching possibilities of future research. More detailed information
on future research is given at the end of individual chapters in the the-
sis.

Domains of Decomposition

Chapter 3 presents a generic tool for the decomposition of a railway schedul-
ing problem. In the experiments of Chapter 3 a geographic decomposition
has been studied, where subproblems correspond to areas of high railway
track density. Differently, a study of the literature revealed decomposition
approaches in railway scheduling spreading over four different domains:
geographic, temporal, entity and generic. In the scope of this thesis only de-
compositions in the geographic domains have been studied and it remains
a open topic for future research to study decompositions also in different
domains, using the theoretical and methodological findings of Chapter 3.
As we discovered different advantages of different domains in an analysis
of the literature, we expect different performances, in case our generic de-
composition of Chapter 3 is applied to different domains. Different domains
may show particularly valuable for specific instances of railway scheduling.

In the temporal domain, where the time period of a scheduling prob-
lem is partitioned into smaller periods of time for scheduling, a single
publication of a temporal decomposition with independent subproblems
has been found, i.e., [5]. Our theoretical findings of Chapter 3 clearly can
be extended to a decomposition in the temporal domain, which would



6.3 outlook 203

lead, in contrast to [5], to a temporal decomposition based on complicating
variables rather than complicating constraints. We believe future research
should study an application of Chapter 3 in the temporal domain, as we
expect similar or better computational improvements as experienced for the
geographic domain. Computational improvements could exceed those of
a geographic decomposition as in Chapter 2, we have seen that the number
of complicating elements in a temporal decomposition can be lower than
for a geographic decomposition, leading to a smaller master problem and
a more balanced decomposition.

We also see possible applications of findings in Chapter 3 in the generic
domain. A particular example of such a decomposition has already been
given within the scope of this thesis, by the decomposition proposed in
Chapter 5. In case of Chapter 5, variables related to the objective are iden-
tified as complicating. Together with an appropriate formulation of the
scheduling problem, the logic-based Benders cut introduced in Chapter
3 reduced to the combinatorial Benders cut of [1]. We see great potential
for more scalable and more efficient algorithms, by decompositions in the
generic domain, likewise to Chapter 5 exploring other, different definitions
of complicating variables. Recent publications, besides the work of this
thesis in Chapter 5, e.g., [3, 4] similarly motivate a decomposition in the
generic domain.

Configurations of a Decomposition

While experiments on real-life data in Chapter 3 showed already impres-
sive improvements, no study on the configurations of a decomposition has
been made within the scope of this thesis. The decompositions used for
the experiments of Chapter 3, but also Chapter 4 are designed by human
planners at SBB, based on practical understanding and experience on the
problem. It remains for further research to understand the effects of dif-
ferent configurations for a decomposition, especially on the computational
performance. With the configuration of a decomposition in the geographic
domain we define size, shape and content of areas in a railway network
which decompose the problem. Other studies on configurations in decom-
position (e.g., [6]) show a clear dependency between the configuration and
computational performance.

We expect different configurations to show varying performance also
for the decompositions of this thesis. The higher the number of subprob-
lems, the more significant we expect the coordination effort and thus the
complexity of the master problem; at the same time a high number of sub-
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problems allows for more efficient parallelization. Differently, larger sized
subproblems are expected to result in less coordination effort, compared
to small but numerous subproblems, due to the larger solution space of an
individual subproblem.

Also, experiments of Chapter 3 show, that even a decomposition show-
ing in general good computational results, may show bad computational
performance simply due to an inappropriate instance of timetabling (see
experiments where routing decisions have been excluded). The performance
of a decomposition thus not only depends on the type of problem at hand,
but further on the particular instance of scheduling at hand. We see it as
a relevant direction for further studies, not only to study different config-
urations of decompositions in general, but possibly extending such study
to configurations, which are adapted to individual instances of timetabling,
rescheduling or other problems.

All above future research can also be extended to decompositions outside
of the geographic domain. As discussed above, other domains show great
potential and a combination of research on domains and configurations is
strongly advisable.
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A
P Y T H O N - S M A RT I E S

In the course of this thesis a Boolean satisfiability solver (Python-Smarties)
has been developed. The solver is designed to address problems of rail-
way scheduling; in particular to determine the feasibility of a scheduling
problem in an efficient manner. In case a scheduling problem is infeasible,
the solver identifies a possible cause for the infeasibility and provides a
corresponding proof of infeasibility. Throughout the entire thesis, proofs
of infeasibility are used in different approaches, with Python-Smarties as
the algorithmic backbone.

This appendix is a summary of theoretical concepts from different liter-
ature in Satisfiability solving and graph theory. Concepts and algorithms
discusses below are combined within the scope of this thesis, into the
implementation of Python-Smarties. With Python-Smarties a novel, fast
and efficient tool for the computation of infeasibility proofs in problems of
railway scheduling has been created.

a.1 sat - boolean satisfiability solving

The problem of Boolean satisfiability solving (SAT) is a problem of feasibility
over a set of Boolean variables {x1, x2 · · · xn} [10]. A literal in SAT is a rep-
resentation of the value of a Boolean variable and is either the variable, e.g.,
x1, representing x1 = True, or its negation, e.g., ¬x1 representing x1 = False.
An assignment is a set of literals, which contains exactly one literal for
every Boolean variable of the problem. An assignment is partial if for some
variables, the set does not contain a corresponding literal. The problem
SAT is to find an assignment such that all constraints of the problem are
satisfied. The constraints of SAT are known as clauses. A single clause is the
disjunction (logic OR) over literals, e.g., {x1 ∨ ¬x3 ∨ ¬x10 ∨ · · ·}, and sat-
isfied by an (partial) assignment, if at least one literal from the disjunction
of the clause is contained in the assignment. Problems of SAT are in general
written in conjunctive normal form (CNF), which is a conjunction (logic
AND) of multiple clauses. A model is a feasible solution for a problem of
SAT and an assignment, which satisfies all clauses of the problem.

207
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a.2 dpll for sat

The majority of state-of-the-art solvers for problems of SAT are based on
the DPLL (Davis-Putnam-Logemann-Loveland) scheme [5, 6]. DPLL is a
branching scheme over the Boolean variables of a SAT problem, including
the concept of unit propagation. At every incumbent node of the branching
tree in DPLL, a (partial) assignment on the Boolean variables is given. Vari-
ables with no corresponding literal in the partial assignment are considered
unassigned at the incumbent node.

For a partial assignment (at a node of the branching tree), a unit clause is a
clause, which is not satisfied by the partial assignment, but the assignment
contains the negation of all but a single literal from the disjunction that is
the clause (hence the name "unit" clause). If for a partial assignment, there
exists a unit clause in a problem of SAT, such partial assignment can only
be extended to a model, i.e., a feasible solution, if the single literal in the
unit clause, whose negation is not yet in the partial assignment, is added to
such assignment; otherwise the unit clause will inevitably be violated. The
extension of a partial assignment by a further literal due to unit clauses is
referred to as unit propagation [9].

In DPLL different heuristics are used at nodes of the branching tree to
decide on the next variable to branch on, i.e., the next literal to be added
to the partial assignment. The most common heuristic in SAT is the Vari-
able State Independet Decay Sum (VSIDS [11]), which keeps track of the
occurrences of variables in clauses of a SAT problem.

a.3 conflict-driven clause learning

State-of-the-art SAT solvers make use of conflict-driven clause learning
(CDCL) [9] inside DPLL to strengthen the initial set of clauses by additional
clauses, likewise to additional cuts in Branch-and-Cut schemes, e.g., for
mixed-integer linear programming. The scheme of CDCL is to learn a new
clause in case of a conflict in DPLL. A conflict in DPLL is a clause, which
is violated by the partial assignment at a node in the branching tree, due to
implied literals from unit propagation. In CDCL, a new clause is generated
from a conflict as the violated clause is combined with related consequences
of unit propagation. The new (learnt) clause is a disjunction over those
literals, which together with unit propagation, lead to the conflict. Such
clause becomes unit for any partial assignment, where one (wrong) addi-
tional literal would cause again the conflict at hand. Therefore, the conflict
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x1@1

x2@2

¬x3@2
cl1

cl1

Figure A.1: Implication graph with a single clause cl1.

is avoided in the further search process of DPLL through unit propagation
on the learnt clause.

Clauses in CDCL are learnt as literals responsible for the conflict are
identified, based on an implication graph (see [9]). The implication graph
is a directed graph to represent implications (unit propagations) between
literals at an incumbent node of the branching tree in DPLL. Nodes in the
implication graph represent literals and arcs represent (unit) clauses, i.e.,
implications. A node in the implication graph has zero ingoing arcs in case
it represents a selected literal, i.e., a literal not implied by any unit clause,
but branched-on in the branching tree of DPLL. In case a node is implied by
a unit clause, the node has as many ingoing arcs as the implying unit clause
has literals; not counting the literal of the node itself, which is also part of the
clause. Figure A.1 shows an example of an implication graph with a single
clause cl1 = {¬x1 ∨ ¬x2 ∨ ¬x3}. The @ written to each literal indicates the
depth in the branching tree of DPLL, at which the literal is either branched
on, or implied by unit propagation. In Figure A.1 variable x1 is branched to
the literal x1 (True) at the first level of the tree, which results in no implica-
tion through unit propagation. At the second level x2 is branched to the lit-
eral x2 (True), which together with literal x1 of the previous level leads to the
implication ¬x3 at the same level (level 2), due to the (now unit) clause cl1.

We extend the example of Figure A.1 by three further clauses, i.e.,
cl2 = {x3 ∨ ¬x4 ∨ ¬x5}, cl3 = {x3 ∨ x6}, cl4 = {x5 ∨ ¬x6} to illustrate
the occurrence of a conflict and the resulting clause learning. In Figure A.2,
we illustrate the implication graph of all four clauses and the occurrence
of a conflict κ. The conflict is given at the third level of branching in DPLL,
when variable x2 is branched to literal x2@3, i.e., x2 = True. In this case,
unit propagation of cl1 leads to ¬x3@3, which then, by unit propagation of
cl2, leads to ¬x5@3. Finally, the clauses cl3 and cl4 become unit due to ¬x3
and ¬x5, and imply contradicting literals for the variable x6, i.e., x6 and
¬x6 respectively, proposing a conflict κ, i.e., either cl3 or cl4 is the violated
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Figure A.2: Implication graph with a conflict κ.

clause depending on which unit propagation, i.e., unit propagation of cl3
or cl4, is processed first.

Based on the implication graph of Figure A.2 different learning schemes
generate different learnt clauses. The simplest learned clause from the
conflict κ in Figure A.2 would be a conjunction over the negation of all
selected (i.e., not implied) literals that are the roots of the conflict node in
the implication graph, i.e., cllearned = {¬x1 ∨ ¬x2 ∨ ¬x4}. More advanced
schemes, such as the scheme of an unique implication point [9, 13] aim
to generate learnt clauses of smaller size, i.e., fewer literals, known to be
stronger constraints in the problem of SAT. In Figure A.2 the node of ¬x3
is a unique implication point (bottleneck), such that, independent of the roots
of node ¬x3, in case x3 = False, the conflict in Figure A.2 can occur. In the
unique implication point scheme, the learnt clause is the disjunction over
the negation of all unique implication points in the implication graph, e.g.,
cllearnt = {x3 ∨ ¬x4}. In the graph of Figure A.2 x4 and ¬x5 are equally
unique implication points.

If a conflict has been detected in DPLL, the resulting learnt clause is
by design, violated by the incumbent partial assignment at the node in
the branching tree of DPLL, at which the conflict has been detected. A
non-chronological backtracking is performed, based on the learnt clause,
where a jump is made in the branching tree up to a earlier node, where the
learnt clause is not violated, but a unit clause due to the incumbent partial
assignment at such node.

a.4 difference constraints in sat

In the literature, Boolean Satisfiability solvers have been extended by various
kinds of constraints other than clauses; these extensions are in general
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referred to as satisfiability modulo theories (SMT). SMT is the problem of
determining whether a first-order formula [12], i.e., the modulo theory, is
satisfiable with respect to some logic (Boolean) theory, i.e., a problem of SAT.

One such modulo theory are difference constraints, i.e., linear inequality
constraints such as y− x ≥ k for two variables y, x and a constant k. Dif-
ference constraints are of particular interest for this thesis as all kinds of
scheduling problems contain precedence relations, which are mathemati-
cally the same as difference constraints.

Difference constraints are coupled with the logic of a SAT problem, as
values of Boolean variables define whether a particular set of difference
constraints is to be satisfied or not. The problem of SMT considering dif-
ference constraints is to find an assignment for Boolean variables, such that
a set of the difference constraints, implied by such assignment, is satisfiable.
A set of difference constraints is satisfiable if for variables in difference con-
straints, e.g., y, x, values can be found, such that all difference constraints
of the set are satisfied.

Difference constraints are integrated into DPLL through the processes
of validation and propagation [4]. Validation is the lazy evaluation of an
existing (partial) assignment on Boolean variables for feasibility on dif-
ference constraints. Propagation is the proactive extension of an existing
partial assignment on Boolean variables by further literals to guarantee
satisfiability of difference constraints, likewise to unit propagation. (In the
context of this thesis, for Python-Smarties, only the validation of difference
constraints is implemented.)

To evaluate the satisfiability of a set difference constraints, an efficient
approach has been proposed in [4]. A set of difference constraints can be val-
idated for satisfiability using a directed graph, where each node represents a
variable and each arc represents a single difference constraint. Such graph is
free of any positive length cycle if and only if the set of difference constraints
that are the arcs of the graph, is satisfiable. Positive length cycles in a graph
can be detected, e.g., by the Bellman-Ford algorithm [2], with a runtime of
O(n ∗m). In the application of difference constraints in SAT, i.e., in DPLL,
the graph representing the difference constraints changes only in few arcs
between adjacent nodes in the branching tree. The authors of [4] show, that
in this case it possible to use the computationally less expensive algorithm
of Dijkstra [7] with a runtime of O(n ∗ log(n) + m) to evaluate the graph
for positive length cycles. The result is a significant reduction in the com-
putational effort to validate a set of difference constraints for satisfiability.
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In case a positive cycle is detected during the validation of difference
constraints, the assignment on Boolean variables implies an unsatisfiable
set of difference constraints. All literals of the assignment, which impose at
least one arc in the detected cycle are responsible for the non-satisfiability
of the difference constraints. These literals can be treated likewise to literals
of unique implication points in CDCL, and a new clause can be generated
(learnt). From the learnt clause a non-chronological backtracking can be
made.

a.5 infeasibility in sat

SAT solvers have widely been used to compute proofs of infeasibility (e.g.,
in MaxSAT [10]). The most common approach to compute a proof of infea-
sibility with a SAT solver is the usage of marker literals [1]. With marker
literals every clause in an original SAT problem is marked (extended) by
an additional (marker) literal. When solving a problem of SAT to compute
a proof of infeasibility an initial partial assignment is considered, which
contains the negation of all marker literals. With such initial assignment
all clauses maintain their original logical meaning. An initial (fixed) assign-
ment is often referred to as assumptions in SAT solving. When using maker
literals on an infeasible problem of SAT, the DPLL scheme will eventually
discover a conflict, that is learnt clause only containing marker literals. The
marker literals in such conflicting clause indicate original clauses of the
problem that build together a proof of infeasibility. Marker literals impose
a rather minor overhead in implementation, but are generally known to de-
crease performance of SAT solvers [1] and propose significant performance
issues for large-scale SAT problems.

In alternative to marker literals an ancestor list over the learnt clauses
can be kept [1]. If a SAT solver is applied to an infeasible problem without
marker literals, the DPLL will eventually discover a conflict, that is a learnt
and empty clause, i.e., a clause with no literal. The empty clause is a con-
straint, which cannot be satisfied in any case, proving the infeasibility of the
problem. With an ancestor list, those clauses of the original problem can be
identified, from which the empty clause has been deduced. The identified
clauses of the original problem together, are a proof of infeasibility. The
ancestor list can be derived using the implication tree. Ancestors of a learnt
clause are all clauses that are arcs in the implication graph between the
unique implication points used as literals in the learnt clause, and the
conflict node. In the example of Figure A.2 for cllearnt = {x3 ∨ ¬x4} the
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ancestors are cl2, cl3 and cl4. Differently if cllearnt = {x3 ∨ x5} the ancestors
would only be cl3 and cl4. An ancestor list can be stored in two different
structures, i.e., a flat structure or a tree structure [1]. In a flat structure, only
clauses of the original problem are enlisted as ancestors of learnt clauses.
That is, whenever a previously learnt clause is one of the ancestors of a new
learnt clause, such clause is resolved into clauses of the original problem us-
ing the ancestor list. Flat ancestor lists suffer in general from large numbers
of ancestors and thus using a significant amount of memory. In alternative
to a flat structure, the ancestor list can be kept in a tree structure. In this
case, also learnt clauses can be enlisted as ancestors and each entry in the
ancestor list reports only immediate ancestors. In this way the entries of the
ancestor list are kept significantly smaller than in a flat structure. In disad-
vantage to a flat structure, in an ancestor list of tree structure, the tree must
be resolved after an empty clause has been discovered, to get to the clauses
of the original problem, responsible for the infeasibility of a problem.

a.6 python-smarties

In the course of this thesis a SAT solver has been developed for the efficient
detection of infeasibility proofs in the problem of Boolean Satisfiability
extended by difference constraints. The SAT solver for this thesis has been
developed based on the open source SAT Solver MiniSat 2.2 [8]. MiniSat
2.2. is an highly optimized implementation of the CDCL scheme in C++.
Python-Smarties has been implemented in C++ and has been encapsulated
into a Python package for an easy application.

For the precedence relations (difference constraints) of scheduling prob-
lems, the open source code of MiniSat 2.2 has been extended by the Dijkstra-
based algorithm of [3], discussed in Section A.4. The implementation of
difference constraints in Python-Smarties does only support the validation
of an assignment on Boolean variables and a proactive propagation has not
been implemented.

In Python-Smarties proofs of infeasibility are traced by a tree structured
ancestor list as proposed by [1]. Not only allows such ancestor list to trace
infeasibilities with minor computational overhead, but also allows for fur-
ther features in the solver. In particular, the solver can be warm started, i.e.,
learnt clauses can be kept in the solver, even after the removal of clauses.
In normal SAT solvers, in case a clause is removed, all learnt clauses have
to be removed as dependencies between learnt clauses and clauses of the
original problem are unknown. Differently, using an ancestor list, all such
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dependencies are known and in case an original clause is removed, only
dependent learnt clauses can be removed; the solver keeps all other learnt
clauses for warm starting. This feature becomes particularly handy in appli-
cations, where the SAT solver is queried multiple times on problems only
differing by few clauses.

All implementations above of features for MiniSat 2.2 are optimized to
reduce the amount of queries to the RAM, general memory consumption
and continuous storage usage in the RAM.
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