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“Bubbling” and Topological Degeneration
in the Calculus of Variations

Michael Struwe

Abstract. After recalling first instances of “topological degeneration” and “bub-
bling” in geometric analysis we present current challenges in applications of vari-
ational methods to problems in this field.

1. Introduction

First encounters with the phenomena of topological degeneration and “bubbling” in
applications of variational methods to problems in geometric analysis date back to
the late 1930’s and early 1980’s, respectively. We briefly recall these classical results
and proceed to describe some current challenges in the field.

2. Minimal surfaces

2.1. Douglas condition

After the break-through solution by Douglas and Rado in 1930/31 to Plateau’s
problem for disc-type minimal surfaces, in 1939 Jesse Douglas [12] also considered
the Plateau problem for minimal surfaces of general topological type. He may have
been the first geometric analyst to discover topological degeneration in a variational
problem.

For simplicity, consider the problem of finding minimal surfaces of annulus-type
spanning two disjoint, closed Jordan curves Γ1,2 in R3. Generalizing his approach
to Plateau’s problem for minimal surfaces of the type of the disc, in modern ter-
minology Douglas sought to characterize annulus-type minimal surfaces as critical
points of Dirichlet’s integral

E(u, ρ) =
1
2

∫
Aρ

|∇u|2dz

among maps u : Aρ → R3 defined on an annular region

Aρ = {z ∈ R2; ρ < |z| < 1},
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satisfying the Plateau boundary condition (PBC). That is, each admissible u maps
the inner boundary circle Sρ = {z; |z| = ρ} monotonically onto Γ1 and the outer
boundary circle S1 = {z; |z| = 1} monotonically onto Γ2, in a manner compatible
with the given orientation of the curves Γ1,2. Moreover, also the parameter 0 < ρ < 1
is allowed to vary, which determines the conformal type of the domain.

It turns out that also pairs of disc-type surfaces u1,2 : B → R3 play a role in
this case, where B = {z; |z| < 1} is the unit disc in R2 and where u1,2 satisfies
PBC in the sense that ui maps S1 = ∂B continuously and (weakly) monotonically
onto Γi, with energy

E(ui) =
1
2

∫
B

|∇ui|2dz, i = 1, 2.

In fact, Douglas was able to assert the existence of an annulus-type minimal surface
spanning the given contours whenever the “Douglas condition”

inf
u∈C1(Aρ,R3) with PBC, 0<ρ<1

E(u, ρ) < inf
u1,2∈C1(B,R3) with PBC

E(u1) + E(u2) (2.1)

was satisfied, the idea being that condition (2.1) would prevent a minimizing se-
quence of annulus-type surfaces from degenerating to a pair of disc-type surfaces.

Today, we understand better what role topologically degenerate solution pairs
u1,2 of disc-type minimal surfaces play in this context.

2.2. Example

In fact, the simple example of two co-axial parallel planar curves at distance d > 0
from each other shows that Douglas’ condition is not optimal; moreover, the result
of Douglas does not give any information about the set of all solutions of the Plateau
problem in this case.

Indeed, for sufficiently small d > 0 there exist both a stable catenoid minimal
surface of energy (or area) < 2π spanning the given configuration of curves, approx-
imately given by the thin cylindrical strip between the two circles with area 2πd,
and, in addition, an unstable catenoid of energy > 2π, which as ρ ↓ 0 degenerates to
the pair of disc-type surfaces each spanning one of the boundary circles and having
a combined energy of size 2π.

Moreover, there exists a critical distance d∗ > 1 such that as d ↑ d∗ the stable
and unstable catenoids merge in a critically unstable one having energy > 2π, which
disappears as we further increase the separation distance, leaving for d > d∗ only
the pair of disc-type minimal surfaces of energy 2π.

2.3. Critical Point Theory

After the rigorous derivation of all Morse inequalities for disc-type minimal surfaces
in [24], and generalizing the above example, for curves Γ1,2 with disjoint convex
hulls the paper [25] establishes the full Morse relations for the energy functional E
on the space

M = {(u, ρ); u ∈ H1 ∩ C0(Āρ,R
3) satisfies PBC, 0 ≤ ρ < 1},

of functions satisfying PBC with finite Dirichlet integral, where for ρ = 0 we let
A0 = B and consider pairs u = (u1, u2) of functions ui ∈ H1 ∩ C0(B̄,R3) each
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satisfying PBC for Γi, i = 1, 2, with E(u, 0) = E(u1) + E(u2), thus including
topologically degenerate surfaces.

In the above example, the topologically degenerate surface corresponding to
the pair u = (u1, u2) of minimal discs acts as a critical point of minimum type for
the extended variational problem for the energy E on the space M . With M being
contractible, the Morse relations then hold in all cases where 0 < d 	= d∗.

For suitable boundary curves, jointly with Jürgen Jost in [16] we extend the
critical point theory to the Plateau problem for arbitrary genus and connectivity,
including the contributions to the Morse inequalities of surfaces of lower topological
type, with a well-defined pseudo-gradient flow also acting on the Teichmüller space
of conformal structures on the domain and possibly deforming the domain to a
domain of degenerate type.

3. Harmonic Maps of Closed Surfaces

3.1. Harmonic Maps

Let Σ be a closed surface with Riemannian metric g. For a closed “target” manifold
N ⊂ Rn weakly harmonic maps u : Σ → N are critical points of Dirichlet’s integral

E(u) =
1
2

∫
Σ

|∇u|2dμg

in the class

H1(Σ, N) = {u ∈ H1(Σ,Rn); u(x) ∈ N for almost every x ∈ Σ}
of Sobolev maps u : Σ → N with finite energy. By a result of Hélein [14] weakly
harmonic maps u : Σ → N , in fact, are smooth and are classical solutions of the
elliptic system of equations

−Δgu = A(u, ∇u, ∇u) ⊥ TuN on Σ,

where Δg is the Laplacean on Σ in the metric g, and where A : N × TpN × TpN →
T⊥

p N is the second fundamenal form on N .

3.2. Homotopy Problem

A classical problem, posed by Eells-Sampson [13] in 1964, is the question whether
every homotopy class of smooth maps u : Σ → N can be represented by a harmonic
map. For targets N with non-positive sectional curvature, Eells–Sampson were able
to answer the question in the affirmative.

3.3. The Sacks–Uhlenbeck Result

Without any restriction on the curvature of the target, but assuming instead that
π2(N) = 0, the following existence result of similar generality was obtained by
Sacks-Uhlenbeck [21] in 1981.

Theorem 3.1. Let Σ and N be as above, and suppose that π2(N) = 0. Then for any
smooth u0 : Σ → N there is a harmonic map u : Σ → N homotopic to u0.

The proof introduces the first (simultaneous with Wente [29]) instance of “bub-
bling” in geometric analysis.
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3.3.1. Approximation. For α > 1 Sacks-Uhlenbeck define the α-energy

Eα(u) =
1
2

∫
Σ

(
(1 + |∇u|2)α − 1

)
dμg

for u ∈ W 1,2α(Σ, N) := H1(Σ, N) ∩ W 1,2α(Σ,Rn). Note that by Sobolev’s theo-
rem, for any α > 1 we have a compact embedding W 1,2α(Σ, N) ↪→ C0(Σ, N). In
particular, for any smooth u0 : Σ → N the homotopy class

[u0]α = {u ∈ W 1,2α(Σ, N); u ∼ u0}
is well-defined and closed with respect to weak convergence in W 1,2α. Sacks-
Uhlenbeck then conclude that for any α > 1 there exists uα ∈ [u0]α that mini-
mizes the α-energy in this class, and from elliptic regularity theory they deduce
smoothness of uα.

Next observe that the space of smooth maps u : Σ → N is dense in H1(Σ, N);
moreover, the homotopy class

[u0] := [u0]1 = {u ∈ H1(Σ, N); u ∼ u0}
is well-defined. Since clearly for any smooth u : Σ → N as α ↓ 1 there holds Eα(u) →
E(u), we then conclude that

Eα(uα) = inf
u∈[u0]α

Eα(u) → inf
u∈[u0]

E(u) =: β0 as α ↓ 1.

3.3.2. “Bubbling”. In a second key step Sacks-Uhlenbeck analyze the behavior of
the approximate harmonic maps uα as α ↓ 1, and they show that either the family
(uα)α>1 is uniformly smoothly bounded, or for some sequence αk ↓ 1 the corre-
sponding sequence uk = uαk

exhibits “bubbling” in the following sense: There exist
points pk ∈ Σ and radii rk ↓ 0 such that in geodesic normal coordinates x around
pk = 0 there holds

vk := uk(rkx) → v∞ in C2
loc(R

2),

where v∞ : R2 → N is a smooth, non-constant harmonic map with finite Dirichlet
integral

E(v∞,R2) ≤ lim
R→∞

lim inf
k→∞

E(vk, BR(0)) ≤ lim inf
k→∞

Eαk
(uk) = β0.

By conformal invariance of the Dirichlet integral in 2 space dimensions, via
stereographic projection Φ: S2\{p0} → R2 from the south pole p0 ∈ S2 the map v∞
may be lifted to a smooth, non-constant harmonic map w∞ = v∞◦Φ: S2\{p0} → N
with finite Dirichlet integral.

Sacks–Uhlenbeck then proceed to show that in 2 space dimensions any smooth
harmonic map S2 \ {p0} → N with finite Dirichlet integral may be smoothly ex-
tended to all of S2, thus removing the point singularity at p0.

A simple estimate next shows that the Dirichlet energy of any smooth, non-
constant harmonic map u : S2 → N is larger than a uniform quanta ε0(N) > 0 of
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energy. Indeed, compute

‖ΔgS2u‖2
L2(S2) =

∫
S2

|ΔgS2u|2dμgS2 = −
∫

S2
ΔgS2u · A(u, ∇u, ∇u)dμgS2

≤ C

∫
S2

|∇u|2|ΔgS2u|dμgS2 ≤ C‖∇u‖2
L4(S2)‖ΔgS2u‖L2(S2)

by Hölder’s inequality. The Gagliardo-Nirenberg inequality and elliptic regularity
give

‖∇u‖2
L4(S2) ≤ C‖∇u‖H1(S2)‖∇u‖L2(S2) ≤ C‖ΔgS2u‖L2(S2)‖∇u‖L2(S2).

Thus, with a constant C0 = C0(N) > 0 independent of u we obtain the bound

‖ΔgS2u‖2
L2(S2) ≤ C0‖ΔgS2u‖2

L2(S2)‖∇u‖L2(S2).

Hence we conclude

E(u, S2) =
1
2
‖∇u‖2

L2(S2) ≥ 1
2C2

0

=: ε0(N).

3.3.3. Surgery. Finally, by replacing the “large spherical cap” of uk inside a suitable
ball BLrk

(pk) (that is, the part of the rescaled map vk inside the ball BL(0)) with
a “small spherical cap” approximately given by v∞(L2z/|z|2) for |z| < L, and using
that π2(N) = 0, for suitably chosen L = Lk → ∞ as k → ∞ Sacks-Uhlenbeck
construct a map ũk homotopic to uk (and hence to u0) with

E(ũk) ≤ E(uk) − ε0(N) + o(1),

where o(1) → 0 as k → ∞. Thus, ũk ∈ [u0] with E(ũk) < β0 for sufficiently large
k ∈ N, which contradicts the definition of β0. This shows that, in fact, uk → u∞
smoothly as k → ∞, and u∞ ∼ u0 is harmonic with E(u∞, Σ) = β0.

Remark 3.2. Note that the “bubble map” w∞ solves the harmonic map equation
on S2, regardless of the topological type of Σ. Thus, also the process of “bubbling”
in general involves a change of topology.

4. Nirenberg’s Problem

In the classical examples that we looked at so far, solutions arise as relative min-
imizers: The Sacks-Uhlenbeck map is a minimizer of energy in its homotopy class,
while the Douglas condition is a criterion for the existence of a minimizer of Dirich-
let’s energy of the given topological type. However, also non-minimizing solutions
can sometimes be obtained inspite of “bubbling”, even though we cannot yet make
assertions about all such solutions. We illustrate this with Nirenberg’s problem.

After the work of Berger [5] and Kazdan-Warner [17] on Riemannian metrics of
prescribed curvature, the particular case of finding conformal metrics g = e2ug0 on
the sphere S2 with its standard round metric g0 having a given function f as Gauss
curvature Kg = f has attracted the attention of geometric analysts. This problem,
posed by Nirenberg, has given rise to sophisticated analytic approaches and deep
insights into the interplay of analysis and geometry and remains a challenge, even
though partial answers have been obtained.
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In view of the equation

Kg = e−2u(−Δ0u + 1)

relating Kg and u, where Δ0 = Δg0 for short, for given f : S2 → R we need to solve
the nonlinear partial differential equation

− Δ0u + 1 = fe2u on S2. (4.1)

Integrating, for a solution to (4.1) we have the Gauss-Bonnet identity∫
S2

fe2udμ0 = 4π. (4.2)

Thus, (4.1) can only be solved if f is positive somewhere. In the following we there-
fore suppose that f is smooth and strictly positive.

The problem is variational. Indeed, introducing the Liouville energy

S(u) = −
∫

S2
(|∇u|2 + 2u)dμ0,

where −
∫

S2 = 1
4π

∫
S2 denotes the average and with dμ0 = dμg0 , and setting

E(u) = Ef (u) = S(u) − log

(
−
∫

S2
fe2udμ0

)
(4.3)

for u ∈ H1(S2), solutions of (4.1) may be characterized as critical points of E among
functions u satisfying (4.2).

Via the Möbius group of conformal diffeomorphism Φ: S2 → S2, for any p ∈ S2

the functional E may be compared with the functional

Ef(p)(u) = S(u) − log

(
−
∫

S2
f(p)e2udμ0

)
,

where f is replaced by the constant f(p). Indeed, given any p ∈ S2, any t ≥ 1,
letting Φp : S2 \ {−p} → R2 be stereographic projection from the point −p ∈ S2

and letting δt : R2 � z → tz ∈ R2 be the standard dilation, we obtain the Möbius
map Φp,t = Φ−1

p ◦ δt ◦ Φp ∈ M . Setting up,t = u ◦ Φp,t + log |Φ′
p,t|, where we write

|Φ′| =
√

det dΦ for brevity, we then have

S(up,t) = S(u)

(see for instance [10], Proposition 2.1) and thus

Ef (up,t) = S(up,t)) − log

(
−
∫

S2
fe2up,tdμ0

)

= S(u) − log

(
−
∫

S2
(f ◦ Φ−1

p,t )e
2udμ0

)
→ Ef(p)(u)

as t → ∞. For large t > 1, the first and second variation of E at up,t then may be
related to ∇f(p) and ∇2f(p), respectively. From this observation, Chang-Yang [10]
deduce the following existence result.
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Theorem 4.1. [Chang-Yang [10], Theorem II’] Suppose that f > 0 is a smooth func-
tion satisfying the non-degeneracy condition

Δ0f(p) 	= 0 at any p ∈ S2 with ∇f(p) = 0 (4.4)

and the index count condition
∑

∇f(p)=0,Δ0f(p)<0

(−1)ind(p) 	= 1. (4.5)

Then there is a smooth solution u to (4.1).

Remark 4.2. (i) Note that Chang-Yang [10], p. 217, showed that when f 	≡ 1 solu-
tions of (4.1) cannot be relative minimizers of E.

(ii) Representing S2 = ∂B1(0) ⊂ R3 and denoting as x also the restriction of
the coordinate function x = (xi)1≤i≤3 in R3 to S2, Kazdan-Warner [17] observed
that the action of the Möbius group on the problem gives rise to the condition

∫
S2

〈∇xi,∇f〉e2udμ0 = 0, 1 ≤ i ≤ 3,

for (4.1) to be solvable. Here, 〈·, ·〉 at any point x ∈ S2 denotes the inner product
on TxS2 inherited from the ambient R3; see for instance [8]. Thus, equation (4.1)
cannot be solved, for instance, for the function f(x) = 1 + εx1 for any 0 < ε < 1,
which, indeed, does not satisfy (4.5).

(iii) In [28] an example was given showing that also the restriction to critical
points p of f with Δ0f(p) < 0 in condition (4.5) in Theorem 4.1 in general cannot
be removed; hence, with the non-degeneracy condition (4.4), condition (4.5) is not
only sufficient but in general also necessary for the existence of a solution to (4.1).

4.1. Interpretation

Condition (4.5) in Theorem 4.1 may be interpreted in terms of the “last Morse
inequality” related to the variational integral (4.3), that is, in terms of an equation
identifying the “topological degree” d = 1 of the (contractible) set of admissible
functions with the sum of the topological degrees of all critical points of E, including
the contributions of the “critical points at infinity” (in a terminology introduced by
Bahri [3]). With our above motivation, the latter is given by the left hand side of
(4.5). Thus, if that term is different from 1, there has to be a further contribution
to the total topological degree of all critical points, then necessarily coming from a
solution u to (4.1).

4.2. Open Problem

With this interpretation of condition (4.5) in Theorem 4.1 we might expect to obtain
not only an existence result but also a characterization of all solutions of (4.1) in
case that the problem admits multiple solutions. One particular instance of such a
case might be a function f as described in [28], however, modified in such a way
that condition (4.5) holds true.
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5. A Problem in Gauge Theory

The landmark paper [22] by Sibner–Sibner–Uhlenbeck solved a question in gauge
theory that had been open for more than a decade, concerning the existence of
non-self-dual solutions to the Yang-Mills equations in the trivial SU(2)-bundle over
S4. By analogy with the problem of harmonic maps from S2 = C ∪ {∞} to itself,
where one can show that all non-constant harmonic maps either are conformal or
anticonformal, from work of Atiyah-Jones [2] and Bourguignon–Lawson–Simons [6]
it had been conjectured that any Yang–Mills connection in the trivial SU(2)-bundle
over S4 would either be self-dual or anti-self-dual, as described for all SU(2)-bundles
on the four-sphere by Atiyah–Hitchin–Drinfeld–Manin [1].

However, in the paper [22] Sibner et al. showed that there exist an infinite num-
ber of non-self-dual Yang-Mills connections in this setting by exploiting symmetry.

5.1. m-Equivariant Connections

For a connection D in the trivial SU(2)-bundle over S4 with curvature F = D ◦ D
let

Y M(D) =
1
2

∫
S4

|F |2dμgS4

be the Yang-Mills energy. Note that the Yang-Mills energy is conformally invariant,
and one may identify S4 with R4 ∪ {∞} via stereographic projection.

Following Atiyah and Braam, Sibner et al. in [22] choose coordinates

(z, θ, x, y) �→ (z cos θ, z sin θ, x, y) ∈ R4 = R2 × R2.

This allows them to define a U(1)-action on S4 by letting

q(θ′)(z, θ, x, y) := (z, θ + θ′(mod 2π), x, y).

For m ∈ N, a connection D then is called m-equivariant if

q(θ)∗D = s(θ)−1 ◦ D ◦ s(θ) for all θ ∈ R/2πZ = U(1),

where s(θ) = eîmθ with a standard basis (̂i, ĵ, k̂) for the Lie algebra su(2) of SU(2).
The m-equivariant, self-dual or anti-self-dual minimizers of the Yang-Mills energy
then are called m-instantons or m-anti-instanton, respectively.

5.2. Non-minimal connections

For m ≥ 2, Sibner et al. obtain the following result.

Theorem 5.1. (Sibner-Sibner-Uhlenbeck [22], Theorem 1) For every integer m ≥ 2,
there exists a non-minimal m-equivariant solution to the Yang-Mills equations in
the trivial SU(2)-bundle over S4.

We sketch the proof. Let m ≥ 2. With the help of a construction of Taubes,
Sibner et al. construct a loop of connections gluing an m-instanton to an m-anti-
instanton with a maximal energy strictly less than 8πm, and then a Palais-Smale
sequence of connections Dk at that min–max level. In n = 4 dimensions, the Yang–
Mills functional does not satisfy the Palais-Smale condition. However, a compactness-
“bubbling” alternative as in the case of harmonic maps holds, and we have conver-
gence of a suitable subsequence Dk → D∞ on S4 \ {x1, . . . , xi0}, with finitely many
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concentration points xi, 1 ≤ i ≤ i0, where non-trivial m-equivariant Yang–Mills
connections over an SU(2)-bundle over S4 split off.

If i0 = 0, the connection D∞ is the sought-after non-minimizing m-equivariant
Yang-Mills connection in the trivial SU(2)-bundle over S4.

Similarly, if i0 > 0 and if there is a “bubble” corresponding to a non-trivial m-
equivariant Yang–Mills connection in the trivial bundle, we can take that connection
to obtain the assertion of the theorem.

On the other hand, if i0 > 0 and if there is a “bubble” with an m-equivariant
Yang–Mills connection in a non-trivial SU(2)-bundle over S4, its topological charge
c2 = km for some k ∈ Z \ {0} has to be compensated by the other “bubbles”. Thus,
there is a second “bubble” with a non-trivial m-equivariant Yang–Mills connection
on some non-trivial SU(2)-bundle over S4 with second Chern class c′

2 = k′m for
some k′ ∈ Z \ {0}, and the energies of the two bubbles will add up to a number
4π(|c2| + |c′

2|) ≥ 8πm, which is impossible and rules out this case.

Remark 5.2. The proof does not yield the explicit form of the non-self-dual solu-
tions. This contrasts with the self-dual solutions, whose existence can be established
by explicit construction.

5.3. Open Problem

For m = 1 the construction of Taubes is not available to prove the strict upper
bound β0 < 8π for the min-max level β0, and the argument that we sketched above
fails. Thus we are missing the most elementary non-self-dual solution related to an
instanton-anti-instanton balanced pairing with a U(1)-symmetry.

6. Min–Max Willmore Spheres

6.1. Willmore Surfaces

Let Σ be a closed surface. For a smooth immersion u : Σ → R3 let

W (u) =
∫

Σ

|H|2dμg

denote the Willmore energy of u, introduced by Blaschke (and even earlier by Sophie
Germain), where g = u∗gR3 is the pull-back metric and where H is the mean
curvature of S = u(Σ) induced by the immersion. Critical points of the Willmore
energy with respect to variations of the map u are called Willmore surfaces.

Note that, as shown by Blaschke, the Willmore energy is invariant under com-
positions of the immersion u with conformal transformations of the ambient R3.

Interest in Willmore surfaces was revived in 1965 when Willmore stated the
seminal conjecture that the torus obtained by rotating the circle of unit radius
centered at (

√
2, 0, 0) in the (x, z)-plane around the z-axis was the unique minimizer

(modulo conformal transformations) of the Willmore energy of tori. This conjecture
was finally confirmed in 2014 by Fernando Codá Marques and André Neves [19].

On the other hand, the beautiful observation of Smale [23] that it is possible to
“turn a sphere inside out” by means of a smooth path of immersions also invites a
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study of corresponding “min-max” Willmore spheres, as proposed by Robert Kusner
and recently analyzed by Rivière [20].

6.2. The Cost of Sphere Eversion

Indeed, let Ω be the set of continuous paths p = (p(t))0≤t≤1 of C2-immersions into
R3 inducing an eversion of the standard sphere and set

β0 = inf
p∈Ω,0≤t≤1

W (p(t)).

It is then tempting to speculate about the existence of a “min–max” Willmore
sphere which achieves this least maximal Willmore energy β0 among paths everting
the sphere and a corresponding path p ∈ Ω. In fact, as observed by Rivière, there
are two results that point to a unique candidate.

First, recall that Bryant [7] in 1984 was able to describe all immersed Willmore
spheres in R3 as being given by the images by inversions of simply connected,
complete, non-compact minimal surfaces with planar ends, with Willmore energy
given by 4πk and index equal to k − 3, where k is the number of ends.

On the other hand, by a topological result of Banchoff-Max [4] any path p ∈ Ω
has to contain at least one immersion with a point of self-intersection of order 4 (a
quadruple point). Hence, by a result of Li-Yau [18] we have β0 ≥ 16π.

Inspired by these results, Rivière conjectured that the desired “min-max” Will-
more sphere u = p(t) achieving the “min-max” value β0 along a suitable path p ∈ Ω,
should be given by an inversion of a simply connected, complete minimal surface
with k = 4 planar ends, thus having index m = 1 and energy W (u) = 16π; moreover,
in consequence we should have β0 = 16π.

6.3. Strategies and Open Questions

Two strategies are proposed by Rivière for the proof of this conjecture. First, one
might attempt to construct the conjectured optimal path by solving the Willmore
flow (the heat flow for the Willmore energy) with initial data obtained by perturb-
ing the candidate “min-max” Willmore sphere from Bryant’s construction in the
unstable direction. However, the Willmore flow might blow up, and it is not sure
if one can complete the path to reach either the standard embedding of S2 or its
inversion.

As an alternative construction, Rivière employs a standard mountain-pass ar-
gument for a suitably penalized version of the Willmore energy. Cleverly adapting
the “monotonicity trick” from [26] or [27] to his setting, he obtains a Palais-Smale
sequence uk for W from which he is able to extract finitely many Willmore immer-
sions ξ1, . . . , ξi0 of S2 minus finitely many “bubble” points such that

β0 =
i0∑

i=1

W (ξi) − 4πN

for some N ∈ N; but in order to answer the question posed by Kusner one would
need to show that i0 = 1 and N = 0, and it not clear how this can be done.
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