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Abstract

This work considers the numerical approximation of option prices in different market
models beyond Lévy processes. The Lévy setup is extended in several directions. The
arising partial integrodifferential equations and inequalities are solved with the finite
element method. European as well as American type contracts are considered.

Spatially inhomogeneous market models are analyzed, specifically certain Feller pro-
cesses are considered. The well-posedness of the arising pricing equations is proved
using pseudodifferential operator theory. The resulting pricing equations need no longer
be parabolic and can exhibit degeneracies under certain conditions. Classical continu-
ous Galerkin methods are therefore inapplicable for the numerical solution of the cor-
responding pricing equations. Thus we employ a discontinuous Galerkin discretization
or alternatively a streamline diffusion approach. Convergence results are shown in both
cases.

Besides the spatial inhomogeneity, also the assumption of temporal homogeneity of the
coefficients of the partial integrodifferential equations is weakened. The well-posedness
for pricing equations with degenerate coefficients in time is shown via a weak space-time
formulation. The main problem arising in the discretization of such equations is the
non-applicability of classical time-marching schemes due to the possible degeneracy of
the coefficients. Therefore two alternative approaches are considered. First, a continuous
Galerkin method for the space-time discretization is used, in this case optimality of the
solution algorithm can be shown. Second, a discontinuous Galerkin discretization for
the temporal domain is studied, in which case exponential convergence of the algorithm
can be shown.

Numerical examples are given to confirm the theoretical results. Partial integrodifferen-
tial equations with spatially as well as temporally inhomogeneous coefficients are solved
numerically. European and American options are priced.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der numerischen Approximation von Options-
preisen in verschiedenen Marktmodellen, welche über Lévy Prozesse hinausgehen. Lévy
Modelle werden in mehrerlei Hinsicht erweitert. Die entsprechenden partiellen Integro-
Differentialgleichungen werden mit der Finiten Elemente Methode gelöst. Es werden
sowohl europäische als auch amerikanische Optionen betrachtet.

Marktmodelle mit inhomogenen Koeffizienten bezüglich der Zustandsvariablen werden
analysiert, wobei insbesondere bestimmte Feller Prozesse behandelt werden. Die Wohl-
gestelltheit der entsprechenden Bewertungsgleichungen wird mit Hilfe von Pseudodif-
ferentialoperator Theorie gezeigt. Die entsprechenden Bewertungsgleichungen sind in
der Regel nicht parabolisch und können unter Umständen entarten, weshalb klassische
Diskretisierungsmethoden zur Lösung der Bewertungsgleichungen nicht anwendbar sind.
Es werden daher eine unstetige Galerkin-Diskretisierung und ein streamline diffusion
Ansatz verwendet. In beiden Fällen werden Konvergenzresultate hergeleitet.

Neben der örtliche Inhomogenität wird auch die Annahme der zeitlichen Homogenität
der Koeffizienten der partiellen Integro-Differentialgleichungen abgeschwächt. Die Wohl-
gestelltheit der Bewertungsgleichungen mit entarteten Koeffizienten bezüglich der Zeit
kann mit Hilfe einer schwachen Orts-Zeit-Formulierung bewiesen werden. Die größte
Herausforderung bei der Zeitdiskretisierung solcher Gleichungen besteht darin, dass klas-
sische Zeitschrittverfahren aufgrund der Entartungen der Koeffizienten nicht verwendet
werden können. Daher werden zwei alternative Ansätze betrachtet. Einerseits wird eine
stetige Galerkin-Methode für die Orts-Zeit-Diskretisierung verwendet, in diesem Fall
wird die Optimalität des Lösungsalgorithmus bewiesen. Andererseits wird eine unstetige
Galerkin-Methode für die Zeitdiskretisierung untersucht und exponentielle Konvergenz
des Algorithmus gezeigt.

Numerische Bespiele belegen die theoretischen Resultate. Partielle Integro-Differential-
gleichungen mit inhomogenen Koeffizienten sowohl bezüglich der Zeit als auch der Zu-
standsvariablen werden numerisch gelöst. Es werden europäische und amerikanische
Optionen bewertet.
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1 Introduction

According to Webster’s dictionary, an option is the power or right to choose. This thesis
is concerned with the numerical valuation of options in financial markets.

Options written on a certain underlying, e.g., stocks, indices, coal, gas or electricity,
give their holder the right, but not the obligation to perform certain transactions, such as
buying or selling the underlying, at certain times in the future. The evaluation of options
has become an increasingly important field of research and practice since the seminal
works of F. Black and M. Scholes (1973) [16], B. Mandelbrot (1963) [82], R.C. Merton
(1973) [87], P.A. Samuelson (1969) [102]. The use of models seems unavoidable in order
to approximate option prices in many cases, as their payoff depends on the (uncertain)
future evolution of the underlying and since pure hedging arguments can often not be
employed.

Many models have been proposed to describe the evolution of the underlying. One
distinguishes between equilibrium type approaches, which are characterized by the equi-
librium between supply and demand of the underlying at every instant in time. An other
approach is to directly model the evolution of the underlying. We pursue the latter ap-
proach. Stochastic processes, especially semimartingales, have gained huge popularity
as models for the evolution of the underlying over the few last decades, due to their
flexibility and tractability from the stochastic point of view. Typical examples of mar-
ket models are the Black-Scholes model (1973) [16], the CEV model (1975) [35] or the
CGMY model (2002) [26]. All these models exhibit certain types of homogeneities in
the evolution of the underlying, which leads to models that are easier to handle thus
simplifying the pricing of options significantly. In the Black-Scholes model, as well as in
the CGMY model a spatial and temporal homogeneity is assumed, i.e., the increments
of the process are stationary and indepedent, while the CEV model and, for example,
many local and stochastic volatility models are only temporally homogeneous.

Despite the huge popularity of these models, real data shows that such homogeneity
assumptions may be too restrictive, especially for underlyings more exotic than stan-
dard stocks, such as gas, carbon or electricity. Practitioners solve this conflict by fre-
quent recalibration and ad hoc implementation of non-constant parameters. The aim of
this work is to contribute to the literature on option pricing beyond Lévy models. The
Lévy setup is extended in several directions. Spatially inhomogeneous market models
are analyzed, specifically certain Feller processes are considered. The resulting pricing
equations need no longer be parabolic, but can exhibit degeneracies and hyperbolic be-
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1 Introduction

havior under certain conditions. Therefore, classical continuous Galerkin methods are
inapplicable for the numerical solution of the corresponding pricing equations. Besides
the spatial inhomogeneity, also the assumption of temporal homogeneity of the process
is weakened. Pricing equations with degenerate coefficients in time are solved numeri-
cally. The main problem arising for such equations is the non-applicability of classical
time-marching schemes due to the possible degeneracy of the coefficients. Therefore, ap-
propriate (weak) space-time formulations are considered. Summarizing, the three main
problems tackled in this thesis are well-posedness, discretization and numerical analysis
of discretization schemes for

• Partial integro-differential equations with spatially inhomogeneous jump measures,

• Drift dominated partial integro-differential equations,

• Partial (integro-)differential equations with weakly degenerate coefficients in time.

A semimartingale can be well-understood via its semimartingale characteristic, this
stochastic triplet describes the law of a semimartingale completely, accounting for the
drift component, the diffusion component and the jump component, cf. [72, 88]. We
focus on a subclass of semimartingales with time and state-space dependent triplets.
The generators of these processes are certain, nonclassical pseudodifferential operators
whose symbols are contained in certain symbol classes and the corresponding Dirichlet
forms have variable order Sobolev spaces as their domains. The well-posedness of the
arising pricing equations can be proved for time-homogeneous models using pseudodif-
ferential operator theory and for time-inhomogeneous equations via a weak space-time
formulation. Localization of the pricing equations plays a crucial rule in our algorithm
as all equations are solved on a bounded spatial domain and thus an error analysis
with respect to the size of the computational domain is crucial. As the pricing equa-
tions can exhibit hyperbolic behavior for certain parameters, this has to be considered
in the discretization. It is well-known that standard continuous finite elements lead to
unstable algorithms for transport dominated equations, therefore we employ a discon-
tinuous Galerkin (DG) discretization or a streamline diffusion approach. As the DG
discretization is not applicable to certain integrodifferential operators, we use a small
jump approximation in those cases. From the probabilistic point of view, this corre-
sponds to the approximation of an infinite activity pure jump process by a finite activity
jump process and an appropriately scaled diffusion. For time-inhomogeneous equations,
two approaches are analyzed. First, a continuous Galerkin (CG) method for the space-
time discretization is considered, in this case optimality of the solution algorithm can
be shown. Second, a discontinuous Galerkin discretization for the temporal domain is
studied, in which case exponential convergence of the algorithm can be shown.

Spatially inhomogeneous market models have been studied by several authors, see, e.g.,
[8, 24]. In [24] a class of local Lévy models is defined, in correspondence to local volatility
models in the sense of Dupire, cf. [47]. The pricing is based on a Fourier type approach
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for European contracts. In [8] a general state-space and time dependent pricing equation
is derived. There, it is shown that such equations arise in option pricing of European
options under general discontinuous semimartingales due to a Markovian projection in
the sense of Gyöngy, cf. [58]. Following [83, 97, 98] we consider finite element dis-
cretizations of weak formulations for a general class of admissible market models. The
multidimensional jump measures are constructed via a Lévy copula approach.
For a theoretical foundation of temporally inhomogeneous models, also known as Sato
processes in the literature, we refer to [103, 77]. Applications are described in [21, 25].
Following [96] we propose efficient time-discretizations for time-inhomogeneous integro-
differential equations with possibly degenerate coefficients.

This thesis is structured as follows. In Chapter 2 the preliminaries are outlined. We de-
fine pseudodifferential operators and certain classes of symbols. Variable order Sobolev
spaces needed for later analysis are also introduced. Subsequently, examples of market
models are presented. Time-homogeneous and inhomogeneous admissible market mod-
els are defined and the construction of Feller processes via subordination is discussed.
In Chapter 4, the small jump regularization and localization of Markov processes is ex-
amined. The small jump regularization is a method for the approximation of infinite
activity jump processes by finite activity processes and possibly an appropriately scaled
diffusion. This purely probabilistic tool plays an important role in the discretization
of the pricing equation, as it enables us to use discontinuous basis functions for the
discretization in state space. Additionally, localization estimates for the pricing equa-
tions are presented, rigorously justifying the approximation of the pricing equations on
a bounded domain. In Chapter 5 different well-posedness results are proved for pro-
cesses with spatially inhomogeneous jump measures with or without drift dominance.
Moreover, an analysis of partial integro-differential equations arising from the small
jump regularization is given. In the next chapter the triangulation and the choice of
wavelet bases are outlined. It turns out that Riesz bases for the domains of the gener-
ators for some market models can be constructed, allowing for efficient solution of the
equations and efficient preconditioning. Chapter 7 provides a rigorous error analysis
for the various types of time-homogeneous partial integro-differential equations consid-
ered in this thesis, CG schemes with and without streamline diffusion are analyzed as
well as DG schemes with and without small jump regularization. In the subsequent
chapter the numerical quadratures and the time stepping scheme are discussed. For the
time-stepping the θ-scheme is proposed. Chapter 9 provides well-posedness results for
time-inhomogeneous pricing equations with weakly degenerate coefficients. In the fol-
lowing chapter the results of Chapters 7 and 8 are extended to the time-inhomogeneous
setting. Space-time discretizations using CG and DG in time are analyzed. American
options for time-homogeneous models are addressed subsequently. Finally, numerical
results and an outlook are given.
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2 Preliminaries

In this chapter definitions and basic results that are needed throughout the thesis are
given. We introduce pseudodifferential operators and variable order Sobolev spaces.
Pseudodifferential operators are generators of the market models considered here and
variable order Sobolev spaces correspond to the domains of the arising Dirichlet forms.
Besides the definition of a Lévy copula is given, which is crucial for parametric construc-
tions of multidimensional jump measures.

2.1 Pseudodifferential operators

The following section introduces a class of stochastic processes that are considered in this
work. It turns out that the processes are characterized via the symbol of their generator.
Throughout we consider adapted stochastic processes X on a complete filtered proba-
bility space (Ω,F ,F,P) satisfying the usual assumptions, see [93]. Semimartingales are
a well-investigated class of stochastic processes that is sufficiently rich to include most
of the stochastic processes commonly employed in financial modeling while still being
closed under various operations such as conditional expectations and stopping. Semi-
martingales can be well understood via their (generally stochastic) semimartingale char-
acteristic, we refer to the standard reference [72] for details. Here, we restrict ourselves
to a class of processes with deterministic, but generally time- and state-space dependent
characteristic triplets including Lévy processes, affine processes and many local volatility
models. The time-homogeneous case is analyzed in the first part of this section, while
extensions to certain types of time-inhomogeneity are discussed in a second part.

2.1.1 Time-homogeneous processes

We consider a Markov process X and the corresponding family of linear operators (Ts,t)
for 0 ≤ s ≤ t <∞ given by

(Ts,t(f))(x) = E[f(X(t))|X(s) = x],

for each f ∈ Bb(R
d), x ∈ Rd. Here Bb(R

d) denotes the space of bounded Borel mea-
surable functions on Rd. In the following we call Markov processes, whose semigroups
satisfy

Ts,t(Bb(R
d)) ⊂ Bb(R

d), (2.1)

5



2 Preliminaries

normal and recall the following properties:

(i) Ts,t is a linear operator on Bb(R
d) for each 0 ≤ s ≤ t <∞.

(ii) Ts,s = I for each s ≥ 0.

(iii) Tr,sTs,t = Tr,t, whenever 0 ≤ r ≤ s ≤ t <∞.

(iv) f ≥ 0 implies Ts,tf ≥ 0 for all 0 ≤ s ≤ t <∞ and f ∈ Bb(R
d).

(v) ‖Ts,t‖ ≤ 1 for each 0 ≤ s ≤ t <∞, i.e. Ts,t is a contraction.

(vi) Ts,t(1) = 1 for all t ≥ 0.

If we restrict ourselves to time-homogeneous Markov processes satisfying (2.1), we ob-
tain directly from the above properties that the family of operators Tt := T0,t forms a
positivity preserving contraction semigroup. The infinitesimal generator A with domain
D(A) of such a process X with semigroup (Tt)t≥0 is defined by the strong pointwise
limit

Au := lim
t→0+

1

t
(Ttu− u) (2.2)

for all functions u ∈ D(A) ⊂ Bb(R
d) for which the limit (2.2) exists with respect to the

sup-norm. We call (A,D(A)) generator of X. Generators of normal Markov processes
admit the positive maximum principle, i.e.,

if u ∈ D(A) and sup
x∈Rd

u(x) = u(x0) > 0, then (Au)(x0) ≤ 0. (2.3)

Furthermore, they admit a pseudodifferential representation (e.g. [17, 34, 69, 70]):

Theorem 2.1.1. Let A be an operator with domain D(A), where C∞
0 (Rd) ⊂ D(A) and

A(C∞
0 (Rd)) ⊂ C(Rd), where C∞

0 (Rd) denotes the space of smooth functions with support
compactly contained in Rd. Then A|C∞

0 (Rd) is a pseudodifferential operator,

(Au)(x) := −(2π)−d/2
∫

Rd

ψ(x, ξ)û(ξ)eix·ξdξ, (2.4)

where u ∈ C∞
0 (Rd) and û is the Fourier transform of u. The symbol ψ(x, ξ) : Rd×Rd → C

is locally bounded in (x, ξ). The function ψ(·, ξ) is measurable for every ξ and ψ(x, ·) is a
negative definite function for every x, which admits the Lévy-Khintchine representation

ψ(x, ξ) = c(x)− ib(x) · ξ + 1

2
ξ ·Q(x)ξ (2.5)

+

∫

06=z∈Rd

(
1− eiz·ξ +

iz · ξ
1 + |z|2

)
ν(x, dz).

Here c : Rd → R+, b : R
d → Rd and Q : Rd → Rd×d are functions, Q(x) is symmetric

positive semidefinite for all x ∈ R and ν(x, ·) is a measure on Rd for fixed x ∈ R with
∫

z 6=0
(1 ∧ |z|2)ν(x, dz) <∞. (2.6)

6



2.1 Pseudodifferential operators

The tuple (c(x), b(x), Q(x), ν(x, dz)) in (2.5) is called characteristics of the Markov pro-
cess X. We sometimes denote A by −ψ(x,D). In the following we set c(x) = 0 for
notational convenience and restrict ourselves to a certain kind of normal Markov pro-
cesses, so called Feller processes ([4, Theorem 3.1.8] states (2.1) for Feller process, see
also [99, p.83]). These can be defined via the semigroup (Tt)t≥0 generated by the corre-
sponding process X. A semigroup (Tt)t≥0 is called Feller if it satisfies

(i) Tt maps C∞(Rd), the continuous functions on Rd vanishing at infinity, into itself:

Tt : C∞(Rd) → C∞(Rd) boundedly.

(ii) Tt is strongly continuous, i.e., limt→0+ ‖u− Ttu‖L∞(Rd) = 0 for all u ∈ C∞(Rd).

Spatially homogeneous Feller processes are Lévy-processes (e.g.[12, 103]). Their charac-
teristics, the Lévy characteristics, do not depend on x explicitly.

Example 2.1.2. A standard Brownian motion has the characteristics (0, 1, 0). An R-
valued Lévy process has characteristics (b,Q, ν(dz)), for real numbers b, Q ≥ 0 and a
jump measure ν with

∫
06=z∈R min(1, z2)ν(dz) <∞.

It is interesting to ask which symbols correspond to PDOs that are generators of Feller
processes. This problem is discussed in the following theorem due to [104].

Theorem 2.1.3. Let ψ : Rd × Rd → C be a negative definite symbol, i.e., a measurable
and locally bounded function in both variables (x, ξ) that admits for each x ∈ Rd a Lévy-
Khinchine representation (2.5). If

(a) supx∈Rd |ψ(x, ξ)| ≤ κ(1 + |ξ|2) for all ξ ∈ Rd,

(b) ξ 7→ ψ(x, ξ) is uniformly continuous at ξ = 0,

(c) x 7→ ψ(x, ξ) is continuous for all ξ ∈ Rd,

then (−ψ(x,D), C∞
0 (Rd)) extends to a Feller generator.

Remark 2.1.4. Note that Theorem 2.1.3 does not imply the uniqueness of the process.
We show well-posedness of the pricing equations in Chapter 5. For the existence of a
solution it is sufficient to require (a) from Theorem 2.1.3 and ψ(x, 0) = 0 for all x ∈ Rd,
cf. [62, Theorem 3.15], (b) and (c) are required to obtain a Feller process.

In the Lévy case existence of a Lévy process can be proven for any Lévy symbol. This
does not hold for Feller processes. For (financial) applications it is more convenient to
consider the characteristic triplet instead of the symbol. We therefore make the following
assumption on the characteristic triplet in the remainder.

Assumption 2.1.5. The characteristic triplet (b(x), Q(x), ν(x,dz)) of a Feller process
in Rd satisfies the following conditions:

7



2 Preliminaries

(I) (b(x), Q(x), ν(x,dz)) is a Lévy triplet for all fixed x ∈ Rd.

(II) The mapping x 7→
∫
B∩Rd\{0}(1 ∧ |z|2)ν(x, dz) is continuous for all B ∈ B(Rd).

(III) There exists a Lévy measure ν(z) s.t.

0 ≤
∫

B∩Rd\{0}
(1 ∧ |z|2)ν(x, dz) ≤

∫

B∩Rd\{0}
(1 ∧ |z|2)ν(dz) <∞,

for all x ∈ Rd, B ∈ B(Rd).

(IV) The functions x 7→ b(x) and x 7→ Q(x) are continuous and bounded.

Our aim is to conclude that there exists a Feller process whose generator is a PDO for
symbols that satisfies Assumption 2.1.5. Therefore, it suffices to validate the prerequi-
sites of Theorem 2.1.3.

Lemma 2.1.6. Let (b(x), Q(x), ν(x, dz)) be the characteristic triplet of a process X taking
values in Rd that satisfies Assumption 2.1.5. Then (−ψ(x,D), C∞

0 (Rd)) extends to a
Feller generator, where ψ(x, ξ) is given by

ψ(x, ξ) = −ib(x) · ξ + 1

2
ξ ·Q(x)ξ (2.7)

+

∫

Rd\{0}

(
1− eiz·ξ +

iz · ξ
1 + |z|2

)
ν(x,dz).

Proof. Condition (I) of Assumption 2.1.5 implies that the corresponding Feller symbol
is negative definite. Conditions (III) and (IV) imply (a) of Theorem 2.1.3, Conditions
(II) and (III) imply (b), and (c) follows from (II) and (IV).

Remark 2.1.7. Note that real price market models, as well as Ornstein-Uhlenbeck models
do not fit into our modeling framework due to Assumption (a) in Theorem 2.1.3, as they
do not admit a uniform estimate in the state space variable. The numerical methods
presented in the following can in many cases be straightforwardly extended to this kind
of models.

In order to apply available tools from pseudodifferential calculus we need to impose
stronger assumptions on the characteristic triplets of the considered processes. We state
the assumptions needed at the end of Chapter 3. In particular smoothness of the char-
acteristic triplet in the state variable x. Numerical experiments indicate strongly that
these assumptions can be weakened (see Chapter 12).
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2.1 Pseudodifferential operators

2.1.2 Time-inhomogeneous processes

In this section we drop the assumption of time-homogeneity of the processes consid-
ered and extend the framework developed above to a time-dependent setting. Using
the notation from the last section, we consider a normal Markov process X with the
corresponding family of linear operators Ts,t. The family of generators of such a process
is given by

Asu := lim
h→0+

1

h
(Ts−h,su− u) (2.8)

for all functions u ∈ D(As) ⊂ Bb(R
d), such that the limit exists in the strong pointwise

sense. In analogy to Theorem 2.1.1 we obtain the following result:

Theorem 2.1.8. Let (As,D(As))s∈R+ be a family of operators with C∞
0 (Rd) ⊂ D(As) and

As(C
∞
0 (Rd)) ⊂ C(R). Then As|C∞

0 (Rd) is a pseudodifferential operator for all s ∈ R+

given by

(Asu)(x) := −(2π)−d/2
∫

Rd

ψ(s, x, ξ)û(ξ)eix·ξdξ

for u ∈ C∞
0 (Rd). The symbol ψ(s, x, ξ) : R+ × Rd × Rd → C is locally bounded in (x, ξ).

Besides, ψ(s, ·, ξ) is measurable for every ξ, s and ψ(s, x, ·) is a negative definite function
for every (s, x), which admits the Lévy-Khintchine representation

ψ(s, x, ξ) = c(s, x)− ib(s, x) · ξ + 1

2
ξ ·Q(s, x)ξ

+

∫

06=z∈Rd

(
1− eiz·ξ +

iz · ξ
1 + |z|2

)
ν(s, x, dz).

The question arises if we can construct a Markov process with corresponding generator
for a given symbol. A general result under mild regularity assumptions on the symbol
has been given by [18].

Theorem 2.1.9. Let ψ : R+ ×Rd ×Rd → C be a negative definite function that satisfies
the following conditions for a constant m ∈ R, α, β ∈ Nd0

(i) ψ(·, x, ξ) is a continuous function for all x, ξ ∈ Rd,

(ii) ψ(s, x, 0) = 0 holds for all (s, x) ∈ R+ × Rd,

(iii)
∣∣∣Dβ

xDα
ξ ψ(s, x, ξ)

∣∣∣ ≤ cα,β,J(1 + |ξ|2)(m−|α|∧2)/2 holds for all s ∈ J ⊂ R+, x, ξ ∈ Rd,

(iv) a is elliptic, i.e., on any compact set K it holds uniformly in s that:

there exists R, c > 0, such that ∀x ∈ Rd,

|ξ| ≥ R : ℜ(ψ(s, x, ξ)) ≥ c(1 + |ξ|2)m/2.

9



2 Preliminaries

Then a Markov process whose family of generators are pseudodifferential operators with
symbol ψ(s, x, ξ) can be constructed.

Proof. The proof follows from [18, Theorem 4.2, Corollary 4.3].

Theorem 2.1.9 can be formulated in a more general setting replacing |ξ|2 in Condition
(iii) and (iv) by any element from a certain class of negative definite functions, cf. [18,
Definition 1.2].

Remark 2.1.10. Assumptions (iii) and (iv) in Theorem 2.1.9 significantly restrict the
range of market models, as a uniform time-dependence is required and degeneracies in the
coefficients are ruled out. Weakly degenerate behavior of the coefficients in the generators
requires appropriate weak time formulations in order to obtain a well-posed problem.
This is discussed in the following. Besides, due to the independence of the exponent
of (1 + |ξ|) of β in (iii) in Theorem 2.1.9, the space dependence is to be seen as a
local fluctuation. This is significantly more restrictive than the setup in Section 2.1.1.
Time-inhomogeneous admissible market models are defined in Section 3.3.

2.2 Variational formulation of parabolic problems

2.2.1 Variable order Sobolev spaces

For later use we shall introduce anisotropic and variable order Sobolov spaces. We start
with the definition of fractional order isotropic spaces and define for a positive non-integer
s ≥ 0 and u ∈ S∗(Rd), where S∗(Rd) denotes the space of tempered distributions,

‖u‖2Hs(Rd) :=

∫

Rd

(1 + |ξ|2)s |û(ξ)|2 dξ. (2.9)

Similarly, we can define anisotropic Sobolev spaces Hs(Rd) with norm ‖·‖Hs(Rd) given
by

‖u‖2Hs(Rd) :=

∫

Rd

d∑

j=1

(1 + ξ2j )
sj |û(ξ)|2 dξ, (2.10)

for any multiindex s ≥ 0. The consideration of certain symbol classes will be useful
for the definition of the variable order Sobolev spaces. We set 〈ξ〉 := (1 + |ξ|2)1/2 for
notational convenience.

Definition 2.2.1. Let 0 ≤ δ < ρ ≤ 1 and let m(x) ∈ C∞(Rd) be a real-valued function
with bounded derivatives on Rd of arbitrary order. Then, the symbol ψ(x, ξ) belongs

to the class S
m(x)
ρ,δ of symbols of variable order m(x) if a(x, ξ) ∈ C∞(Rd × Rd) and

10



2.2 Variational formulation of parabolic problems

m(x) = s+ m̃(x) with m̃ ∈ S(Rd) a tempered function, and if, for every α, β ∈ Nd0 there
is a constant cα,β such that

∀x, ξ ∈ Rd : |Dβ
xD

α
ξ ψ(x, ξ)| ≤ cα,β〈ξ〉m(x)−ρ|α|+δ|β|. (2.11)

The variable order pseudodifferential operators A(x,D) ∈ Ψ
m(x)
ρ,δ correspond to symbols

ψ(x, ξ) ∈ Sm(x)
ρ,δ by

A(x,D)u(x) :=
1

2π

∫

Rd

∫

Rd

ei(x−y)·ξψ(x, ξ)u(y)dydξ, u ∈ C∞
0 (Rd). (2.12)

We are now able to define an isotropic Sobolev space of variable orderHm(x)(Rd),m(x) ≥
0, using the variable order Riesz potential Λm(x) with symbol ψ(x, ξ) = 〈ξ〉m(x). Clearly

ψ(x, ξ) is an element of S
m(x)
1,δ for δ ∈ (0, 1). A norm ‖·‖Hm(x)(Rd) on H

m(x)(Rd) is given
by

‖u‖2Hm(x)(Rd) :=
∥∥∥Λ2m(x)u

∥∥∥
2

L2(Rd)
+ ‖u‖2L2(Rd) .

Note that for ψ(x, ξ) = 1, we obtain the usual L2(Rd) norm. For ψ(x, ξ) = (1 + |ξ|s)
we obtain the norm given in (2.9), which follows applying Plancherel’s theorem. Now
we turn to the definition of anisotropic variable order Sobolev spaces. In analogy to
Definition 2.2.1 we start with the definition of an appropriate symbol class.

Definition 2.2.2. Let m(x) = s+ m̃(x), m̃(x) : Rd → Rd with each component of m̃(x)

being a tempered function and s ∈ Rd+, 0 ≤ δ < ρ ≤ 1. We define the symbol class S
m(x)
ρ,δ

as the set of all ψ(x, ξ) ∈ C∞(Rd × Rd) such that for all multiindices α, β ∈ Nd0 there
exists a constant Cα,β > 0 with

∀x, ξ ∈ Rd :
∣∣∣Dβ

xD
α
ξ ψ(x, ξ)

∣∣∣ ≤ Cα,β

d∑

i=1

(1 + ξ2i )
(mi(x)−ραi+δ|β|)/2. (2.13)

An anisotropic Sobolev space of variable order can now be defined using the variable
order Riesz potential Λm(x) with symbol ψ(x, ξ) = 〈ξ〉m(x) :=

∑n
i=1(1 + ξ2i )

1
2
mi(x),

mi(x) ≥ 0, i = 1, . . . , d. Clearly, ψ(x, ξ) is an element of S
m(x)
1,δ for δ ∈ (0, 1). The

norm on Hm(x)(Rd) is given by

‖u‖2Hm(x)(Rd) :=
∥∥∥Λ2m(x)u

∥∥∥
2

L2(Rd)
+ ‖u‖2L2(Rd) .

There is an alternative representation of the above space, whenm(x) admits the following
representation m(x) = (m1(x1), . . . ,md(xd)). This will be very useful for the proof
of norm equivalences, which play a crucial role in wavelet discretization theory. We

11
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consider the anisotropic Sobolev spaces H
mi(xi)
i (Rd) of variable order mi(xi) in direction

xi, equipped with the norms ‖·‖
H

m(x)
i (Rd)

given by

‖u‖2
H

m(x)
i (Rd)

:=
∥∥∥Λ2mi(xi)

i u
∥∥∥
2

L2(Rd)
+ ‖u‖2L2(Rd) ,

where Λ
mi(xi)
i is a pseudo-differential operator with symbol (1+|ξi|)mi(xi). It then follows

by the elementary inequality

C1

∣∣∣∣∣
d∑

i=1

ai

∣∣∣∣∣

2

≤
d∑

i=1

a2i ≤ C2

∣∣∣∣∣
d∑

i=1

ai

∣∣∣∣∣

2

,

with ai > 0 and C1, C2 only dependent on d, that

‖u‖2Hm(x)(Rd) ∼
d∑

j=1

‖u‖2
H

mj (xj )

j (Rd)
, (2.14)

and therefore

Hm(x)(Rd) =

d⋂

j=1

H
mj(xj)
j (Rd). (2.15)

On the bounded set D = (a,b) =
∏d
i=1(ai, bi) ⊂ Rd we define for a variable order m(x),

a ≤ x ≤ b the space

H̃m(x)(D) :=
{
u|D

∣∣∣ u ∈ Hm(x)(Rd), u|Rd\D = 0
}
.

This space coincides with the closure of C∞
0 (D) (the space of smooth functions with

support compactly contained in D) with respect to the norm

‖u‖
H̃m(x)(D)

:= ‖ũ‖Hm(x)(Rd), (2.16)

where ũ is the zero extension of u to all of Rd. The spaces of order m(x) ≤ 0, ∀x ∈ Rd,
are defined by duality. We have

Hm(x)(D) := (H̃−m(x)(D))∗,

where duality is understood with respect to the “pivot” space L2(D), i.e., L2(D)∗ ∼=
L2(D).

Remark 2.2.3. In the BS case H1(Rd) is obtained as the domain of the Dirichlet form
while H1

0 (D) is the domain in the localized case. In the Lévy case we obtain anisotropic

Sobolev spaces as in (2.10) and the spaces H̃s(D) in the localized case for Q = 0. For
Q > 0 the domains are equal to those in the BS case, cf. [95, Theorem 4.8].
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2.2.2 Notions of solutions of parabolic PIDEs

In this section we present different notions of solutions of parabolic PIDEs. Classical
solutions of certain PDEs, as defined in the following, may not exist or their existence
may be hard to show. Therefore different notions of solutions have been developed
in the literature, such as variational solutions, weak space-time solutions, ultra weak
solutions, mild solution or viscosity solutions. We discuss some of them, as different
notions of solutions are used throughout this work. The notion of a classical solution
is discussed first. Given some f ∈ C0([0, T ] × Rd) and g ∈ C0(Rd), find some function
u ∈ C0([0, T ] × Rd) ∩ C1,2((0, T ) × Rd) such that

∂tu−Au = f in (0, T ) × Rd

u(0) = g in Rd,

for some second order linear integrodifferential operator A and T > 0. In the following
we briefly outline the standard variational setting for parabolic equations which was
applied in, e.g., [95, 113]. Let V ⊂ H be two Hilbert spaces with continuous and dense
embedding. We identify H with its dual H∗ and obtain the Gelfand triple

V ⊂ H ≡ H∗ ⊂ V∗.

The space V is in this setting the domain of a certain bilinear form a(·, ·) associated to
an operator A. Let (A,D(A)) be a densely defined operator on H = L2(Rd) which is
negative definite, cf. [69, Definition 4.6.10] and satisfies

|(−Au, v)| ≤ C (−Au, u)1/2 (−Av, v)1/2 ,

where (·, ·) denotes the L2(Rd) scalar product and u, v ∈ D(A). Then we may introduce
on D(A) the bilinear form

a(u, v) := (−Au, v).

The bilinear form ã(·, ·) given as

ã(u, v) := asym(u, v) + (u, v) =
1

2
(a(u, v) + a(v, u)) + (u, v)

defines a scalar product and we may consider the completion of D(A) with respect
to ã(·, ·), which is denoted by D(a(·, ·)). The following abstract well-posedness result
holds.

Theorem 2.2.4. Let the bilinear form a(·, ·) : V ×V → R satisfy the following properties.
There exist some constants C1, C2 > 0 and C3 ≥ 0 such that for all u, v ∈ V there holds

|a(u, v)| ≤ C1 ‖u‖V ‖v‖V ,
a(u, u) ≥ C2 ‖u‖2V − C3 ‖u‖2H .
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Then the following abstract parabolic problem admits a unique solution.
Find u ∈ L2((0, T );V) ∩H1((0, T );V∗) such that

(∂tu, v)V∗,V + a(u, v) = (f, v)V∗,V ,∀v ∈ V, a.e. in (0, T ), (2.17)

u(0) = g, (2.18)

with g ∈ H, f ∈ L2((0, T );V∗) and T > 0.

Proof. See [80, Theorem 4.1].

For an infinitesimal generator A of a Markov process X the bilinear form a(·, ·) is closely
linked to its Dirichlet form, cf. [69, Definition 4.7.21]

Remark 2.2.5. Note that pure transport operators and time-inhomogeneous operators do
not fit into this framework and have to be analyzed using different techniques.

Besides, different notions of solutions are necessary in these cases and therefore weak
space-time formulations are used for time-inhomogeneous equations. The idea of a weak
space-time formulation is analogous to a variational formulation in space, where the
differentiability requirements on the solution are reduced in comparison to a classical
solution by an integration over the spatial domain and application of integration by
parts. Let us consider functions u, v ∈ C1(I,V), then

∫ T

0
(∂tu(t), v(t))L2(D)dt = −

∫ T

0
(u(t), ∂tv(t))L2(D)dt+ (u(t), v(t))L2(D)|T0 .

A weak space-time formulation reads
Find u ∈ L2((0, T );V) such that

B(u, v) = f2(v), (2.19)

B(u, v) =

∫ T

0
(−(u(t), ∂tv(t))V ,V∗ + a(u(t), v(t))) dt, (2.20)

f2(v) =

∫ T

0
(v(t), f(t))V ,V∗dt+ (g, v(0))H (2.21)

with g ∈ H, f ∈ L2((0, T );V∗) and for all v ∈ L2((0, T );V) ∩H1((0, T );V∗), v(T ) = 0 ∈
H. The initial condition is enforced weakly and the regularity of the solution in time
is weaker than in the variational setting in this formulation. We remark that different
space-time formulations are also admissible and refer to Chapter 9 for details, where
weighted spaces in time are used to obtain a feasible formulation.
A different notion of solutions are mild solutions which arise in the context of semigroup
theory. We consider the following inhomogeneous initial value problem. Find u(t) such
that

∂tu−Au = f, t ∈ (0, T ] (2.22)
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u(0) = g. (2.23)

We assume A to be the generator of a C0 semigroup T (t), f ∈ L1((0, T );H) and g ∈ H.
Then a function u ∈ C0([0, T ];H) given as

u(t) := T (t)g +

∫ t

0
T (t− s)f(s)ds

is called a mild solution. Under some regularity assumptions on f and g, we obtain
u(t) ∈ C0([0, T ];D(A)) ∩ C1((0, T ];H). We remark that the spatial regularity of a mild
solution under some assumptions on the initial data the right hand side is stronger
compared to a variational solution as given in (2.17)-(2.18).

2.3 Lévy copulas

In this section some basic definitions and results on Lévy copulas are given. Lévy copulas
play a crucial role in the definition of admissible multidimensional market models, as the
multivariate jump measure are constructed using a Lévy copula. Alternatively, multidi-
mensional Lévy and Feller processes could be constructed in analogy to the univariate
setting via subordination. We refer to [89] for a thorough introduction to copulas and to
[75] for details on Lévy copulas. We start with the definition of the F -volume, cf. [89,
Definition 2.10.1].

Definition 2.3.1. The F -volume of (a, b], a, b ∈ R
d
for a function F : G → R, G ⊂ R

d

is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}
(−1)N(u)F (u),

where N(u) = |{k : uk = ak}|.

For the definition of a Lévy copula we need the concept of a d-increasing function.

Definition 2.3.2. A function F : G → R is called d-increasing if VF ((a, b]) ≥ 0 for all
a, b ∈ G with a ≤ b and (a, b] ⊂ G.

Marginal distributions play a crucial role in financial modeling and are especially impor-
tant for the calibration of models.

Definition 2.3.3. Let F : R
d → R

d
be a d-increasing function which satisfies F (u) = 0

if ui = 0 for at least one i ∈ {1, . . . , d} the I-margin of F is the function F I : R
|I| → R

F I(uI) := lim
a→∞

∑

(uj)j∈Ic∈{−a,∞}|I|c


∏

j∈Ic
sgnuj


F (u1, . . . , ud).
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We also need the tail integrals of a Feller process.

Definition 2.3.4. Let X be a Feller process with state space Rd and jump measure
ν(x, dz). The tail integral of X is the function U : Rd × Rd\{0} given by

U(x1, . . . , xd, z1, . . . , zd) =

d∏

i=1

ν(x1, . . . , xd,

d∏

j=1

I(zj)),

where

I(z) =

{
(z,∞) for z ≥ 0

(−∞, z) for z < 0
.

Furthermore, for I ⊂ {1, . . . , d} nonempty the I-marginal tail integral UI of X is the
tail integral of the process XI = (Xi)i∈I .

After these preparations, we define a Lévy copula as follows.

Definition 2.3.5. A function F : R
d → R is called Lévy copula if

(i) F (u1, . . . , ud) 6= ∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

(ii) F (u1, . . . , ud) = 0 for ui = 0 for at least one i ∈ {1, . . . , d},

(iii) F is d-increasing,

(iv) F {i}(u) = u for any i ∈ {1, . . . , d}, u ∈ R.

For the definition of an admissible market model some spatial homogeneity of the copula
function are required.

Definition 2.3.6. A Lévy copula is called 1-homogeneous if for any r > 0 there holds

F (ru1, . . . , rud) = rF (u1, . . . , ud).

We conclude with some examples of Lévy copulas, cf. [75].

Example 2.3.7.

(i) Independence Lévy copula

F (u1, . . . , ud) =

d∑

i=1

ui
∏

j 6=i
1{∞}(uj).
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(ii) Complete dependence Lévy copula

F (u1, . . . , ud) = min{|u1| , . . . , |ud|}1K(u1, . . . , ud)
d∏

j=1

sgnuj,

where K := {x ∈ Rd : sgn(x1) = . . . = sgn(xd)}.
(iii) Clayton Lévy copulas

F (u) = 22−d
(

d∑

i=1

|ui|−ϑ
)− 1

ϑ (
η1{u1···ud≥0} − (1− η)1{u1···ud}

)
,

where ϑ > 0 and η ∈ [0, 1].
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3 Examples of market models

Several examples of Feller processes and time-inhomogeneous processes are provided in
this chapter. The methods presented in this work are not applicable to all of them. But
admissible market models are derived ensuring the well-posedness of the corresponding
pricing equations and the applicability of finite element methods. Subordination can be
used to construct Feller processes. However, the structure of the symbol is more involved
than in the Lévy setting. We also present a construction of Feller processes using Lévy
copulas. Finally, time-inhomogeneous Lévy models, which were not covered in Section
2.1.2 due to the possibly degenerate behavior of their symbols in time, are discussed.

3.1 Subordination

Many Lévy models in the context of option pricing are constructed via subordination
of a Brownian motion by a corresponding stochastic clock, e.g., an NIG process [6] or a
VG process [81]. We describe a similar construction for Feller processes and point out
similarities and differences to the Lévy case. Bernstein functions play a crucial role in
the representation of subordinators.

Definition 3.1.1. A function f(x) ∈ C∞(0,∞) is called a Bernstein function if

f ≥ 0, (−1)k
∂kf(x)

∂xk
≤ 0, ∀k ∈ N.

Example 3.1.2. The functions f1(x) = c, f2(x) = cx and f3(x) = 1 − e−cx, c ≥ 0 are
Bernstein functions.

Bernstein functions admit the following representation.

Theorem 3.1.3. Let f(x) be a Bernstein function, then there exists a measure µ on
(0,∞), with

∫ ∞

0+

s

1 + s
µ(ds) <∞

such that for x > 0 and positive constants a, b

f(x) = a+ bx+

∫ ∞

0+
(1− e−xs)µ(ds).
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Proof. See [69, Theorem 3.9.4].

If we choose a Lévy process as subordinator, Bernstein functions allow for a nice char-
acterization of the process. Subordinators can be described via their convolution semi-
group.

Definition 3.1.4. A family (ηt)t≥0 of bounded Borel measures on R is called convolution
semigroup on R if the following conditions are fulfilled

1. ηt(R) ≤ 1, for all t ≥ 0,

2. ηs ∗ ηt = ηs+t, s, t ≥ 0 and µ0 = δ0,

3. ηt → δ0 vaguely as t → 0,

here δ0 denotes the Dirac measure at 0. By vague convergence of a sequence (ηt)t>0

of measures to η0 we mean that for all continuous functions with compact support u ∈
C0(R), we have

lim
t→0

∫

R

u(x)ηt(dx) =

∫

R

u(x)η0(dx).

The relation between convolution semigroups and Bernstein function is given in the
following theorem.

Theorem 3.1.5. Let f : (0,∞) → R be a Bernstein function. Then there exists a unique
convolution semigroup (ηt)t≥0 supported on [0,∞) such that

L(ηt)(x) = e−tf(x), x > 0 and t > 0, (3.1)

holds, where L denotes the Laplace transform, i.e., L(ηt)(x) :=
∫∞
0 e−zxηt(dz), for ap-

propriate ηt and x > 0. Conversely, for any convolution semigroup (ηt)t≥0 supported by
[0,∞) there exists a unique Bernstein function f such that (3.1) holds.

Proof. See [69, Theorem 3.9.7].

We recall the correspondence between convolution semigroups and Lévy processes.

Theorem 3.1.6. Let X be a Lévy process, where for each t ≥ 0 X(t) has law ηt, then
(ηt)t≥0 is a convolution semigroup.

Proof. See [4, Proposition 1.4.4].

The semigroup of a subordinated Feller processes can now be characterized.
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3.1 Subordination

Theorem 3.1.7. Let (Tt)t≥0 be a Feller semigroup on a Banach space H with generator
A, let f : (0,∞) → R be a Bernstein function and (ηt)t≥0 the associated convolution

semigroup on R supported on [0,∞). Define T ft u for u ∈ H by the Bochner integral

T ft u =

∫ ∞

0
Tsu ηt(ds). (3.2)

Then the integral is well-defined and (T ft )t≥0 is a Feller semigroup on H.

Proof. See [69, Theorem 4.3.1 and Corollary 4.3.4].

The representation (3.2) of T ft u can be used for numerical methods, but it involves the
approximation of an integral over a possibly semi-infinite interval, which can be very
costly if the integrand is not well-behaved. The generator Af of the semigroup (T ft )t≥0

is a PDO and its symbol is given as follows in the case of a spatially homogeneous
semigroup (Tt)t≥0 corresponding to a Lévy process X.

Theorem 3.1.8. Let (Tt)t≥0 be a Feller semigroup with generator A with constant symbol
ψ(ξ) and f(x) as in the previous theorem, then the symbol of ψf (ξ) of the generator Af

of the semigroup (T ft )t≥0 is given as

ψf (ξ) = f(ψ(ξ)).

Proof. See [4, Proposition 1.3.27].

The same characterization does not hold in the case of a more general subordinated
process. We obtain the following representation for Af .

Theorem 3.1.9. Let f and (Tt)t≥0 be as in Theorem 3.1.7. For all u ∈ D(A) we have
u ∈ D(Af ) and

Afu = au+ bAu+

∫ ∞

0
RλAuµ(dλ),

where Rλ denotes the resolvent of A, i.e., Rλu = (λ − A)−1u and a, b and µ(ds) are
defined in Theorem 3.1.3.

Proof. See [71, Theorem 2.15].

This representation is of limited use for computation and we therefore aim at a charac-
terization of the symbol of the PDO Af . We consider a certain symbol class as in [71].
Let L(x,D) be the differential operator given by

L(x,D) = −
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+ c(x),
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3 Examples of market models

where ai,j(x), 1 ≤ i, j ≤ d are continuously differentiable functions such that ai,j(x) =
aj,i(x) and

κ1 |ξ|2 ≤
d∑

i,j=1

ai,j(x)ξiξj ≤ κ2 |ξ|2

holds for all x ∈ Rd and ξ ∈ Rd for some constants 0 < κ1 ≤ κ2. Besides we assume

d∑

i=1

∂ai,j
∂xi

= 0,

for any j = 1, . . . , d and c(x) is a continuous and bounded function satisfying 0 < c ≤
c(x) ≤ c <∞. In this situation we obtain the following representation of Af = f(A) for
u ∈ D(A), A = L(x,D).

f(A)u = f(L(x, ξ))u+

∫ ∞

0
λRλKλ(x,D)uµ(dλ), (3.3)

where

Kλ(x,D) = (L(x,D) + λid) ◦ qλ(x,D)− id,

qλ(x, ξ) =
1

L(x, ξ) + λξ

and Rλ denotes the resolvent of A at λ. We remark that Kλ ≡ 0 for constant symbols
which proves Theorem 3.1.8. In general both terms in (3.3) have to be considered. We
refer to Carr [23] for a generalization of the VG model.

Remark 3.1.10. The consideration of symbols of the type a(x, ξ), where a(x, ξ) is a
Lévy symbol for all x ∈ R is therefore in general not equivalent to a construction via
subordination. This observation was made by [7], where some asymptotic expansion of
the difference in terms of the symbol under certain assumptions on the structure of the
process was provided.

3.2 Multivariate models arising from copulas

Unlike multivariate Lévy processes, cf. [75, Theorem 3.6], not all multivariate Feller pro-
cesses can be constructed in terms of univariate Feller processes using a homogeneous
copula construction. However, parametric constructions of multidimensional Feller pro-
cesses from the univariate margins of certain Feller processes and certain Lévy copulas
are still possible, provided the univariate Feller processes and the copulas meet certain
restrictions. The restrictions stem from the fact that smoothness conditions on the char-
acteristic triplet appear to be required in order to prove existence (and uniqueness) of a
corresponding Feller process, cf. [104]. Therefore it would be sufficient for the parametric
construction of d-dimensional Feller processes to prove that a symbol satisfies Assump-
tion 2.1.5. We only consider here the construction of a d-dimensional jump measure, as
the Gaussian part is well-known.
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3.2 Multivariate models arising from copulas

3.2.1 Copula functions

In the following an extension of Sklar’s theorem to certain types of Markov processes is
proved. Besides, some estimates on the tail behavior of the density of the jump measure
stemming from a copula construction are given. Such estimates are needed for the
construction of efficient quadratures for the numerical solution of the considered pricing
equations.

Theorem 3.2.1. Let F denote a d-dimensional Lévy copula for which the derivative

∂1 . . . ∂dF : R
d → R exists, is continuous and satisfies the following estimate

|∂nF (u)| ≤ C |n| |n|!min{|u1| , . . . , |ud|}
d∏

i=1

|ui|−ni ∀u ∈ Rd n ∈ Nd. (3.4)

Further let Ui(x, z), i = 1, . . . , d denote the tail integrals of real valued Feller processes
that satisfy Assumption 2.1.5 and, additionally, the following conditions:

∣∣∣∣
ki(x, z)

Ui(x, z)

∣∣∣∣ ≤ (C ∨ 1

|z|) ∀x, z ∈ R, (3.5)

and
∫

|z|>1
Ui(x, z) dz <∞, (3.6)

for C > 0 and i = 1, . . . , d. Then there exists an Rd-valued Feller process X whose
components have tail integrals U1, . . . , Ud and whose marginal tail integrals satisfy

U I ((xi)i∈I , (zi)i∈I) = F I ((U(xi, zi))i∈I)

for any non-empty I ⊂ {1, . . . , d}, any (zi)i∈I ∈ (R\{0})|I| and any (xi)i∈I ∈ R|I|. The
jump measure is uniquely determined by F and Ui, i = 1, . . . , d.

Proof. We follow closely the argumentation in [75]. As stated there, the argument is not
restricted to Lévy models but can be extended to more general processes.
Since F is d-increasing and continuous, we can conclude that there exists a unique

measure µ on R
d\{∞, . . . ,∞} such that VF ((a, b]) = µ((a, b]) for any a, b with a ≤ b.

For the univariate tail integrals U(x, z), we define

U−1(x, u) =

{
inf{z > 0 : u ≥ U(x, z)}, for u ≥ 0

inf{z < 0 : u ≥ U(x, z)} ∧ 0, for u < 0.

Let ν ′ = f(µ) be the image of µ under

f : (x, u1, . . . , ud) 7→ (U−1
1 (x1, u1), . . . , U

−1
d (xd, ud))
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3 Examples of market models

and let ν be the restriction of ν ′ to Rd × Rd\{0}. We need to prove that ν is a Lévy
measure for all x and that the marginal tail integrals U Iν satisfy

U Iν ((x)i∈I , (zi)i∈I) = F I((Ui(xi, zi))i∈I).

This implies (I) of Assumption 2.1.5. Furthermore, we must prove continuity of the Lévy
kernel in x (II) as well as boundedness in the sense of (III).
For ease of notation we assume that zi > 0, i ∈ I. Then

U Iν ((xi)i∈I , (zi)i∈I) = ν
(
(xi)i∈I , {ξ ∈ Rd\{0} : ξi ∈ (zi,∞), i ∈ I}

)

= µ
(
{u ∈ R

d
: U−1

i (xi, ui) ∈ (zi,∞), i ∈ I}
)

= µ
(
{u ∈ R

d
: 0 < ui < Ui(xi, zi), i ∈ I}

)

= µ
(
{u ∈ R

d
: 0 < ui ≤ Ui(xi, zi), i ∈ I}

)

= F I ((Ui(xi, zi))i∈I) .

This proves in particular that the univariate marginal tail integrals of ν equal U1, . . . , Ud.
Since the margins of ν(x, z) are Lévy measures on R\{0} for all x ∈ Rd we obtain for
every x ∈ Rd:

∫

z∈Rd

(
|z|2 ∧ 1

)
ν(x, dz) ≤

∫

z∈Rd

d∑

i=1

(
z2i ∧ 1

)
ν(x, dz)

=

d∑

i=1

∫

zi∈R

(
z2i ∧ 1

)
νi(xi, dzi) <∞.

Hence, for x ∈ Rd, ν(x, ·) is a Lévy measure on Rd. For the second part of the proof we
use Remark 2.7 in [95] which leads to:

k(x, z1, . . . , zd) = ∂1 . . . ∂dF |ξ1=U1(x1,z1),...,ξd=Ud(xd,zd)k1(x1, z1) . . . kd(xd, zd). (3.7)

Using the properties of F and the margins we conclude (II) from Assumption 2.1.5.
It remains to prove (III) and (IV). Due to (3.4) we have the following estimate with
g := ∂1 . . . ∂dF :

k(x, z1, . . . , zd) (3.8)

= g(U1(x1, z1), . . . , Ud(xd, zd))k1(x1, z1) . . . kd(xd, zd)

≤ Cmin{|U1(x1, z1)| , . . . , |Ud(xd, zd)|}
d∏

i=1

|Ui(xi, zi)|−1
d∏

i=1

ki(xi, zi)

(3.5)

≤ Cmin{
∣∣U1(z1)

∣∣ , . . . ,
∣∣Ud(zd)

∣∣}
d∏

i=1

(
C ∨ 1

|zi|

)
. (3.9)
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3.2 Multivariate models arising from copulas

Using the properties of the νi(dz), for i = 1, . . . , d, we can conclude that (3.9) is a Lévy
measure and therefore (IV) is valid for k(x, z). Uniqueness of the jump measure follows
from the fact that it is uniquely determined by its marginal tail integrals (cf. [75, Lemma
3.5]).

We prove the following decay property of the jump density constructed according to the
above theorem. We need these estimates later to prove exponential convergence of the
numerical quadrature rules employed to approximate the discretized generator of the
Feller process.

Lemma 3.2.2. Let k(x, z) be constructed according to Theorem 3.2.1. Besides, we require
the following estimate on the derivatives of ki(x, z): there exists C > 0 s.t. ∀x ∈ R, z ∈
R\{0}

|∂nxki(x, z)| ≤ Cn+1n! |z|−Yi(x)−δn−1 , (3.10)

|∂nz ki(x, z)| ≤ Cn+1n! |z|−Yi(x)−n−1 , (3.11)

for some δ ∈ (0, 1) and

max
i=1,...,d

sup
xi∈R

Yi(xi) = Y < 2 as well as min
i=1,...,d

inf
xi∈R

Yi(xi) = Y > 0.

Then there exists C > 0 such that for all x ∈ Rd, ∀zi 6= 0, ∀n,m ∈ Nd0,

|∂mx ∂nz k(x, z)| ≤ C |n|+1 |m|! |n|! ‖z‖−Y∞

d∏

i=1

|zi|−ni−δmi−1 , ∀zi 6= 0,

for multiindices n,m ∈ Nd0

Proof. Using the formula of Faà di Bruno [101] it can be shown that
∣∣∂nxi (∂1 . . . ∂dF (U(x, z)))

∣∣

=

∣∣∣∣
∑ n!

m1! . . . mn!
(∂mxi∂1 . . . ∂dF )(U(x, z))

(
∂xiUi(x, z)

1!

)m1

. . .

(
∂nxiUi(x, z)

n!

)mn
∣∣∣∣

≤
∑

Cn+1
1

n!m!

m1! . . . mn!
‖z‖−Y∞

d∏

j

|zj|Y |zi|Y m |zi|−Ym1−δm1 . . . |zi|−Y mn−δnmn

≤ Cn+1
2 n! ‖z‖−Y∞ |zi|−δn

d∏

j=1

|zj |Y ,

where we sum over all multiindices (m1, . . . ,mn), m =
∑

imi with n =
∑n

i=1 imi. An
similar calculation leads to

|∂zi (∂1 . . . ∂dF (U(x, z)))| ≤ Cn+1
2 n! ‖z‖−Y∞ |zi|−n

d∏

j=1

|zj |Y .
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3 Examples of market models

Using the Leibniz rule we obtain

∣∣∂nxik(x, z)
∣∣

=
∣∣∂nxi (∂1 . . . ∂dF (U(x, z))k1(x1, z1) . . . kd(xd, zd))

∣∣

=

∣∣∣∣∣∣

n∑

j=1

n!

j!(n − j)!
∂jxi (∂1 . . . ∂dF (U(x, z)))∂n−jxi ki(xi, zi)

d∏

m=1,m6=d
km(xm, zm)

∣∣∣∣∣∣

≤ Cn+1
3 n!

n∑

j=1

‖z‖−Y∞ |zi|−jδ
d∏

j=1

|zj |Y |zi|−Y−1+δ(−n+j)
d∏

m=1,m6=i
|zm|−Y−1

≤ Cn+1
4 n! ‖z‖−Y∞ |zi|−nδ

d∏

m=1

|zm|−1 .

Analogously it is shown for all n ∈ N, 0 6= y ∈ Rd that

∣∣∂nzik(x, z)
∣∣ ≤ Cn+1

4 n! ‖z‖−Y∞ |zi|−n
d∏

m=1

|zm|−1 , (3.12)

which completes the proof.

3.2.2 A class of admissible market models

We now formulate the requirements for market models which are admissible for our
pricing schemes in terms of the marginals and the copula function. These requirements
not only ensure existence and uniqueness of a solution of the corresponding pricing
problem, but also ensure that the presented FEM based algorithms are feasible.

Definition 3.2.3. We call a d-dimensional Feller process with characteristic triplet
(γ(x), Q(x), ν(x, dz)) a time-homogeneous admissible market model if it satisfies the
following properties.

1. The function x 7→ b(x) ∈ Rd is smooth and bounded.

2. The function x 7→ Q(x) ∈ Rd×dsym is smooth and bounded and Q(x) is positive

semidefinite for all x ∈ Rd.

3. The jump measure ν(x, dz) is constructed from d independent, univariate jump
measures with a 1-homogeneous copula function F that fulfills the following esti-
mate: there is a constant C > 0 such that for all u ∈ (R\{0})d and all n ∈ Nd0 it
holds

|∂nF (u)| ≤ C |n|+1 |n|!min{|u1| , . . . , |ud|}
d∏

i=1

|ui|−ni
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3.2 Multivariate models arising from copulas

4. For the marginal densities νi(xi, dzi) = ki(x, z)dz the mapping xi 7→ νi(xi, B) is
smooth for all B ∈ B(R).

5. There exist univariate Lévy kernels ki(z), i = 1, ..., d, with semiheavy tails, i.e.,
which satisfy

ki(z) ≤ C

{
e−β

−|z|, z < −1

e−β
+z, z > 1,

(3.13)

for some constants C > 0, β− > 0 and β+ > 1. These Lévy kernels satisfy the
following estimates

0 ≤ νi(xi, B) ≤
∫

B
ki(z) dz ∀xi ∈ R, B ∈ B(R), i = 1, . . . , d.

6. Besides, we require the following estimate on the derivatives of ki(x, z)

|∂nxki(x, z)| ≤ Cn+1n! |z|−Yi(x)−δn−1 ,

|∂nz ki(x, z)| ≤ Cn+1n! |z|−Yi(x)−n−1 ,

for any δ ∈ (0, 1), for all 0 6= z, x ∈ R and Y < 2 as well as Y > 0, Yi(x) =
Ŷi + Ỹi(x), Ŷi ∈ R+ and Ỹi(x) ∈ S(R), i = 1, . . . , d.

7. Finally, we require F 0 to be a 1-homogeneous Lévy copula and k0i (xi, zi) to be
Yi(xi)-stable densities with tail integrals U0

i (xi, zi), i = 1, . . . , d such that

ki(x, z) ≥ Ck0i (x, z), ∀0 < |z| < 1,∀x ∈ R, i = 1, . . . , d

∂1 . . . ∂nF (U(x, z)) ≥ C∂1 . . . ∂nF
0(U0(x, z)) ∀0 < |z| < 1,

for some constant C > 0.

Remark 3.2.4. An admissible time-homogeneous market model as given in Definition
3.2.3 satisfies the requirements of Theorem 3.2.1, as (3.4) follows from (3), (3.5) from
(5)-(7) and (3.6) holds due to (5).

Remark 3.2.5. Note that the smoothness assumptions on Yi(xi), i = 1, . . . , d, are neces-
sary in order to obtain symbols as given in Definition 2.2.2. Such symbols are considered
as therefore the results of [97] can be used, that rely on pseudodifferential calculus for
symbols of variable order, cf. [63, 76]. The derivation of similar results for symbols with
lower regularity is open to our knowledge.

In the following lemma we characterize the symbol classes of admissible market models.
This is crucial for the well-posedness of the pricing equation as discussed in Chapter 5.
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3 Examples of market models

Lemma 3.2.6. The symbol ψ(x, ξ) of a time-homogeneous admissible market model in
the sense of Definition 3.2.3 given as

ψ(x, ξ) = −ib(x) · ξ + 1

2
ξ ·Q(x)ξ

+

∫

06=z∈Rd

(
1− eiz·ξ + iz · ξ

)
ν(x, dz)

is contained in the following symbol classes.




ψ(x, ξ) ∈ S2
1,δ for Q(x) ≥ Q0 > 0,

ψ(x, ξ) ∈ S
Y(x)
1,δ for Q = 0, γ = 0,

ψ(x, ξ) ∈ S
2m̃(x)
1,δ for Q = 0, γ 6= 0,

where δ ∈ (0, 1) and m̃i(xi) =
max (Yi(xi),1)

2 , i = 1, . . . , d.

Proof. We have, analogously to [95, Proposition 3.5],

∀ξ ∈ Rd :

∫

06=z∈Rd

(
1− eiξ·z + iz · ξ

)
ν(x, dz) ≤ C1

d∑

i=1

|ξi|Yi(xi)

for some positive constant C1, C2, C3 > 0. The following estimate holds for the diffusion
and the drift component:

∀ξ ∈ Rd :

∣∣∣∣
1

2
ξ ·Qξ

∣∣∣∣ ≤ C2

d∑

i=1

|ξi|2 and |ib(x)ξ| ≤ C3

d∑

i=1

|ξi| .

The removal of the drift is discussed in Chapter 5.

Remark 3.2.7. The partially degenerate case Q 6= 0, but Q ≯ 0 can be analysed as in
[95, Remark 4.9]. Note that in the case γ 6= 0 and Q = 0 additional assumptions on
the behavior of Yi(xi) at 1 are necessary in order to ensure the smoothness of m̃i(xi),
i = 1, . . . , d.

The infinitesimal generator A of a time-homogeneous admissible market modelX reads

Aϕ(x) = ATrϕ(x) +ABSϕ(x) +AJϕ(x)

ATrϕ(x) = b(x) · ∇ϕ,

ABSϕ(x) =
1

2
tr(Q(x)D2ϕ(x)),

AJϕ(x) =

∫

Rd

(ϕ(x+ z)− ϕ(x) − z · ∇ϕ(x)) ν(x, dz), (3.14)

for ϕ ∈ C∞
0 (Rd). Note that the (non-constant) symbol of the infinitesimal generator of

X does generally not coincide with the characteristic exponent of the process X, due to
the spatial inhomogeneity of X.
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3.2 Multivariate models arising from copulas

Remark 3.2.8. Note that the jump operator AJ admits a different representation for
finite variation processes, i.e., for Y < 1. In this situation

∫
Rd zν(x, dz) <∞ holds and

therefore the integral in (3.14) can be simplified to

AJϕ(x) = AJ−FVϕ(x) +ATr−FVϕ(x) (3.15)

=

∫

Rd

(ϕ(x+ z)− ϕ(x)) ν(x, dz)− b̃(x) · ∇ϕ(x),

where b̃(x) =
∫
Rd z ν(x, dz).

The corresponding bilinear forms read a(ϕ,ψ) = (Aϕ,ψ) = aTr(ϕ,ψ) + aBS(ϕ,ψ) +
aJ(ϕ,ψ), where

aJ(ϕ,ψ) = (AJϕ,ψ), aBS(ϕ,ψ) = (ABSϕ,ψ), aTr(ϕ,ψ) = (ATrϕ,ψ). (3.16)

The domain D(aJ(·, ·)) of the bilinear form aJ(·, ·) is a variable order Sobolev space as
introduced in Section 2.2.1, while D(aBS(·, ·)) = H1(Rd). This is shown by proving
G̊arding inequalities and continuity of the bilinear forms on the corresponding function
spaces. Such an approach is not feasible for the transport bilinear form aTr(·, ·). There-
fore one has to take special care of the transport dominated case, i.e., a setup with
vanishing diffusion and Y < 1. All these cases are treated in Chapter 5. We illustrate
the preceding, abstract developments with an example related to the so-called tempered-
stable class of Lévy processes which were advocated in recent years in the context of
financial modeling and a process of Ornstein-Uhlenbeck type.

Example 3.2.9 (Feller-CGMY). We consider a d-dimensional Feller process with Clayton
Lévy copula

F (u1, . . . , ud) = 22−d
(

d∑

i=1

|ui|ϑ
)− 1

ϑ (
ρ1{u1,...,ud≥0} − (1− ρ)1{u1,...,ud≤0}

)
,

where ϑ > 0, ρ ∈ [0, 1] together with CGMY-type densities

ki(x, z) = C(x)

(
e−β

−
i (x)|z|

|z|1+Yi(x)
1{z<0} +

e−β
+
i (x)|z|

|z|1+Yi(x)
1{z>0}

)
,

with smooth and bounded functions C(x) > 0, β−i (x) > 0, β+i (x) > 1 and 0 < Y i <
Yi(x) ≤ Y i < 2, Yi(x) sufficiently smooth, for i = 1, . . . , d. We assume the Gaussian
component Q(x) to be positive semidefinite, smooth and bounded. The drift b(x) is
assumed to be smooth and bounded. It is easy to see that this market model satisfies
properties (1), (2), (4)-(6) of the above definition. (3) and (7) follow analogously to the
proof of [113, Proposition 2.3.7].
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3 Examples of market models

Example 3.2.10. We consider an Ornstein-Uhlenbeck process X(t) with a pure jump
Lévy subordinator without drift as driver, i.e.,

dX(t) = −λ(X(t))dt+ dL(t),

for some globally Lipschitz function λ(x) : R → R. The Lévy process L(t) has character-
istic triplet (0, 0, ν(dz)), where ν(dz) is supported on R+. The corresponding infinitesi-
mal generator reads

Aϕ(x) = λ(x)ϕ′(x)−
∫

R+

(ϕ(x+ z)− ϕ(x)) ν(dz).

Due to the fact that L(t) is a subordinator we obtain a finite variation process X(t).
Note that this process does not satisfy property (1) and (7) of Definition 3.2.3, the
methods developed in the following are also applicable to such kind of equations. The
main difficulties in the treatment of the corresponding Kolmogorov equation resides in
the non-constant drift term and the support of the jump measure ν(dz). Both aspects
are addressed in subsequent chapters.

3.3 Time-inhomogeneous processes

In this section we consider time-inhomogeneous models with possibly degenerate co-
efficients in time. First, an extension of Lévy models is discussed. The theoretical
foundation is given in [77, 103], for applications we refer to [25]. We also outline the
fractional Brownian motion framework. This type of models has gained popularity over
the last decade, see [14], but does not fit into the semimartingale framework.

3.3.1 Time-inhomogeneous L évy processes

Definition 3.3.1. An adapted stochastic process X on a complete filtered probability space
with values in Rd is called a time-inhomogeneous Lévy process, if the following conditions
are satisfied:

(i) X has independent increments, i.e., X(t)−X(s) is independent of Fs, for 0 ≤ s <
t ≤ T .

(ii) For every t ∈ [0, T ] the law of X(t) is characterized by the characteristic function

E[eiu·X(t)] = exp

∫ t

0

(
iu · b(s))− 1

2
u ·Q(s)u

)
ds (3.17)

× exp

∫ t

0

(∫

Rd

(eiu·z − 1− iu · z1|z|≤1ν(s, dz))

)
ds.
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3.3 Time-inhomogeneous processes

Here b(s) ∈ Rd, Q(s) is a symmetric nonnegative-definite d × d matrix and ν(s, dz) is
a measure on Rd that integrates min (|z|2 , 1) and satisfies ν(s, {0}) = 0. Besides, the
coefficients satisfy

∫ T

0

(
|b(s)|+ ‖Q(s)‖+

∫

Rd

(min (|z|2 , 1))ν(s, dz)
)
ds <∞. (3.18)

We call (b(s), Q(s), ν(s, dz)) the characteristics of X. In the following we recall some
useful results for time-inhomogeneous Lévy processes, the proofs of the following lemmas
can be found in [77].

Lemma 3.3.2. The process X as given in Definition 3.3.1 is a semimartingale.

Proof. We repeat the argument of [77, Lemma 1.4]. We consider for u ∈ Rd the function
t 7→ ψ(t, u), where ψ(t, u) is given as

ψ(t, u) := logE[eu·X(t)] =

= exp

∫ t

0

(
iu · b(s)− 1

2
u ·Q(s)u

)
ds

× exp

∫ t

0

(∫

Rd

(eiu·z − 1− iu · z1|z|≤1ν(t, dz))

)
ds,

with X(t) as in Definition 3.3.1. Property (3.18) implies that t 7→ ψ(t, u) has finite
variation over finite intervals, therefore the same applies to t 7→ exp(ψ(t, u)) and [72,
Chapter II, Theorem 4.14] implies that X is a semimartingale.

The distribution of an admissible time-inhomogeneous market model is infinitely divisible
and the characteristic triplet can be characterized explicitly, this is used in Chapter 4
for the localization of the pricing problem.

Lemma 3.3.3. For fix t ∈ [0, T ] the distribution of a time-inhomogeneous Lévy process
X is infinite divisible with triplet (b,Q, ν(dz)), where

b :=

∫ t

0
b(s)ds, Q :=

∫ t

0
Q(s)ds, ν(dz) :=

∫ t

0
ν(s, dz)ds. (3.19)

The integrals are to be understood componentwise.

Proof. For completeness we repeat the argument of [77, Lemma 1.2]. From (3.19) we
conclude that b ∈ Rd and that Q is an nonnegative definite d × d matrix. A monotone
convergence argument yields that ν(dz) is a measure on the Borel sets of Rd and we get

∫

Rd

f(z)ν(dz) =

∫ t

0

∫

Rd

f(z)ν(s, dz)ds, (3.20)

for any integrable function f . Therefore,
∫
Rd min (|z|2 , 1)ν(dz) < ∞ and ν({0}) = 0.

The claim follows from (3.17) and the Lévy-Khintchine formula.

31



3 Examples of market models

The following assumption on the jump measure of the process X is made.

Assumption 3.3.4. There exists a constant R > 0 such that for u ∈ [−R,R]d,
∫ T

0

∫

|z|>1
exp (u · z)ν(s, dz)ds <∞. (3.21)

As in the Lévy case, Assumption 3.3.4 implies the existence of exponential moments,
i.e., the process has semi-heavy tails.

Lemma 3.3.5. Assumption 3.3.4 holds if and only if there exists a constant R > 0, such
that E[exp (u ·X(t))] <∞ for all t ∈ [0, T ] and u ∈ [−R,R]d.

Proof. See [77, Lemma 1.6]. Assume that (3.21) holds and fix u ∈ [−R,R]d and t ∈ [0, T ].

Let Y be a Lévy process with Y (1)
(d)
= X(t). Then the generating triplet of Y is given

by (3.19) due to Lemma 3.3.3. Therefore we have
∫

|z|>1
exp (u · z)ν(dz) <∞.

It follows from [103, Theorem 25.3] that E[exp (u, Y (1))] < ∞ holds and since Y (1)
(d)
=

X(t), we conclude E[expu ·X(t)] <∞. The converse results follows similarly.

We are now concerned with the derivation of a drift condition in order to ensure that
the pricing process is a discounted exponential martingale. Let us denote by Θ(s, y) the
cumulant function of X, i.e.,

Θ(s, y) = y · b(s) + 1

2
y ·Q(s)y +

∫

Rd

(ey·z − 1− y · z)ν(s, dz).

Lemma 3.3.6. Fix t ∈ [0, T ]. For y ∈ Cd with ℜ(y) ∈ [−R,R] we have E[
∣∣ey·X(t)

∣∣] < ∞
and

E[ey·X(t)] = exp

(∫ t

0
Θ(s, y)ds

)
.

Proof. For completeness we repeat the proof of [77, Lemma 1.8]. Lemma 3.3.5 im-

plies E[
∣∣ey·X(t)

∣∣] = E[eℜy·X(t)]. Let Y be the Lévy process with Y (1)
(d)
= X(t), then

E[eℜy·Y (1)] = E[eℜy·X(t)] < ∞, where the characteristic triplet of Y is given in (3.19).
We obtain from [103, Lemma 25.17] E[ey·Y (1)] = eψ(y) with

ψ(y) := y · b+ 1

2
y ·Qy +

∫

R

(ey·z − 1− y · z)ν(dz).

We conclude ψ(y) =
∫ t
0 Θ(s, y)ds using (3.20) and thus E[ey·X(t)] = exp

(∫ t
0 Θ(s, y)ds

)
.
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3.3 Time-inhomogeneous processes

Therefore, a sufficient condition in order to ensure that the processes Xi, i = 1, . . . , d,
are exponential martingales reads:

∫ t

0
Θ(s, ei) ds = 0 i = 1, . . . , d, t > 0.

In addition to Assumption 3.3.4, we need the following requirements for an admissible
market model.

Definition 3.3.7. We call a process X as in Definition 3.3.1 an admissible time-inhomo-
geneous market model if it satisfies Assumption 3.3.4 and if

(i) the diffusion coefficient is Q(s) = α(s)Q̃(s), where α(s) = sγ, γ ∈ (−1, 1) and
Q ‖ξ‖2 ≥ ξ⊤Q̃(s)ξ ≥ Q ‖ξ‖2, Q,Q > 0, s ∈ [0, T ].

(ii) the drift coefficient is b(s) = α(s)̃b(s) and
∣∣∣̃b(s)

∣∣∣ ≤ b, b > 0, s ∈ [0, T ].

(iii) for the jump measure ν(s, dz), we assume the decomposition ν(s, dz) = k(s, z)dz,
where

0 ≤ k(s, z) = α(s)k̃(s, z)

and k(z) ≥ k̃(s, z), for a Lévy measure k(x), satisfying

k(z) ≤ k0(z), for |z| ∈ (0, 1),

and an α-stable Lévy measure k0(z), α ∈ [0, 2).

(iv) the density k(s, z), for s ∈ (0, T ] is real analytic outside zi = 0, i = 1, . . . , d,

|∂nk(s, z)| ≤ C |n|(s) |n|! ‖z‖−α∞

d∏

i=1

|zi|−ni−1 , ∀zi 6= 0, i = 1, . . . , d.

Remark 3.3.8. The assumptions (iii) and (iv) in Definition 3.3.7 can be reduced to re-
quirements on the marginals of the process and the copula function, if such a construction
is chosen for the process. The constant C(s) in assumption (iv) of Definition 3.3.7 may
degenerate as s ↓ 0. The decompositions of the diffusion coefficient, the drift coefficient
and the density of the jump measure can be extended to different functions α(s) such as
α(s) =

∑m
i=1 s

γi , for some m ∈ N and γi ∈ (−1, 1), i = 1, . . . , d.

The infinitesimal generator of X is given as

A(t) = ABS(t) +AJ(t) +ATr(t),

ATr(t)ϕ(x) = b(t) · ∇ϕ(x),

ABS(t)ϕ(x) =
1

2
tr(Q(t)D2ϕ(x)),

AJ(t)ϕ(x) =

∫

Rd

(ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)) ν(t, z)dz.
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3 Examples of market models

Remark 3.3.9. Note that the functions Q(t), b(t) and ν(t, z) may degenerate as t ↓ 0,
therefore special care has to be taken to achieve an appropriate time discretization. We
consider a weak formulation of the Kolmogorov equation in time, therefore resolving the
singularity.

We define the bilinear forms aTr(t, ·, ·), aBS(t, ·, ·) and aJ(t, ·, ·) for φ(x), ψ(x) ∈ C∞
0 (Rd)

as follows

aTr(t;φ,ψ) = (ATr(t)φ,ψ),

aJ(t;φ,ψ) = (AJ(t)φ,ψ),

aBS(t;φ,ψ) = (ABS(t)φ,ψ).

The domain of the bilinear form aJ(t; ·, ·) is the fractional order Sobolev spaceD(aJ(t; ·, ·)) =
Hα/2(R), for t > 0. However, continuity and the G̊arding inequality cannot be proved
with a uniform constant C, independent of t, for all t ∈ [0, T ]. Similarly we obtain
for aBS(t; ·, ·) the domain D(aBS(t; ·, ·)) = H1(R), for t > 0, and no uniform continuity
and G̊arding inequality bound. In order to account for the degenerate behavior of the
solution in time we use weighted Sobolev spaces. To illustrate the above definitions, we
present the following example similar to [25].

Example 3.3.10 (Time-inhomegeous tempered-stable model). We consider the univari-
ate CGMY-type model X with characteristic (b(t), Q(t), k(t, y)) given as

b(t) = tY γ−1b

Q(t) = QtY γ−1

k(t, y) =




C

exp
(
−M|y|

tγ

)
tγY −1

|y|Y +1 y > 0

C
exp

(
−G|y|

tγ

)
tγY −1

|y|Y +1 y < 0

,

for Y ∈ (0, 2), γ ∈ (−1, 1), C,Q > 0, M,G > 1, b ∈ R. X is an admissible time-
inhomogeneous market model. Similar models arise in the context of self-similar pro-
cesses as proposed by [25], where it was empirically shown that such models provide a
better fit to data, especially over different maturities, than Lévy type models.

3.3.2 Fractional Brownian motion

Similar pricing equations to those considered in the previous section arise in the context
of fractional Brownian motion models. We hasten to point out that the derivation of
pricing equations for such type of market models involves the use of Wick calculus,
which is controversial in the financial context, cf. [15]. We briefly outline the main steps
in the derivation of the pricing problems. Let (Ω,F ,FH ,P) be a complete probability
space supporting a real-valued fractional Brownian motion (FBM) BH(t) with Hurst
parameter H ∈ (0, 1) and let FH

t be the σ-algebra generated by BH(s), s ≤ t.
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3.3 Time-inhomogeneous processes

Definition 3.3.11. For H ∈ (0, 1), a fractional Brownian motion BH is a Gaussian
process with mean zero, i.e.,

E[BH(t)] = 0

for all t ≥ 0 and covariance:

E[BH(t)BH(s)] =
1

2
{|t|2H + |s|2H − |t− s|2H},

for all s, t ≥ 0. We assume BH(0) = 0. For H = 1
2 we obtain a standard Brownian

motion.

Our market model reads as follows. If S(t) denotes the spot price of the risky asset,
then its dynamics under the real world measure P is given as:

dS(t) = µS(t)dt+ σS(t)dBH(t), t ≥ 0, S(0) = s > 0. (3.22)

For the notion of a stochastic integral with respect to a fractional Brownian motion
BH(t) we refer to [50] and [66]. Besides, we assume the existence of a risk free bank
account P (t) with risk free interest rate r > 0. With the Girsanov theorem for FBM,
cf. [9, Theorem 2.8] or [66, Theorem 3.18], we obtain the risk adjusted dynamics of the
stock S(t) under the equivalent measure Q:

dS(t) = rS(t)dt+ σS(t)dB̃H (t), t ≥ 0, S(0) = s > 0,

where B̃H(t) is a fractional Brownian motion under Q and the discounted stock is a
quasi-martingale under Q. We refer to [9, Definition 2.3] for the definition of quasi-
conditional expectation and quasi-martingales. Note that Q is not a martingale measure
as the stock is not a martingale under Q. Let g(S) be the payoff of a European type
contingent claim V , for sufficiently smooth g. Its value at time t before maturity is given
as the discounted quasi-conditional expectation:

V (t) = e−r(T−t)ẼQ[g(ST )|FH
t ], (3.23)

cf. [9, Theorem 4.2] and [49, Proposition 1]. The option price V (t) admits a PDE
representation.

Theorem 3.3.12. Let v ∈ C1,2((0, T )×R)∩C0([0, T ]×R) such that v : [0, T ]×R+ → R+

satisfies the following PDE:

∂tv(t, S) + rS∂Sv(t, S) +Hσ2t2H−1S2∂SSv(t, S)− rv(t, S) = 0 (3.24)

with terminal condition v(T, S) = g(S), then

v(t, S) = V (t, S) for all t ∈ [0, T ], S ∈ R+.

Proof. The result follows from [49, Proposition 2] and [9, Proposition 6.1].
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3 Examples of market models

Remark 3.3.13. The PDE (3.24) can be simplified via a change of variable to a PDE of
the following type for u(t, x) ∈ C1,2((0, T ) × R) ∩ C0([0, T ]× R)

∂tu(t, x)−Q(T − t)γ∂xxu(t, x) = f(t, x) on (0, T )× R,

u(0, x) = 0 on R.

For some constant Q > 0 and an appropriate right hand side f(t, x). We refer to [96,
Section 5.2.1] for details.
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4 Small jump regularization and
localization

In this chapter probabilistic results for the small jump regularization and the localization
are presented. These are not based on the parabolic integro-differential equation (PIDE)
representation of the option price, but are useful for the analysis of the PIDE, since the
probabilistic estimates can be used to obtain error bounds for the numerical solution of
the equation. This is done in two steps of the discretization. First, an infinite activity
Markov process is approximated by a finite activity process adding an appropriately
scaled diffusion. Second, the PIDE formulated on an unbounded domain is localized
to a bounded domain. The rigorous justification of both steps using purely numerical
analysis methods without any probabilistic tools is much more tedious and technical.

4.1 Small jump approximation

4.1.1 General results

We consider time-homogeneous and time-inhomogeneous Markov processes X as defined
in Sections 3.2 and 3.3.1, with characteristic triplets that satisfy Assumptions 3.2.3 and
3.3.7. The easiest approach to the approximation of the jump measure consists in a
truncation of ν(dz) in a small ball around the origin, i.e., we consider the jump measure
νε(dz) := 1|z|>εν(dz), νε := ν−νε, with ε > 0. We denote the process with characteristic
triplet (b, 0, νε(dz)) by Y ε. We can also approximate the small jumps by an appropri-
ately scaled Brownian motion, i.e., we consider the process Zε with characteristic triplet
(b,Qε, ν

ε(dz)), where Qε =
∫
Rd zz

⊤ νε(dz). The following approximation result for Lévy
processes is well known, cf. [32, Theorem 3.1].

Theorem 4.1.1. Let X be a Lévy process in Rd with characteristic triplet (b, 0, ν(dz))
and let the decomposition ν = νε+νε be given. Assume that Qε is non singular for every
ε > 0 and that for every δ > 0 there holds

∫

(Q−1
ε z,z)>δ

(Q−1
ε z, z)νε(dz) → 0, as ε→ 0.

Assume further that for some family of non-singular matrices {Σε}ε∈(0,1] there holds

Σ−1
ε QεΣ

−⊤
ε → I, as ε→ 0,
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4 Small jump regularization and localization

where I denotes the identity matrix in Rd. Then for all ε ∈ (0, 1] there exists an Rd-
valued càdlàg process Rε and a process Zε = (Zε,1, . . . , Zε,d) with characteristic triplet
(b,Qε, ν

ε) such that

X(t)
(d)
= Zε(t) +Rε(t),

in the sense of equality of finite dimensional distributions.

Furthermore, we have for all T > 0, supt∈[0,T ]
∣∣Σ−1

ε Rε(t)
∣∣ (P)→ 0, as ε→ 0.

Remark 4.1.2. Note that the assumption on the matrices Σε can be expressed in terms
of the jump measure ν, cf. [32, Theorem 2.4]. An analogous result can be shown for
time-inhomogeneous Lévy processes using the fact that for any X as in Section 3.3.1 and

any t > 0 there exists a Lévy process Y such that X(t)
(d)
= Y (1) holds, cf. Lemma 3.3.3.

Throughout,X is generally not a Lévy process due to the non-constant drift, the spatially
non-homogeneous jump measure and the possible temporal inhomogeneity, therefore a
more general result is needed. A weaker convergence result in mean square sense also
holds for more general Markov processes, cf. [10, Proposition 3.3].

Theorem 4.1.3. Let X be an Rd-valued time-homogeneous Markov process with charac-
teristic triplet (b(x), 0, ν(x, dz)) such that the following properties hold

(i) b(x) is continuous and satisfies the linear growth condition, i.e., for some constant
C > 0

|b(x)− b(y)|2 ≤ C |x− y|2 , x, y ∈ Rd.

(ii) The jump measure can be decomposed as follows ν(x, dz) = γ(x)ν̃(dz), where ν̃(dz)
and γ(x) satisfy

∫

Rd

|γ(x)− γ(y)|2 |z|2 ν̃(z) < C |x− y|2 , x, y ∈ Rd.

Then there holds

E

[∫ T

0
|X(t) − Zε(t)|2 dt

]
≤ C

d∑

i=1

∫

|zi|<ε
z2i ν̃i(dzi),

for sufficiently small ε > 0 and a constant C independent of ε. We denote by Zε

the Markov process with characteristic triplet (b(x), Qε(x), ν
ε(x, dz)), where νε(x, dz) :=

1|z|>εν(x, dz), νε(x, dz) := ν(x, dz) − νε(x, dz) and Qε(x) =
∫
Rd zz

⊤ νε(x, dz).

Remark 4.1.4. Note that requirement (ii) of Theorem 4.1.3 does generally not hold for
time-homogeneous admissible market models. The decomposition of the jump measure
into the speed function γ(x) and the Lévy measure ν̃(dz) is a strong requirement ex-
cluding the Feller-CGMY process as in Example 3.2.9. Estimates for the small jump
approximation seem not to be available for the general case, when the jump measure
does not separate.
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4.1 Small jump approximation

For applications to option pricing we are mainly interested in weak convergence esti-
mates.

4.1.2 Estimates for (time-inhomogeneous) L évy processes

Let X = (X1, . . . ,Xd) be a Lévy process with characteristic triplet (b, 0, ν(dz)), such

that ν(dz) satisfies (5)− (6) of Definition 3.2.3, where b is chosen such that eX
1
, . . . , eX

d

are martingales. Now we consider the process Z̃ε = (Z̃ε,1, . . . , Z̃ε,d) with characteristic
triplet (bε, Qε, ν

ε(dz)), where νε(dz) and Qε are chosen as above and bε is chosen such

that eZ̃
ε,1
, . . . , eZ̃

ε,d
are martingales. Convergence of Z̃ε to X in an appropriate sense

follows from Theorem 4.1.1.

Lemma 4.1.5. Let the payoff function P be globally Lipschitz, then we obtain the fol-
lowing estimate for t ∈ [0, T ] using U ε(t) = X(t) + (bε − b)t, where X is a Lévy process
with characteristic triplet (b, 0, ν(dz)).

|E[P (x+X(T ))] − E[P (x+ U ε(T ))]| ≤ C
d∑

j=1

∫ ε

−ε
|zj|3 νj(dzj), ∀x ∈ Rd. (4.1)

Proof. This estimate can be obtained by Taylor expansion of ex around 0 and is given
in [113, Proposition 8.2.1]. For the univariate case we refer to [33, Theorem 5.1].

Lemma 4.1.6. If P ∈ C4(Rd) and Y := maxi=1,...,d Yi < 1, there holds:

∣∣∣E[P (x+ U ε(T ))]− E[P (x+ Z̃ε(T ))]
∣∣∣ ≤ C

d∑

j=1

∫ ε

−ε
|zj |3 νj(dzj), ∀x ∈ Rd. (4.2)

If Y < 2 is assumed, then the following estimate holds

∣∣∣E[P (x+ U ε(T ))]− E[P (x+ Z̃ε(T ))]
∣∣∣ ≤ C

d∑

j=1

∫ ε

−ε
|zj |2 νj(dzj), ∀x ∈ Rd. (4.3)

Proof. The estimates (4.2)–(4.3) follow using Taylor expansion of P and Jensen’s in-
equality. Note that the existence of first moments of the jump measure (which is a
consequence of Y < 1) is essentially used in the first part of the proof, cf. [113, Propo-
sition 8.2.3.].

Remark 4.1.7. Intermediate cases, i.e., Y ∈ (1, 2), lead to analogous estimates.

Finally we obtain the following result from (4.1) - (4.3).
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4 Small jump regularization and localization

Theorem 4.1.8. Let X and Z̃ε be as above and P ∈ C4(Rd), further let u(t, x) =
E[P (x+X(T−t))] and uε(t, x) = E[P (x+Z̃ε(T−t))] be the solutions of the corresponding
Kolmogorov equations, then the following estimate can be obtained

|u(t, x)− uε(t, x)| ≤ C

{
ε3−Y , Y ∈ (0, 1)

ε2−Y , Y ∈ (0, 2)
,∀x ∈ Rd.

Remark 4.1.9. Note that Theorem 4.1.8 yields at least quadratic convergence with re-
spect to ε for the L∞-error for processes of finite variation and payoffs P ∈ C4(Rd).
Using merely a small jump truncation to approximate the process X without an artifi-
cial diffusion would lead to an approximation rate of ε2−Y , for all Y ∈ (0, 2), cf. [113,
Corollary 8.2.5].

Remark 4.1.10. The constant C in Theorem 4.1.8 depends on the tail behavior and the
moments of the jump measure as well as the time to maturity.

Remark 4.1.11. Analogous results to Theorem 4.1.8 can be obtained for time-inhomoge-
neous Lévy processes X as in Section 3.3.1.

Due to Lemma 3.3.3, there exists for any time-inhomogeneous Lévy process X and any

t ∈ [0, T ] a Lévy process Y , such that X(t)
(d)
= Y (1). In the context of option pricing we

are interested in the computation of moments and therefore an equality in distribution
suffices for our purposes.

Theorem 4.1.12. Let g ∈ C4(Rd) and let X be an admissible time-inhomogeneous market
model with characteristic triplet (b(s), 0, ν(s, dz)), then

|E[g(x+X(t))]− E[g(x+ Y ε
2 (t))]| ≤ C(t)ε2−max {Y1,...,Yd}, ∀x ∈ Rd, Yi ∈ (0, 2),

|E[g(x+X(t))] − E[g(x+ Zε2(t))]| ≤ C(t)ε3−max {Y1,...,Yd}, ∀x ∈ Rd, Yi ∈ (0, 1),

with ε > 0, where we denote the process with characteristic triplet (b(s), 0, νε(s, dz)),
νε(s, dz) := 1|z|>εν(s, dz), by Y

ε
2 and by Zε2 the process with characteristic triplet

(b(s), Qε(s), ν
ε(s, dz)), Qε(s) =

∫
Rd zz

⊤ νε(s, dz).

Proof. The result is a direct consequence of Theorem 4.1.8 in conjunction with Lemma
3.3.3.

4.1.3 Estimates for time-homogeneous Markov processes

The described procedure is not directly applicable to general Feller processes. We can
use Theorem 4.1.3 to obtain a weaker error bound.
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4.2 Localization

Lemma 4.1.13. Let P be globally Lipschitz and let X and Zε be as in Theorem 4.1.3,
then the following estimate holds:

|E[P (X(T ))] − E[P (Zε(T ))]| ≤ C

d∑

i=1

∫

|zi|<ε
z2i ν̃i(dz).

Proof. Using the Lipschitz continuity of P and Jensen’s inequality, we obtain

|E[P (X(T ))] − E[P (Zε(T ))]| ≤ K
d∑

i=1

E
[∣∣Zε,i(T )−Xi(T )

∣∣] .

The result follows from the Cauchy–Schwarz inequality and Theorem 4.1.3.

Theorem 4.1.14. Let X and Zε be as above and let P be globally Lipschitz, let further
u(t, x) = E[P (X(T ))|X(t) = x] and uε(t, x) = E[P (Zε(T ))|Zε(t) = x]. Then, as ε → 0
the following estimate can be obtained

|u(t, x)− uε(t, x)| ≤ Cε2−Y , ∀x ∈ Rd, ∀Y ∈ (0, 2).

Proof. This is a direct consequence of Lemma 4.1.13.

Remark 4.1.15. Note that Theorem 4.1.14 yields, in contrast to Theorem 4.1.8, at least
linear convergence with respect to ε for the L∞-error for processes of finite variation
with globally Lipschitz payoffs. An analogous estimate can be obtained if merely a small
jump truncation, without regularization, is employed.

4.2 Localization

In the following we estimate the error due to localization of the Kolmogorov equation.
This is necessary as the Galerkin discretization is performed on the localized problem. It
turns out that the localization error decays exponentially with increasing domain under
certain assumptions. We assume the payoff P to satisfy the following polynomial growth
condition:

P (s) ≤ C

(
d∑

i=1

|si|+ 1

)q
, for all s ∈ Rd, (4.4)

for some constant C > 0. The variable s denotes the state variable in a real price
model and the exponential of the state variable in a log-price model. The condition is
satisfied for all standard multi-asset options like basket, maximum or best-of options.
We consider log-price models with log(si) = xi, i = 1, . . . , d, in the following.
The unbounded domain Rd of x is truncated to a bounded domain GR = [−R,R]d. In
terms of financial modeling, this corresponds to the approximation of an option by the
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4 Small jump regularization and localization

corresponding double barrier option. In the following we consider two cases. First we
derive a localization error estimate for tempered Lévy market models and then extend
this to tempered affine market models.

Theorem 4.2.1. Let the payoff function P : Rd → R satisfy (4.4). Further, let X be
a Lévy process with state space Rd and let the Lévy measure ν(dz) satisfy (3) − (7) of
Definition 3.2.3 with β+i , β

−
i > q, where q > 0 is as in (4.4). Then

|u(t, x)− uR(t, x)| ≤ Ce−αR+β‖x‖∞ ,

for 0 < α < mini min (β+i , β
−
i )− q and β = α+ q, C > 0,

uR(t, x) = E[P (eX(T ))1T<τGR
|X(t) = x],

and τGR
= inf{t ≥ 0|X(t) ∈ GcR}, where GcR is the complement set of GR.

Proof. See [95, Theorem 4.14].

There holds a corresponding result for affine models.

Theorem 4.2.2. Let X be a time-homogeneous Markov process with a finite variation
jump measure, we set b(x) = (−b1x1, . . . ,−bdxd), for some constants
b1, . . . , bd ∈ R+, x ∈ Rd. Further let ν(dz) and P be as in Theorem 4.2.1, then the
following estimate holds:

|u(t, x)− uR(t, x)| ≤ Ce−αR+β‖x‖∞ , (4.5)

where α, β as in Theorem 4.2.1, C > 0.

Proof. The idea of the proof is to reduce this problem to the setting discussed in Theorem
4.2.1. The solution for this SDE is given by for t ∈ [0, T ]:

Xi(t) = Xi,0e
−tbi +

∫ t

0
e−(t−u)bidLi(u), i = 1, . . . , d. (4.6)

The process Xi(t) can be estimated pathwise as follows:

|Xi(t)| ≤ |Xi,0|+max

(∫ t

0
dL+

i (u),−
∫ t

0
dL−

i (u)

)
. (4.7)

Therefore we obtain the following estimate:

|u(t, x)− uR(t, x)| = E[P (eX(T ))1{T≥τGR
}|X(t) = x] ≤ E[eqMT1{MT>R}|X(t) = x],

where MT = sups∈[t,T ] ‖Xs‖∞. It follows using (4.7) :

E[eqMT1{MT>R}|X(t) = x] ≤ E[eqM̃T1{M̃T>R}|X(t) = x],
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4.2 Localization

for M̃T = ‖X(t)‖∞ + sups∈[t,T ]max {L+(s),−L−(s)}.

E[eqM̃T1{M̃T>R}|X(t) = x]

≤ E[eqM̃
+
T 1{M̃+

T >R}
|X(t) = x] + E[eqM̃

−
T 1{M̃−

T >R}
|X(t) = x]. (4.8)

Both terms in (4.8) can be estimated analogously to Theorem 4.2.1, which yields the
claimed result.

Remark 4.2.3. Similar results can also be obtained for more general drift functions.
E.g. for (b1, . . . , bd) ∈ Rd, an analogous estimate to (4.5) under stricter assumptions on
β+i , β

−
i , i = 1, . . . , d, and for different constants α and β can be obtained.

Remark 4.2.4. Localization estimates for general time-inhomogeneous processes do not
seem to be available or easy to obtain. The reason for this resides in the fact that a
technical result similar to [103, Theorem 25.3] is not available. The localization error can
be easily quantified for time-inhomogeneous diffusions, as in this situation the probability
density function is known. Besides, the localization error can be estimated using local
times as in [96].
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5 Well-posedness of time-homogeneous
PIDEs

A key observation of partial integro-differential equation approaches to deterministic
computational pricing of derivative contracts in finance is the observation (going back
at least to R. Feynman and M. Kac, cf. [53, 73, 74]) that conditional expectations
over all sample paths of a multivariate diffusion process satisfy deterministic, parabolic
partial differential equations (PDEs). The most well known representative of these
PDEs in financial modeling is the classical Black-Scholes equation. This Feynman–
Kac correspondence holds in a much more general context, the deterministic equation
being in general nonlinear, and the solution being in general understood as viscosity
solution. Here, we follow on linear differential equations for which the (unique) solutions
are variational solutions of suitable weak formulations of the deterministic evolution
equations. As these formulations form the basis of variational discretizations to be
discussed below, we shall present their ingredients (Sobolev spaces and Dirichlet forms,
evolution triplets, and the abstract theory of parabolic evolution equations) in some
detail here.
We first prove a sector condition for time-homogeneous admissible market models, which
is crucial for the proof of well-posedness of the pricing equation. Subsequently, well-
posedness results for certain types of pricing equations are given. These equations are
of parabolic type, with the highest order operator being the diffusion or jump part of
the generator of the market model. In Section 5.3, we address the well-posedness for
drift dominated equations. Finally, existence and uniqueness results for pricing problems
arising from the small jump regularization, as given in Chapter 4, are described.

5.1 Sector condition

The sector condition for the symbol ψ(x, ξ) of a Feller process X is one of the main
ingredients for proving well-posedness of the initial boundary value problems for the
PIDEs arising in option pricing problems. The sector condition reads:

∃C > 0 s.t. ∀x, ξ ∈ Rd : ℜψ(x, ξ) + 1 ≥ C〈ξ〉2m(x). (5.1)

We use the following notation 〈ξ〉m(x) :=
∑n

i=1(1 + ξ2i )
1
2
mi(x). Verification of the sector

condition is not straightforward for a general Feller process. Here, we give sufficient
conditions for the sector condition to hold in terms of appropriate conditions on the
marginals of the Feller process and the copula function.
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5 Well-posedness of time-homogeneous PIDEs

Definition 5.1.1. Let the function F : R
d → R be a homogeneous Lévy copula of order

1 and the functions k01 , . . . , k
0
d be jump measures of univariate Feller processes of order

−1− Y1(x1), . . . ,−1− Yd(xd), i.e.,

k0j (xj, rzj) = r−1−Yj(xj)k0j (xj , zj), ∀r > 0, ∀xj ∈ R, zj ∈ R\{0}

for any j = 1, . . . , d. Let F and k0j (xj, zj), j = 1, . . . , d, satisfy the assumptions of Theo-
rem 3.2.1. Due to Theorem 3.2.1 there exists a Feller process with corresponding margins.
We call such a d-variate Feller process Y(x)-stable, for Y(x) = (Y1(x1), . . . , Yd(xd)).

For the pure jump case we need the following additional property in order to prove a
simple equivalence for the sector condition. We assume that the symmetric part of the
jump measure ksym(x, z) = 1

2(k(x, z) + k(x,−z)) admits the following estimate:

ksym(x, z) ≥ Ck0,sym(x, z), ∀0 < |z| < 1, ∀x ∈ Rd, (5.2)

where k0 is the jump measure of aY(x)-stable Feller process and C denotes some positive
constant. We now prove an anisotropic homogeneity property of the Feller density k0.

Remark 5.1.2. Condition (5.2) is satisfied for a time-homogeneous admissible market
model in the sense of Definition 3.2.3.

Theorem 5.1.3. Let the copula F and the marginal densities be as in Definition 5.1.1.
Then the function k0 given by (3.7) is Y(x)-homogeneous in the sense that

k0
(
x, t

− 1
Y1(x1) z1, . . . , t

− 1
Yd(xd) zn

)
= t

1+ 1
Y1(x1)

+···+ 1
Yd(xd)k0(x, z1, . . . , zn) ∀t > 0.

Proof. The proof follows analogously to that of [52, Theorem 3.2], where the case
Yi(xi) ≡ Yi was treated.

Theorem 5.1.4. Let k0(x, z1, . . . , zd) be as in the previous theorem. Then the symbol
ψ0(x, ξ) of the Feller process X with characteristic triplet (0, 0, k0(x, z1, . . . , zn)) is a

real-valued anisotropic homogeneous function of type
(

1
Y1(x1)

, . . . , 1
Yd(xd)

)
and order 1

for all x ∈ Rd, i.e., it satisfies

ψ0(x, t
1

Y1(x1) ξ1, . . . , t
1

Yd(xd) ξn) = tψ0(x, ξ1, . . . , ξd) ∀t > 0, ξ ∈ Rd.

Proof. The proof follows analogously to that of [52, Theorem 3.3], where the case
Yi(xi) ≡ Yi was treated, using Theorem 5.1.3.

We need the following lemma, which is a modification of [39, Lemma 2.2].
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5.1 Sector condition

Lemma 5.1.5. Let ρ1(x, z), ρ2(x, z) with ρ
2
(z) ≤ ρ2(x, z) ≤ ρ2(z) be two anisotropic

distance functions of order 1 and type Y(x) = (Y1(x1), . . . , Yd(xd)) for all x, z ∈ Rd,
further let ρ

2
(z) and ρ2(z) be continuous. Furthermore, let Σ := ∪x∈RdΣ1(x), where

Σ1(x) := {z : ρ1(x, z) = 1},

be contained in a compact set. Then the following inequalities hold with constants C1,
C2 > 0 independent of x ∈ Rd and z ∈ Rd:

C1ρ1(x, z) ≤ ρ2(x, z) ≤ C2ρ1(x, z).

Proof. Let z ∈ Rd\{0}. Then t(x) = 1
ρ1(x,z)

is well-defined. Moreover,

(
t(x)Y1(x)z1, . . . , t(x)

Yd(x)zd

)
∈ Σ1(x)

holds. As Σ is contained in a compact set and ρ2(z), ρ2(z) are continuous, we obtain

C1 ≤ ρ2(x, z) ≤ C2 ∀x ∈ Rd, ∀z ∈ Σ1.

Hence, there exist C1, C2 ∈ R+ such that for x ∈ Rd, z ∈ Rd\{0}

C1 ≤
1

ρ1(x, z)
ρ2(x, z) = t(x)ρ2(x, z) = ρ2(x, t(x)

Y1(x)z1, . . . , t(x)
Yd(x)zd) ≤ C2.

Theorem 5.1.6. Let X be an admissible time-homogeneous market model in the sense of
Definition 3.2.3 taking values in Rd with characteristic triplet (b(x), Q(x), k(x, z)dz) with
k(x, z) being the density of the jump-measure constructed parametrically as in Theorem
3.2.1. Then, there exists a constant C > 0 such that for all x ∈ Rd and ‖ξ‖∞ sufficiently
large

ℜψ(x, ξ) ≥ C

d∑

j=1

|ξ|Yj(xj) , (5.3)

where Yj(xj) = 2 in the case Q0 ≥ Q > 0.

Proof. The proof mainly follows the arguments of [113, Proposition 2.4.3]. First consider
Q = 0. Due to Theorem 5.1.4 one obtains that ℜψ0(x, ξ) is an anisotropic distance
function of type (1/Y1(x1), . . . , 1/Yd(xd)) and order 1 for all x ∈ Rd. We obtain from
Lemma 5.1.5

ψ0(x, ξ) ≥ C1

d∑

i=1

|ξi|Yi(xi) , ∀ξ ∈ Rd,
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5 Well-posedness of time-homogeneous PIDEs

where we set ρ1(x, ξ) =
∑d

i=1 |ξi|Yi(xi) and ρ2(x, ξ) = ψ0(x, ξ). Hence,

ℜψ(x, ξ) =

∫

Rd

(1− cos(ξ · z)) ksym(x, z)dy

≥ C2

∫

B1(0)
(1− cos(ξ · z))k0,sym(x, z)dy

≥ C2C1

d∑

i=1

|ξi|Yi(xi) − C3.

Therefore, the sector condition (5.1) follows from (5.2) for appropriate symbols. The
case Q ≥ Q0 > 0 is trivial.

5.2 European options in market models without drift
dominance

We consider a European option with maturity T <∞ and payoff g(S(T )), where Si(t) =
Si(0)ert+X

i(t) and where X is a semimartingale. We treat several special cases of this
general setup. By the general theory of asset pricing (as, e.g., in [42]), an arbitrage free
value V (t, s) of this option is given by

V (t, s) = E
(
e−r(T−t)g(S(T ))|S(t) = s

)
,

where the expectation is taken under the measure Q which is equivalent to the real world
measure and under which S(T ) is a discounted σ-martingale, cf.[42] and r > 0. If X is
an admissible time-homogeneous market model, we can derive a PDO and PIDE repre-
sentation and prove well-posedness of the weak formulation of the problem on a bounded
domain. In the following we focus on time-homogeneous admissible market models and
return to the time-inhomogeneous setup later in Chapter 9. Due to no arbitrage con-
siderations we require the considered processes to be discounted martingales under a
pricing measure Q. This requirement can be expressed in terms of the characteristic
triplet:

Lemma 5.2.1. Let X be an admissible time-homogeneous market model with character-
istic triplet (b(x), Q(x), ν(x, dz)) and semigroup (Tt)t≥0 further let Tt(e

xj ) <∞ hold for
t ≥ 0, j = 1, . . . , d. Then eXj is a Q-martingale with respect to the canonical filtration
of X if and only if

Qjj(x)
2

2
+ bj(x) +

∫

06=zj∈R
(ezj − 1− zj)νj(x, dzj) = 0 ∀x ∈ R. (5.4)

Proof. This is a direct consequence of [48, Section 3].
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5.2 European options in market models without drift dominance

Remark 5.2.2. Note that without the assumption of finiteness of exponential moments
of the processes Xj , the processes eXj , j = 1, . . . , d would generally only be local martin-
gales. For Lévy processes, exponential decay of the jump measure implies the existence
of exponential moments, cf. [103, Theorem 25.3]. This is not obvious for general Feller
processes. Recently, Knopova and Schilling have proved in [78] the finiteness of expo-
nential moments for a certain class of Feller processes assuming exponential decay of the
density of the jump measure.

We are now able to derive a PDO and PIDE representation for option prices. Let the
stochastic process X be an admissible time-homogeneous market model with generator
A and let be g be sufficiently smooth, V = H1(Rd) for diffusion market models, V =
Hm(Rd), m = [Y1/2, . . . , Yd/2] ∈ (0, 1)d for general space and time-homogeneous models
and V = Hm(x)(Rd) as in Definition 2.2.2, with m(x) = [Y1(x1)/2, . . . , Yd(xd)/2], for
time-homogeneous admissible market models considered here. Then we obtain formally
due to semigroup theory for u(t, x) = Tt(g) = E[g(Xt)|X0 = x] by differentiation in t
the following PIDE

∂tu+Au− ru = 0 in (0, T ) × Rd, (5.5)

u(T ) = g in Rd. (5.6)

Testing with a function v ∈ V and transforming to time-to-maturity, we end up with the
following parabolic evolution problem: Find u ∈ L2 ((0, T );V) ∩H1 ((0, T );V∗) s.t. for
all v ∈ V and a.e. t ∈ [0, T ] holds

(∂tu, v)V∗,V + a(u, v) = 0, u(0) = g, (5.7)

where the bilinear form a(ϕ, φ) = (−Aϕ, φ)V∗,V + r(ϕ, φ)L2(Rd) is closely related to the
Dirichlet form of the stochastic process X. Although in option pricing, only the homo-
geneous parabolic problem (5.7) arises, the inhomogeneous equation (5.8) is useful in
many applications. We mention only the computation of the time-value of an option, or
the computation of quadratic hedging strategies and the corresponding hedging error.
Thus, we consider the non-homogeneuos analogon of the above equation. The general
problem reads: Find u ∈ L2 ((0, T );V) ∩H1 ((0, T );V∗) s.t.

(∂tu, v)V∗,V + a(u, v) = (f, v)V∗,V in (0, T ), ∀v ∈ V u(0) = g (5.8)

for some f ∈ L2((0, T );V∗). Now we consider the localization of the unbounded problem
to a bounded domain D. For any function u with support in a bounded domain D ⊂ Rd

we denote by ũ the zero extensions of u to Dc = Rd\D and define AD(u) = A(ũ). The
variational formulation of the pricing equation on a bounded domain D ⊂ Rd reads:
Find u ∈ L2 ((0, T );VD) ∩ H1 ((0, T ); (VD)∗) s.t. for all v ∈ VD and a.e. t ∈ [0, T ]
holds:

(∂tu, v)V∗
D ,VD

+ aD(u, v) = (f, v)V∗
D,VD

(5.9)

u(0) = g|D, (5.10)
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5 Well-posedness of time-homogeneous PIDEs

where aD(u, v) := a(ũ, ṽ) and VD =: {v ∈ L2(D) : ṽ ∈ V}. Under condition (4.4)
pointwise convergence of the solution of the localized problem to the solution of the
original problem can be shown for certain admissible market models using [103, Theorem
25.18] and the semiheavy tail property. We refer to Section 4.2 for details. A comparable
result for general Feller processes does not appear to be available yet.

Remark 5.2.3. Formulation (5.9)-(5.10) naturally arises for payoffs with finite support
such as digital or (double) barrier options. The truncation to a bounded domain can thus
be interpreted economically as the approximation of a standard derivative contract by a
corresponding barrier option on the same market model. Note also that the variational
framework (5.9)-(5.10) naturally allows for more general initial conditions, in particular
g ∈ H = L2(Rd). Therefore, discontinuous g are admissible in the variational framework
(5.9)-(5.10). This is essential for the pricing of exotic contracts such as digital options,
for example.

Existence and uniqueness of weak solutions of (5.9)-(5.10) follows from continuity of the
bilinear form aD(·, ·) and a G̊arding inequality which follows from Theorem 5.2.4.

Theorem 5.2.4. Let the generator A(x,D) ∈ Ψ
2m(x)
ρ,δ be a pseudo-differential operator of

variable order 2m(x), 0 < mi(xi) < 1, i = 1, . . . , d with m(x) = (m1(x1), . . . ,md(xd))

and symbol ψ(x, ξ) ∈ S
2m(x)
ρ,δ for some 0 < δ < ρ ≤ 1 for which there exists C > 0 with

ℜψ(x, ξ) + 1 ≥ C〈ξ〉2m(x) ∀x, ξ ∈ Rd. (5.11)

Then A(x,D) ∈ Ψ
2m(x)
ρ,δ satisfies a G̊arding inequality in the variable order space

H̃m(x)(D): There are constants C1 > 0 and C2 ≥ 0 such that

∀u ∈ H̃m(x)(D) : ℜa(u, u) ≥ C1‖u‖2H̃m(x)(D)
−C2‖u‖2L2(D), (5.12)

and

∃λ > 0 such that A(x,D) + λI : H̃m(x)(D) → H−m(x)(D) (5.13)

is boundedly invertible, for a(u, v) = (Au, v)H−m(x)(D),H̃m(x)(D), u, v ∈ H̃m(x)(D).

Proof. The proof follows along the lines of the proof of [97, Theorem 5], where the case
d = 1 was treated. It relies on results from pseudodifferential operator theory which are
also available for d > 1.

Note that in the case of an admissible time-homogeneous market model ℜaD(u, u) =
aD(u, u) holds, for u ∈ VD and aD(·, ·) as in (5.9).

Theorem 5.2.5. The problem (5.9)-(5.10) for an admissible market model X with symbol
ψ(x, ξ) with initial condition g ∈ H = L2(Rd) and Y ≥ 1, Q = 0 or Q ≥ Q0 > 0 has a
unique solution.
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5.3 European options in market models with drift dominance

Proof. We obtain from Lemma 3.2.6

ψ(x, ξ) ∈ S
Y(x)
1,δ for Y ≥ 1, Q = 0,

ψ(x, ξ) ∈ S2
1,δ for Q ≥ Q0 > 0.

Theorem 5.1.6 implies

ℜψ(x, ξ) + 1 ≥ C〈ξ〉Y(x) for Y ≥ 1, Q = 0, (5.14)

ℜψ(x, ξ) + 1 ≥ C〈ξ〉2 for Q ≥ Q0 > 0, (5.15)

for all x, ξ ∈ Rd. The application of Theorems 5.2.4 and 2.2.4 implies the claimed
result.

Remark 5.2.6. We obtain for admissible market models X drift dominated equations
for Y < 1, therefore Theorem 5.1.6 holds with Y(x) as in Definition 3.2.3, but we
obtain for the symbol ψ(x, ξ) of the infinitesimal generator of X due to Lemma 3.2.6

ψ(x, ξ) ∈ S
m̃(x)
1,δ , with m̃i(xi) = max (Yi(xi), 1), i = 1, . . . , d. Therefore Theorem 5.2.4

is not applicable and we have to remove the drift for standard algorithms to be feasible.
The removal of the drift is straightforward in the Lévy case as the drift coefficients in
the equation are constant, cf. [95, Corollary 4.3], but more involved in the Feller case,
cf. [60].

In the classical setting of advection-diffusion equations, the drift dominance in a given
discretization is measured by the Péclet number.

5.3 European options in market models with drift
dominance

If the pricing equation is drift dominated in the sense that the requirements of Theorem
5.2.5 are not satisfied, different techniques have to be employed to prove well-posedness
of (5.9)-(5.10). This is due to the dominance of the asymmetric part of the generator.
Generally, a change of variable can be used to remove the drift from the pricing equation,
but finding an appropriate change of a variable is non trivial. The following result can
be obtained.

Theorem 5.3.1. For h ∈ C1,2(I ×R), I = [0, T ], T > 0, with ∂xh(t, x) 6= 0, consider the
change of variable v(t, x) := u(t, h(t, x)), where u(t, x) is the solution of the following
PDE

∂tu− Σ(x)∂xxu+ b(x)∂xu+ c(x)u = 0 in I × R,

for Σ(x) ≥ 0 sufficiently smooth as well as smooth and bounded functions b(x), c(x). Let
h solve the (nonlinear) PDE

∂th− Σ(h(t, x))
∂xxh

∂2xh
− b(h(t, x)) = 0. (5.16)

51



5 Well-posedness of time-homogeneous PIDEs

Then v satisfies the PDE

∂tv −
Σ(h(t, x))

∂2xh
∂xxv + c(h(t, x))v = 0 in I × R.

Proof. The claim follows by an application of the chain rule. See [60, Lemma 3.17].

Solving the PDE (5.16) is non trivial in general.

Example 5.3.2. Let X be a univariate Lévy market model, then b(x) ≡ b, Σ(x) ≡ Q,
b ∈ R, Q ≥ 0 and a particular solution of (5.16) is given by f(t, x) = bt+ x.

If the drift cannot be removed as in Theorem 5.3.1, then the results from Section 5.2 are
not applicable. We therefore describe a different approach in the following. One typical
example of a drift dominated problem arises in option pricing under subordinators, see
Example 3.2.10.

Theorem 5.3.3. We consider the bilinear form aJ = (AJu, v), with AJ given as

AJϕ(x) = −
∫

R+

(ϕ(x+ z)− ϕ(x)) ν(dz), (5.17)

for sufficiently smooth ϕ(x) and

ν(dz) = k(z)dz = C
e−βz

z1+Y
dz, C, β > 0, Y ∈ [0, 1).

Then the domain D(aJ(·, ·)) of aJ(·, ·) is given by HY/2(R), i.e., aJ(·, ·) is continuous
and satisfies a G̊arding inequality on HY/2(R).

Proof. The proof follows from [60, Proposition 3.13 and Corollary 3.15] and relies on the
use of properties of anisotropic distance functions.

The generator of a subordinator as in Example 3.2.10 reads

A = AJ +ATr,

with AJ as in (5.17) and

ATrϕ = λ(x)ϕ′(x),

for λ(x) ∈W 1,∞(R).
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5.3 European options in market models with drift dominance

Remark 5.3.4. Due to the fact that the antisymmetric part of the bilinear form aTr(u, v) =
(ATru, v) is the leading term of the bilinear form a(·, ·) = aTr(·, ·) + aJ(·, ·), as Y < 1,
standard well-posedness results are not applicable. We therefore prove the inf-sup con-
ditions. Note that in the special case of a constant drift coefficient, i.e., λ(x) ≡ λ ∈ R,
we could apply Theorem 5.3.1 and find the function h(t, x) explicitly. Numerically, this
is not feasible, as large values for λ imply strong restrictions on the space discretization
of the transformed system. We therefore present a well-posedness result for the original
system.

The following problem on a bounded Lipschitz domain D is analyzed. Let a(u, v) be
given by

a(u, v) = aTr(u, v) + aJ(u, v) for u ∈ V, v ∈ L2(D), (5.18)

aJ(u, v) = (AJ ũ, v)L2(D), aTr(u, v) = (ru+ b(x) · ∇u, v)L2(D), (5.19)

Au = ru+ b(x) · ∇u+AJu, (5.20)

where AJ : H̃2m(x)(D) → L2(D) is the generator of an admissible time-homogeneous
market model with characteristic triplet (0, 0, ν(x, dz)) such that

0 ≤ aJ(v, v), v ∈ V (5.21)

and V =
{
w ∈ L2(D)|b · ∇w +AJw ∈ L2(D), w|Γ− = 0

}
. We consider the norm ‖·‖V on

V given as

‖u‖2V = ‖b · ∇u+AJu‖2L2(D) + ‖u‖2L2(D) .

The order 2m(x) of the operator AJ is given by m = [Y1(x)/2, . . . , Yd(x)/2], as in
Definition 3.2.3, for Q > 0 the order of the operator ABS + AJ is 2. We make the
following standard assumption on the drift:

r − 1

2
∇ · b(x) ≥ rmin > 0 (5.22)

and assume that r is constant on D. The consideration of a uniformly bounded r is also
possible. The Property (5.21) follows from the sector condition, cf. Section 5.1, after a
possible rescaling of the time variable.

Lemma 5.3.5. Let a(u, v) : V × L2(D) → R be as in (5.18), then

inf
v∈L2(D)

sup
u∈V

a(u, v)

‖u‖V ‖v‖L2(D)

≥ C,

for a positive constant C.

Proof. For any v ∈ V

sup
φ∈L2(D)

a(v, φ)

‖φ‖L2(D)

(φ=v)

≥ rmin ‖v‖L2(D) . (5.23)
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5 Well-posedness of time-homogeneous PIDEs

Therefore

sup
φ∈L2(D)

a(v, φ)

‖φ‖L2(D)

≥ sup
φ∈L2(D)

∫
D(b · ∇v +AJv)φ

‖φ‖L2(D)

− r ‖v‖L2(D)

≥ sup
φ∈L2(D)

∫
D(b · ∇v +AJv)φ

‖φ‖L2(D)

− r

rmin
sup

φ∈L2(D)

a(v, φ)

‖φ‖L2(D)

.

This implies
(
1 +

r

rmin

)
sup

φ∈L2(D)

a(v, φ)

‖φ‖L2(D)

≥ ‖b · ∇v +AJv‖L2(D)

and we conclude using (5.23)

sup
φ∈L2(D)

a(v, φ)

‖v‖V ‖φ‖L2(D)

≥ 1√
1

r2min
+
(
1 + r

rmin

)2 .

Lemma 5.3.6. The bilinear form a(·, ·) as in Lemma 5.3.5 is continuous on V × L2(D)
and surjective, i.e.,

∀0 6= φ ∈ L2(D), sup
v∈V

|a(v, φ)| > 0.

Proof. The continuity follows from the properties of AJ and the triangle inequality. The
surjectivity follows as in [51, Lemma 6.2.9].

We are now able to prove the well-posedness of the pricing equation. We consider the
following problem: for f ∈ C1([0, T ], L2(D)) and g ∈ V find u ∈ C1([0, T ], L2(D)) ∩
C0([0, T ],V) such that

∂tu+Au = f, u(0) = g, (5.24)

where A is given by (5.20).

Theorem 5.3.7. The problem (5.24) has a unique solution.

Proof. The proof is a consequence of the Hille-Yosida theorem [51, Theorem 7.3.3]. It
remains to show the monotonicity and maximality of the operator A : V → L2(D). We
obtain

(Aṽ, ṽ) ≥ 0, ∀v ∈ V
from (5.21). The maximality follows from Lemmas 5.3.5 and 5.3.6, i.e., for all f ∈ L2(D)
there exists v ∈ V such that

v +Av = f. (5.25)
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Remark 5.3.8. Note that the assumptions on the regularity of the initial condition g
and the right hand side f in (5.24) are restrictive. Theorem 5.3.7 implies the well-
posedness of transport dominated pricing equations. It covers the cases excluded in The-
orem 5.2.5. Note that the bilinear forms arising in the transport dominated setting are
non-symmetric.

5.4 European options in regularized market models

After the small jump regularization of an infinite activity time-homogeneous admissible
market model, cf. Section 4.1, the corresponding pricing equation for the value of a
European option u(t, x) reads:

∂tu−Au+ ru = 0 in I ×Rd, (5.26)

u(0) = g in Rd, (5.27)

where

A = ATr +ABS(ε) +AJ(ε)

ATrϕ(x) = b(x) · ∇ϕ(x)

ABS(ε)ϕ(x) =
1

2
tr[Q(ε, x)D2ϕ(x)]

AJ(ε)ϕ(x) =

∫

Rd

(ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)) kε(x, z) dz, (5.28)

with Q(ε, x) and kε(x, z) as in Section 4.1. The weak formulation of (5.26) is given as:
find u ∈ L2 ((0, T );V) ∩H1 ((0, T );V∗) s.t. for all v ∈ V and a.e. t ∈ I holds

(∂tu, v)V∗,V + a(u, v) = 0, u(0) = g, (5.29)

where the bilinear form a(u, v) reads

a(u, v) = (−Au, v)V∗,V + r(u, v)L2(Rd). (5.30)

The domain of the bilinear form is V = H1(Rd), continuity and a G̊arding inequality
can be proved with constants that depend explicitly on ε.

Theorem 5.4.1. Let a(·, ·) be given by (5.30), then

|a(u, v)| ≤ C1(ε) ‖u‖H1(Rd) ‖v‖H1(Rd) , (5.31)

a(u, v) ≥ C2(ε) ‖u‖2H1(Rd) − C3(ε) ‖u‖2L2(Rd) , (5.32)

where C1(ε) ≤ C̃1ε
−Y−d, C2(ε) ≥ C̃2ε

2−Y and C3(ε) ≥ C̃3ε
2−Y , for positive constants

C̃1, C̃2, C̃3 independent of ε, sufficiently small.
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5 Well-posedness of time-homogeneous PIDEs

Proof. The proof is a direct consequence of the following estimates on kε(x, z) andQ(ε, x)

kε(x, z) ≤ C̃1ε
−d−Y , Qi,j(ε, x) ≥ C̃2ε

2−Y .

Theorem 5.4.1 implies the well-posedness of the pricing problem.

Lemma 5.4.2. The problem (5.29) is well-posed. There exists for every g ∈ L2(Rd) a
unique function u ∈ L2 ((0, T );V) ∩H1 ((0, T );V∗), such that (5.29) holds.

We have the following corollary for the localized pricing problem.

Corollary 5.4.3. Let the localized problem be given as:
find u ∈ L2 ((0, T );VD) ∩H1 ((0, T );V∗

D) s.t. for all v ∈ VD and a.e. t ∈ I holds

(∂tu, v)V∗
D ,VD

+ aD(u, v) = (f, v), u(0) = g|D, (5.33)

where the bilinear form aD(u, v) = (−Aũ, ṽ)V∗
D ,V + r(u, v)L2(D) and f ∈ L2(I;V∗

D). The

domain of the bilinear form is VD = H1
0 (D). Then (5.33) admits a unique solution.

Remark 5.4.4. Note that the constants in the error estimates explicitly depend on C1

and C2 in Theorem 5.4.1 and therefore on ε. Hence, a judicious choice of the mesh
width in terms of the small jump truncation parameter is essential for a rigorous error
analysis of the FEM discretization.
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6 Wavelets and triangulations

For the numerical solution, we discretize the parabolic equation (5.9)-(5.10) in (0, T )×D
in the spatial variable with spline wavelet bases for V = H̃m(x)(D) and in the time pa-
rameter by the θ-scheme or the more sophisticated discontinuous Galerkin timestepping
which allows to exploit the time-analycity of the processes’ semigroups. To present the
spatial discretizations, we briefly recapitulate basic definitions and results on wavelets
from, e.g., [29] and the references there. For specific spline wavelet constructions on a
bounded interval I, we refer to e.g. [43], [92] and [112].
Since for all infinitesimal generators arising in connection with Markov processes the
Sobolev order 2m(x) of the generator satisfies 0 ≤ m(x) ≤ 1, the full machinery of
multiresolution analyses in Sobolev spaces of arbitrary order is not required; we con-
fine ourselves therefore to continuous, piecewise polynomial multiresolution systems in
R1. For wavelet discretizations of Kolmogorov equations for multivariate models, we
shall employ tensor products of these univariate, piecewise polynomials multiresolution
systems. For wavelet constructions on general domains we refer to [90]. Note that in
this case the classical construction as described in the following by means of shifts and
dilates from one “mother” wavelet is not applicable. General domains may arise in the
pricing of exotic basket options.
Our use of compactly supported, piecewise polynomial multiresolution systems (rather
than the more commonly employed B-spline Finite Element spaces) for the Galerkin dis-
cretization of Kolmogorov equations is motivated by the following key properties of these
spline wavelet systems: a) the approximation properties of the multiresolution sytems
equal those of the B-spline systems, b) the spline wavelet systems form Riesz bases of
the domains of the infinitesimal generators of the Markov processes, thereby allowing for
simple and efficient preconditioning of the matrices arising in wavelet representations of
the processes’ Dirichlet forms, c) the spline wavelet systems can be designed to have a
large number of vanishing moments, thereby allowing for a compression of the wavelet
matrix for the jump measure.

6.1 Triangulation

In the following we briefly summarize the requirements that have to be imposed on the
triangulation. Let Th be a partition of D into disjoint open element domains K such
that D =

⋃
K∈Th K and each K ∈ Th is an affine image of a fixed master element K̂, i.e.
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6 Wavelets and triangulations

K = F (K̂), where K̂ is the unit simplex and F (x̂) = AK x̂+ bK , AK ∈ Rd×d, bK ∈ Rd .
We assume the simplicial family {Th}h∈(0,1] to be shape regular and quasi-uniform:

∃ C1, C2 > 0 independent of h such that for all h : sup
K∈Th

hK
rK

< C1 < +∞ (6.1)

and sup
K∈Th

hK < C2hK ′ ∀ K ′ ∈ Th. (6.2)

Here hK and rK denote the diameter of the element K and the maximum radius of
a ball contained in K, K ∈ Th, respectively. Besides, we assume that the family of
triangulations is regular, in the sense that the intersection K ∩ K ′ of two elements
K,K ′ ∈ Th for h ∈ (0, 1], is either empty, a single vertex or an entire side for d = 2 and
analogously for higher dimensions, i.e., there are no hanging nodes. Moreover, we set
h = maxK∈Th hK .
We denote by Sp,0(D,Th) the space of discontinuous piecewise polynomial functions,
i.e., vh ∈ Sp,0(D,Th) if and only if vh|K ∈ Pp(K), ∀K ∈ Th, where Pp(K) is the space
of polynomials of total degree p in K. Space of continuous piecewise polynomials is
denoted by Sp,1(D,Th) := Sp,0(D,Th) ∩H1(D). If the choice of Th and D is clear from
the context we omit them and write Sp,1 and Sp,0. Finally, we assign to the subdivision
Th the broken Sobolev space of composite order s, where sK ∈ N0 are non-negative
integers,

Hs(D,Th) =
{
u ∈ L2(D) : u|K ∈ HsK (K) ∀K ∈ Th

}
(6.3)

equipped with the norm

‖u‖Hs(D,Th) =


∑

K∈Th
‖u‖2HsK (K)




1/2

.

Furthermore we use the following notations: Γh =
⋃
K∈Th ∂K, Th being the considered

triangulation and Γ0
h =

⋃
K∈Th ∂K ∩ ∂D. The average and jump operators are defined

as follows: if e ∈ Γ is an edge shared by two elements K1 and K2 of Th and n is the unit
vector normal oriented from K1 to K2, then

{v} =
v|K1 + v|K2

2
[v] = v|K1 − v|K2 ,

otherwise (i.e., e ∈ Γ ∩ ∂D) we set

{v} = [v] = v.

6.2 Spline wavelets on an interval

Our Galerkin discretizations of Kolmogorov equations for Feller processes are based on
biorthogonal wavelet bases on a bounded interval I ⊂ R. We write x . y in the following
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6.2 Spline wavelets on an interval

to express that x is bounded by a constant multiple of y, uniformly with respect to all
parameters on which x and y may depend and x ∼ y if x . y and y . x holds.

We recapitulate the basic definitions from, e.g., [29, 112] to which we also refer for further
references and additional details, such as the construction of higher order wavelets.

Our wavelet systems are two-parameter systems {ψl,k}l=0,...,∞,k∈∇l
of compactly sup-

ported functions ψl,k. Here the first index, l, denotes “level” of refinement resp. reso-
lution: wavelet functions ψl,k with large values of the level index are well-localized in
the sense that diam(suppψl,k) = O(2−l). The second index, k ∈ ∇l, measures the lo-
calization of wavelet ψl,k within the interval I at scale l and ranges in the index set ∇l.
In order to achieve maximal flexibility in the construction of wavelet systems (which
can be used to satisfy other requirements, such as minimizing their support size or to
minimize the size of constants in norm equivalences), we consider wavelet systems which
are biorthogonal in L2(I), consisting of a primal wavelet system {ψl,k}l=0,...,∞,k∈∇l

which
is a Riesz basis of L2(I) (and which enter explicitly in the Galerkin discretizations of the
Markov processes) and a corresponding dual wavelet system {ψ̃l,k}l=0,...,∞,k∈∇l

(which
are never used explicitly in our algorithms). Notice that construction of fully L2(I) or-
thonormal wavelet systems is feasible, but results in function systems which are either
nonpolynomial or have larger supports or fewer vanishing moments.

The primal wavelet bases ψl,k span finite dimensional spaces

W l := span {ψl,k : k ∈ ∇l} , VL :=

L−1⊕

l=0

W l l = 0, 1 . . . ,

and the dual spaces are defined analogously in terms of the dual wavelets ψ̃l,k by

W̃ l := span {ψ̃l,k : k ∈ ∇l} , ṼL :=

L−1⊕

l=0

W̃ l l = 0, 1 . . . , .

In the sequel we require the following properties of the wavelet functions to be used on
our Galerkin discretization schemes, we assume without loss of generality I = (0, 1).

(i) Biorthogonality: the basis functions ψl,k, ψ̃l,k satisfy

〈ψl,k, ψ̃l′,k′〉 = δl,l′δk,k′ . (6.4)

(ii) Local support: the diameter of the support is proportional to the meshsize 2−l,

diam supp ψl,k ∼ 2−l , diam supp ψ̃l,k ∼ 2−l. (6.5)

(iii) Conformity: the basis functions should be sufficiently regular, i.e.

W l ⊂ H̃1(I) , W̃ l ⊂ Hδ(I) for some δ > 0 , l ≥ 0. (6.6)

Furthermore
⊕∞

l=0W l,
⊕∞

l=0 W̃ l are supposed to be dense in L2(I).
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6 Wavelets and triangulations

(iv) Vanishing moments: The primal basis functions ψl,k are assumed to satisfy vanish-
ing moment conditions up to order p∗ + 1 ≥ p

〈ψl,k, xα〉 = 0 , α = 0, . . . , d = p∗ + 1, l ≥ 0, (6.7)

and for all dual wavelets, except the ones at each end point, one has

〈ψ̃l,k, xα〉 = 0 , α = 0, . . . , d = p+ 1, l ≥ 0. (6.8)

At the end points the dual wavelets satisfy only

〈ψ̃l,k, xα〉 = 0 , α = 1, . . . , d = p+ 1, l ≥ 0. (6.9)

We remark that the third condition implies that the wavelets satisfy the zero Dirichlet
condition, namely ψl,k(0) = ψl,k(1) = 0; the representation of this boundary condition by
the subspace is important in the pricing of barrier contracts. To satisfy the homogeneous
Dirichlet condition by the wavelet basis, we sacrifice the vanishing moment property of
those wavelets whose supports include the endpoints of I, i.e. x = 0 or x = 1. For
example, ψl,0, l = 0, . . ., at the end point x = 0 (assuming that the localization index
k ∈ ∇l enumerates the wavelets in the direction of increasing values of x).

A systematic and general construction for arbitrary order biorthogonal spline wavelets
is presented in [38]. Sufficiently far apart from the end points of (0, 1), biorthogonal
wavelet (e.g. [29] and the references there) bases are used in this approach. In the
recent paper [59] a wavelet bases was constructed with slightly smaller support at the
end points. Using biorthogonal wavelets in the case p = 1, piecewise linear spline wavelets
vanishing outside I = (0, 1) are obtained by simple scaling. The interior wavelets have
two vanishing moments and are obtained from the mother wavelet ψ(x) which takes the
values (0,−1

6 ,−1
3 ,

2
3 ,−1

3 ,−1
6 , 0, 0, 0) at the points (0, 18 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1) by scaling and

translations: ψl,k(x) := 2l/2ψ(2l−3x − k + 2) for 2 ≤ k ≤ 2l − 3 and l ≥ 3. At the left
boundary k = 1, we use the piecewise linear function ψleft defined by the nodal values
(0, 58 ,

−3
4 ,

−1
4 ,

1
4 ,

1
8 , 0, 0, 0) and ψright(x) = ψleft(1− x). For additional details we refer to

[59].

The following particular system of biorthogonal spline wavelet basis functions are Riesz
bases for all constant or variable order Sobolev spaces of order s ∈ [0, 1] (and only these
spaces arise as domains of the infinitesimal generators admissible time-homogeneous
market models) and have proved efficient for our present applications [85]. They are
a biorthogonal system of piecewise linear, continuos polynomial spline wavelets which
were optimized for having small support. Their dual wavelets do not permit compact
support, but they are nevertheless exponentially decaying. Any function v ∈ H̃s(I),
0 ≤ s ≤ p + 1, and, due to the embeddings H̃m(I) ⊂ H̃m(x)(I) ⊂ H̃m(I), in particular
any function v ∈ H̃m(x)(I) can be represented in the wavelet series

v =

∞∑

l=0

M l∑

k=1

vl,kψl,k =
∑

λ∈I
vλψλ, vλ =

∫

I
vψ̃λdx. (6.10)
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6.2 Spline wavelets on an interval

Here, we used the symbol λ = (l, k) to denote a generic index in the index set

I := {λ = (l, k) : l = 0, 1, 2 . . . , k = 1, . . .Ml}.

Approximations vh of functions v ∈ H̃m(x)(I) can be obtained by truncating the wavelet
expansion (6.10). In this way, a “quasi-interpolating” approximation operator Qh :
H̃m(x)(I) → Vh, can be defined by truncating the wavelet expansion, i.e. by

Qhv =
L−1∑

l=0

M l∑

k=1

vl,kψl,k. (6.11)

For all vh =
∑L−1

l=0

∑M l

k=1 vl,kψl,k ∈ Vh = VL, h ∼ 2−L, there holds the norm equiva-
lence

‖vh‖2H̃s(I)
∼

L−1∑

l=0

M l∑

k=1

|vl,k|222ls, (6.12)

for all 0 ≤ s < 3
2 . This result is sharp in the sense that the norm equivalence fails in

the upper limit s = 3/2; spline-wavelet systems consisting of higher order, piecewise
polynomials with higher regularity across interval boundaries are known, but are not
required in the present context, as the arguments in Dirichlet forms of Feller processes
must belong locally to H1(Rd), at best.

Validity of (6.12) in the variable order spaces H̃m(x)(I) was shown in [97, Theorem 3],
where m(x) ∈ C∞(R), m(x) ∈ [0, 1) was considered. There, it was in particular shown
that for u ∈ H̃m(x) it holds

‖u‖2
H̃m(x)(I)

∼
∞∑

l=0

M l∑

k=1

|ul,k|2 22mλl, (6.13)

where we recall the notation λ = (l, k) ∈ I and mλ which is defined as

mλ := inf{m(x) : x ∈ Ωλ} and mλ := sup{m(x) : x ∈ Ωλ} (6.14)

for the extended support Ωλ of a wavelet basis function ψλ defined by

Ωλ := Ωl,k =
⋃

λ′∈I:l′≥l
{suppψλ′ : suppψλ ∩ suppψλ′ 6= ∅}. (6.15)

For 0 ≤ s < 3
2 ≤ t ≤ p+ 1, we have the approximation property (e.g. [29])

‖v −Qhv‖H̃s(I) ≤ Cht−s ‖v‖Ht(I) . (6.16)

Remark 6.2.1. The pricing equations can also be considered in real price variables and
not in log-price variables as described above, this leads to pseudodifferential operators,
whose domains are weighted Sobolev spaces with possibly degenerated weights. An ex-
ample for such kind of equations is given by the CEV model, cf. Remark 2.1.7. Norm
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VL

W0

W1

W2

W3

ψ0,1

ψ1,1

ψ2,2

ψ3,6

Figure 6.1: Single-scale space VL and its decomposition into multiscale wavelet spaces
Wℓ for L = 3 and p = 1.

equivalences and efficient preconditioning for this kind of equations has been considered
by [13]. The corresponding norm equivalence for a weighted space L2

w(0, 1) with norm
‖u‖2L2

w
=
∫ 1
0 (w(x))

2 |u(x)|2 dx reads:

‖v‖2L2
w(0,1) ∼

∞∑

l=0

M l∑

k=1

|vl,k|2w2(2−lk), (6.17)

for v ∈ L2
w and w being a possibly singular weight function fulfilling weak smoothness

assumptions, cf. [13, Assumption 3.1]. Note that we obtain a variable weight in the
exponent in (6.13) for the variable order Sobolev space, while we obtain a variable weight
in the case of the weighted space (6.17). It is also possible to combine the variable order
Sobolev spaces and the weighted Sobolev spaces, leading to weighted variable order spaces
with analogous norm equivalences to (6.13) and (6.17).

6.3 Tensor product spaces

On D = (0, 1)d, d > 1, we define the subspace VL of H̃m(x)(D) as the full tensor product
of d univariate approximation spaces, i.e. VL :=

⊗
1≤i≤d V li , which can be written as

VL = {ψl,k : 0 ≤ li ≤ L− 1, ki ∈ ∇li , i = 1, . . . , d} ,

with basis functions ψl,k = ψl1,k1 · · ·ψld,kd , 0 ≤ li ≤ L− 1, ki ∈ ∇li , i = 1, . . . , d. We can
write VL in terms of increment spaces

VL =
⊕

0≤li≤L−1

W l1 ⊗ . . .⊗W ld .
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6.3 Tensor product spaces

Therefore, we have for any function u ∈ L2(D) the series representation

u =

∞∑

li=0

∑

ki∈∇li

ul,kψl,k.

Using the univariate norm equivalences and the intersection structure, cf. (2.14)-(2.15),
we obtain

‖u‖2Hm(x) ∼
∑

λ

(
2
2m1

λ1
l1 + . . .+ 2

2md
λd
ld + 1

)
|uλ|2 . (6.18)

Corollary 6.3.1. Let u ∈ Hs(D) ∩ H̃1(D) for some 1 < s ≤ p + 1. Then for the quasi-

interpolant uh = Qhu =
∑L−1

li=0

∑M li

k=1 ul,kψl,k there holds for 0 < m < 1 ≤ s ≤ p+ 1 the
Jackson estimate

‖u− uh‖2H̃m(x)(D)
.

∫

I

(
22L(m1(x1)−s) + . . .+ 22L(md(xd)−s)

)
(|Dsu(x)|2 + |u(x)|2)dx

. 22L(m−s)‖u‖2Hs(D),

where m = maxi=1,...,dmi.

Proof. For multi-indices λ = (l, k), µ = (L, k′) ∈ I, we introduce the notation λ � µ if
li ≥ Li and suppψλi ∩ suppψµi 6= ∅ for all i = 1, . . . , d. For s ≥ 3

2 we choose s′ < s with
1 ≤ s′ < 3

2 , otherwise we set s′ = s. We observe that mλi − s′ ≤ mµi − s′ < 0 holds for
all λi � µi . Therefore we conclude from the norm equivalence (6.18)

‖u− uh‖2H̃m(x)(D)
∼

∑

li≥L

Mli∑

ki=1

(
2
2l1m1

λ1 + . . .+ 2
2ldm

d
λd

)
|uλ|2

=
∑

li≥L

Mli∑

ki=1

(
2
2l1(m1

λ1
−s′)

22l1s
′
+ . . .+ 2

2ld(m
d
λd

−s′)
22lds

′
)
|uλ|2

.
∑

µ∈∇L

(
22L(m

1
µ1

−s′) + . . . + 22L(m
d
µd

−s′)
)

×
∑

λ�µ

(
22s

′l1 + . . . + 22s
′ld
)
|uλ|2,

where ∇L = {µ = (L, k′) : k′i = 1, . . . ,ML , i = 1, . . . , d}.

Let µ = (L, k′), L = |µ| and ✷µ := Πdi=1[2
−Lk′i, 2

−L(k′i + 1)]. Then, by the norm
equivalence (6.18) and the approximation property (6.16), we have

∑

µ∈∇L

∑

λ�µ

(
22s

′l1 + . . .+ 22s
′ld
)
|uλ|2 .

∑

µ∈∇L

22L(s
′−s) ‖u‖2Hs(✷µ)

.
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6 Wavelets and triangulations

Recalling that 2Lm
i
µ ∼ 2Lm

i(xi) ∼ 2Lm
i
µ holds for all x ∈ ✷µ, we obtain the final result

‖u− uh‖2H̃m(x)(D)
.

∫

I

(
22L(m1(x1)−s) + . . .+ 22L(md(xd)−s)

)
(|Dsu(x)|2 + |u(x)|2)dx

. 22L(m−s) ‖u‖2Hs(D) .
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7 FE Discretization for
time-homogeneous PIDEs

We consider the discretization of problem (5.9)-(5.10), i.e., time-homogeneous market
models are studied in this section. We develop and analyze stable discretization schemes.
First, results for continuous Galerkin (CG) Finite Element Method (FEM) for pric-
ing equations without drift dominance are presented. Then, two different methods for
drift dominated equations are analyzed, a discontinuous Galerkin (DG) Finite Element
Method and a CG Finite Element Method with streamline diffusion (SD) stabilization.
In the DG-FEM, the small jump regularization of the hypersingular integrals in the
Dirichlet form of the pure jump part of infinite variation processes has to be employed
in order to obtain a well-defined scheme. This is due to the fact that the basis functions
are not globally Lipschitz and therefore the bilinear form aJ(·, ·) is not well-defined for
such functions. Robustness of the stabilized discretization with respect to various degen-
eracies in the characteristic triplet of the stochastic process is proved. In the CG-FEM,
the SD method is used in the case of a drift dominated equation, as standard methods
are known to be unstable in such a situation. Since continuous, piecewise polynomial
functions on regular simplicial partitions are Lipschitz, for such functions the Dirichlet
form aJ(·, ·) in (3.16) which corresponds to the jump part of the process X is finite, even
if Y > 1, i.e., if X has sample paths of infinite variation (see, e.g. [52, 95]). Therefore,
in contrast to the DG-FEM we do not regularize the jump measure in this case.

7.1 Continuous Galerkin discretization

7.1.1 A priori error estimate

We first discretize the problem (5.9)-(5.10) with respect to the space variable. The
finite element space VL ⊂ VD, as in Section 6.3, is the space of all continuous piecewise
polynomials of degree p ≥ 1 which vanish at the boundary ∂D. The semi-discrete
problem corresponding to (5.9)-(5.10) reads: Given g ∈ L2(Rd), find uL ∈ H1(I, VL)
such that

(∂tuL, vL) + aD(uL, vL) = (f, vL), ∀vL ∈ VL, (7.1)

uL(0) = Phg|D, (7.2)
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7 FE Discretization for time-homogeneous PIDEs

where Ph is the L2 projection onto VL. We first consider a setup without drift dominance
as in Section 5.2. In such a setup the a piori error estimate follows along the lines of [86,
Section 5], i.e., the following result holds.

Theorem 7.1.1. Let A(x,D) ∈ Ψ
2m(x)
ρ,δ be the generator of a time-homogeneous admis-

sible market with 0 < δ ≤ ρ ≤ 1 with symbol a(x, ξ) satisfying (5.11), then for all t ∈ I,
there holds

‖u(t)− uL(t)‖L2(D) ≤ Cmin
{
1, hp+1t−

p+1
p

}(
‖g‖L2(D) + ‖f‖L2(I,H−m(x)(D))

)
.

Here, C is a positive constant, independent of h and t while u and uL are the solutions
of (5.9)-(5.10) and (7.1)-(7.2).

Note that Theorem 7.1.1 does not cover the drift dominated case, cf. Theorem 5.2.5. We
present two approaches for this case. An SD-FEM approach is discussed in the following
section and DG-FEM is analysed in Section 7.3.

7.2 Streamline diffusion discretization

In order to obtain a formulation that is numerically feasible, we need to stabilize the
transport operator, since the application of a standard Finite Element discretization
generally leads to unstable numerical solutions. In the following we consider the dis-
cretization on a general triangulation as introduced in Section 6.1. Convergence results
for tensor product spaces are special cases of the more general results.

7.2.1 Streamline diffusion formulation

We consider problem (5.24). Let the space Sp,1(D,Th) of continuous piecewise polyno-
mial functions vh on a triangulation Th be given as in Section 6.1. Moreover, we assume
that the following condition holds.

Assumption 7.2.1. Let X be a time-homogeneous admissible market model, then we
make the following regularity assumption on the drift b(x)

b(x) · ∇hvh ∈ Sp,1 ∀vh ∈ Sp,1. (7.3)

This condition is further discussed in Remark 7.3.10. The SD-FEM formulation reads
as follows: find uδh ∈ H1

(
(0, T );S1,p

0

)
such that

(
∂tu

δ
h, vh

)
+ aδSD(u

δ
h, vh) = lδSD(vh) ∀vh ∈ Sp,10 , (7.4)

uδh(0, x) = Phg(x)|D, (7.5)
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7.2 Streamline diffusion discretization

with

aδSD(u, v) := aTr(u, v) + aJ(u, v) + aδTr(u, v) and l
δ
SD(v) := (f, v + δb · ∇v), (7.6)

where aδTr(u, v) = δaTr(u, b · ∇v) and Ph denotes the L2-projection onto Sp,10 . We de-

fine Sp,10 =
{
vh ∈ Sp,1 : vh = 0 on ∂D

}
. Note that an analogous formulation can be

obtained for non-homogeneous Dirichlet boundary conditions.

7.2.2 A priori bound

We introduce the streamline-diffusion norm ‖·‖SD(δ), defined by

‖w‖2SD(δ) := ‖w‖2L2(D) + ‖b · nw‖2L2(Γ) + ‖w‖2
H̃m(x)(D)

+ δ ‖b · ∇w‖2L2(D) , (7.7)

where n denotes the exterior unit normal vector on D.

Theorem 7.2.2. Let aδSD(·, ·) be as in (7.6) and ‖·‖SD(δ) be given by (7.7), further assume

the bilinear form aJ(·, ·) is coercive, then the following estimate holds if δ < 4rmin r
−2

aδSD(w,w) ≥ Cco ‖w‖2SD(δ) ∀w ∈ H1(D), (7.8)

for Cco > 0 and rmin as in (5.22).

Proof. By integration by parts and using properties of the operators we obtain the
following estimate: for any w ∈ H1(D)

aδSD(w,w) ≥ rmin ‖w‖2L2(D) +
1

2
‖b · nw‖2L2(Γ) + C ‖w‖2

H̃m(x)(D)

+δ ‖b · ∇w‖2L2(D) − δ ‖rw‖L2(D) ‖b · ∇w‖L2(D)

≥ rmin ‖w‖2L2(D) +
1

2
‖b · nw‖2L2(Γ) + C ‖w‖2

H̃m(x)(D)

+δ ‖b · ∇w‖2L2(D) − r2
δ

2Ĉ
‖w‖2L2(D) −

δĈ

2
‖b · ∇w‖2L2(D)

=

(
rmin − r2

δ

2Ĉ

)
‖w‖2L2(D) +

1

2
‖b · nw‖2L2(Γ)

+C ‖w‖2
H̃m(x)(D)

+ δ

(
1− Ĉ

2

)
‖b · ∇w‖2L2(D) .

Choosing Ĉ such that r2δ
2rmin

< Ĉ < 2 yields the required result with

Cco = min
{
rmin − r2 δ

2Ĉ
, 1
2 , C, 1− Ĉ

2

}
.

Remark 7.2.3. Note that the coercivity assumption on aJ(·, ·) is not restrictive, as we
may use the transformation v(t, x) = e−tC

−
u(t, x) to obtain a coercive bilinear form in

the equation satisfied by v, if aJ(u, u) ≥ C||u||2
H̃m(x)(D)

− C− ‖u‖2L2(D) holds.
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7 FE Discretization for time-homogeneous PIDEs

The coercivity of the bilinear form aδSD(·, ·) implies the following stability result.

Theorem 7.2.4. Let the assumptions of Theorem 7.2.2 hold and uδh be the solution of
(7.4), then the following a priori bound holds

∥∥∥uδh(T )
∥∥∥
2

L2(D)
+

∫ T

0

∥∥∥uδh(t)
∥∥∥
2

SD(δ)
dt ≤ 1

C2
co

(
1 +

√
δ
)2

‖f‖2L2((0,T );L2(D)) + ‖Phg‖2L2(D) ,

where Cco is the coercivity constant in Theorem 7.2.2.

Proof. Considering (7.8) and the right-hand side (7.6) it follows

1

2

d

dt

∥∥∥uδh(t)
∥∥∥
2

L2(D)
+
∥∥∥uδh(t)

∥∥∥
2

SD(δ)
≤ 1

Cco
‖f(t)‖L2(D)

∥∥∥uδh(t) + δb · ∇uδh(t)
∥∥∥
L2(D)

≤ 1

Cco
‖f(t)‖L2(D) (1 +

√
δ)
∥∥∥uδh(t)

∥∥∥
SD(δ)

≤ (1 +
√
δ)2

2C2
co

‖f(t)‖2L2(D) +
1

2

∥∥∥uδh(t)
∥∥∥
2

SD(δ)

and the result follows integrating in time.

7.2.3 A priori error estimate

In order to prove an a priori error estimate, we need the following lemma.

Lemma 7.2.5. Suppose that K ∈ Th is a shape regular d-simplex or a shape regular
d-parallelepiped of diameter hK . Suppose further that u|K ∈ Hr(K), r ≥ 2. Then there
exists a projection Π(p,K) on the space of the polynomials of degree p in K such that, for
s ≥ 1, p ≥ 1, s integer

||w −Π(p,K)w||L2(K) ≤ C
h
min(p+1,s)
K

ps
||w||Hs(K),

||∇
(
w −Π(p,K)w

)
||L2(K) ≤ C

h
min(p+1,s)−1
K

ps−1
||w||Hs(K),

||w −Π(p,K)w||L2(∂K) ≤ C
h
min(p+1,s)− 1

2
K

ps−
1
2

||w||Hs(K),

||∇
(
w −Π(p,K)w

)
||L2(∂K) ≤ C

h
min(p+1,s)− 3

2
K

ps−
3
2

||w||Hs(K).

Moreover, for 0 < l < 1, it holds

||w −Π(p,K)w||Hl(K) ≤ C
h
min(p+1,s)−l
K

ps−l
||w||Hs(K).
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7.2 Streamline diffusion discretization

Proof. See [27], [65, Lemma 4.4] and [109, Section 4.5].

Remark 7.2.6. In each estimate, s can be chosen differently, if w is sufficiently smooth.

Remark 7.2.7. Lemma 7.2.5 can be extended to the case s ∈ (0, 2). In this case, the
right-hand side of the interpolation estimates contains the term ||w||Hs(δK), where δK is
given as the union of the element K with its neighbor elements, i.e.
δK =

{
K ′ ∈ Th : K ′ ∩K 6= ∅

}
. For example, all the elements of the triangulation Th

that share an edge (d = 2) or vertex (d = 3) with K.

The following result is needed in order to prove an a priori error estimate.

Lemma 7.2.8. Let w ∈ Sp,1 and K ∈ Th, then for any s > 0 there exist a constant CI
independent on h and p ≥ 1, but depending on C1 and C2 in (6.1), i.e., on the mesh
regularity, such that

||w||Hs(K) ≤ CIp
2sh−s||w||L2(K).

Proof. Let us consider the case s = 1 and d = 2. We obtain from [109, Theorem 4.76]

‖ŵ‖
H1(K̂)

≤ Cp2 ‖ŵ‖
L2(K̂)

,

where ŵ = F (w) and with F : K → K̂ denoting the element mapping inverse function.
Scaling arguments (as in [22, Section 4.5]) show that

‖w‖2H1(K) = ‖w‖2L2(K) + |w|2H1(K) ≤ C

(
‖ŵ‖2

L2(K̂)
+

1

h2K
|ŵ|2

H1(K̂)

)

≤ C

(
1 +

p4

h2K

)
‖ŵ‖2

L2(K̂)
≤ C

(
1 +

C2
2p

4

h2

)
‖w‖2L2(K) .

The other cases can be proved similarly.

We define the norm ||| · |||SD(δ) by:

|||w(t)|||2SD(δ) = ||w(t)||2L2(D) +

∫ t

0
‖w(τ)‖2SD(δ) dτ ∀t ∈ (0, T ).

Theorem 7.2.9. Let u be the solution of problem (5.24) and uδh be the solution of (7.4)-
(7.5), then the following estimate holds for s ≥ 2, 0 < m < 1, t ∈ (0, T ) and C > 0
independent of p and h

|||(u − uδh)(t)|||SD(δ) ≤ Cmax

(
√
δh−mp2m,

hmin (p+1,s)−max (2m, 1)/2

ps−max (2m, 1)/2

)

×
(
‖u(t)‖Hs(D) + ‖u‖H1((0,T );Hs(D))

)
.
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7 FE Discretization for time-homogeneous PIDEs

Proof. We set

η := uε −Πpu
ε and ξ := uεh −Πpu

ε, (7.9)

where obviously ξ ∈ Sp,1 holds. Notice that a Galerkin orthogonality is not available in
this case, but a quasi orthogonality can be used, i.e.,

Bδ(ξ, ξ) = Bδ(η, ξ) −Bδ(u− uδh, ξ), (7.10)

where we set Bδ(w, v) := (∂tw, v) + aδSD(w, v) and

Bδ(u− uδh, ξ) = −δ(∂tu, b · ∇ξ)− δaJ(u, b · ∇ξ). (7.11)

Let us examine the terms in (7.10) separately. Since Bδ(η, ξ) = (∂tη, ξ)+a
δ
SD(η, ξ) holds,

we obtain, using Assumption 7.2.1 and the interpolation error estimates of Lemma 7.2.5,
for δ = Chαp−β, α, β > 0

∣∣∣aδSD(η, ξ)
∣∣∣ =

∣∣∣a (η, ξ) + aδTr (η, ξ)
∣∣∣

≤
(
r + ||div(b)||L∞(D)

)
‖η‖L2(D) ‖ξ‖L2(D)

+ ‖b · n η‖L2(Γ) ‖b · n ξ‖L2(Γ) + C ‖η‖H̃m(x)(D) ‖ξ‖H̃m(x)(D)

+ δ
(
r ‖η‖L2(D) ‖b · ∇ξ‖L2(D) + ‖b · ∇η‖L2(D) ‖b · ∇ξ‖L2(D)

)

≤ C
(
(1 +

√
δ) ‖η‖L2(D) + ‖η‖H̃m(x)(D) + ‖b · n η‖L2(Γ) +

√
δ ‖b · ∇η‖L2(D)

)

×‖ξ‖SD(δ)

≤ C
hmin(p+1,s)

ps

(
1 +

hα/2

pβ/2
+
h−m

p−m
+ ||b||L∞(D)

(
h−1/2

p−1/2
+
hα/2−1

pβ/2−1

))

×||u||Hs(D) ‖ξ‖SD(δ)

≤ C
hmin (p+1,s)−max (2m, 1, 2−α)/2

ps−max (2m, 1, 2−β)/2
(
1 + ||b||L∞(D)

)
||u||Hs(D) ‖ξ‖SD(δ) . (7.12)

Moreover, it holds

∣∣∣Bδ(u− uδh, ξ)
∣∣∣ = |δ(∂tu, b · ∇ξ) + δaJ(u, b · ∇ξ)|

≤ δ ‖∂tu‖L2(D) ‖b · ∇ξ‖L2(D) + Cδ ‖u‖
H̃m(x)(D)

‖b · ∇ξ‖
H̃m(x)(D)

.

Considering Lemma 7.2.8, we have

‖b · ∇ξ‖H̃m(x)(D) ≤ CIh
−mp2m ‖b · ∇ξ‖L2(D)

and thus
∣∣∣Bδ(u− uδh, ξ)

∣∣∣ ≤
√
δ
(
‖∂tu‖L2(D) + Ch−mp2m ‖u‖

H̃m(x)(D)

)
‖ξ‖SD(δ) ,
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7.2 Streamline diffusion discretization

where C depends on the continuity constant of the bilinear form aJ(·, ·) and on CI in
Lemma 7.2.8. Thus it holds

1

2

d

dt
||ξ||2L2(D) + ||ξ||2SD(δ) ≤

1

C co
Bδ(ξ, ξ)

=
1

C co

(
(∂tη, ξ) + aδSD(η, ξ) −Bδ(u− uδh, ξ)

)

≤ Ĉ1

2

h2min (p+1,s)

p2s
||∂tu||2Hs(D) +

1

2Ĉ1

||ξ||2SD(δ) +
1

2Ĉ2

‖ξ‖2SD(δ) +
1

2Ĉ3

‖ξ‖2SD(δ)

+
Ĉ2C

2

2

h2min (p+1,s)−max (2m, 1, 2−α)

p2s−max (2m, 1, 2−β)
(
1 + ||b||L∞(D)

)2 ||u||2Hs(D)

+
Ĉ3

2
δ
(
‖∂tu‖L2(D) + Ch−mp2m ‖u‖H̃m(x)(D)

)2
.

Therefore, choosing positive constants Ĉ1, Ĉ2 and Ĉ3 such that 1

2Ĉ1
+ 1

2Ĉ2
+ 1

2Ĉ3
= 1

2 ,

we obtain

|||ξ|||2SD(δ) =
d

dt
||ξ||2L2(D) + ||ξ||2SD(δ) ≤ Cmax

(
h(α−2m)/2

pβ/2−2m
,
hmin (p+1,s)−max (2m, 1)/2

ps−max (2m, 1)/2

)2

(
‖∂tu‖L2(D) +

(
1 + ||b||L∞(D)

)
||u||Hs(D)

)2

Since |||u−uδh|||SD(δ) ≤ |||ξ|||SD(δ)+|||η|||SD(δ) holds and since the estimate for |||η|||SD(δ)

follows from Lemma 7.2.5, we conclude the claimed result.

Remark 7.2.10. As the scheme is only asymptotically consistent, this has to be considered
in the convergence analysis and leads to strong restrictions on δ. A fully consistent
discretization scheme reads: find uδh ∈ Sp,1 s.t. ∀v ∈ Sp,1

(
∂tu

δ
h, v + δb · ∇v

)
+ a(uδh, v + δb · ∇v) = (f, v + δb · ∇v)

uδh(0, x) = Phg(x).

The following error estimate can be obtained along the lines of Theorem 7.2.9 using
Galerkin orthogonality

|||(u− uδh)(t)|||SD(δ) ≤ C
hmin (p+1,s)−max (2m, 1, 2−α)/2

ps−max (2m, 1, 2−β)/2

×
(
‖u(t)‖Hs(D) + ‖u‖H1((0,T );Hs(D))

)
,

for δ = Chαp−β, α, β > 0, C > 0 sufficiently large and independent of h and p. Choosing
α = β = 1 would lead to a convergence rate of min (p+ 1, s) −max (2m, 1)/2 in h and
s−max (2m, 1)/2 in p.

Remark 7.2.11. We refer to [60, Chapter 5] for an analysis of SD-FEM for PIDEs on
sparse tensor product spaces.
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7 FE Discretization for time-homogeneous PIDEs

7.3 Discontinuous Galerkin discretization

A DG-discretization scheme for the forward equation is described in this section. After
introducing the necessary notations, the numerical scheme is presented and analyzed.
An error analysis in multiple space dimensions is performed.

7.3.1 Discontinuous Galerkin formulation

The DG semidiscrete formulation of (5.33) reads as follows: for a (sufficiently small) jump
regularization parameter ε > 0, find uεh ∈ H1((0, T );Sp,0) such that for all vh ∈ Sp,0 it
holds

(∂tu
ε
h(x), vh(x)) + aεDG(u

ε
h(x), vh(x)) = lεDG(vh(x)), (7.13)

uεh(0, x) = Πpg(x), (7.14)

where Πpg is the L2-projection of the initial condition function g in Sp,0 as in Section
6.1, and

aεDG(w, v) := dεDG(w, v) + tDG(w, v) + rDG(w, v) + jεDG(w, v), (7.15)

lεDG(v) =

∫

D
fvdx+ bcDG(v). (7.16)

The bilinear forms dεDG(·, ·), tDG(·, ·), rDG(·, ·), jεDG(·, ·) and the boundary term bcDG(·)
are defined as follows for any v,w ∈ Sp,0.

(i) Diffusion term dεDG(·, ·) : for ease of notation we drop the dependency on time t
and space x. It holds

dεDG(w, v) :=
∑

K∈Th

1

2

∫

K
∇w⊤Q(x, ε)∇vdx −

∑

e∈Γh

1

2

∫

e

{
∇w⊤Q(s, ε)n

}
[v]ds

+
β

2

∑

e∈Γh

∫

e
[w]
{
∇v⊤Q(s, ε)n

}
ds+

∑

e∈Γh

α

|e|

∫

e
[w][v]ds, (7.17)

where α > 0 is independent of h and ε; β = −1 yields the Symmetric Interior
Penalty Galerkin (SIPG) method (which converges only if α is sufficiently large),
while β = 1 gives the Non-Symmetric Interior Penalty Galerkin (NIPG) method.
See [100, Chapter 2] for further details. From now on we set β = 1, i.e., we
discretize the diffusion term with the NIPG method.

(ii) Transport term tDG(·, ·): following [65], we obtain

tDG(w, v) :=
∑

K∈Th

∫

K
b · ∇w vdx−

∫

∂−K
(b · nK)[w]vIds, (7.18)
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7.3 Discontinuous Galerkin discretization

where nK is the normal unit vector exterior to K, vI (vO) is the inner (outer) trace
of v relative to K and, according to the above definition, [v] = vI − vO. Moreover
we set

∂−K := {x ∈ ∂K : b · nK < 0} and ∂+K := {x ∈ ∂K : b · nK > 0}.
Note that the drift vector b(x) might be ε-dependent if a martingale condition on
the regularized market model is enforced, cf. Section 4.1.3. In this case ∂K also
depends on ε.

(iii) Reaction term rDG(·, ·): it holds

rDG(w, v) :=

∫

D
r w vdx. (7.19)

(iv) Integrodifferential term jεDG(·, ·): since the jump operator AJ(ε) as in (5.28) can
be rewritten as

AJ(ε)ϕ(x) =

∫

Rd

(ϕ(y) − ϕ(x))kε(x, y − x)dy, (7.20)

the integrodifferential term is given as

jεDG(w, v) := −
∫

Rd

∫

Rd

(w̃(y)− w̃(x))kε(x, y − x)dy ṽ(x)dx. (7.21)

(v) The boundary term bcDG(·) in this case reads

bcDG(v) = 0.

Remark 7.3.1. Note that if we impose nonhomogeneous Dirichlet conditions η 6= 0 as in
(5.33), then the boundary term would read

bcεDG =
∑

e∈Γ0
h

∫

e

(
1

2
∇v⊤Q(s, ε)n +

α

|e|v
)
ηds −

∑

K∈Th

∫

∂−K∩∂G
(b · nK)ηvIds.

The first term stems from the discretization of the diffusion part, while the second term
originates from the transport term.

Remark 7.3.2. In [64] the authors deal with a DG discretization for the hyperbolic part
b · ∇u+ cu = f . More precisely, they discretize the bilinear form tDG(·, ·) + rDG(·, ·) as
in (7.18) and (7.19) adding the following stabilization term

δ
∑

K∈Th

∫

K
(b · ∇w + rw) (b · ∇v)dx,

for δ > 0. The consistency of the method is ensured by adding the term δ
∫
D f(b · ∇v)dx

to the right-hand side of the equation. Consistency, stability and an error analysis is
provided in [64] with δ = Chp−1, with C independent of h and p. However, numerical
results (see [64, Section 5]) show that the scheme without stabilization, i.e., δ = 0, is
marginally more accurate for p = 1 and p = 2. For larger p the stabilized scheme is
slightly more accurate.
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7 FE Discretization for time-homogeneous PIDEs

Remark 7.3.3. The above DG formulation is written with integrals over faces of the
elements of the mesh, and thus for the case d > 1. In the univariate case, this is to be
interpreted as follows: if K = [a, b], then ∂K = {a, b} and we set for v ∈ Pp(K)
∫

a
vI(x)dx = v(a),

∫

b
vI(x)dx = v(b),

∫

a
vI(x)ndx = −v(a),

∫

b
vI(x)ndx = v(b),

where n = 1 (−1) in b (a). Moreover, if h is the length of the interval K, i.e., h := b−a,
we replace |e| by h in (7.17).

Remark 7.3.4. Let us consider, for simplicity, the univariate case, i.e., d = 1 in (5.33),

and the integrodifferential term (7.21): if we denote by k
(−1)
ε an antiderivative (to be

specified below) of kε, then (7.21) can be rewritten as follows:

jεDG(w, v) =

∫

R

∑

K∈Th

∫

K
w̃′(y)k(−1)

ε (x, y − x)dy ṽ(x)dx

−
∫

R

∑

K∈Th

∫

∂K
(w̃I(s)− w̃(x))nk(−1)

ε (x, s − x)ds ṽ(x)dx,

where the antiderivatives of kε(x, y) are given by

k(−1)
ε (x, z) =

{∫ z
−∞ kε(x, y)dy if z < 0,

−
∫ +∞
z kε(x, y)dy if z > 0

. (7.22)

In the following sections we analyze the stability and derive error estimates for the DG
semidiscrete formulation (7.13)-(7.14) of (5.33). We denote by u the smooth solution
of problem (5.9)-(5.10), uε is the smooth solution of problem (5.33) with ε > 0 and
uεh ∈ Sp,0 is the solution of problem (7.13)-(7.14) according to the DG discretization.
We prove the consistency of the considered DG scheme in Section 7.3.2, while in Sections
7.3.3 and 7.3.4 we deal with an a priori bound and error estimates of the DG solution.

7.3.2 Consistency

Theorem 7.3.5. If uε is the solution of (5.33), then it satisfies (7.13).

Proof. Let vh ∈ Sp,0 be a test function. We obtain from (5.33)

(∂tu
ε, vh) + aD(u

ε, vh) = (f, vh).

Since

(AJ(ε)ũ
ε, vh) ≡ jεDG(u

ε, vh), (ruε, vh) ≡ rDG(u
ε, vh) and (f, vh) ≡ lDG(vh)

holds, we have to deal with the diffusion and transport terms in order to prove con-
sistency of the method. However, the regularity of uε implies [uε] = 0 on Γh, thus
(b ·∇uε, vh) = tDG(u

ε, vh). Finally, the consistency of the diffusive part (and thus of the
whole formulation) follows from [100, Proposition 2.9].
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7.3 Discontinuous Galerkin discretization

7.3.3 A priori bound

Let us assume that b and r satisfy

(r0)
2(x) := r − 1

2
∇ · b(x) ≥ rmin > 0. (7.23)

Note that this condition follows from (5.22). Following [65], it holds for all w ∈
H1(D,Th)

dεDG(w,w) + tDG(w,w) + rDG(w,w) =
∑

K∈Th

(
|w|2H1,ε(K) + ||r0w||2L2(K)

+
1

2
||[w]||2L2(∂−K) +

1

2
||[w]||2L2(∂+K∩Γ0

h)

)

+
∑

e∈Γh

α

|e| ||[w]||
2
L2(e), (7.24)

with

|w|2H1,ε(K) :=
1

2

∫

K
∇w⊤Q(x, ε)∇wdx.

The DG norm ‖·‖DG(ε) for sufficiently small ε > 0 and w ∈ H1(D,Th) is defined as:

||w||2DG(ε) :=
∑

K∈Th

(
|w|2H1,ε(K) + ||r0w||2L2(K) +

1

2
||[w]||2L2(∂−K) +

1

2
||[w]||2L2(∂+K∩Γ0

h)

)

+
∑

e∈Γh

α

|e| ||[w]||
2
L2(e). (7.25)

Let us now consider the term jεDG(·, ·). Without loss of generality it can be assumed that
jεDG(w,w) ≥ 0 holds for ε > 0 sufficiently small. This situation can always be achieved
after a change of variable. Therefore

aεDG(w,w) ≥ ||w||2DG(ε). (7.26)

Considering (7.21), it holds for all w ∈ H1(D,Th) and all sufficiently small ε > 0

jεDG(w,w) ≤
∣∣∣∣
∫

D

∫

D
(w(y)− w(x))kε(x, y − x)dy w(x)dx

∣∣∣∣ (7.27)

≤ C(ε)||w||2DG(ε),

and we conclude,

aεDG(w,w) ≤ C(ε)||w||2DG(ε). (7.28)

Remark 7.3.6. From (7.27), it is clear that it is not necessary to add an additional term
in the definition of the norm || · ||DG(ε) to control jDG(·, ·) once ε > 0 is fixed. However,
C(ε) → +∞ in (7.28) as ε→ 0. See Section 7.3.5 for details on the case ε ≡ 0.
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7 FE Discretization for time-homogeneous PIDEs

To prove the a priori bound, we need the following result.

Lemma 7.3.7. Let w ∈ Sp,0 ⊂ H2(D,Th) and K ∈ Th, then there exists a constant
C > 0, independent of h, p and dependent on the shape regularity of Th, such that,

∣∣∣
∣∣∣∇hw

⊤Q(x, ε)n
∣∣∣
∣∣∣
L2(e)

≤ Cph−1/2

∣∣∣∣
∣∣∣∣
√

∇hw⊤Q(x, ε)∇hw

∣∣∣∣
∣∣∣∣
L2(K)

∀e ∈ ∂K.

Proof. The result follows from trace inequalities, i.e.,
∣∣∣
∣∣∣∇hw

⊤Q(x, ε)n
∣∣∣
∣∣∣
2

L2(e)
≤ C sup

x∈D
{|Q(x, ε)|}

∫

e
∇hw

⊤Q(x, ε)∇hw dx

≤ Cp2
hK

sup
x∈D

{|Q(x, ε)|}
∫

K
∇hw

⊤Q(x, ε)∇hw dx,

where the constant C is independent of hK , i.e., the diameter of the element K, the
polynomial degree p and |e| (see for example [100, Section 2.1.3] and [65, Section 4.2]).

Theorem 7.3.8. Let uεh be the solution of (7.13), then the following a priori bound holds:

||uεh(T )||2L2(D) +

∫ T

0
||uεh(t)||2DG(ε)dt ≤ C ‖f‖2L2((0,T );L2(D)) + ||Πpg||2L2(D).

Proof. Considering (7.26), it holds

1

2

d

dt
||uεh(t)||2L2(D) + ||uεh(t)||2DG(ε)

≤ (∂tu
ε
h(t), u

ε
h(t)) + dεDG(u

ε
h(t), u

ε
h(t)) + tDG(u

ε
h(t), u

ε
h(t)) + jεDG(u

ε
h(t), u

ε
h(t))

+rDG(u
ε
h(t), u

ε
h(t))

= lDG(u
ε
h(t)) ≤ ||f(t)||L2(D)||uεh(t)||L2(D)

where n is the exterior normal unit vector to ∂D. We obtain

1

2

d

dt
||uεh(t)||2L2(D) + ||uεh(t)||2DG(ε) ≤

√
1

(r0)2
||f(t)||L2(D)||uεh(t)||DG(ε).

Thus

1

2

d

dt
||uεh(t)||2L2(D) + ||uεh(t)||2DG(ε) ≤ C ‖f‖L2(D) ‖uεh(t)‖DG(ε)

≤ C2 ‖f(t)‖2L2(D) +
1

2
||uεh(t)||2DG(ε),

where C2 = 1
(r0)2

. We notice that C is bounded independently of ε and of h, provided

that h > 0 and ε > 0 are sufficiently small. Thus

d

dt
‖uεh(t)‖2L2(D) + ‖uεh(t)‖2DG(ε) ≤ 2C2

(
||f(t)||2L2(D)

)

and the claimed result is obtained integrating in time and setting uεh(0, ·) = Πpg(·).
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7.3 Discontinuous Galerkin discretization

7.3.4 A priori error estimate

In order to estimate ||u − uεh|| in a suitable norm we apply the triangle inequality and
estimate the terms separately:

||u− uεh|| ≤ ||u− uε||︸ ︷︷ ︸
(a)

+ ||uε − uεh||︸ ︷︷ ︸
(b)

.

The term (a) stems from the small jump approximation and can be estimated using
Theorem 4.1.14, while the term (b) depends on the DG approximation. In order to
prove an a priori error estimate for ||uε − uεh||, we need the Lemma 7.2.5. For ease of
notation, we set w(t) := w(t, ·) and define the DG norm ||| · |||DG(ε) as follows:

|||w(t)|||2DG(ε) = ||w(t)||2L2(D) +

∫ t

0
||w(s)||2DG(ε)ds ∀t ∈ (0, T ). (7.29)

We are now able to prove the following result.

Theorem 7.3.9. Let uε and uεh be the solutions of (5.33) and (7.13), then ∀t ∈ [0, T ]

||| (uε − uεh) (t)|||DG(ε) ≤ C
hmin(p+1,s)−1

ps−
3
2

(
||uε(t)||Hs(D,Th) + ||uε||H1((0,t);Hs(D,Th))

)
(7.30)

Proof. Since the scheme is consistent, the DG formulation (7.13) satisfies the orthogo-
nality property

∀t ∈ (0, T ), ∀v ∈ Sp,0
∫

D
∂t(u

ε − uεh)vdx+ aεDG(u
ε − uεh, v) = 0.

Let us consider a suitable projection Πp on the space of discontinuous piecewise polyno-
mial functions. We require that Πp is such that

∀K ∈ Th (Πpv) |K = Π(p,K)(v|K).

As in [65] we use for Π(p,K) the L2-orthogonal projector, i.e., given w ∈ L2(D), (w −
Πpw, vh) = 0 ∀vh ∈ Sp,0. We set as in Theorem 7.2.9

η := uε −Πpu
ε and ξ := uεh −Πpu

ε,

where obviously ξ ∈ Sp,0 holds. Using the Galerkin orthogonality and the equality
uε − uεh = η − ξ, we obtain

∫

D
∂tξ vdx+ aεDG(ξ, v) =

∫

D
∂tηvdx+ aεDG(η, v) ∀v ∈ Sp,0.

Thus, setting v = ξ and applying (7.26), we obtain

1

2

d

dt
||ξ||2L2(D) + ||ξ||2DG(ε) ≤

∫

D
∂tξ ξdx+ aεDG(ξ, ξ) =

∫

D
∂tη ξdx+ aεDG(η, ξ). (7.31)
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7 FE Discretization for time-homogeneous PIDEs

Let us examine the terms in (7.31) in more detail. For any Ĉ1 > 0, it holds

∫

D
∂tη ξdx ≤ ||∂tη||L2(D)||ξ||L2(D) ≤

Ĉ1

2
||ξ||2L2(D) +

1

2Ĉ1

||∂tη||2L2(D)

≤ Ĉ1

2rmin
||ξ||2DG(ε) +

1

2Ĉ1

||∂tη||2L2(D).

It follows from [65, Lemma 4.3] and Lemma 7.3.7 that for any Ĉ2 > 0

dεDG(η, ξ) ≤ ||ξ||DG(ε)

√
δDG(η) ≤

Ĉ2

2
||ξ||2DG(ε) +

1

2Ĉ2

δDG(η)

with

δDG(η) := ||√αJ [η]||2L2(Γh)
+
∑

K∈T
|η|2H1,ε(K)

+Cqεp2h−1 ||[η]||2L2(∂K) + q2ε

∣∣∣∣
∣∣∣∣

1√
αJ

∇η
∣∣∣∣
∣∣∣∣
2

L2(∂K)

,

where we recall that αJ is the penalization parameter, i.e., αJ |e = α
|e| ∀ e ∈ Γh and

qε = supx∈D

∣∣∣
√

1
2Q(x, ε)

∣∣∣
2

2
with | · |2 denoting the matrix norm subordinated to the l2

vector norm on Rd.
Using [65, Lemma 3.2], we obtain for any Ĉ3 > 0

tDG(η, ξ) + rDG(η, ξ) ≤ ||ξ||DG(ε)

√
τDG(η) ≤

Ĉ3

2
||ξ||2DG(ε) +

1

2Ĉ3

τDG(η), (7.32)

where

τDG(η) :=
∑

K∈T
||r0η||2L2(K) + 2||η||2L2(∂+K∩Γ0

h)
+ 2||ηO||2L2(∂−K\Γ0

h)
.

For any Ĉ4 > 0, reasoning as in (7.27), it holds

jεDG(η, ξ) ≤ C(ε)

(
Ĉ4

2
||ξ||2L2(D) +

1

2Ĉ4

||η||2L2(D)

)

≤ C(ε)

(
Ĉ4

2rmin
||ξ||2DG(ε) +

1

2rmin Ĉ4

||η||2DG(ε)

)
.

Choosing positive constants Ĉ1, Ĉ2, Ĉ3 and Ĉ4 sufficiently small, i.e., such that

Ĉ1

2rmin
+
Ĉ2

2
+
Ĉ3

2
+
C(ε)Ĉ4

2rmin
=

1

2
, (7.33)
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7.3 Discontinuous Galerkin discretization

the following stability result holds

1

2

d

dt
||ξ||2L2(D) +

1

2
||ξ||DG(ε) ≤ C

(
||∂tη||2L2(D) + δDG(η) + τDG(η) + ||η||2DG(ε)

)

︸ ︷︷ ︸
=:ξ̂[η]

, (7.34)

with C > 0 independent of h and p, but depending on ε

C = max

(
1

2Ĉ1

,
1

2Ĉ2

,
1

2Ĉ3

,
C(ε)

2rmin Ĉ4

)
. (7.35)

Thus, integrating (7.34), since all the above constants are time-independent, we obtain

|||uε − uεh|||2DG(ε) ≤ |||ξ|||2DG(ε) + |||η|||2DG(ε) ≤
∫ t

0
ξ̂[η](s)ds + |||η|||2DG(ε).

Therefore the interpolation error estimates in Lemma 7.2.5 give the claimed result, since
∀t ∈ (0, T ) it holds

∫ t

0
ξ̂[η](s)ds + |||η|||2DG(ε)

≤ C

∫ t

0

( ∑

K∈Th

(
1 +

p2

h
+

1

h

)∫

∂K
η2(τ, s)ds +

∫

K
η2(τ, x)dx

+

∫

K
|∇η(τ, x)|2 dx+ h

∫

∂K
|∇η(τ, s)|2 ds+

∫

K
|∂tη(τ, x)|2 dx

)
dτ + ||η(t)||2L2(D)

≤ C
h2min(p+1,s)−2

p2s−3

(∫ t

0
||uε(τ)||2Hs(D,Th) + ||∂tuε(τ)||2Hs(D,Th)dτ + ||η(t)||2L2(D)

)
.

Remark 7.3.10. Inequality (7.32) depends on Assumption 7.2.1. In [65, Remark 3.13],
the authors comment on this condition: if it is violated, then the presented analysis
yields an error bound that is still optimal with respect to h but is p-suboptimal. A
possible remedy is to supplement the definition of the scheme with a streamline-diffusion
term, this restores the hp optimality. However, numerical results suggest that the DG
scheme is hp-optimal even if Assumption 7.2.1 is violated and no streamline-diffusion
stabilization term is added. Assumption 7.2.1 has been removed in [54, Remark 5.9],
replacing b by a suitable projection on the space of discontinuous piecewise polynomial
functions.

Remark 7.3.11. We choose the stabilization parameter independent of p, i.e., αJ |e =
α|e|−1 for any e ∈ Γh, with α independent of h and p. From the above proof it is clear
that setting αJ |e = αp|e|−1 does not affect the hp-convergence order of the error estimate.

Remark 7.3.12. Lemma 3.2.2 implies ||kε||∞ . ε−(2m+d) for sufficiently small ε, and
thus C(ε) . ε−2m−d, we obtain from condition (7.33) C4 & ε2m+d. Therefore constant

C in (7.35) satisfies C .
(
ε2m+d

)−2
, and thus the constant C in (7.30), i.e., in the a

priori error estimate, satisfies C . ε−(2m+d) as ε ↓ 0.
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7 FE Discretization for time-homogeneous PIDEs

Remark 7.3.13. The norm || · ||DG(ε), and thus the norm ||| · |||DG(ε), depend explicitly on
ε. In fact, if ε→ 0 (and thus Q(x, ε) → 0), the H1-part of the norm || · ||DG(ε) tends to
zero, and therefore the considered norm becomes weaker. Moreover, as stated in Remark
7.3.6, when ε→ 0 we lose control of the jump term.
In fact, if we consider error estimates in the DG norm || · ||DG given as:

||u||2DG :=
∑

e∈Γh

α

|e| ||[u]||
2
L2(e), (7.36)

+
∑

K∈Th

(
|u|2H1(K) + ||r0u||2L2(K) +

1

2
||[u]||2L2(∂−K) +

1

2
||[u]||2L2(∂+K∩Γ0

h)

)

and

|||u(t)|||2DG := ||u(t)||2L2(D) +

∫ t

0
‖u(s)‖2

DG
ds ∀t ∈ [0, T ],

and we assume that σε = supx∈Dmax1≤i,j≤d
∣∣√Qij(x, ε)

∣∣, then Theorem 7.3.9 implies

||| (uε − uεh) (t)|||DG(ε) ≤ 1

σε
||| (uε − uεh) (t)|||DG(ε)

≤ C

σε
hmin(p+1,s)−1

ps−
3
2

(
||uε(t)||Hs(D,Th) + ||uε||H1((0,t);Hs(D,Th))

)
.

Remark 7.3.14. The diffusion term in (7.13) has been discretized according to the so-
called NIPG-DG method (see [100] and Section 7.3.1 for this terminology). The results
stated in this section also hold for the SIPG method, i.e., setting β = −1 in the DG
formulation of the diffusion term. In this case, (7.24) does not hold, since we have to deal
with the additional term −

∫
Γh
{∇w⊤Q(ε)n}[w]ds. However, using the Cauchy-Schwarz

inequality (see [100, Section 2.7.1]), we obtain a lower bound for this extra-term.

7.3.5 Finite variation processes

To approximate problem (5.9)-(5.10) when Y ≥ 1, we have to consider that the integral
operator AJ in (3.14) is only well-defined for Lipschitz u, because of the singularity of
k in 0. Thus a Discontinuous Galerkin (DG) discretization is not directly applicable.
However, due to the small jump regularization, cf. Theorem 4.1.14, we can consider a
DG discretization of the regularized problem (5.33).
Note that for processes with finite variation, e.g. for admissible market models with
vanishing diffusion component and 0 < Y < 1, the small jump regularization is not
necessary to obtain a formulation which allows for the application of a DG discretization.
In fact, the jump term

∫
Rd (φ(x+ y)− φ(x)) k(y) dy is not pointwise well-defined for a

discontinuous basis function φ. This is not necessary for the present algorithm, as a
Galerkin formulation with the Dirichlet form of the process is applied and therefore
existence of the integral in a weaker sense is sufficient.
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7.3 Discontinuous Galerkin discretization

Theorem 7.3.15. Let AJ−FV , as in (3.15), be an operator of order 2m(x) and let m <
0.5 hold. Then the following estimate can be proved for φ,ψ ∈ Sp,0:

aJ(φ̃, ψ̃) = (AJ−FVφ̃, ψ̃) < C
∥∥∥φ̃
∥∥∥
Hm(x)(Rd)

∥∥∥ψ̃
∥∥∥
Hm(x)(Rd)

<∞.

Proof. This follows directly from the continuity of the bilinear form and the embedding
Sp,0 ⊂ H̃m(x)(D).

So, the small jump regularization is not necessary when finite variation Lévy processes
are considered. Note that this argument does not hold if a finite difference discretization
is applied. In this case a pointwise definition of the jump term is necessary and a
regularization has to be performed even for finite variation processes, cf. [33].

DG Formulation

The variational form (7.13) when ε = 0, i.e., when no small jump approximation is
considered, reads

(∂tuh(x), vh(x)) + aDGFV(uh(x), vh(x)) = lDGFV(vh(x)), (7.37)

uh(0, x) = Πpg(x), (7.38)

where for v,w ∈ Sp,0

aDGFV(w, v) := tDGFV(w, v) + rDGFV(w, v) + jDGFV(w, v), (7.39)

tDGFV(w, v) :=
∑

K∈Th

∫

K
b · ∇w vdx−

∫

∂−K
(b · nK)[w]vIds, (7.40)

rDGFV(w, v) :=

∫

D
rw vdx,

jDGFV(w, v) := −
∫

Rd

∫

Rd

(w̃(t, y)− w̃(t, x))k(x, y − x)dy ṽ(x)dx, (7.41)

lDGFV(v) =

∫

D
fvhdx. (7.42)

Notice that (7.39), (7.40) and (7.41) correspond to (7.15), (7.18) and (7.21), respectively,
when ε = 0.

A priori bound and error estimate

The above formulation is consistent, i.e., the following result holds.

Theorem 7.3.16. If u is the solution of (5.9)-(5.10) and m < 0.5, then it satisfies (7.37).
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7 FE Discretization for time-homogeneous PIDEs

Proof. The proof follows along the lines of the proof of Theorem 7.3.5.

Let us now assume that b and r satisfy

(r0)
2(x) := r − 1

2
∇ · (b(x)) ≥ rmin > 0 (7.43)

(see Condition (5.22)). Reasoning as in Section 7.3.3, we define the norm || · ||DGFV, for
sufficiently smooth w,

||w||2DGFV := ||r0w||2L2(D) + ||w||2
H̃m(x)(D)

+
1

2

∑

K∈Th
||[w]||2L2(∂−K) + ||[w]||2L2(∂+K∩Γ0

h)
,

(7.44)
and we have tDGFV(w,w) + rDGFV(w,w) = ||w||2DGFV − ‖v‖2

H̃m(D)
. Further, we assume

jDGFV(w,w) ≥ C ‖u‖2
H̃m(x)(D)

, then aDGFV(w,w) ≥ C||w||DGFV holds, for some C > 0

and all w, i.e. the bilinear form aDGFV(·, ·) is coercive.
Remark 7.3.17. Note that the norm ‖·‖

DG(ε) is stronger than the norm ‖·‖
DGFV

, for

arbitrary ε > 0, as H1(D,Th) ⊂ H̃m(x)(D), for m < 0.5.

The following a priori bound and error estimate hold.

Theorem 7.3.18. Let uh be the solution of (7.37), then

||uh(T, ·)||2L2(D) +

∫ T

0
||uh(t, ·)||2DGFVdt ≤ C ‖f‖2L2((0,T );L2(D)) + ||Πpg||2L2(D).

Proof. We consider (7.37) and use the coercivity of aDGFV(·, ·). The result follows esti-
mating lDGFV(uh(t)) like lDG(u

ε
h(t)) in Theorem 7.3.8.

Theorem 7.3.19. Let us consider the DG norm ||| · |||DGFV given by

|||w(t)|||2DGFV = ||w(t)||2L2(D) +

∫ t

0
||w(s)||2DGFVds ∀t ∈ (0, T ), (7.45)

where, for ease of notation, we set w(t) := w(t, ·), and u and uh be the solution of (5.24)
and (7.37), respectively, then

||| (u− uh) (t)|||DGFV ≤ C
hmin(p+1,s)−1/2

ps−1/2

(
||u(t)||Hs(D,Th) + ||u||H1((0,t);Hs(D,Th))

)
(7.46)

∀t ∈ [0, T ].

Proof. Reasoning as in the proof of Theorem 7.3.9, we obtain

|||u− uh|||2DGFV ≤
∫ t

0
|∂tη|2 + τDG(η) + ||η||2DGFVds

and the result follows using Lemma 7.2.5.
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7.3 Discontinuous Galerkin discretization

Remark 7.3.20. In the case of vanishing reaction and transport terms, we obtain an
analogous result to Theorem 7.3.19, considering the norm || · ||DGFV

′ := || · ||H̃m(x)(D).

The following estimate holds in this case

||u(t) − uh(t)||2L2(D) +

∫ t

0
||u(s)− uh(s)||2DGFV

′ds ≤ C
hmin(p+1,s)−m

ps−m

×
(
‖|u(t)‖Hs(D,Th) + ‖u‖H1((0,t);Hs(D,Th))

)
.
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7 FE Discretization for time-homogeneous PIDEs
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8 Computational scheme

We have seen in the previous chapters that certain types of weakly singular functions have
to be integrated in order to obtain the stiffness matrices in the solution algorithm. Due to
the singularity of the integrand standard Gauss integration is not applicable. Therefore,
composite Gauss quadratures are discussed in this chapter. The combination of Gauss
quadrature rules of different order on subdomains leads to exponential convergence of the
quadrature rule in the number of quadrature points, if the subdomains and the orders
are chosen adequately. Besides the time-discretization is addressed.

8.1 Numerical quadratures

We shall frequently write x . y in this chapter to express that x is bounded by a constant
multiple of y, uniformly with respect to all parameters on which x and y may depend.
As seen in the previous chapters we need to compute matrix entries of the form:

A(l′,k′),(l,k) :=

∫

Rd

∫

DR

∂1 . . . ∂dψl,k(x+ y)ψl′,k′(x)κ(x, y)dxdy. (8.1)

We consider the following class of function. The kernels we consider fall into this class
due to Theorem 3.2.1 and Lemma 3.2.2.

Assumption 8.1.1. Let f ∈ L1([0, 1]d×[0, 1]d). There exist 0 < α < d, α 6∈ N, C,C1 > 0,
δ ∈ (0, 1), such that for k,m ∈ N0, i = 1, . . . , d, j = 1, . . . , d

∣∣∣∂kξi∂mxjf(x, ξ)
∣∣∣ ≤ C1k!m!Ck+m ‖ξ‖−α∞ ξ−ki ξ−δj , ∀ξ, x ∈ (0, 1)d. (8.2)

We are now able to prove the exponential convergence in the number of quadrature points
of a quadrature rule for the matrix entries A(l′,k′),(l,k). We denote the Gauss-Legendre

integration rule on [0, 1] by Q
[0,1]
g f =

∑g
j=1 ωg,jf(ξg,j) and set I [0,1]f :=

∫ 1
0 f(x)dx. The

following error estimate for f ∈ C2g([0, 1]) using Stirling’s formula:

∣∣∣E[0,1]
g f

∣∣∣ :=
∣∣∣I [0,1]f −Q[0,1]

g f
∣∣∣ ≤ C

2−4g

(2g)!
max
ξ∈[0,1]

∣∣∣f (2g)(ξ)
∣∣∣ ,
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8 Computational scheme

for some constant C > 0, can be obtained. In the multidimensional case we have a
similar error estimate for f ∈ C2g([0, 1]d) using [114, Lemma 4.1].

∣∣∣E[0,1]d

g f
∣∣∣ . 2−4g

(2g)!

d∑

i=1

max
ξ∈[0,1]d

∣∣∣∂(2g)i f(ξ)
∣∣∣ . (8.3)

We are now able to define a composite quadrature rule as in [108]. Let a geometric
partition on [0, 1] be given by 0 < µn < µn−1 < . . . < µ < 1, for n ∈ N, µ ∈ (0, 1).
We denote the subdomains by Λj := [µn+1−j, µn−j ], with j = 1, . . . , n and Λ0 = [0, µn].
Given a linear degree vector q ∈ Nd and qj = ⌈λj⌉ with slope λ > 0, we use on each
subdomain Λj , j = 1, . . . , n a Gauss quadrature with degree qj and no quadrature points
in Λ0. The composite Gauss quadrature rule is defined by

Qn,qµ f =
n∑

j=1

Q
Λj
qj f

and its exponential convergence can be proven.

Theorem 8.1.2. Let f satisfy Assumption 8.1.1. Consider

µ ∈ (0, 1) such that w =
C(1− µ)

4µ
< 1, (8.4)

and linear degree vectors (q(1), . . . , q(d)), q(j) = (q
(j)
1 , . . . , q

(j)
n ),

q
(i)
j = ⌈λ(i)j⌉, with slopes λ(i) >

(1− α
d ) lnµ

2 lnw
. (8.5)

Then we obtain for any fixed x ∈ [0, 1]d

∣∣∣I [0,1]df(x)−Qn,(q
1,...,qd)

µ f(x)
∣∣∣ ≤ Ce−γ

2d√N , (8.6)

where N denotes the number of Gauss points and C > 0 some constant.

Proof. The proof can be found in [114, Theorem 4.6].

We use composite Gauss quadrature rules in the ξ-variable and standard Gauss quadra-
tures in the x-variable.

Theorem 8.1.3. We consider the following quadrature rule for a function f satisfying
Assumption 8.1.1:

Q = Qn,(q
1,...,qd)

µ ⊗Qg

and prove the following estimate for the error defined as

E[f ] =
∣∣∣I [0,1]df −Qf

∣∣∣ ≤ Ce
2d√N ,

for g = ⌈ 8d
√
N⌉ and some constant C > 0.
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8.2 Time discretization

Proof.

E[f ] = I
[0,1]d

ξ ⊗
(
I [0,1]

d

x −Qg

)
f +

(
I
[0,1]d

ξ −Qn,(q
1,...,qd)

µ

)
⊗Qgf (8.7)

.

∫

[0,1]d

2−4g

(2g)!
max
x∈[0,1]d

∣∣∣∣∣
∂(2g)f

∂x
(x, ξ)

∣∣∣∣∣ dξ + e−γn
d∑

k=1

g∑

j=1

ωg,j,k (8.8)

. e−4g2 + e−γn. (8.9)

The number of quadrature points N can be bounded by N . n2d. Therefore we obtain
exponential convergence in the number of quadrature points choosing g = ⌈ 8d

√
N⌉.

Remark 8.1.4. Even under weaker assumptions on the integration kernel, we can obtain
exponentially converging integration schemes using [28].

8.2 Time discretization

In order to obtain a fully discrete approximation (in space and time) to the parabolic
problem (5.9), we have to discretize the semi-discrete formulation in time. This can be
done for example via discontinuous Galerkin time stepping as in [107] or by the θ-scheme.
We will present the preconditioning for the θ-scheme for the semidiscrete formulation in
Section 7.1 in more detail. Multilevel preconditioning in the implementation of DG-time
stepping is analogous to [97, Section 6.3.2].
At each time step, we need to solve a linear system

(M+ θ∆tA)um+1
L = (M− (1− θ)∆tA)umL ,

at each time step m = 0, . . . ,M − 1, with u0L = uL,0, where u
m
L denotes the coefficient

vector of uL(tm, ·), M the mass matrix and A the stiffness matrix in the corresponding
basis. For the iterative solution of these systems we use multilevel preconditioning
obtained through the wavelet norm equivalences. We obtain for u ∈ VL+1 with coefficient
vector u

|u|2 . (u,Mu) . |u|2 ,

due to (6.18). We denote by DA the diagonal matrix with entries 2
2m1

λ1
l1 + . . .+2

2md
λd
ld .

Then we obtain, from (6.18) and the well-posedness:

(u,DAu) . (u,Au) . (u,DAu).

Thus, we have

(u,Du) . (u,Bu) . (u,Du),

with D = I+ θ∆tDA and B = M+ θ∆tA. Finally we obtain for û = D1/2u:

|û|2 .
(
û,D−1/2BD−1/2û

)
. |û|2 .

87



8 Computational scheme

Therefore, we can iteratively solve the linear system B̂û = b̂ with GMRES in a number of
steps that is independent of the level index L, where B̂ = D−1/2BD−1/2 and b̂ = D−1/2b̂.
An analysis of time-stepping schemes for DG-discretizations as in Section 7.3 is given in
[100, Chapter 3.4].

88



9 Well-posedness of singular
time-inhomogeneous PIDEs

This chapter aims at the analysis of certain type of degenerate linear parabolic integro-
differential equations. The arising PIDE reads as follows:

∂tu− tγAu = f on I ×D, (9.1)

u(0) = g, (9.2)

where A denotes a possibly non-selfadjoint operator, as discussed in Section 3.3, g the
sufficiently smooth initial data, γ a constant with γ ∈ (−1, 1), I = (0, T ) and a Lipschitz
domain D ⊂ Rd for d ≥ 1. Note that negative exponents γ lead to an explosion at t = 0,
while positive γ lead to a degeneracy of the diffusion coefficients. Therefore, the initial
condition has to be imposed in an appropriate sense.
Such equations arise naturally in the context of option pricing under certain self-similar
processes as considered by [25]. The processes defined in [25] extend the class of Lévy
processes introducing a possibly degenerate time-dependence in the coefficients, it was
shown empirically that such processes admit a good fit to option prices over several
maturities for various strike prices.
We consider a weak space-time formulation in the sense of [2, 111], as a possible sin-
gularity or degeneracy of the diffusion coefficients impedes the application of classical
parabolic theory, cf. [1, 91]. The use of appropriate wavelet bases in the space-time
domain leads to Riesz bases for the ansatz and test spaces, cf. [13, 111].
We derive three weak space-time formulations for degenerate parabolic equations such
as (9.1)-(9.2) in arbitrary space dimensions. The main difference between the three for-
mulations described lies in the enforcement of the initial condition. First we assume A
to be self-adjoint and obtain well-posedness results as well as a priori estimates based on
an eigenfunction expansion of the operator A. Then we describe an alternative approach
based on a singular change of the temporal variable.

9.1 Essential initial condition

We consider the following degenerate parabolic problem for sufficiently smooth u(t, x):

∂tu− tγAu = f on I ×D, (9.3)

u(0) = g, (9.4)
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9 Well-posedness of singular time-inhomogeneous PIDEs

for γ = 2H − 1, H ∈ (0, 1), a bounded Lipschitz domain D ⊂ Rd and a finite time
interval I := (0, T ), T > 0. The operator A ∈ L(V,V∗) is assumed to be self-adjoint and
satisfy

a(u, u) ≥ C ‖u‖2V ,

where C > 0 and the associated bilinear form a(·, ·) reads

a(u, v) : V × V → R, a(u, v) := (−Au, v)V∗,V , ∀u, v ∈ V (9.5)

and V := H1
0 (D), V∗ := H−1(D). To state the variational formulation of (9.3)-(9.4) we

define the following spaces

X := H1
t−γ/2(I;V∗) ∩ L2

tγ/2(I;V) (9.6)

∼=
(
H1
t−γ/2(I)⊗ V∗) ∩

(
L2
tγ/2

(I)⊗ V
)
,

Y := L2
tγ/2

(I;V) ∼= L2
tγ/2

(I)⊗ V, (9.7)

X(0 := {w ∈ X : w(0, ·) = 0 in V∗}, (9.8)

X0) := {w ∈ X : w(T, ·) = 0 in V∗}, (9.9)

L2
tγ/2

(I) := C∞(0, T )
‖·‖

L2

tγ/2
(I)

and H1
tγ/2

(I) := C∞(0, T )
‖·‖

H1

tγ/2
(I)
. We refer to [94,

Chapter II.4] for proofs of the isomorphisms given in (9.6) and (9.7) for X and Y. The
weighted norms are defined by

‖u‖2L2

tγ/2
(I) :=

∫

I
u2tγ dt, ‖u‖2H1

tγ/2
(I) :=

∫

I
u2tγ dt+

∫

I
u̇2tγ dt.

We use the following norms on X and Y

‖u‖2X := ‖u̇‖2L2

t−γ/2
(I;V∗) + ‖u‖2L2

tγ/2
(I;V) ,

‖u‖2L2

tγ/2
(I;V) :=

∫

I
tγ ‖u‖2V dt, ‖u‖2L2

t−γ/2
(I;V∗) :=

∫

I
t−γ ‖u‖2V∗ dt,

‖u‖2H1

t−γ/2
(I;V∗) :=

∫

I
t−γ ‖u‖2V∗ + t−γ ‖u̇‖2V∗ dt,

where we denote by ‖·‖V the energy norm on V, i.e.,

‖u‖2V = a(u, u).

The family of eigenfunctions of the self-adjoint operator A in (9.3) is denote by (φλ)λ∈σ
for σ ⊂ R+ and is assumed to form an orthonormal basis of L2(D). Therefore, any
element in v ∈ V admits the following representation v =

∑
λ∈σ vλφλ, vλ ∈ R, λ ∈ σ.

Due to Parseval’s theorem we obtain ‖v‖2L2(D) =
∑

λ∈σ |vλ|2. Besides,

‖v‖2V = a(u, u) =
∑

λ∈σ
λ |vλ|2
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9.1 Essential initial condition

holds. Any element h ∈ V∗ admits the following representation

h =
∑

λ∈σ
hλφλ, where hλ := (h, φλ)V∗,V

and it easy to see that

‖h‖2V∗ =
∑

λ∈σ
λ−1 |hλ|2 .

We now show the following result.

Theorem 9.1.1. For every f ∈ Y∗, g = 0 (9.3)-(9.4) admits a unique solution u ∈ X(0

and there holds the a priori error estimate

‖u‖X ≤
√
2 ‖f‖Y∗ ,

where ‖f‖Y∗ = ‖f‖L2

t−γ/2
(I;V∗).

The proof follows from the inf-sup condition (9.10), the surjectivity (9.11) and the
continuity (9.12) of the corresponding bilinear form using, eg. [5] or [20, III, Theo-
rem 4.3]. These properties are proved in the following. We need the spaces X :={
u ∈ L2

tγ/2
(I) ∩H1

t−γ/2(I) : u(0) = 0
}

and Y := L2
tγ/2

(I) and remark that H1
t−γ/2(I) ⊂

C0(I) holds, this follows as in Lemma 9.2.2. For u ∈ X we define the seminorm:

‖u‖Xλ :=
∥∥∥λ− 1

2 t−γ/2u̇+ λ
1
2 tγ/2u

∥∥∥
L2(I)

.

Lemma 9.1.2. For λ > 0 and u ∈ X, define the norm ‖u‖λ by

‖u‖2λ := λ−1
∥∥∥t−γ/2u̇

∥∥∥
2

L2(I)
+ λ

∥∥∥tγ/2u
∥∥∥
2

L2(I)
.

Then, for all u ∈ X holds:

‖u‖λ ≤ ‖u‖Xλ ≤
√
2 ‖u‖λ .

Proof. Let u ∈ X, then

‖u‖2Xλ = λ−1
∥∥∥t−γ/2u̇

∥∥∥
2

L2(I)
+ λ

∥∥∥tγ/2u
∥∥∥
2

L2(I)
+ 2

∫

I
uu̇ dt

= ‖u‖2λ + |u(T )|2 ≥ ‖u‖2λ .

Further,

2

∣∣∣∣
∫

I
uu̇ dt

∣∣∣∣ ≤ 2λ1/2
∥∥∥tγ/2u

∥∥∥
L2(I)

λ−1/2
∥∥∥t−γ/2u̇

∥∥∥
L2(I)

≤ λ
∥∥∥tγ/2u

∥∥∥
2

L2(I)
+ λ−1

∥∥∥t−γ/2u̇
∥∥∥
2

L2(I)

and therefore ‖u‖2Xλ ≤ 2 ‖u‖2λ.
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9 Well-posedness of singular time-inhomogeneous PIDEs

Lemma 9.1.3. We have

inf
06=u∈X(0

sup
06=v∈Y

B(u, v)

‖u‖X ‖v‖Y
≥ 1√

2
, (9.10)

∀ 0 6= v ∈ Y : sup
u∈X(0

B(u, v) > 0 (9.11)

and

sup
06=u∈X(0,06=v∈Y

|B(u, v)|
‖u‖X ‖v‖Y

≤
√
2, (9.12)

where

B(u, v) :=

∫ T

0

(
(v(t), u̇(t))V ,V∗ + tγa(u(t), v(t))

)
dt, (9.13)

for u ∈ X(0, v ∈ Y and a(·, ·) as in (9.5).

Proof. Let u ∈ X . Then u =
∑

λ∈σ uλ(t)φλ, v ∈ Y, v =
∑

λ∈σ vλ(t)φλ, where φλ are
the eigenfunctions of the self-adjoint operator A. Since the family of functions (φλ)λ∈σ
is assumed to form an orthonormal basis of L2(D) and uλ(t) ∈ L2

tγ/2
(I) ∩ H1

t−γ/2(I),

vλ ∈ L2
tγ/2

(I),

B(u, v) =

∫ T

0

(
(v(t), u̇(t))V ,V∗ + tγa(u(t), v(t))

)
dt

=
∑

λ∈σ

∫ T

0
λ1/2vλ(t)t

γ/2
(
λ−1/2t−γ/2u̇λ(t) + λ1/2tγ/2uλ(t)

)
dt.

Therefore,

|B(u, v)| ≤
(∑

λ∈σ
λ

∫ T

0
tγ |vλ(t)|2 dt

)1/2

×
(∑

λ∈σ

∫ T

0

∣∣∣λ−1/2t−γ/2u̇(t)λ + λ1/2tγ/2uλ(t)
∣∣∣
2
dt

)1/2

= ‖v‖L2

tγ/2
(I;V)

(∑

λ∈σ
‖uλ(t)‖2Xλ

)1/2

≤ ‖v‖L2

tγ/2
(I;V)

√
2

(∑

λ∈σ
‖uλ(t)‖2λ

)1/2

=
√
2 ‖u‖X ‖v‖Y .

This implies (9.12). Next, given u ∈ X(0, we define Y ∋ vu =
∑

λ∈σ φλvλ(t) by

vλ(t) = λ−1t−γu̇λ(t) + uλ(t),
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9.1 Essential initial condition

then

‖vu‖2Y =
∑

λ∈σ
λ

∫ T

0
tγ
(
λ−1t−γu̇λ(t) + uλ(t)

)2
dt

=
∑

λ∈σ

∫ T

0

(
λ−1/2u̇λ(t)t

−γ/2 + λ1/2uλ(t)t
γ/2
)2

dt

=
∑

λ∈σ
‖uλ(t)‖2Xλ ≤ 2 ‖u‖2X . (9.14)

B(u, vu) =

∫ T

0
(vu(t), u̇(t))V∗,V + tγa(u, vu) dt

=
∑

λ∈σ

∫ T

0

(
λ−1t−γu̇λ(t) + uλ(t)u̇λ(t)

)
+ λtγ

(
λ−1t−γu̇λ(t) + uλ(t)uλ(t)

)
dt

=
∑

λ∈σ

∫ T

0

(
λ−1t−γ |u̇λ(t)|2 +

d

dt
|uλ(t)|2 + λtγ |uλ(t)|2 dt

)

= ‖u‖2X + ‖u(T )‖2L2(D) − ‖u(0)‖2L2(D) .

This implies (9.10) using (9.14). Let now v(t) =
∑

λ∈σ vλ(t)φλ be given, we define
uv(t) =

∑
λ uλ(t)φλ, where (uλ(t))λ∈σ is given as solutions of the following sequence of

initial value problems for λ ∈ σ:

λ−1t−γu̇λ(t) + uλ(t) = vλ(t) for t ∈ (0, T ), uλ(0) = 0.

In the following it will be shown that v ∈ Y implies uv ∈ X . We have

‖v‖2Y =
∑

λ∈σ

∫ T

0
tγλ |vλ(t)|2 dt

=
∑

λ∈σ

∫ T

0
λ
∣∣∣λ−1/2t−γ u̇λ(t) + λ1/2uλ(t)

∣∣∣
2

=
∑

λ∈σ
‖uλ(t)‖2Xλ ≥

∑

λ∈σ
‖uλ(t)‖2λ = ‖uv‖2X .

We are now able to prove statement (9.11).

B(uv, v) =

∫ T

0
(v(t), u̇v(t)) + tγa(uv(t), v(t)) dt

=
∑

λ∈σ

∫ T

0
vλ(t)u̇λ(t) + λuλ(t)vλ(t)t

γ dt

=
∑

λ∈σ

∫ T

0
λtγ |vλ(t)|2 dt = ‖v‖2Y > 0.
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9 Well-posedness of singular time-inhomogeneous PIDEs

Remark 9.1.4. For every f ∈ Y∗ the problem (9.3)-(9.4) with g = 0 admits a unique
solution u ∈ X(0 satisfying

B(u, v) = (f, v)Y∗,Y , ∀v ∈ Y.

With X and Y as in (9.6)-(9.7) and B(·, ·) as in Lemma 9.1.3, we have the a priori
estimate

‖u‖2X ≤ 2 ‖f‖2Y∗ .

The existence of a unique weak solution for non-homogeneous initial data follows via the
following change of variable ṽ(t, x) = v(t, x)−g, for g ∈ V. The function ṽ(t, x) satisfies
the same PDE as v(t, x) with homogeneous initial conditions and a different right hand
side.

9.2 Natural initial condition

As we assume non-homogeneous initial conditions, we can either transform the problem
into a homogeneous setting as described in Section 9.1 or impose natural conditions as
follows:

∫ T

0
(v(t), u̇(t))L2(D)dt = −

∫ T

0
(v̇(t), u(t))L2(D)dt+ (u(t), v(t))L2(D)|T0 ,

for v, u ∈ C∞(I;V). For u(0) 6= 0 we impose homogeneous Dirichlet conditions on v, i.e.
we require v(T ) = 0. The variational formulation with weak enforcement of the initial
conditions then reads: given f ∈ X ∗

0), g ∈ V, find u ∈ Y:

B∗(u, v) =
∫ T

0
(v(t), f(t))V ,V∗ dt+ (g, v(0))V ,V∗ , ∀v ∈ X0), (9.15)

where B∗(·, ·) is given by

B∗(u, v) :=
∫ T

0

(
− (u(t), v̇(t))V ,V∗ + tγa(u(t), v(t))

)
dt, (9.16)

for u ∈ Y, v ∈ X0), with a(·, ·) given in (9.5). We define the functional l∗ on X as
follows:

l∗(v) :=
∫ T

0
(v(t), f(t))V ,V∗ dt+ (g, v(0))V ,V∗ .

Lemma 9.2.1. For f ∈ X ∗
0) and for g ∈ V, l∗ is a continuous, linear functional on X0),

i.e., there exists a C > 0 s.t.

∀v ∈ X0) : |l∗(v)| ≤ C
(
‖f‖X ∗

0)
+ ‖g‖V

)
‖v‖X0)

.
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9.2 Natural initial condition

Proof. For f ∈ X ∗
0) we have:

∣∣∣∣
∫ T

0
(v(t), f(t))V ,V∗ dt

∣∣∣∣ ≤ ‖v‖X0)
‖f‖X ∗

0)
.

By the embedding given in (9.17) we obtain for v ∈ X0)

‖v(0)‖V∗ ≤ ‖v‖C0(I,V∗) ≤ C ‖v‖X ,

which implies,

|(v(0), g)|V∗,V ≤ ‖g‖V ‖v(0)‖V∗ ≤ C ‖g‖V ‖v‖X .

This implies the claimed result.

We need the following embedding result.

Lemma 9.2.2. For X := H1
t−γ/2(I;V∗) ∩ L2

tγ/2
(I;V) the following continuous embedding

holds:

X ⊂ C0(I,D(Λ
1
2
− |γ|

2 )), (9.17)

where Λ denotes the operator Λ = L1/2, as defined in [40, Chapter VIII, §3, Definition
8]. The operator Λθ denotes the holomorphic interpolant between V and V∗.

Proof. Consider first γ ∈ (−1, 0), then L2
tγ/2

(I;V) ⊂ L2
t−γ/2(I;V). The claimed result

follows from [41, Chapter XVIII, §1, Remark 6] for the space H1
t−γ/2(I;V∗)∩L2

t−γ/2(I;V).
Let now γ ∈ (0, 1). Then H1

t−γ/2(I;V∗) ⊂ H1
tγ/2

(I;V∗), therefore we can again apply [41,
Chapter XVIII, §1, Remark 6] and conclude.

Remark 9.2.3. (i) The space H1
t−γ/2(I;V∗) ∩ L2

t−γ/2(I;V), for γ ∈ (0, 1), is continu-
ously embedded in
C0(I,D(Λ

1
2
+ γ

2 )), cf.[41, Chapter XVIII, §1, Remark 6].

(ii) The elementary embedding of X in C0(I,V∗) can be shown as follows, cf. [57,
Proposition 1.1],

∫ T

0
‖v(t)‖V∗ dt ≤

(∫ T

0
‖v(t)‖2V∗ t

−γdt

)1/2(∫ T

0
tγdt

)1/2

.

Therefore the mapping K : u → u′, K : X → L1
loc
(I;V∗) is continuous. This

implies that v is absolutely continuous on I with values in V∗. Note that this does
not imply the continuity of the embedding.

(iii) We obtain an analogous result for the weight function (T − t)γ instead of tγ.
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9 Well-posedness of singular time-inhomogeneous PIDEs

Theorem 9.2.4. Let B∗(·, ·) be given as in (9.16) and X , Y as in (9.6)-(9.7). Then the
following estimates hold

inf
06=u∈Y

sup
06=v∈X0)

B∗(u, v)
‖u‖Y ‖v‖X0)

≥ 1√
2
,

∀0 6= v ∈ X0) : sup
u∈Y

B∗(u, v) > 0,

sup
06=v∈X0) ,06=u∈Y

|B∗(u, v)|
‖u‖Y ‖v‖X

<∞.

Proof. The proof is analogous to the proof of Lemma 9.1.3.

Corollary 9.2.5. For every g ∈ V and f ∈ X ∗
0), there exists a unique weak solution u ∈ Y

in the sense that u satisfies (9.15).

Remark 9.2.6. Note that for this formulation smoothness of the initial data is required,
i.e. g ∈ V. This is stronger than in the standard parabolic setting, as in this situa-
tion g ∈ L2(D) is sufficient in order to prove well-posedness of the corresponding weak
formulation. This stronger condition stems from the fact that in the setup only the con-

tinuous embedding X ⊂ C0(I,Λ
1
2
− |γ|

2 ) can be proved, while in the standard parabolic case(
L2(I;V) ∩H1(I;V∗)

)
⊂ C0(I, L2(D)) holds.

Remark 9.2.7. Alternatively, the following formulation with natural initial conditions
could also be considered. Find w ∈ X such that

B†(w, v) = f †(v) for all v := (v1, v2) ∈ Y × V, where (9.18)

B†(w, v) =

∫ T

0

(
(ẇ(t), v1(t))V∗,V + tγa(w(t), v1(t))

)
dt+ (w(0), v2)V∗,V ,

f †(v) =

∫ T

0
(v1(t), f(t))V ,V∗ dt+ (g, v2)V∗,V .

The well-posedness of (9.18) follows as in Lemma 9.1.3. The advantage of formula-
tion (9.18) is the absence of any boundary conditions in the temporal domain, therefore
the bases presented in the next chapter can be used for the discretization without any
additional considerations.

9.3 Transformation approach

In this section we describe a different approach to the proof of well-posedness using
a singular change of variable. We consider a slightly more general setup than in the
previous sections. The formulation reads: find a sufficiently smooth function u(t, x)
such that

∂tu− tγA(t)u = f on I ×D, (9.19)
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9.3 Transformation approach

u(0) = g (9.20)

holds in an appropriate sense to be specified below, where t → A(t) ∈ L(V,V∗) is
measurable on I and I = [0, 1] for simplicity. Besides we assume that a(t;u, v) =
(−A(t)u, v) satisfies for some constants C1, C2 > 0 and C3 ≥ 0, ∀u, v ∈ V

a(t;u, u) ≥ C1 ‖u‖2V − C2 ‖u‖2L2(D) ,

|a(t;u, v)| ≤ C3 ‖u‖V ‖v‖V .

We can apply a change of variable to remove the degeneracy in time in (9.19), cf. [3].
The transformation reads as follows:

t̃ =W (t) :=

∫ t

0
ω(s) ds, (9.21)

where ω(t) = tγ . The problem (9.19)-(9.20) in new coordinates reads

∂t̃v − Ã(t̃)v = (q(t̃))−γ f̃ on (0, 1) ×D, (9.22)

v(0) = g, (9.23)

where v(W (t)) = u(t), Ã(W (t)) = A(t), q(t̃) = W−1(t̃) and f̃(W (t)) = f(t). Therefore,
ã(t;u, v) = (Ãu, v)V∗,V satisfies ∀u, v ∈ V and Ci, i = 1, . . . , 3 as above

ã(t;u, u) ≥ C1 ‖u‖2V − C2 ‖u‖2L2(D) , (9.24)

|ã(t;u, v)| ≤ C3 ‖u‖V ‖v‖V . (9.25)

For f̃ we have

‖f‖2L2

t−γ/2
((0,1);V∗) =

∫ 1

0
‖f(t)‖2V∗ t

−γ dt (9.26)

=

∫ 1

0

∥∥∥f̃(t̃)
∥∥∥
2

V∗
(q(t̃))−2γ dt̃ =

∥∥∥(q(t̃))−γ f̃
∥∥∥
2

L2((0,1);V∗)
.

The source term in (9.22) therefore satisfies (q(t̃))−γ f̃ ∈ L2((0, 1);V∗) if and only if
f ∈ L2

t−γ ((0, 1);V∗). Using (9.24), (9.25) and (9.26) well-posedness can be shown for
(9.22)-(9.23) using [111, Theorem 5.1].

Theorem 9.3.1. Consider the operator B : X1 → Z∗ given by

B(u)(v) =

∫ 1

0

(
∂t̃u− Ãu, v1

)
dt̃+ (u(0), v2)L2(D) ,

where Z = L2((0, 1);V)×L2(D), X1 = L2((0, 1);V)∩H1((0, 1);V∗). Then B : X1 → Z∗

is an isomorphism.

Theorem 9.3.1 implies the existence of a unique solution of (9.19)-(9.20) in a weak space-
time sense with u ∈ X .
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9 Well-posedness of singular time-inhomogeneous PIDEs

Remark 9.3.2. The change of variable can be applied for a wide class of weight functions
ω(t) in (9.21).

As a corollary of Theorem 9.3.1 we obtain the well-posedness for pricing equations cor-
responding to admissible time-inhomogeneous market models.

Corollary 9.3.3. Let X be an admissible time-inhomogeneous market model with gener-
ator A(t). Then the following problem is well-posed.
Find u ∈ L2

(T−t)γ (I;V) ∩H1
(T−t)−γ (I;V∗), u(0) = 0 such that

∫ T

0
((v(t), ∂tu(t))V ,V∗ − (T − t)γ(A(T − t)u, v)V∗,V) dt =

∫ T

0
(f(t), v(t))V∗,V

holds for all v ∈ L2
(T−t)γ (I;V) and f ∈ L2

(T−t)−γ (I;V∗).

A formulation with natural enforcement of the initial condition can also be considered.

Corollary 9.3.4. Let X be an admissible time-inhomogeneous market model with in-
finitesimal generator A(t) and initial condition g ∈ V. We consider the following for-
mulation. Find u ∈ L2

(T−t)γ (I;V) ∩H1
(T−t)−γ (I;V∗) such that

B†(w, v) = f †(v) for all v := (v1, v2) ∈ L2
(T−t)γ (I;V)× L2(D), where (9.27)

B†(w, v) =

∫ T

0

(
(ẇ(t), v1(t))V∗,V + (T − t)γ(A(T − t)w(t), v1(t))V∗,V

)
dt

+(w(0), v2)L2(D) ,

f †(v) =

∫ T

0
(v1(t), f(t))V ,V∗ dt+ (g, v2)L2(D) .

The well-posedness follows from Theorem 9.3.1 using (9.21), we set T = 1 for notational
convenience. It remains to show that q(t̃)−γ f̃ ∈ L2((0, 1);V∗) holds. This follows directly
from (9.26). Therefore we have the following result. The problem

B̃†(u, v) = f̃ †(v),

B̃†(u, v) =

∫ 1

0

(
∂t̃u(t̃)− Ãu(t̃), v1(t̃)

)
V∗,V

dt̃+ (u(0), v2)L2(D) ,

f̃ †(v) =

∫ 1

0

(
v1(t̃), (q(t̃))

−γ f̃(t̃)
)
V ,V∗

dt̃+ (g, v2)L2(D) ,

has a unique solution u ∈ X1, where B̃
† : X1×Z → R, f̃ † ∈ Z∗, Z = L2((0, 1);V)×L2(D)

and X1 = L2((0, 1);V) ∩H1((0, 1);V∗). Therefore the problem (9.27) is well-posed, i.e.,
there exists a unique function u ∈ X such that B†(w, v) = f †(v) for all v := (v1, v2) ∈
Y × L2(D).
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10 FE Discretization of
time-inhomogeneous PIDEs

In this chapter we are concerned with the discretization of integro-differential equations
of the type (9.3)-(9.4). The main difficulty in the time-discretization resides in the
degeneracy of the coefficients of the PIDE. Two different approaches are presented. The
first approach is CG discretization in the space-time domain. Certain basis functions
are needed in this case and are introduced below. Optimality of the solution algorithm
can be shown in an appropriate sense. The second approach is a DG discretization in
time. In this case exponential convergence of the semidiscrete equation of the scheme
can be proved for a judicious combination of h− and p−refinement.

10.1 Discretization

For the space-time discretization of the degenerate parabolic PIDE, given by (9.3)-(9.4),
we follow [111]. The use of tensor product Riesz bases on the space-time domain is
crucial for the efficient discretization. We construct appropriate bases in the following
and prove the necessary norm equivalences.

10.1.1 Wavelets

In the sequel we require the following properties of the wavelet functions to be used on
our Galerkin discretization schemes, we assume without loss of generality I = (0, 1) for
the time interval and D = (0, 1)d for the physical domain. The use of a hypercube as the
spatial domain enables us to construct the basis functions for the discretization of the
physical space as tensor products of univariate basis functions. Besides, we could also
use sparse tensor products to overcome the curse of dimension, cf. [44] for the elliptic
case. Domains of this form arise naturally in the discretization of pricing equations
due to localization. We now state the requirements for the temporal wavelet basis
Θ = {θλ : λ ∈ ∇Θ}, where ∇Θ denotes the set of all wavelet indices. Apart from the
requirements (i)-(iv) from Section 6.2, we need the following assumptions in order to
obtain a Riesz basis for the weighted spaces. We assume the following norm equivalences,
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10 FE Discretization of time-inhomogeneous PIDEs

for all 0 ≤ s ≤ κ and a κ ≥ 1

‖u‖2s ∼
∞∑

l=0

∑

k∈∇l

22ls
∣∣∣ulk
∣∣∣
2
, ulk =

(
θ̃k,l, u

)
, u ∈ Hs(0, 1),

where ‖·‖s denotes the Hs(0, 1)-norm and by x ∼ y we denote x . y and y . x.
Further we require that the wavelets and the dual wavelets for the time domain belong
to W 1,∞(0, 1) and the boundary wavelets for the time discretization satisfy:

∣∣∣θlk(t)
∣∣∣ ≤ Cθ2

l/2(2lt)β, (10.1)
∣∣∣(θlk)′(t)

∣∣∣ ≤ Cθ2
3l/2(2lt)β−1, t ∈ [0, 2−l], β ∈ N0, k ∈ ∇L

l , (10.2)
∣∣∣θ̃lk(t)

∣∣∣ ≤ CθCθ2
l/2(2lt)β̃, (10.3)

∣∣∣(θ̃lk)′(t)
∣∣∣ ≤ Cθ2

3l/2(2lt)β̃−1, t ∈ [0, 2−l], β̃ ∈ N0, k ∈ ∇̃L
l , (10.4)

where γ/2 + β > −1
2 and −γ/2 + β̃ > −1

2 with γ as in (9.3). The sets ∇L
l and ∇̃L

l are

given as follows, ∇L
l := {k ∈ ∇l : 0 ∈ supp θlk} and ∇̃L

l := {k ∈ ∇̃l : 0 ∈ supp θ̃lk}. The
estimates (10.1)-(10.4) play a crucial role in the proof of the norm equivalences for the
weighted spaces, cf. [13, Section 3]. We refer to [37] for explicit constructions.
The spatial basis is constructed as follows: we define the subspace VL of H1

0 (D), for
D = (0, 1)d, as the full tensor product of d univariate approximation spaces, i.e. VL :=⊗

1≤i≤d V li , which can be written as

VL = {σl,k : 0 ≤ li ≤ L− 1, ki ∈ ∇li , i = 1, . . . , d} ,

with basis functions σl,k = σl1,k1 · · · σld,kd, 0 ≤ li ≤ L − 1, ki ∈ ∇li , i = 1, . . . , d, where
∇li denotes the set of wavelet coefficients in the i-th coordinate on level li. We can write
VL in terms of increment spaces

VL =
⊕

−1≤li≤L−1

W l1 ⊗ . . .⊗W ld .

We denote by Σ = {σµ : µ ∈ ∇Σ} =
⊗d

i=1 Σi, Σi = {σµi : µi ∈ ∇Σi}. The tensor product
spatial basis satisfies the following assumptions, where ∇Σ is the set of all wavelet multi-
indices and ∇Σi denotes the set of all wavelet indices in the i-th coordinate.

(i) Local support: the diameter of the support is proportional to the meshsize 2−l,

diam supp σl,k ∼ 2−l. (10.5)

(ii) Continuity: the primal basis function are assumed to be elements in Crx(0, 1), with
rx ≤ px − 2.

(iii) Piecewise polynomial of order px, where piecewise means that the singular support
consists of a uniformly bounded number of points.
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10.1 Discretization

(iv) Vanishing moments: the primal basis functions σl,k are assumed to satisfy vanishing
moment conditions up to order for px > 1

(σl,k, x
α) = 0 , α = 0, . . . , d = px, l ≥ 0. (10.6)

(v) Orthonormality in L2(0, 1).

(vi) Riesz basis property in L2(0, 1) and renormalized in H1
0 (0, 1) and H

−1(0, 1).

We refer to [45, Section 5] and [46, Sections 5-7] for explicit constructions of wavelets.

10.1.2 Continuous Galerkin discretization in time

Using the wavelet constructions of the previous section we are now able to obtain Riesz
bases for the spaces L2

tγ/2
(0, 1) and H1

tγ/2
(0, 1)

Theorem 10.1.1. The norm 9 · 9L2

tγ/2
(0,1) is given as

9u92
L2

tγ/2
(0,1) :=

∞∑

l=0

∑

k∈∇l

(2−lk)γ
∣∣∣ulk
∣∣∣
2
, (10.7)

where u ∈ L2
tγ/2

(0, 1) admits the unique representation

u =

∞∑

l=0

∑

k∈∇l

ulkθ
l
k, u

l
k =

(
θ̃k,l, u

)
.

Then the following norm equivalence holds for all functions u ∈ L2
tγ/2

(0, 1):

‖u‖2L2

tγ/2
(0,1) ∼ 9u 92

L2

tγ/2
(0,1) . (10.8)

Proof. The result follows from [13, Theorem 3.3] setting ω = tγ/2 and checking Assump-
tion 3.1 and 3.2 in [13]. Assumption 3.1 refers to the singularity of ω and Assumption
3.2 to the behavior of the wavelets, i.e., (10.1)-(10.4).

A similar result can be obtained for H1
tγ/2

(0, 1) using the following theorem:

Theorem 10.1.2. Let Θ be as above and let u ∈ H1
tγ/2

(0, 1), then

∥∥u′
∥∥2
L2

tγ/2
(0,1)

∼
∞∑

l=0

22l
∑

k∈∇l

(2−lk)γ
∣∣∣ulk
∣∣∣
2
.

Proof. See [13, Theorem 5.1].

Therefore Θ forms, after rescaling, a Riesz basis of H1
tγ/2

(0, 1).

Remark 10.1.3. Note that analogous results can be obtained for the weight function
w(t) =

∏k
j=1(tk − t)γj .
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10 FE Discretization of time-inhomogeneous PIDEs

10.1.3 Space-time discretization

We are now able to construct a Riesz basis for the spaces X and Y in the case of a
bounded spatial domain. The spaces have the following tensor product structure:

X = (L2
tγ/2

(I)⊗ V) ∩ (H1
t−γ/2(I)⊗ V∗) and Y = L2

tγ/2
⊗ V,

where V = H1
0 (D). Let Σ and Θ be given as above, then we obtain from [56, Proposition

1 and 2] that the collection Θ⊗ Σ normalized in X , i.e.,




(t, x) → θλ(t)σµ(x)√

‖σµ‖2V + ‖θλ‖2H1

t−γ/2
(I) ‖σµ‖2V∗

: (λ, µ) ∈ ∇X := ∇Θ ×∇Σ





is a Riesz basis for X , denoted by [Θ⊗ Σ]X and that Θ⊗ Σ normalized in Y, i.e.,
{
(t, x) → θλ(t)σµ(x)

‖σµ‖V
: (λ, µ) ∈ ∇X

}

is a Riesz basis for Y, denoted by [Θ⊗ Σ]Y .

10.2 Optimality

We are interested in optimality of the approximation of the solution process of the bi-
infinite linear system, which arises from the discretization of (9.3)-(9.4) using the bases
as described in the previous section. We derive estimates for the work requiered to solve
the arising linear systems, under the assumption that the best N -term approximation of
the solution vector u converges with a certain rate s. This class of elements in l2(∇X )
is formalized in the following definition.

Definition 10.2.1. For s > 0 the approximation class As
∞(l2(∇X )) is defined as follows:

As
∞(l2(∇X )) := {v ∈ l2(∇X ) : ‖v‖As

∞(l2(∇X )) <∞},

where ‖v‖As
∞(l2(∇X )) := supε>0

(
ε× [min {N ∈ N0 : ‖v − vN‖l2(∇X ) ≤ ε}]s

)
and vN de-

notes the best N -term approximation of v.

Let s > 0 be such that u ∈ As
∞(l2(∇X )). In order to be able to bound the complexity of

an iterative solution method for the bi-infinite system Bu = f , with appropriate B and f ,
one needs a suitable bound on the complexity of an approximate matrix-vector product
in terms of the prescribed tolerance. We formalize this in the notion of s∗-admissibility.
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10.2 Optimality

Definition 10.2.2. B ∈ L(l2(∇X ), l2(∇Y)) is s∗-admissible if there exists a routine which
yields, for any ε > 0 and any finitely supported w ∈ l2(∇X ), a finitely supported
z ∈ l2(∇Y) with ‖Bw − z‖ < ε. Further, for any s ∈ (0, s∗), there exists an admis-

sibility constant aB,s such that #suppz ≤ aB,sε
−1/s ‖w‖1/s

A1/s
∞ (l2(∇X ))

and the number of

arithmetic operations and storage locations used by the call of the routine is bounded by
some absolute multiple of

aB,sε
−1/s ‖w‖1/s

A1/s
∞ (l2(∇X ))

+#suppw + 1.

Next we introduce the concept of s∗-computability.

Definition 10.2.3. The mapping B ∈ L(l2(∇X ), l2(∇Y)) is s∗-computable if, for each
N ∈ N there exists a BN ∈ L(l2(∇X ), l2(∇Y)) having in each column at most N nonzero
entries whose joint computation takes an absolute multiple of N operations, such that
the computability constants

cB,s := sup
N∈N

‖B−BN‖1/sl2(∇X )→l2(∇Y )

are finite for any s ∈ (0, s∗).

In the following we assume that for f ∈ Y and any ε > 0 we can compute fε ∈ l2(∇Y)
with

‖f − fε‖l2(∇Y ) ≤ ε and #supp fε . min{N : ‖f − fN‖ ≤ ε},

with the number of arithmetic operations and storage locations used by the computation
of fε bounded by some absolute multiple of #suppfε + 1. The following theorem links
the two concepts of s∗-admissibility and s∗-computability, cf. [111, Theorem 4.10].

Theorem 10.2.4. An s∗-computable B is s∗-admissible.

We use the following result from [111, Corollary 4.6].

Corollary 10.2.5. If B ∈ L(l2(∇X ), l2(∇Y)) and C ∈ L(l2(∇Y), l2(∇Z)), then CB ∈
L(l2(∇X ), l2(∇Z))

The adaptive wavelet methods from [30] and [31] can be shown to be optimal for an

s∗-admissible B and u ∈ A1/s
∞ (l2(∇X )).

Theorem 10.2.6. Consider the bi-infinite system Bu = f and let B be s∗-admissible,
then for any ε > 0, both adaptive wavelet methods from [30, 31] produce an approx-
imation uε to u with ‖u− uε‖l2(∇X ) ≤ ε. If u ∈ As

∞(l2(∇X )), then #suppuε .
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10 FE Discretization of time-inhomogeneous PIDEs

ε−1/s ‖u‖1/sAs
∞(l2(∇X ))

and if, moreover, s < s∗, then the number of arithmetic opera-

tions and storage locations required by a call of either of these adaptive wavelet solvers
with tolerance ε is bounded by some multiple of

ε−1/s(1 + aB,s) ‖u‖1/sAs
∞(l2(∇X ))

+ 1.

The multiples depend only on s when it tends to 0 or ∞, and on ‖B‖ and
∥∥B−1

∥∥ when
they tend to infinity.

The following proposition is very useful, as the coefficients in the PDE (9.3)-(9.4) sep-
arate, i.e., using appropriate bases for the discretization leads to linear systems that
possess a tensor product structure, cf. [111, Proposition 8.1].

Proposition 10.2.7. For some s∗ > 0, let C, D be s∗-computable. Then

(a) C⊗D is s∗-computable with computability constant satisfying, for 0 < s < s̃ < s∗,
cC⊗D,s . (cC,s̃cD,s̃)

s̃/s and

(b) for any ε ∈ (0, s∗), C ⊗ D is (s∗ − ε)-computable, with computability constant
cC⊗D,s satisfying, for 0 < s < s∗ − ε < s̃ < s∗, cC⊗D,s . max (cC,s̃)max (cD,s̃).

Let [Θ ⊗ Σ]X and [Θ ⊗ Σ]Y be the Riesz bases of X and Y defined in Section 10.1.3,
further let Θ̇ := {θ̇λ, λ ∈ ∇Θ}. Denoting by ‖Σ‖V the diagonal matrix with entries σµ,
µ ∈ ∇Σ and by [Σ]V the Riesz basis of V consisting of the collection Σ normalized in V ,
similarly for other spaces and collections, we obtain the following representation of the
bi-infinite system arising from the bilinear form B(·, ·) as in Lemma 9.1.3

B := B([Θ⊗ Σ]X , [Θ ⊗ Σ]Y) (10.9)

=

[
L2

t−γ/2
(I)

(
Θ′,Θ

)
L2

tγ/2
(I)

⊗ (Σ,Σ)L2(D) +

∫

I
tγa(Θ ⊗ Σ,Θ⊗ Σ) dt

]

×
(
Idt ⊗ ‖Σ‖−1

V

)
‖Θ⊗ Σ‖−1

X

=

[

L2

t−γ/2
(I)

(
[Θ′]H1

t−γ/2
(I),Θ

)
L2

tγ/2
(I)

⊗ (Σ,Σ)L2(D)

](
‖Θ‖H1

t−γ/2
(I) ⊗ ‖Σ‖V

)

×‖Θ⊗ Σ‖−1
X +

∫

I
tγa(Θ⊗ [Σ]V ,Θ ⊗ [Σ]V) dt (Idt ⊗ ‖Σ‖V) ‖Θ⊗ Σ‖−1

X .

The load vector reads:

f :=

∫

I
(f,Θ⊗ [Σ]V)V∗,V dt. (10.10)

We remark that the solution algorithms of [30] and [31] are only applicable to symmetric
system matrices B, we therefore consider the normal equations

B∗Bu = B∗f (10.11)
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instead, cf. [111, Section 4]. We now show the s∗-computability of B and B∗. The term
([Θ̇]H1

t−γ/2
(I),Θ)L2(I) is considered first. The ∞-computability of the bi-infinite matrix

and its adjoint follows as in [111, Section 8.2] using the properties of the temporal basis.
Next we consider ([Σ]V∗ , [Σ]V)L2(D). The ∞-computability follows from [111, Section
8.3]. We now consider the s∗-computability of

∫
I t
γa(Θ ⊗ [Σ]V ,Θ⊗ [Σ]V)dt. Due to the

properties of the bilinear form, we get:

∫

I
tγa(Θ⊗ [Σ]V ,Θ⊗ [Σ]V)dt = (Θ,Θ)L2

tγ/2
(I) ⊗ a([Σ]V , [Σ]V).

Therefore, it suffices to investigate the s∗-computability of both factors. The ∞-compu-
tability of (Θ,Θ)L2

tγ/2
(I) follows from [13, Theorem 3.1] as in [111, Section 8.3]. For

a([Σ]V , [Σ]V) we can deduce from [110] that it is s∗-computable with s∗ = px + 1. We
arrive at the following theorem.

Theorem 10.2.8. Consider the weak form of the parabolic problem (9.3) on X , Y as in
(9.6)-(9.7) with bilinear form B(·, ·) as in (9.13) and the right hand side

∫
I〈f, ·〉 with f as

(9.3). Its representation using space-time wavelets as in Section 10.1.3 with appropriate
boundary conditions reads Bu = f with B as in (10.9) and f as in (10.10). Then for any
ε > 0, the adaptive wavelet methods from [30] and [31] applied to the normal equations
(10.11) produce an approximation uε with

‖u− uε‖l2(∇X ) ≤ ε.

If for some s > 0, u ∈ As
∞(l2(∇X )), then suppuε . ε−1/s ‖u‖1/sAs

∞(l2(∇X ))
. The constant

only depends on s when it tends to 0 or ∞. If for arbitrary s∗ > 0 it holds that s < s∗,
then the number of operations and storage locations required by one call of the space-time
adaptive algorithm with tolerance ε > 0 is bounded by some multiple of

ε−1/sd2 ‖u‖1/sAs
∞(l2(∇X ))

+ 1,

where this multiple is uniformly bounded in d and depends only on s ↓ 0 and s→ ∞.

Remark 10.2.9. The complexity estimates in Theorems 10.2.6-10.2.8 apply if any entry
in any vector that is generated inside the routine used in the Theorems can be stored in
or fetched from memory in O(1) operations. This assumption is valid if an unlimited
amount of memory is available, where each element can be accessed in O(1) operations,
as this is not the case an additional log-term seems a priori unavoidable in the complexity
estimate. We refer to [44, Section 6] for a detailed discussion of this issue.

Remark 10.2.10. Instead of applying the methods of [30] and [31] to the normal equa-
tions as in Theorem 10.2.8, we could use a GMRES-scheme applied to the original linear
system. The author is not aware of theoretical results on such an approach.
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10 FE Discretization of time-inhomogeneous PIDEs

10.3 Discontinuous Galerkin discretization in time

In this section we describe an alternative approach to the time-discretization. A DG-
scheme with geometric refinement of the grid towards the initial condition is used, while
the polynomial is increased away from the singularity. The judicious combination of
h- and p-refinement enables us to prove exponential convergence of the timestepping
scheme in an appropriate sense.

Definition 10.3.1. Let I = (0, 1). For a function u ∈ L2(I;V) which is continuous at
t = 1 we define Πru ∈ Pr(I;V), r ≥ 1, via the r + 1 conditions

∫

I
(Πru− u, q)H dt = 0, ∀q ∈ Pr−1(I;V) (10.12)

and

Πru(+1) = u(+1) ∈ V. (10.13)

For r = 0 we use only (10.13) to define Πr, H = L2(D).

To describe the smoothness of the initial data we define intermediate spaces between H
and V by the real method of function space interpolation: specifically,

Hθ = (H,V)θ,2, 0 < θ < 1 ,

where we define H0 := H and H1 := V. We consider the following DG-formulation:

Definition 10.3.2. Let M = {Im}Mm=1, M ∈ N be a partition of I = (0, T ), r ∈ NM0 ,
then the DGFEM for (9.3)-(9.4) reads as follows: find U ∈ Vr(M;V) := {u : I → V :
u|Im ∈ Prm(Im,V), 1 ≤ m ≤M} such that

BDG(U, V ) = FDG(V ), where (10.14)

BDG(U, V ) =

M∑

m=1

∫

Im

(U ′, V )Hdt+
M∑

m=1

∫

Im

tγa(U, V )dt+

M∑

m=2

([U ]m−1, V
+
m−1)H

+(U+
0 , V

+
0 )H,

FDG(V ) = (g, V +
0 )H +

M∑

m=1

∫

Im

(f(t), V )V∗×Vdt

for all V ∈ Vr(M;V). Here Im = (tm−1, tm), 1 ≤ m ≤M ,

U+
m = lim

s↓0
u(tm + s) and U+

m = lim
s↓0

u(tm − s)

and we set [U ]m := U+
m − U−

m.

The following result holds due to [105, Lemma 1.8] for BDG(·, ·).
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Lemma 10.3.3. Let BDG(·, ·) be as in Definition 10.3.2, then for all V,W ∈ Vr(M;V)

BDG(V,W ) =

M∑

m=1

∫

Im

(−V,W ′)H + tγa(V,W )dt−
M∑

m=1

(V −
m , [W ]m)H

+(V −
M ,W

−
M )H,

BDG(V −W,V −W ) =

M∑

m=1

∫

Im

tγa(V −W,V −W )dt+
1

2

∥∥(V −W )+0
∥∥2
H

+
1

2

M−1∑

m=1

‖[V −W ]m‖2H +
1

2

M−1∑

m=1

∥∥(V −W )−M
∥∥2
H .

Theorem 10.3.4. Problem (10.14) has a unique solution U . If u is the solution of (9.3)-
(9.4), then we have the Galerkin orthogonality

BDG(u− U, V ) = 0 for all V ∈ Vr(M;V).

Proof. The proof follows as in [105, Proposition 1.7], where the case γ = 0 was treated.

This implies the following quasi-optimality result.

Theorem 10.3.5. Let u be the exact solution of (9.3)-(9.4) and U the semidiscrete so-
lution of (10.14) in Vr(M,V). Besides, assume u ∈ C([ε, T ],V), for arbitrary ε > 0.
Let Iu ∈ Vr(M,V) be the interpolant of u which is defined on each time interval Im as
Iu|Im = ΠrmIm(u|Im). Then there holds

‖u− U‖L2

tγ/2
(I;V) ≤ C ‖u− Iu‖L2

tγ/2
(I;V) , (10.15)

for some C > 0.

Proof. Using Lemma 10.3.3, ‖u‖2V = a(·, ·) and the Galerkin orthogonality we obtain

∫

I
tγ ‖U − Iu‖2V dt ≤ BDG(U − Iu, U − Iu) = |BDG(u− Iu, U − Iu)| . (10.16)

This implies

∫

I
tγ ‖U − Iu‖2V dt ≤

∫

I
tγ ‖u− Iu‖2V dt (10.17)

and therefore the claim follows using triangle inequality.

Thus, it suffices to estimate the projection error to conclude the a priori error analysis.
We have the following approximation result.
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10 FE Discretization of time-inhomogeneous PIDEs

Lemma 10.3.6. Let I = (a, b), k = b−a, r ∈ N0 and u ∈ Hs0+1(I;V) for some s0 ∈ N0.
Then

‖u−ΠrIu‖2L2(I;V) ≤
C

max {1, r}2
Γ(r + 1− s)

Γ(r + 1 + s)

(
k

2

)2(s+1)

‖u‖2Hs+1(I;V) ,

for any 0 ≤ s ≤ min {r, s0}, s real.

Proof. See [105, Corollary 1.20]

In order to complete the error analysis we need bounds on the growth of the solution of
(9.3)-(9.4) u and its derivatives. In the following an infinite series representation of u in
terms of the eigenfunctions of the operator A is used for this purpose. For data g ∈ H
and f ∈ L2

t−γ/2(I;H) the solution of (9.3)-(9.4) can be represented as follows:

u(t) =

∞∑

i=1

uλi(t)(g, ϕi)Hϕi +
∞∑

i=1

(∫ t

0
uλi(t)(f(s), ϕi)Hds

)
ϕi,

where uλi(t) is given by

uλi(t) = e
−λi t

γ+1

γ+1

and {ϕi}i∈N denotes the family of eigenfunctions of A, with ϕi ∈ V for i ∈ N. We assume
that the eigenvalues {λi}i∈N are non-decreasing and that the eigenfunctions {ϕi}i∈N form
an orthonormal basis of H.

Theorem 10.3.7. Let the operator T (t) for u ∈ H, t ≥ 0 be given by

T (t)u =

∞∑

i=1

uλi(t)(u, ϕi)Hϕi.

Then the following estimates hold for min (T, 1) > t > 0, independent of l ≥ 1,

∥∥∥T (l)(t)
∥∥∥
2

L(H,V)
≤ Ct−γ−3

(
2

t

)2(l−1)

(2l)!,

∥∥∥T (l)(t)
∥∥∥
2

L(V ,V)
≤ Ct−γ−2

(
2

t

)2(l−1)

(2l)!.

For l = 0 and for min (T, 1) > t > 0 we obtain

‖T (t)‖2L(H,V) ≤ Ct−γ−1, ‖T (t)‖2L(V ,V) ≤ C.
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10.3 Discontinuous Galerkin discretization in time

Proof. We assume without loss of generality T = 1. We have for t ∈ (0, 1]

∥∥∥T (l)(t)u
∥∥∥
2

V
≤ C

∞∑

i=1

λ3i 2
2(l−1)t2γ−2(l−1) (l!)2 u2λi(t) |ui|

2 ,

where we recall ‖u‖2V = a(u, u). This estimate holds, as the number of terms for the ℓth

derivative is bounded by 22(l−1). The function h(λ) = λ3e
−λ tγ+1

γ+1 attains its maximum

at λmax = 3(γ+1)
2(tγ+1)

, therefore

∥∥∥T (l)(t)u
∥∥∥
2

V
≤ Ch(λmax)t

2γ

(
2

t

)2(l−1)

(2l)! ‖u‖2H

≤ Ct−γ−3

(
2

t

)2(l−1)

(2l)! ‖u‖2H .

This implies

∥∥∥T (l)(t)
∥∥∥
L(H,V)

≤ Ct−γ−3

(
2

t

)2(l−1)

(2l)!.

The L(V,V)-norm can be estimated similarly. Using the fact that the maximum of

h(λ) = λ2e−λ
tγ+1

γ+1 is attained at λmax = (γ+1)
(tγ+1)

, we obtain for all t ∈ (0, 1]

∥∥∥T (l)(t)u
∥∥∥
2

V
≤ Ct−γ−2

(
2
t

)2(l−1)
(2l)! ‖u‖2V .

For l = 0, there exists C > 0 such that for all t ∈ (0, 1]:

‖T (t)u‖2V ≤ C ‖u‖2V , ‖T (t)u‖2V ≤ Ct−γ−1 ‖u‖2H .

Remark 10.3.8. Note that the estimates in the previous theorem coincide with the results
of [105, Section 2.1],[106, 107], for γ = 0.

In the following we split the solution u of (9.3)-(9.4) into its homogeneous and inhomo-
geneous part, i.e., u = u1 + u2, where

u′1 + tγAu1 = 0, u1(0) = g, (10.18)

u′2 + tγAu2 = f, u2(0) = 0. (10.19)

The behavior of both terms will be studied separately. The function u1(t), for t ∈ [0, T ]
can be represented as

u1(t) = T (t)g. (10.20)
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10 FE Discretization of time-inhomogeneous PIDEs

Theorem 10.3.9. Let g ∈ Hθ for 0 ≤ θ ≤ 1. Let u1 be the solution of (10.18). Then
there holds for l ≥ 1 and for min (T, 1) > t > 0

∥∥∥u(l)1
∥∥∥
2

V
≤ Ct−γ−3+θ

(
2

t

)2(l−1)

(2l)! ‖g‖2Hθ
, and ‖u1‖2V ≤ Ct(−γ−1)(1−θ) ‖g‖2Hθ

.

Proof. The proof follows from (10.20) and Theorem 10.3.7.

The solution u2 of (10.19) can be represented as

u2(t) =

∫ t

0
T (t− s)f(s)ds, 0 ≤ t ≤ T. (10.21)

In the following we assume f in (10.19) to satisfy

∥∥∥f (l)(t)
∥∥∥
H
≤ Cl!dl, t ∈ [0, T ], l ∈ N0, (10.22)

with some positive constants C and d, independent of l and t.

Lemma 10.3.10. Under Assumption (10.22), we get for any t > 0

(i) u2(t) =
∫ t
0 T (s)f(t− s)ds in H.

(ii) u
(l)
2 (t) =

∑l−1
i=0 T

(i)(t)f (l−i−1)(0) +
∫ t
0 T (s)f

(l)(t− s)ds for l ≥ 1 in H.

Proof. The first claim follows from (10.21) via a change of variable and (ii) follows from
(i) by induction.

Lemma 10.3.11. Assume (10.22) and let u2 solve (10.19). Then there exist constants
C, d such that for min (T, 1) > t > 0

∥∥∥u(l)2 (t)
∥∥∥
V
≤ Cdll!

(
t1/2−γ/2 +

l−1∑

i=0

t−i−1/2−γ/2
)
.

Proof. Applying triangle inequality we have

∥∥∥u(l)2 (t)
∥∥∥
V

≤
l−1∑

i=0

∥∥∥T (i)(t)
∥∥∥
L(H,V)

∥∥∥f (l−1−i)(0)
∥∥∥
H

+

∫ t

0
‖T (s)‖L(H,V)

∥∥∥f (l)(t− s)
∥∥∥
H
ds := S1 + S2.

The two terms S1 and S2 are estimated separately. We first bound S1. From Theorem
10.3.9 we have

∥∥∥T (l)(t)
∥∥∥
L(H,V)

≤ Ct−(γ+3)/2

(
2

t

)(l−1)

((2l)!)1/2 (10.23)
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≤ Cdl−1t−(γ+1)/2−ll!. (10.24)

Using (10.22) and (10.24) we conclude

S1 ≤ Cdl−1
l−1∑

i=0

i!(l − i− 1)!t−i−1/2−γ/2

≤ Cdl−1(l − 1)!

l−1∑

i=0

(
l − 1

i

)−1

t−i−1/2−γ/2

≤ Cdl−1(l − 1)!

l−1∑

i=0

t−i−1/2−γ/2.

The bound on S2 follows similarly

S2 ≤ Cdll!

∫ t

0
s−1/2−γ/2ds = Cdll!t1/2−γ/2.

Using Lemma 10.3.11, we are now able to derive a bound for u
(l)
2 , l ≥ 0.

Theorem 10.3.12. Assume (10.22) and let u2 solve (10.19). Then there exist constants
C, d such that for min (T, 1) > t > 0

∥∥∥u(l)2 (t)
∥∥∥
2

V
≤ Cd2l(2l)!t−2l+1−γ

for l ∈ N0.

Proof. From Lemma 10.3.11 we have
∥∥∥u(l)2 (t)

∥∥∥
V
≤ Cdl1l!(l + 1)t−l+1/2−γ/2,

for some d1 > 0. The claim follows using the properties of the Gamma function, i.e.,

Γ(c+ 1)2 ≤ Γ(c+ 1)Γ(c+ 3/2) = CΓ(2c+ 2)2−2(c+1),

for c ∈ C and C > 0.

The following theorem gives an estimate for the short time behavior of the solution.
This is crucial for the proof of exponential convergence of the DG scheme as constant
basis functions are used on the first interval I1.

Theorem 10.3.13. Let g be in Hθ, I = (0, k) and let f satisfy (10.22), then

∫ k

0
‖u(t)− u(k)‖2V tγdt ≤ Ck(γ+1)θ
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Proof.

‖u(t)− u(k)‖2L2

tγ/2
(I;V) ≤ C ‖u1(t)‖2L2

tγ/2
(I;V) + C ‖u1(k)‖2L2

tγ/2
(I;V)

+C ‖u2(t)‖2L2

tγ/2
(I;V) + C ‖u2(k)‖2L2

tγ/2
(I;V)

:= T1 + T2 + T3 + T4.

We first bound T1 using Theorem 10.3.9

T1 ≤ tγ+1 ‖g‖2V and T1 ≤ C ‖g‖2H .

Therefore by interpolation

T1 ≤ Ck(γ+1)θ.

We can also bound T2 with Theorem 10.3.9

T2 ≤ Ck(1+γ)θ.

T3 and T4 can be bounded by Theorem 10.3.12:

T3 ≤ Ck2, T4 ≤ Ck2.

Theorem 10.3.14. Let g ∈ Hθ for 0 ≤ θ ≤ 1 and let f satisfy (10.22), then u satisfies
for 0 < a ≤ b < min (1, T )

∥∥∥u(l)(t)
∥∥∥
2

V
≤ Cd2l(2l)!t−(2l+1)−γ+θ , (10.25)

∫ b

a

∥∥∥u(l)(t)
∥∥∥
2

V
tγdt ≤ Cd2l(2l)!a−2l+θ . (10.26)

Proof. We split the solution u into u1 and u2. The estimate (10.25) follows directly from
Theorem 10.3.9 and 10.3.12. The estimate (10.26) can be obtained from (10.25):

∫ b

a

∥∥∥u(l)(t)
∥∥∥
2

V
tγdt ≤ Cd2l(2l)!

∫ ∞

a
t−(2l+1)+θdt

≤ Cd2l(2l)!a−2l+θ .

Lemma 10.3.15. Let g ∈ Hθ for 0 ≤ θ ≤ 1 and let f satisfy (10.22), then u satisfies for
0 < a ≤ b < min (1, T )

∥∥∥u(l)(t)
∥∥∥
2

Hs

tγ/2
((a,b),V)

≤ Cd2sΓ(2l + 3)a−2s+θ.
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Proof. The result follows by interpolation of the statement in Theorem 10.3.14.

Definition 10.3.16. A geometric mesh partition Mn,q = {Im}n+1
i=1 with grading factor

q ∈ (0, 1) and n+ 1 time steps Im is given by the nodes

t0 = 0, tm = qn−m+1, 1 ≤ m ≤ n+ 1.

The time steps km = tm − tm−1 satisfy

km = λtm−1, λ =
1− q

q
,

for 2 ≤ m ≤ n+ 1.

Definition 10.3.17. A polynomial degree vector r = {rm}n+1
m=1 is called linear with slope

ν ≥ 0 on the geometric partition Mn,q if r1 = 0 and rm = ⌊νm⌋ for 2 ≤ m ≤ n+ 1.

Lemma 10.3.18. Fix an interval Im ∈ Mn,q, for 2 ≤ m ≤ n + 1 and set sm = αmrm
with αm ∈ (0, 1). Then there exist constants C, d such that

∥∥u−ΠrmImu
∥∥2
L2

tγ/2
(Im,V)

≤ Cq(n−m+2)θ−|γ|
(
(µd)2αm

(1− αm)
1−αm

(1 + αm)1+αm

)rm
,

where µ = max {1, λ} and λ = 1−q
q . The constants C and d only depend on g ∈ Hθ,

θ ∈ (0, 1], and γ, f satisfying (10.22).

Proof. We omit for simplicity the dependence of I, r, α, k and s on m in the following
and set t = tm−1.

‖u−Πrl u‖2L2

tγ/2
(I;V) ≤ max (aγ , bγ) ‖u−Πrl u‖2L2(I;V)

≤ Cmax (aγ , bγ)
Γ(r + 1− s)

r2Γ(r + 1 + s)

(
k

2

)2(s+1)

‖u‖2Hs+1(I;V)

≤ Cmax

((a
b

)γ
,

(
b

a

)γ) Γ(r + 1− s)

r2Γ(r + 1 + s)

(
k

2

)2(s+1)

‖u‖2
Hs+1

tγ/2
(I;V)

≤ Cmax

((a
b

)γ
,

(
b

a

)γ) Γ(r + 1− s)

r2Γ(r + 1 + s)

(
µd

2

)2s+2

×Γ(2s+ 5)t2(s+1)t−2s−2+θ

≤ C

(
µd2
2

)2s

q−|γ| Γ(r + 1− s)

r2Γ(r + 1 + s)
Γ(2s+ 1)tθ.

Using Sterling formula we obtain

Γ(r + 1− s)

Γ(r + 1 + s)
Γ(2s + 1) ≤ r1/222s

(
(1− α)1−α

(1 + α)1−α

)r
.
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Theorem 10.3.19. Consider the parabolic problem (9.3)-(9.4) on I = (0, 1) with initial
data g ∈ Hθ for some θ ∈ (0, 1] and right hand side f satisfying (10.22). The weak
formulation is discretized in time using the DGFEM as given in Definition 10.3.2 on a
geometric partition Mn,q. Then there exists ν0 > 0 such that for all linear polynomial
degree vectors r = {rm}n+1

m=1 with slope ν ≥ ν0 the semidiscrete DGFEM solution U
obtained in Vr(Mn,q,V) satisfies

‖u− U‖L2

tγ/2
(I;V) ≤ C exp

(
−bN1/2

)
.

Proof. Let

ν > max

{
1,

θ ln (q)

ln (hmin )

}
, (10.27)

where hmin will be defined below. Set r1 = 0 and rm = ⌊νm⌋ ≥ 1 for 2 ≤ m ≤ n + 1.
As before sm = αmrm, for αm ∈ (0, 1) to be selected. We start from (10.15) and use
Theorem 10.3.13 to estimate the error on the first interval I1 near the origin and Lemma
10.3.18 to estimate the error on I2, . . . , In+1. This yields

‖u− U‖2L2

tγ/2
(I;V) ≤ Cqnθ(1+γ) + C

n+1∑

m=2

q(n−m+2)−|γ|hµ,d(αm)
rm

≤ Cqnθ

(
qnθγ + q−|γ|

n+1∑

m=2

q(2−m)θhµ,d(αm)
rm

)
,

where hµ,d(α) = (µd)2α
(
(1−α)1−α

(1+α)1−α

)
. The function hµ,d satisfies

0 < inf
0<α<1

hµ,d(α) = hµ,d(αmin ) < 1 with αmin =
1√

1 + µ2d2
.

Set hmin = hµ,d(αmin ) and select αm = αmin for 2 ≤ m ≤ n+ 1. Hence

‖u− U‖2L2

tγ/2
(I;V) ≤ Cqnθ

(
qnθγ + q−|γ|

n+1∑

m=2

q(2−m)θhrmmin

)
. (10.28)

Since

q(2−m)θhrmmin ≤ Cq2θ
(
f νmin

qθ

)m

and f νmin < qθ by (10.27), we conclude that the sum in (10.28) can be bounded by

n+1∑

m=2

q(2−m)θhrmmin ≤ Cq2θ
n+1∑

m=2

qm
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10.3 Discontinuous Galerkin discretization in time

with q = f ν/qθ < 1. Therefore
∑∞

m=2 q
m <∞ holds and we conclude

‖u− U‖2L2

tγ/2
(I;V) ≤

{
Cqq

nθ for γ ≥ 0

Cqq
nθ(1+γ) for γ < 0

.

Taking into account N = nrdof(Vr(Mn,q,V)) ≤ O(n2), as n→ ∞ with O dependent on
ν, concludes the proof.

Remark 10.3.20. The extension of Theorem 10.3.19 to more general operators, as de-
scribed in Section 9.3 is not straightforward, as a detailed analysis of the smoothness of
the solution u(t, x) is needed, as given in Theorems 10.3.9 and 10.3.12.
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10 FE Discretization of time-inhomogeneous PIDEs
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11 American options

In this chapter pricing of early exercise contracts is discussed. We consider the corre-
sponding linear complementarity problem (LCP) and show well-posedness for a class of
time-homogeneous admissible market models. We discretize the LCP using the implicit
Euler scheme in time and linear finite elements in space. The arising sequence of ma-
trix problems is solved employing the primal-dual active set algorithm which converges
locally superlinearly for appropriate system matrices.

11.1 Variational formulation

In the following we consider the pricing of American options in admissible time-homoge-
neous market models. Its value V (t, s) for a Lipschitz continuous payoff functions g is
given as

V (t, s) = sup
τ∈Tt,T

E[e−r(T−τ)g(S(τ))|S(t) = s],

where Tt,T denotes the set of all stopping times between t and T . For sufficiently smooth
solutions V (t, s), we obtain the following linear complementarity problem for u(t, x) =
V (T − t, ex)

∂tu−Au+ ru ≥ 0 in I × R, (11.1)

u(t, x) ≥ g(ex) in I × R, (11.2)

(∂tu−Au+ ru) (u− g) = 0 in I × R (11.3)

u(0, x) = g(ex) in R, (11.4)

where A is the infinitesimal generator of the process X.

Remark 11.1.1. Note that the derivation of this formulation is formal for time-homoge-
neous admissible market in general. For Lévy market models (11.1)-(11.4) can be justified
rigorously, cf. [79].

We assume the pricing problem to be not drift dominated in the following, cf. Remark
5.2.6. In the case of a drift dominated market model we can either remove the drift,
cf. Theorem 5.3.1, or use the methods described in Sections 7.2 and 7.3. A continuous
Galerkin approach with linear finite elements is used here. The set of admissible solutions
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11 American options

for the variational form of (11.1)-(11.4) is the closed, non-empty and convex set K0 given
as

K0 := {v ∈ V|v ≥ 0 a.e. x ∈ R} ,

where V is the domain of the corresponding bilinear form. We denote by φ0(v) the
indicator function on K0 given as

φ0(v) := IK0(v) =

{
0, if v ∈ K0

+∞, else.

The variational formulation of (11.1)-(11.4) reads:

Find u ∈ L2(I;V) ∩H1(I;V∗) such that u(t, ·) ∈ D(φ0) a.e. in I, u(0) = 0 and

(∂tu, v − u)V∗,V + a(u, v − u) + φ0(v)− φ0(u) ≥ −a(g, v − u), ∀v ∈ D(φ0), (11.5)

where a(ϕ, φ) = (Aϕ, φ)V∗,V and V = D(a(·, ·)). The unique solvability of (11.5) follows
from [55, Chapter 6, Theorem 2.1] using the continuity and the G̊arding inequality
satisfied by a(·, ·) on V for g such that Ag ∈ L2(R). Additionally, u ∈ L∞(I;H) is shown
in [55, Chapter 6, Theorem 2.1].

11.2 Discretization

We use P - and M -matrices in the convergence analysis of our algorithm.

Definition 11.2.1. A d × d matrix is called P -matrix if all its principal minors are
positive.

We are able to show convergence of the solution algorithm for the linear complementarity
system if the system matrix is an M -matrix.

Definition 11.2.2. A d × d matrix is called M -matrix if it is a P -matrix and all its
non-diagonal entries are non-positive.

The localization of the pricing equation can be rigorously justified for Lévy market
models as in Section 4.2, we refer to [95, Theorem 4.14] for details. The formulation of
the pricing problem on a bounded domain D = (−R,R), for some R > 0, reads

Find u ∈ L2(I;V) ∩H1(I;V∗) such that u(t, ·) ∈ D(φ0,R) and a.e. in I

(∂tu, v − u)V∗
D,VD

+ aD(u, v − u) + φ0(v)− φ0(u) ≥ −aD(g, v − u), ∀v ∈ D(φ0,R),

(11.6)

u(0) = 0,
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11.2 Discretization

where K0,R is given as

K0,R := {v ∈ VD|v ≥ 0 a.e. x ∈ D} ,
φ0,R(v) = IK0,R

(v) and VD = {v ∈ L2(D) : ṽ ∈ V}. Let k = T/M with M ∈ N be the
time step and denote by um, m = 0, . . . ,M the solution of the following backward Euler
discretization of (11.6):

Find um+1 ∈ K0,R, m = 0, . . . ,M − 1 such that
(
um+1 − um

k
, v − um+1

)
+ aD(u

m+1, v − um+1) ≥ −aD(g, v − um+1), ∀v ∈ K0,R,

(11.7)

u0 = 0.

The sequence (11.7) of elliptic variational inequalities can be reduced to a sequence of
finite dimensional LCPs by restricting VD to a finite dimensional subspace Vh as in
Section 6.2. We use the space Vh of continuous piecewise linear functions with respect
to the equidistant subdivision Th. Then the FE discretization of (11.7) reads:

Find um+1
h ∈ Vh ∩ K0,R, m = 0, . . . ,M − 1 such that

(
um+1
h − umh

k
, v − um+1

)
+ aD(u

m+1
h , v − um+1

h ) ≥ −aD(g, v − um+1
h ), ∀v ∈ Vh ∩ K0,R,

(11.8)

u0h = 0.

The sequence of LCPs (11.7) can equivalently be written as follows, where we use the
standard ’hat’ basis of Vh. Given u0h = 0, find um+1

h ∈ RN , N = dimVh, such that for
m = 0, . . . ,M − 1,

Bum+1
h ≥ Fm,

um+1
h ≥ 0,

(um+1
h )⊤

(
Bum+1

h − Fm
)
= 0,

(11.9)

where B := M+kA, Fm := kf+Mumh and f
i
= −aD(g, bi). We denote by M and A the

stiffness and mass matrices in ’hat’ basis. We denote by umh (x) =
∑N

k=1(u
m
h )jbk(x) ∈ Vh.

A rigorous error analysis was performed in [84], where the Lévy setup was considered.

Theorem 11.2.3. Let u(t, x) be the solution of (11.6) for a Lévy process X, which is an
admissible market model with generating triplet (0, Q, ν(dz)) and um := u(tm, ·), further
let umh be given as above and g(ex) = max (K − ex, 0), K > 0, then the following error
estimate holds

max
m

‖um − umh ‖L2(D) +

(
M∑

m=1

k ‖um − umh ‖2VD

)1/2

≤ C(kγ +Qhs−1 + hmin (s/2,s−Y/2)),

for some γ ∈ (0, 1].
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11 American options

Choose an initial guess u0, λ0 and ε > 0. Set k = 0.
Set Ik = {i : λki − cuki < 0}, Ak = {i : λki − cuki ≥ 0}
Solve Buk+1 + λk+1 = F ,
uk+1 = 0 on Ak,

λk+1 = 0 on Ik.
If |uk+1 − uk| < ε stop else

Next k

Table 11.1: Description of the primal-dual active set algorithm

Proof. The proof is given in [84, Appendix B].

Remark 11.2.4. Examining the proof in [84, Appendix B] it becomes clear that the state-
ment can be generalized to more general setups, i.e., to admissible time-homogeneous
market models as given in Definition 3.2.3 without drift dominance.

We are now concerned with the solution of the sequence of linear complementarity prob-
lems. A popular method is the PSOR algorithm, cf. [36]. The main drawback of this
method is the slow convergence speed. We therefore follow a different approach and use
a semismooth Newton method for the solution of (11.9), cf. [61, 67]. One step of (11.9)
can equivalently be written as

Bu− λ = F , u ≥ 0, λ ≥ 0, u⊤λ = 0, (11.10)

for some F ∈ Rd. The system (11.10) has a unique solution (u∗, λ∗) if B is a P -matrix,
cf. [11, Theorem 10.2.14]. Note that the complementarity system in (11.10) can be
equivalently expressed as

C(u, λ) = 0, where C(u, λ) = λ−max (0, λ − cu) (11.11)

for each c > 0. The primal-dual active set method is based on using (11.11) as a
prediction strategy. Given a current primal-dual pair (u, λ), the choice of the next
active and inactive sets I and A is given by

I = {i : λi − cui < 0}, A = {i : λi − cui ≥ 0}.

This leads to the primal-dual active set algorithm as given in Table 11.1. As described in
[61], the primal-dual active set method can also be understood as a semi-smooth Newton
method. We have the following local convergence result.

Theorem 11.2.5. Let B be a P -matrix, then the primal-dual active set algorithm as given
in Table 11.1 converges superlinearly to (u∗, λ∗), provided that

∥∥u0 − u∗
∥∥+

∥∥λ0 − λ∗
∥∥ is

sufficiently small.
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11.2 Discretization

Proof. The proof is given in [61, Theorem 3.1]. It relies on the representation of the
algorithm as a semi-smooth Newton method.

A global convergence result can also be shown.

Theorem 11.2.6. Assume that B is anM -matrix. Then (uk, λk) → (u∗, λ∗) for arbitrary
initial data.

Proof. We refer to [61, Theorem 3.2 and Appendix A] for the proof.

In order to complete the analysis of American options, it remains to show that the
system matrices arising in the discretization of time-homogeneous market models are
M -matrices.

Lemma 11.2.7. Let ABS = (aBS(bi, bj))j,i and AJ = (aJ(bi, bj))j,i be given. For

aBS(u, v) =

∫

D

1

2
Q(x)∂xu(x)∂xv(x)dx, Q(x) > Q0 ≥ 0,

aJ(u, v) =

∫

D

∫

D
∂zu(z)∂xv(x)k(z − x)dzdx,

for a jump measure k(y) and a diffusion coefficient Q(x) that satisfy the assumptions
of an admissible time-homogeneous market model. Additionally we assume that k(y) is
non-increasing for y > 0 and non-decreasing y < 0, besides let aJ(u, u) ≥ C ‖u‖2L2(D)

hold. Then ABS and AJ are M -matrices.

Proof. It follows directly from the definition of ABS that its off-diagonal entries are non-
positive . The positivity of all real eigenvalues follows from the coercivity of the bilinear
form aBS(·, ·). For AJ we obtain that all off-diagonal entries are non-positive due to
the monotonicity of k(z) and therefore of k(−2)(z). The positivity of all real eigenvalues
follows from the coercivity of aJ(·, ·).

Remark 11.2.8. The coercivity of the aJ(·, ·) follows from the G̊arding inequality af-
ter an appropriate change of variable. Note that the M -matrix property can also be
proved for stiffness matrices for general time-homogeneous market models under certain
assumptions on the jump measure k(x, z).

Remark 11.2.9. Note that wavelet basis can also be used for the solution of the linear
system in the primal-dual active set algorithm, therefore leading to a well-conditioned
system matrix B. The M -matrix property for this matrix is not obvious, while the P -
matrix property is clear, ensuring local convergence. Additionally, a transformation to
standard hat basis is necessary in every step to preserve the sign condition.
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12 Numerical Examples and Outlook

12.1 Drift dominated PIDEs

In the following we present numerical examples in one space dimension confirming the
analytical results obtained in the previous chapters.

Example 12.1.1. We consider the tempered stable process (for c = c+ = c− also called
CGMY process in [26] or KoBoL in [19]) which has parametric a Lévy density of the
form

ν(dz) =

(
c+

e−β+|z|

|z|1+Y
1{z>0} + c−

e−β−|z|

|z|1+Y
1{z<0}

)
dz, (12.1)

for c+, c− > 0, β+, β− > 1 and 0 ≤ Y < 2.

Remark 12.1.2. Note that we obtain a finite variation process for Y < 1 and an infinite
variation process for Y ≥ 1.

Different choices for the drift b(x) are considered in the following test problem:

Au = f for x ∈ G = (0, 1), u = 0 for x ∈ ∂G = {0, 1},

where A will be the corresponding Lévy operator and we choose f such that u = x2(x−
1)2.
Let A be the pure jump operator with a CGMY jump density and parameters given as
Y ∈ {0, 0.5}, β− = β+ = 5, C = 1. The convergence rates can be observed in Figure 12.1,
where the error has been measured in the H̃Y/2 ((0, 1))-norm. Note that in Figure 12.1.(a)
we additionally employ the small jump approximation as described in Chapter 4 to
approximate the Lévy processX. The figure supports the theoretical results (see Remark
7.3.20) and it can be observed that the truncation error dominates the discretization
error for fine discretization levels and large truncation parameters. In Figure 12.2 we
consider the same equation with a drift term and observe the convergence rates in the
DG-norm || · ||DGFV, defined in (7.44), when artificial diffusion is not considered. We
choose b(x) = 20 − 20x. The results are analogous to the driftless case and confirm
the error estimates of Theorem 7.3.19 when ε ≡ 0 , i.e., the truncation of the small
jumps does not affect the solution. In Figure 12.3 we consider the same problem adding
artificial diffusion. The convergence rates in the DG-norm || · ||DG(ε), defined in (7.25),
obtained numerically agree with the theoretical results of Theorem 7.3.9.
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12 Numerical Examples and Outlook
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Figure 12.1: Convergence rates for different Lévy measures
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Figure 12.2: Convergence rates for CGMY jump measure with Y = 0.5 (drift domi-
nance). Shown is the discretization error measured in the DGFV-norm as
given in (7.44) with penalty parameter α = 5.

Remark 12.1.3. We show the order of convergence of the time-independent problem in
Figures 12.1-12.3, since for this case an exact solution is known. Theorems 7.3.9 and
7.3.19 present a priori error estimates for the time-dependent case in the norm |||·|||DG(ε)

given in (7.29) and the norm ||| · |||DGFV given in (7.45), respectively. However, the
error measured in the norm || · ||DG(ε) (|| · ||DGFV, see (7.44)) for the time-independent
problem has the same order of convergence as the error measured in the norm ||| · |||DG(ε)

(||| · |||DGFV) of the corresponding time-dependent problem. This can be easily shown
along the lines of the proofs of Theorems 7.3.9 and 7.3.19.

Now we consider the dependence of the solution on the regularization parameter ε. In the
driftless case we observe the behavior presented in Figure 12.4, which confirms the results
of Theorem 4.1.8 and Remark 4.1.9. We either only truncate the jump measure on the
interval (−ε, ε) or add an appropriately scaled diffusion as described in Theorem 4.1.1.
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12.1 Drift dominated PIDEs
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Figure 12.3: Convergence rates for CGMY jump measure with Y = 0.5 and artificial
diffusion (drift dominance). Shown is the discretization error measured in
the DG-norm as given in (7.25) with penalty parameter α = 5.

Note that in order to observe a convergence behavior in ε, we have to choose a sufficiently
fine discretization, such that the discretization error is negligible in comparison with the
truncation error. For the general case we refer to the result in Theorem 4.1.14. The
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Figure 12.4: Convergence rates with respect to ε for CGMY jump measure with Y = 0.5.
Shown is the discretization error measured in the L2 norm.

same Lévy kernel as above with the drift component b(x) = 20 − 20x is considered.
The numerical results are depicted in Figure 12.5 and confirm the estimate in Theorem
4.1.14. The results suggest that the estimates are optimal. Finally we present a parabolic
test case. We consider a pure transport operator with drift b(x) = 10− 10x and a Lévy
operator with the same drift and the Lévy kernel chosen as above. We observe a diffusive
behavior of the Lévy operator (Figure 12.6).
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Figure 12.5: Convergence rates with respect to ε for CGMY jump measure with Y = 0.5
(drift dominance). Shown is the discretization error measured in the L2

norm.

Figure 12.6: Parabolic test problem. Transport operator (black line). Transport domi-
nated Lévy operator (red line).

12.2 PIDEs with inhomogeneous jump measures

In this section the implementation of numerical solution methods for the Kolmogorov
equations for time-homogeneous market models with inhomogeneous jump measures
using the techniques described above is discussed. We assume the risk-neutral dynamics
of the underlying asset to be given by

S(t) = S(0)ert+X(t),

where X is a Feller process with characteristic triple (b(x), Q(x), k(x, z)dz) under a risk
neutral measure Q such that eX is a martingale with respect to the canonical filtration
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12.2 PIDEs with inhomogeneous jump measures

of X. In the following we set r = 0 for notational convenience. We consider Feller
processes X that are admissible time-homogeneous market models. In the following
we consider a special family of Feller processes to confirm the theoretical results of the
previous chapters.
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Figure 12.7: Stiffness matrices for the pure jump case with CGMY-type Lévy kernel(
Y (x) = 1.25e−x

2
+ 0.5
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Figure 12.8: Stiffness and Mass matrices for the Black-Scholes model with σ = 0.3 and
r = 0.

Example 12.2.1. We consider a CGMY-type Feller process with jump kernel

k(x, z) = C

{
e−β

+zy−1−Y (x), z > 0

e−β
−|z| |y|−1−Y (x) , z < 0,

Y (x) = ke−x
2
+ 0.5.

This process has no Gaussian component and the drift b(x) is chosen according to (5.4).

We also consider the following family of processes that do not satisfy the conditions of the
theory developed above, since the variable order is assumed to be Lipschitz continuous
only.
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Figure 12.9: Condition numbers for different levels and choices of k.

Example 12.2.2. We consider again a CGMY-type Feller process with jump kernel

k(x, z) = C

{
e−β

+zy−1−Y (x), z > 0

e−β
−|z| |z|−1−Y (x) , z < 0,

Y (x) = 0.5 + k





0.4x, 0.25 > x > 0

0.8x− 0.1, 0.5 > x ≥ 0.25

−0.4x+ 0.5, 0.75 > x ≥ 0.5

−0.8x+ 0.8, 1 > x ≥ 0.75

0, else

.

This process has no Gaussian component and the drift b(x) is chosen according to (5.4).

In Figure 12.7 the stiffness matrix for the process in Example 12.2.1 is depicted. Note
that the uncompressed stiffness matrix is densely populated, but structurally very similar
to the matrix in the Black-Scholes model. The condition numbers of the preconditioned
stiffness matrices have to be uniformly bounded in the number of levels due to Section
8.2. A parameter study for various choices of k in Example 12.2.1 and Example 12.2.2 is
shown in Figure 12.9. The condition numbers are uniformly bounded and of order 101

in most cases, although the norm equivalences (6.18) only apply to Example 12.2.1. For
variable orders with 1.95 ≤ Y we obtain condition numbers of order 102. Note that the
condition numbers are not only influenced by the order of the singularity of the jump
kernel at z = 0, but also by the rates of exponential decay β+ and β−. Fast decaying
tails, i.e., large β+ and β− may lead to larger constants. Figure 12.10 shows the price of
a European put option for several Lévy processes and one Feller process. In the Feller
case we choose Y (x) = 0.8e−x

2
+ 0.1 in Example 12.2.1 and for the Lévy models we set

Y ∈ {0.1, 0.5, 0.7, 0.8, 0.9}. In all cases we set C = 1, β+ = β− = 10 and use truncation
parameters a = −3, b = 3 in log-moneyness coordinates. The prices in the Feller model
are significantly different from the prices in the different Lévy models. This can be
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Figure 12.10: Option prices for several models for a European put option with T = 1
and K = 100.

explained by the ability of the Feller model to account for different tail behavior for
different states of the process, which is not possible using Lévy processes. Figure 12.11
shows the prices of an American put option for a Feller process and several Lévy models.
We use a Lagrangian multiplier approach as described in [67, 68], cf. Chapter 11. The
parameters were chosen as above.

12.3 Time-inhomogeneous PIDEs

In the following we present numerical results for time-degenerate parabolic equations.
As a test problem we consider a time-degenerate heat equation

∂tu− tγ∂xxu = f(t, x) on [0, T ]× (0, 1), (12.2)

u(0, x) = g(x),

T = 1. For numerical testing purposes, the exact solution u(t, x) is selected equal to
u(t, x) = e−t sin(πx) and the right hand side f is chosen such that (12.2) holds. Linear
finite elements are used for the spatial discretization. The numerical results are depicted
in Figure 12.12. The decrease of the convergence rate for large N stems from the fact
the error of the time-stepping scheme is dominated by the discretization error in space.
We observe exponential convergence for various parameters γ and σ.

Figure 12.13 shows European option prices for different Hurst parameters H ∈ (0, 1) in
an FBM market model. Significant differences in the option price can be observed even
for plain vanilla contracts.
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Figure 12.11: Option prices for several models for an American put option with T = 1
and K = 100.
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Figure 12.12: Exponential convergence rates for the test problem (12.2) with slope ν = 1,
measured in the L2-norm at t = 1.

12.4 Outlook

We have analyzed integro-differential equations and inequalities arising in option pricing
for extensions of Lévy processes. Several types of extensions have been considered.
Spatially inhomogeneous market models have been analyzed. The well-posedness of the
corresponding pricing equations in a setup with and without drift dominance has been
shown. The discretization was performed using discontinuous Galerkin methods with
small jump approximation and continuous Galerkin methods with streamline diffusion.
Time-inhomogeneous models have also been considered. Due to the possible degeneracy
of the coefficients of the arising equation, appropriate weak space-time formulations
have been used. The discretization was performed using a continuous Galerkin method
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Figure 12.13: Prices of plain vanilla European options in the FBM market model for
different Hurst parameters H

in space-time and alternatively a discontinuous Galerkin discretization in time. We close
by listing several directions of future research related to the results of this thesis.

• The smoothness requirements on the symbol of an admissible time-homogeneous
market model stem from the use of pseudodifferential calculus. Numerically, the
derived results, in particular for the preconditioning, seem to hold even for Lips-
chitz continuous variable orders. An analysis for symbols with non-smooth orders
is desirable.

• The pricing of exotic contracts, such as contracts of Asian or Parisian type, under
the market models could be considered.

• The results on localization and small jump approximation in Chapter 4 could be
extended to more general market models.

• The application of the derived results to the pricing of options in commodity mar-
kets, such as the gas or the electricity market, is an interesting topic, as standard
models usually do not produce satisfactory results in such markets, cf. [21].
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exponential Lévy models. Finance and Stochastics, 9(3):299–325, 2005.
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