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Abstract. The accurate description of the strain rate and temperature dependent response of 
Aluminium alloys is a perpetual quest in the hot forming industry. In the present study, uniaxial 
tension, and notched tension experiments are conducted for an aluminium AA7075-T6 sheet 
metal at various temperatures and strain rates. The experimental campaign covers strain rates 
ranging from 0.001/s to 100/s, and temperatures ranging from 20°C to 360°C. We observe low 
strain rate sensitivity at room temperature, with an increase in strain rate sensitivity as 
temperature is increased up to 360°C. An YLD2000-3D model is employed to describe the 
anisotropy of the material. A machine learning based hardening model is employed to capture 
the complex strain rate and temperature effect on the observed hardening response. Counter-
example regularization is utilized to guarantee a convergence in the numeric return-mapping 
algorithm. Comparing the experimental force-displacement curves with the numerical 
predictions, the neural network model accurately describes the large deformation response of the 
material in the post-necking range. 

1.  Introduction 
The accurate description of the large deformation response of metals at high strain rates and 
temperatures is critical in solving industrial problems of hot forming, crash-worthiness, machining, etc. 
In crash-loading scenarios, aluminum 7xxx series has seen many applications in lightweight structural 
design, as an alternative to advanced high strength steels [1]. These alloys feature negligible strain rate 
sensitivity at room temperature, but a high strain rate sensitivity at elevated temperatures [2][3]. Existing 
models, such as the Johnson-Cook [4] and the Zerilli-Armstrong model [5], prescribe a specific 
analytical formulation to describe the rate- and temperature dependency. These mechanism-inspired 
models have been widely adopted over the past decades. Data-driven models based on machine learning 
algorithms are reported to accurately describe mechanical response of materials at various strain rates 
and temperatures [6][7][8][9][10]. In the present work, notched tensile experiments are carried out at 
strain rates from 0.001/s to 100/s in the temperature range between 20°C and 360°C. A neural network 
based hardening model is proposed, which is trained using a hybrid numerical-experimental approach 
assisted by counter-example regularization [11]. The model showcases accurate prediction on the force-
displacement response, at large deformation in the post-necking regime. 
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2.  Experiments at high strain rates and elevated temperatures 

2.1.  Material and Specimen 
The AA7075 material is delivered in 2 mm thick sheets and all specimens are extracted using waterjet 
cutting. Figure 1 shows the two notched tension (NT) geometries considered. The notched tension 
specimens feature 20 mm wide shoulder section with symmetric circular cut-outs. In this study, a notch 
radius of R = 20 mm is employed. This reduces the gauge section to a minimum width of 10 mm at the 
center. The same gauge section is shared by the slow, intermediate and high strain rate tests, with the 
clamping area adjusted for attaching to different loading systems.  

 

 

Figure 1. Specimen geometries for (a) low, 
intermediate and (b) high strain rate testing. 
The blue dots highlight the position of global 
(30mm) displacement measurements through 
DIC. The red dots mark the corresponding 
locations where surface axial strains (1mm) 
are extracted. 

 

2.2.  Experimental procedure 

2.2.1.  Low strain rate experiments. The low strain rate experiments are performed on a hydraulic 
universal testing machine (Instron 8801). Through the build-in control software an actuator speed of 0.4 
mm/min is prescribed. This corresponds to an approximate strain rate of 0.001/s. Prior to testing, the 
specimens are painted with a random black and white speckle pattern for digital image correlation (DIC). 
The specimens are heated up to the target temperature at a rate of 30K/s using a custom made induction 
system. This means that for highest temperature of 360°C, the target temperature is reached within 12 
seconds. The emissivity of the paint is calibrated to achieve accurate close-loop temperature control 
using a pyrometer. We verify the homogeneity of the temperature field using an infrared camera (FLIR 
x6801). A 5MP digital camera (Point Grey GS3-U33-51S5M-C) acquires images for DIC at 1Hz. This 
achieves a spatial resolution of 25 µm/pixel. 

2.2.2.  Intermediate strain rate experiments. Experiments at intermediate strain rates are conducted on 
the same hydraulic testing machine at loading speeds of 40 mm/min and 800 mm/min, corresponding to 
100 and 2000 times the speed of the slow tests, respectively. An optical high-speed camera (Photron 
SA-Z) acquires DIC images at a frequency of 1000 Hz and 8000 Hz. A spatial resolution of 130 µm/pixel 
is obtained with this setup. To track the temperature rise caused by plastic dissipation, the infrared 
camera (FLIR X6801SC) is set up to operate at 2000 Hz. The data and image acquisitions are triggered 
simultaneously by a rise in the force signal. This allows for a full synchronization between the force and 
DIC measurements. 
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Figure 2. Schematic drawing of the high speed – high temperature experiment setup: 1 
induction heating coil, 2 load-inversion device, 3 strain gauge on the output bar. 

 

 

Figure 3. Experimentally measured force-displacement curves for NT20 specimens at 
loading speeds of (a) 6.7×10-6 m/s, (b) 6.7×10-4 m/s, (c) 1.3×10-2 m/s, and (d) 0.9 m/s. 
All curves are truncated once a crack is visible on the specimen surface. 

 

2.2.3.  High strain rate experiments. Experiments at high strain rates are carried out on a split Hopkinson 
pressure bar system. The system includes a 4990 mm long steel striker bar, a 5927 mm long input bar, 
and a 5951 mm long output bar. All three bars feature an outer diameter of 20 mm. A load inversion 
device connects the specimen to the input side using eight M5 screws [12]. As illustrated in Figure 2, 
the custom inductor coil heats up the sheet metal specimen from the top side. The axial force histories 
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are measured using strain gauges attached on the output bar, located 430 mm from the specimen/output 
bar interface. To reduce electro-magnetic interference by the inductor upon the strain gauges, the 
inductor is turned off using a laser signal prior to the striker/input bar impact. The image and data 
acquisitions are triggered using the rise in the input bar signal. Details of the high speed – high 
temperature experimental setup are described in [11]. 

2.3.  Experimental results 
Figure 3 shows the experimentally measured force-displacement curves from the notched tension 
specimens at various loading speeds and temperatures. The corresponding force maximum extracted 
from each curve is plotted in figure 4. For all loading speeds, a monotonic and negative effect of 
temperature on the force-displacement curve is obtained. At room temperature, the effect of strain rate 
is negligible. Starting from 120°C we observe a significant effect of strain rate on the hardening response 
of the material. At 300°C, the reaction force increases by 81% when increasing the loading speed by 
100 times. This percentage becomes 133% at 360°C, when the hardening response is governed by the 
viscosity of the material.  

 

 

Figure 4. (a) The extracted force-maximum as a function of initial temperature for four 
loading speeds. (b) Displacement at peak load as a function of initial temperature. 

 

3.  Plasticity models 

3.1.  Model formulation and parameter identification 
The material is modeled using an elasto-plastic framework, assuming a constant Young’s modulus and 

Poisson ratio. The yield function consists of an anisotropic equivalent stress 2000yld  and the 

deformation resistance k , 

   2000, 0yldf k k  σ . (1) 

The anisotropy of the material is described using a Yld2000-3D constitutive framework [13], which is 
an extension to Barlat’s Yld2000-2D model [14]. The evolution of equivalent plastic strain is calculated 

using an associated flow rule. The eight parameters 1 8 …  describing the yield surface are calibrated 

from room temperature uniaxial tensile tests along seven different loading orientations from the rolling 
direction. The formulation of the deformation resistance closely follows [7][11], in which the 



International Deep-Drawing Research Group Conference (IDDRG 2022)

IOP Conf. Series: Materials Science and Engineering 1238  (2022) 012006

IOP Publishing

doi:10.1088/1757-899X/1238/1/012006

5

 
 
 
 
 
 

deformation resistance is decomposed into a reference mixed Swift-Voce term, multiplied by a neural 
network term dealing with the effect of strain rate and temperature. Equation 3 details the formulation 
of the seven parameter hardening function. In the present study, a feed-forward neural network 
architecture featuring three hidden layers, with ten neurons per layer is selected. Its core concept is 

subsequent activation of the hidden layers !" using the hyperbolic tangent transfer function [15]. 

 , ,, ,p p SV p NN p pk T k k T              ɺ ɺ  (2) 

       0 01 1 p
n

SV p pk A k Q e                (3) 

 !# $ %&'(((,  &'(((+ , ,-, !./0 $ 123.!.4, 566 $ 1738!89 (4) 

 12:4 $ tanh 2:4 (5) 

 

Figure 5. Numerically predicted and experimentally measured force-displacement curves at 
loading speeds of (a) 6.7×10-6 m/s, (b) 6.7×10-4 m/s, (c) 1.3×10-2 m/s, and (d) 0.9 m/s. 

 
The neural network is trained through an inverse-analysis approach in conjunction with back-
propagation. To achieve this, the NN is implemented into a user-defined material subroutine in 
Abaqus/Explicit. To avoid any convergence problems in the numeric return-mapping algorithm due to 
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negative strain rate sensitivity, counter-example regularization is employed. Details of the parameter 
identification and the network training process can be found in [11]. 

3.2.  Results of numerical modelling 
Figure 5 compares the experimentally measured force-displacement curves (solid dots) with the 
numerical predictions (solid lines) for the NT20 experiments. Overall a good agreement is obtained with 
the neural network based model, with the largest difference witnessed at room temperature and 
0.013m/s. This is due to the slight negative strain rate sensitivity at room temperature from the 
experiments (Figure 4). At temperatures above 200°C, diffuse necking occurs at very small 
displacements, followed by a profound post-necking regime before fracture. For all four loading speeds, 
the neural network model showcases excellent agreement in this range. 

4.  Conclusion 
A comprehensive numerical and experimental investigation is performed from quasi-static (0.001/s) to 
dynamic (~100/s) strain rates on AA7075-T6 sheet metal at temperatures ranging from 20°C to 360°C. 
The fracture experiments reveal a minimum strain rate sensitivity for AA7075 at room temperature, with 
an increased strain rate effect as the temperature rises. A machine learning based plasticity model is 
employed to capture this phenomenon, which decomposes the deformation resistance into a reference 
mixed Swift-Voce strain hardening term, multiplied with a neural network function that deals with the 
rate- and temperature dependency. The model is trained using a hybrid numerical-experimental 
approach, by iteratively running full 3D finite element simulations on NT20 experiments. Counter-
example training is employed to circumvent any potential numerical convergence problems in the 
return-mapping algorithm. The model exhibits good agreement with the experimental force-
displacement curves, particularly in the large deformation post-necking regime. 
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