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Alternating Projections Method for Joint Precoding
and Peak-to-Average-Power Ratio Reduction

Sueda Taner and Christoph Studer

Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
e-mail: taners@iis.ee.ethz.ch and studer@ethz.ch

Abstract—Orthogonal frequency-division multiplexing (OFDM)
time-domain signals exhibit high peak-to-average (power) ratio
(PAR), which requires linear radio-frequency chains to avoid
an increase in error-vector magnitude (EVM) and out-of-band
(OOB) emissions. In this paper, we propose a novel joint PAR
reduction and precoding algorithm that relaxes these linearity
requirements in massive multiuser (MU) multiple-input multiple-
output (MIMO) wireless systems. Concretely, we develop a novel
alternating projections method, which limits the PAR and transmit
power increase while simultaneously suppressing MU interference.
We provide a theoretical foundation of our algorithm and provide
simulation results for a massive MU-MIMO-OFDM scenario. Our
results demonstrate significant PAR reduction while limiting the
transmit power, without causing EVM or OOB emissions.

I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output
(MIMO) is a popular technology to increase spectral ef-
ficiency [1]. Orthogonal frequency-division multiplexing
(OFDM) [2] is widely used to deal with inter-symbol-
interference. While the combination of massive MU-MIMO
with OFDM has the potential to achieve high spectral efficiency,
OFDM time-domain signals exhibit high dynamic range [3],
which requires linear radio-frequency (RF) chains to avoid
an increase in error-vector magnitude (EVM) and out-of-band
(OOB) emissions. Unfortunately, such systems would require
a large number of linear RF chains, which quickly results in
excessively high RF circuit power consumption and system
costs. To address this issue, a plethora of peak-to-average
(power) ratio (PAR) reduction methods have been proposed in
the OFDM literature; see, e.g., [4] and the references therein.

Among the recent literature, the methods in [5]–[10] modify
the transmitted OFDM time-domain signals to reduce the
PAR. Alternatively, as shown in [11], the excess degrees-of-
freedom of massive MU-MIMO systems enables the design
of precoding algorithms at the basestation (BS) that jointly
reduce the PAR in the transmitted signals while canceling MU
interference (MUI). To reduce the complexity of such emerging
joint precoding and PAR reduction (JPP) methods, a number
of algorithms have been proposed [12]–[20]. However, such
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methods either increase MUI, EVM, or OOB emissions, or
aim at minimizing the transmit signal’s peaks (e.g., their `∞-
norm), but not the actual PAR. Only recently, a novel `p−`q-
norm minimization approach was proposed in [21], which
is capable of finding minimum-PAR solutions unachievable
by `∞-norm minimization methods without causing EVM,
assuming perfect transmit-side channel-state information (CSI),
or OOB emissions. Reference [21] also shows the existence of a
fundamental trade-off between the PAR and the transmit power
of the OFDM time-domain signals, so that reducing the PAR
must come at the cost of a power increase (PINC), assuming
that the EVM should remain zero. For a given transmit power
constraint, this means that one has to back-off in transmit
power, which lowers the signal-to-noise ratio (SNR) at the
user-equipment (UE) side. Unfortunately, the `p− `q-norm
minimization approach from [21] provides no control over the
PINC of the transmitted time-domain signals.

A. Contributions

We propose a novel JPP method for massive MU-MIMO-
OFDM systems based on an alternating projections method
(APM) that enables precise control over the PAR and PINC.
Our proposed algorithm is not only capable of finding solutions
with lower PAR than the widely-used `∞-norm minimization
approaches in [5], [12]–[19], but also enables lower PINC than
the recent `p−`q-norm minimization approach from [21]. We
demonstrate the efficacy of our approach for a massive MU-
MIMO-OFDM scenario by showing that our APM achieves low
PAR and low PINC, while perfectly removing MUI without
causing EVM (assuming perfect CSI at the transmitter) or
OOB emissions compared to least-squares precoding.

B. Notation

We represent column vectors and matrices by bold lowercase
and uppercase letters, respectively. The kth entry of a vector a
is ak and the kth column of a matrix A is [A]k = ak.
The matrix transpose and Hermitian are designated by the
superscripts (·)T and (·)H , respectively. We use 0N×M for
the N ×M all-zeros matrix and FN for the N ×N unitary
discrete Fourier transform (DFT) matrix. We define the `p-
norm as ‖a‖p = (

∑
k |ak|p)1/p and the Frobenius norm as

‖A‖F =
√∑

k ‖ak‖22. We use calligraphic letters to denote
sets and the superscript (·)c for the set complement. Given a
subset of indices I, aI represents the vector whose entries



are given by {ai}i∈I . The orthogonal projection of a vector a
onto a set A is denoted by projA(a).

II. PREREQUISITES

The joint precoding and PAR reduction problem in MU-
MIMO-OFDM is a special case of a PAR reduction problem
with linear constraints. Thus, we first review the PAR mini-
mization problem under a linear constraint y = Ax and study
the limits of existing algorithms that find solution vectors x
with low (or minimal) PAR in Sections II and III. We then
apply the problem setup to the special, but more complicated
case of an MU-MIMO-OFDM scenario in Sec. IV.

A. Peak-to-Average (Power) Ratio (PAR)

Given an underdetermined system of linear equations y =
Ax, where y ∈ CM and A ∈ CM×N is full-rank with M < N ,
we wish to compute solution vectors x ∈ CN with low dynamic
range. In communication applications, the dynamic range is
commonly measured by the peak-to-average-power ratio (PAR)

PAR(x) ,
N‖x‖2∞
‖x‖22

. (1)

for non-zero vectors x ∈ CN . The PAR satisfies 1 ≤ PAR(x) ≤
N , where the lower bound holds with equality if and only if
|xi| = |xj | for all i, j ∈ {1, . . . , N}. We will call such x a
“minimum-PAR (min-PAR) vector” throughout this paper.

B. Computing Low-PAR Solutions via `∞-Norm Minimization

Since the PAR in (1) is nonconvex and nondifferentiable,
directly minimizing PAR(x) subject to the affine constraint
y = Ax is difficult. Thus, references [11], [14] proposed to
minimize the `∞-norm of solution vectors:

x̂∞ = arg min
x̃∈CN

‖x̃‖∞ subject to y = Ax̃.(P-∞)

Although `∞-norm minimization provably reduces the
PAR [14], such methods only reduce the signal’s peaks and do,
in general, not find min-PAR solutions. To compute min-PAR
solutions, an `p−`q-norm problem formulation was proposed
recently in [21]. In Sec. III, we propose a novel method
that outperforms such approaches by directly dealing with
the following trade-off between PAR and PINC.

C. Fundamental PAR vs. PINC Trade-off

Due to the power constraints of transmitters, we must also
consider the power of the solution vectors along with their PAR.
The least-squares (LS) vector x̂LS , AH(AAH)−1y, has the
minimum power ‖x‖22, among all the solutions x to y = Ax,
by definition. Other solution vectors x, e.g., vectors with low
PAR which suit nonlinear RF circuitry better, typically have
higher power than x̂LS. In [21], this observation was made
explicit by a fundamental trade-off between the PAR of a
solution vector x satisfying y = Ax and its power compared
to the LS solution using the following definition [21]:

Definition 1. Let x be any solution vector to y = Ax and
x̂LS = AH(AAH)−1y. Then, the power increase (PINC) of
the vector x is defined as PINC(x) , ‖x‖22/‖x̂LS‖22.

The following result, taken from [21, Lem. 1], reveals this
fundamental trade-off between PAR and PINC.

Lemma 1. Fix A and y, and let x be any nonzero solution
vector to y = Ax. Then, there exists a constant c ≥ 1 (for
fixed y and A) which satisfies the following inequality:

PAR(x)PINC(x) ≥ c. (2)

Since the solution vector x̂∞ from (P-∞) achieves the
lower bound in (2) with equality and defines the constant
c = ‖x̂∞‖2∞/‖x̂LS‖22 [21], the vector x̂∞ is optimal in the
PAR-PINC trade-off, but would not generally have minimal
PAR. Furthermore, min-PAR solutions typically have higher
PINC than other solutions. Hence, to normalize the transmit
power according to a given power constraint, the transmitter
must back-off more compared to the power of the LS solution,
which will lower the SNR at the UE side.

Although the `p−`q-norm minimization approach in [21]
was shown to find min-PAR solutions, it provides no control
over the PINC of the solutions. We next design a novel method
that enables precise control over both the PAR and PINC.

III. PAR AND PINC REDUCTION WITH AN APM
We now introduce our approach to find solution vectors x

with low PAR and low PINC for the general case of y = Ax.
A concrete application of our approach to JPP in a massive
MU-MIMO-OFDM scenario is shown in Sec. IV.

A. Computing Solutions with Bounded PAR and PINC
Our approach builds upon the following feasibility problem

to find solution vectors x that (i) satisfy y = Ax, (ii) have
bounded PAR, and (iii) have bounded PINC:

(P-F)
{

find x ∈ CN
subject to y = Ax, PAR(x) ≤ ρ, PINC(x) ≤ ξ.

Here, the parameters ρ and ξ denote the desired PAR and PINC
bounds satisfying 1 ≤ ρ ≤ N and 1 ≤ ξ, respectively.

Given the sets C,D ⊆ CN , APMs typically solve constrained
feasibility problems of the form [22]

find x ∈ CN subject to x ∈ C ∩ D, (3)

by alternating between the projection onto sets C and D
iteratively for iterations k = 1, 2, . . . until convergence:

x(k) = projC
(
projD

(
x(k−1)

))
. (4)

In order to solve (P-F), we define the following sets:

C , {x ∈ CN |y = Ax}, (5)

D , {x ∈ CN |PAR(x) ≤ ρ,PINC(x) ≤ ξ}. (6)

We detail the projection operators required in (4) below. To
calculate solutions x with bounded PAR and PINC, we run our
APM for a fixed number of iterations Kmax. We emphasize that
y = Ax(k) is always satisfied since projC(·) is carried out after
evaluating projD(·) in each iteration. For the same reason, x(k)

does not necessarily satisfy the PAR-PINC constraints defined
by D, and our APM procedure computes only approximate
solutions to (P-F) as there are no guarantees on feasibility or
convergence due to nonconvexity of the optimization problem.



B. The Orthogonal Projection Operators

1) Projection onto the Set C: The orthogonal projection of
a vector z ∈ CN onto the set C defined in (5) is given by [23]:

projC(z) = z−AH(AAH)−1(Az− y). (7)

Note that projC(0N×1) = x̂LS. Hence, we initialize x(0) = 0N
and, only in the first APM iteration, skip projD

(
x(0)

)
to ensure

that our method starts from the LS solution x(1) = x̂LS.
2) Projection onto the Set D: Using x̂LS from the first APM

iteration, we compute x = projD(z) ∈ CN with the steps
listed below. A rigorous derivation of the following projection
algorithm can be found in App. A.

1: Set P = ξ‖x̂LS‖22.
2: If PAR(z) ≤ ρ, then set x′ = z and P ′ = ‖x′‖22, and skip

to Step 5. Otherwise, set α = ρ/N and initialize L = 1.
3: Let the set I index the L entries of z with the largest

magnitude. If (i) this set is not uniquely determined, or
(ii) maxi∈Ic |zi| ≤

√
α

1−αL‖zIc‖2 < mini∈I |zi| is not
satisfied, then increment L by 1 and repeat this step.

4: If zIc = 0(N−L)×1, then compute x′ ∈ CN using

x′i =


√

(1−αL)P ′

N−L , i ∈ Ic
√
αP ′

|zi| zi, i ∈ I,
(8)

where P ′ = α‖zI‖21. Otherwise, compute x′ ∈ CN using

x′i =


√

(1−αL)P ′

‖zIc‖2 zi, i ∈ Ic
√
αP ′

|zi| zi, i ∈ I,
(9)

where P ′ =
(√

1− αL‖zIc‖2 +
√
α‖zI‖1

)2
.

5: x = min
{
1,
√
P/P ′

}
x′.

Since Step 3 requires sorting of the magnitudes of the entries
of z, the complexity of computing projD(z) is O(N log(N)).
We conclude by noting that a special case of this procedure was
given in [24, Alg. 2], where an equality constraint is imposed
on ‖x‖22 instead of an upper bound—this reduces the PAR
constraint to an `∞-norm constraint, which is different from
projD(·) and easier to solve. However, imposing an upper
bound instead of an equality has the advantage of computing
solutions with lower power, if they exist, in congruence with
our aim of keeping the PINC small.

C. Example of PAR Reduction with our APM

In Fig. 1, we show an example of PAR reduction with
our APM. We apply our algorithm to one fixed instance of
a circularly-symmetric complex standard normal matrix A ∈
C100×200 and vector y ∈ C100. We consider the cases where
the PAR and PINC bounds are: (i) ρdB = 0.4 and ξdB = 1.6,
and (ii) ρdB = 0.2 and ξdB = 2 in decibel. As a baseline, we
also show `∞-norm minimization via CRAMP [14]1 and `2−`1-
norm minimization from [21]. All algorithms are initialized
with x(1) = projC(0100×1) = x̂LS and run until convergence.

1We select one `∞-norm minimization algorithm out of the many in the
literature to demonstrate the limitation of such methods for reducing the PAR.
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Fig. 1. Trade-off between PAR and PINC for the proposed APM, `p−`q-norm
minimization [21], and `∞-norm minimization solved via CRAMP [14]. The
APM achieves the same PAR as `2−`1-norm minimization at lower PINC.

Fig. 1 shows the PAR vs. PINC trade-off for all iterations
together with the lower-bound given by Lem. 1. We observe that
the `∞-norm minimization approach converges to a solution
whose PAR is 0.7 dB, and has smaller PINC than the other
methods for this PAR value. However, the min-PAR solutions,
i.e., solutions whose PAR is 0 dB, are attained by our APM
and `p−`q-norm minimization—but, as expected, at the cost
of higher PINC. This example effectively demonstrates that
the APM and `p−`q-norm minimization methods are more
suitable to minimize the PAR than `∞-norm minimization,
which instead yields solutions achieving the optimal PAR-PINC
tradeoff. We also observe that the proposed APM outperforms
`p−`q-norm minimization in the PAR-PINC trade-off: APM
with ρdB = 0.4, ξdB = 1.6 and ρdB = 0.2, ξdB = 2 converge to
0.4 dB and 0.2 dB PAR with 1.4 dB and 1.2 dB lower PINC
than `2−`1-norm minimization, respectively. This example
showcases the APM’s advantage over `p−`q-norm minimization
in causing lower PINC while reducing the PAR of solutions.

IV. THE MASSIVE MU-MIMO-OFDM CASE

We now show an application example of the proposed APM
for JPP in a massive MU-MIMO-OFDM scenario.

A. System Model
We consider the downlink of a massive MU-MIMO-OFDM

system where a B-antenna BS transmits data to U single-
antenna UEs with U < B. We assume that the total number
of OFDM subcarriers is W, and W and Wc designate the sets
of used and unused OFDM subcarriers, respectively, where
|W|+ |Wc| =W . For the used subcarriers, the signal vectors
sw ∈ SU , w ∈ W , contain the symbols to be transmitted from
the constellation S for each UE. For the unused subcarriers, we
set sw = 0U×1, w ∈ Wc. The signal vectors sw, w ∈ W , are
precoded into W frequency-domain vectors xw ∈ CB with the
goal of suppressing MUI. We define the matrix X ∈ CB×W as
X , [x1, . . . ,xW ]. The frequency-domain outputs of each BS
antenna are given by XT , whose columns correspond to BS
antennas and rows to OFDM subcarriers. The total transmit
power ‖X‖2F depends on the transmit signals sw, ∀w, and the
channel state. Hence, we assume that the precoded vectors will
be normalized prior to transmission via x̂w = xw/‖X‖F to



ensure unit transmit power. While this normalization step is
necessary to satisfy regulatory power constraints, we omit this
step while describing our precoder and recall it in Sec. V.

Let tb denote the time-domain output of the bth BS antenna
and define the matrix T ∈ CW×B by T , [t1, . . . , tB ]. In
an OFDM system, the matrix T is given by the inverse DFT
as T = FHXT . To simplify notation, we define the linear
mapping from {tb}Bb=1 to {xw}Ww=1 as follows:

ψw(t1, . . . , tB) , [(FT)T ]w = xw, w ∈ {1, . . . ,W}. (10)

In order to avoid ISI, a cyclic prefix is prepended to each
time-domain vector tb, b ∈ {1, . . . , B}, prior to transmission.

Let yw ∈ CW denote the received vector at OFDM
subcarrier w. We model yw with the following input-output
relation of the wireless channel in the frequency domain:

yw = Hwxw + nw, w ∈ {1, . . . ,W}. (11)

Here, Hw ∈ CU×B denotes the MIMO channel matrix associ-
ated with the wth subcarrier and nw ∈ CU models circularly-
symmetric Gaussian noise. Finally, OFDM demodulation is
performed by each of the U UEs in order to estimate the
transmitted data symbols, i.e., data detection is carried out
using [yw]u for UE u at each used subcarrier w ∈ W .

B. Least-Squares Precoding

The BS must employ precoding in order to suppress MUI.
Linear precoding simply computes xw = Gwsw on the used
subcarriers w ∈ W with the precoding matrix Gw ∈ CB×U ,
and set xw = 0B×1 on the unused subcarriers w ∈ Wc. LS
precoding is widely used and minimizes the transmit power
while satisfying the following precoding constraints (under
the assumption that the channel matrices Hw, ∀w, are known
perfectly at the BS-side2) (PC1) sw = Hwxw, w ∈ W , which
ensure zero EVM, and (PC2) xw = 0B×1, w ∈ Wc, which
ensure zero OOB emissions. For the LS precoder, the precoding
constraints in (PC1) have the closed-form solution xLS

w =
GLS
w sw with GLS

w = HH
w (HwH

H
w )−1, w ∈ W . Although LS

precoding perfectly eliminates MUI and minimizes the transmit
power, with PINC = 1 by definition, the PAR of the resulting
time-domain signals is typically high [5], [11]–[19]. We next
utilize the proposed APM to mitigate this drawback.

C. Joint Precoding and PAR Reduction with our APM

Massive MU-MIMO systems have the unique property
that the downlink channel matrices have a large nullspace,
which can be exploited to simultaneously satisfy the precoding
constraints (PC1) and (PC2), while shaping the transmitted
time-domain signals to reduce the PAR [11]. Our goal is to find
frequency-domain precoding vectors xw such that the time-
domain signals are bounded in both PAR and PINC, while the

2We assume perfect channel knowledge for simplicity. However, one can
also use an estimate of the channel acquired by exploiting reciprocity. In
the latter scenario, note that there would be nonzero EVM due to channel
estimation errors, however, the EVM caused by precoding would still be zero.

vectors xw satisfy (PC1) and (PC2). To achieve all of these
goals, we propose the following feasibility problem:

(JPP-F)



find t1, . . . , tB ∈ CW

subject to sw = Hwψw(t1, . . . , tb), w ∈ W
0U×1 = ψw(t1, . . . , tb), w ∈ Wc

PAR(tb) ≤ ρ, b ∈ {1, . . . , B}
PINC(T) ≤ ξ.

Here, we separately minimize the PAR at each transmit antenna
and consider the total power of the transmit signals compared
to the LS solution by defining PINC(T) , ‖T‖2F /‖TLS‖2F .

The remaining piece of the puzzle is to find a solution to (JPP-
F) efficiently (and approximately) via our APM. Our approach
is merely a more complicated version of the APM proposed
in Sec. III and the details are as follows. Since there exists a
one-to-one mapping between time and frequency via (10), we
can apply the linear constraints in (JPP-F) separately to the
columns of the frequency domain matrix X. Here, we initialize
with x

(0)
w = 0B×1,∀w, which calculates the LS solution in

the first iteration, i.e., X(1) = XLS. At every iteration, we
use (7) to compute x

(k)
w for w ∈ W and set x(k)

w = 0U×1 for
w ∈ Wc. As in Sec. III-B, we utilize ‖XLS‖2F = ‖TLS‖2F to
rewrite the PINC constraint of (JPP-F) as a power constraint
on ‖T‖2F . We project the time-domain vectors onto the PAR-
bounded set individually for each antenna and then scale T(k)

to satisfy the PINC constraint. Analogous to our algorithm for
the general case in Sec. III-A, we take the projection onto the
linear (precoding) constraints as the output of each iteration, so
that (PC1) and (PC2) are always satisfied. This implies that the
APM does not increase the EVM or OOB emissions compared
to LS precoding, while decreasing the PAR. Note that our APM
calculates approximate solutions to (JPP-F) with no guarantees
on feasibility or convergence due to its nonconvex nature.

V. SIMULATION RESULTS

We now demonstrate the efficacy of the proposed APM for
JPP in a massive MU-MIMO-OFDM system.

A. Simulation Setup

As in [21], we consider a massive MU-MIMO-OFDM system
with B = 128 BS antennas, U = 16 single-antenna UEs, and
16-QAM transmission. We consider W = 2048 subcarriers and
a bandwidth of 20 MHz; the used and unused subcarriers are
defined in [25]. We assume a simple channel model with 4 taps,
where the entries of the non-zero time-domain matrices are
assumed i.i.d. circularly complex Gaussian with unit variance.
The frequency-domain channel matrices are obtained using
the Fourier transform [26]. As mentioned in Sec. IV-A, the
precoded vectors will be normalized to unit power prior to
transmission. This back-off in transmit power is equivalent to
an SNRdB loss of exactly PINCdB compared to the LS precoder.

We solve (JPP-F) using our APM as explained in Sec. IV-C
and consider two parameter settings (i) ρdB = 3, ξdB = 0.3 and
(ii) ρdB = 4, ξdB = 0.1. As baselines, we also compare with `∞-
norm minimization solved using CRAMP [14] and `4−`2-norm



minimization3 from [21]. All algorithms run for Kmax = 20
iterations. We reiterate that none of these algorithms increase
the EVM or OOB emissions compared to LS precoding; this
implies that in the resulting error-rate performance, the SNR
loss compared to the LS precoder is determined solely by the
PINC. Concretely, these JPP algorithms require exactly PINCdB
higher SNR than LS precoder to achieve the same BER.

B. Results and Discussion

Fig. 2 shows the trade-off between PINC and PAR for the
JPP methods and the massive MU-MIMO-OFDM scenario
described in Sec. V-A. We use Monte-Carlo sampling to
compute the complementary cumulative distribution function
(CCDF) for the PAR at each antenna’s time domain output
and the total PINC at each iteration for the different JPP
methods. The CCDF of a random variable Z is defined as
CCDFZ(z) = P(Z > z). For example, the value z for which
CCDFZ(z) = 1% is the 99th percentile of Z. In order to
demonstrate the per-iteration pessimistic behavior of the JPP
algorithms, we pick the 99th percentile as the operating point
for both PARdB and PINCdB, and show the PAR-PINC trade-off
for each algorithm iteration in Fig. 2, where the iterations are
indicated by markers. Here, we no longer have the notion of an
optimal trade-off since the vectors whose PAR we aim to reduce
are not directly the solutions of one linear system (as done in
the example of Sec. III-C). We therefore plot the 99th percentile
of PAR and PINC over 100 randomized trials. Analogously
to Sec. III-C, we observe that our APM and the `4−`2-norm
method are able to compute lower-PAR solutions than `∞-
norm minimization. Since we perform only 20 iterations, we
do not expect the APM variants to satisfy the specified PAR
and PINC bounds ρdB and ξdB, respectively. Nonetheless, the
proposed APM has the advantage of achieving 4.7 dB PAR
at 1 dB and 1.1 dB lower PINC than `∞-norm minimization,
with ρdB = 3, ξdB = 0.3 and ρ = 4, ξdB = 0.1, respectively;
this demonstrates our APM’s capability to find solutions with
lower PINC than `p−`q-norm minimization at the same PAR.

Fig. 3 shows the CCDF of PAR and PINC for the 5th
iteration of the considered JPP algorithms together with the
CCDF resulting from LS precoding. In only five iterations, all
of the iterative JPP methods decrease the PAR at a CCDF target
value of 1% by at least 5 dB compared to LS precoding, while
the APM variants result in at least 0.4 dB lower PINC than
`∞-norm and `4−`2-norm minimizing approaches. Thus, our
APM is a promising low-complexity PAR reduction method for
massive MU-MIMO-OFDM systems with power constraints.

VI. CONCLUSIONS

We have proposed a novel formulation for finding min-
PAR solutions to an underdetermined linear system using an
alternating projections method (APM). Our method simultane-
ously bounds the PAR of the solution vectors and their power
increase (PINC), which leads to solutions that are, in general,
unattainable by `∞-norm minimization and have lower PINC

3We use the `4−`2-norm instead of the `2−`1-norm, as it was shown
in [21] to outperform the `2−`1-norm-based approach in this scenario.
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start with the LS solution at 11.1 dB PAR and 0 dB PINC.
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compared to the recent `p−`q-norm formulation in [21]. We
have applied our approach to a massive MU-MIMO-OFDM
scenario, which has shown that the proposed APM is able to
decrease the 99th percentile PAR by 5 dB in only 5 algorithm
iterations while keeping the PINC below 0.2 dB.

APPENDIX A
DERIVATION OF THE PROJECTION IN SEC. III-B2

As a result of the PAR definition in (1), we can express
the PAR constraint of the set D in (6) as |xi|2 ≤ α‖x‖22,∀i,
where α , ρ/N with 1/N ≤ α ≤ 1. Furthermore, since
PINC(x) , ‖x‖22/‖xLS‖22, we can express the PINC constraint
of the set D as ‖x‖22 ≤ P with P , ξ‖xLS‖22. Hence, the
optimization problem we wish to solve is as follows:

projD(z) =

{
arg min
x̃∈CN

‖z− x̃‖22
subject to |x̃i|2≤α‖x̃‖22,∀i, ‖x̃‖22≤P.

(12)

Here, we define the sets D1 , {x ∈ CN | ‖x‖22 ≤ P} and
D2 , {x ∈ CN | |xi|2 ≤ α‖x‖22,∀i}, so that D = D1 ∩ D2.
We solve (12) by forming the following Lagrangian function
with the dual variables u ∈ RN and v ∈ R:

L(x̃,u, v) =‖z− x̃‖22 +
∑N
i=1 ui

(
|x̃i|2 − α‖x̃‖22

)
+ v(‖x̃‖22 − P ). (13)



Following the definitions of [27] for complex-valued gradients,
we arrive at the following partial derivatives:

∇x̃i
L(x̃,u, v) =

(
ui + v + 1− α∑N

j=1 uj

)
x̃i − zi. (14)

Let t , 1 − α∑N
j=1 uj and x = projD(z) be a minimizer

of (12). Then, the vector x must satisfy the KKT conditions:
(C1) ∇xi

L(x,u, v) = 0 =⇒ (ui + v + t)xi = zi,∀i.
(C2) ui(|xi|2 − α‖x‖22) = 0, ∀i, and v(‖x‖22 − P ) = 0.
(C3) |xi|2 ≤ α‖x‖22, ∀i, and ‖x‖22 ≤ P .
(C4) ui ≥ 0, ∀i, and v ≥ 0.
We note that neither the PAR nor the power constraint depends
on the phases of the entries in x. Hence, the entries of a
minimizer x must match the phases of the entries of the input z,
which implies that ui + v + t ≥ 0 must hold.

Let P ′ , ‖x‖22. We define the set I , {i : ui > 0} with
|I| = L and, thus, by definition, Ic , {i : ui = 0} with
|Ic| = N−L; we will first derive the solution assuming that I
is known, and then show how to determine I. In order to
satisfy (C2), we need that |xi|2 = αP ′, ∀i ∈ I. Then, I
denotes the indices of the largest L entries of x (and, hence,
of z) in magnitude.

If I is empty, i.e., L = 0, then ui = 0,∀i and t = 1, hence,
we have vxi = zi, ∀i, by (C1). In order to satisfy (C3), this
means that |zi|2 ≤ α‖z‖22, ∀i. In other words, ui = 0, ∀i if
and only if the vector z already satisfies PAR(z) ≤ ρ. Then,
x = projD1

(z) = min
{
1,
√
P/‖z‖2

}
z as it is well known.

In what follows, we assume ‖z‖2∞ > α‖z‖22 so that L ≥ 1.
We consider the following two cases separately: Case 1, where
zIc = 0(N−L)×1, and Case 2, where zIc 6= 0(N−L)×1.

Case 1: If zIc = 0N−L, then, we cannot satisfy the PAR
constraint by simply scaling the entries of z, but we have to
assign nonzero values to replace the zeros of z. If zi = 0, then
any value of xi could satisfy (C1) as long as ui + v + t = 0.
Therefore, if zi = 0,∀i ∈ Ic, then {xi}i∈Ic is not uniquely
determined by the optimization problem. Here, we assume that
the minimizer x will be in the following form:

xi =

{
ε, i ∈ Ic

zi
ui+v+t

, i ∈ I, (15)

where 0 < ε ≤
√
αP ′ = |zi|

ui+v+t
, i ∈ I. From (15), we have

P ′ = (N − L)ε2 + L(αP ′) =⇒ ε =

√
(1−αL)P ′
√
N−L . (16)

From (C1), we have that (ui + v + t)ε = 0, i ∈ Ic. As
ui = 0, i ∈ Ic by definition, this implies that v + t = v +
1− α∑i∈I ui = 0, hence

∑
i∈I ui = (v + 1)/α. Then, since

|xi| = |zi|/ui = |zj |/uj , ∀i, j ∈ I, we have that∑
i∈I ui =

∑
i∈I

|zi|
|zj |uj =

‖zI‖1
|zj | uj = (v + 1)/α (17)

=⇒ uj =
(v+1)|zj |
α‖zI‖1 , j ∈ I. (18)

Therefore, for j ∈ I, P ′ = |zj |2/(αu2j ) = α‖zI‖21/(v + 1)2.
Recall that P ′ ≤ P from (C3); hence, (C2) implies that if P ′ <
P , then v = 0. That is, if α‖zI‖21 < P , then P ′ = α‖zI‖21

(and v = 0); otherwise, P ′ = P (and v =
√

α
P ‖zI‖1 − 1).

Finally, P ′ = min
{
α‖zI‖21, P

}
, and the result is given by

xi =


√

(1−αL)P ′
√
N−L i ∈ Ic

√
αP ′

|zi| zi, i ∈ I.
(19)

Case 2: If zIc 6=0N−L, then ui + v + t > 0, ∀i by (C1),
which allows us to write xi by scaling zi in the form below:

xi =

{
zi
v+t , i ∈ Ic
zi

ui+v+t
, i ∈ I. (20)

Intuitively, we divide large entries of z by a larger constant
(compared to small entries) which reduces the dynamic range.
From (20), it follows that

|xi| =
√
αP ′ = |zi|

ui+v+t
, i ∈ I. (21)

From (20) and (21), we have

P ′ =
∑N
i=1 |xi|2 = 1

(v+t)2

∑
i∈Ic |zi|2 + L(αP ′). (22)

Note that we must have L < 1/α, since P ′ > 0 and zIc 6=
0N−L; we will revisit this fact later. From (21) and (22), we
have the following:

P ′ = |zi|2
α(ui+v+t)2

=
‖zIc‖22

(1−αL)(v+t)2 , i ∈ I (23)

=⇒ ui = (βi − 1)(v + t), i ∈ I, (24)

where βi ,
√
1−αL|zi|√
α‖zIc‖2 for i ∈ I. From (23), we obtain

v + t = ‖zIc‖2√
(1−αL)P ′

. (25)

Using (21) and (25), we can rewrite (20) as

xi =


√

(1−αL)P ′

‖zIc‖2 zi, i ∈ Ic
√
αP ′

|zi| zi, i ∈ I.
(26)

Now, from (21), we express ui in terms of uj as follows:

|zi|
ui + v + t

=
|zj |

uj + v + t
, i, j ∈ I (27)

=⇒ uj =
|zj |
|zi|ui + (v + t)

(
|zj |
|zi| − 1

)
, i, j ∈ I. (28)

Using (28), we write t in terms of ui, i ∈ I, as follows:

t = 1− α
∑
j∈I

(
|zj |
|zi|ui + (v + t)

(
|zj |
|zi| − 1

))
(29)

= 1− αγiui − α(γi − L)(v + t), (30)

where we defined γi ,
‖zI‖1
|zi| for i ∈ I. Inserting (24) in (30)

followed by simplifications, we obtain

v + t =
(1 + v)‖zIc‖2√

1− αL(
√
1− αL‖zIc‖2 +

√
α‖zI‖1)

. (31)

Inserting (31) in (23), we have

P ′ =
(√

1− αL‖zIc‖2 +
√
α‖zI‖1

)2
/(1 + v)2. (32)



Recall that P ′ ≤ P from (C3); hence, (C2) implies that if P ′ <
P , then v = 0. That is, if

(√
1− αL‖zIc‖2+

√
α‖zI‖1

)2
< P ,

then P ′ =
(√

1− αL‖zIc‖2+
√
α‖zI‖1

)2
(and v = 0); other-

wise, P ′ = P (and v =
(√

1− αL‖zIc‖2 +
√
α‖zI‖1

)2
/P −

1). Therefore, P ′ = min
{(√

1− αL‖zIc‖2+
√
α‖zI‖1

)2
, P
}

.
Inserting (32) in (26) yields the desired final result.

Determining the Index Set I: So far, we have assumed
that we knew I (and thus L); we will now explain how to
determine I. We will first consider the constraints that the
set I should satisfy in Case 2. (i) For the condition (C3) to
hold, the following must be satisfied:

maxi∈Ic |xi| = maxi∈Ic |zi|/(v + t) ≤
√
αP ′. (33)

Inserting (31) and (32) in (33) yields

maxi∈Ic |zi| ≤
√

α
1−αL‖zIc‖2. (34)

(ii) From (21), we have that ui =
|zi|√
αP ′ − (v+ t), i ∈ I . Then,

for ui > 0, ∀i ∈ I to hold, the following must be satisfied:

mini∈I |zi| > (v + t)
√
αP ′ =

√
α

1−αL‖zIc‖2. (35)

Combining (34) and (35) gives us the following:

maxi∈Ic |zi| ≤
√

α
1−αL‖zIc‖2 < mini∈I |zi|. (36)

Note that (36) is also trivially satisfied if zIc = 0N−L, which
corresponds to Case 1.

Now, recall that I is empty when z already satisfies the
PAR constraint; and note that I indexes the entries of z whose
magnitude is too large to satisfy the PAR constraint and will
be clipped to a fixed upper bound value in the corresponding
entries of x. Since x has the minimum distance to z while
satisfying the PAR constraint, the set I (thus L) should be as
small as possible while the KKT conditions are satisfied, and
also defined uniquely in order to avoid an ambiguity about
which entries to clip. Therefore, we begin our search for L
by initializing |I| = L = 1 in our solution procedure and
increment L by 1 until I is determined uniquely and (36)
is satisfied. Recall that L < 1/α from (22), which implies
that we will test (36) for at most b1/αc values of L before
finding the correct choice, where b·c denotes rounding towards
−∞. Testing for the condition in (36) requires calculating
the magnitude of the entries of z and sorting them once
regardless of how many L’s we try; hence, the complexity
remains O(N logN).

Finally, we make an important observation: Computing
projD(z) is equivalent to performing projD1

(
projD2

(z)
)
. As

a proof sketch, we note that (i) projD2
(z) is a special case of

our derivation since projD(z) = projD2
(z) for P = ∞, and

(ii) it is well-known that projD1
(x′) = min

{
1,
√
P/‖x′‖2

}
x′.

In Sec. III-B2, we computed x′ = projD2
(z) in Steps 2-to-4

and projD1
(x′) in Step 5 to emphasize the separability of the

PAR and PINC constraints.
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