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Real-time Projected Gradient-based Nonlinear Model Predictive
Control with an Application to Anesthesia Control

Sophie Hall, Lukas Ortmann, Miguel Picallo, Florian Dörfler

Abstract— Medical drug infusion problems pose a combi-
nation of challenges such as nonlinearities from physiological
models, model uncertainty due to inter- and intra-patient
variability, as well as strict safety specifications. With these
challenges in mind, we propose a novel real-time Nonlinear
Model Predictive Control (NMPC) scheme based on projected
gradient descent iterations. At each iteration, a small number of
steps along the gradient of the NMPC cost is taken, generating a
suboptimal input which asymptotically converges to the optimal
input. We retrieve classical Lyapunov stability guarantees by
performing a sufficient number of gradient iterations until
fulfilling a stopping criteria. Such a real-time control approach
allows for higher sampling rates and faster feedback from
the system which is advantageous for the class of highly
variable and uncertain drug infusion problems. To demonstrate
the controller’s potential, we apply it to hypnosis control in
anesthesia of two interacting drugs. The controller successfully
regulates hypnosis even under disturbances and uncertainty
and fulfils benchmark performance criteria.

I. INTRODUCTION

Health care costs are rising in many countries and an
ageing population requires more frequent and complex treat-
ments [1]. Medical control systems have the potential to
ensure adequate and timely therapy delivery while allow-
ing clinicians to focus on fewer more complex tasks [2].
However, medical control poses various challenges such
as 1) nonlinearities from physiological models, 2) model
uncertainty due to inter- and intra-patient variability, and
3) strict safety specifications [3]. In this paper we specifically
focus on the class of automated drug infusion problems
which have received considerable attention in recent times as
they can be modelled well [4] and cover relevant applications
such as control of: Blood pressure [5], hemoglobin [6],
haemodialysis [7], anesthesia [8], and others [9].

A common control approach for medical problems is
Model Predictive Control (MPC) which uses dynamic models
to predict and optimize system behaviour [3]. MPC offers
flexibility in formulating the objective and allows for sys-
tematic incorporation of constraints [10]. Nonlinear MPC
(NMPC) can control nonlinear dynamics making it a good
approach for medical control problems [3].

However, the implementation of MPC requires solving
a constrained (and potentially non-convex) optimal control
problem (OCP) at each time step which may be prohibitively
computationally expensive [10, 11] and may lead to slow
sampling rates. Especially in embedded systems used for
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drug infusion problems, such as an artificial pancreas, com-
putational resources are limited [12]. Furthermore, in ap-
plications with high model uncertainty due to inter- and
intra- patient variability, fast feedback from the system is
essential to mitigate set-point deviations. In order to reduce
computational complexity, approaches such as explicit MPC
and real-time MPC have been proposed.

In explicit MPC the feedback law is precomputed offline
and stored as a lookup table. It has been widely adopted in
the medical field [13–15]. However, explicit MPC does not
scale well with increasing dimensionality caused by long
prediction horizons required in drug infusion problems. In
real-time MPC first- and second-order optimization algo-
rithms are employed to approximate the solution of an MPC
problem. At each time-step a certain number optimization
steps are taken which improve upon an initial solution guess,
iteratively converging to the optimal solution. Nevertheless,
analysing stability under a suboptimal input is challenging.
Yet stability certificates are especially important in safety-
critical applications such as medical control. There is an
extensive literature on real-time MPC [16–18]. An overview
of different methods is given in [11] and [19].

Not only, does real-time MPC reduce computational com-
plexity but additionally in applications with large model
uncertainty, it has been shown that the optimal solution is
very sensitive to parameter changes and applying first-order
methods can be more robust [20]. Thus, real-time MPC is an
ideal candidate for solving automated drug infusion problems
as it allows for fast feedback from the system and increases
robustness, both important properties for applications with
high inter- and intra patient variability.

Consequently, in this work we present a novel real-
time projected gradient-based NMPC scheme particularly
suited for drug infusion problems. Our contributions are
threefold: First, with the novel real-time NMPC scheme we
successfully control hypnosis in anesthesia of two interacting
medications fulfilling predefined performance criteria. To
the best of our knowledge this is the first work applying
real-time NMPC to a drug infusion problem. Second, our
theoretical analysis of the proposed scheme allows us to
show stability under standard NMPC assumptions. We extend
existing theory for real-time NMPC by deriving a theoretical
stopping criterion rather than fixing the number of iterations
of the optimization algorithm which is done in previous
works [16, 17, 19]. Such a stopping criterion allows to
perform just enough iterations to preserve stability, e.g., only
few iterations when there are no significant state changes,
but many iterations in the presence of disturbances which
would destabilise the system otherwise. Third, we present a



self-contained tutorial on modelling of anesthesia control.
The paper is organized as follows. We give preliminaries in

Section II and present the projected gradient-based controller
in Section III. Simulation results for anesthesia control are
given in Section IV. Section V concludes the paper.

II. PRELIMINARIES ON NMPC
Consider a nonlinear discrete-time system

xt+1 = f(xt, ut), (1)

where xt ∈ Rnx represents the system state at t and ut ∈
U ∈ Rnu is the control input. We assume the function
f : Rnx × Rnu → Rnx is continuously differentiable and
that without loss of generality the origin is an equilibrium
f(0, 0) = 0. If not stated otherwise, ∥ · ∥ denotes the
Euclidean norm. We consider a typical NMPC setup in which
we use a nonlinear model of the system to predict and
influence future system behaviour over a time horizon i =
1, . . . , N . We want to minimize the running cost h : Rnx ×
Rnu×N → R which is comprised of a stage cost l : Rnx ×
Rnu → R and a terminal cost Vf : Rnx → R. We define x
to be the most recent measured state. Further, we define the
predicted state and future input sequence as ξ = [ξ0, . . . , ξN ]
and µ = [µ0, . . . , µN−1]. Only the inputs µk are optimiza-
tion variables and not the predicted states ξk which are a
function of x and [µ0, . . . , µk−1]: ξk(x, µ0, . . . , µk−1) =
f(·, µk−1) ◦ · · · ◦ f(·, µ1) ◦ f(x, µ0), ∀k ≥ 1, and ξ0 = x.
The running cost h(x,µ) and the optimal control sequence
µ∗(x) are defined as

µ∗(x) = argmin
µ

h(x,µ)︷ ︸︸ ︷
N−1∑
k=0

l(ξk, µk) + Vf (ξN )

s.t. µk ∈ U k = 0, ..., N − 1,

(2)

and the optimal control input is the first element of the
sequence µ∗(x), i.e., u∗(x) = µ∗

0(x). The optimal value
function V (x) = h(x,µ∗(x)) gives the optimal value of (2).

We assume the following to ensure that the NMPC prob-
lem is well-posed, similar to [16] and [21]:

Assumption 1: There exists an open set X ⊂ Rnx such
that ∀x ∈ X , the OCP (2) is feasible and has a unique
optimal solution µ∗(x). Further, V (x) is continuous and
upper-bounded: V (x) < M∥x∥2, ∀x ∈ X\{0} with M > 0.

We further define the set Xα which is for a fixed α > 0
the maximum sub-level set of V (x) contained in X ,

Xα := {x ∈ X |V (x) ≤ α} ⊂ X . (3)

We make the following common MPC assumption on the
running cost h(x,µ) and the constraints [10, Ass. 2.2, 2.3]:

Assumption 2: The stage cost and terminal cost satisfy
l(x, u) > 0, ∀(x, u) ∈ X × U\{(0, 0)} and Vf (x) > 0,
∀x ∈ X\{0} as well as l(0, 0) = 0 and Vf (0) = 0. Also,
there exists d > 0 such that l(x, u) ≥ d ,∀x /∈ Xα. Further,
the input constraint set U is closed and convex.

In nominal NMPC the full optimization problem (2) is
solved in receding horizon and to guarantee stability the
following standard NMPC assumption is required [21].

Assumption 3: There exists a local controller
κ(x) ∈ U , ∀x ∈ Xα such that f(x, κ(x)) ∈ Xα,∀x ∈ Xα

and Vf (f(x, κ(x)))− Vf (x) ≤ −l(x, κ(x)),∀x ∈ Xα\{0}.
This allows us to state the following well-known Theorem:
Theorem 1: [10, Theorem 2.19] Under Assumptions 1-3

it holds ∀x ∈ X :

V (f(x, u∗(x))) ≤ V (x)− l(x, u∗(x)), (4)

and the origin is asymptotically stable in X for f(x, κ(x)).
A common approach to ensure recursive feasibility in

NMPC is to add a terminal constraint such that ξN lies
in Xα in which the terminal controller κ(ξN ) is defined.
However, the OCP (2) doesn’t enforce state constraints, thus
to ensure recursive feasibility we instead make use of the
following Theorem characterizing the domain of attraction
without terminal constraint.

Theorem 2: [22, Theorem 1] Under Assumptions 1-3,
there exists a set Γ, in which the optimal controller (2)
satisfies the cost decrease (4) and asymptotically stabilizes
(1) for all x ∈ Γ. The set Γ is defined as

Γ = {x ∈ Rnx : V (x) ≤ N · d+ α} ⊂ X , (5)

where N ∈ N is the horizon length, d is the lower bound
given in Assumption 2, and α is defined in (3).

As V (x) is positive and continuous on x and the interval
[0, N ·d+α] is closed, the set Γ ⊂ Rn is closed, bounded and
thus compact. Note that the following holds: Xα ⊂ Γ ⊂ X .

III. REAL-TIME PROJECTED GRADIENT-BASED
NMPC

NMPC schemes give rise to complex optimization prob-
lems like (2). One approach to reduce computation is to
employ a real-time iteration scheme. Rather than solving the
OCP (2) at every time step t, an estimate of the optimal
solution is maintained and improved upon by applying a
finite number of iterations of an optimization algorithm, like
in [16, 19, 21].

In this paper we present an approach in which a finite num-
ber of projected gradient steps are applied to a shifted version
of the input sequence µt−1 = [µ0|t−1, . . . , µN−1|t−1] where
the element µk|t−1 is the input for k steps into the future
computed at time t−1. The first element of the newly gener-
ated sequence µt is applied to the system. More specifically
this procedure is summarized in Algorithm 1.

Algorithm 1: Real-time projected gradient NMPC
Input: xt, xt−1,µt−1, γ, ϵ, σ

1 Initialize x = xt,
µ = [µ1|t−1, . . . , µN−1|t−1, κ(ξN (xt−1,µt−1))],

2 while
∥µ−ΠUN [µ− γ∇µh(x,µ)] ∥ ≥

√
1−ϵ2

σ l(x, µ0) do
3 µ = ΠUN (µ− γ∇µh(x,µ))

Output: µt = µ
4 Apply ut = µ0 to system

In Algorithm 1 γ is the fixed step size, and the Euclidean
projection is ΠUN (µ) := argminy∈UN ∥µ−y∥2 with UN =



U× ...×U . During the initialisation of Algorithm 1 we make
use of a common warm-starting technique in NMPC [11]: A
new input sequence is generated by shifting the previous
sequence and adding a local controller at the end. The
stopping criterion is required to ensure stability of the
real-time NMPC scheme in Algorithm 1 and it is given
by StopCrit(x,µ) =

√
1−ϵ2

σ l(x, u), where ϵ and σ are
constants which depend on the contraction rate and Lipschitz
constants of the system. The detailed derivation is given
in Section III-A. Additionally for stability we require the
following assumption.

Assumption 4: The set Γ resulting from Theorem 2 under
Assumption 1- 3 satisfies: l(x, u) is L1 Lipschitz continuous
∀(x, u) ∈ Γ×U , Vf (x) is Lipschitz continuous ∀x ∈ Γ and
h(x,µ) is m-strongly convex ∀x ∈ Γ.

Remark 1: Assumption 4 is similar to assumptions made
in related works such as [19]. If h(x,µ) was not convex in
Γ, a smaller sublevel set of V (x) may be considered and the
same analysis still holds.
Assumption 4 ensures contractivity of the real-time iterations
under the suboptimal input u in Algorithm 1. We can
conclude the following Lemma:

Lemma 1: Under Assumption 4 the running cost h(x,µ)
is L2 Lipschitz continuous ∀(x,µ) ∈ Γ× UN .

Proof: The running cost h(x,µ) is a composition of
Lipschitz functions l(x, u), Vf (x, u) and f(x, u), resulting
in h(x,µ) being Lipschitz [23, Proposition 2.3.1].

Additionally, we require the dynamics and the optimal
solution to fulfil the following assumption:

Assumption 5: The local solution µ∗(x) in (2) fulfils ∀x ∈
Γ (i) the linear independence condition and (ii) the second
order sufficiency condition [24].

Assumption 5 allows us to derive a Lipschitz bound
between µ∗(f(x, u)) and µ∗(f(x, u∗(x)) with the corre-
sponding Lipschitz constant L3.

To use the value function V (x) as a Lyapunov function,
a decrease at every time step t under the suboptimal input u
is required which is established by the following Theorem:

Theorem 3: Under Assumptions 4-5, if it holds that
∥µ − ΠUN [µ− γ∇µh(x,µ)] ∥ ≤

√
1−ϵ2

σ l(x, u), then
∀x ∈ Γ\{0} V (f(x, u)) < V (x).

The definition of Γ is given in (5) and the detailed
derivation of Theorem 3 is given in the upcoming section.
Theorem 3 allows to conclude the following Corollary:

Corollary 1: Under Assumptions 4-5, ∀x ∈ Γ the sys-
tem (1) under Algorithm 1 is asymptotically stable.

In general, for asymptotic stability the number of gradient
steps −γ∇µh(x,µ) taken must be large enough to fulfil
the stopping criterion StopCrit(x,µ). However, depending
on the application one might also choose to perform more
gradient updates for faster convergence to the optimal input
sequence µ∗(x). This of course comes at a higher compu-
tational burden per iteration t. Overall, an advantage of our
real-time projected gradient-based NMPC scheme is that it
gives a direct handle for balancing computational complexity
and performance while ensuring stability.

A. Proof of Theorem 3

The stability of Algorithm 1 is shown through two main
steps. Firstly, we show that with every iteration of the pro-
jected gradient algorithm the distance between the optimal
input sequence µ∗(x) and the suboptimal one µ decreases.
Secondly, we show that standard NMPC Lyapunov stability
theory is still applicable if u∗(x) and u are close enough
which we assure with the stopping criteria.

1) Contractivity of real-time iterations: Given Assump-
tion 4, we can derive relations between the suboptimal inputs
in Algorithm 1 step 3 and the optimal input µ∗(x).

Theorem 4: [25, Theorem 1] Under Assumption 4, for a
single gradient update µi+1 = ΠUN [µi−γ∇µh(x,µ

i)] with
γ ∈ (0, 2/L2) and ϵ2 = (1− 2m2

L2
γ +m2γ2) it holds:

• Decreasing distance to local optimizer

∥µi+1 − µ∗∥2 ≤ ϵ2∥µi − µ∗∥2 (6)

• Bounding distance to local optimizer

(1− ϵ2)∥µi − µ∗∥2 ≤ ∥µi − µi+1∥2 (7)
As we require γ ∈ (0, 2/L2), it follows ϵ2 ∈ (0, 1).

Theorem 4 shows that the distance to the optimal input
sequence µ∗(x) decreases which is required to ensure a
decrease in the optimal cost V (x).

2) Decrease in optimal cost V (x): As shown in (4), the
cost of an optimal NMPC decreases by at least −l(x, u∗(x))
at every time step. However, in our real-time projected
gradient-based scheme we do not apply the optimal input
u∗(x) to the system. Consequently, the question is if a
decrease in the optimal value function V (x) is ensured even
when applying the suboptimal input u. The following result
gives an affirmative answer.

Proposition 1: Under Assumptions 1-5 and with σ =
Lu + L1 it holds for (x, u) ∈ Γ× U :

V (f(x, u)) ≤ V (x)− l(x, u) + σ∥u− u∗(x)∥ (8)

Proof: The proof is given in Appendix A.

The constant Lu = L2L4(1+L3) is a composition of local
Lipschitz constants, where L2 and L3 arise from the OCP
(2) and L4 arises from the Lipschitz continuity of f(x, u)
over the set Γ × U . Following Proposition 1, the difference
in the decrease from V (x) to V (f(x, u)) when applying the
suboptimal input u, is the stage cost l(x, u) plus the extra
term σ∥u− u∗(x)∥, which acts like an additive disturbance
on the optimal value function decrease. We now establish a
condition which guarantees that σ∥u− u∗(x)∥ < l(x, u).

With Theorem 4 and the stopping criterion in Algorithm 1
StopCrit(x,µ) =

√
1−ϵ2

σ l(x, u), we can show after i steps:

∥u− u∗(x)∥ = ∥µi
0 − µ0(x)

∗∥
≤ ∥µi − µ∗∥

≤ 1√
1− ϵ2

∥µi −ΠUN

[
µi − γ∇µh(x,µ)

]
∥

<
1

σ
l(x, u)



Thus, it holds that σ∥u − u∗(x)∥ < l(x, u) and by (8),
V (f(x, u)) < V (x). Consequently, the OCP (2) is recur-
sively feasible as ∀x ∈ Γ it holds f(x, u) ∈ Γ. Moreover,
due to the strict decrease the system is asymptotically stable
which completes the proof of Theorem 3.

IV. REAL-TIME PROJECTED GRADIENT-BASED
NMPC FOR ANESTHESIA

The real-time NMPC approach presented in the previous
section is specially well-suited for drug infusion procedures,
like anesthesia control, since it allows to include strict input
constraints on the drugs, and is computationally efficient,
which enables it to perform fast feedback-based control
loops. In this section section we will demonstrate the ap-
plicability of our method on an anesthesia control problem.
The goal of anesthesia is for a patient to remain unconscious,
calm, with little pain and a good maintenance of homeosta-
sis (a stable internal body environment) and hemodynamic
stability (stable blood flow dynamics) throughout a surgery.
To achieve these goals a hypnotic and an analgesic drug
is administered during intravenous anesthesia. Hypnotics
induce unconsciousness and analgesics decrease sensitivity
to pain. Most commonly, propofol is used as an hypnotic
and remifentanil as an analgesic agent. Although, intravenous
anesthesia is a multi-input multi-output problem, the focus
lies on multi-input single-output control of depth of hypnosis
due to a lack of a reliable analgesic sensors [26]. The
prevailing measure of depth of hypnosis is the bispectral
index (BIS) which is based on phase coupling of different
frequencies in the electroencephalogram. A fully awake pa-
tient has an index of 100 whereas an index of 0 corresponds
to no brain activity. General anesthesia is achieved for a BIS
of 40 to 60. Different types of disturbances arise during
anesthesia which are often linked to sudden pain, i.e., a
larger incision performed by the surgeon, or periods of
very little stimulation, i.e., planning of the next steps in the
surgery [27]. These disturbances must be handled efficiently
to avoid the BIS leaving the target range of 40 to 60.

A. Modelling

Modelling the distribution and effect of hypnotics and
analgesics is usually done using pharmacokinetic (PK) and
pharmacodynamic (PD) models. An overview of the PKPD
model and the relationship from drug infusion (input u) to
BIS effect (output y) is shown in Figure 1.

The linear PK model is based on a four-compartment
model of the human body. It estimates drug concentra-
tion in each compartment and diffusion rates between
compartments. For propofol infusion the Marsh [29] and
Schnider [30] models are both commonly used in clinical
practice. The Schnider model is not to be used with obese
patients but incorporates age as an additional covariate which
is advantageous [31] and is therefore used here. The standard
PK model for remifentanil is the Minto model [32].

The PK continuous-time state-space description for propo-
fol and remifentanil is the following:

[
Ċp

Ċr

]
(t) =

[
Acp 0

0 Acr

][
Cp

Cr

]
(t) +

[
Bcp 0

0 Bcr

][
up

ur

]
(t),

where Cp =
[
Cp

1 Cp
2 Cp

3 Cp
e

]T
corresponds to the

propofol concentration in the three different compartments
and the effect site compartment. The same holds for Cr.
The state-space matrices are composed of the transfer rates
which are a function of patient specific variables, i.e,

Acp =


−(kp

12 + kp
13 + kp

10) kp
21 kp

31 0

kp
12 −kp

21 0 0

kp
13 0 −kp

31 0

kp
1e 0 0 −kp

e0

 (9)

Bcp =
[
1 0 0 0

]T
and similarly for Acr and Bcr with the corresponding trans-
fer rates for remifentanil kr. The nonlinear pharmacodynam-
ics describe the interaction and the combined contribution of
propofol and remifentanil to the observed effect BIS [33].

BIS(Cp
e , C

r
e )

= E0 − Emax

(
Cp

e

C
p
50

+
Cr

e
Cr

50
+ β × Cp

e

C
p
50

× Cr
e

Cr
50

)η

(
C

p
e

C
p
50

+
Cr

e
Cr

50
+ β × C

p
e

C
p
50

× Cr
e

Cr
50

)η

+ 1
. (10)

The nominal model constants are taken from [33] and [31]:
• (Cp

50) propofol drug concentration producing 50% of
the maximal effect: 1.8 µg/ml.

• (Cr
50) remifentanil drug concentration producing 50%

of the maximal effect: 12.5 µg/ml.
• (E0), (Emax) baseline level and maximal effect: 100.
• (η) slope of the pharmacodynamic response curve: 3.76.
• (β) interaction parameter for the two drugs: 5.1.

B. Simulation Results
As we propose a novel control approach based on gradient-

based real-time iterations which only approximates the MPC
input, it is essential to demonstrate that nonetheless bench-
mark performance criteria for closed-loop anesthesia control
given in [27] are met:

1) Rise time at induction of 3-4 min.
2) Overshoot less than 10-15%.

Central
compartment

V1

Slowly
equilibrating
compartment

V3

Rapidly
equilibrating
compartment

V2
Blood, Brain, LiverMuscles, Viscera Fat, Bones

Effect site
compartement

Nonlinear drug-
effect relation

k12

k21 k31

k13

PK

PD

ke0

k1e

BIS

Drug

k10

Fig. 1. Schematic of the linear PK compartment model and the nonlinear
PD effect model, adapted from [28].



3) During maintenance the BIS should stay within 10
points of the target in about 85% of the time.

4) For an output disturbance (i.e., sudden analgesic
arousal) the patient’s response should be suppressed
within 2 min without inducing oscillations.

We test the closed-loop behaviour of these methods in
two realistic clinical scenarios proposed in [34] which are
used as a benchmark for controller validation. We use a
sampling time of 0.1 min and a NMPC prediction horizon
of 25 steps. All transfer rates in (9) can be computed from
patient parameters such as weight, height and others. To
estimate future concentrations a Kalman filter can be used
which has proven to work well for anesthesia control [35].
The infusion rates are both initialised with 1 mg

min and 1 µg
min for

propofol and remifentanil respectively. We adopt a quadratic
stage-cost which regulates the input and penalizes deviations
from the output reference yref = BISref = 50, l(u, y) =
0.5uTRu + ρ/2(yref − y)2. The stepsize and cost function
weights are found through tuning as γ = 10−3, ρ = 10, and
R = [ 1 0

0 1000 ]. The weight on the infusion rate of remifentanil
is set much higher as it’s primary use shall be analgesia rather
than sedation. Exemplary patient profiles are taken from [36].
Time varying input constraints are required for anesthesia as
drug infusion during induction (first 10 minutes) is much
higher than during maintenance. The following parameters
are used here [37]:

• Induction: up ≤ 4 mg
kg min , ur ≤ 0.36 µg

kg min .

• Maintenance: up ≤ 0.8 mg
kg min , ur ≤ 0.07 µg

kg min .
The novel projected gradient-based controller successfully

drives the patient to the BIS reference of 50, as seen in
Figure 2 (a). The stopping criterion derived theoretically
is overly conservative as the Hill-equation in (10) leads
to a large Lipschitz constant L3. Instead we can show in
Figure 2 (a) that the controller is already stabilizing with only
10 iterations. While increasing the number of iterations the
response becomes faster, and the steady-state error decreases.
There is always a minimum natural physiological response
time to drug infusions. The increase in rise time with only 10
iterations can be explained by the shape of the Hill-equation
relating drug concentrations to BIS effect [33]. The gradients
∇Cp

e
BIS(Cp

e , C
r
e ) and ∇Cr

e
BIS(Cp

e , C
r
e ) are nearly zero until

a threshold concentration is reached. The controller with 50
iterations offers a good compromise between performance
and computational complexity. The rise-time and overshoot
criteria are fulfilled with significantly less iterations than the
1000 iterations of the “close-to-optimal” controller.

To evaluate the disturbance rejection performance of the
real-time NMPC scheme, two output disturbances are applied
for one minute. First a positive disturbance increasing the
BIS by ten points is applied which could be a sudden increase
in pain. Then, a decrease in the BIS is simulated correspond-
ing to a period of little stimulation. As shown in Figure 2 (b),
in both cases the patient’s response is suppressed within two
minutes, as specified by the performance criteria. In addition,
in Figure 2 (c) we demonstrate that the real-time NMPC
scheme successfully drives the BIS to the reference value of
50 even under model uncertainties of 10% to 30%.

Fig. 2. (a) The BIS response curve with the real-time NMPC controller
using varying number of iterations. (b) The disturbance rejection with
50 real-time NMPC iterations. (c) The control performance under model
uncertainty (10% to 30 %) with 50 real-time NMPC iterations.

V. CONCLUSIONS

In this paper we have introduced a novel real-time iteration
scheme for nonlinear model predictive control (NMPC)
based on projected gradient descent. By taking steps along
the gradient of the optimal NMPC cost, a complex optimiza-
tion problem can be solved while fulfilling input constraints.
Stability of the new scheme is proven by showing a decrease
in the optimal value function at each iteration. This is
achieved by bounding the difference between the optimal
and suboptimal input such that the system does not diverge
too much from the optimal trajectory.
The potential of the novel projected gradient-based NMPC
scheme is demonstrated in an anesthesia control application.
The controller fulfils commonly defined rise-time, overshoot
and disturbance rejection criteria with only 50 iterations, The
number of iterations can be reduced further by increasing the
NMPC time horizon and improving initialisation.

APPENDIX

A. Proof of Proposition 1

We begin by relating the change in the optimal value
function V (f(x, u)) to the change of u.

∥V (f(x, u))− V (f(x, u∗(x)))∥
= ∥h(f(x, u),µ∗(f(x, u)))

− h(f(x, u∗(x)),µ∗(f(x, u∗(x))))∥
≤ L2∥f(x, u)− f(x, u∗(x))∥
+ L2∥µ∗(f(x, u))− µ∗(f(x, u∗(x)))∥ (11)



Next, we investigate the sensitivity of the optimizer value
µ∗(x) to the parameter f(x, u). Following [24, Theorem
2.3.3] and with Assumption 5 fulfilled, the optimizer value
µ∗(x) is L3 Lipschitz continuous ∀f(x, u) in the set Γ×U :

∥µ∗(f(x, u))− µ∗(f(x, u∗(x)))∥
≤ L3∥f(x, u)− f(x, u∗(x))∥. (12)

Finally, the dynamics f(x, u) are assumed to be contin-
uously differentiable and thus they are L4 Lipschitz on the
compact sets Γ and U . Combining (11) and (12) gives:

∥V (f(x, u))− V (f(x, u∗(x)))∥
≤ L2(1 + L3)∥f(x, u)− f(x, u∗(x))∥
≤ L2L4(1 + L3)︸ ︷︷ ︸

Lu

∥u− u∗(x)∥.

The following derivation connects all previous parts to
arrive at the exact expression in Proposition 1.

V (f(x, u)) + V (f(x, u∗(x)))− V (f(x, u∗(x)))︸ ︷︷ ︸
=0

≤ V (f(x, u∗))︸ ︷︷ ︸
≤V (x)−l(x,u∗(x))

+ ∥V (f(x, u))− V (f(x, u∗(x)))∥︸ ︷︷ ︸
≤Lu∥u−u∗(x)∥

≤ V (x)− l(x, u∗(x)) + Lu∥u− u∗(x)∥

≤ V (x)− l(x, u) + Lu∥u− u∗(x)∥+ ∥l(x, u)− l(x, u∗(x))∥︸ ︷︷ ︸
≤L1∥u−u∗(x)∥

≤ V (x)− l(x, u) + (Lu + L1)∥u− u∗(x)∥

= V (x)− l(x, u) + σ∥u− u∗(x)∥

Thus, it holds that V (f(x, u)) ≤ V (x)− l(x, u)+σ(∥u−
u∗(x)∥). Here we made use of the L1 Lipschitz continuity
of the running cost l(x, u) for u ∈ U given by Assumption 4.
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