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Abstract

Machine learning-guided protein engineering is a rapidly advancing field. Despite major

experimental and computational advances however, collecting protein genotype (sequence) and

phenotype (function) data remains time and resource intensive. As a result, the quality and

quantity of training data is often a limiting factor in developing machine learning models. Data

augmentation techniques have been successfully applied to the fields of computer vision and

natural language processing, however, there is a lack of such augmentation techniques for

biological sequence data. Towards this end we develop nucleotide augmentation (NTA), which

leverages natural nucleotide codon degeneracy to augment protein sequence data in a

biologically meaningful way. As a proof of concept for protein engineering, we apply NTA to

train machine learning models with benchmark data sets of protein genotype and phenotype,

revealing performance gains on par and surpassing benchmarks models, even when only using a

fraction of the training data. NTA also enables substantial improvements for classification tasks

under heavy class imbalance.

Availability and implementation

The code to use NTA and to reproduce the analyses in this study is publicly available at

https://github.com/minotm/NTA
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Introduction

The application of machine learning (ML) on biological sequence data has expanded substantially

in recent years1,2. One area of interest is ML-guided protein engineering, which enables efficient

and large-scale exploration of protein sequence space3. This approach has been used for a variety

of applications such as increasing protein expression4, multi-parameter optimization of antibody

therapeutics5,  improving the thermostability and function of enzymes6,7.

ML-guided protein engineering has been supported in recent years by advances in DNA

synthesis, high-throughput screening assays and deep sequencing, which enable the generation of

phentoype-genotype training data. However, collecting protein sequence and function (labeled)

data still remains time- and resource-intensive. And as is the case in other applications of ML,

small or imbalanced training data sets can often lead to bias and overfitting, thereby leading to a

lack of performance and generalizability8. Moreover, large-scale data sets are often required to

train effective deep learning models 9,10. Several approaches have been developed to make the

most of limited data. For example, Wittman et al. (2021) show that ML-informed design of

training data sets can improve directed evolution workflows11. Additionally, language models

trained on large-scale and mostly natural sequence data have been developed to generate protein

embeddings capable of improving downstream tasks like secondary structure and contact map

prediction7,12–15.

In the ML-related fields of computer vision8,16,17 and natural language processing (NLP)18–20, data

augmentation is commonly applied to combat data limitations. Data augmentation refers to

techniques that artificially increase the number of training examples, which can lead to improved

performance and act as a regularizer in reducing overfitting. Common image augmentation

approaches include copying and warping an image, i.e via cropping and rotation8. NLP

augmentation techniques may include copying a sentence and substituting words with synonyms

to preserve meaning or translating a sentence into another language and back again18–20.

Additionally synthetic data can be generated through a variety of techniques including Generative

Adversarial Networks (GANs) and the Synthetic Minority Oversampling Technique (SMOTE)8,21.

Recently, data augmentation techniques have been developed for protein sequence data as well.

Such approaches include GANs22,23, and augmentation for protein language models with

contrastive learning via evolutionary information and string manipulations such as amino acid

replacement and sequence shuffling24,25. While certainly noteworthy, these approaches are
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constrained to the domain in which they were trained (GANs), or may be less relevant in protein

engineering workflows that generate large libraries of non-natural mutations in a small number of

residues of a single protein7,26,27 (language models). Unlike computer vision and NLP, there exists

a lack of simple, easy-to-apply data augmentation techniques for protein sequence data; likely

resulting from the relationship between the discrete amino acid sequence of a protein and its

structure and function.

Here we establish Nucleotide Augmentation (NTA), which represents a rapid and facile data

augmentation technique for ML-guided protein engineering. By taking advantage of natural

codon degeneracy (trinucleotide combinations), we developed NTA as the reverse translation of

an amino acid sequence into multiple, unique nucleotide sequences via codon degeneracy (Fig. 1

and Algorithm 1). To benchmark and validate the performance of NTA, we select three protein

engineering data sets with various sizes of training data and class balances5,26,28,29. Using

benchmarked train/test splits, we determine that NTA can improve predictive performance of

ML models with limited training data and under high class imbalance.

Fig 1. Nucleotide Augmentation Procedure and Encodings Tested

Fig 1. A) Nucleotide Augmentation (NTA) approach. Possible nucleotide codons are determined

for each residue in an input amino acid sequence. Full-length nucleotide sequences are then

sampled n times from the possible sequence space, where n is a user-specified augmentation
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factor. The sequences are then either categorically encoded (transformer) or one-hot encoded

(CNN). The different ngram one-hot encoding approaches are illustrated in B). First, a nucleotide

sequence is broken into Bi) unigrams Bii) trigrams or Biii) trigrams concatenated with unigrams

(tri+unigrams). The ngrams are then tokenized according to their respective vocabularies. The

tokenized vector corresponds to the transformer model’s input, however, this vector undergoes an

additional one-hot encoding step for the CNN. For example, the resulting one-hot matrix size for

a nucleotide sequence of length 9 will either be 9x4 (unigrams Bi), 3x64 (trigrams, Bii), or 12x68

(tri+unigrams Biii). Note that amino acids are encoded as unigrams i.e. for sequence length L the

resulting one-hot matrix is Lx20 for the 20 canonical amino acids.

Materials and Methods

Data Sets Used In This Study

In order to evaluate the performance of NTA for ML-guided protein engineering, we acquired

three benchmark labeled data sets. Such data sets consist of protein mutagenesis libraries where

each sequence variant (genotype) in the library and its corresponding function (phenotype) are

known. High-throughput screening by directed evolution coupled to deep sequencing provides

an exemplary approach to generate such data sets. Although protein engineering has largely

lacked benchmark data sets for ML, Dallego and colleagues recently published the Fitness

Landscape Inference for Proteins (FLIP) repository26, which seeks to address this issue. We make

use of two labeled regression data sets from FLIP as well as a third classification data set from a

study related to ML-guided antibody engineering5 (Table 1).

GB1 Data Set

In the original study from Wu et al. (2016)28, four positions of GB1, the IgG-Fc binding domain

of Protein G, were subjected to saturation combinatorial mutagenesis, thus resulting in an overall

library diversity of 204 = 160,000 variants. mRNA display, deep sequencing, and statistical

analysis were used to determine fitness of the variants. The FLIP subtask chosen for this data set

was ‘Three vs Rest’, a regression task that seeks to predict a value for variant fitness by training

(and validating) on sequences with amino acid edit distance 1-3 (ED1-3) away from WT (wild

type) and testing on sequences ED4 from WT. The subtask was chosen as the quantity of training

data is large enough to allow investigation of how training sets of varying size impact model

performance when supplemented with NTA. The full data set for this subtask includes 2,691
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training, 299 validation, and 5,743 test sequences. Protein sequences are truncated to the variable

region only.

AAV Data Set

Bryant et al. (2021)29 performed mutagenesis on a 29 amino acid region of the AAV capsid

protein. Some variants contain insertions or deletions, resulting in a maximum of 39 mutations

from WT. Variant fitness was assessed via viral production assay, deep sequencing and statistical

analysis. The FLIP regression subtask chosen for this data set was ‘Seven vs Rest’ and seeks to

predict a value for variant fitness. This subtask uses variants with an ED1-7 from WT as training

and validation data. The test data set includes variants with ED8-39 from WT. The full data set for

this subtask consists of 62,631 training, 7,001 validation and 12,581 test sequences. Protein

sequences are truncated to the variable region only. This data set was chosen to complement the

GB1 data, as it offers a larger, more complex training set with a higher number of mutated

residues of variable length.

Trastuzumab Data Set

Mason et al. (2021)5 performed mutagenesis on 9 residues of the heavy chain complementarity

determining region 3 (CDRH3) of the therapeutic antibody trastuzumab. Variants were screened

for binding or non-binding to the HER2 antigen via mammalian display, fluorescence-activated

cell sorting and deep sequencing. A train/test splitting strategy was developed specifically for this

study. To correspond with the other data sets and to maximize the data used, ED7 from WT was

chosen as the cutoff between train/validation and test sets. Using edit distance to split training and

testing also resembles real-world workflows, in which models are trained with a limited number

of mutations and used to extrapolate to a larger sequence space. The resulting training set was

then balanced by downsampling the number of negatives (non-binders) to match the number of

positives (antigen-binders) to create a balanced starting point for the synthetic introduction of

class imbalance. 20% of the sequences were allocated as a validation set, resulting in a training

set of 11,172 sequences, a validation set of 2,795 sequences, and a test set containing a balanced

1,929 positive and 1,929 negative sequences. Protein sequences are truncated to the variable

region only.
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Table 1. Description of data sets used in this study. Data Set corresponds to the name of the wild

type (WT) protein that served as a basis for mutagenesis library generation. The edit distance

threshold used to split the training/validation and test sets as well as the respective training,

validation, and test data set sizes are included. *Length of AAV mutagenized region is listed as

variable, as this library contains both insertions and deletions.

Nucleotide Augmentation Algorithm

For speed and reproducibility purposes, we performed NTA offline, prior to training, thus

generating separate csv files for each condition. Psuedocode describing the NTA procedure is

provided in Algorithm 1. In short, a user begins by specifying the augmentation factor, naug, or

number of augmentations to perform for each protein sequence. Next, all possible nucleotide

codons for each amino acid in a sequence are determined and assembled into an ordered list of

lists (or dictionary). naug is rounded up to the nearest integer and full-length nucleotide sequences

are sampled naug times. This process is repeated for each protein sequence in the data set. In cases

where naug is a float prior to rounding, down sampling is executed by removing one nucleotide

sequence per unique amino acid sequence until the desired data set size is achieved. It should

also be noted that augmentation capacity is limited by the diversity of the corresponding

nucleotide codons. When given an naug that exceeds this upper bound, the algorithm returns the

maximum number of unique sequences possible.
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Algorithm 1. Nucleotide Augmentation Algorithm

Machine Learning Models

A transformer30 and a convolutional neural network (CNN) were chosen as representative models

for this study due to their widespread use in ML on biological sequence data5,12,13,26. As the

purpose of this work is not to develop the best model for the tasks, but to illustrate the potential

of NTA, minimal hyperparameter optimization was performed and the same hyperparameters for

each model are used across tasks. It is therefore reasonable to expect additional performance

improvement with optimized parameters. The models were written in python using the PyTorch31

framework.

Transformer Model

A modified transformer30 was created with the following architecture. Protein and nucleotide

sequences broken into ngrams are categorically encoded as input to an embedding layer with

dimension 32 followed by positional encoding injection30 and connected to a transformer encoder

layer with 2 attention heads, each with hidden dimension 128. The encoder output is first

flattened, then fed to a linear layer with output dimension 512, followed finally by a linear layer

with output dimension 1 to predict variant fitness or class. Rectified Linear Unit (ReLU) is

applied as the activation function and a dropout of 0.3 are used throughout the network. To
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account for variable sequence length resulting from insertions and deletions in the AAV data,

sequences are padded to the maximum length and a padding mask is used to prevent the attention

mechanism from attending to padded tokens.

CNN Model

The CNN architecture is adapted and slightly scaled down from what is described in the FLIP

repository model, which was applied to much larger data sets26. For the modified CNN, protein

and nucleotide sequences broken into ngrams are one-hot encoded and used as input. The

network consists of a 1D convolution with a kernel width of 5 and 64 convolutional filters, batch

normalization and max pooling, mapping to a linear layer with 512 nodes and a dropout of 0.3,

and final mapping to a linear layer with output dimension 1. ReLU is applied as the activation

function throughout the network. Similar to the transformer, sequence padding and mask are

applied to the AAV data set to handle sequences of variable length.

ngram Sequence Encoding

NTA requires reverse translation of amino acids to nucleotides, which increases the sequence

length threefold. To probe how input format affects performance, three nucleotide ngram

encoding schemes were tested: unigrams, trigrams, and tri+unigrams, which concatenates

trigrams and unigrams. Each encoding scheme has a different vocabulary, or set of unique

‘words’ (ngrams). The unigram vocabulary has 4 elements: A,T,G,C. The trigram vocabulary

consists of the 64 possible nucleotide codons. The tri+unigram vocabulary combines the two for a

total of 68 elements. Protein sequences were encoded as unigrams with a vocabulary of 20, one

character for each of the canonical amino acids. It is worth noting that the nucleotide trigram and

amino acid unigram encodings share the same sequence length, albeit a different vocabulary size.

After breaking a sequence into ngrams, categorical encoding and one-hot encoding are applied

for the transformer and CNN, respectively.

Model Training

The loss function used for the regression tasks is Mean Squared Error and in accordance with

previous work with the FLIP repository26, Spearman’s Rho is used to assess model performance.

Binary Cross Entropy is used for the classification task and the Matthews Correlation Coefficient

(MCC), which ranges from -1 to 1, is selected as the performance metric as it is an appropriate

summary metric for binary classification of imbalanced data sets32. Stochastic gradient descent

(SGD) with momentum of 0.9 is used as the optimizer. Training proceeds with a maximum of
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250 epochs with 25 epochs early stopping patience for the GB1 and AAV tasks. Training for the

antibody task proceeds 400 epochs with 40 epochs early stopping patience. A minimum of 40

epochs must be run prior to early stopping for all tasks. Mini-batch sizes 32 and 256 are used for

the transformer and CNN, respectively. Models were trained using the ETH Zurich Euler Cluster

with 1 GPU (Nvidia GTX 1080, GTX 1080 Ti, or V100) and a requested 16GB memory.

Results

Regression Variant Fitness Prediction With NTA

To probe how data quantity impacts ML models, it is common to truncate a training set to

differing sizes and assess model performance. This type of analysis is useful since biological data

collection is time and resource intensive, and thus can aid in experimental design.

To test how NTA performs with differing amounts of initial sequence diversity, training data sets

were truncated into separate subsets consisting of 1%, 5%, 10%, 25%, 50%, 75%, and 100% of

the available training data. A 0.5% fraction of the AAV data set was also created due to the data

set’s larger total size. The truncated sets correspond to a range of either 26 to 2,691 (GB1) or 313

to 62,631 (AAV) sequences. In an attempt to mirror the distribution found in the full training and

validation sets (as defined by the FLIP repository), sequences were binned by fitness value, a

continuous value approximating mutant fitness experimentally determined in each study.

Truncation was performed using train_test_split with ‘stratify’ option from sklearn (version

0.23.2) to maintain the ratio of binned sequences during truncation.

Baselines were collected on the truncated and full-size non-augmented training sets in both amino

acid and nucleotide formats. Each data set was then augmented to three different final sizes

ranging from ten times its initial size to several hundred thousand sequences, essentially treating

the extent of augmentation as a hyperparameter to be tuned. This upper bound was chosen as it is

an order of magnitude greater than the largest data set. The exceptions to this were the 1% and

5% truncated GB1 data sets, in which available nucleotide sequence diversity was less than this

amount, in which case the data was augmented as much as possible. Validation and test sets were

reverse translated without applying augmentation, consistent with common practice. Finally, the

trained models were used to predict fitness values on the complete test sets. Performance was

assessed using Spearman’s Rho, corresponding to FLIP benchmark repository protocol, across 5
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separate random seeds. The highest performers are selected from the three different augmented

data sets for each initial training set size and plotted in Figures 2 and 3.

GB1 Mutant Fitness Prediction Results

NTA improves GB1 prediction for both the transformer and CNN models for almost every case,

and notably for models trained with small data sets (Figure 2). For example, the unigram

transformer on 1% of training data (25 sequences) results in a poor test Rho of 0.03 ± 0.05 on the

AA baseline, and 0.13 ± 0.10 on the DNA baseline, however, NTA is able to improve

performance to 0.35 ± 0.06 (Fig 2Ai). Similarly, the tri+unigram CNN with 5% training data (134

sequences) results in a test Rho of 0.35 ± 0.18 on the DNA baseline, 0.15 ± 0.13 on the AA

baseline, and 0.56 ± 0.02 using NTA (Figure 2Biii). It is also worth noting that NTA continues to

result in improvements for most scenarios using larger training sets. The best performing model

described in Dallego et al. (CNN) achieves 0.83 on the full FLIP data set. Remarkably, using

only 50% training data and NTA, our CNN achieves 0.81 ± 0.00, 0.83 ± 0.00, 0.85 ± 0.00, with

unigram, trigrams, and tri+unigrams, respectively.

Figure 2. Impact of NTA on Regression Prediction of GB1 Fitness

Fig 2. Fitness prediction performance (Spearman’s Rho) of GB1 mutants as a function of the

number of training samples used for model training. Points correspond to mean performance and

shaded regions to 95 % confidence interval across 5 random seeds. Baselines include models
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trained on amino acid sequences (yellow) and models trained on DNA sequences without

augmentation (green). Each fractionated data set was augmented to three different sizes, the best

performing of which is reported as the blue X’s of the NT Augmented curve. A) Transformer

model performance and B) CNN model performance when trained on unigrams (Ai, Bi), trigrams

(Aii, Bii) and tri+unigrams (Aiii, Biii).

AAV Variant Fitness Prediction Results

ML models using NTA on the AAV data set generally result in notable improvements over the

DNA baseline, the magnitude of which decreases as the number of initial samples is increased.

For example, trigram transformer trained using NTA on .05% data (314 sequences) results in a

Rho value of 0.51 ± 0.01, which is significantly higher than 0.44 ± 0.03 and 0.37 ± 0.08 for the

AA and DNA baselines, respectively (Fig 3Aii). In general, NTA results in improvements over

the DNA baseline, however, the DNA baseline is impacted by encoding choice to a greater extent

than was observed on the GB1 data set. For unigrams and tri+unigrams, the DNA baseline is

generally lower than training via amino acids. It is worth noting that both augmented and

non-augmented DNA trigrams perform on par or better than the amino acid baseline. The best

performing benchmark from Dallego et al26 is a CNN trained on the full FLIP data set with a Rho

value of 0.74 . Although we performed virtually no hyperparameter optimization, our transformer

trigram model trained with NTA on only 75% of available data is able to achieve a similar Rho of

0.73 ± 0.00.
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Figure 3. Impact of NTA on Regression Prediction of AAV Fitness

Fig 3. Fitness prediction performance (Spearman’s Rho) of AAV mutants as a function of the

number of training samples used for model training. Points correspond to mean performance and

shaded regions to 95 % confidence interval across 5 random seeds. Baselines include models

trained on amino acid sequences (yellow) and models trained on DNA sequences without

augmentation (green). Each fractionated data set was augmented to three different sizes, the best

performing of which is reported as the blue X’s of the NT Augmented curve. A) Transformer

model performance and B) CNN model performance when trained on unigrams (Ai, Bi), trigrams

(Aii, Bii) and tri+unigrams (Aiii, Biii).

Class-Imbalanced Binding Classification With NTA

Protein engineering through the screening of mutagenesis libraries often results in a substantial

fraction of low- or non-functional variants and a comparatively low fraction of variants with

enhanced properties11. To test if NTA can improve learning on data with heavy class imbalance,

we first create a balanced training set (Trastuzumab Data Set section) then artificially imbalance

the data by down-sampling the number of positive examples (antibody variants binding to target

antigen) to range from 10% to 100% of the number of negative sequences (antibody variants

non-binding to antigen). Similar to our regression experiments, following downsampling,

validation sets were split using sklearn’s ‘train_test_split’ function with ‘stratify’ option to

11
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produce validation sets 20% the size of each training set while maintaining the respective class

imbalance. Baselines were collected on the imbalanced data for both amino acid and

non-augmented DNA sequences. NTA was applied only to the minority class (antigen-binding

sequences) of the training set in accordance with common practice33–35. The minority class was

augmented by a factor of 2, 5, and 10. Further augmentation beyond 10 generally caused a drop

in performance. The majority class (antigen non-binding) sequences were reverse translated

without augmentation. PyTorch’s WeightedRandomSampler was used to class balance

mini-batches as much as possible during training as this was found to result in better

performance.

Imbalanced Classification Results

NTA yields significant improvements on imbalanced antibody-antigen binding data for every

model-encoding scheme tested. In general, the baseline and augmented transformer models

outperform the CNN. NTA results in significant gains under heavy class imbalance. For example

with a 0.3 positive to negative ratio, NTA improves MCC from 0.17 ± 0.03 and 0.19 ± 0.02 (AA

and DNA Baselines, respectively) to 0.44 ± 0.02 at an augmentation factor of 10 with the trigram

transformer (Fig 3Aii). Performance generally increases with an augmentation factor up to 10, at

which point performance was seen to drop as augmentation was pushed further (data not shown).

The trigram transformer was found to perform the best and the unigram CNN the poorest.

Overall, these results demonstrate the ability of NTA to aid in learning from class-imbalanced

data.

Figure 4. Imbalanced Classification of HER2 Binding of Trastuzumab Mutants
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Fig 4. Binary classification (antigen binding and non-binding) prediction performance (Matthews

Correlation Coefficient) of antibody variants as a function of the ratio of positive (minority class)

to negative (majority class) sequences in the training set for the A) transformer and B) CNN

models when trained on unigrams (Ai, Bi), trigrams (Aii, Bii) and tri+unigrams (Aiii, Biii). NTA

results in notable performance gains across models and encoding types. NTA is applied only to

the minority (antigen binding) class and the majority class (antigen non-binding) is reverse

translated from amino acids to nucleotides without augmentation. Augmentation factor refers to

the number of unique nucleotide copies generated for every positive amino acid sequence in the

training and validation sets. Performance on amino acid sequences (yellow) and non-augmented

DNA sequences (green) are considered baselines.

Discussion

The collection of protein genotype-phenotype data is time and resource intensive, thus

representing a critical bottleneck for ML-guided protein engineering. Previous work has sought

to counter data limitations with GANs22,23 and language models24,25, however, GANs are limited

to the domain in which they are trained and language models may not always be appropriate for

protein engineering workflows introducing large libraries of non-natural mutations into a small

number of residues of a protein7,26,27. For example, Dallago and colleagues (2021)26 find that for
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synthetic mutagenesis data sets focusing on a single protein, language models can be

outperformed by smaller, more focused models. To date the field lacks the simple, easy-to-use

data augmentation techniques that are commonly found in the fields of computer vision and NLP.

Towards this end, we develop here NTA, which leverages the natural nucleotide codon

degeneracy of protein sequences to augment data sets for ML. As a proof of concept, we apply

NTA to three labeled data sets for ML-guided protein engineering, two of which (GB1 and AAV)

have been established as benchmarks by the recent FLIP repository26.

We find that NTA yields large gains when limited training data is available (e.g., 10 - 103

sequences), while still enhancing performance as more data is collected. This is particularly

useful for protein engineering workflows unable to generate high throughput data (i.e. variant

stability and affinity characterization or cell-based assays). We also find that NTA serves as a

promising method to improve learning on class imbalanced data, which is a common occurrence

in protein engineering experiments11.

NTA advantages include that it is biologically meaningful, can be easily applied to most

protein-ML workflows, and requires minimal additional resources. One potential downside of

NTA is that it prohibits the use of models pretrained with amino acids. It is worth noting that

NTA could be applied to additional areas of ML-guided protein engineering, such as predictions

of structure, stability, immunogenicity and subcellular localization13,36. Finally, NTA could

supplement contrastive learning and be combined with or used to aid in the training of protein

language models24,25. Future work may also seek to improve the NTA algorithm and its

application for specific use cases.
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