ETH zürich

The potential of large LEO satellite constellations to form a GNSS network in space for geodetic Earth observation

Other Conference Item

Author(s): Müller, Lukas; Chen, Kangkang; Rothacher, Markus

Publication date: 2022-07-21

Permanent link: https://doi.org/10.3929/ethz-b-000593636

Rights / license: In Copyright - Non-Commercial Use Permitted

The potential of large LEO satellite constellations to form a GNSS network in space for geodetic Earth observation

Lukas Müller, Kangkang Chen, Markus Rothacher

21 July 2022

Motivation

- Rapid increase in number of nanosatellites in space
- Low-cost GNSS receivers for positioning and navigation
- Example: Astrocast CubeSat constellation
- → Dense network of GNSS observations around the Earth
- **Idea:** Use the large nanosatellite constellations to estimate parameters related to ...
 - LEO and GNSS satellite orbits
 - Earth's gravity field
- Study objectives:

1. Double-difference processing of a simulated GPS network in space: Effect of constellation design, parameterization and simulated errors on the LEO orbit determination

2. Ambiguity resolution in a space-based GPS network

Constellation scenarios

a) Existing satellite missions 16 satellites

- GRACE-FO A and B
- Jason-1,-2,-3
- Sentinel-1A to -3B
- SWARM A, B, C
- TanDEM- and TerraSAR-X

b) Walker constellation 36 satellites

- 6 equally distributed orbital planes with inclination of 60°
- 6 satellites per plane

c) Astrocast constellation 36 satellites

- 5 equally distributed orbital planes with inclination of 60°
- One equatorial plane
- 6 satellites per plane

Simulation and processing scheme

Difference between a-priori LEO orbits and ground-truth orbits

- Time period: 3 revolutions (4 h 48 min)
- A-priori LEO orbits without ocean tides, ground-truth orbits with ocean tides up to degree 50

Radial	Along-track	Cross-track
19.2 mm	67.2 mm	37.8 mm

Radial	Along-track	Cross-track
20.4 mm	63.7 mm	41.8 mm

Radial	Along-track	Cross-track
17.7 mm	50.1 mm	42.9 mm

Difference between a-priori LEO orbits and ground-truth orbits

- Time period: 3 revolutions (4 h 48 min)
- A-priori LEO orbits without ocean tides, ground-truth orbits with ocean tides up to degree 50

Radial	Along-track	Cross-track
19.2 mm	67.2 mm	37.8 mm

Radial	Along-track	Cross-track
20.4 mm	63.7 mm	41.8 mm

Difference between estimated LEO orbits and ground-truth orbits

- Time period: 3 revolutions (4 h 48 min)
- Introduced error: A-priori orbit without ocean tides + noise of 2 mm in phase observations
- Parameterization: 6 Keplerian elements + stochastic pulses (velocity changes) every 15 minutes

Astrocast constellation 350 20 15 250 -10 MS [mm] 5

Radial	Along-track	Cross-track
5.9 mm	4.2 mm	5.9 mm

300

400

200

Right ascension of ascending node [°]

0

100

ETH zürich

ЗD

Example for Walker constellation

Introduced errors	Estimated parameters	A-priori vs. ground-truth (3D RMS in mm)	Estimated vs. ground-truth (3D RMS in mm)
LEO-TID0 + 0 mm	K + S	71 (LEO)	7.8 (LEO)
LEO-TID0 + 2 mm	K + S	71 (LEO)	8.0 (LEO)
GPS-POT5 + 2 mm	K + S	29 (GPS)	3.5 (LEO)
LEO-TID0 + 2 mm	К	71 (LEO)	72.0 (LEO)
LEO-TID0 + 2 mm	K + S + A	71 (LEO)	20.0 (LEO)

Errors:

- **LEO-TIDO:** LEO orbits without ocean tides
- **GPS-POT5:** GPS orbits with gravity potential only up to degree 5
- Noise of 0 mm or 2 mm

Parameters:

- K: 6 Keplerian elements
- **S:** Stochastic pulses every 15 minutes
- A: Ambiguities

Example for Walker constellation

Introduced errors	Estimated parameters	A-priori vs. ground-truth (3D RMS in mm)	Estimated vs. ground-truth (3D RMS in mm)
LEO-TID0 + 0 mm	K + S	71 (LEO)	7.8 (LEO)
LEO-TID0 + 2 mm	K + S	71 (LEO)	8.0 (LEO)
GPS-POT5 + 2 mm	K + S	29 (GPS)	3.5 (LEO)
LEO-TID0 + 2 mm	К	71 (LEO)	72.0 (LEO)
LEO-TID0 + 2 mm	K + S + A	71 (LEO)	20.0 (LEO)

Errors:

- **LEO-TIDO:** LEO orbits without ocean tides
- **GPS-POT5:** GPS orbits with gravity potential only up to degree 5
- Noise of 0 mm or 2 mm

Parameters:

- K: 6 Keplerian elements
- **S:** Stochastic pulses every 15 minutes
- A: Ambiguities

Example for Walker constellation

Introduced errors	Estimated parameters	A-priori vs. ground-truth (3D RMS in mm)	Estimated vs. ground-truth (3D RMS in mm)
LEO-TID0 + 0 mm	K + S	71 (LEO)	7.8 (LEO)
LEO-TID0 + 2 mm	K + S	71 (LEO)	8.0 (LEO)
GPS-POT5 + 2 mm	K + S	29 (GPS)	3.5 (LEO)
LEO-TID0 + 2 mm	К	71 (LEO)	72.0 (LEO)
LEO-TID0 + 2 mm	K + S + A	71 (LEO)	20.0 (LEO)

Errors:

- **LEO-TIDO:** LEO orbits without ocean tides
- **GPS-POT5:** GPS orbits with gravity potential only up to degree 5
- Noise of 0 mm or 2 mm

Parameters:

- K: 6 Keplerian elements
- **S:** Stochastic pulses every 15 minutes
- A: Ambiguities

Example for Walker constellation

Introduced errors	Estimated parameters	A-priori vs. ground-truth (3D RMS in mm)	Estimated vs. ground-truth (3D RMS in mm)
LEO-TID0 + 0 mm	K + S	71 (LEO)	7.8 (LEO)
LEO-TID0 + 2 mm	K + S	71 (LEO)	8.0 (LEO)
GPS-POT5 + 2 mm	K + S	29 (GPS)	3.5 (LEO)
LEO-TID0 + 2 mm	К	71 (LEO)	72.0 (LEO)
LEO-TID0 + 2 mm	K + S + A	71 (LEO)	20.0 (LEO)

Errors:

- **LEO-TIDO:** LEO orbits without ocean tides
- **GPS-POT5:** GPS orbits with gravity potential only up to degree 5
- Noise of 0 mm or 2 mm

Parameters:

- K: 6 Keplerian elements
- **S:** Stochastic pulses every 15 minutes
- A: Ambiguities

GPS satellite tracking for 4 baseline scenarios

Elevation cut-off angle of 0° for all simulations

Estimation of float ambiguities for 4 baseline scenarios

Elevation cut-off angle of 0° for all simulations

Manipulation of a-priori LEO orbits: Development of ocean tides only up to degree 15 instead of 50 \rightarrow orbit errors of 1-2 cm

	Baselin	e a	Baseline	e b	Baseline	ec	Baseline	e d
Introduced errors	%RED	%BAD	%RED	%BAD	%RED	%BAD	%RED	%BAD
LEO-TID15 + 0mm	99	0	96	6	93	29	69	0
LEO-TID15 + 2mm	99	0	85	2	85	20	54	0
LEO-TID15 + 4mm	94	0	11	0	20	0	0	0
LEO-TID35 + 2mm	99	0	95	0	94	0	64	0
GPS-POT5 + 2mm	99	0	94	0	92	0	60	0

- LEO-TID15/35: Ocean tides of LEO a-priori orbit only up to degree 15 or 35, respectively
- **GPS-POT5:** Gravity potential of GNSS a-priori orbits only up to degree 5
- Noise of 0 mm, 2 mm or 4 mm

- %RED: Reduction of the number of ambiguity parameters in percent
- %BAD: Percentage of ambiguities solved incorrectly

	Baseline	e a	Baseline	e b	Baseline	ec	Baseline	e d
Introduced errors	%RED	%BAD	%RED	%BAD	%RED	%BAD	%RED	%BAD
LEO-TID15 + 0mm	99	0	96	6	93	29	69	0
LEO-TID15 + 2mm	99	0	85	2	85	20	54	0
LEO-TID15 + 4mm	94	0	11	0	20	0	0	0
LEO-TID35 + 2mm	99	0	95	0	94	0	64	0
GPS-POT5 + 2mm	99	0	94	0	92	0	60	0

- LEO-TID15/35: Ocean tides of LEO a-priori orbit only up to degree 15 or 35, respectively
- **GPS-POT5:** Gravity potential of GNSS a-priori orbits only up to degree 5
- Noise of 0 mm, 2 mm or 4 mm

- %RED: Reduction of the number of ambiguity parameters in percent
- %BAD: Percentage of ambiguities solved incorrectly

	Baseline a		Baseline b		Baseline c		Baseline d	
Introduced errors	%RED	%BAD	%RED	%BAD	%RED	%BAD	%RED	%BAD
LEO-TID15 + 0mm	99	0	96	6	93	29	69	0
LEO-TID15 + 2mm	99	0	85	2	85	20	54	0
LEO-TID15 + 4mm	94	0	11	0	20	0	0	0
LEO-TID35 + 2mm	99	0	95	0	94	0	64	0
GPS-POT5 + 2mm	99	0	94	0	92	0	60	0

- LEO-TID15/35: Ocean tides of LEO a-priori orbit only up to degree 15 or 35, respectively
- **GPS-POT5:** Gravity potential of GNSS a-priori orbits only up to degree 5
- Noise of 0 mm, 2 mm or 4 mm

- %RED: Reduction of the number of ambiguity parameters in percent
- %BAD: Percentage of ambiguities solved incorrectly

	Baseline a		Baseline b		Baseline c		Baseline d	
Introduced errors	%RED	%BAD	%RED	%BAD	%RED	%BAD	%RED	%BAD
LEO-TID15 + 0mm	99	0	96	6	93	29	69	0
LEO-TID15 + 2mm	99	0	85	2	85	20	54	0
LEO-TID15 + 4mm	94	0	11	0	20	0	0	0
LEO-TID35 + 2mm	99	0	95	0	94	0	64	0
GPS-POT5 + 2mm	99	0	94	0	92	0	60	0

- LEO-TID15/35: Ocean tides of LEO a-priori orbit only up to degree 15 or 35, respectively
- **GPS-POT5:** Gravity potential of GNSS a-priori orbits only up to degree 5
- Noise of 0 mm, 2 mm or 4 mm

- %RED: Reduction of the number of ambiguity parameters in percent
- %BAD: Percentage of ambiguities solved incorrectly

Integer ambiguity resolution for entire constellations

1) Large introduced error in a-priori LEO orbits, ocean tides up to degree 15 \rightarrow 10 - 20 mm

2) Small introduced error in a-priori LEO orbits, ocean tides up to degree 35 \rightarrow 3 - 4 mm

Conclusions

1) LEO orbit determination with introduced integer ambiguities

- Constellation geometry: Benefits of the Astrocast and Walker constellations due to the large number and homogeneous distribution of observations
- Simulated errors on the level of 30-70 mm in LEO and GPS orbits
 - No significant improvement when estimating only 6 Keplerian elements
 - Orbit improvement to 4-8 mm by estimating additional stochastic pulses every 15 min
 - Additional estimation of ambiguity parameters: Significantly larger number of parameters and reduced accuracy of about 20 mm

2) Ambiguity resolution

- Dependent on baseline length, relative motion and introduced errors
- Reduction of ambiguity parameters highly dependent on the noise level: Much higher number of ambiguity parameters with noise of 4 mm than with 2 mm
- Good results for integer ambiguity resolution only with LEO-orbit errors smaller than 10 mm

Thank you!

energy alteration was in the last state of the same

 \bigcirc

[GD_42]

(GD_23)

[GD_225]

 \bigcirc