

Introducing hybrid vehicle dynamics in microscopic traffic simulation

Other Conference Item

Author(s):

He, Yinglong; Mattas, Konstantinos; Fontaras, Georgios; Makridis, Michail (); Komnos, Dimitris; Laverde Marín, Andrés; Ciuffo, Biagio

Publication date: 2023-01-09

Permanent link: https://doi.org/10.3929/ethz-b-000594749

Rights / license: In Copyright - Non-Commercial Use Permitted

Introducing Hybrid Vehicle Dynamics in Microscopic Traffic Simulation

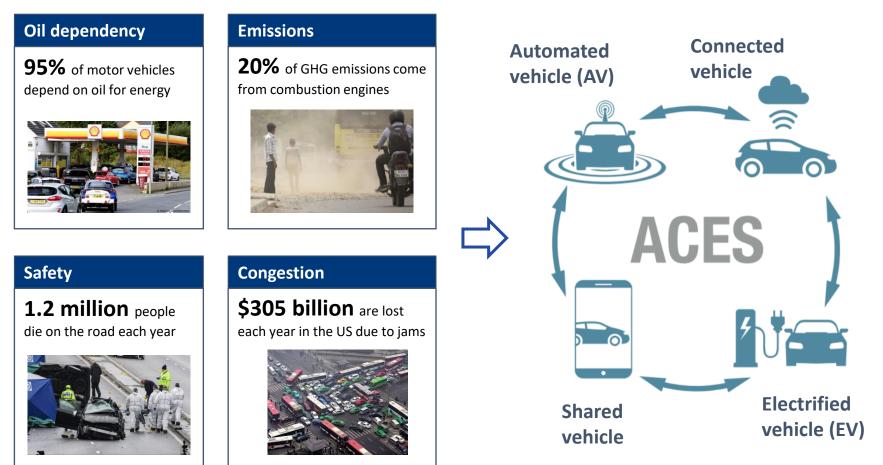
<u>Yinglong (Ian) He</u>¹, K. Mattas, G. Fontaras, M. Makridis, D. Komnos, A. L. Marín, B. Ciuffo

¹ Lecturer in Resilient Transport, University of Surrey

Email: ian.he@surrey.ac.uk

Web: <u>yinglonghe.github.io</u>

European


Content

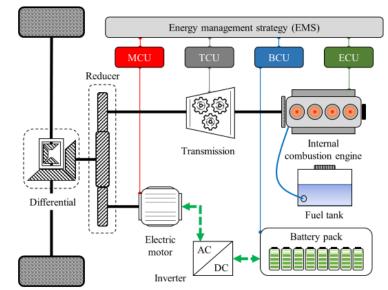
- Background & motivation
- Generic hybrid MFC model
- Experimental setup
- Results and discussion
- Conclusions

> Challenges and opportunities for road transport

Traffic simulation \rightarrow Technology development and evaluation

UNIVERSITY OF SURREY

Our previous studies

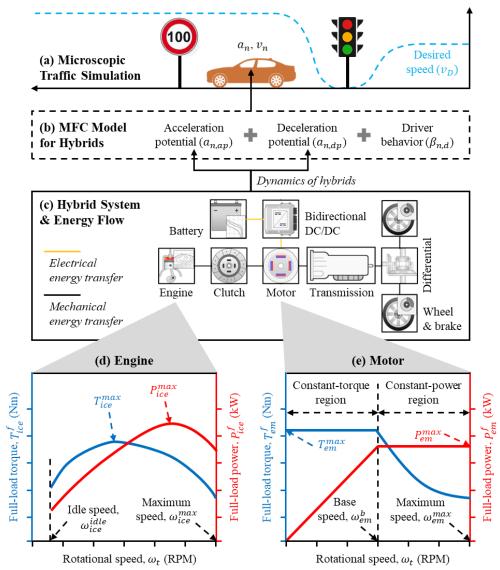

Microsimulation free-flow acceleration (MFC) models \rightarrow Dynamics of ICEVs and EVs, which are directly propelled by a single type of power source (ICE or EM).

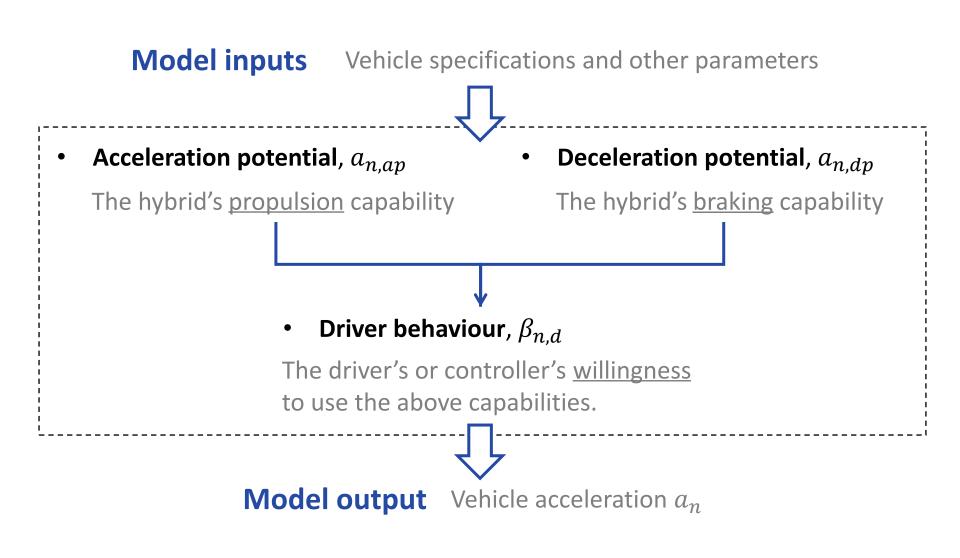
He et al. Transp. Res. Rec. 2020;2674(9):776-91; Makridis et al. Transp. Res. Rec. 2019;2673(4):762-77.

Research gap

No traffic model accounts for vehicle dynamics of **HEVs** (propelled by EM alone or together with ICE, depending on battery SoC and power demand).

Challenge: HEVs have more degrees of freedom for propulsion \rightarrow More complex acceleration characteristics.


Generic hybrid MFC model


> Overview

- (d) & (e) Power sources: ICE & EM, different propulsion characteristics
- (c) Energy flows: Electrical & mechanical
- (b) MFC model:
 - ✓ Dynamics of hybrids $a_{n,ap}$ & $a_{n,dp}$
 - ✓ Driver behavior: $\beta_{n,d}$

Generic hybrid MFC model

> Acceleration potential function, $a_{n,ap}(t)$

$$a_{n,ap}(t) = \frac{F_T^f(v_n(t)) - F_R(v_n(t))}{m},$$

 v_n is the vehicle speed (m/s); m is the vehicle operating mass (kg); F_T^f and F_R are the <u>full load tractive force (N)</u> and the <u>total resistance force (N)</u>, respectively.

$$F_R(t) = f_0 \cdot \cos(\theta(t)) + f_1 \cdot v_n(t) + f_2 \cdot v_n(t)^2 + mg \cdot \sin(\theta(t)),$$

 θ is the road slope (rad); f_0 , f_1 , and f_2 are <u>road load coefficients</u> (N, kg/s, and kg/m, respectively).

Generic hybrid MFC model

$$F_T^f(t) = \min\left(\frac{T_T^f(v_n(t))}{r_w}, \mu \cdot m_{ta} \cdot g\right),$$

 T_T^f is the <u>full load tractive torque (Nm</u>); r_w is the wheel radius (m); μ is the coefficient of friction between wheels and roadway surface; m_{ta} is the mass of the vehicle on the tractive axle (kg); g is the gravitational acceleration (9.81 m/s²).

$$T_T^f(t) = \begin{cases} T_{em}^f(\omega_t(t)) \cdot i_t \cdot i_d \cdot \eta_d, & \text{for CD mode,} & (\text{Charge depleting}) \\ \left(T_{em}^f(\omega_t(t)) + T_{ice}^f(\omega_t(t))\right) \cdot i_t \cdot i_d \cdot \eta_d, & \text{for CS mode,} & (\text{Charge sustaining}) \end{cases}$$

 T_{em}^{f} and T_{ice}^{f} are <u>full load torques of the electric motor (EM) and the internal</u> <u>combustion engine (ICE)</u>, respectively; ω_t is the rotational speed (rpm) of the transmission input shaft; i_t and i_d are the engaged gear ratios of the transmission and the differential, respectively; η_d is the driveline efficiency. **Generic hybrid MFC model**

$$\omega_t(t) = \frac{60 \cdot i_t \cdot i_d \cdot v_n(t)}{2\pi \cdot r_w},$$

This equation represents the conversion between ω_t and v_n . Relevant parameters and variables are given previously.

$$T_{em}^{f}(t) = \begin{cases} T_{em}^{max}, & 0 \le \omega_t (t) < \omega_{em}^b, \\ \frac{6 \times 10^4 \cdot P_{em}^{max}}{2\pi \cdot \omega_t(t)}, & \omega_{em}^b \le \omega_t(t) < \omega_{em}^{max}, \end{cases} \qquad \omega_{em}^b(t) = \frac{6 \times 10^4 \cdot P_{em}^{max}}{2\pi \cdot T_{em}^{max}}$$

 T_{em}^{max} and P_{em}^{max} are the EM's maximum torque (Nm) and maximum power (kW), respectively; ω_{em}^{b} is the motor base speed (rpm) representing the split point between constant-torque and constant-power regions.

$$T_{ice}^{f}(t) = \frac{6 \times 10^{4} \cdot P_{ice}^{f}(\omega_{t}(t))}{2\pi \cdot \omega_{t}(t)},$$

 P_{ice}^{f} are the ICE's full load power (kW) derived from the CO2MPAS generic ICE model.

> Deceleration potential function, $a_{n,dp}(t)$

 $\begin{aligned} a_{n,dp}(t) &= \varepsilon \big(v_n(t) \big) \cdot a_d^{lim}, \\ a_d^{lim} &= \mu \cdot g, \\ \varepsilon(t) &= b_0 + b_1 \cdot v_n(t) + b_2 \cdot v_n(t)^2, \end{aligned}$

 a_d^{lim} is the maximum frictional deceleration (m/s²) that can be sustained between <u>the tires and the roadway</u> surface; ε is a reduction factor representing the <u>driver's typical deceleration pattern</u> at different speeds, in which b_0 , b_1 , and b_2 are empirical coefficients.

> Driver behaviour function, $\beta_{n,d}(t)$

$$\beta_{n,d}(t) = \max\left[1 - \left(1 + \frac{2(v_n(t) - v_D)}{v_D + 0.1}\right)^{30}, 1 - \left(1 - \frac{v_n(t) - v_D}{50}\right)^{100}\right],$$

$$a_{n}(t) = \begin{cases} DS \cdot \beta_{n,d} (v_{n}(t)) \cdot a_{n,ap} (v_{n}(t)), & 0 \leq v_{n}(t) < v_{D}, \\ DS \cdot \beta_{n,d} (v_{n}(t)) \cdot a_{n,dp} (v_{n}(t)), & v_{n}(t) \geq v_{D}, \end{cases}$$

 v_D is the desired speed (m/s) in free-flow traffic; $\beta_{n,d}$ denotes the percentage of the acceleration and deceleration capabilities that drivers typically use under different conditions.

- Driver style factor: DS ∈ [0,1] → the aggressiveness in acceleration and deceleration.
- Gear-shifting factor: GS ∈ [0,1] → the threshold speeds for gear shifting based on the habits of drivers.

Makridis et al. Transp. Res. Rec. 2019;2673(4):762-77.

The experimental setup has 4 stages:

- Validation with VELA chassis dynamometer data to validate the reliability of the acceleration (a_{n,ap}) and deceleration (a_{n,dp}) potential functions
- Implementation in microsimulation
- Calibration and validation against trajectory data
- Validation with 0-100 km/h acceleration specifications for 203 commercial hybrid vehicles.

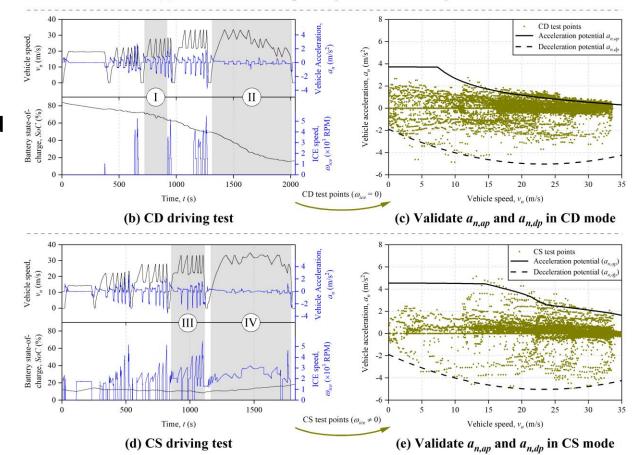
> Validation using chassis dynamometer test

Main specifications of the hybrid vehicle under test (Kia Niro PHEV 2019)

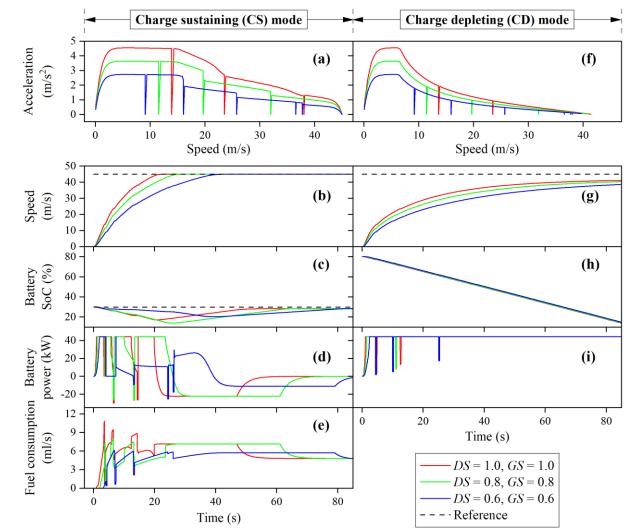
Specifications	Symbols	Units	Values
Vehicle operating mass	т	kg	1421
Height	H	m	1.55
Width	W	m	1.81
Wheel radius	r_w	m	0.33
Transmission gear ratios	<i>i</i> _t	na	[3.87, 2.22, 1.37, 0.96,
			0.93, 0.77], (1st to 6th)
Differential gear ratio	i _d	na	3.23
0-100 km/h acceleration time	$T_{0-100km/h}$	S	11.5
Vehicle speed limit	V _{lim}	km/h	162
Battery capacity	C_{bat}	kWh	1.56
EM's peak torque	T_{em}^{max}	Nm	44.5
EM's peak power	P_{em}^{max}	kW	170
ICE's peak torque	T_{ice}^{max}	Nm	147
ICE's peak power	P_{ice}^{max}	kW	77

Note: na = not applicable.

Results and discussion



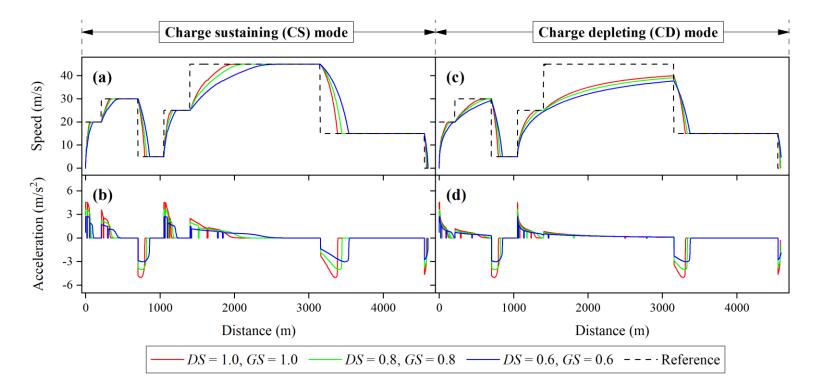
- Two hybrid modes: (b)-(c)
 CD and (d)-(e) CS
- (b) and (d): Operational data in CD and CS modes
- (c) and (e): Theoretical a_{n,ap} and a_{n,dp} have good correlations with the upper and lower boundaries of the experimental data
- Trajectories I-IV →
 Calibrate and validate the
 MFC model subsequently


(a) JRC VELA 8 testing facility for electric and hybrid vehicles

> Model implementation in microsimulation

a) Acceleration simulation (from 0 to 45 m/s)

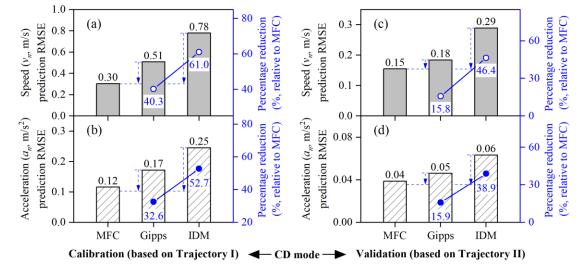
- 3 typical drivers: DS and GS
- 2 modes: CS (a)-(e) and CD (f)-(i)
- (a) & (f): Smaller GS →
 Earlier gear shifting
- (b) & (g): CD mode use EM alone → Cannot reach the specified top speed (45 m/s)
- (e): aggressive driver
 (DS, GS) = (1, 1) →
 More fuel consumption



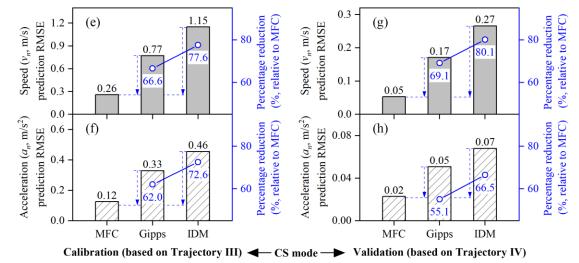
UNIVERSITY OF

European Commission

Dr Yinglong (lan) He


b) Artificial driving cycle simulation

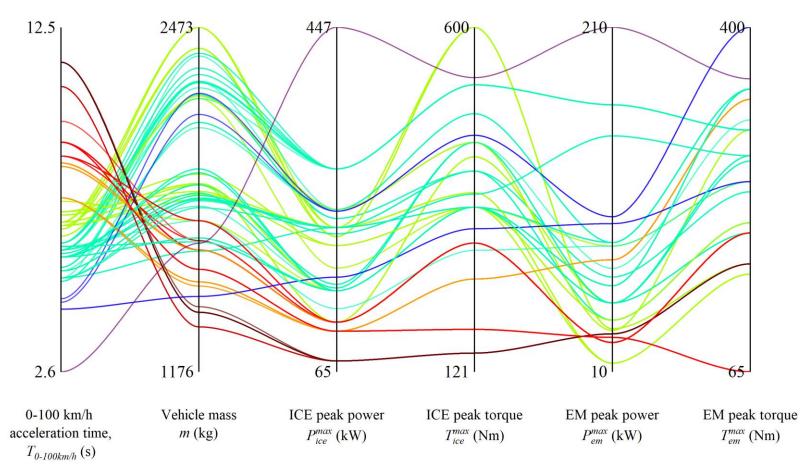
- Two modes: CS (a)-(b) and CD (c)-(d)
- MFC model → Ensure smooth transitions between different speed levels → Avoid obvious oscillations or overshoots in simulation


Results and discussion

Calibration and validation against driving trajectories

- 3 models: MFC, Gipps', IDM
- (a)-(b): CD calibration
- (e)-(f): CS calibration
- Validation of CD mode → Compared to Gipps' and IDM, MFC reduces:
 - ✓ (c) RMSE of speed
 - ✓ (d) RMSE of acceleration
- Validation of CS mode → MFC achieves even more accuracy gains, reducing:
 - ✓ (g) RMSE of speed
 - \checkmark (h) RMSE of acceleration

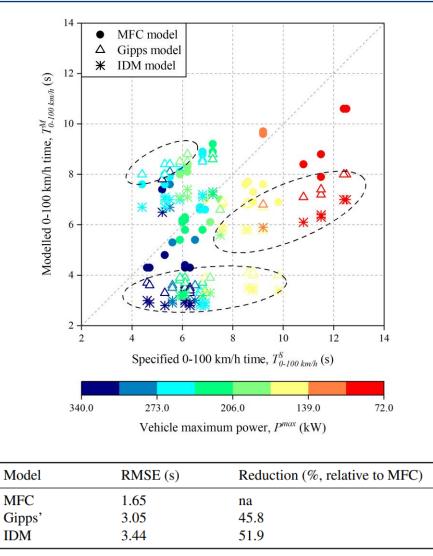
UNIVERSITY OF



Dr Yinglong (Ian) He

European Commission

Validation against 0-100 km/h acceleration specifications



Main specifications of the hybrid vehicles in the database

Results and discussion

- X axis $\rightarrow T_{0-100km/h}^{S}$ (specified/ground-truth in database)
- Y axis $\rightarrow T^M_{0-100km/h}$ (modelled/predicted by MFC, Gipps', and IDM)
- MFC cluster: Closer to the diagonal → More accurate
- Compared to Gipps' and IDM, MFC reduces RMSE of $T_{0-100km/h}$ by 40-50%.

Note: RMSE = root mean square error; IDM = intelligent driver model; MFC = microsimulation free-flow acceleration model; na = not applicable.

- UNIVERSITY OF SURREY
- MFC model is hitherto **the first traffic model** to capture the acceleration dynamics of **hybrid** vehicles.
- MFC can ensure **smooth transitions** between different speed levels, avoiding oscillations or overshoots in microsimulation.
- MFC can quantify hybrids' energy consumption (both electricity & fuel).
- MFC outperforms Gipps' and IDM in reproducing driving trajectories, reducing validation errors (speed & acceleration) in CD mode, and yielding even greater accuracy gains in CS mode (MFC captures complex ICE-EM coupling dynamics).
- MFC gives more accurate predictions in 0-100 km/h acceleration specifications.

Q&A

Thank you!

Dr Yinglong (Ian) He ian.he@surrey.ac.uk

University of Surrey

Joint Research Centre (JRC) of the European Commission